三角函数应用题(精选)
中考数学专题 初中三角函数应用题10道-含答案
初中三角函数应用题10道(1)求步道AC 的长度(结果保留根号);(2)游客中心Q 在点A 的正东方向,步道AC 与步道BQ 交于点P 小明和爸爸分别从B 处和A 处同时出发去游客中心,小明跑步的速度是每分钟请计算说明爸爸的速度要达到每分钟多少米,他俩可同时到达游客中心.0.1)(参考数据:2 1.414≈,3 1.732≈,6 2.449≈)2.(2023春·重庆沙坪坝·九年级重庆八中校考阶段练习)下图是儿童游乐场里的一个娱乐项目转飞椅的简图,该设施上面有一个大圆盘(圆盘的半径是 3.5OA =米),圆盘离地面的高度1 6.5OO =米,且1OO ⊥地面l ,圆盘的圆周上等间距固定了一些长度相等的绳子,绳子的另一端系着椅子(将椅子看作一个点,比如图中的点B 和1B ),当旋转飞椅静止时绳子是竖直向下的,如图中的线段AB ,绳长为4.8米固定不变.当旋转飞椅启动时,圆盘开始旋转从而带动绳子和飞椅一起旋转,旋转速度越大,飞椅转得越高,当圆盘旋转速度达到最大时,飞椅也旋转到最高点,此时绳子与竖直方向所成的夹角为57α=︒.(参考数据:sin 570.84︒≈,cos570.55︒≈,tan 57 1.54︒≈)(1)求飞椅离地面的最大距离(结果保留一位小数);(2)根据有关部门要求,必须在娱乐设施周围安装安全围栏,而且任何时候围栏和飞椅的水平距离必须超过2米.已知该旋转飞椅左侧安装有围栏EF ,且EF l ⊥,19.8O E =米,请问圆盘最大旋转速度的设置是否合规?并说明理由.3.(2023春·重庆渝北·九年级校联考阶段练习)如图,某大楼的顶部竖有一块宣传牌AB ,小明在斜坡的坡脚D 处测得宣传牌底部B 的仰角为45︒,沿斜坡DE 向上走到E 处测得宣传牌顶部A 的仰角为31︒,已知斜坡DE 的坡度3:4,10DE =米,22DC =米,求宣传牌AB 的高度.(测角器的高度忽略不计,参考数据:sin 310.52︒≈,cos310.86︒≈,tan 310.6)︒≈。
三角函数的应用专项训练
三角函数的应用专项训练姓名:__________班级:__________评价:__________一、单选题(共8小题)1. 已知α是第四象限角,且3sin2α=8cosα,则cos等于( )A. -B. -C.D.2. 已知α∈,sinα=,则tanα等于( )A. -B. 2C.D. -23. 若α∈(0,π),sin(π-α)+cosα=,则sinα-cosα的值为( )A. B. - C. D. -4. 函数f(x)=(0<x<π)的大致图象是( )A. B. C. D.5. 为了得到函数y=sin的图象,可以将函数y=sin的图象( )A. 向右平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向左平移个单位长度6. 下列函数中,以为周期且在区间上单调递增的是( )A. f(x)=|cos 2x|B. f(x)=|sin 2x|C. f(x)=cos|x|D. f(x)=sin|x|7. 已知函数f(x)=cosωx+sinωx,ω>0,x∈R.若曲线y=f(x)与直线y=1的交点中,相邻交点的距离的最小值为,则y=f(x)的最小正周期为( )A. B. π C. 2π D. 3π8. 已知函数f(x)=sin(ωx+φ),x=-为f(x)的零点,x=为y=f(x)的图象的对称轴,且f(x)在上单调,则ω的最大值为( )A. 11B. 9C. 7D. 5二、多选题(共5小题)9. 函数f(x)=A sin(ωx+φ)(A>0,ω>0,0≤φ≤2π)的部分图象如图所示,则下列说法正确的是( )A. ω=B. ω=C. φ=D. A=510. 已知函数f(x)=A sin(ωx+φ)的部分图象如图所示,则下列说法错误的是( )A. 函数y=f(x)的图象关于直线x=-对称B. 函数y=f(x)的图象关于点对称C. 函数y=f(x)在上单调递减D. 该图象对应的函数解析式为f(x)=2sin11. 将曲线y=sin2x-sin(π-x)sin上每个点的横坐标伸长为原来的2倍(纵坐标不变),得到g(x)的图象,则下列说法正确的是( )A. g(x)的图象关于直线x=对称B. g(x)在[0,π]上的值域为C. g(x)的图象关于点对称D. g(x)的图象可由y=cos x+的图象向右平移个单位长度得到12. 函数y=sin的图象向右平移个单位长度后与函数f(x)的图象重合,则下列结论中正确的是( )A. f(x)的一个周期为-2πB. y=f(x)的图象关于直线x=-对称C. x=是f(x)的一个零点D. f(x)在上单调递减13. 对于函数f(x)=给出下列四个命题,其中为真命题的是( )A. 该函数是以π为最小正周期的周期函数B. 当且仅当x=π+kπ(k∈Z)时,该函数取得最小值-1C. 该函数的图象关于直线x=π+2kπ(k∈Z)对称D. 当且仅当2kπ<x<+2kπ(k∈Z)时,0<f(x)≤三、填空题(共4小题)14. y=tan(2x+θ)图象的一个对称中心为,若-<θ<,则θ=________.15. 设函数f(x)=A sin(ωx+φ),A>0,ω>0,-<φ<,x∈R的部分图象如图所示,则A+ω+φ=________.16. 要得到函数y=sin的图象,只需将函数y=cos 2x的图象向________平移________个单位长度.17. 在如图所示的矩形ABCD中,点E,P分别在边AB,BC上,以PE为折痕将△PEB翻折为△PEB′,点B′恰好落在边AD上,若sin∠EPB=,AB=2,则折痕PE的长为________.四、解答题(共4小题)18. 已知函数f(x)=2sin·cos-sin(x+π).(1)求f(x)的最小正周期;(2)将f(x)的图象向右平移个单位长度,得到函数g(x)的图象,求函数g(x)在区间[0,π]上的最大值和最小值.19. 已知f(x)=(sin x+cos x)2-cos2x.(1)求函数f(x)的最小正周期及单调递增区间;(2)若θ∈,f=,求sin的值.20. 如图为电流强度I与时间t的关系式I=A sin(ωt+φ)的图象.(1)试根据图象写出I=A sin(ωt+φ)的解析式;(2)为了使I=A sin(ωx+φ)中t在任意一段秒的时间内电流强度I能同时取得最大值|A|与最小值-|A|,那么正整数ω的最小值是多少?21. 如图,某城市拟在矩形区域ABCD内修建儿童乐园,已知AB=200米,BC=400米,点E,N分别在AD,BC上,梯形DENC为水上乐园;将梯形EABN分成三个活动区域,M在AB上,且点B,E关于MN对称.现需要修建两道栅栏ME,MN将三个活动区域隔开.设∠BNM=θ,两道栅栏的总长度L(θ)=ME+MN.(1)求L(θ)的函数表达式,并求出函数L(θ)的定义域;(2)求L(θ)的最小值及此时θ的值.1. 【答案】A【解析】∵3sin2α=8cosα,∴sin2α+2=1,整理可得9sin4α+64sin2α-64=0,解得sin2α=或sin2α=-8(舍去).∵α是第四象限角,∴sinα=-,∴cos=cos=-cos=sinα=-.2. 【答案】A【解析】因为α∈,sinα=,所以cosα=-1-sin2α=-=-,所以tanα==-.3. 【答案】C【解析】由诱导公式得sin(π-α)+cosα=sinα+cosα=,平方得(sinα+cosα)2=1+2sinαcosα=,则2sinαcosα=-<0,所以(sinα-cosα)2=1-2sinαcosα=,又因为α∈(0,π),所以sinα-cosα>0,所以sinα-cosα=.4. 【答案】B【解析】因为f(x)=,====|cos x|,所以,其在(0,π)上的大致图象为B选项中的图象.5. 【答案】B【解析】将函数y=sin的图象向右平移个单位长度,得y=sin=sin 的图象.6. 【答案】A【解析】选项A中,函数f(x)=|cos 2x|的周期为,当x∈时,2x∈,函数f(x)单调递增,故选项A正确;选项B中,函数f(x)=|sin 2x|的周期为,当x∈时,2x∈,函数f(x)单调递减,故选项B不正确;选项C中,函数f(x)=cos|x|=cos x的周期为2π,故选项C不正确;选项D中,f(x)=sin|x|=由正弦函数图象知,在x≥0和x<0时,f(x)均以2π为周期,但在整个定义域上f(x)不是周期函数,故选项D不正确.7. 【答案】D【解析】将函数f(x)=cosωx+sinωx,ω>0,x∈R化简,可得f(x)=sin.曲线y=f(x)与直线y=1相交,令f(x)=1,则ωx+=+2kπ或ωx+=+2kπ,k∈Z.设距离最小的相邻交点的横坐标分别为x1,x2,∴-=ω(x2-x1),∴x2-x1==,解得ω=,∴y=f(x)的最小正周期T==3π.8. 【答案】B【解析】因为x=-为f(x)的零点,x=为f(x)的图象的对称轴,所以-=+kT,即=T=·,所以ω=4k+1(k∈N*),又因为f(x)在上单调,所以-=≤=,即ω≤12,由此得ω的最大值为9.9. 【答案】ACD【解析】由函数的图象可得A=5,周期T==11-(-1)=12,∴ω=.再由“五点法”作图可得×(-1)+φ=2kπ,k∈Z,∴φ=2kπ+,k∈Z,∵0≤φ≤2π,∴φ=.故选ACD.10. 【答案】ABC【解析】由函数的图象可得A=2,由·=-,得ω=2.再由最值得2×+φ=2kπ+,k∈Z,又|φ|<,得φ=,得函数f(x)=2sin,故选项D正确;当x=-时,f(x)=0,不是最值,故选项A错误;当x=-时,f(x)=-2,不等于零,故选项B错误;由+2kπ≤2x+≤+2kπ,k∈Z,得+kπ≤x≤+kπ,k∈Z,故选项C错误.11. 【答案】ABD【解析】y=sin2x-sin(π-x)sin=+sin x cos x=sin 2x-cos 2x+=sin+,∴g(x)=sin+,对于选项A,当x=时,x-=,∴g(x)关于直线x=对称,故选项A正确;对于选项B,当x∈[0,π]时,x-∈,∴sin∈,∴g(x)∈,故选项B正确;对于选项C,当x=时,x-=0,g=,∴g(x)关于点对称,故选项C错误;对于选项D,y=cos x+的图象向右平移个单位长度得到y=cos+=cos +=sin+=g(x)的图象,故选项D正确.12. 【答案】ABC【解析】∵函数y=sin的图象向右平移个单位长度后与函数f(x)的图象重合,∴f(x)=sin=sin,∴f(x)的一个周期为-2π,故选项A正确;∵y=f(x)=sin,∴y=f(x)的图象的对称轴方程满足2x-=kπ+(k∈Z),∴当k=-2时,y=f(x)的图象关于直线x=-对称,故选项B正确;由f(x)=sin=0,得2x-=kπ(k∈Z),得x=+(k∈Z),∴x=是f(x)的一个零点,故选项C正确;当x∈时,2x-∈,∴f(x)在上单调递增,故选项D错误.13. 【答案】CD【解析】由题意知函数f(x)=画出f(x)在x∈[0,2π]上的图象,如图所示,由图象知,函数f(x)的最小正周期为2π,故A选项错误;在x=π+2kπ(k∈Z)和x=+2kπ(k∈Z)时,该函数都取得最小值-1,故B选项错误;由图象知,函数图象关于直线x=+2kπ(k∈Z)对称,故C选项正确;在2kπ<x<+2kπ(k∈Z)时,0<f(x)≤,故D选项正确.14. 【答案】-或【解析】函数y=tan x图象的对称中心是,其中k∈Z,则令2x+θ=,k∈Z,其中x=,即θ=-,k∈Z.又-<θ<,所以当k=1时,θ=-.当k=2时,θ=,所以θ=-或.15. 【答案】3+【解析】由图可知A=2,=-=,所以T=2π,所以ω=1.再根据f=2得sin =1,所以+φ=+2kπ(k∈Z),即φ=+2kπ(k∈Z).又因为-<φ<,所以φ=,因此A+ω+φ=3+.16. 【答案】左【解析】方法一:y=sin=cos=cos=cos.因此要得到函数y=sin的图象,只需将函数y=cos 2x的图象向左平移个单位长度.方法二:y=cos 2x=sin=-sin=-sin2,y=sin=-sin2.因此要得到函数y=sin的图象,只需将函数y=cos 2x的图象向左平移个单位长度.17. 【答案】【解析】根据题意,设BE=m,由sin∠EPB=,得PE=3m,cos∠PEB=,从而得到cos∠B′EA=cos(π-2∠PEB)=-cos 2∠PEB=1-2cos2∠PEB=,由翻折特点可得B′E=BE=m.又AE=2-m,在Rt△B′AE中,cos∠B′EA==,解得m=,所以PE=3m=.18. 【答案】解(1)f(x)=2sin·cos-sin(x+π)=cos x+sin x=232cosx+12sinx=2sin,∴f(x)的最小正周期T==2π.(2)由已知得g(x)=f=2sin.∵x∈[0,π],∴x+∈,∴sin∈,∴g(x)=2sin∈[-1,2],∴函数g(x)在区间[0,π]上的最大值为2,最小值为-1.19. 【答案】解(1)f(x)=(sin x+cos x)2-cos2x=(1+2sin x cos x)-cos2x=sin 2x-+=sin+.所以函数f(x)的最小正周期T==π.由2kπ-≤2x-≤2kπ+,k∈Z,得kπ-≤x≤kπ+,k∈Z,所以函数f(x)的单调递增区间为(k∈Z).(2)由(1)得f=sin+=sin+=cosθ+=,所以cosθ=,因为θ∈,所以sinθ=-√1−cos2θ1-cos2θ=-,所以sin 2θ=2sinθcosθ=-,cos 2θ=2cos2θ-1=-,所以sin=sin 2θcos-cos 2θsin=-.20. 【答案】解(1)由题图知,A=300,T=-=,∴ω==100π.∵-=-,∴φ==,∴I=300sin(t≥0).(2)问题等价于T≤,即≤,∴ω≥200π,∴正整数ω的最小值为629.21. 【答案】解(1)在矩形ABCD中,∵B,E关于MN对称,∠BNM=θ,∴∠AME =2θ,∠MEN=,且BM=ME.在Rt△AEM中,AM=ME cos 2θ=BM cos 2θ.又∵AM+BM=200(米),∴BM cos 2θ+BM=200,∴BM=ME==,∴Rt△EMN中,MN==.∴L(θ)=ME+MN=+在Rt△BMN中,BN=MN cosθ=,∵0<BM<200,0<BN<400,∴函数L(θ)的定义域为.(2)L(θ)=ME+MN=+==.令t=sinθ,∵θ∈,∴t∈,令φ(t)=-t2+t=-2+,当t=时,φ(t)取最大值,最大值为,此时θ=,L(θ)取最小值.∴L(θ)的最小值为400 米,此时θ=.第11页共11页。
三角函数应用题练习及答案
三角函数的应用题第一阶梯[例1]如图,AD∥BC,AC⊥BC,若AD=3,DC=5,且∠B=30°,求AB 的长。
解:∵∠DAC=90°由勾股定理,有CD 2=AD 2+AC 2∵AD=3,DC=5∴AC=4∵∠B=30° ∴AB=2AC∴AB=8[例2]如图,△ABC 中,∠B=90°,D 是BC 上一点,且AD=DC ,若tg ∠DAC=41,求tg ∠BAD 。
探索:已知tg∠DAC 是否在直角三角形中?如果不在怎么办?要求∠BAD 的正切值需要满足怎样的条件? 点拨:由于已知中的tg ∠DAC 不在直角三角形中,所以需要转化到直角三角形中,即可地D 点作AC 的垂线。
又要求∠BAD 的正切值应已知Rt△BAD 的三边长,或两条直角边AB 、BD 的长,根据已知可知没有提供边长的条件,所以要充分利用已知中的tg∠DAC 的条件。
由于AD=DC ,即∠C=∠DAC,这时也可把正切值直接移到Rt△ABC 中。
解答:过D 点作DE⊥AC 于E ,41DAC =∠tg且AE DEDAC =∠tg设DE=k ,则AE=4k ∵AD=DC,∴∠DAC=∠C,AE=EC∴AC=8k ∵41==BC AB tgC设AB=m ,BC=4m由勾股定理,有 AB 2+BC 2=AC 2∴k m 17178=k BC 171732=∴由勾股定理,有CD 2=DE 2+EC 2 k CD 17=∴k BD 171715=∴ 由正切定理,有.815=∠∴=∠BAD tg AB DB BAD tg[例3]如图,四边形ABCD 中,∠D=90°,AD=3,DC=4,AB=13,BC=12,求sinB 。
探索:已知条件提供的图形是什么形?其中∠D=90°,AD=3,DC=4,可提供什么知识?求sinB 应放在什么图形中。
点拨:因已知是四边形所以不能求解,由于有∠D=90°,AD=3,DC=4,这样可求AC=5,又因有AB=13,BC=12,所以可证△ABC 是Rt△,因此可求sinB 。
(完整版)三角函数的运算经典习题
(完整版)三角函数的运算经典习题以下是一些关于三角函数运算的经典题,希望能对大家的研究有所帮助。
题一:正弦函数的运算1. 求解 $\sin \left(x + \frac{\pi}{6}\right) = \frac{1}{2}$ 的解集。
2. 计算 $\sin \left(\frac{\pi}{3}\right) + \cos\left(\frac{\pi}{4}\right)$ 的值。
3. 简化表达式 $\sin \left(\frac{\pi}{2} - x\right)$。
4. 计算 $\sin \left(\frac{\pi}{6}\right) \cdot \cos\left(\frac{\pi}{4}\right)$ 的值。
题二:余弦函数的运算1. 求解 $\cos \left(2x - \frac{\pi}{3}\right) = 0$ 的解集。
2. 计算 $\cos \left(\frac{\pi}{6}\right) \cdot \cos\left(\frac{\pi}{3}\right)$ 的值。
3. 简化表达式 $\cos \left(\frac{\pi}{2} + x\right)$。
4. 计算 $\cos \left(\frac{3\pi}{4}\right) + \sin\left(\frac{\pi}{4}\right)$ 的值。
题三:正切函数的运算1. 求解 $\tan \left(\frac{x}{2}\right) = \sqrt{3}$ 的解集。
2. 计算 $\tan \left(\frac{\pi}{4}\right) \cdot \tan\left(\frac{\pi}{6}\right)$ 的值。
3. 简化表达式 $\tan \left(\frac{\pi}{2} - x\right)$。
4. 计算 $\tan \left(\frac{\pi}{3}\right) - \sin\left(\frac{\pi}{6}\right)$ 的值。
三角函数的应用题练习题(基础)
三角函数的应用题练习题(基础)题目1: 三角函数的高度应用某个人站在一座高楼的窗户旁,离地面的距离是20米。
该人仰望斜顶角度为30度的楼顶,试计算楼顶的高度是多少米?答案:首先,我们可以利用正弦函数来解决这个问题。
正弦函数定义为:sin(θ) = 对边/斜边。
按照这个定义,我们可以得到以下方程:sin(30度) = 对边/20米对方程进行求解,我们可以得到:对边 = 20米 * sin(30度)利用计算器,我们可以得到:对边 = 10米因此,楼顶的高度是10米。
题目2: 三角函数的距离应用一辆汽车正在沿着直路行驶。
从汽车起点到终点的直线距离为1000米。
汽车行驶的角度与直线路线的夹角为45度。
试计算汽车实际行驶的距离是多少米?答案:对于这个问题,我们可以使用余弦函数来求解。
余弦函数定义为:cos(θ) = 临边/斜边。
应用于这个问题,我们可以得到以下方程:cos(45度) = 临边/1000米对方程进行求解,我们可以得到:临边 = 1000米 * cos(45度)利用计算器,我们可以得到:临边 = 707.106米因此,汽车实际行驶的距离是707.106米。
题目3: 三角函数的速度应用一艘船以20米/秒的速度顺水行驶。
河流的流速为10米/秒,且方向与船垂直。
试计算船在水中实际的速度是多少米/秒?答案:对于这个问题,我们可以使用正切函数来求解。
正切函数定义为:tan(θ) = 对边/临边。
应用于这个问题,我们可以得到以下方程:tan(θ) = 10米/秒 / 20米/秒对方程进行求解,我们可以得到:tan(θ) = 0.5利用计算器,我们可以得到:θ = 26.565度因此,船在水中实际的速度是约为26.565米/秒。
三角函数经典题目(带答案)
三角函数经典题目练习1.已知α1231、已知角2、P (x ,5则sin 1、已知2、函数(f3、已知 象限1. 已知π22.设0≤α是 .sin αtan x 若<0___.53sin +-=m m θ,524cos +-=m m θ(πθπ<<2),则=θ________.1tan tan αα,是关于x 的方程2230x kx k -+-=的个实根,且παπ273<<,则ααsin cos +的值 .0)13(22=++-m x x 的两根为()πθθθ2,0,cos ,sin ∈,求(1)m =_______(2)θθθθtan 1cos cot 1sin -+-=________.α )415tan(325cos ππ-+= . θθθθcos sin cos sin -+=2,则sin(θ-5π)·sin ⎪⎭⎫⎝⎛-θπ23= α终边上P (-4,3),)29sin()211cos()sin()2cos(απαπαπαπ+---+= .已知锐角α终边上一点P 的坐标是(2sin2,-2cos2),α= . sin163°·sin223°+sin253°·sin313°= . =-+θθtan 1tan 1_________tan 20tan 4020tan 40︒+︒︒⋅︒= α∈(0,2π),若sin α=53,则2cos(α+4π)= . 336cos =⎪⎭⎫ ⎝⎛-απ,则⎪⎭⎫ ⎝⎛+απ65cos =______,)65απ--=_____..【知二求多】1、已知cos ⎪⎭⎫ ⎝⎛-2βα= -54,sin ⎪⎭⎫ ⎝⎛-2αβ=135,且0<β<2π<α<π,则cos 2βα+=____.2已知tan α=43,cos(α+β)=-1411, α、β为锐角,则cos β=______.【方法套路】1、设21sin sin =+βα,31cos cos =+βα,则)cos(βα-=___ .2.已知ββαcos 5)2cos(8++=0,则αβαtan )tan(+= .3,41)sin(,31)sin(=-=+βαβα则___tan tan =βα【给值求角】1tan α=71,tan β=31,α,β均为锐角,则α+2β= .2、若sinA=55,sinB=1010,且A,B 均为钝角, 则A+B= .【半角公式】1α是第三象限,2524sin -=α,则tan 2α= . 2、已知01342=+++a ax x (a >1)的两根为αtan ,βtan ,且α,∈β ⎝⎛-2π,⎪⎭⎫2π,则2tan βα+=______3若cos 22π2sin 4αα=-⎛⎫- ⎪⎝⎭,则cos sin αα+= . 4、若⎥⎦⎤⎢⎣⎡∈27,25ππα,则ααsin 1sin 1-++=5x 是第三象限角xx xx x x x x cos sin 1cos sin 1cos sin 1cos sin 1-++++++-+=______ 【公式链】1=+++ 89sin 3sin 2sin 1sin 2222_______ 2sin10o sin30o sin50o sin70o=_______ 3(1+tan1o )(1+tan2o )…(1+tan45o )=_______六、给值求角 已知31sin -=x ,写出满足下列关系x 取值集合 ]3,5[)3()2(]2,0[)1(πππ--∈∈∈x R x x七、函数性质 【定义域问题】 1. x x y sin 162+-=定义域为_________2、1)32tan(--=πx y 定义域为_________【值域】1、函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为__________2、若函数g (x )=2a sin x +b 的最大值和最小值分别为6和2,则|a |+b 的值为________3、函数x xy sin 2sin 1+-=的值域4、函数xxy cos 1sin 21+-=的值域5、函数x x y sin 2cos -=的值域【解析式】1、已知函数f (x )=3sin 2ωx -cos 2ωx 的图象关于直线x =π3对称,其中ω∈⎝⎛⎭⎫-12,52.函数f (x )的解析式为________.2、已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的图象在y 轴上的截距为1,在相邻两最值点(x 0,2),⎝⎛⎭⎫x 0+32,-2(x 0>0)上f (x )分别取得最大值和最小值.则所得图像的函数解析式是________ 3.将函数sin y x =的图像上所有的点右移10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是___________4、()()sin f x A x h ωϕ=++(0,0,)2A πωϕ>>< 的图象如图所示,求函数)(x f 的解析式;【性质】1、已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π递减,则ω的取值范围是( )A.⎣⎡⎦⎤12,54B.⎣⎡⎦⎤12,34C.⎝⎛⎦⎤0,12 D.(0,2] 2、若函数()sin (0)f x x ωω=>在区间π0,3⎡⎤⎢⎥⎣⎦递增,在区间ππ,32⎡⎤⎢⎥⎣⎦上单调递减,则ω=3、sin(2)3y x π=+图像的对称轴方程可能是A .6x π=- B .12x π=- C .6x π= D .4、已知函数x a x x f 2cos 2sin )(+=关于x 称,则a =_______5.()2sin()f x x ωϕ=++m 对任意x 有()6f x f π+=若()6f π=3,则m=________【图象】1、为了得到函数sin(2)3y x π=-sin(2)6y x π=+的图像向____移动____2、为了得到函数sin(2)3y x π=-y=cos2x 图像向____移动____个长度单位 3.将函数sin(2)y x ϕ=+的图象沿x 个单位后,得到一个偶函数的图象,则ϕ取值为 (A)34π (B) 4π(C)0 (D) 4π-【综合练习】1、已知定义在R 上的函数f (x )满足:当sin x f (x )=cos x ,当sin x >cos x 时,f (x )=sin x .下结论:①f (x )是周期函数;②f (x )③当且仅当x =2k π(k ∈Z)时,f (x )当且仅当2k π-π2<x <(2k +1)π(k ∈Z)时,f (⑤f (x )的图象上相邻两个最低点的距离是正确的结论序号是________.f(x)=sin(2x+x x 2cos 2)62sin()6+-+ππ)求f(x)的最小值及单调减区间; )求使f(x)=3的x 的取值集合。
三角函数应用题
三角函数应用题2018.51.如图,小明为了测量河的宽度,在河岸同侧取了点C,B,A,在点C处测得对岸一棵树P在正北方向,经过测量得知:∠PBC=45°,∠P AC=30°,AB=10米,由此请你计算出河的宽度.(结果保留根号).2.如图,小聪所在的小组正测量一条河宽,河两岸EF∥MN,小聪在河岸MN上A点测得河对岸小树C位于东北方向,然后沿河岸走了30米,到达B点,测得河对岸电线杆D位于北偏东30°方向,又测得CD=10米,求河宽.(结果保留根号)3.如图,从热气球C处测地面A、B两点的俯角为30°、75°,若此时C距B点100米,求AB的距离.4.如图交警队在一主要路口设立了交通路况显示牌,已知立杆AB高度是3m,从侧面D点测得显示牌顶端C点和底端B点的仰角分别是60°和45°.求路况显示牌BC的高度.5.某校研究性学习小组测量学校旗杆AB的高度,如图在教学楼一楼C处测得旗杆顶部的仰角为60︒,在教学楼三楼D处测得旗杆顶部的仰角为30︒,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,求旗杆AB的高度.6.如图,A,B两地之间有一座山,汽车原来从A地到B地经过C地沿折线A→C→B行驶,现开通隧道后,汽车直接沿直线AB行驶.已知AC=10千米,∠A=30°,∠B=45°.则隧道开通后,求汽车从A地到B地比原来少走多少千米.7.为了测量某山AB的高度,小明先在山脚下C点测得山顶A的仰角为45°,然后沿坡度=1:3的斜坡走100米到达D点,在D点测得山顶A的仰角为30°,求山高AB.(结果精确到0.1米.参考数据:2≈1.41,3≈1.73)8.十堰飞机场机场大厅有一幅“武当山胜景”的壁画,小明站在距壁画水平距离15米的地面,自A点看壁画上部D的仰角为045,看壁画下部C的仰角为030,求壁画CD的高度.(结果保留根号).(第4题)(第6题)9.如图,小岛A 在港口B 的北偏东50°方向,小岛C 在港口B 的北偏西25°方向,一艘轮船以每小时20海里的速度从港口B 出发向小岛A 航行,经过5小时到达小岛A ,这时测得小岛C 在小岛A 的北偏西70°方向,求AC .10.如图,小明为了测量小山顶的塔高DE ,他在A 处测得塔尖D 的仰角为45°,再沿AC方向前进15m 到达山脚B 处,测得塔尖D 的仰角为60°,山坡BE 的坡度i =1∶3,求塔DE 的高度.(结果保留根号)11.某小区为治理乱停车现象,出台了规范使用停车位的管理办法,如图,矩形ABCD 是供一辆机动车停放的车位示意图,已知BC=2m ,CD=5m ,∠DCF=30°,请你计算车位所占的宽度EF.(结果保留根号)12.测量计算是日常生活中常见的问题,如图,建筑物BC 的屋顶有一根旗杆AB ,从地面上D 点处观测旗杆顶点A 的仰角为60°,观测旗杆底部B 点的仰角为45°,若已知旗杆的高度AB=5米,求建筑物BC 的高度.(结果保留根号).13.如图,某数学兴趣小组在活动课上测量学校旗杆的高度.已知小亮站着测量,眼睛与地面的距离(AB )是1.7米,看旗杆顶部E 的仰角为30°;小敏蹲着测量,眼睛与地面的距离(CD )是0.7米,看旗杆顶部E 的仰角为45°.两人相距5米且位于旗杆同侧(点B 、D 、F 在同一直线上).求旗杆EF 的高度.14.“一炷香”是闻名中外的恩施大峡谷著名的景点.某校综合实践活动小组先在峡谷对面的广场上的A 处测得“香顶”N 的仰角为45°,此时,他们刚好与“香底”D 在同一水平线上.然后沿着坡度为30°的斜坡正对着“一炷香”前行110米,到达B 处,测得“香顶”N 的仰角为60°.根据以上条件求出“一炷香”(即DN 的高度)的高度.(保留根号)15.如图在山顶有座移动通信发射塔BE ,高为30米.为了测量山高AB,在地面引一水平线ADC,测得∠BDA=60°,∠C=45°,DC=40米,求山高AB.(不求近似值)16.春暖花开,正是出去踏青郊游的大好季节!小明准备自己制作一个风筝(如图),风筝主体由一张纸片(四边形ABCD ),两根骨架(线段AC 与BD )组成.其中骨架AC 垂直平分BD ,AB =70cm ,∠BAD =90°,∠BCD =60°,请你分别求出两根骨架AC ,BD 的长度(结果保留根号).第15题F E D CBA。
三角函数练习题集(含答案解析)
三角函数练习题及答案(一)选择题1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定12、在Rt △ABC 中,∠C=900,BC=4,sinA=,则AC=( ) A 、3 B 、4 C 、5 D 、63、若∠A 是锐角,且sinA=,则( ) A 、00<∠A<300 B 、300<∠A<450 C 、450<∠A<600 D 、600<∠A<9004、若cosA= ,则A A AA tan 2sin 4tan sin 3+-=( ) A 、B 、C 、D 、0 5、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( )A 、1:1:2B 、1:1:C 、1:1:D 、1:1:6、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( )A .sinB=B .cosB=C .tanB=D .tanB=8.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( ) A .(32,12) B .(-32,12) C .(-32,-12) D .(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )(A )350m (B )100 m (C )150m (D )3100m11、如图1,在高楼前D 点测得楼顶的仰角为300,向高楼前进60米到C 点,又测得仰角为450,则该高楼的高度大约为( )A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).(A )30海里 (B )40海里 (C )50海里 (D )60海里(二)填空题1.在Rt △ABC 中,∠C=90°,AB=5,AC=3,则sinB=_____.2.在△ABC 中,若BC=2,AB=7,AC=3,则cosA=________.3.在△ABC 中,AB=2,AC=2,∠B=30°,则∠BAC 的度数是______.4.如图,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B ,且BP=2,那么PP '的长为________. (不取近似值. 以下数据供解题使用:sin15°=,cos15°=624 )5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.6.如图,机器人从A点,沿着西南方向,行了个42单位,到达B点后观察到原点O在它的南偏东60°的方向上,则原来A的坐标为___________结果保留根号).7.求值:sin260°+cos260°=___________.90,BC=13,AB=12,那么tan B8.在直角三角形ABC中,∠A=0___________.9.根据图中所给的数据,求得避雷针CD的长约为_______m(结果精确的到0.01m).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)10.如图,自动扶梯AB段的长度为20米,倾斜角A为α,高度BC为___________米(结果用含α的三角比表示).11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为________米.(保留两个有效数字,2≈1.41,3≈1.73)三、简答题:1,计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒分析:可利用特殊角的三角函数值代入直接计算;2计算:22459044211(cos sin )()()︒-︒+-︒+--π分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。
中考三角函数应用题
中考三角函数应用题1.甲楼楼高50米,乙楼坐落在甲楼的正北面,已知当地冬至中午12时太阳光线与水平面的夹角为30°,此时,求:(1)如果两楼相距50米,那么甲楼的影子落在乙楼上有多高?(2)小明住在乙楼16m高(地板距地面的距离)的五层楼上,要是冬至中午12时阳光不被挡住,两楼至少距离多少米(结果精确到1m,参考数据:≈1.732)?2.某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象.已知A、B两点相距6米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度.(精确到0.1米,参考数据:≈1.41,≈1.73)3.如图,A、B两地之间有一座山,汽车原来从A地到B地经过C地沿折线A→C→B行驶,现开通隧道后,汽车直接沿直线AB行驶.已知AC=10千米,∠A=30°,∠B=45°.则隧道开通后,汽车从A地到B地比原来少走多少千米?(结果保留根号)4.如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面的夹角是45°时,教学楼顶A在地面上的影子F与墙角C有13m的距离(B、F、C在一条直线上).求教学楼AB的高度.(参考数据:sin22°≈,cos22°≈,tan22°≈)5.如图,在一个坡角为40°的斜坡上有一棵树BC,树高4米.当太阳光AC与水平线成70°角时,该树在斜坡上的树影恰好为线段AB,求树影AB的长.(结果保留一位小数)(参考数据:sin20°=0.34,tan20°=0.36,sin30°=0.50,tan30°=0.58,sin40°=0.64,tan40°=0.84,sin70°=0.94,tan70°=2.75)6.如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60度.如果这时气球的高度CD为90米.且点A、D、B在同一直线上,求建筑物A、B间的距离.三角函数练习题1.如图,山顶建有一座铁塔,塔高CD=20m,某人在点A处,测得塔底C的仰角为45°,塔顶D的仰角为60°,求山高BC(精确到1m,参考数据:≈1.41,≈1.73)2.如图,河对岸有一高层建筑物AB,为测其高,在C处由点D用测量仪测得顶端A的仰角为30°,向高层建筑物前进50米,到达E处,由点F测得顶点A的仰角为45°,已知测量仪高CD=EF=1.2米,求高层建筑物AB的高.(结果精确到0.1米,,)3.如图所示,当一热气球在点A处时,其探测器显示,从热气球看高楼顶部点B的仰角为45°,看高楼底部点C的俯角为60°,这栋楼高120米,那么热气球与高楼的水平距离为多少米?(结果精确到0.1米,参考数据:)4.如图,大楼AB高16米,远处有一塔CD,某人在楼底B处测得塔顶的仰角为38.5°,爬到楼顶A处测得塔顶的仰角为22°,求塔高CD及大楼与塔之间的距离BD的长.(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80 )5.如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为多少?6.如图,某建筑物BC上有一旗杆AB,小明在与BC相距12m的F处,由E点观测到旗杆顶部A的仰角为52°、底部B的仰角为45°,小明的观测点与地面的距离EF为1.6m.(1)求建筑物BC的高度;(2)求旗杆AB的高度.(结果精确到0.1m.参考数据:≈1.41,sin52°≈0.79,tan52°≈1.28)。
三角函数应用题(精选)
三角函数应用题(精选)解直角三角形应用一1、如图,小方在五月一日假期中到郊外放风筝,风筝飞到C 处时的线长为20米,此时小方正好站在A处,并测得∠CBD=60°,牵引底端B离地面1.5米,求此时风筝离地面的高度(结果精确到个位)2、河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为3、如图,热气球的探测器显示,从热气球A看一栋高楼顶部B的仰角为300,看这栋高楼底部C的俯角为600,热气球A与高楼的水平距离为120m,这栋高楼BC的高度为4、如图,AC是操场上直立的一个旗杆,从旗杆上的B点到地面C涂着红色的油漆,用测角仪测得地面上的D点到B点的仰角是∠BDC=45°,到A点的仰角是∠ADC=60°(测角仪的高度忽略不计)如果BC=3米,那么旗杆的高度AC= 米.5、天塔是天津市的标志性建筑之一,某校数学兴趣小组要测量天塔的高度,如图,他们在点A处测得天塔最高点C的仰角为45°,再往天塔方向前进至点B处测得最高点C的仰角为54°,AB=112m,根据这个兴趣小组测得的数据,计算天塔的高度CD(tan36°≈0.73,结果保留整数).6、如图,在活动课上,小明和小红合作用一副三角板来测量学校旗杆高度.已知小明的眼睛与地面的距离(AB)是1.7m,他调整自己的位置,设法使得三角板的一条直角边保持水平,且斜边与旗杆顶端M在同一条直线上,测得旗杆顶端M仰角为45°;小红眼睛与地面的距离(CD)是1.5m,用同样的方法测得旗杆顶端M的仰角为30°.两人相距28米且位于旗杆两侧(点B、N、D在同一条直线上).求出旗杆MN的高度.(参考数据:,,结果保留整数.)7、如图,某校综合实践活动小组的同学欲测量公园内一棵树DE 的高度,他们在这棵树的正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为3米,台阶AC的坡度为1:(即AB:BC=1:),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(侧倾器的高度忽略不计).解直角三角形应用二1、如图是某水库大坝横断面示意图.其中AB、CD分别表示水库上下底面的水平线,∠ABC=120°,BC的长是50m,则水库大坝的高度h是()2、天封塔历史悠久,是宁波著名的文化古迹.如图,从位于天封塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°,若此观测点离地面的高度为51米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,求A,B之间的距离(结果保留根号)3、如图,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为12m (结果不作近似计算).4、如图所示,一条自西向东的观光大道l上有A、B两个景点,A、B相距2km,在A处测得另一景点C位于点A的北偏东60°方向,在B处测得景点C位于景点B的北偏东45°方向,求景点C到观光大道l的距离.(结果精确到0.1km)5、A、B两市相距150千米,分别从A、B处测得国家级风景区中心C处的方位角如图所示,风景区区域是以C为圆心,45千米为半径的圆,tanα=1.627,tanβ=1.373.为了开发旅游,有关部门设计修建连接AB两市的高速公路.问连接AB高速公路是否穿过风景区,请说明理由.6、如图,小明为了测量小山顶的塔高,他在A处测得塔尖D的仰角为45°,再沿AC方向前进73.2米到达山脚B处,测得塔尖D的仰角为60°,塔底E的仰角为30°,求塔高.(精确到0.1米,≈1.732)7、如图,在小山的东侧A 点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C 处,此时热气球上的人测得小山西侧B 点的俯角为30°,则小山东西两侧A 、B 两点间的距离为米.8、国家海洋局将中国钓鱼岛最高峰命名为“高华峰”,并对钓鱼岛进行常态化立体巡航.如图1,在一次巡航过程中,巡航飞机飞行高度为2001米,在点A 测得高华峰顶F 点的俯角为30°,保持方向不变前进1200米到达B 点后测得F 点俯角为45°,如图2.请据此计算钓鱼岛的最高海拔高度多少米.(结果保留整数,参考数值:=1.732,=1.414)9.如图,小明家在A 处,门前有一口池塘,隔着池塘有一条公路l ,AB 是A 到l 的小路. 现新修一条路AC 到公路l . 小明测量出∠ACD =30o,∠ABD =45o,BC =50m. 请你帮小明计算他家到公路l 的距离AD 的长度(精确到0.1m ;参考数据:414.12≈,732.13≈).A。
初中三角函数的应用例题
初中三角函数的应用例题1.一座山峰高度为1800米,从山脚测得与山顶的夹角为30°,求山脚到山顶的实际水平距离。
解:设山脚到山顶的水平距离为x,则根据三角函数的定义,有tan30°=1800/x。
将30°转化为弧度制,即tan(π/6)=1800/x,解得x=1800/(tan(π/6)) ≈ 3600米。
所以山脚到山顶的实际水平距离约为3600米。
2.一条船从港口出发,先顺时针航行90°,然后逆时针航行120°,最后顺时针航行150°,求船的最终航向与出发港口到最终位置的直线之间的夹角。
解:根据题意,船的最终航向与出发港口到最终位置的直线之间的夹角等于船的顺时针航行角度减去船的逆时针航行角度,即90°-120°+150°=120°。
所以船的最终航向与出发港口到最终位置的直线之间的夹角为120°。
3.一个轮半径为40厘米的车轮以每秒10米的速度匀速滚动,求车轮的角速度。
解:车轮每滚动一周,车轮上的任意一点都绕轮心旋转360°,所以车轮的角速度是360°/一周所需要的时间。
滚动一周的时间可以通过速度和距离的关系求得,即一周所需时间为2πr/v,其中r为半径,v为速度。
所以车轮的角速度为360°/(2πr/v)=(360°v)/(2πr)。
代入半径r=40厘米和速度v=10米/秒,计算可得车轮的角速度约为(360°×10米/秒)/(2π×40厘米)≈0.90弧度/秒。
4.一架飞机从A地飞往B地,两地相距1200公里。
飞机的地速为400千米/小时,假设直飞过程中风速与飞机速度方向相反,风速为120公里/小时,求飞机的实际航速和方向。
解:设飞机的实际航速为v,飞机速度与风速的夹角为θ。
根据三角函数的定义,有cosθ=(400-120)/v。
三角函数应用题库(精)
三角函数应用题库选择题:1. 轮船航行到C 处测得小岛A 的方向为北偏西27°,那么从A 观测此时C•处的方向为( )A .南偏东27°B .东偏西27°C .南偏东73°D .东偏西73°2. 在Rt △ABC 中,∠C=90°,BC=a ,AC=b ,且3a=4b ,则∠A 的度数是( )A .53.7°B .53.13°C .53°13′D .53°48′3.如果坡角的余弦值为10,那么坡度为( ) A .1.3.1:3 D .3:14. 若等腰△ABC 的底边BC 上高为2,cotB=12,则△ABC 的周长为( ) A ....5. 每周一学校都要举行庄严的升国旗仪式,让我们体会到了国旗的神圣,某同学产生了用所学知识测量旗杆高度的想法,在地面距杆脚5米远的地方,•他用测倾器测得杆顶的仰角为α,且tan α=3,则杆高(不计测倾器高度)为( )A .10mB .12mC .15mD .20m6. 如图1所示,在锐角△ABC 中,BE ⊥AC ,∠ADE=∠C ,记△ADE 的面积为S 1,△ABC 的面积为S 2,则12S S =( ) A .si n 2A B .c os 2A C .ta n 2A D .co t 2A(1) (2) (3)7. 已知楼房AB 高50m ,•如图2所示,•电视收视塔塔基距楼房房基的水平距离BD•为50m ,塔高DC为1503m ,则下列结论正确的是( ) A .由楼顶望塔顶仰角为60° B .由楼顶望塔顶俯角为60°C .由楼顶望塔顶仰角为30°D .由楼顶望塔基俯角为30°8. 一树的上段CB 被风折断,树梢着地,树顶着地处B 与树根A 相距6m ,则原来的树高是( )(折断后树梢与地面成30°角)。
A 、3mB 、9mC 、33 mD 、m 369. 如图,是一束平行的阳光从教室窗户射入的平面示意图,光线与地面所成的角∠AMC=30°,在教室地面的影长MN=若窗户的下檐到教室地面的距离BC=1米,则窗户的上檐到教室地面的距离AC 为( )。
三角函数10道大题(带答案解析)
三角函数10道大题(带答案解析)1. 题目:已知sinA = 3/5,且A为锐角,求cosA的值。
答案解析:由sinA = 3/5可知,对边与斜边的比值为3/5。
根据勾股定理,我们可以求出邻边的长度,进而求出cosA的值。
设斜边长度为5,对边长度为3,则邻边长度为4。
因此,cosA = 4/5。
2. 题目:已知tanB = 2/3,且B为钝角,求sinB的值。
答案解析:由tanB = 2/3可知,对边与邻边的比值为2/3。
由于B为钝角,我们可以利用tanB = sinB/cosB的关系,结合勾股定理,求出sinB的值。
设邻边长度为3,对边长度为2(因为B为钝角,对边为负值),则斜边长度为根号13。
因此,sinB = 2/根号13。
3. 题目:已知cosC = 1/2,且C为锐角,求tanC的值。
答案解析:由cosC = 1/2可知,邻边与斜边的比值为1/2。
根据勾股定理,我们可以求出对边的长度,进而求出tanC的值。
设斜边长度为2,邻边长度为1,则对边长度为根号3。
因此,tanC = 根号3/1。
4. 题目:已知sinD = 1/2,且D为钝角,求cosD的值。
答案解析:由sinD = 1/2可知,对边与斜边的比值为1/2。
由于D为钝角,我们可以利用sinD = cos(90° D)的关系,结合勾股定理,求出cosD的值。
设斜边长度为2,对边长度为1(因为D为钝角,对边为负值),则邻边长度为根号3。
因此,cosD = 根号3/2。
5. 题目:已知tanE = 1,且E为锐角,求sinE的值。
答案解析:由tanE = 1可知,对边与邻边的比值为1。
根据勾股定理,我们可以求出斜边的长度,进而求出sinE的值。
设邻边长度为1,对边长度为1,则斜边长度为根号2。
因此,sinE = 1/根号2。
6. 题目:已知cosF = 1/2,且F为钝角,求tanF的值。
答案解析:由cosF = 1/2可知,邻边与斜边的比值为1/2。
三角函数应用题库(精)
选择题: 1. 轮船航行到C 处测得小岛A的方向为北偏西27°,那么从A 观测此时C•处的方向为( )A .南偏东27°B .东偏西27°C .南偏东73°D .东偏西73°2. 在Rt △ABC 中,∠C=90°,BC=a ,AC=b ,且3a=4b ,则∠A 的度数是( )A .°B .°C .53°13′D .53°48′3. 如果坡角的余弦值为31010,那么坡度为( ) A .1:10 B .3:10 C .1:3 D .3:14. 若等腰△ABC 的底边BC 上高为2,cotB=12,则△ABC 的周长为( ) A .2+5 B .1+25 C .2+25 D .4+55. 每周一学校都要举行庄严的升国旗仪式,让我们体会到了国旗的神圣,某同学产生了用所学知识测量旗杆高度的想法,在地面距杆脚5米远的地方,•他用测倾器测得杆顶的仰角为α,且tan α=3,则杆高(不计测倾器高度)为( )A .10mB .12mC .15mD .20m6. 如图1所示,在锐角△ABC 中,BE ⊥AC ,∠ADE=∠C ,记△ADE 的面积为S 1,△ABC 的面积为S 2,则12S S =( ) A .sin 2A B .cos 2A C .tan 2A D .cot 2A(1) (2) (3)7. 已知楼房AB 高50m ,•如图2所示,•电视收视塔塔基距楼房房基的水平距离BD•为50m ,塔高DC 为15033m ,则下列结论正确的是( ) A .由楼顶望塔顶仰角为60° B .由楼顶望塔顶俯角为60°C .由楼顶望塔顶仰角为30°D .由楼顶望塔基俯角为30°8. 一树的上段CB 被风折断,树梢着地,树顶着地处B 与树根A 相距6m ,则原来的树高是( )(折断后树梢与地面成30°角)。
三角函数练习题(含答案)
三角函数练习题及答案(一)选择题1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定12、在Rt △ABC 中,∠C=900,BC=4,sinA=45,则AC=( ) A 、3 B 、4 C 、5 D 、6 3、若∠A 是锐角,且sinA=13,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=13,则A A AA tan 2sin 4tan sin 3+-=( ) A 、47B 、 13C 、 12D 、0 5、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( )A 、1:1:2B 、1:1:√2C 、1:1:√3D 、1:1:√226、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( )A .sinB= 23B .cosB= 23C .tanB= 23D .tanB=32 8.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( ) A .(32,12) B .(-32,12) C .(-32,-12) D .(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C地,此时王英同学离A 地 ( )(A )350m (B )100 m (C )150m (D )3100m11、如图1,在高楼前D点测得楼顶的仰角为300,向高楼前进60米到C点,又测得仰角为450,则该高楼的高度大约为()A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A地出发向南偏西40º的方向行驶40海里到达B地,再由B地向北偏西10º的方向行驶40海里到达C地,则A、C两地相距().(A)30海里(B)40海里(C)50海里(D)60海里(二)填空题1.在Rt△ABC中,∠C=90°,AB=5,AC=3,则sinB=_____.2.在△ABC中,若BC=2,AB=7,AC=3,则cosA=________.3.在△ABC中,AB=2,AC=2,∠B=30°,则∠BAC的度数是______.4.如图,如果△APB绕点B按逆时针方向旋转30°后得到△A'P'B,且BP=2,那么PP'的长为________. (不取近似值. 以下数据供解题使用:sin15°=,cos15°=624+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.6.如图,机器人从A点,沿着西南方向,行了个42单位,到达B 点后观察到原点O在它的南偏东60°的方向上,则原来A的坐标为___________结果保留根号).7.求值:sin260°+cos260°=___________.8.在直角三角形ABC中,∠A=090,BC=13,AB=12,那么tan B=___________.9.根据图中所给的数据,求得避雷针CD的长约为_______m(结果精确的到0.01m).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)10.如图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为___________米(结果用含α的三角比表示).11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为________米.(保留两个有效数字,2≈1.41,3≈1.73)三、简答题:1,计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒分析:可利用特殊角的三角函数值代入直接计算;2计算:22459044211(cos sin )()()︒-︒+-︒+--π分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。
三角函数应用题高中
三角函数应用题高中
1.一个直角三角形的斜边长为10,其中一个锐角的正弦值为0.6,求另一个锐角的余弦值。
2. 一艘船向北航行,船首与东偏北方向成35度角,速度为10m/s。
在这个速度下,船向北航行了多少米后,航向与正北方向成50度角?
3. 已知正弦函数y=sin(x)在区间[0,π]上单调递增,且在x=
π/4处的函数值为1/√2,求该函数在区间[π/4,π/2]上的最大值。
4. 已知直角三角形的一个锐角的正切值为2,求另一个锐角的
正弦值。
5. 在一个等腰三角形ABC中,角B的大小为120度,BC=5,以BC为底边作一圆的内切四边形ADEG,求该四边形的面积。
6. 一根长为10m的杆,竖直放置在地面上,其顶端与地面的夹
角为30度,现在在杆的顶端固定一根细线,细线的另一端系在地面上,线与地面的夹角为45度,求细线的长度。
7. 已知正切函数y=tan(x)在区间[0,π/2)上单调递增,且在x=π/4处的函数值为1,求该函数的反函数在点y=1处的取值。
8. 在一个正方形的ABCD中,点E、F、G、H分别为AB、BC、CD、DA的中点,求∠EFG。
9. 已知正弦函数y=sin(x)在区间[0,π/2]上单调递增,且在x=π/6处的函数值为1/2,求该函数在区间[0,π/3]上的最小值。
10. 在一个直角三角形ABC中,∠A=90度,AC=6,BC=8,以BC
为底边作一圆的内切四边形ADEG,求该四边形的面积。
三角函数50题精选题附答案
1. 已知方程(a 为大于1的常数)的两根为,,且、,则的值是_________________.解析:属于易错题,由于限定了角的范围,所以最终答案只有一个,1>a ∴a 4tan tan -=+βα0<,o a >+=⋅13tan tan βα∴βαtan ,tan 是方程01342=+++a ax x 的两个负根 又⎪⎭⎫ ⎝⎛-∈2,2,ππβα ⎪⎭⎫⎝⎛-∈∴0,2,πβα 即⎪⎭⎫ ⎝⎛-∈+0,22πβα由tan ()βα+=βαβαtan tan 1tan tan ⋅-+=()1314+--a a =34可得.22tan -=+βα2.函数f(x)=的值域为______________。
解析:易错题,错因:令x x t cos sin +=后忽视1-≠t ,从而121)(-≠-=t t g ,得到错解:⎥⎦⎤⎢⎣⎡---2122,2122 正解:⎥⎦⎤ ⎝⎛--⋃⎪⎪⎭⎫⎢⎣⎡---2122,11,2122 3.在△ABC 中,2sinA+cosB=2,sinB+2cosA=,则∠C 的大小应为( )A .B .C .或D .或解析:遇到这类型题,首先排除两个答案,因为给定条件就是让我们去排除4.已知tana tanb 是方程x 2+3x+4=0的两根,若a ,b ∈(-),则a+b=( )A .B .或-C .-或D .-解析:tana .tanb=4;tana +tanb=-3,所以tana tanb 均为负,即a ,b 都属于四象限 5.在中,,则的大小为( )A. B. C.D.解析:由3s i n 463c o s 41A B A B +=+=⎧⎨⎩c o s s i n 平方相加得115sin()sin 2266A B C C ππ+=∴=∴=或若C =56π, 则A B +=π6113cos 4sin 0cos 3A B A -=>∴<又1312<5366A C C πππ∴>∴≠∴= ∴选A ,实际上首先排除两个答案的6.函数为增函数的区间是……………… ( ) A.B.C.D.解析:注意x 前面系数为负7.已知且,这下列各式中成立的是( ) A.B.C.D.解析:解法1sin β>-cos α=sin (3π/2-α),因为β、(3π/2-α)都在二象限,sinx 二象限为减函数,所以β<(3π/2-α)解法2:首先排除AC(为什么),由特殊值法排除B8.△ABC中,已知cosA=,sinB=,则cosC的值为()A、 B、 C、或 D、9.设cos1000=k,则tan800是()A、 B、 C、 D、10.函数的单调减区间是()A、()B、C、 D、11.在△ABC中,则∠C的大小为()A、30°B、150°C、30°或150°D、60°或150°12.若,且,则_______________.13、设ω>0,函数f(x)=2sinωx在上为增函数,那么ω的取值范围是_____14已知奇函数单调减函数,又α,β为锐角三角形内角,则()A、f(cosα)> f(cosβ)B、f(sinα)> f(sinβ)C、f(sinα)<f(cosβ)D、f(sinα)> f(cosβ)15.函数的值域是.16.若,α是第二象限角,则=__________17.已知定义在区间[-p,]上的函数y=f(x)的图象关于直线x= -对称,当xÎ[-,]时,函数f(x)=Asin(wx+j)(A>0, w>0,-<j<),其图象如图所示。
三角函数九类经典题型
三角函数九种经典类型题 类型一 同角三角函数关系式的应用1、(1)已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ=________.(2)已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为________.答案 (1)45 (2)32解析 (1)由于tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ =sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ =sin 2θcos 2θ+sin θcos θcos 2θ-2sin 2θcos 2θ+1 =tan 2θ+tan θ-2tan 2θ+1=22+2-222+1=45. (2)∵5π4<α<3π2,∴cos α<0,sin α<0且cos α>sin α, ∴cos α-sin α>0.又(cos α-sin α)2=1-2sin αcos α=1-2×18=34,∴cos α-sin α=32. 思维升华 (1)利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tanα可以实现角α的弦切互化.(2)应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.(3)注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.2、已知sin α-cos α=2,α∈(0,π),则tan α=________. 答案 -1解析 由⎩⎨⎧sin α-cos α=2,sin 2α+cos 2α=1,消去sin α得:2cos 2α+22cos α+1=0, 即(2cos α+1)2=0,∴cos α=-22. 又α∈(0,π), ∴α=3π4,∴tan α=tan 3π4=-1.类型二 诱导公式的应用1、已知sin ⎝ ⎛⎭⎪⎫α+π12=13,则cos ⎝ ⎛⎭⎪⎫α+7π12的值为________. 解析 (1)cos ⎝ ⎛⎭⎪⎫α+7π12=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π12+π2=-sin ⎝⎛⎭⎪⎫α+π12=-13.思维升华 (1)诱导公式用法的一般思路 ①化大角为小角.②角中含有加减π2的整数倍时,用公式去掉π2的整数倍.(2)常见的互余和互补的角①常见的互余的角:π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等.②常见的互补的角:π3+θ与2π3-θ;π4+θ与3π4-θ等.2、已知sin ⎝ ⎛⎭⎪⎫π3-α=12,则cos ⎝ ⎛⎭⎪⎫π6+α=________.解析∵⎝⎛⎭⎪⎫π3-α+⎝ ⎛⎭⎪⎫π6+α=π2, ∴cos ⎝ ⎛⎭⎪⎫π6+α=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-α=sin ⎝ ⎛⎭⎪⎫π3-α=12.变式:已知sin ⎝ ⎛⎭⎪⎫π3-α=12,则)26cos(απ+=________.类型三 三角函数的单调性1、(1)函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间是________________.(2)已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是________. 答案 (1)⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ) (2)⎣⎡⎦⎤12,54 解析 (1)由k π-π2<2x -π3<k π+π2(k ∈Z )得,k π2-π12<x <k π2+5π12(k ∈Z ), 所以函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间为⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ). (2)由π2<x <π,ω>0得,ωπ2+π4<ωx +π4<ωπ+π4, 又y =sin x 在⎝⎛⎭⎫π2,3π2上递减,所以⎩⎨⎧ωπ2+π4≥π2,ωπ+π4≤3π2,解得12≤ω≤54.思维升华 (1)已知三角函数解析式求单调区间:①求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;②求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.(2)已知三角函数的单调区间求参数.先求出整体函数的单调区间,然后利用集合间的关系求解. 2、(1)函数f (x )=sin ⎝⎛⎭⎫-2x +π3的单调减区间为________. (2)已知ω>0,函数f (x )=cos ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递增,则ω的取值范围是______________.答案 (1)⎣⎡⎦⎤k π-π12,k π+512π,k ∈Z (2)⎣⎡⎦⎤32,74 解析 (1)由已知函数为y =-sin ⎝⎛⎭⎫2x -π3, 欲求函数的单调减区间,只需求y =sin ⎝⎛⎭⎫2x -π3的单调增区间.由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所给函数的单调减区间为⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ). (2)函数y =cos x 的单调递增区间为[-π+2k π,2k π],k ∈Z ,则⎩⎨⎧ωπ2+π4≥-π+2k π,ωπ+π4≤2k π,k ∈Z ,解得4k -52≤ω≤2k -14,k ∈Z ,又由4k -52-⎝⎛⎭⎫2k -14≤0,k ∈Z 且2k -14>0,k ∈Z , 得k =1,所以ω∈⎣⎡⎦⎤32,74.类型四 三角函数的周期性、对称性1、(1)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的最小正周期是π,若将f (x )的图象向右平移π3个单位后得到的图象关于原点对称,则关于函数f (x )的图象,下列叙述正确的有________(填正确的序号).①关于直线x =π12对称;②关于直线x =5π12对称;③关于点⎝⎛⎭⎫π12,0对称;④关于点⎝⎛⎭⎫5π12,0对称.(2)已知函数y =2sin ⎝⎛⎭⎫2x +π3的图象关于点P (x 0,0)对称,若x 0∈⎣⎡⎦⎤-π2,0,则x 0=________. 解析 (1)由题意知2πω=π,∴ω=2;又由f (x )的图象向右平移π3个单位后得到y =sin[2⎝⎛⎭⎫x -π3+φ]=sin ⎝⎛⎭⎫2x +φ-23π,此时关于原点对称,∴-2π3+φ=k π,k ∈Z ,∴φ=2π3+k π,k ∈Z ,又|φ|<π2,∴⎪⎪⎪⎪2π3+k π<π2, ∴k =-1,φ=-π3,∴f (x )=sin ⎝⎛⎭⎫2x -π3.当x =π12时, 2x -π3=-π6,∴①、③错误;当x =5π12时,2x -π3=π2,∴②正确,④错误.(2)由题意可知2x 0+π3=k π,k ∈Z ,故x 0=k π2-π6,k ∈Z ,又x 0∈⎣⎡⎦⎤-π2,0,∴k =0时,x 0=-π6.2、 若函数y =cos ⎝⎛⎭⎫ωx +π6(ω∈N *)图象的一个对称中心是⎝⎛⎭⎫π6,0,则ω的最小值为________. 答案 2解析 由题意知πω6+π6=k π+π2(k ∈Z )⇒ω=6k +2(k ∈Z ),又ω∈N *,∴ωmin =2.思维升华 (1)对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是不是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断. (2)求三角函数周期的方法: ①利用周期函数的定义.②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.3、(1)已知函数f (x )=2sin(ωx +φ),对于任意x 都有f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,则f ⎝⎛⎭⎫π6的值为________. (2)已知函数f (x )=sin x +a cos x 的图象关于直线x =5π3对称,则实数a 的值为________.答案 (1)2或-2 (2)-33解析 (1)∵f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,∴x =π6是函数f (x )=2sin(ωx +φ)的一条对称轴.∴f ⎝⎛⎭⎫π6=±2. (2)由x =5π3是f (x )图象的对称轴,可得f (0)=f ⎝⎛⎭⎫10π3,解得a =-33. 类型五 函数y =A sin(ωx +φ)的图象及变换1、(1)把函数y =sin(x +π6)图象上各点的横坐标缩短到原来的12(纵坐标不变),再将图象向右平移π3个单位长度,那么所得图象的一条对称轴方程为 (填正确的序号).①x =-π2;②x =-π4;③x =π8;④x =π4.(2) 设函数f (x )=cos ωx (ω>0),将y =f (x )的图象向右平移π3个单位长度后,所得的图象与原图象重合,则ω的最小值等于 .解析 (1)将y =sin(x +π6)图象上各点的横坐标缩短到原来的12(纵坐标不变),得到函数y =sin(2x +π6);再将图象向右平移π3个单位长度,得到函数y =sin[2(x -π3)+π6]=sin(2x -π2),故x=-π2是其图象的一条对称轴方程.(2)由题意可知,nT =π3 (n ∈N *),∴n ·2πω=π3(n ∈N *),∴ω=6n (n ∈N *),∴当n =1时,ω取得最小值6. 类型六 由图象确定y =Asin(ωx +φ)的解析式1、(1)已知函数y =A sin(ωx +φ) (A >0,ω>0,|φ|<π2)的图象上一个最高点的坐标为(2,2),由这个最高点到其右侧相邻最低点间的图象与x 轴交于点(6,0),则此函数的解析式为 .(2)函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则函数f (x )的解析式为 .解析 (1)由题意得A =2,T 4=6-2,所以T =16,ω=2πT =π8.又sin ⎝⎛⎭⎫π8×2+φ=1,所以π4+φ=π2+2k π (k ∈Z ).又因为|φ|<π2,所以φ=π4.(2)由题图可知A =2,T 4=7π12-π3=π4,所以T =π,故ω=2,因此f (x )=2sin(2x +φ),又⎝⎛⎭⎫712π,-2为最小值点,∴2×712π+φ=2k π+3π2,k ∈Z ,∴φ=2k π+π3,k ∈Z , 又|φ|<π,∴φ=π3.故f (x )=2sin(2x +π3).2、函数f (x )=2sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2<φ<π2的部分图象如图所示,则φ= . 答案 -π3解析 ∵T 2=1112π-512π,∴T =π.又T =2πω(ω>0),∴2πω=π,∴ω=2.由五点作图法可知当x =512π时,ωx +φ=π2,即2×512π+φ=π2,∴φ=-π3.类型七:三角函数图象性质的应用1、已知关于x 的方程2sin 2x -3sin 2x +m -1=0在⎝⎛⎭⎫π2,π上有两个不同的实数根,则m 的取值范围是 . 答案 (-2,-1)解析 方程2sin 2x -3sin 2x +m -1=0可转化为m =1-2sin 2x +3sin 2x =cos 2x +3sin 2x =2sin ⎝⎛⎭⎫2x +π6,x ∈⎝⎛⎭⎫π2,π.设2x +π6=t ,则t ∈⎝⎛⎭⎫76π,136π, ∴题目条件可转化为m2=sin t ,t ∈⎝⎛⎭⎫76π,136π,有两个不同的实数根. ∴y =m2和y =sin t ,t ∈⎝⎛⎭⎫76π,136π的图象有两个不同交点,如图:由图象观察知,m 2的范围为(-1,-12),故m 的取值范围是(-2,-1).类型八 角的变换问题1、(1)设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β= . (2)已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是 .答案 (1)2525 (2)-45解析 (1)依题意得sin α=1-cos 2α=255,cos(α+β)=±1-sin 2(α+β)=±45. 又α,β均为锐角,所以0<α<α+β<π,cos α>cos(α+β).因为45>55>-45,所以cos(α+β)=-45.于是cos β=cos [(α+β)-α] =cos(α+β)cos α+sin(α+β)sin α=-45×55+35×255=2525.(2)∵cos(α-π6)+sin α=453,∴32cos α+32sin α=453,3(12cos α+32sin α)=453,3sin(π6+α)=453,∴sin(π6+α)=45,∴sin(α+7π6)=-sin(π6+α)=-45.2、若0<α<π2,-π2<β<0,cos ⎝⎛⎭⎫π4+α=13,cos ⎝⎛⎭⎫π4-β2=33,则cos ⎝⎛⎭⎫α+β2= . 答案539解析 cos ⎝⎛⎭⎫α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫π4+α-⎝⎛⎭⎫π4-β2=cos ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4-β2+sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-β2, ∵0<α<π2,∴π4<π4+α<3π4,∴sin ⎝⎛⎭⎫π4+α=223.又-π2<β<0,则π4<π4-β2<π2,∴sin ⎝⎛⎭⎫π4-β2=63. 故cos ⎝⎛⎭⎫α+β2=13×33+223×63=539. 3、(1)已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,则cos(α+β)的值为 . (2)已知在△ABC 中,sin(A +B )=23,cos B =-34,则cos A = .易错分析 (1)角α2-β,α-β2的范围没有确定准确,导致开方时符号错误.(2)对三角形中角的范围挖掘不够,忽视隐含条件,B 为钝角.解析 (1)∵0<β<π2<α<π,∴-π4<α2-β<π2,π4<α-β2<π,∴cos ⎝⎛⎭⎫α2-β= 1-sin 2⎝⎛⎭⎫α2-β=53,sin ⎝⎛⎭⎫α-β2= 1-cos 2⎝⎛⎭⎫α-β2=459,∴cos α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β =cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2sin ⎝⎛⎭⎫α2-β=⎝⎛⎭⎫-19×53+459×23=7527, ∴cos(α+β)=2cos 2α+β2-1=2×49×5729-1=-239729. (2)在△ABC 中,∵cos B =-34,∴π2<B <π,sin B =1-cos 2B =74.∵π2<B <A +B <π,sin(A +B )=23,∴cos(A +B )=-1-sin 2(A +B )=-53, ∴cos A =cos [(A +B )-B ]=cos(A +B )cos B +sin(A +B )sin B =⎝⎛⎭⎫-53×⎝⎛⎭⎫-34+23×74=35+2712.类型九三角函数的求角问题1、 (1)已知锐角α,β满足sin α=55,cos β=31010,则α+β=________. (2)已知方程x 2+3ax +3a +1=0(a >1)的两根分别为tan α、tan β,且α、β∈⎝⎛⎭⎫-π2,π2,则α+β=________. 解析 (1)由sin α=55,cos β=31010且α,β为锐角,可知cos α=255,sin β=1010, 故cos(α+β)=cos αcos β-sin αsin β=255×31010-55×1010=22,又0<α+β<π,故α+β=π4.(2)依题意有⎩⎪⎨⎪⎧tan α+tan β=-3a ,tan α·tan β=3a +1,∴tan(α+β)=tan α+tan β1-tan α·tan β=-3a 1-(3a +1)=1.又⎩⎪⎨⎪⎧tan α+tan β<0,tan α·tan β>0,∴tan α<0且tan β<0.∴-π2<α<0且-π2<β<0,即-π<α+β<0,结合tan(α+β)=1,得α+β=-3π4.2、(1)若α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β=________.(2)在△ABC 中,tan A +tan B +3=3tan A ·tan B ,则C =________. 解析 (1)∵tan α=tan [(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β=12-171+12×17=13>0,又α∈(0,π).∴0<α<π2,又∵tan 2α=2tan α1-tan 2α=2×131-⎝⎛⎭⎫132=34>0, ∴0<2α<π2,∴tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34+171-34×17=1.∵tan β=-17<0,∴π2<β<π,-π<2α-β<0,∴2α-β=-3π4.(2)由已知可得tan A +tan B =3(tan A ·tan B -1), ∴tan(A +B )=tan A +tan B1-tan A tan B=-3,又0<A +B <π,∴A +B =23π,∴C =π3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解直角三角形应用一
1、如图,小方在五月一日假期中到郊外放风筝,风筝飞到C 处时的线长为20米,此时小方正好站在A处,并测得∠CBD=60°,牵引底端B离地面1.5米,求此时风筝离地面的高度(结果精确到个位)
2、河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为
3、如图,热气球的探测器显示,从热气球A看一栋高楼顶部B的仰角为300,看这栋高楼底部C的俯角为600,热气球A与高楼的水平距离为120m,这栋高楼BC的高度为
4、如图,AC是操场上直立的一个旗杆,从旗杆上的B点到地面C涂着红色的油漆,用测角仪测得地面上的D点到B点的仰角是∠BDC=45°,到A点的仰角是∠ADC=60°(测角仪的高度忽略不计)如果BC=3米,那么旗杆的高度AC= 米.
5、天塔是天津市的标志性建筑之一,某校数学兴趣小组要测量天塔的高度,如图,他们在点A处测得天塔最高点C的仰角为45°,再往天塔方向前进至点B处测得最高点C的仰角为54°,AB=112m,根据这个兴趣小组测得的数据,计算天塔的高度CD(tan36°≈0.73,结果保留整数).
6、如图,在活动课上,小明和小红合作用一副三角板来测量学校旗杆高度.已知小明的眼睛与地面的距离(AB)是1.7m,他调整自己的位置,设法使得三角板的一条直角边保持水平,且斜边与旗杆顶端M在同一条直线上,测得旗杆顶端M仰角为45°;小红眼睛与地面的距离(CD)是1.5m,用同样的方法测得旗杆顶端M的仰角为30°.两人相距28米且位于旗杆两侧(点B、N、D在同一条直线上).求出旗杆MN的高度.(参考数据:,,结果保留整数.)
7、如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树的正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为3米,台阶AC的坡度为1:(即AB:BC=1:),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(侧倾器的高度忽略不计).
解直角三角形应用二
1、如图是某水库大坝横断面示意图.其中AB、CD分别表示水库上下底面的水平线,∠ABC=120°,BC的长是50m,则水库大坝的高度h是()
2、天封塔历史悠久,是宁波著名的文化古迹.如图,从位于天封塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°,若此观测点离地面的高度为51米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,求A,B之间的距离(结果保留根号)
3、如图,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为12m(结果不作近似计算).
4、如图所示,一条自西向东的观光大道l上有A、B两个景点,A、B相距2km,在A处测得另一景点C位于点A的北偏东60°方向,在B处测得景点C位于景点B的北偏东45°方向,求景点C到观光大道l的距离.(结果精确到0.1km)
5、A、B两市相距150千米,分别从A、B处测得国家级风景区中心C处的方位角如图所示,风景区区域是以C为圆心,45千米为半径的圆,tanα=1.627,tanβ=1.373.为了开发旅游,有关部门设计修建连接AB两市的高速公路.问连接AB高速公路是否穿过风景区,请说明理由.
6、如图,小明为了测量小山顶的塔高,他在A处测得塔尖D的仰角为45°,再沿AC方向前进73.2米到达山脚B处,测得塔尖D的仰角为60°,塔底E的仰角为30°,求塔高.(精确到0.1米,≈1.732)
7、如图,在小山的东侧A 点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C 处,此时热气球上的人测得小山西侧B 点的俯角为30°,则小山东西两侧A 、B 两点间的距离为 米.
8、国家海洋局将中国钓鱼岛最高峰命名为“高华峰”,并对钓鱼岛进行常态化立体巡航.如图1,在一次巡航过程中,巡航飞机飞行高度为2001米,在点A 测得高华峰顶F 点的俯角为30°,保持方向不变前进1200米到达B 点后测得F 点俯角为45°,如图2.请据此计算钓鱼岛的最高海拔高度多少米.(结果保留整数,参考数值:=1.732,=1.414)
9.如图,小明家在A 处,门前有一口池塘,隔着池塘有一条公路l ,AB 是A 到l 的小路. 现新修一条路AC 到公路l . 小明测量出∠ACD =30º,∠ABD =45º,BC =50m. 请你帮小明计算他家到公路l 的距离AD 的长度(精确到0.1m ;参考数据:414.12≈,732.13≈).
A。