高考数学压轴题专练

合集下载

2024年高考数学(新高考压轴卷)(全解全析)

2024年高考数学(新高考压轴卷)(全解全析)

2024年高考压轴卷【新高考卷】数学·全解全析一、单选题1.已知集合105x A x x ⎧⎫+=≥⎨⎬-⎩⎭,(){}22log 16B x y x ==-,则()R A B ⋂=ð()A .()1,4-B .[]1,4-C .(]1,5-D .()4,52.宋代是中国瓷器的黄金时代,涌现出了五大名窑:汝窑、官窑、哥窑、钧窑、定窑.其中汝窑被认为是五大名窑之首.如图1,这是汝窑双耳罐,该汝窑双耳罐可近似看成由两个圆台拼接而成,其直观图如图2所示.已知该汝窑双耳罐下底面圆的直径是12厘米,中间圆的直径是20厘米,上底面圆的直径是8厘米,高是14厘米,且上、下两圆台的高之比是3:4,则该汝窑双耳罐的体积是()A .1784π3B .1884π3C .2304π3D .2504π33.如图,左车道有2辆汽车,右车道有3辆汽车等待合流,则合流结束时汽车通过顺序共有()种.A .10B .20C .60D .120【答案】A【分析】合流结束时5辆车需要5个位置,第一步从5个位置选2个位置安排左边的2辆汽车,第二步剩下3个位置安排右边的3辆汽车,从而由分步乘法计数原理可得结果.【详解】设左车辆汽车依次为12,A A ,右车辆汽车依次为123,,B B B ,则通过顺序的种数等价于将12,A A 安排在5个顺序中的某两个位置(保持12,A A 前后顺序不变),123,,B B B 安排在其余3个位置(保持123,,B B B 前后顺序不变),123,,B B B ,所以,合流结束时汽车通过顺序共有2353C C 10=.故选:A.4.已知等比数列{}n a 的各项均为负数,记其前n 项和为n S ,若6467813,8S S a a a -=-=-,则2a =()A .-8B .-16C .-32D .-485.已知圆C :22()1x y m +-=,直线l :()1210m x y m ++++=,则直线l 与圆C 有公共点的必要不充分条件是()A .11m -≤≤B .112m -≤≤C .10m -≤≤D .102m ≤≤6.已知函数2()log f x x =,则对任意实数,a b ,“0a b +≤”是“()()0f a f b +≤”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件故选:C.7.已知0.50.2a =,cos2b =,lg15c =,则()A .a b c <<B .c a b <<C .b c a <<D .b a c<<8.从椭圆22:1(0)x y C a b a b+=>>外一点()00,P x y 向椭圆引两条切线,切点分别为,A B ,则直线AB 称作点P关于椭圆C 的极线,其方程为00221x x y ya b+=.现有如图所示的两个椭圆12,C C ,离心率分别为12,e e ,2C 内含于1C ,椭圆1C 上的任意一点M 关于2C 的极线为l ,若原点O 到直线l 的距离为1,则2212e e -的最大值为()A .12B .13C .15D .14二、多选题9.已知非零复数1z ,2z 在复平面内对应的点分别为1Z ,2Z ,O 为坐标原点,则下列说法正确的是()A .若1211z z -=-,则12=z z B .若1212z z z z +=-,则120OZ OZ ⋅=C .若1212z z z z +=-,则120z z ⋅=D .若1212z z z z +=+,则存在实数t ,使得21z tz =10.已知四面体ABCD的一个平面展开图如图所示,其中四边形AEFD是边长为B,C分别为AE,FD的中点,BD=)⊥A.BE CDB.BE与平面DCE所成角的余弦值为15C.四面体ABCD的内切球半径为30D.四面体ABCD的外接球表面积为8π【点睛】11.对于数列{}n a (N n a +∈),定义k b 为1a ,2a ,…,k a 中最大值(1,2,,k n =⋅⋅⋅)(N n +∈),把数列{}n b 称为数列{}n a 的“M 值数列”.如数列2,2,3,7,6的“M 值数列”为2,2,3,7,7,则()A .若数列{}n a 是递减数列,则{}n b 为常数列B .若数列{}n a 是递增数列,则有n na b =C .满足{}n b 为2,3,3,5,5的所有数列{}n a 的个数为8D .若()1()2N n n a n -+=-∈,记n S 为{}n b 的前n 项和,则1001002(21)3S =-三、填空题12.已知向量()1,1,4a b == ,且b 在a 上的投影向量的坐标为()2,2--,则a 与b的夹角为.13.已知公比q 大于1的等比数列{}n a 满足135a a +=,22a =.设22log 7n n b a =-,则当5n ≥时,数列{}n b 的前n 项和n S =.14.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,过点2F 且斜率为34-的直线与C 交于,A B两点.若112AF F F ⊥,则C 的离心率为;线段AB 的垂直平分线与x 轴交于点D ,则22BF DF =.5.【点睛】方法点睛:椭圆求离心率或者范围关键是找到关于,a c 的齐次式求得.四、解答题15.如图,在平面四边形ABCD ,已知1BC =,3cos 5BCD ∠=-.(1)若AC 平分BCD ∠,且2AB =,求AC 的长;(2)若45CBD ∠=︒,求CD 的长.16.如图,在三棱柱111ABC A B C -中,ABC △是边长为2的正三角形,侧面11BB C C 是矩形,11AA A B =.(1)求证:三棱锥1A ABC -是正三棱锥;(2)若三棱柱111ABC A B C -的体积为221AC 与平面11AA B B 所成角的正弦值.【答案】(1)证明见解析(2)23【分析】(1)根据线面垂直的判定定理及性质定理,证明1A O ⊥平面ABC 即可;(2)建立空间直角坐标系,利用向量法求线面角正弦即可.【详解】(1)分别取AB ,BC 中点D ,E ,连接CD ,AE 交于点O ,则点O 为正三角形ABC 的中心.因为11AA A B CA CB ==,得1CD AB AD AB ⊥⊥,,又11,,A D CD D A D CD =⊂ 平面1A CD ,所以AB ⊥平面1A CD ,又1A O ⊂平面1A CD ,则1AB A O ⊥;取11B C 中点1E ,连接111A E E E ,,则四边形11AA E E 是平行四边形,因为侧面11BB C C 是矩形,所以1BC EE ⊥,又BC AE ⊥,又11,,EE AE E EE AE =⊂ 平面11AA E E ,所以BC ⊥平面11AA E E ,又1A O ⊂平面11AA E E ,则1BC A O ⊥;又AB BC B ⋂=,,AB BC ⊂平面ABC ,所以1A O ⊥平面ABC ,所以三棱锥1A ABC -是正三棱锥.17.某学校为了解本学期学生参加公益劳动的情况,从学校内随机抽取了500名高中学生进行在线调查,收集了他们参加公益劳动时间(单位:小时)分配情况等数据,并将样本数据分成[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],(12,14],(14,16],(16,18]九组,绘制成如图所示的频率分布直方图.(1)为进一步了解这500名学生参加公益劳动时间的分配情况,从参加公益劳动时间在(12,14],(14,16],(16,18]三组内的学生中,采用分层抽样的方法抽取了10人,现从这10人中随机抽取3人.记参加公益劳动时间在(14,16]内的学生人数为X ,求X 的分布列和期望;(2)以调查结果的频率估计概率,从该学校所有高中学生中随机抽取20名学生,用“20()P k ”表示这20名学生中恰有k 名学生参加公益劳动时间在(10,12](单位:小时)内的概率,其中0,1,2,,20k = .当20()P k 最大时,写出k 的值.18.已知双曲线(22:10,0x y C a b a b-=>>)的左右焦点分别为12,F F ,C 的右顶点到直线2:a l x c =的距离为1,双曲线右支上的点到1F 的最短距离为3(1)求双曲线C 的方程;(2)过2F 的直线与C 交于M 、N 两点,连接1MF 交l 于点Q ,证明:直线QN 过x 轴上一定点.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.19.函数()e xf x a x=-图像与x 轴的两交点为()()()1221,0,0A x B x x x >,(1)令()()ln h x f x x x =-+,若()h x 有两个零点,求实数a 的取值范围;(2)证明:121x x <;(3)证明:当5a ≥时,以AB 为直径的圆与直线)1y x =+恒有公共点.(参考数据:0.25 2.5e 1.3e 12.2≈≈,)。

2023年高考数学复习压轴题专练(选择+填空)专题45 利用方程同解求圆的方程

2023年高考数学复习压轴题专练(选择+填空)专题45 利用方程同解求圆的方程

专题45 利用方程同解求圆的方程【方法点拨】当圆与另一曲线(如抛物线)有两个公共点求圆的方程时,可考虑将曲线方程分别与直线方程联立消元,根据函数与方程的关系,则两方程同解,故可利用系数成比例求解圆的方程.【典型题示例】例1 (多选题)已知二次函数()220y x x m m =-+≠交x 轴于A ,B 两点(A ,B 不重合),交y 轴于C 点.圆M 过A ,B ,C 三点.下列说法正确的是( ) ①圆心M 在直线1x =上; ②m 的取值范围是()0,1;③圆M 半径的最小值为1; ④存在定点N ,使得圆M 恒过点N . A .①B .②C .③D .④【答案】AD【解析】①因为二次函数()220y x x m m =-+≠的对称轴是1x =,且A ,B 两点关于1x =对称,所以圆心M 在直线1x =上,故正确;②因为二次函数()220y x x m m =-+≠交x 轴于A ,B 两点,所以440m ∆=-> 解得1m <且0m ≠,故错误;③设圆M 的方程为220x y Dx Ey F ++++=,(#)令0y =,则20x Dx F ++=则,A B x x 为方程20x Dx F ++=的两个根∵()220y x x m m =-+≠与x 轴交于A ,B 两点 ∴,A B x x 为方程220x x m -+=的两个根故方程20x Dx F ++=与方程()220y x x m m =-+≠的根相同 ∴2D =-,F m =,代入(#)2220x y x Ey m +-++=又∵(0,)C m 在圆上∴20m mE m ++=,解得1E m =--所以所求圆的方程为222(1)0x y x m y m +--++=.即()222125124m m m x y +-+⎛⎫-+-= ⎪⎝⎭ 故()222142544m m m r -+-+==,因为1m <且0m ≠,所以1r >,故错误; ④圆M 的方程为()()222141124m m x y -++⎛⎫-+-= ⎪⎝⎭,即222(1)0x x y y m y -+---=,则圆M 恒过定点()0,1N ,故正确;故选:AD .例2 (多选题)在平面直角坐标系xOy 中,设二次函数()()2f x x R x =∈的图象与直线():0l y x m m =+≠有两个不同的交点,A B ,经过,,A B O 三点的圆记为圆C .下列结论正确的是( )A .14m >-且0m ≠ B .当2log 3m =时,AOB ∠为钝角C .圆C :()2220x y mx m y +--+=(14m >-且0m ≠) D .圆C 过定点()1,1-【解析】对于A ,联立2y x y x m⎧=⎨=+⎩,消y 可得20x x m --=, 二次函数与直线有两个交点,则()()21410m ∆=--⨯⨯->, 解得14m >-,又0m ≠,故A 正确; 对于B ,联立消y 可得20x x m --=,设()11,A x y ,()22,B x y ,则121x x =+,12x x m =-,则()()22121212121212()2OA OB x x y y x x x m x m x x m x x m m m ⋅=+=+++=+++=- 当2log 3m =时,()22log 3l 130og OA OB =⋅->,所以AOB ∠为锐角,故B 错误;对于C ,设圆C 的方程为220x y Dx Ey +++=(因为圆C 过O ,故0F =),由2y x y x m⎧=⎨=+⎩,消y 可得20x x m --=,故,A B x x 为方程20x x m --=的两个根 由220x y Dx Ey y x m⎧⎨=++++=⎩,消y 可得22(0)()x D x m x m x E +++++= 即222)2()0(m D E m m x E x ++++=+故,A B x x 为方程222)2()0(m D E m m x E x ++++=+的两个根所以222)2()0(m D E m m x E x ++++=+与20x x m --=为同一方程故有2222m D E m mE m +++=-=-⎧⎨⎩,解得2D m m E =---=⎧⎨⎩所以圆C 的方程为()2220x y mx m y +--+=(14m >-且0m ≠,故C 正确; 对于D ,由C :()2220x y mx m y +--+=(14m >-且0m ≠), 整理可得()2220x y m x y y +-+-=,方程过定点 则22020x y x y y +=⎧⎨+-=⎩ ,解得11x y =-⎧⎨=⎩ ,所以圆C 过定点()1,1-,故D 正确; 故选:ACD .【巩固训练】1.在平面直角坐标系中,经过三点(0,0),(1,1)(2,0)的圆的方程为 .2.在平面直角坐标系xOy 中,记二次函数2()2f x x x b =++(x ∈R )与两坐标轴有 三个交点.经过三个交点的圆记为C ,则圆C 经过定点 (其坐标与b 的无关).3.已知圆C 过点(4,2)A ,()1,3B ,它与x 轴的交点为()1,0x ,()2,0x ,与y 轴的交点为()10y ,,()20,y ,且12126x x y y +++=,则圆C 的标准方程为___________.4. 已知曲线22020y x x =+-与x 轴交于N M ,两点,与y 轴交于)2020,0(-P 点,则P N M ,,过外接圆的方程为( )A .22201920200x y x y ++--=B .22202120200x y x y ++--=C .22201920200x y x y +++-=D .22202120200x y x y +++-=【答案或提示】1.【答案】2220x y x +-=【解析】设所求圆的一般式方程为220x y Dx Ey F ++++=,令0y =,得20x Dx F ++=,则0,2是方程20x Dx F ++=的两个根,所以0202D F +=-⎧⎨⨯=⎩,20D F =-⎧⎨=⎩所以圆的一般方程为2220x y x F +-+=将()0,0代入,得0F =,所以圆的一般方程为2220x y x +-=.2.【答案】(0,1),(2,0)-【解析】设所求圆的一般方程为2x 20y Dx Ey F ++++= 令y =0 得20x Dx F ++=这与220x x b ++=是同一个方程,故D =2,F =b . 令x =0 得20y Ey +=,此方程有一个根为b ,代入得出E =―b ―1. 所以圆C 的方程为222(1)0x y x b y b ++-++=.分离参数得:222(1)0x y x y b y ++-+-= (*)令x =0,得抛物线与y 轴交点是(0,b );令()220f x x x b =++=,由题意b ≠0 且Δ>0,解得b <1 且b ≠0. 为使(*)式对所有满足1(0)b b <≠的b 都成立,必须有,结合(*)式得 222010x y x y y ⎧++-=⎨-=⎩,解得02 11x x y y ==⎧⎧⎨⎨==⎩⎩,-,或,, 经检验知,点(0,1),(2,0)-均在圆C 上,因此圆C 过定点.3.【答案】22(2)(1)5x y -+-=【解析】设圆C 的一般式方程为220x y Dx Ey F ++++=,令0y =,得20x Dx F ++=,所以12x x D +=-,令0x =,得20y Ey F ++=,所以12y y E +=-,所以有1212()6x x y y D E +++=-+=,所以6D E +=-,①又圆C 过点(4,2)A ,()1,3B ,所以2242420D E F ++++=,②221330D E F ++++=,③,由①②③得4D =-,2E =-,0F =,所以圆C 的一般式方程为22420x y x y +--=,标准方程为22(2)(1)5x y -+-=. 4. 【答案】A【解析】设MNP △外接圆的方程为220x y Dx Ey F ++++=,(#)令0y =,则20x Dx F ++=则,M N x x 为方程20x Dx F ++=的两个根∵22020y x x =+-与x 轴交于N M ,两点∴,M N x x 为方程220200x x +-=的两个根故方程20x Dx F ++=与方程220200x x +-=的根相同∴1D =,2020F =-,代入(#)2220200x y x Ey +++-=又∵)2020,0(-P 在圆上∴2(2020)202020200E ---=,解得2019E =所以所求圆的方程为22201920200x y x y ++--=.。

高考数学选择填空压轴题45道(附答案)

高考数学选择填空压轴题45道(附答案)

,
D.
1,
27 e4
21.已知方程
e x 1
x
e2 x1 x aex1
有三个不同的根,则实数
a

取值范围为( )
A. 1,e
B.
e,
1 2
C. 1,1
D.
1,
1 2
22.函数 f (x) ex1 ex1 a sin (x x R ,e 是自然对数的底数,
a 0 )存在唯一的零点,则实数 a 的取值范围为( )
38.若不等式 x e2x a x ln x 1恒成立,则实数 a 的取值范
围是__________.
39.已知函数 f x ln x e a x b ,其中 e 为自然对数的底
数.若不等式
f
x
0
恒成立,则
b a
的最小值为_______.
40.已知函数
f
(x)
x
2 cos
x
,在区间上
0,
4
A.
0,
2
B.
0,
2
C. (0,2]
D. (0,2)
23.已知 a 0 ,b R ,且 ex a(x 1) b 对 x R 恒成立,则 a2b 的 最大值为( )
A. 1 e5
2
B. 1 e5
3
C. 1 e3
2
D. 1 e3
3
k
24.若关于
x
的不等式
1 x
x
1 27
有正整数解,则实数
16 12
7
4
x
x
3y 6 y
的最小值为________.
8
参考答案,仅供参考

新高考数学高考数学压轴题多选题专项训练分类精编含解析(2)

新高考数学高考数学压轴题多选题专项训练分类精编含解析(2)

一、数列多选题1.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是( ) A .a 8=34 B .S 8=54C .S 2020=a 2022-1D .a 1+a 3+a 5+…+a 2021=a 2022答案:BCD 【分析】由题意可得数列满足递推关系,依次判断四个选项,即可得正确答案. 【详解】对于A ,可知数列的前8项为1,1,2,3,5,8,13,21,故A 错误; 对于B ,,故B 正确; 对于C ,可解析:BCD 【分析】由题意可得数列{}na 满足递推关系()12211,1,+3nn n aa a aan --===≥,依次判断四个选项,即可得正确答案.【详解】对于A ,可知数列的前8项为1,1,2,3,5,8,13,21,故A 错误; 对于B ,81+1+2+3+5+8+13+2154S ==,故B 正确;对于C ,可得()112nn n a aan +-=-≥,则()()()()1234131425311++++++++++nn n a a a a aa a a aa a a aa+-=----即212++1nnn n S a a aa++=-=-,∴202020221Sa=-,故C 正确;对于D ,由()112n n n a aan +-=-≥可得,()()()135202124264202220202022++++++++a a a a a a a a a aaa=---=,故D 正确.故选:BCD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,解题的关键是得出数列的递推关系,()12211,1,+3nn n a a a aan --===≥,能根据数列性质利用累加法求解.2.已知数列{}na 中,11a =,1111n na a n n +⎛⎫-=+ ⎪⎝⎭,*n N ∈.若对于任意的[]1,2t ∈,不等式()22212n at a t a a n<--++-+恒成立,则实数a 可能为( )A .-4B .-2C .0D .2答案:AB 【分析】由题意可得,利用裂项相相消法求和求出,只需对于任意的恒成立,转化为对于任意的恒成立,然后将选项逐一验证即可求解. 【详解】 ,, 则,,,,上述式子累加可得:,, 对于任意的恒成立解析:AB 【分析】由题意可得11111n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n =-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解. 【详解】111n n n a a n n++-=,11111(1)1n n a a n n n n n n +∴-==-+++, 则11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111122a a -=-, 上述式子累加可得:111n a a n n -=-,122n a n n∴=-<, ()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,整理得()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立, 对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42⎡⎤-⎢⎥⎣⎦,包含[]1,2,故A 正确;对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22⎡⎤-⎢⎥⎣⎦,包含[]1,2,故B 正确;对C ,当0a =时,不等式()210t t +≤,解集1,02⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故C 错误;对D ,当2a =时,不等式()()2120t t -+≤,解集12,2⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故D 错误,故选:AB. 【点睛】本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题.3.著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}na 称为“斐波那契数列”,记Sn为数列{}na 的前n 项和,则下列结论正确的是( ) A .68a =B .733S =C .13520192022a a a aa++++=D .22212201920202019a a a aa+++=答案:ABD 【分析】根据,,,计算可知正确;根据,,,,,,累加可知不正确;根据,,,,,,累加可知正确. 【详解】依题意可知,,,, ,,,,故正确; ,所以,故正确; 由,,,,,, 可得,故不解析:ABD 【分析】根据11a =,21a =,21n n n aaa ++=+,计算可知,A B 正确;根据12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018aaa=-,累加可知C 不正确;根据2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a aaaaaaa=-=-,累加可知D 正确. 【详解】依题意可知,11a =,21a =,21n n naaa ++=+,312112a a a =+=+=,423123a a a =+=+=,534235a a a =+=+=,645358a a a =+=+=,故A 正确;7565813a a a =+=+=,所以712345671123581333S a a a a a a a =++++++=++++++=,故B 正确;由12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018aaa=-,可得13572019a a a a a+++++=242648620202018a a a a a a a aa+-+-+-++-2020a=,故C 不正确;2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a aaaaaaa=-=-,所以2222212342019a a a a a +++++122312342345342019202020182019a a a a a a a a a a a a a a aaaa=+-+-+-+-20192020aa=,所以22212201920202019a a a aa+++=,故D 正确.故选:ABD. 【点睛】本题考查了数列的递推公式,考查了累加法,属于中档题.4.已知数列{}na 满足112a =-,111n na a +=-,则下列各数是{}n a 的项的有( ) A .2-B .23C .32D .3答案:BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】 因为数列满足,, ; ; ;数列是周期为3的数列,且前3项为,,3; 故选:. 【点睛】 本题主要解析:BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】因为数列{}n a 满足112a =-,111n na a +=-,212131()2a ∴==--; 32131a a==-; 4131112a a a ==-=-; ∴数列{}n a 是周期为3的数列,且前3项为12-,23,3;故选:BD . 【点睛】本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题.5.设数列{}na 的前n 项和为*()nS n N ∈,关于数列{}na ,下列四个命题中正确的是( ) A .若1*()n naa n N +∈=,则{}na 既是等差数列又是等比数列B .若2nS An Bn =+(A ,B 为常数,*n N ∈),则{}na 是等差数列C .若()11n nS =--,则{}na 是等比数列D .若{}na 是等差数列,则nS ,2n n SS -,*32()n nS S n N -∈也成等差数列答案:BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: ,得是等差数列,当时不是等比数列,故错; 选项B: ,,得是等差数列,故对; 选项C: ,,当时也成立,是等比数列解析:BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】 选项A: 1*()n n a a n N +∈=,10n n aa +∴-=得{}na 是等差数列,当0n a =时不是等比数列,故错; 选项B:2nS An Bn =+,12nn a aA -∴-=,得{}na 是等差数列,故对;选项C: ()11n nS =--,112(1)(2)n nn nS Sa n --∴-==⨯-≥,当1n =时也成立,12(1)n na -∴=⨯-是等比数列,故对;选项D: {}na 是等差数列,由等差数列性质得nS ,2n n SS -,*32()n nS S n N -∈是等差数列,故对; 故选:BCD 【点睛】熟练运用等差数列的定义、性质、前n 项和公式是解题关键.6.朱世杰是元代著名数学家,他所著的《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.现有100根相同的圆形铅笔,小明模仿“堆垛”问题,将它们全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从最下面一层开始,每一层比上一层多1根,则该“等腰梯形垛”应堆放的层数可以是( ) A .4B .5C .7D .8答案:BD 【分析】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为,公差即每一层比上一层多的根数为,设一共放层,利用等差数列求和公式,分析即可得解. 【详解】依据题意,根数从上至下构成等差解析:BD 【分析】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差即每一层比上一层多的根数为1d =,设一共放()2n n ≥层,利用等差数列求和公式,分析即可得解. 【详解】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差为1d =,设一共放()2n n ≥层,则总得根数为:()()111110022n n n d n n S na na --=+=+= 整理得120021a n n=+-, 因为1a *∈N,所以n 为200的因数,()20012n n+-≥且为偶数,验证可知5,8n =满足题意. 故选:BD. 【点睛】关键点睛:本题考查等差数列的求和公式,解题的关键是分析题意,把题目信息转化为等差数列,考查学生的逻辑推理能力与运算求解能力,属于基础题.7.公差不为零的等差数列{}na 满足38aa =,n S 为{}n a 前n 项和,则下列结论正确的A .110S =B .10nnS S-=(110n ≤≤)C .当110S >时,5nS S ≥D .当110S <时,5nS S ≥答案:BC 【分析】设公差d 不为零,由,解得,然后逐项判断. 【详解】 设公差d 不为零, 因为, 所以, 即, 解得, ,故A 错误; ,故B 正确;若,解得,,故C 正确;D 错误; 故选:BC解析:BC 【分析】设公差d 不为零,由38a a =,解得192a d =-,然后逐项判断. 【详解】设公差d 不为零, 因为38a a =, 所以1127a d a d +=+, 即1127a d a d +=--,解得192a d =-, 11191111551155022S a d d d d ⎛⎫=+=⨯-+=≠ ⎪⎝⎭,故A 错误; ()()()()()()221101110910,10102222n n n n n n d d na d n n n a n n S S d ----=+=-=-+=-,故B 正确;若11191111551155022S a d d d d ⎛⎫=+=⨯-+=> ⎪⎝⎭,解得0d >,()()22510525222n d d d n n S n S =-=--≥,故C 正确;D 错误;8.设{}na 是等差数列,nS是其前n 项的和,且56S S <,678S S S =>,则下列结论正确的是( ) A .0d > B .70a =C .95S S >D .6S 与7S 均为nS 的最大值答案:BD 【分析】设等差数列的公差为,依次分析选项即可求解. 【详解】根据题意,设等差数列的公差为,依次分析选项: 是等差数列,若,则,故B 正确; 又由得,则有,故A 错误; 而C 选项,,即,可得,解析:BD 【分析】设等差数列{}na 的公差为d ,依次分析选项即可求解.【详解】根据题意,设等差数列{}na 的公差为d ,依次分析选项:{}na 是等差数列,若67SS =,则7670S S a -==,故B 正确;又由56S S <得6560S S a -=>,则有760d a a =-<,故A 错误; 而C 选项,95S S >,即67890a a a a +++>,可得()7820a a+>,又由70a =且0d <,则80a <,必有780a a +<,显然C 选项是错误的.∵56S S <,678S S S =>,∴6S 与7S 均为nS 的最大值,故D 正确;故选:BD. 【点睛】本题考查了等差数列以及前n 项和的性质,需熟记公式,属于基础题.9.已知等差数列{}na 的前n 项和为nS ()*n N ∈,公差0d ≠,690S=,7a 是3a 与9a 的等比中项,则下列选项正确的是( ) A .2d =-B .120a=-C .当且仅当10n =时,nS 取最大值D .当0nS <时,n 的最小值为22答案:AD 【分析】运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由解不等式可判断D . 【详解】等差数列的前n 项和为,公差,由,可解析:AD 【分析】运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由0nS <解不等式可判断D .【详解】等差数列{}na 的前n 项和为nS,公差0d ≠,由690S =,可得161590a d +=,即12530a d +=,①由7a 是3a 与9a 的等比中项,得2739a a a =,即()()()2111628a d a d a d +=++,化为1100a d +=,②由①②解得120a =,2d =-,则202(1)222na n n =--=-,21(20222)212n S n n n n =+-=-, 由22144124n S n ⎛⎫=--+ ⎪⎝⎭,可得10n =或11时,n S 取得最大值110; 由2102nS n n -<=,解得21n >,则n 的最小值为22.故选:AD 【点睛】本题考查等差数列的通项公式和求和公式,以及等比中项的性质,二次函数的最值求法,考查方程思想和运算能力,属于中档题. 10.下列命题正确的是( )A .给出数列的有限项就可以唯一确定这个数列的通项公式B .若等差数列{}na的公差0d >,则{}na 是递增数列C .若a ,b ,c 成等差数列,则111,,a b c可能成等差数列D .若数列{}na是等差数列,则数列{}12++nn aa也是等差数列答案:BCD 【分析】根据等差数列的性质即可判断选项的正误. 【详解】A 选项:给出数列的有限项不一定可以确定通项公式;B 选项:由等差数列性质知,必是递增数列;C 选项:时,是等差数列,而a = 1,解析:BCD 【分析】根据等差数列的性质即可判断选项的正误. 【详解】A 选项:给出数列的有限项不一定可以确定通项公式;B 选项:由等差数列性质知0d >,{}na必是递增数列;C 选项:1a b c ===时,1111a b c===是等差数列,而a = 1,b = 2,c = 3时不成立;D 选项:数列{}na是等差数列公差为d ,所以11112(1)223(31)nn a aa n d a nd a n d ++=+-++=+-也是等差数列;故选:BCD 【点睛】本题考查了等差数列,利用等差数列的性质判断选项的正误,属于基础题.11.在下列四个式子确定数列{}na 是等差数列的条件是( )A .na knb =+(k ,b 为常数,*n N ∈); B .2n naa d +-=(d 为常数,*n N ∈);C .()*2120n n n a a a n ++-+=∈N ; D .{}na 的前n 项和21nSn n =++(*n N ∈).答案:AC 【分析】直接利用等差数列的定义性质判断数列是否为等差数列. 【详解】A 选项中(,为常数,),数列的关系式符合一次函数的形式,所以是等差数列,故正确,B 选项中(为常数,),不符合从第二项起解析:AC 【分析】直接利用等差数列的定义性质判断数列是否为等差数列. 【详解】A 选项中na knb =+(k ,b 为常数,*n N ∈),数列{}na 的关系式符合一次函数的形式,所以是等差数列,故正确, B 选项中2n naa d +-=(d 为常数,*n N ∈),不符合从第二项起,相邻项的差为同一个常数,故错误; C 选项中()*2120n n n aaa n ++-+=∈N ,对于数列{}na 符合等差中项的形式,所以是等差数列,故正确;D 选项{}na 的前n 项和21nSn n =++(*n N ∈),不符合2nS An Bn =+,所以{}na 不为等差数列.故错误. 故选:AC 【点睛】本题主要考查了等差数列的定义的应用,如何去判断数列为等差数列,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.12.无穷数列{}na 的前n 项和2nSan bn c =++,其中a ,b ,c 为实数,则( )A .{}na 可能为等差数列B .{}na 可能为等比数列 C .{}na 中一定存在连续三项构成等差数列 D .{}na 中一定存在连续三项构成等比数列 答案:ABC 【分析】由可求得的表达式,利用定义判定得出答案. 【详解】 当时,. 当时,. 当时,上式=. 所以若是等差数列,则所以当时,是等差数列, 时是等比数列;当时,从第二项开始是等差数列.解析:ABC 【分析】由2nS an bn c =++可求得na 的表达式,利用定义判定得出答案.【详解】当1n =时,11a S abc ==++.当2n ≥时,()()221112nnn a S San bn c a n b n c an a b -=-=++-----=-+.当1n =时,上式=+a b .所以若{}na 是等差数列,则0.ab a bc c +=++∴=所以当0c时,{}n a 是等差数列, 00a cb ==⎧⎨≠⎩时是等比数列;当0c ≠时,{}na 从第二项开始是等差数列. 故选:A B C 【点睛】本题只要考查等差数列前n 项和nS 与通项公式na 的关系,利用nS 求通项公式,属于基础题.二、等差数列多选题13.在等差数列{}na 中,公差0d ≠,前n 项和为nS,则( )A .4619a a a a >B .130S >,140S <,则78a a >C .若915S S =,则n S 中的最大值是12SD .若2nS n n a =-+,则0a =解析:AD 【分析】对于A ,作差后利用等差数列的通项公式运算可得答案;对于B ,根据等差数列的前n 项和公式得到70a >和780a a +<, 进而可得80a <,由此可知78||||a a <,故B 不正确;对于C ,由915S S =得到,12130a a +=,然后分类讨论d 的符号可得答案;对于D ,由nS 求出na 及1a ,根据数列{}na 为等差数列可求得0a =.【详解】对于A ,因为46191111(3)(5)(8)a a a a a d a d a a d -=++-+215d =,且0d ≠,所以24619150a a a a d -=>,所以4619a a a a >,故A 正确;对于B ,因为130S >,140S <,所以77713()1302a a a +=>,即70a >,787814()7()02a a a a +=+<,即780a a +<,因为70a >,所以80a <,所以7878||||0a a a a -=+<,即78||||a a <,故B 不正确;对于C ,因为915S S =,所以101114150a a a a ++++=,所以12133()0a a +=,即12130a a +=,当0d >时,等差数列{}na 递增,则12130,0a a <>,所以n S 中的最小值是12S ,无最大值;当0d <时,等差数列{}na 递减,则12130,0aa ><,所以n S 中的最大值是12S ,无最小值,故C 不正确;对于D ,若2nS n n a =-+,则11a S a ==,2n ≥时,221(1)(1)nnn a S Sn n a n n a -=-=-+--+--22n =-,因为数列{}n a 为等差数列,所以12120a a =⨯-==,故D 正确.故选:AD 【点睛】关键点点睛:熟练掌握等差数列的通项公式、前n 项和公式是解题关键.14.题目文件丢失!15.已知数列{}na 的前4项为2,0,2,0,则该数列的通项公式可能为( )A .0,2,nn a n ⎧=⎨⎩为奇数为偶数B .1(1)1n na -=-+C .2sin 2n n a π=D .cos(1)1na n π=-+解析:BD 【分析】根据选项求出数列的前4项,逐一判断即可. 【详解】解:因为数列{}na 的前4项为2,0,2,0,选项A :不符合题设;选项B :01(1)12,a =-+=12(1)10,a =-+=23(1)12,a =-+=34(1)10a =-+=,符合题设;选项C :,12sin2,2a π==22sin 0,a π==332sin 22a π==-不符合题设; 选项D :1cos012,a =+=2cos 10,a π=+=3cos212,a π=+=4cos310a π=+=,符合题设.故选:BD. 【点睛】本题考查数列的通项公式的问题,考查了基本运算求解能力,属于基础题.16.朱世杰是元代著名数学家,他所著的《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.现有100根相同的圆形铅笔,小明模仿“堆垛”问题,将它们全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从最下面一层开始,每一层比上一层多1根,则该“等腰梯形垛”应堆放的层数可以是( ) A .4 B .5 C .7D .8解析:BD 【分析】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差即每一层比上一层多的根数为1d =,设一共放()2n n ≥层,利用等差数列求和公式,分析即可得解. 【详解】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差为1d =,设一共放()2n n ≥层,则总得根数为:()()111110022n n n d n n S na na --=+=+=整理得120021a n n=+-, 因为1a *∈N ,所以n 为200的因数,()20012n n+-≥且为偶数, 验证可知5,8n =满足题意. 故选:BD. 【点睛】关键点睛:本题考查等差数列的求和公式,解题的关键是分析题意,把题目信息转化为等差数列,考查学生的逻辑推理能力与运算求解能力,属于基础题. 17.已知数列{}na :1,1,2,3,5,…其中从第三项起,每个数等于它前面两个数的和,记nS为数列{}na 的前n 项和,则下列结论正确的是( )A .68S a = B .733S =C .13520212022a a a aa++++=D .2222123202020202021a a a a aa++++=解析:BCD 【分析】根据题意写出8a ,6S ,7S ,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误. 【详解】对A ,821a =,620S =,故A 不正确;对B ,761333S S =+=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,…,202120222020aaa=-,可得13520212022a a a aa +++⋅⋅⋅+=,故C 正确;对D ,该数列总有21n n n aaa ++=+,2121a a a =,则()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,…,()220182018201920172018201920172018a a a a a a a a =-=-, 22019a =2019202020192018aaaa-,220202020202120202019a aaaa=-,故2222123202020202021a a a a a a+++⋅⋅⋅+=,故D 正确.故选:BCD 【点睛】关键点睛:解答本题的关键是对CD 的判断,即要善于利用21n n na aa ++=+对所给式子进行变形.18.已知等差数列{}na 的公差不为0,其前n 项和为nS,且12a 、8S 、9S 成等差数列,则下列四个选项中正确的有( )A .59823a a S +=B .27S S =C .5S 最小D .50a =解析:BD【分析】设等差数列{}na 的公差为d ,根据条件12a 、8S、9S 成等差数列可求得1a 与d 的等量关系,可得出na 、nS 的表达式,进而可判断各选项的正误.【详解】设等差数列{}na 的公差为d ,则8118788282S a d a d ⨯=+=+,9119899362S a d a d ⨯=+=+, 因为12a 、8S 、9S 成等差数列,则81922S a S =+,即11116562936a d a a d +=++,解得14a d =-,()()115n a a n d n d ∴=+-=-,()()219122nnn d n n dS na --=+=.对于A 选项,59233412a a d d +=⨯=,()2888942d S d -⨯==-,A 选项错误; 对于B 选项,()2229272d S d -⨯==-,()2779772d S d -⨯==-,B 选项正确;对于C 选项,()2298192224n d d S n n n ⎡⎤⎛⎫=-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 若0d >,则4S 或5S 最小;若0d <,则4S 或5S 最大.C 选项错误;对于D 选项,50a =,D 选项正确.故选:BD. 【点睛】在解有关等差数列的问题时可以考虑化归为a 1和d 等基本量,通过建立方程(组)获得解,另外在求解等差数列前n 项和nS 的最值时,一般利用二次函数的基本性质或者数列的单调性来求解. 19.定义11222n nna a a H n-+++=为数列{}na 的“优值”.已知某数列{}na 的“优值”2n nH =,前n 项和为nS ,则( )A .数列{}na 为等差数列 B .数列{}na 为等比数列C .2020202320202S =D .2S ,4S ,6S 成等差数列解析:AC 【分析】由题意可知112222n n nna a a H n-+++==,即112222n n na a a n -+++=⋅,则2n ≥时,()()111221212n n n n na n n n ---=⋅--⋅=+⋅,可求解出1na n =+,易知{}na 是等差数列,则A 正确,然后利用等差数列的前n 项和公式求出nS ,判断C ,D 的正误.【详解】 解:由112222n n nna a a H n-+++==,得112222n n na a a n -+++=⋅,①所以2n ≥时,()211212212n n n a a an ---+++=-⋅,②得2n ≥时,()()111221212n n n n na n n n ---=⋅--⋅=+⋅, 即2n ≥时,1na n =+,当1n =时,由①知12a =,满足1na n =+.所以数列{}na 是首项为2,公差为1的等差数列,故A 正确,B 错,所以()32n n n S +=,所以2020202320202S =,故C 正确.25S =,414S =,627S =,故D 错, 故选:AC . 【点睛】本题考查数列的新定义问题,考查数列通项公式的求解及前n 项和的求解,难度一般.20.数列{}n a 满足11,121n n naa a a +==+,则下列说法正确的是( ) A .数列1n a ⎧⎫⎨⎬⎩⎭是等差数列B .数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和2nS n =C .数列{}na 的通项公式为21nan =-D .数列{}na 为递减数列解析:ABD【分析】首项根据11,121n n n a a a a +==+得到1112n n a a +-=,从而得到1na ⎧⎫⎨⎬⎩⎭是以首项为1,公差为2的等差数列,再依次判断选项即可.【详解】对选项A ,因为121n n naa a +=+,11a =, 所以121112n n nna a a a ++==+,即1112n na a+-= 所以1n a ⎧⎫⎨⎬⎩⎭是以首项为1,公差为2的等差数列,故A 正确.对选项B ,由A 知:112121nn n a数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和()21212n n n S n +-==,故B 正确. 对选项C ,因为121nn a =-,所以121n a n =-,故C 错误. 对选项D ,因为121n a n =-,所以数列{}n a 为递减数列,故D 正确. 故选:ABD 【点睛】本题主要考查等差数列的通项公式和前n 项和前n 项和,同时考查了递推公式,属于中档题.21.设等差数列{}na 的前n 项和为nS,若39S =,47a =,则( )A .2nS n =B .223nS n n =-C .21na n =-D .35na n =-解析:AC 【分析】利用等差数列{}na 的前n 项和公式、通项公式列出方程组,求出11a =,2d =,由此能求出na 与nS .【详解】等差数列{}na 的前n 项和为n S .39S =,47a =,∴31413239237S a d a a d ⨯⎧=+=⎪⎨⎪=+=⎩, 解得11a =,2d =,1(1)221na n n ∴+-⨯=-=.()21212nn nS n +-==故选:AC . 【点睛】本题考查等差数列的通项公式求和公式的应用,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.22.已知数列{}na 满足:13a =,当2n ≥时,()21111nn a a-=++-,则关于数列{}na 说法正确的是( )A .28a =B .数列{}na 为递增数列C .数列{}na 为周期数列D .22na n n =+解析:ABD【分析】由已知递推式可得数列{}1na +是首项为112a +=,公差为1的等差数列,结合选项可得结果. 【详解】()21111nn a a-=++-得()21111nn a a-+=++,∴1111nn a a-+=++,即数列{}1na +是首项为112a +=,公差为1的等差数列,∴12(1)11na n n +=+-⨯=+,∴22na n n =+,得28a =,由二次函数的性质得数列{}na 为递增数列,所以易知ABD 正确, 故选:ABD. 【点睛】本题主要考查了通过递推式得出数列的通项公式,通过通项公式研究数列的函数性质,属于中档题.23.无穷数列{}na 的前n 项和2nSan bn c =++,其中a ,b ,c 为实数,则( )A .{}na 可能为等差数列 B .{}na 可能为等比数列 C .{}na 中一定存在连续三项构成等差数列 D .{}na 中一定存在连续三项构成等比数列 解析:ABC 【分析】由2nS an bn c =++可求得na 的表达式,利用定义判定得出答案.【详解】当1n =时,11a S abc ==++.当2n ≥时,()()221112nnn a S San bn c a n b n c an a b -=-=++-----=-+.当1n =时,上式=+a b .所以若{}na 是等差数列,则0.ab a bc c +=++∴=所以当0c时,{}na 是等差数列, 00a cb ==⎧⎨≠⎩时是等比数列;当0c ≠时,{}na 从第二项开始是等差数列.故选:A B C 【点睛】本题只要考查等差数列前n 项和nS 与通项公式na 的关系,利用nS 求通项公式,属于基础题.24.等差数列{}na 的前n 项和为n S ,若90a <,100a >,则下列结论正确的是( )A .109S S >B .170S <C .1819S S >D .190S>解析:ABD 【分析】先根据题意可知前9项的和最小,判断出A 正确;根据题意可知数列为递减数列,则190a >,又181919S S a =-,进而可知1516S S >,判断出C 不正确;利用等差中项的性质和求和公式可知()01179179172171722aaa Sa <+⨯⨯===,()1191019101921919022aaa S a +⨯⨯===>,故BD 正确.【详解】根据题意可知数列为递增数列,90a <,100a >,∴前9项的和最小,故A 正确; ()11791791721717022a a a S a +⨯⨯===<,故B 正确;()1191019101921919022aaa S a +⨯⨯===>,故D 正确;190a >,181919S S a ∴=-, 1819S S ∴<,故C 不正确. 故选:ABD . 【点睛】本题考查等差数列的综合应用,考查逻辑思维能力和运算能力,属于常考题.三、等比数列多选题25.题目文件丢失! 26.题目文件丢失!27.在数列{}na 中,如果对任意*n N ∈都有211n n n na a k aa+++-=-(k 为常数),则称{}na 为等差比数列,k 称为公差比.下列说法正确的是( ) A .等差数列一定是等差比数列 B .等差比数列的公差比一定不为0 C .若32n na =-+,则数列{}na是等差比数列D .若等比数列是等差比数列,则其公比等于公差比 解析:BCD 【分析】考虑常数列可以判定A 错误,利用反证法判定B 正确,代入等差比数列公式判定CD 正确. 【详解】对于数列{}na ,考虑121,1,1nn n aaa++===,211n n n na aa a+++--无意义,所以A 选项错误;若等差比数列的公差比为0,212110,0n n n n n na aa a a a+++++---==,则1n n a a +-与题目矛盾,所以B 选项说法正确;若32n n a =-+,2113n n n na aa a+++-=-,数列{}n a 是等差比数列,所以C 选项正确; 若等比数列是等差比数列,则11,1n n q a a q -=≠,()()11211111111111n n nn n n n n n na q q a a a q a q q a a a q a q a q q +++--+---===---,所以D 选项正确. 故选:BCD 【点睛】易错点睛:此题考查等差数列和等比数列相关的新定义问题.解决此类问题应该注意: (1)常数列作为特殊的等差数列公差为0; (2)非零常数列作为特殊等比数列公比为1.28.已知数列{}na 的前n 项和为n S 且满足11130(2),3n n n a S S n a -+=≥=,下列命题中正确的是( )A .1n S ⎧⎫⎨⎬⎩⎭是等差数列B .13n S n= C .13(1)n a n n =--D .{}3nS 是等比数列解析:ABD 【分析】由1(2)n n n a S S n -=-≥代入已知式,可得{}n S 的递推式,变形后可证1n S ⎧⎫⎨⎬⎩⎭是等差数列,从而可求得nS ,利用nS 求出na ,并确定3n S 的表达式,判断D.【详解】因为1(2)n n n a S S n -=-≥,1130n n n n S S S S ---+=,所以1113nn S S--=,所以1n S ⎧⎫⎨⎬⎩⎭是等差数列,A 正确;公差为3,又11113S a ==,所以133(1)3nn n S =+-=,13n S n =.B 正确; 2n ≥时,由1n n n a S S -=-求得13(1)n a n n =-,但13a =不适合此表达式,因此C 错; 由13n S n =得1311333n n n S +==⨯,∴{}3n S 是等比数列,D 正确. 故选:ABD. 【点睛】本题考查等差数列的证明与通项公式,考查等比数列的判断,解题关键由1(2)n n n a S S n -=-≥,化已知等式为{}n S 的递推关系,变形后根据定义证明等差数列.29.已知数列{}na 前n 项和为nS.且1a p =,122(2)nn S Sp n --=≥(p 为非零常数)测下列结论中正确的是( )A .数列{}na 为等比数列 B .1p =时,41516S = C .当12p =时,()*,m n m n a a a m n N +⋅=∈ D .3856a a a a +=+解析:AC 【分析】 由122(2)nn S Sp n --=≥和等比数列的定义,判断出A 正确;利用等比数列的求和公式判断B 错误;利用等比数列的通项公式计算得出C 正确,D 不正确. 【详解】由122(2)n n S S p n --=≥,得22p a =. 3n ≥时,1222n n SSp ---=,相减可得120nn a a--=,又2112a a =,数列{}n a 为首项为p ,公比为12的等比数列,故A 正确; 由A 可得1p =时,44111521812S -==-,故B 错误; 由A 可得mnm na a a+⋅=等价为2121122m n m n p p ++⋅=⋅,可得12p =,故C 正确;38271133||||22128a a p p ⎛⎫+=+=⋅ ⎪⎝⎭,56451112||||22128a a p p ⎛⎫+=+=⋅ ⎪⎝⎭, 则3856a a a a +>+,即D 不正确;故选:AC. 【点睛】本题考查等比数列的通项公式和求和公式,考查数列的递推关系式,考查学生的计算能力,属于中档题.30.设等比数列{}na 的公比为q ,其前n 项和为nS,前n 项积为nT ,并且满足条件11a >,671a a >,67101a a -<-,则下列结论正确的是( ) A .01q << B .8601a a <<C .nS 的最大值为7SD .nT 的最大值为6T解析:ABD 【分析】先分析公比取值范围,即可判断A,再根据等比数列性质判断B,最后根据项的性质判断C,D. 【详解】若0q <,则67670,00a a a a <>∴<与671a a >矛盾;若1q ≥,则11a >∴671,1a a >>∴67101a a ->-与67101a a -<-矛盾; 因此01q <<,所以A 正确;667710101a a a a -<∴>>>-,因此2768(,1)0a a a =∈,即B 正确;因为0na >,所以n S 单调递增,即n S 的最大值不为7S ,C 错误;因为当7n ≥时,(0,1)na ∈,当16n ≤≤时,(1,)na ∈+∞,所以nT 的最大值为6T ,即D正确; 故选:ABD 【点睛】本题考查等比数列相关性质,考查综合分析判断能力,属中档题.31.记单调递增的等比数列{}na 的前n 项和为nS,若2410a a +=,23464a a a =,则( ) A .112n n nSS ++-=B .12n naC .21n nS =-D .121n nS -=-解析:BC 【分析】先求得3a ,然后求得q ,进而求得1a ,由此求得1,,nnn na S SS +-,进而判断出正确选项.【详解】由23464a a a =得3334a =,则34a =.设等比数列{}na 的公比为()0q q ≠,由2410a a +=,得4410q q+=,即22520q q -+=,解得2q 或12q =.又因为数列{}na 单调递增,所以2q,所以112810a a +=,解得11a =.所以12n na,()1122112n nnS ⨯-==--,所以()1121212n n n n n S S ++-=---=.故选:BC 【点睛】本题考查等比数列的通项公式、等比数列的性质及前n 项和,属于中档题.32.已知数列{a n },{b n }均为递增数列,{a n }的前n 项和为S n ,{b n }的前n 项和为T n .且满足a n +a n +1=2n ,b n •b n +1=2n (n ∈N *),则下列说法正确的有( ) A .0<a 1<1 B .1<b 12< C .S 2n <T 2nD .S 2n ≥T 2n解析:ABC 【分析】利用代入法求出前几项的关系即可判断出a 1,b 1的取值范围,分组法求出其前2n 项和的表达式,分析,即可得解.【详解】∵数列{a n }为递增数列;∴a 1<a 2<a 3;∵a n+a n +1=2n ,∴122324a a a a +=⎧⎨+=⎩; ∴12123212244a a aa a a a +⎧⎨+=-⎩>> ∴0<a 1<1;故A 正确.∴S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n ﹣1+a 2n )=2+6+10+…+2(2n ﹣1)=2n 2; ∵数列{b n}为递增数列;∴b 1<b 2<b 3; ∵b n•b n +1=2n∴122324b b b b =⎧⎨=⎩; ∴2132b b b b⎧⎨⎩>>; ∴1<b 12<,故B 正确.∵T 2n =b 1+b 2+…+b 2n=(b 1+b 3+b 5+…+b 2n ﹣1)+(b 2+b 4+…+b 2n )()()()()121212122122nnn b b b b⋅--=+=+-()()122212221n n b b ≥-=-; ∴对于任意的n ∈N*,S 2n <T 2n;故C 正确,D 错误.故选:ABC 【点睛】本题考查了分组法求前n 项和及性质探究,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.33.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}na ,数列(){}nf a 仍是等比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,-∞⋃+∞上的四个函数中,是“保等比数列函数”的为( )A .()2f x x =B .()2x f x =C .()f x x =D .()ln f x x =解析:AC 【分析】直接利用题目中“保等比数列函数”的性质,代入四个选项一一验证即可. 【详解】设等比数列{}na 的公比为q .对于A ,则2221112()()n n n n n nf a a a q f a a a +++⎛⎫=== ⎪⎝⎭ ,故A 是“保等比数列函数”; 对于B ,则111()22()2n n n na a a n a nf a f a ++-+==≠ 常数,故B 不是“保等比数列函数”; 对于C ,则111()()n n n nnnaf a aq f a aa+++=== ,故C 是“保等比数列函数”;对于D ,则11ln ln ln ln ln ()1()ln ln ln ln n n n n nnnnna a q a q q f a f a a a a a++⋅+====+≠ 常数,故D 不是“保等比数列函数”. 故选:AC. 【点睛】本题考查等比数列的定义,考查推理能力,属于基础题.34.已知等比数列{a n }的公比23q =-,等差数列{b n }的首项b 1=12,若a 9>b 9且a 10>b 10,则以下结论正确的有( ) A .a 9•a 10<0 B .a 9>a 10C .b 10>0D .b 9>b 10解析:AD 【分析】设等差数列的公差为d ,运用等差数列和等比数列的通项公式分析A 正确,B 与C 不正确,结合条件判断等差数列为递减数列,即可得到D 正确. 【详解】数列{a n }是公比q 为23-的等比数列,{b n }是首项为12,公差设为d 的等差数列,则8912()3a a =-,91012()3a a =-, ∴a 9•a 1021712()3a =-<0,故A 正确; ∵a 1正负不确定,故B 错误; ∵a 10正负不确定,∴由a 10>b 10,不能求得b 10的符号,故C 错误; 由a 9>b 9且a 10>b 10,则a 1(23-)8>12+8d ,a 1(23-)9>12+9d ,由于910,a a 异号,因此90a <或100a<故 90b <或100b <,且b 1=12可得等差数列{b n }一定是递减数列,即d <0, 即有a 9>b 9>b 10,故D 正确. 故选:AD 【点睛】本题考查了等差等比数列的综合应用,考查了等比数列的通项公式、求和公式和等差数列的单调性,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.35.等差数列{}na 的公差为d ,前n 项和为nS,当首项1a 和d 变化时,3813++a a a 是一个定值,则下列各数也为定值的有( )A .7aB .8aC .15SD .16S解析:BC 【分析】根据等差中项的性质和等差数列的求和公式可得出结果. 【详解】由等差中项的性质可得381383a a a a ++=为定值,则8a 为定值,()11515815152a aS a +==为定值,但()()11616891682a aS a a +==+不是定值.故选:BC. 【点睛】本题考查等差中项的基本性质和等差数列求和公式的应用,考查计算能力,属于基础题.36.对于数列{}na ,若存在正整数()2k k ≥,使得1kk aa-<,1kk a a+<,则称ka 是数列{}na 的“谷值”,k 是数列{}na 的“谷值点”,在数列{}na 中,若98nan n=+-,下面哪些数不能作为数列{}na 的“谷值点”?( )A .3B .2C .7D .5解析:AD。

2023-2024学年高考数学专项复习——压轴题(附答案)

2023-2024学年高考数学专项复习——压轴题(附答案)

决胜3.已知函数,曲线在处的切线方程为.()2e xf x ax =-()y f x =()()1,1f 1y bx =+(1)求的值:,a b (2)求在上的最值;()f x []0,1(3)证明:当时,.0x >()e 1e ln 0x x x x +--≥4.已知函数,.()()ln 1f x x x a x =-++R a ∈(1)若,求函数的单调区间;1a =()f x (2)若关于的不等式在上恒成立,求的取值范围;x ()2f x a≤[)2,+∞a (3)若实数满足且,证明.b 21a b <-+1b >()212ln f x b <-5.椭圆的离心率是,点是椭圆上一点,过点2222:1(0)x y E a b a b +=>>22()2,1M E 的动直线与椭圆相交于两点.()0,1P l ,A B (1)求椭圆的方程;E (2)求面积的最大值;AOB (3)在平面直角坐标系中,是否存在与点不同的定点,使恒成立?存在,xOy P Q QA PAQB PB=求出点的坐标;若不存在,请说明理由.Q 6.已知函数,.()21ln 2f x a x x⎛⎫=-+ ⎪⎝⎭()()()2R g x f x ax a =-∈(1)当时,0a =(i )求曲线在点处的切线方程;()y f x =()()22f ,(ii )求的单调区间及在区间上的最值;()f x 1,e e ⎡⎤⎢⎥⎣⎦(2)若对,恒成立,求a 的取值范围.()1,x ∀∈+∞()0g x <(1)求抛物线的表达式和的值;,t k (2)如图1,连接AC ,AP ,PC ,若△APC 是以(3)如图2,若点P 在直线BC 上方的抛物线上,过点的最大值.12CQ PQ +(1)【基础训练】请分别直接写出抛物线的焦点坐标和准线l 的方程;22y x =(2)【技能训练】如图2所示,已知抛物线上一点P 到准线l 的距离为6,求点P 的坐218y x =标;(3)【能力提升】如图3所示,已知过抛物线的焦点F 的直线依次交抛物线及准()20y ax a =>线l 于点,若求a 的值;、、A B C 24BC BF AF ==,(4)【拓展升华】古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点C 将一条线段分为两段和,使得其中较长一段是全线段与另一AB AC CB AC AB 段的比例中项,即满足:,后人把这个数称为“黄金分割”,把CB 512AC BC AB AC -==512-点C 称为线段的黄金分割点.如图4所示,抛物线的焦点,准线l 与y 轴AB 214y x=(0,1)F 交于点,E 为线段的黄金分割点,点M 为y 轴左侧的抛物线上一点.当(0,1)H -HF 时,求出的面积值.2MH MF=HME 10.已知双曲线的一条渐近线方程的倾斜角为,焦距为4.2222:1(0,0)x y C a b a b -=>>60︒(1)求双曲线的标准方程;C (2)A 为双曲线的右顶点,为双曲线上异于点A 的两点,且.C ,M N C AM AN ⊥①证明:直线过定点;MN ②若在双曲线的同一支上,求的面积的最小值.,M N AMN(1)试用解析几何的方法证明:(2)如果将圆分别变为椭圆、双曲线或抛物线,你能得到类似的结论吗?13.对于数集(为给定的正整数),其中,如果{}121,,,,n X x x x =-2n ≥120n x x x <<<< 对任意,都存在,使得,则称X 具有性质P .,a b X ∈,c d X ∈0ac bd +=(1)若,且集合具有性质P ,求x 的值;102x <<11,,,12x ⎧⎫-⎨⎬⎩⎭(2)若X 具有性质P ,求证:;且若成立,则;1X ∈1n x >11x =(3)若X 具有性质P ,且,求数列的通项公式.2023n x =12,,,n x x x 14.已知,是的导函数,其中.()2e xf x ax =-()f x '()f x R a ∈(1)讨论函数的单调性;()f x '(2)设,与x 轴负半轴的交点为点P ,在点P()()()2e 11x g x f x x ax =+-+-()y g x =()y g x =处的切线方程为.()y h x =①求证:对于任意的实数x ,都有;()()g x h x ≥②若关于x 的方程有两个实数根,且,证明:()()0g x t t =>12,x x 12x x <.()2112e 11e t x x --≤+-15.在平面直角坐标系中,一动圆经过点且与直线相切,设该动圆圆心xOy 1,02A ⎛⎫ ⎪⎝⎭12x =-的轨迹为曲线K ,P 是曲线K 上一点.(1)求曲线K 的方程;(2)过点A 且斜率为k 的直线l 与曲线K 交于B 、C 两点,若且直线OP 与直线交//l OP 1x =于Q 点.求的值;||||AB ACOP OQ ⋅⋅(3)若点D 、E 在y 轴上,的内切圆的方程为,求面积的最小值.PDE △()2211x y -+=PDE △16.已知椭圆C :,四点中恰有三()222210x y a b a b +=>>()()1234331,1,0,1,1,,1,22P P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭点在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点,若直线与直线的斜率的和为,2P A 2P B 1-证明:l 过定点.18.给定正整数k ,m ,其中,如果有限数列同时满足下列两个条件.则称2m k ≤≤{}n a 为数列.记数列的项数的最小值为.{}n a (,)k m -(,)k m -(,)G k m 条件①:的每一项都属于集合;{}n a {}1,2,,k 条件②:从集合中任取m 个不同的数排成一列,得到的数列都是的子列.{}1,2,,k {}n a 注:从中选取第项、第项、…、第项()形成的新数列{}n a 1i 2i 5i 125i i i <<<…称为的一个子列.325,,,i i i a a a ⋯{}n a (1)分别判断下面两个数列,是否为数列.并说明理由!(33)-,数列;1:1,2,3,1,2,3,1,2,3A 数列.2:1,2,3,2,1,3,1A (2)求的值;(),2G k (3)求证.234(,)2k k G k k +-≥答案:1.(1)极大值为,无极小值2e (2)证明见解析【分析】(1)求导,根据导函数的符号结合极值的定义即可得解;(2)构造函数,利用导数求出函数的最小值,再()21()()()2ln 12F x f x g x x x x x x =+=+->证明即可或者转换不等式为,通过构造函数可得证.()min0F x >()112ln 012x x x +->>【详解】(1)的定义域为,,()f x (0,)+∞()2(1ln )f x x '=-+当时,,当时,,10e x <<()0f x '>1e x >()0f x '<所以函数在上单调递增,在上单调递减,()f x 10,e ⎛⎫ ⎪⎝⎭1,e ⎛⎫+∞ ⎪⎝⎭故在处取得极大值,()f x 1e x =12e e f ⎛⎫= ⎪⎝⎭所以的极大值为,无极小值;()f x 2e (2)设,()21()()()2ln 12F x f x g x x x x x x =+=+->解法一:则,()2ln 1F x x x '=--令,,()()2ln 11h x x x x =-->22()1x h x x x -'=-=当时,,单调递减,当时,,单调递增,12x <<()0h x '<()h x 2x >()0h x '>()h x 又,,,(2)1ln 40h =-<(1)0h =(4)32ln 40h =->所以存在,使得,即.0(2,4)x ∈0()0h x =002ln 10x x --=当时,,即,单调递减,01x x <<()0h x <()0F x '<()F x 当时,,即,单调递增,0x x >()0h x >()0F x '>()F x 所以当时,在处取得极小值,即为最小值,1x >()F x 0x x =故,22000000(11()()12ln )222F x F x x x x x x ≥=+-=-+设,因为,2000122()p x x x =-+0(2,4)x ∈由二次函数的性质得函数在上单调递减,2000122()p x x x =-+(2,4)故,0()(4)0p x p >=所以当时,,即.1x >()0F x >()()0f x g x +>解法二:要证,即证,()0F x >()1()12ln 012p x x x x =+->>因为,所以当时,,单调递减,()124()122x p x x x x -'=-=>()1,4x ∈()0p x '<()p x 当时,,单调递增,()4,x ∞∈+()0p x '>()p x 所以,所以,即.()()4212ln 434ln 20p x p ≥=+-=->()0F x >()()0f x g x +>方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.2.(1)0(2)证明详见解析(3)2a ≤【分析】(1)利用导数求得的最小值.()g x (2)根据(1)的结论得到,利用放缩法以及裂项求和法证得不等式成立.2211ln 1n n ⎛⎫+≤ ⎪⎝⎭(3)由不等式分离参数,利用构造函数法,结合导数求得的取ln (2)10xx x x a x -+--≥a a 值范围.【详解】(1)依题意,,()21ln (,0)2f x x x x t t x =-+∈>R 所以,()()()()ln 1ln 10g x f x x x x x x '==-+=-->,所以在区间上单调递减;()111x g x x x -'=-=()g x ()0,1()()0,g x g x '<在区间上单调递增,()1,+∞()()0,g x g x '>所以当时取得最小值为.1x =()g x ()11ln110g =--=(2)要证明:对任意正整数,都有,(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 即证明,22221111ln 1111ln e234n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 即证明,222111ln 1ln 1ln 1123n ⎛⎫⎛⎫⎛⎫++++++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 由(1)得,即()()()10f xg x g '=≥=ln 10,ln 1x x x x --≥≤-令,所以, *211,2,N x n n n =+≥∈222111ln 111n n n ⎛⎫+≤+-= ⎪⎝⎭所以222222111111ln 1ln 1ln 12323n n ⎛⎫⎛⎫⎛⎫++++++≤+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,()111111111122312231n n n n <+++=-+-++-⨯⨯-- 111n=-<所以对任意正整数,都有.(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (3)若不等式恒成立,此时,ln (2)10xx x x a x -+--≥0x >则恒成立,ln 21x x x x x a x -+-≤令,()ln 21xx x x x h x x -+-=令,()()()e 10,e 10x x u x x x u x '=--≥=-≥所以在区间上单调递增,()u x[)0,∞+所以,当时等号成立,()0e 010,e 10,e 1x x u x x x ≥--=--≥≥+0x =所以,()ln e ln 21ln 1ln 212x x x x x x x x x x h x x x -+-+-+-=≥=当时等号成立,所以.ln 0,1x x x ==2a ≤利用导数求函数的最值的步骤:求导:对函数进行求导,得到它的导函数.导函数()f x ()f x '表示了原函数在不同点处的斜率或变化率.找出导数为零的点:解方程,找到使得导()0f x '=数为零的点,这些点被称为临界点,可能是函数的极值点(包括最大值和最小值),检查每个临界点以及区间的端点,并确认它们是否对应于函数的最值.3.(1),1a =e 2b =-(2);()max e 1f x =-()min 1f x =(3)证明见解析【分析】(1)利用切点和斜率列方程组,由此求得.,a b (2)利用多次求导的方法求得在区间上的单调性,由此求得在上的最值.()f x []0,1()f x []0,1(3)先证明时,,再结合(2)转化为,从0x >()()e 21f x x ≥-+()21e ln e x x x x x+--≥+而证得不等式成立.【详解】(1),()e 2x f x ax'=-∴,解得:,;()()1e 21e 1f a b f a b ⎧=-=⎪⎨=-=+'⎪⎩1a =e 2b =-(2)由(1)得:,()2e xf x x =-,令,则,()e 2x f x x '=-()e 2x h x x=-()e 2x h x '=-是增函数,令解得.()h x ()0h x '=ln 2x =∴,也即在上单调递减,()h x ()f x '()0,ln2()()0,h x h x '<在上单调递增,()ln2,+∞()()0,h x h x '>∴,∴在递增,()()ln 2ln222ln20h f ==->'()f x []0,1∴;;()()max 1e 1f x f ==-()()min 01f x f ==(3)∵,由(2)得过,()01f =()f x ()1,e 1-且在处的切线方程是,()y f x =1x =()e 21y x =-+故可猜测且时,的图象恒在切线的上方,0x >1x ≠()f x ()e 21y x =-+下面证明时,,设,,0x >()()e 21f x x ≥-+()()()e 21g x f x x =---()0x >∴,∴令,()()e 2e 2x g x x =---'()()()e 2e 2x x x g m x '--==-,()e 2x m x '=-由(2)得:在递减,在递增,()g x '()0,ln2()ln2,+∞∵,,,∴,()03e 0g '=->()10g '=0ln21<<()ln20g '<∴存在,使得,()00,1x ∈()0g x '=∴时,,时,,()()00,1,x x ∈⋃+∞()0g x '>()0,l x x ∈()0g x '<故在递增,在递减,在递增.()g x ()00,x ()0,1x ()1,+∞又,∴当且仅当时取“”,()()010g g ==()0g x ≥1x ==()()2e e 210x g x x x =----≥故,,由(2)得:,故,()e e 21x x xx+--≥0x >e 1x x ≥+()ln 1x x ≥+∴,当且仅当时取“=”,∴,1ln x x -≥1x =()e e 21ln 1x x x x x+--≥≥+即,∴,()21ln 1e e x x x x+--≥+()21e ln e x x x x x+--≥+即成立,当且仅当时“=”成立.()1ln 10e e x x x x +---≥1x =求解切线的有关的问题,关键点就是把握住切点和斜率.利用导数研究函数的单调性,如果一次求导无法求得函数的单调性时,可以考虑利用多次求导来进行求解.利用导数证明不等式恒成立,如果无法一步到位的证明,可以先证明一个中间不等式,然后再证得原不等式成立.4.(1)单调增区间为,单调减区间为;()0,1()1,+∞(2)(],2ln 2-∞(3)证明见解析【分析】(1)求导,再根据导函数的符号即可得解;(2)分离参数可得,构造函数,利用导数求出函数的最小ln 1x x a x ≤-ln (),21x xg x x x =≥-()g x 值即可得解;(3)由,得,则,要证21a b <-+21a b -<-2112()(e )e e 1a a b f x f a b ---≤=+<-+,即证,即证,构造函数()212ln f x b<-222e112ln bb b --+<-22212ln 0eb b b +-<,证明即可.()()()12ln e x h x x x x =>-()1h x <-【详解】(1)当时,,1a =()ln 1,0f x x x x x =-++>,由,得,由,得,()ln f x x '=-()0f x '>01x <<()0f x '<1x >故的单调增区间为,单调减区间为;()f x ()0,1()1,+∞(2),()ln 2,1x xf x a a x ≤∴≤- 令,ln (),21x x g x x x =≥-则,21ln ()(1)x xg x x --'=-令,则,()ln 1t x x x =-+11()1xt x x x -'=-=由,得,由,得,()0t x '>01x <<()0t x '<1x >故在递增,在递减,,()t x ()0,1()1,+∞max ()(1)0t x t ==,所以,()0t x ∴≤ln 1≤-x x 在上单调递增,,()0,()g x g x '≥∴[)2,+∞()min ()2g x g ∴=,(2)2ln 2a g ∴≤=的取值范围;a ∴(],2ln 2-∞(3),221,1b a b a <-+∴-<- 又,在上递增,11()(e )e a a f x f a --≤=+1e a y a -=+ R a ∈所以,2112()(e )e e 1a a b f x f a b ---≤=+<-+下面证明:,222e 112ln b b b --+<-即证,22212ln 0ebb b +-<令,则,21x b =>12ln 0e x x x +-<即,(2ln )e 1xx x -⋅<-令,则,()()()12ln e xh x x x x =>-()22ln 1e xh x x x x '⎛⎫=-+-⋅ ⎪⎝⎭令,则,()2()2ln 11x x x x x ϕ=-+->()()2221122()101x x x x x x ϕ---=--=<>∴函数在上单调递减,()x ϕ()1,+∞,()(1)0x ϕϕ∴<=在递减,()()0,h x h x '∴<(1,)+∞,()()1e 1h x h ∴<=-<-所以.()212ln f x b <-方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.5.(1)22142x y +=(2)2(3)存在,.()0,2Q 【分析】(1)由离心率及过点列方程组求解.()2,1M,a b (2)设直线为与椭圆方程联立,将表达为的函数,由基本不l 1y kx =+1212AOB S x x =⋅- k 等式求最大值即可.(3)先讨论直线水平与竖直情况,求出,设点关于轴的对称点,证得()0,2Q B y B '三点共线得到成立.,,Q A B 'QA PAQB PB=【详解】(1)根据题意,得,解得,椭圆C 的方程为.2222222211c a a b c a b ⎧=⎪⎪⎪=+⎨⎪⎪+=⎪⎩222422a b c ⎧=⎪=⎨⎪=⎩22142x y +=(2)依题意,设,直线的斜率显然存在,()()1122,,,A x y B x y l 故设直线为,联立,消去,得,l 1y kx =+221142y kx x y =+⎧⎪⎨+=⎪⎩y ()2212420k x kx ++-=因为直线恒过椭圆内定点,故恒成立,,l ()0,1P 0∆>12122242,1212k x x x x k k +=-=-++故,()2221212221224212111214414222122AOBk S x x x x x x k k k k ⋅+⎛⎫⎛⎫=⋅=⨯-=⨯-⨯= ⎪ ⎪+⎝-+-⎝++⎭⎭- 令,所以,当且仅当,即时取得214,1t k t =+≥22222211AOB t S t t t=×=×£++1t =0k =等号,综上可知:面积的最大值为.AOB 2(3)当平行于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,C D Q 则有,即,所以点在轴上,可设的坐标为;||||1||||QC PC QD PD ==QC QD =Q y Q ()00,y 当垂直于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,M N Q 则有,即,解得或,||||||||QM PM QN PN =00221212y y --=++01y =02y =所以若存在不同于点的定点满足条件,则点的坐标为;P Q Q ()0,2当不平行于轴且不垂直于轴时,设直线方程为,l x x l 1y kx =+由(2)知,12122242,1212k x x x x k k --+==++又因为点关于轴的对称点的坐标为,B y B '()22,x y -又,,11111211QA y kx k k x x x --===-22222211QB y kx k k x x x '--===-+--.方法点睛:直线与椭圆0Ax By C ++=时,取得最大值2222220a A b B C +-=MON S 6.(1)(i );(322ln 220x y +--=(2)11,22⎡⎤-⎢⎥⎣⎦故曲线在点处的切线方程为,()y f x =()()22f ,()()32ln 222y x --+=--即;322ln 220x y +--=(ii ),,()21ln 2f x x x =-+()0,x ∈+∞,()211x f x x x x -'=-+=令,解得,令,解得,()0f x ¢>()0,1x ∈()0f x '<()1,x ∈+∞当时,,1,e e x ⎡⎤∈⎢⎥⎣⎦()()max 112f x f ==-又,,221111ln 1e 2e e 2e f ⎛⎫=-+=-- ⎪⎝⎭()2211e e ln e e 122f =-+=-+其中,()222211111e 1e 1e 20e 2e 222ef f ⎛⎫⎛⎫-=----+=--> ⎪ ⎪⎝⎭⎝⎭故,()()2min 1e e 12f x f ==-+故的单调递增区间为,单调递减区间为;()f x ()0,1()1,+∞在区间上的最大值为,最小值为;()f x 1,e e ⎡⎤⎢⎥⎣⎦12-21e 12-+(2),()21ln 22xg x a x x a ⎭-+⎛=⎪-⎫ ⎝对,恒成立,()1,x ∀∈+∞21ln 202a x x ax ⎛⎫-+-< ⎪⎝⎭变形为对恒成立,ln 122x a xa x<--⎛⎫ ⎪⎝⎭()1,x ∀∈+∞令,则,()(),1,ln x h x x x ∈=+∞()21ln xh x x -'=当时,,单调递增,()1,e x ∈()0h x '>()ln xh x x =当时,,单调递减,()e,+x ∈∞()0h x '<()ln xh x x =其中,,当时,恒成立,()10h =()ln e 1e e e h ==1x >()ln 0x h x x =>故画出的图象如下:()ln x h x x =其中恒过点122y xa a ⎛⎫ ⎪⎝=⎭--(2,1A 又,故在()210111h -'==()ln x h x x =又在上,()2,1A 1y x =-()对于2111644y x x =-+-∴点,即()0,6C -6OC =∵2114,14P m m m ⎛-+- ⎝∴点,3,64N m m ⎛⎫- ⎪⎝⎭∴,22111316624444PN m m m m m⎛⎫=-+---=-+ ⎪⎝⎭∵轴,PN x ⊥∴,//PN OC ∴,PNQ OCB ∠=∠∴,Rt Rt PQN BOC ∴,PN NQ PQ BC OC OB ==∵,8,6,10OB OC BC ===∴,34,55QN PN PQ PN==∵轴,NE y ⊥∴轴,//NE x ∴,CNE CBO ∴,5544CN EN m ==∴,2215111316922444216CQ PQ m m m m ⎛⎫+=-+=--+⎪⎝⎭当时,取得最大值.132m =12CQ PQ+16916关键点点睛:熟练的掌握三角形相似的判断及性质是解决本题的关键.8.(1)详见解析;(2)①具有性质;理由见解析;②P 1346【分析】(1)当时,先求得集合,由题中所给新定义直接判断即可;10n =A (2)当时,先求得集合, 1010n =A ①根据,任取,其中,可得,{}2021|T x x S =-∈02021t x T =-∈0x S ∈0120212020x ≤-≤利用性质的定义加以验证,即可说明集合具有性质;P T P ②设集合有个元素,由(1)可知,任给,,则与中必有个S k x S ∈12020x ≤≤x 2021x -1不超过,从而得到集合与中必有一个集合中至少存在一半元素不超过,然后利1010S T 1010用性质的定义列不等式,由此求得的最大值.P k【详解】(1)当时,,10n ={}1,2,,19,20A = 不具有性质,{}{}|910,11,12,,19,20B x A x =∈>= P 因为对任意不大于的正整数,10m 都可以找到该集合中的两个元素与,使得成立,110b =210b m =+12||b b m -=集合具有性质,{}*|31,N C x A x k k =∈=-∈P 因为可取,对于该集合中任一元素,110m =<,(),都有.112231,31c k c k =-=-*12,N k k ∈121231c c k k -=-≠(2)当时,集合,1010n ={}()*1,2,3,,2019,2020,1010N A m m =≤∈ ①若集合具有性质,那么集合一定具有性质.S P {}2021|T x x S =-∈P 首先因为,任取,其中.{}2021|T x x S =-∈02021t x T =-∈0x S ∈因为,所以.S A ⊆{}01,2,3,,2020x ∈ 从而,即,所以.0120212020x ≤-≤t A ∈T A ⊆由具有性质,可知存在不大于的正整数,S P 1010m 使得对中的任意一对元素,都有.s 12,s s 12s s m -≠对于上述正整数,从集合中任取一对元素,m {}2021|T x x S =-∈112021t x -=,其中,则有.222021t x =-12,x x S ∈1212t t s s m --≠=所以,集合具有性质P ;{}2021|T x x S =-∈②设集合有个元素,由(1)可知,若集合具有性质,S k S P 那么集合一定具有性质.{}2021|T x x S =-∈P 任给,,则与中必有一个不超过.x S ∈12020x ≤≤x 2021x -1010所以集合与中必有一个集合中至少存在一半元素不超过.S T 1010不妨设中有个元素不超过.S 2k t t ⎛⎫≥ ⎪⎝⎭12,,,t b b b 1010由集合具有性质,可知存在正整数.S P 1010m ≤使得对中任意两个元素,都有.S 12,s s 12s s m -≠所以一定有.12,,,t b m b m b m S +++∉ 又,故.100010002000i b m +≤+=121,,,b m b m b m A +++∈ 即集合中至少有个元素不在子集中,A t S 因此,所以,得.20202k k k t +≤+≤20202k k +≤1346k ≤当时,取,{}1,2,,672,673,,1347,,2019,2020S = 673m =则易知对集合中的任意两个元素,都有,即集合具有性质.S 12,y y 12673y y -≠S P 而此时集合S 中有个元素,因此,集合元素个数的最大值为.1346S 1346解新定义题型的步骤:(1)理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论.(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的解题方法.归纳“举例”提供的分类情况.(3)类比新定义中的概念、原理、方法,解决题中需要解决的问题.9.(1),10,8⎛⎫ ⎪⎝⎭18y =-(2)或()42,4()42,4-(3)14a =(4)或51-35-【分析】(1)根据焦点和准线方程的定义求解即可;(2)先求出点P 的纵坐标为4,然后代入到抛物线解析式中求解即可;(3)如图所示,过点B 作轴于D ,过点A 作轴于E ,证明,推BD y ⊥AE y ⊥FDB FHC ∽出,则,点B 的纵坐标为,从而求出,证明16FD a =112OD OF DF a =-=112a 36BD a =,即可求出点A 的坐标为,再把点A 的坐标代入抛物线解析式AEF BDF ∽123,24a ⎛⎫ ⎪⎝+⎭-中求解即可;(4)如图,当E 为靠近点F 的黄金分割点的时候,过点M 作于N ,则,MN l ⊥MN MF=先证明是等腰直角三角形,得到,设点M 的坐标为,则MNH △NH MN=21,4m m ⎛⎫⎪⎝⎭过点B 作轴于D ,过点BD y ⊥由题意得点F 的坐标为F ⎛ ⎝1FH =当E 为靠近点F 的黄金分割点的时候,过点∵在中,Rt MNH △sin MHN ∠∴,∴是等腰直角三角形,45MHN ︒=MNH △双曲线方程联立,利用韦达定理及题目条件可得,后由题意可得AM AN ⋅= ()()222131t t m -+=-所过定点坐标;②结合①及图形可得都在左支上,则可得,后由图象可得,M N 213m <,后通过令,结合单调性229113m S m +=-223113m λλ⎛⎫+=≤< ⎪⎝⎭()423313f x x x x ⎛⎫=-≤< ⎪⎝⎭可得答案.【详解】(1)设双曲线的焦距为,C 2c 由题意有解得.2223,24,,ba c c ab ⎧=⎪⎪=⎨⎪=+⎪⎩1,3,2a b c ===故双曲线的标准方程为;C 2213y x -=(2)①证明:设直线的方程为,点的坐标分别为,MN my x t =+,M N ()()1122,,,x y x y 由(1)可知点A 的坐标为,()1,0联立方程消去后整理为,2213y x my x t ⎧-=⎪⎨⎪=+⎩x ()222316330m y mty t --+-=可得,2121222633,3131mt t y y y y m m -+==--,()212122262223131m t tx x m y y t t m m +=+-=-=--,()()()()222222222121212122223363313131m t m t m t x x my t my t m y y mt y y t t m m m -+=--=-++=-+=----由,()()11111,,1,AM x y AN x y =-=-有()()()1212121212111AM AN x x y y x x x x y y ⋅=--+=-+++,()()()()22222222222222222132331313131313131t t t t t t m t t t m m m m m m -----++-=--++===------由,可得,有或,AM AN ⊥0AM AN ⋅=1t =-2t =当时,直线的方程为,过点,不合题意,舍去;1t =-MN 1my x =-()1,0当时,直线的方程为,过点,符合题意,2t =MN 2my x =+()2,0-②由①,设所过定点为121224,31x x x x m +==-若在双曲线的同一支上,可知,M N 有12240,31x x x m +=<-关键点睛:求直线所过定点常采取先猜后证或类似于本题处理方式,设出直线方程,通过题一方面:由以上分析可知,设椭圆方程为一方面:同理设双曲线方程为()22221y m x a b +-=,()2222221b x a k x m a b -+=化简并整理得()(2222222112ba k x a mk x a m ---+一方面:同理设抛物线方程为(22x p y =,()212x p k x n =+化简并整理得,由韦达定理可得12220pk x x pn --=2,2x x pk x x pn +=⋅=-(2)构造,故转化为等价于“对任()()()()()13131931x x xx f x k k g x f x +--==+++()()()123g x g x g x +>意,,恒成立”,换元后得到(),分,和1x 2x 3R x ∈()()11k g x q t t -==+3t ≥1k >1k =三种情况,求出实数k 的取值范围.1k <【详解】(1)由条件①知,当时,有,即在R 上单调递增.12x x <()()12f x f x <()f x 再结合条件②,可知存在唯一的,使得,从而有.0R x ∈()013f x =()093x x f x x --=又上式对成立,所以,R x ∀∈()00093x x f x x --=所以,即.0001393x x x --=0009313x x x ++=设,因为,所以单调递增.()93x x x xϕ=++()9ln 93ln 310x x x ϕ'=++>()x ϕ又,所以.()113ϕ=01x =所以;()931x x f x =++(2)构造函数,()()()()()13131931x x xx f x k k g x f x +--==+++由题意“对任意的,,,1x 2x 3R x ∈均存在以,,为三边长的三角形”()()()11113x f x k f x +-()()()22213x f x k f x +-()()()33313x f x k f x +-等价于“对任意,,恒成立”.()()()123g x g x g x +>1x 2x 3R x ∈又,令,()111313x x k g x -=+++1131231333x x x x t ⋅=++≥+=当且仅当时,即时取等号,91x=0x =则(),()()11k g x q t t -==+3t ≥当时,,因为且,1k >()21,3k g x +⎛⎤∈ ⎥⎝⎦()()122423k g x g x +<+≤()3213k g x +<≤所以,解得,223k +≤4k ≤即;14k <≤当时,,满足条件;1k =()()()1231g x g x g x ===当时,,因为且,1k <()2,13k g x +⎡⎫∈⎪⎢⎣⎭()()122423k g x g x ++<≤()3213k g x +<≤所以,即.2413k +≤112k -≤<综上,实数k 的取值范围是.1,42⎡⎤-⎢⎥⎣⎦复合函数零点个数问题处理思路:①利用换元思想,设出内层函数;②分别作出内层函数与外层函数的图象,分别探讨内外函数的零点个数或范围;③内外层函数相结合确定函数交点个数,即可得到复合函数在不同范围下的零点个数.13.(1)14x =(2)证明过程见解析(3),()112023k n k x --=1k n≤≤【分析】(1)由题意转化为对于,都存在,使得,其中(),m a b =(),n c d =0m n ⋅= ,选取,,通过分析求出;,,,a b c d X ∈()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==- 14x =(2)取,,推理出中有1个为,则另一个为1,即,()()11,,m a b x x == (),n c d =,c d 1-1X ∈再假设,其中,则,推导出矛盾,得到;1k x =1k n <<101n x x <<<11x =(3)由(2)可得,设,,则有,记11x =()11,m s t =()22,n s t =1212s t t s =-,问题转化为X 具有性质P ,当且仅当集合关于原点对称,得到,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B ,共个数,由对称性可知也有个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -()0,B +∞ ()1n -结合三角形数阵得到,得到数列为首项为1的等比123212321n n n n n n x x x x x x x x x x -----===== 12,,,n x x x 数列,设出公比为,结合求出公比,求出通项公式.q 2023n x =【详解】(1)对任意,都存在,使得,,a b X ∈,c d X ∈0ac bd +=即对于,都存在,使得,其中,(),m a b =(),n c d =0m n ⋅= ,,,a b c d X ∈因为集合具有性质P ,11,,,12x ⎧⎫-⎨⎬⎩⎭选取,,()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==-则有,12x d -+=假设,则有,解得,这与矛盾,d x =102x x -+=0x =102x <<假设,则有,解得,这与矛盾,1d =-12x --=12x =-102x <<假设,则有,解得,这与矛盾,1d =12x -+=12x =102x <<假设,则有,解得,满足,12d =14x -+=14x =102x <<故;14x =(2)取,,()()11,,m a b x x == (),n c d =则,()10c d x +=因为,所以,即异号,120n x x x <<<< 0c d +=,c d 显然中有1个为,则另一个为1,即,,c d 1-1X ∈假设,其中,则,1k x =1k n <<101n x x <<<选取,,则有,()()1,,n m a b x x ==(),n s t =10n sx tx +=则异号,从而之中恰有一个为,,s t ,s t 1-若,则,矛盾,1s =-11n x tx t x =>≥若,则,矛盾,1t =-1n n x sx s x =<≤故假设不成立,所以;11x =(3)若X 具有性质P ,且,20231n x =>由(2)可得,11x =设,,则有,()11,m s t =()22,n s t =1212s t t s =-记,则X 具有性质P ,当且仅当集合关于原点对称,,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B 注意到是集合中唯一的负数,1-X 故,共个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -由对称性可知也有个数,()0,B +∞ ()1n -由于,已经有个数,123421n n n n n nn n n n x x x x x x x x x x x x ----<<<<<< ()1n -对于以下三角形数阵:123421n n n n n n n n n n x x x x x xx x x x x x ----<<<<<< 1111123421n n n n n n n n x x x x xx x x x x --------<<<<< ……3321x x x x <21x x 注意到,123211111n n n x x x x x x x x x x -->>>>> 所以有,123212321n n n n n n x x x x x x x x x x -----===== 从而数列为首项为1的等比数列,设公比为,12,,,n x x x q 由于,故,解得,2023n x =112023n nx q x -==()112023n q -=故数列的通项公式为,.12,,,n x x x ()112023k n k x --=1k n ≤≤集合新定义问题,命题新颖,且存在知识点交叉,常常会和函数或数列相结合,很好的考虑了知识迁移,综合运用能力,对于此类问题,一定要解读出题干中的信息,正确理解问题的本质,转化为熟悉的问题来进行解决,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.14.(1)答案见解析(2)①证明见解析;②证明见解析【分析】(1)求出的导数,结合解不等式可得答案;()e 2x f x ax'=-(2)①,利用导数的几何意义求得的表达式,由此构造函数,()y h x =()()()F x g x h x =-利用导数判断其单调性,求其最小值即可证明结论;②设的根为,求得其表达式,()h x t=1x '并利用函数单调性推出,设曲线在点处的切线方程为,设11x x '≤()y g x =()0,0()y t x =的根为,推出,从而,即可证明结论.()t x t=2x '22x x '≥2121x x x x ''-≤-【详解】(1)由题意得,令,则,()e 2x f x ax'=-()e 2x g x ax=-()e 2x g x a'=-当时,,函数在上单调递增;0a ≤()0g x '>()f x 'R 当时,,得,,得,0a >()0g x '>ln 2x a >()0g x '<ln 2x a <所以函数在上单调递减,在上单调递增.()f x '(),ln 2a -∞()ln 2,a +∞(2)①证明:由(1)可知,令,有或,()()()1e 1x g x x =+-()0g x ==1x -0x =故曲线与x 轴负半轴的唯一交点P 为.()y g x =()1,0-曲线在点处的切线方程为,()1,0P -()y h x =则,令,则,()()()11h x g x '=-+()()()F x g x h x =-()()()()11F x g x g x '=--+所以,.()()()()11e 2e x F x g x g x '''=-=+-()10F '-=当时,若,,1x <-(],2x ∈-∞-()0F x '<若,令,则,()2,1x --()1()e 2e x m x x =+-()()e 30xm x x '=+>故在时单调递增,.()F x '()2,1x ∈--()()10F x F ''<-=故,在上单调递减,()0F x '<()F x (),1-∞-当时,由知在时单调递增,1x >-()()e 30x m x x '=+>()F x '()1,x ∈-+∞,在上单调递增,()()10F x F ''>-=()F x ()1,-+∞设曲线在点处的切线方程为()y g x =()0,0令()()()()(1e x T x g x t x x =-=+当时,2x ≤-()()2e x T x x =+-'()()2e xn x x =+-设,∴()()1122,,,B x y C x y 1x 又1211,22AB x AC x =+=+依题意,即,则,0bc <02x >()()220220004482x y c x x b =+---因为,所以,2002y x =0022x b c x -=-所以,()()00000242248122424S b c x x x x x -⋅=-++≥-⋅+=-=-当且仅当,即时上式取等号,00422x x -=-04x =所以面积的最小值为8.PDE △方法点睛:圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.16.(1)2214x y +=(2)证明见解析(3)存在,7,,777⎛⎫⎛⎫-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 【分析】(1)根据椭圆的对称性,得到三点在椭圆C 上.把的坐标代入椭圆234,,P P P 23,P P C ,求出,即可求出椭圆C 的方程;22,a b (2)当斜率不存在时,不满足;当斜率存在时,设,与椭圆方程联立,利():1l y kx t t =+≠用判别式、根与系数的关系,结合已知条件得到,能证明直线l 过定点;21t k =--()2,1-(3)利用点差法求出直线PQ 的斜率,从而可得直线PQ 的方程,与抛物线方程联14PQ k t =立,由,及点G 在椭圆内部,可求得的取值范围,设直线TD 的方程为,0∆>2t 1x my =+与抛物线方程联立,由根与系数的关系及,可求得m 的取值范围,进而可求得直线11DA TB k k =的斜率k 的取值范围.2l【详解】(1)根据椭圆的对称性,两点必在椭圆C 上,34331,,1,22P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭又的横坐标为1,4P ∴椭圆必不过,()11,1P ∴三点在椭圆C 上.()234330,1,1,,1,22P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭把代入椭圆C ,()3231,20,1,P P ⎛⎫- ⎪ ⎪⎝⎭得,解得,222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩2241a b ⎧=⎨=⎩∴椭圆C 的方程为.2214x y +=(2)证明:①当斜率不存在时,设,,:l x m =()(),,,A A A m y B m y -∵直线与直线的斜率的和为,2P A 2P B 1-∴,221121A A P A P B y y k k m m m ----+=+==-解得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设,,,:l y kx t =+1t ≠()()1122,,,A x y B x y 联立,消去y 整理得,22440y kx tx y =+⎧⎨+-=⎩()222148440k x ktx t +++-=则,,122814kt x x k -+=+21224414t x x k -=+则()()()()222112************111111P A P B x y x y x kx t x kx t y y k k x x x x x x -+-+-++---+=+==,()()()()()()12121222222448218114141144411142t k k kx x t tk t k t k k t t x t x x x +-+=--⋅+-⋅-++===--+-+又,∴,此时,1t ≠21t k =--()()222222644144464161664k t k t k t k ∆=-+-=-+=-故存在k ,使得成立,0∆>∴直线l 的方程为,即21y kx k =--()12y k x +=-∴l 过定点.()2,1-(3)∵点P ,Q 在椭圆上,所以,,2214P P x y +=2214Q Q x y +=两式相减可得,()()()()04PQ P Q P Q P Q y xy x x x y y +-++-=又是线段PQ 的中点,()1,G t -∴,2,2P Q P Q x x x x t+=-=∴直线PQ 的斜率,()144P Q P QP Q P QPQ x x k ty y x y y x +==-=--+∴直线PQ 的方程为,与抛物线方程联立消去x 可得,()114y x t t =++()22164410y ty t -++=由题可知,∴,()2161210t ∆=->2112t >又G 在椭圆内部,可知,∴,故,2114t +<234t <213124t <<设,,由图可知,,221212,,,44y y A y B y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭223434,,,44y y T y D y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭2134,y y y y >>∴,()2121216,441y y t y y t +==+当直线TD 的斜率为0时,此时直线TD 与抛物线只有1个交点,不合要求,舍去,设直线TD 的方程为,与抛物线方程联立,消去x 可得,()10x my m =+≠2440y my --=∴,34344,4y y m y y +==-由,可知,即,11//ATB D 11DA TB k k =3142222234214444y y y y y y y y --=--∴,即,1342y y y y +=+1243y y y y -=-∴,()()221212343444y y y y y y y y +-=+-∵,()()()()()222212124161641161210,128y y y y t t t +-=-+=-∈∴,解得,即,()()223434416160,128y y y y m +-=+∈27m <()7,7m ∈-∴直线TD 即的斜率.2l 771,77,k m ⎛⎫⎛⎫=∈-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 思路点睛:处理定点问题的思路:(1)确定题目中的核心变量(此处设为),k (2)利用条件找到与过定点的曲线的联系,得到有关与的等式,k (),0F x y =k ,x y (3)所谓定点,是指存在一个特殊的点,使得无论的值如何变化,等式恒成立,()00,x y k 此时要将关于与的等式进行变形,直至找到,k ,x y ()00,x y ①若等式的形式为整式,则考虑将含的式子归为一组,变形为“”的形式,让括号中式k ()k ⋅子等于0,求出定点;②若等式的形式是分式,一方面可考虑让分子等于0,一方面考虑分子和分母为倍数关系,可消去变为常数.k 17.(1)1y =-(2)2ln23-+【分析】(1)由题意,将代入函数的解析式中,对函数进行求导,得到1m =()f x ()f x 和,代入切线方程中即可求解;()1f '()1f (2)得到函数的解析式,对进行求导,利用根的判别式以及韦达定理对()g x ()g x 进行化简,利用换元法,令,,可得,12122()()y x x b x x =--+12x t x =01t <<2(1)ln 1t y t t -=-+根据,求出的范围,构造函数,对进行求导,利用导数得到322m ≥t 2(1)()ln 1t h t tt -=-+()h t 的单调性和最值,进而即可求解.()h t 【详解】(1)已知(为常数),函数定义域为,()ln f x x mx =-m (0,)+∞当时,函数,1m =()ln f x x x =-可得,此时,又,11()1x f x x x -'=-=()=01f '()11=f -所以曲线在点处的切线方程为,即.()y f x =()()1,1f (1)0(1)y x --=⨯-1y =-(2)因为,函数定义域为,22()2()2ln 2g x f x x x mx x =+=-+(0,)+∞可得,222(1)()22x mx g x m x x x -+=-+='此时的两根,即为方程的两根,()0g x '=1x 2x 210x mx -+=因为,所以,由韦达定理得,,322m ≥240m ∆=->12x x m +=121=x x 又,所以1212lnx x b x x =-121212121212ln 22()()()()xx y x x b x x x x x x x x =--=--++-,11211211222212()ln 2ln 1x x x x x x x x x x x x --=-=⨯-++令,,所以,12x t x =01t <<2(1)ln 1t y t t -=-+因为,整理得,2212()x x m +=22212122x x x x m ++=因为,则,121=x x 2221212122x x x x m x x ++=等式两边同时除以,得,12x x 212212=x x m x x ++可得,因为,212t m t ++=322m ≥所以,,152t t +≥()()2252=2210t t x x -+--≥解得 或,则,12t ≤2t ≥102t <≤不妨设,函数定义域为,2(1)()ln 1t h t t t -=-+10,2⎛⎤⎥⎝⎦可得,22(1)()0(1)t h t t t -'=-<+所以函数在定义域上单调递减,()h t 此时,min 12()()ln223h t h ==-+故的最小值为.12122()()y x x b x x =--+2ln23-+利用导数求解在曲线上某点处的切线方程,关键点有两点,第一是切线的斜率,第二是切点。

2023年高考数学复习压轴题专练(选择+填空)专题02 函数的奇偶性与单调性

2023年高考数学复习压轴题专练(选择+填空)专题02 函数的奇偶性与单调性

专题02 函数的奇偶性与单调性【方法点拨】1. 若函数f (x )为偶函数,则f (x )=f (|x |),其作用是将“变量化正”,从而避免分类讨论.2. 以具体的函数为依托,而将奇偶性、单调性内隐于函数解析式去求解参数的取值范围,是函数的奇偶性、单调性的综合题的一种重要命题方式,考查学生运用知识解决问题的能力,综合性强,体现能力立意,具有一定难度.【典型题示例】例1 (2022·江苏新高考基地高三第一次联考·19改编)已知函数f (x )=1-a5x +1为奇函数,且存在m ∈[-1,1],使得不等式f (x 2)+f (mx -2)≤2-x 2-mx 成立,则x 的取值范围是 . 【答案】[-2,2]【解析】求得a =2,且f (x )为R 上的增函数,f (x 2)+f (mx -2)≤2-x 2-mx 可化为f (x 2)+x 2≤2-mx -f (mx -2) 由f (x )为奇函数,得2-mx -f (mx -2)= 2-mx +f (2-mx )令F (x )=f (x )+x ,则F (x 2)≤F (2-mx ),故有x 2≤2-mx ,即x 2+mx -2≤0 令G (x )= x 2+mx -2因为存在m ∈[-1,1],使G (x )= x 2+mx -2≤0 故G (-1)= x 2-x -2≤0或G (1)= x 2+x -2≤0 解之得-2≤x ≤2.例2 已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数,在f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________. 【答案】1[1,]2-【分析】直接发现函数的单调性、奇偶性,将2(1)(2)0f a f a -+≤移项,运用奇偶性再将负号移入函数内,逆用单调性脱“f ”.【解析】 ∵f (-x )=(-x )3+2x +e -x -e x =-f (x )且x ∈R , ∴f (x )是奇函数∵函数f (x )=x 3-2x +e x -1ex ,∴f ′(x )=3x 2-2+e x +1e x ≥3x 2-2+2e x ·1ex ≥0(当且仅当x =0时取等号),∴f (x )在R 上单调递增.,由f (a -1)+f (2a 2)≤0,得f (2a 2)≤f (1-a ). 所以2a 2≤1-a ,解之得-1≤a ≤12.所以实数a 的取值范围是⎣⎡⎦⎤-1,12. 例3 已知函数()e +1e x x f x -=-(e 为自然对数的底数),若2(21)42)(f x f x +->-,则实数x 的取值范围为 . 【答案】()1,3-【分析】本题是例2的进一步的延拓,其要点是需对已知函数适当变形,构造出一个具有奇偶性、单调性的函数,其思维能力要求的更高,难度更大.【解析】令()()1e e x xx F x f -=-=-,易知()F x 是奇函数且在R 上单调递增由2(21)42)(f x f x +->-得[]2(4)11(21)(21)1f x f x f x -->--=--- 即2(4)(21)F x F x ->--由()F x 是奇函数得(21)(12)F x F x ---=,故2(4)(12)F x F x ->-由()F x 在R 上单调递增,得2412x x ->-,即2302x x -<-,解得13x -<<, 故实数x 的取值范围为()1,3-.例4 已知函数()222131x x f x x =-++.若存在()1,4m ∈使得不等式()()2432f ma f m m -++>成立,则实数a 的取值范围是________.【答案】(),8-∞【分析】令()()1F x f x =-,判断函数()F x 的奇偶性与单调性,从而将不等式转化为234m m ma +>-,分离参数可得43a m m<++,令4()3g m m m =++,(1,4)m ∈,利用对勾函数的单调性可得()8g m <,结合题意即可求解a 的取值范围. 【解析】函数222()()131xx f x f x x ==-++,若存在(1,4)m ∈使得不等式2(4)(3)2f ma f m m -++>成立,令2222()()1(31)3131xx x x x F x f x x =-=-=-++,22(31)(13)()()3113x x xxx x F x F x -----===-++, 所以,()F x 为奇函数.不等式2(4)(3)2f ma f m m -++>,即2(4)1(3)10f ma f m m --++->, 即2(4)(3)0F ma F m m -++>,所以2(3)(4)(4)F m m F ma F ma +>--=-, 因为20y x=>在(0,)+∞上为增函数,21031x y =->+在(0,)+∞上为增函数,所以22()(1)31x F x x =-+在(0,)+∞上为增函数, 由奇函数的性质可得()F x 在R 上为增函数,所以不等式等价于234m m ma +>-,分离参数可得43a m m<++, 令4()3g m m m=++,(1,4)m ∈, 由对勾函数的性质可知()g m 在(1,2)上单调递减,在(2,4)上单调递增,g (1)8=,g (4)8=,所以,()8g m <,所以由题意可得8a <, 即实数a 的取值范围是(,8)-∞. 故答案为:(,8)-∞.例5 已知函数112,1()2,1x x x f x x --⎧≥=⎨<⎩,若()2(22)2f x f x x -≥-+,则实数x 的取值范围是( ) A .[2,1]-- B .[1,)+∞C .RD .(,2][1,)-∞-+∞【答案】D【解析】函数1112,1()22,1x x x x f x x ----⎧==⎨<⎩,故()f x 关于直线1x =对称,且在[1,)+∞上单减,函数()f x 的图象如下: 2(22)(2)x f x x --+,且f22172()124x x x -+=-+>恒成立,2|221|21x x x ∴---+-,即2|23|1x x x --+,当32x时,不等式化为:2231x x x --+,即2340x x -+,解得x ∈R ,即32x ;当32x <时,不等式化为:2321x x x --+,即220x x +-,解得2x -或1x ,即2x -或312x <;综上,2(22)(2)f x f x x --+时,实数x 的取值范围是(-∞,2][1-,)+∞. 故选:D .例6 已知函数,,则t 的取值范围是 . 【答案】[1,)+∞【分析】将已知按照“左右形式相当,一边一个变量”的原则,移项变形为3133(3log 1)log (12log )f t t f t -≥--,易知是奇函数,故进一步变为3333(3log 1)(3log 1)(2log 1)(2log 1)f t t f t t -+-≥-+-(#),故下一步需构造函数()()F x f x x =+,转化为研究()()F x f x x =+的单调性,而()()F x f x x =+单增,故(#)可化为3log 0t ≥,即333log 12log 1t t -≥-,解之得1t ≥.例7 (2022·江苏南通期末·8)已知函数()422xf x x =-+,()3log 2a f =,()4log 3b f =,43c f ⎛⎫= ⎪⎝⎭,则( )A. a b c <<B. b c a <<C. c a b <<D.c b a <<【答案】B【分析】分析可知函数()f x 在()1,+∞上为增函数,推导出函数()f x 的图象关于直线1x =对称,则函数()f x 在(),1-∞上为减函数,可得出23c f ⎛⎫= ⎪⎝⎭,利用函数()f x 在(),1-∞上()33x xf x -=-3313(12log )(3log 1)log f t f t t -+-≥3313(12log )(3log 1)log f t f t t -+-≥()33x xf x -=-的单调性可得出a 、b 、c 的大小关系.【解析】令()422xg x x =-+,其中x ∈R ,则()10g =, 因为函数y x =、422x y =-+均为R 上的增函数,故函数()g x 也为R 上的增函数,当1x >时,()()10g x g >=,此时()442222x x f x x x =-=-++,故函数()f x 在()1,+∞上为增函数,因为()()2322222244222222222x xxx x f x x x x -----+--=--=-=-+++ ()()3222442222222xxx x x x x x x f x --⋅=-=-=-=+++故函数()f x 的图象关于直线1x =对称,则函数()f x 在(),1-∞上为减函数, 所以,4233c f f ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭, 3223<,则3lg 22lg3<,即3lg 22log 2lg 33=<, 2343<,则2lg 43lg3<,则4lg 32log 3lg 43=>,即342log 2log 313<<<, 因此,b c a <<. 故选:B.【巩固训练】1.若函数(()=ln f x x x +为偶函数,则实数a = 2.设函数()()21ln 11f x x x=+-+,则使得()()1f x f >成立的x 的取值范围是( ). A .()1,+∞ B .()(),11,-∞-+∞ C .()1,1- D .()()1,00,1-3.已知函数1()22x x f x =-,则满足2(5)(6)0f x x f -+>的实数x 的取值范围是 .4. 已知函数()||31f x x x x =⋅++,若()2()22f a f a +-<,则实数a 的取值范围__________.5.已知函数222,0()2,0x x x f x x x x ⎧+≥=⎨-<⎩,若()()22f a f a ->,则实数a 的取值范围是__________.6.已知函数()x xg x e e -=-,()()f x xg x =,若1ln 3a f ⎛⎫= ⎪⎝⎭,140.2b f ⎛⎫= ⎪⎝⎭,()1.25c f =,则a 、b 、c 的大小关系为( )A .b a c <<B .c b a <<C .b c a <<D .a b c <<7. (多选题)关于函数12()11xf x x e ⎛⎫=+ ⎪-⎝⎭下列结论正确的是( ) A .图像关于y 轴对称 B .图像关于原点对称 C .在(),0-∞上单调递增D .()f x 恒大于08.已知函数())20202020log 20201xx f x x -=+-+,则关于x 的不等式()()21120f x f x +++->的解集为( ).A .1,2020⎛⎫-+∞ ⎪⎝⎭B .()2020,-+∞C .2,3⎛⎫-+∞ ⎪⎝⎭D .2,3⎛⎫-∞-⎪⎝⎭9.已知函数222()131x x f x x =-++.若存在m ∈(1,4)使得不等式(4)f ma -+2(3)2f m m +>成立,则实数a 的取值范围是A . (),7-∞B . (],7-∞C . (),8-∞D . (],8-∞ 10. 已知函数()e e 2sin xxf x x -=--,则关于x不等式()()2320f x f x -+<的解集为( ) A. ()3,1-B. ()1,3-C. ()(),31,-∞-⋃+∞D. []1,3-11. 已知()sin xxf x e e x x -=-+-,若2(2ln(1))02x f a x f ⎛⎫-++≥ ⎪⎝⎭恒成立,则实数a 的取值范围___.12.已知()sin xxf x e ex x -=-+-,若2(2ln(1))02x f a x f ⎛⎫-++≥ ⎪⎝⎭恒成立,则实数a 的取值范围_ __. 13. 已知函数()1e e 21x x xf x -=+-+,若不等式()()2121f ax f ax +-≥对x ∀∈R 恒成立,则实数a 的取值范围是( ) A .(]0,eB .[]0,eC .(]0,1D .[]0,114.已知函数()())2+1sin lnf x x x x =++,若不等式()()39334x x xf f m -+⋅-<对任意x ∈R 均成立,则m 的取值范围为( )A .(),1-∞B .(),1-∞-C .()1-D .()1,-+∞【答案或提示】1.【答案】1【解析】(g()=ln x x +奇函数,g(0)=0=,1a =.2. 【答案】B【解析】()f x 偶函数,且在(0,)+∞单增,()()1f x f >转化为1x >,解得1x >或1x <-. 3.【答案】(2,3)【解析】()f x 奇函数,且单减,2(5)(6)0f x x f -+>转化为2560x x -+<,解得23x <<.4. 【答案】(2,1)-【解析】设()||3g x x x x =⋅+,则()g x 奇函数,且单增,而()()1f x g x =+,由()2()22f a f a +-<得()2211()f a f a --<-即()22()()g a g a g a -<-=-,故22a a -<-,解之得21a -<<.5.【答案】(2,1)-【解析】22y x x =+在[0,)+∞上单调递增,22y x x =-在(,0)-∞上单调递增,且220+20=200⨯⨯-,()f x ∴在R 上单调递增,因此由()()22f a f a ->得2221aa a ->∴-<<,,故答案为:()2,1-6. 【答案】A 【解析】()()()x x f x xg x x e e -==-,该函数的定义域为R ,()()()x x x x f x x e e x e e ---=--=-,所以,函数()y f x =为偶函数,当0x >时,()0xxg x e e-=->,任取120x x >>,12x x -<-,则12x xe e >,12x x e e --<,所以,1122x x x x e e e e --->-,()()120g x g x ∴>>,()()1122x g x x g x ∴>,即()()12f x f x >,所以,函数()y f x =在()0,∞+上单调递增,()11ln lnln333a f f f ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 10 1.2400.20.21ln355<<=<<<,则()()1 1.240.2ln 35f f f ⎛⎫<< ⎪⎝⎭,即b a c <<.故选:A. 7.【答案】ACD 8. 【答案】C【解析】构造函数()())202012020log 2020xx F x fx x -=-=+-,x>=0x>,所以()F x 的定义域为R .())20202020log 2020x xF x x --=+-20202020log 2020x x xx -⎡⎤=+-20202020log 2020x x-⎡⎤=+-)()20202020log 2020x x x F x -=--=-,所以()F x 为奇函数, ()00F =.当0x >时,)20202020,2020,log x xy y y x -==-=都为增函数,所以当0x >时,()F x 递增,所以()F x 在R 上为增函数.由()()21120f x f x +++->,得()()211110f x f x +-++->, 即()()2110F x F x +++>,所以2110x x +++>,解得23x >-. 所以不等式的解集为2,3⎛⎫-+∞ ⎪⎝⎭.故选:C 9. 【答案】C【解析】22222231()1111313131xx x x x f x x x x -⎛⎫=-+=-+=⋅+ ⎪+++⎝⎭设231()()131x x g x f x x -=-=⋅+,则()g x 为定义在R 的奇函数所以()f x 关于点()0,1对称又2223131312ln 33()231313131x x x xx x x x x g x x x x '⎡⎤---⋅⋅''⎡⎤=⋅+⋅=⋅+⎢⎥⎣⎦++++⎣⎦所以当0x >时,()0g x '>,()g x 在()0,+∞上单增 故()g x 在(),-∞+∞上也单增因为2(4)(3)2f ma f m m -++>可化为2(4)1(3)1f ma f m m -->-++所以2(4)(3)g ma g m m ->-+因为()g x 为R 的奇函数,22(4)(3)(3)g ma g m m g m m ->-+=--所以243ma m m ->--又因为存在m ∈(1,4)使得不等式243ma m m ->--成立,分参得43a m m<++ 易得[)437,8m m++∈,所以8a <,故选C . 10.【答案】A【分析】根据题意可判断函数()e e 2sin xxf x x -=--为奇函数且在R 上单调递增,进而根据奇偶性与单调性解不等式即可.【解析】函数()e e 2sin xxf x x -=--的定义域为R ,()()()e e 2sin e e 2sin x x x x f x x x f x ---=---=-+=-,所以函数()e e 2sin xxf x x -=--为奇函数,因为()'e e 2cos 22cos 0xxf x x x -=+-≥-≥,所以函数()e e 2sin xxf x x -=--在R 上单调递增,所以()()()()()22320322f x f x f x f x f x -+<⇔-<-=-,所以232x x -<-,即2230x x +-<,解得31x -<< 所以不等式()()2320f x f x -+<的解集为()3,1-故选:A11.【答案】12ln 2,2⎡⎫-+∞⎪⎢⎣⎭【分析】先分析()f x 的奇偶性和单调性,则2(2ln(1))02x f a x f ⎛⎫-++≥ ⎪⎝⎭等价于2(2ln(1))2x f a x f ⎛⎫-+≥- ⎪⎝⎭,所以22ln(1)2x a x -+≥-,可转化为2()2ln(1)2x a g x x ≥=-++,即max ()a g x ≥,求max ()g x 即得解【解析】因为()()sin xx f x ee x xf x --=--+=-,所以()f x 是R 上的奇函数,()cos 1x xf x e e x -'=++-,()cos 1cos 11cos 0x x f x e e x x x -'=++-≥-=+≥,所以()f x 是R 上的增函数,2(2ln(1))02x f a x f ⎛⎫-++≥ ⎪⎝⎭等价于22(2ln(1))22x x f a x f f ⎛⎫⎛⎫-+≥-=- ⎪ ⎪⎝⎭⎝⎭,所以22ln(1)2x a x -+≥-,所以22ln(1)2x a x ≥-++,令2()2ln(1)2x g x x =-++,则max ()a g x ≥, 因为()()g x g x -=且定义域为R ,所以()g x =22ln(1)2x x -++是R 上的偶函数, 所以只需求()g x 在()0,∞+上的最大值即可.当[)0,x ∈+∞时,2()2ln(1)2x g x x =-++,()()22122()111x x x x g x x x x x +---+'=-+==-+++, 则当[)0,1x ∈时,()0g x '>;当[)1,x ∈+∞时,()0g x '<;所以()g x 在[)0,1上单调递增,在[)1,+∞上单调递减, 可得:max 1()(1)2ln 22g x g ==-,即12ln 22a ≥-. 故答案为:12ln 2,2⎡⎫-+∞⎪⎢⎣⎭. 12.【答案】12ln 2,2⎡⎫-+∞⎪⎢⎣⎭【分析】先分析()f x 的奇偶性和单调性,则2(2ln(1))02x f a x f ⎛⎫-++≥ ⎪⎝⎭等价于2(2ln(1))2x f a x f ⎛⎫-+≥- ⎪⎝⎭,所以22ln(1)2x a x -+≥-,可转化为2()2ln(1)2x a g x x ≥=-++,即max ()a g x ≥,求max ()g x 即得解 【解析】因为()()sin x x f x e e x x f x --=--+=-,所以()f x 是R 上的奇函数,()cos 1x x f x e e x -'=++-,()cos 1cos 11cos 0x x f x e e x x x -'=++-≥-=+≥,所以()f x 是R 上的增函数,2(2ln(1))02x f a x f ⎛⎫-++≥ ⎪⎝⎭等价于22(2ln(1))22x x f a x ff ⎛⎫⎛⎫-+≥-=- ⎪ ⎪⎝⎭⎝⎭, 所以22ln(1)2x a x -+≥-,所以22ln(1)2x a x ≥-++, 令2()2ln(1)2x g x x =-++,则max ()a g x ≥,因为()()g x g x -=且定义域为R ,所以()g x =22ln(1)2x x -++是R 上的偶函数,所以只需求()g x 在()0,∞+上的最大值即可.当[)0,x ∈+∞时,2()2ln(1)2x g x x =-++,()()22122()111x x x x g x x x x x +---+'=-+==-+++,则当[)0,1x ∈时,()0g x '>;当[)1,x ∈+∞时,()0g x '<;所以()g x 在[)0,1上单调递增,在[)1,+∞上单调递减, 可得:max 1()(1)2ln 22g x g ==-,即12ln 22a ≥-. 故答案为:12ln 2,2⎡⎫-+∞⎪⎢⎣⎭. 13.【答案】D【分析】构造函数()()12g x f x =-,判断函数的奇偶性与单调性,将所求不等式转化为()()2111222f ax f ax ⎡⎤-≥---⎢⎥⎣⎦,即()()221g ax g ax ≥-,再利用函数单调性解不等式即可. 【解析】()1e e 21x x x f x -=+-+, ()()1111e e e e 121212121x x x x x x x x f x f x ----∴+-=+-+-+=++=+++令()()12g x f x =-,则()()0g x g x +-=,可得()g x 是奇函数,又()()()2121e e e e e 21e 21ln 2ln 2++2122x x x x x x x x x x x g x --'⎛⎫''=+-== ⎪+⎝++--+⎭, 又利用基本不等式知e 2+1e x x ≥当且仅当1e ex x =,即0x =时等号成立; ln 2ln 214222x x ≤++当且仅当122x x =,即0x =时等号成立; 故()0g x '>,可得()g x 是单调增函数,由()()2121f ax f ax +-≥得()()()21111212222f ax f ax f ax ⎡⎤-≥--+=---⎢⎥⎣⎦, 即()()()21221g ax g ax g ax ≥--=-,即2210ax ax -+≥对x ∀∈R 恒成立. 当0a =时显然成立;当0a ≠时,需20440a a a >⎧⎨∆=-≤⎩,得01a <≤, 综上可得01a ≤≤,故选:D.14.【答案】A【分析】由题设,构造()()2g x f x =-,易证()g x 为奇函数,利用导数可证()g x 为增函数,结合题设不等式可得(39)(33)x x x g g m -<-⋅,即3313x x m <+-对任意x ∈R 均成立,即可求m 的范围.【解析】由题设,令()()22sin )g x f x x x x =-=++,∴()2sin())2sin )()g x x x x x x x g x -=-+-+=---=-,∴()g x 为奇函数,又()2cos 0g x x '=++>,即()g x 为增函数,∴()()39334x x x f f m -+⋅-<,即(39)2[(33)2]x x x f f m --<-⋅--, ∴(39)(33)(33)x x x x g g m g m -<-⋅-=-⋅,则3933x x x m -<-⋅,∴3313x x m <+-对任意x ∈R 均成立,又331113x x +-≥=,当且仅当12x =时等号成立,∴1m <,即m ∈(),1-∞.故选:A。

2024全国数学高考压轴题(数列选择题)附答案

2024全国数学高考压轴题(数列选择题)附答案

2024全国数学高考压轴题(数列)一、单选题1.若数列{b n }、{c n }均为严格增数列 且对任意正整数n 都存在正整数m 使得b m ∈[c n ,c n+1] 则称数列{b n }为数列{c n }的“M 数列”.已知数列{a n }的前n 项和为S n 则下列选项中为假命题的是( )A .存在等差数列{a n } 使得{a n }是{S n }的“M 数列”B .存在等比数列{a n } 使得{a n }是{S n }的“M 数列”C .存在等差数列{a n } 使得{S n }是{a n }的“M 数列”D .存在等比数列{a n } 使得{S n }是{a n }的“M 数列”2.已知函数f(x)及其导函数f ′(x)的定义域均为R 记g(x)=f ′(x).若f(x +3)为奇函数 g(32+2x)为偶函数 且g(0)=−3 g(1)=2 则∑g 2023i=1(i)=( ) A .670B .672C .674D .6763.我们知道按照一定顺序排列的数字可以构成数列 那么按照一定顺序排列的函数可以构成函数列.设无穷函数列{f n (x)}(n ∈N +)的通项公式为f n (x)=n 2+2nx+x 2+1(n+x)(n+1)x ∈(0,1) 记E n 为f n (x)的值域 E =U n=1+∞E n 为所有E n 的并集 则E 为( )A .(56,109)B .(1,109)C .(56,54)D .(1,54)4.已知等比数列{x n }的公比q >−12则( )A .若|x 1+x 2+⋅⋅⋅+x 100|<1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 100|<10B .若|x 1+x 2+⋅⋅⋅+x 100|>1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 100|>10C .若|x 1+x 2+⋅⋅⋅+x 101|<1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 101|<10D .若|x 1+x 2+⋅⋅⋅+x 101|>1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 101|>105.已知数列{a n } {b n }满足a 1=2 b 1=12 {a n+1=b n +1an b n+1=a n +1bn,,,n ,∈,N ∗ 则下列选项错误的是( ) A .a 2b 2=14B .a 50⋅b 50<112C .a 50+b 50=52√a 50⋅b 50D .|a 50−b 50|≤156.已知数列{a n }满足:a 1=2 a n+1=13(√a n +2a n )(n ∈N ∗).记数列{a n }的前n 项和为S n 则( )A .12<S 10<14B .14<S 10<16C .16<S 10<18D .18<S 10<207.已知数列 {a n } 满足: a 1=100,a n+1=a n +1an则( )A .√200+10000<a 101<√200.01+10000B .√200.01+10000<a 101<√200.1+10000C .√200.1+10000<a 101<√201+10000D .√201+10000<a 101<√210+100008.已知数列 {a n } 满足 a 1=a(a >0) √a n+1a n =a n +1 给出下列三个结论:①不存在 a 使得数列 {a n } 单调递减;②对任意的a 不等式 a n+2+a n <2a n+1 对所有的 n ∈N ∗ 恒成立;③当 a =1 时 存在常数 C 使得 a n <2n +C 对所有的 n ∈N ∗ 都成立.其中正确的是( ) A .①②B .②③C .①③D .①②③9.已知F 为抛物线y 2=4x 的焦点 点P n (x n ,y n )(n =1,2,3,⋯)在抛物线上.若|P n+1F|−|P n F|=1 则( ) A .{x n }是等差数列 B .{x n }是等比数列 C .{y n }是等差数列D .{y n }是等比数列10.已知数列 11 21 12 31 22 13 41 32 23 14… 其中每一项的分子和分母均为正整数.第一项是分子与分母之和为2的有理数;接下来两项是分子与分母之和为3的有理数 并且从大到小排列;再接下来的三项是分子与分母之和为4的有理数 并且从大到小排列 依次类推.此数列第n 项记为 a n 则满足 a n =5 且 n ≥20 的n 的最小值为( ) A .47B .48C .57D .5811.已知△A n B n C n (n =1,2,3,⋯)是直角三角形 A n 是直角 内角A n ,B n ,C n 所对的边分别为a n ,b n ,c n 面积为S n .若b 1=4,c 1=3,b n+12=a n+12+c n 23,c n+12=a n+12+b n 23则下列选项错误的是( )A .{S 2n }是递增数列B .{S 2n−1}是递减数列C .数列{b n −c n }存在最大项D .数列{b n −c n }存在最小项12.已知数列{a n }的各项都是正数 a n+12−a n+1=a n (n ∈N ∗).记b n =(−1)n−1a n −1数列{b n }的前n 项和为S n 给出下列四个命题:①若数列{a n }各项单调递增 则首项a 1∈(0,2)②若数列{a n }各项单调递减 则首项a 1∈(2,+∞)③若数列{a n }各项单调递增 当a 1=32时 S 2022>2④若数列{a n }各项单调递增 当a 1=23时S2022<−5则以下说法正确的个数()A.4B.3C.2D.113.已知正项数列{a n}对任意的正整数m、n都有2a m+n≤a2m+a2n则下列结论可能成立的是()A.a nm+a mn=a mn B.na m+ma n=a m+n C.a m+a n+2=a mn D.2a m⋅a n=a m+n14.古希腊哲学家芝诺提出了如下悖论:一个人以恒定的速度径直从A点走向B点要先走完总路程的三分之一再走完剩下路程的三分之一如此下去会产生无限个“剩下的路程” 因此他有无限个“剩下路程的三分之一”要走这个人永远走不到终点.另一方面我们可以从上述第一段“三分之一的路程”开始通过分别计算他在每一个“三分之一距离”上行进的时间并将它们逐个累加不难推理出这个人行进的总时间不会超过一个恒定的实数.记等比数列{a n}的首项a1=13公比为q 前n项和为S n则造成上述悖论的原理是()A.q=16,∃t∈R,∀n∈N ∗,Sn<t B.q=13,∃t∈R,∀n∈N∗,S n<tC.q=12,∃t∈R,∀n∈N ∗,Sn<t D.q=23,∃t∈R,∀n∈N∗,S n<t15.已知sinx,siny,sinz依次组成严格递增的等差数列则下列结论错误的是()A.tanx,tany,tanz依次可组成等差数列B.cosx,cosy,cosz依次可组成等差数列C.cosx,cosz,cosy依次可组成等差数列D.cosz,cosx,cosy依次可组成等差数列16.记U={1,2,⋯,100}.对数列{a n}(n∈N∗)和U的子集T 若T=∅定义S T=0;若T={t1,t2,⋯,t k}定义S T=a t1+a t2+⋯+a tk.则以下结论正确的是()A.若{a n}(n∈N∗)满足a n=2n−1,T={1,2,4,8}则S T=15B.若{a n}(n∈N∗)满足a n=2n−1则对任意正整数k(1≤k≤100),T⊆{1,2,⋯,k},S T< a kC.若{a n}(n∈N∗)满足a n=3n−1则对任意正整数k(1≤k≤100),T⊆{1,2,⋯,k},S T≥a k+1D .若{a n }(n ∈N ∗)满足a n =3n−1 且C ⊆U ,D ⊆U ,S C ≥S D 则S C +S C∩D ≥2S D17.已知数列 {a n }、{b n }、{c n } 满足 a 1=b 1=c 1=1,c n =a n+1−a n ,c n+2=bn+1b n ⋅c n (n ∈N ∗),S n =1b 2+1b 3+⋯+1b n (n ≥2),T n =1a 3−3+1a 4−4+⋯+1a n −n (n ≥3) 则下列有可能成立的是( )A .若 {a n } 为等比数列 则 a 20222>b 2022B .若 {c n } 为递增的等差数列 则 S 2022<T 2022C .若 {a n } 为等比数列 则 a 20222<b 2022D .若 {c n } 为递增的等差数列 则 S 2022>T 202218.已知数列{a n }满足a 1=1 a n =a n−1+4(√a n−1+1√an−1)(n ∈N ∗,n ≥2) S n 为数列{1a n }的前n 项和 则( ) A .73<S 2022<83B .2<S 2022<73C .53<S 2022<2 D .1<S 2022<5319.已知数列{a n }满足a n ⋅a n+1⋅a n+2=−1(n ∈N ∗),a 1=−3 若{a n }的前n 项积的最大值为3 则a 2的取值范围为( ) A .[−1,0)∪(0,1] B .[−1,0)C .(0,1]D .(−∞,−1)∪(1,+∞)20.已知正项数列{a n }的前n 项和为S n (a n +1)2=4S n 记b n =S n ⋅sin nπ2+S n+1⋅sin (n+1)π2若数列{b n }的前n 项和为T n 则T 100=( ) A .-400B .-200C .200D .40021.设S n 是等差数列{a n }的前n 项和 a 2=−7 S 5=2a 1 当|S n |取得最小值时 n =( )A .10B .9C .8D .722.已知数列{a n }中 a 2+a 4+a 6=285 na n =(n −1)a n+1+101(n ∈N ∗) 当数列{a n a n+1a n+2}(n ∈N ∗)的前n 项和取得最大值时 n 的值为( ) A .53B .49C .49或53D .49或5123.定义在R 上的函数序列{f n (x)}满足f n (x)<1nf n ′(x)(f n ′(x)为f n (x)的导函数) 且∀x ∈N ∗ 都有f n (0)=n .若存在x 0>0 使得数列{f n (x 0)}是首项和公比均为q 的等比数列 则下列关系式一定成立的是( ).A .0<q <2√2e x 0B .0<q <√33e x 0C .q >2√2e x 0D .q >√33e x 024.已知数列{a n }的前n 项和为S n 满足a 1=1 a 2=2 a n =a n−1⋅a n+1(n ≥2) 则( )A .a 1:a 2:a 3=a 6:a 7:a 8B .a n :a n+1:a n+2=1:2:2C .S 6 S 12 S 18成等差数列D .S 6n S 12n S 18n 成等比数列25.已知S n 为数列{a n }的前n 项和 且a 1=1 a n+1+a n =3×2n 则S 100=( )A .2100−3B .2100−2C .2101−3D .2101−226.已知 {a n } 为等比数列 {a n } 的前n 项和为 S n 前n 项积为 T n 则下列选项中正确的是( )A .若 S 2022>S 2021 则数列 {a n } 单调递增B .若 T 2022>T 2021 则数列 {a n } 单调递增C .若数列 {S n } 单调递增 则 a 2022≥a 2021D .若数列 {T n } 单调递增 则 a 2022≥a 2021二、多选题27.“冰雹猜想”也称为“角谷猜想” 是指对于任意一个正整数x 如果x 是奇数㩆乘以3再加1 如果x 是偶数就除以2 这样经过若干次操作后的结果必为1 犹如冰雹掉落的过程.参照“冰雹猜想” 提出了如下问题:设k ∈N ∗ 各项均为正整数的数列{a n }满足a 1=1 a n+1={a n2,a n 为偶数,a n +k ,a n 为奇数,则( )A .当k =5时 a 5=4B .当n >5时 a n ≠1C .当k 为奇数时 a n ≤2kD .当k 为偶数时 {a n }是递增数列28.已知数列{a n } a 2=12且满足a n+1a n 2=a n −a n+1 n ∈N ∗ 则( ) A .a 4−a 1=1929B .a n 的最大值为1C .a n+1≥1n+1D .√a 1+√a 2+√a 3+⋅⋅⋅+√a 35>1029.已知数列{a n }的前n 项和为S n a 1=1 且4a n ⋅a n+1=a n −3a n+1(n =1 2 …) 则( )A .3a n+1<a nB .a 5=1243C .ln(1an )<n +1D .1≤S n <171430.如图 已知正方体ABCD −A 1B 1C 1D 1顶点处有一质点Q 点Q 每次会随机地沿一条棱向相邻的某个顶点移动 且向每个顶点移动的概率相同.从一个顶点沿一条棱移动到相邻顶点称为移动一次.若质点Q 的初始位置位于点A 处 记点Q 移动n 次后仍在底面ABCD 上的概率为P n 则下列说法正确的是( )A .P 2=59B .P n+1=23P n +13C .点Q 移动4次后恰好位于点C 1的概率为0D .点Q 移动10次后仍在底面ABCD 上的概率为12(13)10+1231.已知数列{a n } {b n } 有a n+1=a n −b n b n+1=b n −a n n ∈N ∗ 则( )A .若存在m >1 a m =b m 则a 1=b 1B .若a 1≠b 1 则存在大于2的正整数n 使得a n =0C .若a 1=a a 2=b 且a ≠b 则b 2022=−b ×22020D .若a 1=−1 a 2=−3 则关于x 的方程2a 3+(2a 3+1)cosx +2cos2x +cos3x =0的所有实数根可构成一个等差数列32.已知△A n B n C n (n =1,2,3,⋯)是直角三角形 A n 是直角 内角A n 、B n 、C n 所对的边分别为a n 、b n 、c n 面积为S n 若b 1=4 c 1=3 b n+12=a n+12+c n 23 c n+12=a n+12+b n 23则( ) A .{S 2n }是递增数列 B .{S 2n−1}是递减数列 C .{b n −c n }存在最大项D .{b n −c n }存在最小项33.已知S n 是数列{a n }的前n 项和 且S n+1=−S n +n 2 则下列选项中正确的是( ).A .a n +a n+1=2n −1(n ≥2)B .a n+2−a n =2C .若a 1=0 则S 100=4950D .若数列{a n }单调递增 则a 1的取值范围是(−14,13)三、填空题34.已知n ∈N ∗ 将数列{2n −1}与数列{n 2−1}的公共项从小到大排列得到新数列{a n } 则1a 1+1a 2+⋯+1a 10= .35.若函数f(x)的定义域为(0,+∞) 且f(x)+f(y)=f(xy) f(a n )=n +f(n) 则∑f ni=1(a i i )= .36.在数列{a n }中 a 1=1 a n+1=a n +1an(n∈N ∗) 若t ∈Z 则当|a 7−t|取得最小值时 整数t 的值为 .37.已知函数f(x)满足f(x −2)=f(x +2),0≤x <4时 f(x)=√4−(x −2)2 g(x)=f(x)−k n x(n ∈N ∗,k n >0).若函数g(x)的图像与x 轴恰好有2n +1个不同的交点 则k 12+k 22+⋅⋅⋅+k n 2= .38.已知复数z =1+i 对于数列{a n } 定义P n =a 1+2a 2+⋅⋅⋅+2n−1a n n为{a n }的“优值”.若某数列{a n}的“优值”P n =|z|2n 则数列{a n }的通项公式a n = ;若不等式a n 2−a n +4≥(−1)nkn 对于∀n ∈N ∗恒成立 则k 的取值范围是 .39.数列{a n }是公比为q(q ≠1)的等比数列 S n 为其前n 项和. 已知a 1⋅a 3=16 S3q=12 给出下列四个结论: ①q <0 ;②若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最大 则m 的一个可能值是3; ③若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最大 则m 的一个可能值是4; ④若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最小 则m 的值只能是2. 其中所有正确结论的序号是 .40.如图 某荷塘里浮萍的面积y (单位:m 2)与时间t (单位:月)满足关系式:y =a t lna (a 为常数) 记y =f(t)(t ≥0).给出下列四个结论:①设a n=f(n)(n∈N∗)则数列{a n}是等比数列;②存在唯一的实数t0∈(1,2)使得f(2)−f(1)=f′(t0)成立其中f′(t)是f(t)的导函数;③常数a∈(1,2);④记浮萍蔓延到2m23m26m2所经过的时间分别为t1t2t3则t1+t2>t3.其中所有正确结论的序号是.41.在现实世界很多信息的传播演化是相互影响的.选用正实数数列{a n}{b n}分别表示两组信息的传输链上每个节点处的信息强度数列模型:a n+1=2a n+b n,b n+1=a n+2b n(n=1,2⋯)描述了这两组信息在互相影响之下的传播演化过程.若两组信息的初始信息强度满足a1>b1则在该模型中关于两组信息给出如下结论:①∀n∈N∗,a n>b n;②∀n∈N∗,a n+1>a n,b n+1>b n;③∃k∈N∗使得当n>k时总有|a nb n−1|<10−10④∃k∈N∗使得当n>k时总有|a n+1a n−2|<10−10.其中所有正确结论的序号是答案解析部分1.【答案】C2.【答案】D3.【答案】C4.【答案】A5.【答案】D6.【答案】B7.【答案】A8.【答案】A9.【答案】A10.【答案】C11.【答案】B12.【答案】B13.【答案】D14.【答案】D15.【答案】B16.【答案】D17.【答案】B18.【答案】D19.【答案】A20.【答案】C21.【答案】C22.【答案】D23.【答案】D24.【答案】C25.【答案】D26.【答案】D27.【答案】A,C,D28.【答案】B,C,D29.【答案】A,D30.【答案】A,C,D 31.【答案】A,C,D 32.【答案】A,C,D 33.【答案】A,C 34.【答案】102135.【答案】n(n+1)236.【答案】4 37.【答案】n 4(n+1) 38.【答案】n+1;[−163,5] 39.【答案】①②③ 40.【答案】①②④ 41.【答案】①②③。

2024年高考数学专项突破数列大题压轴练(解析版)

2024年高考数学专项突破数列大题压轴练(解析版)

数列大题压轴练-新高考数学复习分层训练(新高考通用)1.(2023·云南曲靖·宣威市第七中学校考模拟预测)记n S 为数列{}n a 的前n 项和,n T 为数列{}n S 的前n 项和,已知2n n S T +=.(1)求证:数列{}n S 是等比数列;(2)求数列{}n na 的前n 项和n A .2.(2023·辽宁铁岭·校联考模拟预测)已知数列{}n a 中,11a =,214a =,且1(1)(2,3,4,)nn na n n a n a +=-=⋅⋅⋅-.(1)设*111()n n b n N a +=-∈,试用n b 表示1n b +,并求{}n b 的通项公式;(2)设*1sin 3()cos cos n n n n c N b b +=∈,求数列{}n c 的前n 项和n S .3.(2023·湖南株洲·统考一模)数列{}n a 满足13a =,212n n n a a a +-=.(1)若21n bn a =+,求证:{}n b 是等比数列.(2)若1n nnc b =+,{}n c 的前n 项和为n T ,求满足100n T <的最大整数n .4.(2023·河北衡水·河北衡水中学校考模拟预测)已知数列{}n a 满足21n n n a xa ya ++=+()N n +∈,11a =,22a =,n S 为数列{}n a 前n 项和.(1)若2x =,1y =-,求n S 的通项公式;(2)若1x y ==,设n T 为n a 前n 项平方和,证明:214n n n T S S -<恒成立.5.(2023·山西朔州·怀仁市第一中学校校考二模)已知数列{}n a 满足13a =,且12,1,n n na n a a n +⎧=⎨-⎩是偶数是奇数.(1)设221n n n b a a -=+,证明:{}3n b -是等比数列;(2)设数列{}n a 的前n 项和为n S ,求使得不等式2022n S >成立的n 的最小值.6.(2022春·河北衡水·高三校联考阶段练习)已知正项数列{}n a 的前n 项和为n S ,且满足11a =,23a =,2132n n n a a a ++=-,数列{}n c 满足()22221232341n c c c n c n +++++= .2024年高考数学专项突破数列大题压轴练(解析版)(1)求出{}n a ,{}n c 的通项公式;(2)设数列()()1221log 1n n c n a +⎧⎫⋅+⎪⎪⎨⎬+⎡⎤⎪⎪⎣⎦⎩⎭的前n 项和为n T ,求证:516<n T .7.(2022秋·河北衡水·高三河北衡水中学校考阶段练习)已知数列{}n a 的前n 项和n S 满足36S =,2n n S n na =+,*n ∈N .(1)求{}n a 的通项公式;(2)数列{}n b ,{}n c ,{}n d 满足()21211n n n a b a +=+-,12121n n n n n c b b b b --= ,且2nn nc d n =⋅,求数列{}n d 的前n 项和n T .8.(2023·广东·校联考模拟预测)已知数列{}n a 的前n 项和为n S ,且312323n S S S nS n +++⋅⋅⋅+=.(1)求数列{}n a 的通项公式;(2)若n n b na =,且数列{}n b 的前n 项和为n T ,求证:当3n ≥时,()311421n n n T n +≤+--.9.(2022秋·山东青岛·高三山东省莱西市第一中学校考阶段练习)对于项数为m 的数列{}n a ,若满足:121m a a a ≤<<< ,且对任意1i j m ≤≤≤,i j a a ⋅与j ia a 中至少有一个是{}n a 中的项,则称{}n a 具有性质P .(1)如果数列1a ,2a ,3a ,4a 具有性质P ,求证:11a =,423a a a =⋅;(2)如果数列{}n a 具有性质P ,且项数为大于等于5的奇数,试判断{}n a 是否为等比数列?并说明理由.10.(2022秋·山东青岛·高三统考期末)记数列{}n a 的前n 项和为n S ,11a =,______.给出下列两个条件:条件①:数列{}n a 和数列{}1n S a +均为等比数列;条件②:1121222n n n n a a a na -+++⋅⋅⋅+=.试在上面的两个条件中任选一个,补充在上面的横线上,完成下列两问的解答:(注:如果选择多个条件分别解答,按第一个解答计分.)(1)求数列{}n a 的通项公式;(2)记正项数列{}n b 的前n 项和为n T ,12b a =,23b a =,14n n n T b b +=⋅,求211(1)ni i i i b b +=⎡⎤-⎣⎦∑.11.(2022·湖北·黄冈中学校联考模拟预测)已知数列{}n a 满足0n a ≠,*N n ∈.(1)若2210n n n a a ka ++=>且0n a >.(ⅰ)当{}lg n a 成等差数列时,求k 的值;(ⅱ)当2k =且11a =,4a =2a 及n a 的通项公式.(2)若21312n n n n a a a a +++=-,11a =-,20a <,[]34,8a ∈.设n S 是{}n a 的前n 项之和,求2020S 的最大值.12.(2022秋·湖南长沙·高三校考阶段练习)已知数列{}n a 的前n 项和1122n n n S a -⎛⎫=--+ ⎪⎝⎭(n *∈N ),数列{}n b 满足2nn n b a =.(1)求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式;(2)设数列{}n c 满足()()131n nn n a c n λ--=-(λ为非零整数,n *∈N ),问是否存在整数λ,使得对任意n *∈N ,都有1n n c c +>.13.(2022秋·湖南衡阳·高三衡阳市一中校考期中)已知n S 为数列{}n a 的前n 项和,25a =,14n n n S S a +=++;{}n b 是等比数列,29b =,1330bb +=,公比1q >.(1)求数列{}n a ,{}n b 的通项公式;(2)数列{}n a 和{}n b 的所有项分别构成集合A ,B ,将A B ⋃的元素按从小到大依次排列构成一个新数列{}n c ,求2012320T c c c c =++++ .14.(2022·浙江·模拟预测)已知正项数列{}n a 满足11a =,当2n ≥时,22121n n a a n --=-,{}n a 的前n 项和为n S .(1)求数列{}n a 的通项公式及n S ;(2)数列{}n b 是等比数列,q 为数列{}n b 的公比,且13b q a ==,记21n n n nS a c b-+=,证明:122733n c c c ≤++⋅⋅⋅+<15.(2022秋·广东广州·高三校联考阶段练习)已知数列{}n a 的前n 项和为n S ,且12a =,132n n S S +=+,数列{}n b 满足()1122,n n n b b b n++==,其中*n ∈N .(1)分别求数列{}n a 和{}n b 的通项公式;(2)在n a 与1n a +之间插入n 个数,使这2n +个数组成一个公差为n c 的等差数列,求数列{}n n b c 的前n 项和nT16.(2023·辽宁朝阳·校联考一模)已知数列{}n a 的前n 项和为()+N 1=∈+n nS n n ,数列{}n b 满足11b =,且()1+N 2+=∈+nn n b b n b (1)求数列{}n a 的通项公式;(2)求数列{}n b 的通项公式;(3)对于N n +∈,试比较1n b +与n a 的大小.17.(2022秋·广东深圳·高三校考阶段练习)记n S 为数列{}n a 的前n 项和,已知{}12,32n n a a S =-是公差为2的等差数列.(1)求{}n a 的通项公式;(2)若{}11,n n n n n a b b a a ++=的前n 项和为n T ,求证:14n T <.18.(2022秋·江苏常州·高三常州市第一中学校考阶段练习)已知正项数列{}n a满足)1,2n n a a n n -+-∈≥N ,11a =.数列{}n b 满足各项均不为0,14b =,其前n项的乘积112n n n T b -+=⋅.(1)求数列{}n a 通项公式;(2)设2log n n c b =,求数列{}n c 的通项公式;(3)记数列(){}1nn a -的前2m 项的和2m S ,求使得不等式21210m S c c c ≥+++L 成立的正整数m 的最小值.19.(2022秋·江苏宿迁·高三沭阳县建陵高级中学校考期中)已知数列{}n a 满足2123n n n a a a ++=+,112a =,232a =.(1)证明:数列{}1n n a a ++为等比数列,求{}n a 的通项公式.(2)若数列{}n a 的前n 项和为n S ,且()*127N 4n S n n λ⎛⎫+≥-∈ ⎪⎝⎭恒成立,求实数λ的取值范围.20.(2022秋·江苏南通·高三江苏省如东高级中学校考阶段练习)等差数列{}n a 的前n 项和为n S ,且4224,21n n S S a a ==+.数列{}n b 的前n 项和为n T ,且112n n na T ++=(1)求数列{}{},n n ab 的通项公式;(2)数列{}n c 满足cos ,,n n na n n cb n π⎧=⎨⎩为奇数为偶数,求21ni i c =∑.21.(2023秋·广东·高三校联考期末)已知数列1:A a ,2a ,…,n a ,…满足10a =,11i i a a +=+(1,2,,,i n = ),数列A 的前n 项和记为n S .(1)写出3S 的最大值和最小值;(2)是否存在数列A ,使得20221011S =如果存在,写出此时2023a 的值;如果不存在,说明理由.22.(2023秋·山东日照·高三校联考期末)已知数列{}n a 的各项均为非零实数,其前n 项和为(0)n n S S ≠,且21n n n n S a S a ++⋅=⋅.(1)若32S =,求3a 的值;(2)若1a a =,20232023a a =,求证:数列{}n a 是等差数列,并求其前n 项和.23.(2023秋·江苏南京·高三南京市第一中学校考期末)已知数列{}{},n n a b 满足222,1n n n n n a b a b +=-=.(1)求{}{},n n a b 的通项公式;(2)记数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,证明:11121n n S n +≤-+-.24.(2023春·湖南长沙·高三湖南师大附中校考阶段练习)已知数列{}n a 各项都不为0,12a =,24a =,{}n a 的前n 项和为n S ,且满足14n n n a a S +=.(1)求{}n a 的通项公式;(2)若12311231C C CC C n nn nnnn nn nb a a a a a --=+++⋅⋅⋅++,求数列112n n n n b b b ++⎧⎫+⎨⎬⎩⎭的前n 项和n T .25.(2023春·江苏南京·高三校联考阶段练习)已知数列{}n a 中11a =,其前n 项和记为n S ,且满足()()1232n n S S S n S ++⋅⋅⋅+=+.(1)求数列()1n S n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭的通项公式;(2)设无穷数列1b ,2b ,…n b ,…对任意自然数m 和n ,不等式1m n m n nb b b m a +--<+均成立,证明:数列{}n b 是等差数列.26.(2023·山东·沂水县第一中学校联考模拟预测)在如图所示的平面四边形ABCD 中,ABD △的面积是CBD △面积的两倍,又数列{}n a 满足12a =,当2n ≥时,()()1122n n n n BD a BA a BC --=++- ,记2nn n a b =.(1)求数列{}n b 的通项公式;(2)求证:2221211154n b b b +++< .27.(2022秋·湖北·高三校联考开学考试)已知数列{}n a 满足11a =,1n a +=中*N n ∈)(1)判断并证明数列{}n a 的单调性;(2)记数列{}n a 的前n 项和为n S ,证明:20213522S <<.28.(2022秋·山东潍坊·高三统考阶段练习)定义:对于任意一个有穷数列,在其每相邻的两项间都插入这两项的和,得到的新数列称为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和,得到二阶和数列,以此类推可以得到n 阶和数列,如{}2,4的一阶和数列是{}2,6,4,设n 阶和数列各项和为n S .(1)试求数列{}2,4的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想{}n S 的通项公式(无需证明);(2)设()()()()331321log 3log 3n n n n S n b S S +-+=-⋅-,{}n b 的前m 项和m T ,若20252m T >,求m 的最小值29.(2022秋·湖北黄冈·高三统考阶段练习)已知数列{}1,1,n n a a S =为数列{}n a 的前n 项和,且1(2)3n n S n a =+.(1)求数列{}n a 的通项公式;(2)求证:sin 0n n a a -<;(3)证明:212311111sin 1sin 1sin 1sin e n a a a a ⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ .30.(2023·浙江温州·统考二模)设n S 为正项数列{}n a 的前n 项和,满足222n n n S a a =+-.(1)求{}n a 的通项公式;(2)若不等式214na n a t ⎛⎫+ ⎪+⎝≥⎭对任意正整数n 都成立,求实数t 的取值范围;(3)设3ln(1)4n a n n b e +=(其中e 是自然对数的底数),求证:123426n n b b b b b b ++++<….数列大题压轴练-新高考数学复习分层训练(新高考通用)1.(2023·云南曲靖·宣威市第七中学校考模拟预测)记n S为数列{}n a的前n项和,n T为S T+=.数列{}n S的前n项和,已知2n n(1)求证:数列{}n S是等比数列;(2)求数列{}n na的前n项和n A.2.(2023·辽宁铁岭·校联考模拟预测)已知数列{}n a 中,11a =,24a =,且1(1)(2,3,4,)nn na n n a n a +=-=⋅⋅⋅-.(1)设*111()n n b n N a +=-∈,试用n b 表示1n b +,并求{}n b 的通项公式;(2)设*sin 3()cos cos n n c N b b =∈,求数列{}n c 的前n 项和n S .3.(2023·湖南株洲·统考一模)数列{}n a 满足13a =,212n n n a a a +-=.(1)若21n bn a =+,求证:{}n b 是等比数列.(2)若1nnc b =+,{}n c 的前n 项和为n T ,求满足100n T <的最大整数n .4.(2023·河北衡水·河北衡水中学校考模拟预测)已知数列{}n a 满足21n n n a xa ya ++=+()N n +∈,11a =,22a =,n S 为数列{}n a 前n 项和.(1)若2x =,1y =-,求n S 的通项公式;(2)若1x y ==,设n T 为n a 前n 项平方和,证明:214n n n T S S -<恒成立.5.(2023·山西朔州·怀仁市第一中学校校考二模)已知数列{}n a 满足13a =,且12,1,n n na n a a n +⎧=⎨-⎩是偶数是奇数.(1)设221n n n b a a -=+,证明:{}3n b -是等比数列;S>成立的n的最小值.(2)设数列{}n a的前n项和为n S,求使得不等式2022n6.(2022春·河北衡水·高三校联考阶段练习)已知正项数列{}n a 的前n 项和为n S ,且满足11a =,23a =,2132n n n a a a ++=-,数列{}n c 满足()22221232341n c c c n c n +++++= .(1)求出{}n a ,{}n c 的通项公式;(2)设数列()()1221log 1n n c n a +⎧⎫⋅+⎪⎪⎨⎬+⎡⎤⎪⎪⎣⎦⎩⎭的前n 项和为n T ,求证:516<n T .7.(2022秋·河北衡水·高三河北衡水中学校考阶段练习)已知数列{}n a 的前n 项和n S 满足36S =,2n n S n na =+,*n ∈N .(1)求{}n a 的通项公式;(2)数列{}n b ,{}n c ,{}n d 满足()21211n n n a b a +=+-,12121n n n n n c b b b b --= ,且2nn nc d n =⋅,求数列{}n d 的前n 项和n T .8.(2023·广东·校联考模拟预测)已知数列{}n a 的前n 项和为n S ,且312323n S S S nS n +++⋅⋅⋅+=.(1)求数列{}n a 的通项公式;(2)若n n b na =,且数列{}n b 的前n 项和为n T ,求证:当3n ≥时,()311421n n n T n +≤+-.9.(2022秋·山东青岛·高三山东省莱西市第一中学校考阶段练习)对于项数为m 的数列{}n a ,若满足:121m a a a ≤<<< ,且对任意1i j m ≤≤≤,i j a a ⋅与j ia a 中至少有一个是{}n a 中的项,则称{}n a 具有性质P .(1)如果数列1a ,2a ,3a ,4a 具有性质P ,求证:11a =,423a a a =⋅;(2)如果数列{}n a 具有性质P ,且项数为大于等于5的奇数,试判断{}n a 是否为等比数列?并说明理由.【答案】(1)证明见解析(2){}n a 为等比数列,理由见解析10.(2022秋·山东青岛·高三统考期末)记数列{}n a 的前n 项和为n S ,11a =,______.给出下列两个条件:条件①:数列{}n a 和数列{}1n S a +均为等比数列;条件②:1121222n n n n a a a na -+++⋅⋅⋅+=.试在上面的两个条件中任选一个,补充在上面的横线上,完成下列两问的解答:(注:如果选择多个条件分别解答,按第一个解答计分.)(1)求数列{}n a 的通项公式;(2)记正项数列{}n b 的前n 项和为n T ,12b a =,23b a =,14n n n T b b +=⋅,求211(1)nii i i b b +=⎡⎤-⎣⎦∑.【答案】(1)12n n a -=(2)288n n+【分析】(1)选择条件①:先由{}1n S a +为等比数列结合等比中项列出式子,再设出等比数列{}n a 的公比,通过等比数列公式化简求值即可得出答案;选择条件②:先由1121222n n n n a a a na -+++⋅⋅⋅+=得出()()12121222212n n n n a a a n a n --++⋅⋅⋅+=-≥,两式做减即可得出()122n n a a n +=≥,再验证1n =时即可利用等比数列通项公式得出答案;(2)通过14n n n T b b +=⋅得出()1142n n n T b b n --⋅≥=,两式相减结合已知即可得出()1142n n b b n +--=≥,即数列{}n b 的奇数项、偶数项分别都成公差为4的等差数列,将211(1)nii i i b b+=⎡⎤-⎣⎦∑转化即可得出答案.【详解】(1)选条件①:数列{}1n S a +为等比数列,()()()2211131S a S a S a ∴+=++,即()()2121123222a a a a a a +=++,11a = ,且设等比数列{}n a 的公比为q ,()()22222q q q ∴+=++,解得2q =或0q =(舍),1112n n n a a q --∴==,选条件②:1121222n n n n a a a na -+++⋅⋅⋅+= ①,()()1212122212n n n n a a a n a n ---++⋅⋅⋅+=-≥∴,即()()12121222212n n n n a a a n a n --++⋅⋅⋅+=-≥ ②,由①②两式相减得:()()12221n n n n a na n a +=-≥-,即()122n n a a n +=≥,令1121222n n n n a a a na -+++⋅⋅⋅+=中1n=得出212a a =也符合上式,故数列{}n a 为首项11a =,公比2q =的等比数列,则1112n n n a a q --==,(2)由第一问可知,不论条件为①还是②,都有数列{}n a 为首项11a =,公比2q =的等比数列,即12n n a -=,11.(2022·湖北·黄冈中学校联考模拟预测)已知数列{}n a 满足0n a ≠,*N n ∈.(1)若2210n n n a a ka ++=>且0n a >.(ⅰ)当{}lg n a 成等差数列时,求k 的值;(ⅱ)当2k =且11a =,4a =2a 及n a 的通项公式.(2)若21312n n n n a a a a +++=-,11a =-,20a <,[]34,8a ∈.设n S 是{}n a 的前n 项之和,求2020S 的最大值.12.(2022秋·湖南长沙·高三校考阶段练习)已知数列{}n a 的前n 项和1122n n n S a -⎛⎫=--+ ⎪⎝⎭(n *∈N ),数列{}n b 满足2nn n b a =.(1)求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式;(2)设数列{}n c 满足()()131n nn n a c n λ--=-(λ为非零整数,n *∈N ),问是否存在整数λ,使得对任意n *∈N ,都有1n n c c +>.13.(2022秋·湖南衡阳·高三衡阳市一中校考期中)已知n S 为数列{}n a 的前n 项和,25a =,14n n n S S a +=++;{}n b 是等比数列,29b =,1330bb +=,公比1q >.(1)求数列{}n a ,{}n b 的通项公式;(2)数列{}n a 和{}n b 的所有项分别构成集合A ,B ,将A B ⋃的元素按从小到大依次排列构成一个新数列{}n c ,求2012320T c c c c =++++ .【答案】(1)43n a n =-,3nn b =(2)660【分析】(1)将14n n n S S a +=++移项作差可得{}n a 是等差数列,结合25a =可求出数列{}n a 的通项公式,将1,b q 代入等式计算,即可求出数列{}n b 的通项公式;(2)由2077a =可判断前20项中最多含有123,,b b b 三项,排除23b a =可确定前20项中14.(2022·浙江·模拟预测)已知正项数列{}n a 满足11a =,当2n ≥时,22121n n a a n --=-,{}n a 的前n 项和为n S .(1)求数列{}n a 的通项公式及n S ;(2)数列{}n b 是等比数列,q 为数列{}n b 的公比,且13b q a ==,记21n n n nS a c b -+=,证明:122733n c c c ≤++⋅⋅⋅+<15.(2022秋·广东广州·高三校联考阶段练习)已知数列{}n a 的前n 项和为n S ,且12a =,132n n S S +=+,数列{}n b 满足()1122,n n n b b b n++==,其中*n ∈N .(1)分别求数列{}n a 和{}n b 的通项公式;(2)在n a 与1n a +之间插入n 个数,使这2n +个数组成一个公差为n c 的等差数列,求数列{}n n b c 的前n 项和nT【答案】(1)1*(2)3n n a n -=⋅∈N ,()*)1(n b n n n =+∈N (2)()*)121(3n n T n n =+-∈N 【分析】(1)由132n n S S +=+可得12)3(2n n S S n -=+≥,两式作差即可得数列{}n a 的递推关系,即可求通项,最后验证1a 是否符合即可;数列{}n b 利用累乘法即可求,最后验证1b 是否符合即可;(2)由题,由等差数列的性质得()11n n n a a n c +-=+,即可求出n c 的通项公式,最后利用错位相减法求n T 即可【详解】(1)由132n n S S +=+可得12)3(2n n S S n -=+≥,两式相减可得13(2)n n a a n +=≥,故数列{}n a 从第3项开始是以首项为2a ,公比3q =的等比数列.又由已知132n n S S +=+,令1n =,得213+2S S =,即12132a a a +=+,得21226a a =+=,故123)2(n n a n -=⋅≥;又12a =也满足上式,则数列{}n a 的通项公式为1*(2)3n n a n -=⋅∈N ;16.(2023·辽宁朝阳·校联考一模)已知数列{}n a 的前n 项和为()+N 1=∈+n nS n n ,数列{}n b 满足11b =,且()1+N 2+=∈+nn n b b n b (1)求数列{}n a 的通项公式;(2)求数列{}n b 的通项公式;(3)对于N n +∈,试比较1n b +与n a 的大小.17.(2022秋·广东深圳·高三校考阶段练习)记n S 为数列{}n a 的前n 项和,已知{}12,32n n a a S =-是公差为2的等差数列.(1)求{}n a 的通项公式;(2)若{}1,n n n a b b a a +=的前n 项和为n T ,求证:14n T <.18.(2022秋·江苏常州·高三常州市第一中学校考阶段练习)已知正项数列{}n a 满足)1,2n n a a n n -+-∈≥N ,11a =.数列{}n b 满足各项均不为0,14b =,其前n项的乘积112n n n T b -+=⋅.(1)求数列{}n a 通项公式;(2)设2log n n c b =,求数列{}n c 的通项公式;(3)记数列(){}1nn a -的前2m 项的和2m S ,求使得不等式21210m S c c c ≥+++L 成立的正整数m 的最小值.19.(2022秋·江苏宿迁·高三沭阳县建陵高级中学校考期中)已知数列{}n a满足2123n n n a a a ++=+,112a =,232a =.(1)证明:数列{}1n n a a ++为等比数列,求{}n a 的通项公式.(2)若数列{}n a 的前n 项和为n S ,且()*127N 4n S n n λ⎛⎫+≥-∈ ⎪⎝⎭恒成立,求实数λ的取值范围.20.(2022秋·江苏南通·高三江苏省如东高级中学校考阶段练习)等差数列{}n a 的前n 项和为n S ,且4224,21n n S S a a ==+.数列{}n b 的前n 项和为n T ,且112n n na T ++=(1)求数列{}{},n n ab 的通项公式;(2)数列{}n c 满足cos ,,n n na n n cb n π⎧=⎨⎩为奇数为偶数,求21ni i c =∑.21.(2023秋·广东·高三校联考期末)已知数列1:A a ,2a ,…,n a ,…满足10a =,11i i a a +=+(1,2,,,i n = ),数列A 的前n 项和记为n S .(1)写出3S 的最大值和最小值;(2)是否存在数列A ,使得20221011S =如果存在,写出此时2023a 的值;如果不存在,说明理由.22.(2023秋·山东日照·高三校联考期末)已知数列{}n a 的各项均为非零实数,其前n 项和为(0)n n S S ≠,且21n n n n S a S a ++⋅=⋅.(1)若32S =,求3a 的值;(2)若1a a =,20232023a a =,求证:数列{}n a 是等差数列,并求其前n 项和.23.(2023秋·江苏南京·高三南京市第一中学校考期末)已知数列{}{},n n a b 满足222,1n n n n n a b a b +=-=.(1)求{}{},n n a b 的通项公式;(2)记数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,证明:11121n n S n +≤-+-.24.(2023春·湖南长沙·高三湖南师大附中校考阶段练习)已知数列{}n a 各项都不为0,12a =,24a =,{}n a 的前n 项和为n S ,且满足14n n n a a S +=.(1)求{}n a 的通项公式;(2)若12311231C C CC C n nn nnnn nn nb a a a a a --=+++⋅⋅⋅++,求数列112n n n n b b b ++⎧⎫+⎨⎬⎩⎭的前n 项和n T .25.(2023春·江苏南京·高三校联考阶段练习)已知数列{}n a 中11a =,其前n 项和记为n S ,且满足()()1232n n S S S n S ++⋅⋅⋅+=+.(1)求数列()1n S n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭的通项公式;(2)设无穷数列1b ,2b ,…n b ,…对任意自然数m 和n ,不等式1m n m n nb b b m a +--<+均成立,证明:数列{}n b 是等差数列.26.(2023·山东·沂水县第一中学校联考模拟预测)在如图所示的平面四边形ABCD 中,ABD △的面积是CBD △面积的两倍,又数列{}n a 满足12a =,当2n ≥时,()()1122n n n n BD a BA a BC--=++- ,记2nn n a b =.(1)求数列{}n b 的通项公式;(2)求证:22211154b b b +++< .(2)由(1)可得:当1n =时,则1b 当2n ≥时,可得()(2211212n b n n=<-则222121111111114223nb b b ⎛+++=+-+- ⎝L 27.(2022秋·湖北·高三校联考开学考试)已知数列{}n a 满足11a =,1n a +=中*N n ∈)(1)判断并证明数列{}n a 的单调性;(2)记数列{}n a 的前n 项和为n S ,证明:20213522S <<.⎫⎪⎪⎪28.(2022秋·山东潍坊·高三统考阶段练习)定义:对于任意一个有穷数列,在其每相邻的两项间都插入这两项的和,得到的新数列称为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和,得到二阶和数列,以此类推可以得到n 阶和数列,如{}2,4的一阶和数列是{}2,6,4,设n 阶和数列各项和为n S .(1)试求数列{}2,4的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想{}n S 的通项公式(无需证明);(2)设()()()()331321log 3log 3n n n n S n b S S +-+=-⋅-,{}n b 的前m 项和m T ,若20252m T >,求m 的最小值【答案】(1)230S =,384S =,133n n S +=+(2)7【分析】(1)根据123,,S S S 进行猜想,结合等比数列的知识进而求解,并进行推导.(2)利用裂项求和法求得m T ,由此列不等式,从而求得m 的最小值.【详解】(1)一阶和数列:{}2,6,4,对应112S =;二阶和数列:{}2,8,6,10,4,对应230S =;三阶和数列:{}2,10,8,14,6,16,10,14,4,对应384S =;故猜想136n n S S -=-,()1333n n S S --=-,所以数列{}3n S -是首项为139S -=,公比为3的等比数列,所以11393,33n n n n S S -+-=⋅=+.下面证明136n n S S -=-:设112124n m m S a a a a --=++++++ ,则()()()()1112112244n m m m m m S a a a a a a a a a --=+++++++++++++29.(2022秋·湖北黄冈·高三统考阶段练习)已知数列{}1,1,n n a a S =为数列{}n a 的前n 项和,且1(2)3n n S n a =+.(1)求数列{}n a 的通项公式;(2)求证:sin 0n n a a -<;(3)证明:212311111sin 1sin 1sin 1sin e n a a a a ⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ .30.(2023·浙江温州·统考二模)设n S 为正项数列{}n a 的前n 项和,满足222n n n S a a =+-.(1)求{}n a 的通项公式;(2)若不等式214na n a t ⎛⎫+ ⎪+⎝≥⎭对任意正整数n 都成立,求实数t 的取值范围;(3)设3ln(1)4n a n nb e+=(其中e 是自然对数的底数),求证:123426n n b b b b b b ++++<….。

高考数学压轴题100题汇总(含答案)

高考数学压轴题100题汇总(含答案)

高考数学压轴题100题汇总(含答案)1. 设函数f(x) = x^3 3x + 1,求f(x)的极值点和极值。

答案:f(x)的极值点为x = 1和x = 1,极值分别为f(1) = 1和f(1) = 3。

2. 已知等差数列{an}的前n项和为Sn = n^2 + n,求该数列的通项公式。

答案:an = 2n + 1。

3. 已知三角形ABC中,AB = AC = 5,BC = 8,求三角形ABC的面积。

答案:三角形ABC的面积为12。

4. 设直线y = kx + b与圆x^2 + y^2 = 1相切,求k和b的值。

答案:k = ±√3/3,b = ±√6/3。

5. 已知函数f(x) = log2(x^2 + 1),求f(x)的导数。

答案:f'(x) = 2x/(x^2 + 1)ln2。

6. 已知向量a = (2, 3),向量b = (1, 4),求向量a和向量b的夹角。

答案:向量a和向量b的夹角为arccos(1/√5)。

7. 已知矩阵A = [1 2; 3 4],求矩阵A的逆矩阵。

答案:矩阵A的逆矩阵为[4 2; 3 1]。

8. 已知函数f(x) = x^3 6x^2 + 9x + 1,求f(x)的零点。

答案:f(x)的零点为x = 1和x = 3。

9. 已知函数f(x) = sin(x) cos(x),求f(x)在区间[0, π/2]上的最大值。

答案:f(x)在区间[0, π/2]上的最大值为√2。

10. 已知函数f(x) = x^2 + 4x + 4,求f(x)的顶点坐标。

答案:f(x)的顶点坐标为(2, 0)。

高考数学压轴题100题汇总(含答案)11. 已知函数f(x) = e^x 2x,求f(x)的导数。

答案:f'(x) = e^x 2。

12. 已知函数f(x) = x^2 4x + 4,求f(x)的极值点和极值。

答案:f(x)的极值点为x = 2,极值为f(2) = 0。

高考数学试卷压轴题

高考数学试卷压轴题

高考数学试卷压轴题
1.一边长度为10cm 的正方形铁皮,四个角各剪去边长为( x ) 的小正方形后,折成一个
无盖的容器,试问:如何选择( x ) 使得容器的容积最大?
2.设某市某种疾病的患病率为( p ),市民们通过疾病检测的阳性概率为0.05。

某市民在
检测结果为阳性的情况下,重新检测的阳性概率提高到0.1。

求该市民患病的概率。

3.已知函数( f(x) = x^3 - 3x^2 + 4x ) 在区间([-2, 3]) 上取得极值。

求函数在该区间上的
最大值和最小值,并求出取得最大值和最小值时的( x ) 值。

4.某物体在空气中自由落体,已知其下落高度( h(t) = 40t - 4.9t^2 ),其中( t ) 为时间
(s),求该物体自由落体的最大高度以及达到最大高度时的时间。

高考数学压轴题精选

高考数学压轴题精选

高考数学压轴题精选1、已知等差数列{an}的前n项和为Sn=n²-n+1,求a1和公差d。

2、在坐标平面内,过点A(1,2)且与x轴夹角为α的直线l1,与过点B(-3,4)且与x轴夹角为β的直线l2相交于点C。

求证:α-β=90°。

3、已知函数f(x)=ax²+bx+c,其中a,b,c均为正实数。

若f(1)=1,f(2)=4,f(3)=9,求f(4)的值。

4、已知函数f(x)=x³-3x²+3x-1,求函数f(x)的单调递增区间和单调递减区间。

5、已知函数f(x)=ax²+bx+c,其中a,b,c均为实数,且a≠0。

若对于任意的x,均有f(x)+f'(x)>0,求a的取值范围。

6、已知函数f(x)=log₃(2x+1),求f(2)的值。

7、在平面直角坐标系中,点A的坐标为(2,-1),点B的坐标为(-3,4)。

若点C在x轴上且满足AC=BC,求点C的坐标。

8、若函数f(x)=x³+3x²+5x+k能被(x-2)整除,求k的值。

9、已知函数f(x)=a|x-h|+k,其中a,h,k为常数,且a>0。

若图像过点(3,4),且在x=1处取得最大值,求a,h,k的值。

10、已知函数f(x)=x³-3x²+3x-1,求f(x)的零点和极值点。

11、已知函数f(x)=sin⁡(nx+π/6)+cos⁡(nx-π/3),其中n为正整数,求函数f(x)的周期。

12、已知正整数n的二进制表示中有3个1,求n的十进制表示的所有可能值。

13、已知函数f(x)=a³x³+3ax²-6x,其中a为常数,若f(x)在区间[1,2]上的平均值为2,求a的值。

高考数学压轴题精选100题汇总(含答案)

高考数学压轴题精选100题汇总(含答案)

7. 已知动圆过定点 P(1,0),且与定直线 L:x=-1 相切,点 C 在 l 上. (1)求动圆圆心的轨迹 M 的方 程; (2)设过点 P,且斜率为 3 的直线与曲线 M 相交于 A, B 两点. (i)问:△ABC 能否为正三角形?若能,求点 C 的坐标;若不能,说明理由 (ii)当△ABC 为钝角三角形时,求这种点 C 的纵坐标的取值范围.
1
1
n 1 1
(Ⅱ)已知各项不为零的数列an 满足 4Sn f ( ) 1 ,求证: ln

an
an1
n
an
(Ⅲ)设 bn 1 , Tn 为数列bn 的前 n 项和,求证: T2008 1 ln 2008 T2007 .
ba b a
2
(1)求椭圆的方程;
(2)若直线 AB 过椭圆的焦点 F(0,c),(c 为半焦距),求直线 AB 的斜率 k 的值;
(3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
5.已知数列{an}中各项为: 12、1122、111222、……、111 22 2 ……
n
T 2n 1 .
n
3
26. 对于函数 f (x) ,若存在 x0 R ,使 f (x0 ) x0 成立,则称 x0 为 f (x) 的不动点.如果函数
f (x) x2 a (b, c N*) 有且仅有两个不动点 0 、 2 ,且 f (2) 1 .
bx c
2
(Ⅰ)试求函数 f (x) 的单调区间;
a2 a3
an1 3
14.已知函数gx a2 x3 a x 2 cxa 0,
32
(I)当a 1 时,若函数 gx在区间1,1上是增函数,求实数c的取值范围;

2023届高考数学压轴题(函数整数解问题)专题练习(附答案)

2023届高考数学压轴题(函数整数解问题)专题练习(附答案)

2023届高考数学压轴题(函数整数解问题)专题练习1.已知函数1()()22x f x kx e x =+-,若()0f x <的解集中有且只有一个正整数,则实数k 的取值范围为() A.221[4e -,21)2e - B.221(4e -,21]2e - C.322121[,64e e -- D.32121[,62e e -- 【名师解析】解:()0f x <,即1(202x kx e x +-<,也就是1()22x kx e x +<,即122x xkx e +<,令2()x xg x e =,则2222(1)()x x x xe xe x g x e e --'==, 当(,1)x ∈-∞时,()0g x '>,当(1,)x ∈+∞时,()0g x '<. ()g x ∴在(,1)-∞上单调递增,在(1,)+∞上单调递减. 作出函数()g x 与12y kx =+的图象如图: 12y kx =+的图象过定点1(0,2P ,2(1,A e ,24(2,B e, 21212102PAe k e -==--,2241212204PB e k e -==--. ∴实数k 的取值范围为221[4e -,21)2e -. 故选:A .2.已知函数()(2)(0)x f x kx e x x =-->,若()0f x <的解集为(,)s t ,且(,)s t 中恰有两个整数,则实数k 的取值范围为( )A.211[1,2)e e++ B.431112[,)23e e ++ C.21(,1)e -∞+ D.32121[,1)3e e ++ 【名师解析】解:由()(2)0x f x kx e x =--<,得(2)x kx e x -<, 即2xxkx e -<,(0)x >, 设()xxh x e =,(0)x >, 21()()x x x x e xe xh x e e--'==,由()0h x '>得01x <<,函数()h x 为增函数, 由()0h x '<得1x >,函数()h x 为减函数, 即当1x =时,()h x 取得极大值,极大值为h (1)1e=, 要使2x xkx e-<,(0)x >,在s ,)t 中恰有两个整数,则0k …时,不满足条件. 则0k >,当2x =时,h (2)22e =,当3x =时,h (3)33e =,即22(2,)A e ,33(3,)B e, 则当直线()2g x kx =-在A ,B 之间满足条件,此时两个整数解为1,2, 此时满足232(2)3(3)g e g e ⎧<⎪⎪⎨⎪⎪⎩…,即23222332k e k e ⎧-<⎪⎪⎨⎪-⎪⎩…得2311213k e k e ⎧<+⎪⎪⎨⎪+⎪⎩…,即3212113k e e +<+…, 即k 的取值范围是312[3e +,211)e+, 故选:D .3.已知函数()x f x xe mx m =-+,若()0f x <的解集为(,)a b ,其中0b <;不等式在(,)a b中有且只有一个整数解,则实数m 的取值范围是( ) A.221(,)32e eB.221(,)3e eC.221[,)32e eD.221[,3e e【名师解析】解:设()x g x xe =,y mx m =-, 由题设原不等式有唯一整数解, 即()x g x xe =在直线y mx m =-下方,()(1)x g x x e '=+,()g x 在(,1)-∞-递减,在(1,)-+∞递增,故1()(1)min g x g e=-=-,y mx m =-恒过定点(1,0)P ,结合函数图象得PA PB K m K <…, 即22132m e e<…, ,故选:C .4.已知函数()(2)(0)x f x x kx e x =+->,若()0f x >的解集为(,)a b ,且(,)a b 中恰有两个整数,则 实数k 的取值范围为( ) A.21(,)e -∞ B.411[2e +,312)3e +C.312[3e +,211)e + D.21[1e +,12)e+ 【名师解析】解:设()xxg x e =, 则1()xxg x e -'=当01x <<时,()0g x '>,当1x >时,()0g x '<,所以函数()g x 在(0,1)为增函数,在(1,)+∞为减函数,()0f x >的解集为(,)a b 等价于(2)xxkx e >-的解集为(,)a b , 即当且仅当在区间(,)a b 上函数()xxg x e =的图象在直线2y kx =-的上方, 函数()xxg x e =的图象与直线2y kx =-的位置关系如图所示, 由图可知:(1)2(2)22(3)32g k g k g k >-⎧⎪>-⎨⎪-⎩…,解得:3221113k e e+<+…, 故选:C .5.已知函数2()(1)x f x mx e x =--,若不等式()0f x <的解集中恰有两个不同的正整数解,则实数m 的取值范围( ) A.221(2e +,11)e + B.221[2e +,11)e + C.331[3e +,2212e + D.331(3e +,2212e + 【名师解析】解:函数2()(1)xf x mx e x =--,不等式()0f x <化为:21x x mx e -<.分别令()1f x mx =-,2()x x g x e =.(2)()xx x g x e -'=. 可得:函数()g x 在(,0)-∞上单调递减,在(0,2)上单调递增,在(2,)+∞上单调递减.(0)0g =,g (2)24e =.如图所示.不等式()0f x <的解集中恰有两个不同的正整数解,∴正整数解为1,2,∴(2)(2)(3)(3)f g f g <⎧⎨⎩…,即23421931m e m e ⎧-<⎪⎪⎨⎪-⎪⎩…. 解得:32312132m e e +<+…. ∴数m 的取值范围是331[3e +,221)2e +. 故选:C .6.已知函数()()x f x x a e alnx =--,若恰有三个正整数0x ,使得0()0f x <,则实数a 的取值范围是( ) A.333(3e e ln +,444]22e e ln +B.412[42ln e +,313)33ln e +C.222(2e e ln +,444]22e e ln +D.313[33ln e +,212)22ln e+【名师解析】解:()f x 的定义域为(0,)+∞, 由()0f x <可得xalnxx a e -<, (1)显然0a =时,不等式在(0,)+∞上无解,不符合题意; (2)当0a <时,不等式为11x lnx x a e->, 令1()1f x x a =-,()x lnxg x e =,则当1x …时,()1f x <-,()0g x …,故不等式11x lnxx a e->没有正整数解,不符合题意;(3)当0a >时,不等式为11x lnx x a e-<, 显然1()1f x x a=-为增函数, 1()x xlnxg x xe -'=,令()1h x xlnx =-,则()(1)h x lnx '=-+, ∴当1x e >时,()0h x '<,故()h x 在1(e,)+∞上单调递减, 而h (1)10=>,h (2)12204eln ln =-=<, ∴存在0(1,2)x ∈使得0()0h x =,∴当[1x ∈,0)x 时,()0h x >,当0x x >时,()0h x <,即当[1x ∈,0)x 时,()0g x '>,当0x x >时,()0g x '<,()g x ∴在[1,0)x 上单调递增,在0(x .)+∞上单调递减, 又g (1)0=,且1x >时,()0g x >, 故不等式11x lnxx a e-<的三个正整数解为1,2,3, ∴(1)(1)(3)(3)(4)(4)0f g f g f g a <⎧⎪<⎪⎨⎪⎪>⎩…,即34110331441a ln a e ln a e ⎧-<⎪⎪⎪-<⎨⎪⎪-⎪⎩…,解得:343434322e e a e ln e ln <++…. 故选:A .7.已知函数若1()(34x f x kx e x =+-,若()0f x <的解集中恰有两个正整数,则k 的取值范围为( )A.331(12e -,231]8e - B.331[12e -,231)8e -C.231(8e -,314e - D.231[8e -,31)4e - 【名师解析】解:由()0f x <得1()()304x f x kx e x =+-<,即1()34x kx e x +<,即13(4x xkx e +<的解集中恰有两个正整数,设3()x x h x e =,则23333()()x x x xe xe xh x e e--'==, 由()0h x '>得330x ->得1x <,由()0h x '<得330x -<得1x >,即当1x =时函数()h x 取得极大值h (1)3e=, 设函数1()4g x kx =+, 作出函数()h x 的图象如图,由图象知当0k …,13()4x xkx e +<的解集中有很多整数解,不满足条件.则当0k >时,要使,13()4x xkx e+<的解集中有两个整数解,则这两个整数解为1x =和2x =, h (2)26e =,h(3)39e =,(2A ∴,26(3B e ,39)e , 当直线()g x 过(2A ,26(3B e ,39)e 时,对应的斜率满足 21624A k e +=,31934B k e +=,得2318A k e =-,33112B k e =-, 要使,13()4x xkx e+<的解集中有两个整数解,则B A k k k <…,即323131128k e e -<-…, 即实数k 的取值范围是331[12e -,231)8e -, 故选:B .8.已知()f x '是函数()f x 的导函数,且对任意的实数x 都有1()()(xf x f x e e '=-是自然对数的底数),(0)0f =,若不等式()0f x k ->的解集中恰有两个整数,则实数k 的取值范围是( )A.221[,)e eB.3232(,e e C.3232(,e e D.3232[,e e 【名师解析】解:设()()x g x e f x =, 则()[()()]1x g x e f x f x '='+=, 可设()g x x c=+,(0)(0)00g f c ==+= . 0c ∴=,()g x x ∴=, ()xx f x e ∴=, 1()xxf x e -∴'=, 当1x <时,()0f x '>,函数()f x 单调递增, 当1x >时,()0f x '<,函数()f x 单调递减, ()max f x f ∴=(1)1e=, 当x →+∞时,()0f x →,不等式()0f x k ->的解集中恰有两个整数,结合图形可知,整数为1,2f ∴(3)k f <…(2), ∴3232k e e <… 故选:D .9.已知函数(2)()ln x f x x=,关于x 的不等式2()()0f x af x +>只有两个整数解,则实数a 的取值范围是( )A.1(2,6]3ln ln -- B.16(,3ln e --C.1[6,2)3ln lnD.62[,3ln e【名师解析】解:21(2)()ln x f x x -'=,令()0f x '=得2ex =, ∴当02ex <<时,()0f x '>,()f x 单调递增, 当2ex >时,()0f x '<,()f x 单调递减, 由当12x <时,()0f x <,当12x >时,()0f x >, 作出()f x 的大致函数图象如图所示:2()()0f x af x +> ,(1)若0a =,即2()0f x >,显然不等式有无穷多整数解,不符合题意; (2)若0a >,则()f x a <-或()0f x >,由图象可知()0f x >有无穷多整数解,不符合题意; (3)若0a <,则()0f x <或()f x a >-,由图象可知()0f x <无整数解,故()f x a >-有两个整数解, f (1)f =(2)2ln =,且()f x 在(2e,)+∞上单调递减,()f x a ∴>-的两个整数解必为1x =,2x =, 又f (3)63ln =, ∴623ln a ln -<…,解得623ln ln a -<-…. 故选:A .10.函数()(4)(1)f x kx lnx x x =+->,若()0f x >的解集为(,)s t ,且(,)s t 中只有一个整数,则实数k 的取值范围为( ) A.1(22ln -,1433ln - B.1(22ln -,14)33ln - C.14(33ln -,11]22ln - D.14(33ln -,11)22ln - 【名师解析】解:令()0f x >,得:4xkx lnx+>, 令()xg x lnx =,则21()()lnx g x lnx -'=, 令()0g x '>,解得:x e >,令()0g x '<,解得:1x e <<, 故()g x 在(1,)e 递减,在(,)e +∞递增, 结合函数的单调性得:24(2)34(3)k g k g +>⎧⎨+⎩…,即22423343k ln k ln ⎧+>⎪⎪⎨⎪+⎪⎩…,解得:1142233k ln ln -<-…, 故选:A . 11.已知函数()xxf x e =,若不等式()(1)0f x a x -+>的解集中有且仅有一个整数,则实数a 的取值范围是( ) A.211[,]e eB.211[,)e eC.221[,]32e eD.221[,)32e e【名师解析】解:1()xxf x e -'=, ∴当1x <时,()0f x '>,当1x >时,()0f x '<,()f x ∴在(,1)-∞上单调递增,在(1,)+∞上单调递减, 作出()y f x =的函数图象如图所示:由()(1)0f x a x -+>仅有一个整数解得()(1)f x a x >+只有一整数解, 设()(1)g x a x =+,由图象可知:当0a …时,()()f x g x >在(0,)+∞上恒成立,不符合题意, 当0a >时,若()()f x g x >只有1个整数解,则此整数解必为1, ∴(1)(1)(2)(2)f g f g >⎧⎨⎩…,即21223a eae ⎧>⎪⎪⎨⎪⎪⎩…,解得22132a e e <…. 故选:D .12.已知函数2()(31)x f x x x e k =++-有三个不同的零点,则实数k 的取值范围是( )A.415(,)e e-B.45(0,)e C.451(,e e -D.1(,)e-+∞【名师解析】解:函数2()(31)x f x x x e k =++-, 可得:2()(54)(1)(4)x x f x x x e x x e '=++=++,()f x 在(,4)-∞-和(1,)-+∞上是增函数;在(4,1)--上是减函数, 当x →-∞时()f x k →-,当x →+∞时()f x →+∞, 所以函数2()(31)x f x x x e k =++-有三个不同的零点, 只需:满足0k -<,45(4)0f k e -=->,1(1)0f k e-=--<,解得45(0,)k e∈ 故选:B.13.已知函数()(2)x f x x e ax a =---,若不等式()0f x >恰有两个正整数解,则a 的取值范围是( ) A.31[4e -,0)B.1[2e -,0)C.31[4e -,)2eD.31[4e -,2)【名师解析】解:令()(2)x g x x e =-,()h x ax a =+, 由题意知,存在2个正整数,使()g x 在直线()h x 的上方,()(1)x g x x e '=- ,∴当1x >时,()0g x '<,当1x <时,()0g x '>,()max g x g ∴=(1)e =,且(0)2g =,g (2)0=,g (3)3e =-, 直线()h x 恒过点(1,0)-,且斜率为a , 由题意可知,3(1)(2)0(3)h e h h e <⎧⎪<⎨⎪-⎩…,故实数a 的取值范围是31[4e -,0),故选:A .14.已知函数2,0(),0x x x f x e x <⎧=⎨⎩…,且()||f x a x …有且只有一个整数解,则a 的取值范围是( )A.(2,]eB.(2,2]e C.(2,8]D.[e ,21)2e【名师解析】解:0a …时,||y a x =的图象在x 轴下方,不符题意; 0a >时,()||f x a x …有且只有一个整数解,即为x e ax …有且只有一个整数解, 由y ax =与x y e =相切,设切点为(,)m m e , 可得mme e a m==,解得1m =,a e =, 由题意可得x e ax …有且只有一个整数解,且为1, 可得22e a >,即212a e <,且a e …,即212e a e <…,故选:D .15.函数()(4)(1)f x kx lnx x x =+->,若()0f x >的解集为(,)s t ,且(,)s t 中恰有两个整数,则实数k 的取值范围为( ) A.11(2,1)222ln ln -- B.11(2,1]222ln ln -- C.141(,1)3322ln ln -- D.141(,1]3322ln ln -- 【名师解析】解:令()0f x >,得:4xkx lnx+>, 令()xg x lnx=,则21()()lnx g x lnx -'=,令()0g x '>,解得:x e >,令()0g x '<,解得:1x e <<, 故()g x 在(1,)e 递增,在(,)e +∞递减, 结合函数的单调性得44(4)34(3)k g k g +⎧⎨+>⎩…,即44443343k ln k ln ⎧+⎪⎪⎨⎪+>⎪⎩…,解得:14113322k ln ln -<-…, 故选:D .16.已知函数1()()23x f x kx e x =+-,若()0f x <的解集中有且只有一个正整数,则实数k 的取值范围为22121[,63e e -- . 【名师解析】解: 且()0f x <的解集中有且只有一个正整数, ∴有且只有一个正整数使123xx kx e +<,令1()3g x kx =+,2()x xh x e =,易得()h x 的图象如图()g x 的图象恒过1(0,3,∴结合()g x 和()h x 的图象特点可知0k >.且()()()()212113221423k g h e g h k e ⎧+<⎪<⎧⎪⎪⎨⎨⎪⎩⎪+⎪⎩即……. 故答案为:22121[,)63e e --. 17.已知函数()(1)(2)xf x m x x e e =----,若关于x 的不等式()0f x >有且只有一个正整数解,则实数m 的取值范围是 3(,2e e e + .【名师解析】解:()0f x >即为(1)(2)x m x x e e ->-+,设(1)y m x =-,()(2)x g x x e e =-+,()(1)x g x x e ∴'=-,当1x >时,()0g x '>,()g x 单增,当1x <时,()0g x '<,()g x 单减,()g x g ∴…(1)0=,当x →+∞时,()g x →+∞,当x →-∞时,()g x e →,函数(1)y m x =-恒过(1,0), 分别画出函数(1)y m x =-及函数()g x的图象如图所示,由图可知,要使不等式()0f x >有且仅有一个正整数解,则(1)y m x =-的图象在函数()y g x =图象的上方只有一个正整数值2,2m g ∴…(3)3e e =+且m g >(2)e =, ∴32e ee m +<…. 故答案为:3(,]2e ee +.。

高考数学压轴题专练

高考数学压轴题专练

高中数学学习材料金戈铁骑整理制作题型突破练——压轴题专练压轴题专练(一)建议用时:40分钟1.[2015·山西质监]已知椭圆E 的两焦点分别为(-1,0),(1,0),且经过点⎝⎛⎭⎪⎫1,22.(1)求椭圆E 的方程;(2)过P (-2,0)的直线l 交E 于A ,B 两点,且PB →=3P A →,设A ,B 两点关于x 轴的对称点分别是C ,D ,求四边形ACDB 的外接圆的方程.解 (1)由题意知c =1,2a -22=22+⎝ ⎛⎭⎪⎫222,∴a =2,b =a 2-c 2=1,椭圆E 的方程为x22+y 2=1.(2)设l :x =my -2,代入椭圆方程得(m 2+2)y 2-4my +2=0, 由Δ=8m 2-16>0得m 2>2. 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m m 2+2,①y 1y 2=2m 2+2.② 由PB →=3P A →,得y 2=3y 1.③ 由①②③解得m 2=4,符合m 2>2.不妨取m =2,则线段AB 的垂直平分线的方程为y =-2x -23,则所求圆的圆心为⎝ ⎛⎭⎪⎫-13,0.又B (0,1),∴圆的半径r =103.∴圆的方程为⎝ ⎛⎭⎪⎫x +132+y 2=109. 2.已知函数f (x )=(ax 2+bx +c )e x 在[0,1]上单调递减且满足f (0)=1,f (1)=0.(1)求实数a 的取值范围;(2)设g (x )=f (x )-f ′(x ),求g (x )在[0,1]上的最大值和最小值. 解 (1)由f (0)=1,f (1)=0得c =1,a +b =-1, 则f (x )=[ax 2-(a +1)x +1]e x , f ′(x )= [ax 2+(a -1)x -a ]e x .依题意知,对任意的x ∈[0,1],有f ′(x )≤0.当a >0时,因为二次函数y =ax 2+(a -1)x -a 的图象开口向上,而f ′(0)=-a <0,所以f ′(1)=(a -1)e ≤0,即0<a ≤1;当a =0时,对任意的x ∈[0,1],f ′(x )=-x e x ≤0,符合条件;当a <0时,f ′(0)=-a >0,不符合条件.故实数a 的取值范围是[0,1].(2)因为g (x )=(-2ax +1+a )e x ,g ′(x )=(-2ax +1-a )e x , ①当a =0时,g ′(x )=e x >0,g (x )在x =0处取得最小值g (0)=1,在x =1处取得最大值g (1)=e.②当a =1时,对任意的x ∈[0,1]有g ′(x )=-2x e x ≤0,g (x )在x =0处取得最大值g (0)=2,在x =1处取得最小值g (1)=0.③当0<a <1时,由g ′(x )=0得x =1-a2a >0.a .当1-a 2a ≥1,即0<a ≤13时,g (x )在[0,1]上单调递增,g (x )在x =0处取得最小值g (0)=1+a ,在x =1处取得最大值g (1)=(1-a )e.b .当1-a 2a <1,即13<a <1时,g (x )在x =1-a 2a 处取得最大值g ⎝⎛⎭⎪⎫1-a 2a=2a e 1-a2a ,在x =0或x =1处取得最小值,而g (0)=1+a ,g (1)=(1-a )e ,则当13<a ≤e -1e +1时,g (x )在x =0处取得最小值g (0)=1+a ;当e -1e +1<a <1时,g (x )在x =1处取得最小值g (1)=(1-a )e. 3.选做题(1)[选修4-1:几何证明选讲]如图,P 是⊙O 外一点,P A 是切线,A 为切点,割线PBC 与⊙O 相交于点B ,C ,PC =2P A ,D 为PC 的中点,AD 的延长线交⊙O 于点E .证明:①BE =EC ; ②AD ·DE =2PB 2.(2)[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos αy =2+2sin α(α为参数),M 为C 1上的动点,P 点满足OP →=2OM →,点P 的轨迹为曲线C 2. ①求C 2的参数方程;②在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |.(3) [选修4-5:不等式选讲]已知函数f (x )=|x -m |+|x +6|(m ∈R ).①当m =5时,求不等式f (x )≤12的解集;②若不等式f (x )≥7对任意实数x 恒成立,求m 的取值范围. 解 (1)证明:①∵PC =2P A ,PD =DC ,∴P A =PD ,△P AD 为等腰三角形.连接AB ,则∠P AB =∠DEB =β,∠BCE =∠BAE =α, ∵∠P AB +∠BCE =∠P AB +∠BAD =∠P AD =∠PDA =∠DEB +∠DBE ,∴β+α=β+∠DBE ,即α=∠DBE ,即∠BCE =∠DBE ,所以BE =EC .②∵AD ·DE =BD ·DC ,P A 2=PB ·PC ,PD =DC =P A , BD ·DC =(P A -PB )P A =PB ·PC -PB ·P A =PB ·(PC -P A ), PB ·P A =PB ·2PB =2PB 2.(2)①设P (x ,y ),则由条件知M ⎝ ⎛⎭⎪⎫x 2,y 2.由于M 点在C 1上,所以⎩⎪⎨⎪⎧x 2=2cos αy 2=2+2sin α,即⎩⎪⎨⎪⎧x =4cos αy =4+4sin α.从而C 2的参数方程为⎩⎪⎨⎪⎧x =4cos αy =4+4sin α(α为参数). ②曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的极坐标方程为ρ=8sin θ.射线θ=π3与C 1的交点A 的极径为ρ1=4sin π3, 射线θ=π3与C 2的交点B 的极径为ρ2=8sin π3. 所以|AB |=|ρ2-ρ1|=2 3.(3)①当m =5时,f (x )≤12即|x -5|+|x +6|≤12, 当x <-6时,得-2x ≤13, 即x ≥-132,所以-132≤x <-6;当-6≤x ≤5时,得11≤12成立,所以-6≤x ≤5; 当x >5时,得2x ≤11,即x ≤112,所以5<x ≤112.故不等式f (x )≤12的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-132≤x ≤112.②f (x )=|x -m |+|x +6|≥|(x -m )-(x +6)|=|m +6|,由题意得|m +6|≥7,则m +6≥7或m +6≤-7,解得m ≥1或m ≤-13,故m 的取值范围是(-∞,-13]∪[1,+∞).压轴题专练(二)建议用时:40分钟1.如图,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 是椭圆的两个顶点,椭圆的离心率为12,点C 在x 轴上,BC ⊥BF ,B ,C ,F 三点确定的圆M 恰好与直线x +3y +3=0相切.(1)求椭圆的方程;(2)过F 作一条与两坐标轴都不垂直的直线l 交椭圆于P ,Q 两点,在x 轴上是否存在点N ,使得NF 恰好为△PNQ 的内角平分线,若存在,求出点N 的坐标,若不存在,请说明理由.解 (1)由题意可知F (-c,0),∵e =12,∴b =3c ,即B (0,3c ),∵k BF =3c 0-(-c )=3,又∵k BC =-33,∴C (3c,0), 圆M 的圆心坐标为(c,0),半径为2c ,由直线x +3y +3=0与圆M 相切可得|c +3|1+(3)2=2c ,∴c =1.∴椭圆的方程为x 24+y 23=1.(2)假设存在满足条件的点N (x 0,0)由题意可设直线l 的方程为y =k (x +1)(k ≠0), 设P (x 1,y 1),Q (x 2,y 2) ∵NF 为△PNQ 的内角平分线, ∴k NP =-k NQ ,即y 1x 1-x 0=-y 2x 2-x 0,∴k (x 1+1)x 1-x 0=-k (x 2+1)x 2-x 0⇒(x 1+1)(x 2-x 0)=-(x 2+1)(x 1-x 0).∴x 0=x 1+x 2+2x 1x 2x 1+x 2+2.又⎩⎨⎧y =k (x +1)x 24+y 23=1,∴3x 2+4k 2(x +1)2=12.∴(3+4k 2)x 2+8k 2x +4k 2-12=0. ∴x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2.∴x 0=-8k 23+4k 2+8k 2-243+4k 22-8k 23+4k 2=-4, ∴存在满足条件的点N ,点N 的坐标为(-4,0).2.[2015·沈阳质监(一)]已知函数f (x )=a ln x (a >0),e 为自然对数的底数.(1)若过点A (2,f (2))的切线斜率为2,求实数a 的值; (2)当x >0时,求证:f (x )≥a ⎝⎛⎭⎪⎫1-1x ;(3)在区间(1,e)上f (x )x -1>1恒成立,求实数a 的取值范围.解 (1)f ′(x )=a x ,f ′(2)=a2=2,a =4. (2)令g (x )=a ⎝⎛⎭⎪⎫ln x -1+1x ,g ′(x )=a ⎝⎛⎭⎪⎫1x -1x 2.令g ′(x )>0,即a ⎝ ⎛⎭⎪⎫1x -1x 2>0,解得x >1,所以g (x )在(0,1)上单调递减,在(1,+∞)上单调递增. 所以g (x )的最小值为g (1)=0,所以f (x )≥a ⎝⎛⎭⎪⎫1-1x .(3)令h (x )=a ln x +1-x ,则h ′(x )=ax -1,令h ′(x )>0,解得x <a .当a >e 时,h (x )在(1,e)上单调递增,所以h (x )>h (1)=0. 当1<a ≤e 时,h (x )在(1,a )上单调递增,在(a ,e)上单调递减, 所以只需h (e)≥0,即a ≥e -1.当a ≤1时,h (x )在(1,e)上单调递减,则需h (e)≥0, 而h (e)=a +1-e <0,不合题意. 综上,a ≥e -1.3. 选做题(1)[选修4-1:几何证明选讲]如图所示,AB 为圆O 的直径,CD 为圆O 的切线,切点为D ,AD ∥OC .①求证:BC 是圆O 的切线; ②若AD ·OC =2,试求圆O 的半径. (2)[选修4-4:坐标系与参数方程]以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,并在两种坐标系中取相同的单位长度.设圆C :⎩⎪⎨⎪⎧x =2cos θy =2sin θ(θ为参数)上的点到直线l :ρcos ⎝⎛⎭⎪⎫θ-π4=2k 的距离为d .①当k =3时,求d 的最大值;②若直线l 与圆C 相交,试求k 的取值范围. (3)[选修4-5:不等式选讲] 设f (x )=|x -3|+|2x -4|. ①解不等式f (x )≤4;②若对任意实数x ∈ [5,9],f (x )≤ax -1恒成立,求实数a 的取值范围.解 (1)①证明:如图,连接BD 、OD . ∵CD 是圆O 的切线,∴∠ODC =90°. ∵AD ∥OC ,∴∠BOC =∠OAD . ∵OA =OD ,∴∠OAD =∠ODA . ∴∠BOC =∠DOC .又∵OC =OC ,OB =OD ,∴△BOC ≌△DOC . ∴∠OBC =∠ODC =90°,即OB ⊥BC . ∴BC 是圆O 的切线.②由①知∠OAD =∠DOC ,∴Rt △BAD ∽Rt △COD , ∴AD AB =OD OC .AD ·OC =AB ·OD =2r ×r =2,∴r =1.(2)①由l :ρcos ⎝ ⎛⎭⎪⎫θ-π4=32,得l :ρcos θcos π4+ρsin θsin π4=32,整理得l :x +y -6=0.则d =|2cos θ+2sin θ-6|2=⎪⎪⎪⎪⎪⎪2sin ⎝⎛⎭⎪⎫θ+π4-62∴d max =82=4 2. ②将圆C 的参数方程化为普通方程得x 2+y 2=2,直线l 的极坐标方程化为普通方程得x +y -k =0.∵直线l 与圆C 相交,∴圆心O 到直线l 的距离d <2, 即|-k |2<2,解得-2<k <2.(3)①当x <2时,f (x )=7-3x ≤4,得1≤x <2; 当2≤x ≤3时,f (x )=x -1≤4,得2≤x ≤3; 当x >3时,f (x )=3x -7≤4,得3<x ≤113.综上可得不等式f (x )≤4的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1≤x ≤113②∵x ∈[5,9],∴f (x )≤ax -1即3x -7≤ax -1, ∴a ≥3-6x ,即a ≥3-69=73.压轴题专练(三)建议用时:40分钟1.[2015·河南洛阳统考]已知椭圆的中心是坐标原点O ,焦点在x 轴上,离心率为22,坐标原点O 到过右焦点F 且斜率为1的直线的距离为22.(1)求椭圆的标准方程;(2)设过右焦点F 且与坐标轴不垂直的直线l 交椭圆于P ,Q 两点,在线段OF 上是否存在点M (m,0),使得|MP |=|MQ |?若存在,求出m 的取值范围;若不存在,请说明理由.解 (1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),F (c,0)(c >0),由坐标原点O 到直线x -y -c =0的距离为22,得|0-0-c |2=22,解得c =1.又e =c a =22,故a =2,b =1. ∴所求椭圆方程为x 22+y 2=1.(2)假设存在点M (m,0)(0<m <1)满足条件,则以MP ,MQ 为邻边的平行四边形是菱形.∵直线l 与x 轴不垂直,∴设直线l 的方程为y =k (x -1)(k ≠0),P (x 1,y 1),Q (x 2,y 2).由⎩⎪⎨⎪⎧x 2+2y 2=2y =k (x -1)可得(1+2k 2)x 2-4k 2x +2k 2-2=0, Δ>0恒成立,∴x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-21+2k 2.设线段PQ 的中点为N (x 0,y 0),则x 0=x 1+x 22=2k 21+2k 2,y 0=k (x 0-1)=-k 1+2k 2.∵|MP |=|MQ |,∴MN ⊥PQ ,∴k MN ·k PQ =-1, 即-k1+2k 22k 21+2k 2-m ·k =-1,∴m =k 21+2k 2=12+1k 2.∵k 2>0,∴0<m <12. 2.[2015·九江一模]设函数f (x )=12x 2-(a +b )x +ab ln x (其中e 为自然对数的底数,a ≠e ,b ∈R ),曲线y =f (x )在点(e ,f (e))处的切线方程为y =-12e 2.(1)求b ;(2)若对任意x ∈⎣⎢⎡⎭⎪⎫1e ,+∞,f (x )有且只有两个零点,求a 的取值范围.解 (1)f ′(x )=x -(a +b )+ab x =(x -a )(x -b )x, ∵f ′(e)=0,a ≠e ,∴b =e.(2)由(1)得f (x )=12x 2-(a +e)x +a eln x ,f ′(x )=(x -a )(x -e )x, ①当a ≤1e 时,由f ′(x )>0得x >e ;由f ′(x )<0得1e <x <e.此时f (x )在⎝ ⎛⎭⎪⎫1e ,e 上单调递减,在(e ,+∞)上单调递增.∵f (e)=12e 2-(a +e)e +a eln e =-12e 2<0,f (e 2)=12e 4-(a +e)e 2+2a e =12e(e -2)(e 2-2a )≥12e(e -2)⎝ ⎛⎭⎪⎫e 2-2e >0,(或当x →+∞时,f (x )>0亦可)∴要使得f (x )在⎣⎢⎡⎭⎪⎫1e ,+∞上有且只有两个零点, 则只需f ⎝ ⎛⎭⎪⎫1e =12e 2-a +e e +a eln 1e =(1-2e 2)-2e (1+e 2)a 2e 2≥0,即a ≤1-2e 22e (1+e 2). ②当1e <a <e 时,由f ′(x )>0得1e <x <a 或x >e ;由f ′(x )<0得a <x <e.此时f (x )在(a ,e)上单调递减,在⎝ ⎛⎭⎪⎫1e ,a 和(e ,+∞)上单调递增.f (a )=-12a 2-a e +a eln a <-12a 2-a e +a eln e =-12a 2<0,∴此时f (x )在⎣⎢⎡⎭⎪⎫1e ,+∞上至多只有一个零点,不合题意.③当a >e 时,由f ′(x )>0得1e <x <e 或x >a ,由f ′(x )<0得e<x <a ,此时f (x ) 在⎝ ⎛⎭⎪⎫1e ,e 和(a ,+∞)上单调递增,在(e ,a )上单调递减,且f (e)=-12e 2<0,∴f (x )在⎣⎢⎡⎭⎪⎫1e ,+∞上至多只有一个零点,不合题意.综上所述,a 的取值范围为⎝⎛⎦⎥⎤-∞,1-2e 22e (1+e 2). 3.选做题(1)[选修4-1:几何证明选讲]如图,四边形ABCD 内接于圆O ,∠BAD =60°,∠ABC =90°,BC =3,CD =5.求对角线BD 、AC 的长.(2)[选修4-4:坐标系与参数方程]已知直线l 的参数方程为⎩⎨⎧x =12t ,y =1+32t(t 为参数),曲线C 的极坐标方程为ρ=22sin ⎝ ⎛⎭⎪⎫θ+π4,直线l 与曲线C 交于A ,B 两点,与y轴交于点P .①求曲线C 的直角坐标方程;②求1|P A |+1|PB |的值.(3)[选修4-5:不等式选讲]已知实数m ,n 满足:关于x 的不等式|x 2+mx +n |≤|3x 2-6x -9|的解集为R .①求m ,n 的值;②若a ,b ,c ∈R +,且a +b +c =m -n ,求证:a +b +c ≤ 3. 解 (1)如图,延长DC ,AB 交于点E.∵∠BAD =60°,∴∠ECB =60°,∵∠ABC =90°,BC =3,CD =5,∴∠EBC =90°,∴∠E =30°,∴EC =2BC =2×3=6,∴EB =3BC =33,∴ED =DC +EC =5+6=11,∵EC ×ED =EB ×(EB +AB ),则6×11=33×(33+AB ),解得AB =1333,∴AC =32+⎝ ⎛⎭⎪⎫13332=1433. ∵∠EDB =∠EAC ,∠E =∠E ,∴△EDB ∽△EAC ,∴BD AC =BE CE ,∴BD =AC ·BE CE =1433×336=7. (2)①利用极坐标公式,把曲线C 的极坐标方程ρ=22sin ⎝ ⎛⎭⎪⎫θ+π4化为ρ2=2ρsin θ+2ρcos θ,∴普通方程是x 2+y 2=2y +2x ,即(x -1)2+(y -1)2=2.②∵直线l 与曲线C 交于A ,B 两点,与y 轴交于点P ,把直线l 的参数方程⎩⎨⎧x =12t ,y =1+32t代入曲线C 的普通方程 (x -1)2+(y -1)2=2中,得t 2-t -1=0, ∴⎩⎪⎨⎪⎧t 1·t 2=-1,t 1+t 2=1, ∴1|P A |+1|PB |=1|t 1|+1|t 2| =|t 1-t 2||t 1t 2|=(t 1+t 2)2-4t 1t 2 =12-4×(-1)= 5.(3)①由于解集为R ,那么x =3,x =-1都满足不等式,即有⎩⎪⎨⎪⎧ |9+3m +n |≤0|1-m +n |≤0, 即⎩⎪⎨⎪⎧9+3m +n =01-m +n =0,解得m =-2,n =-3, 经验证当m =-2,n =-3时,不等式的解集是R .②证明:a +b +c =1,a +b ≥2ab ,b +c ≥2bc ,c +a ≥2ca , ∴(a +b +c )2=a +b +c +2ab +2bc +2ca ≤3(a +b +c )=3,故a +b +c ≤3(当且仅当a =b =c =13时取等号).压轴题专练(四)建议用时:40分钟1.[2015·九江一模]已知椭圆C 的中心在坐标原点,右焦点为F (7,0),A 、B 分别是椭圆C 的左、右顶点,D 是椭圆C 上异于A 、B 的动点,且△ADB 面积的最大值为12.(1)求椭圆C 的方程;(2)求证:当点P (x 0,y 0)在椭圆C 上运动时,直线l :x 0x +y 0y =2与圆O :x 2+y 2=1恒有两个交点,并求直线l 被圆O 所截得的弦长L 的取值范围.解 (1)设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),由已知可得(S △ADB )max =12·2a ·b =ab =12,①∵F (7,0)为椭圆右焦点,∴a 2=b 2+7,②由①②可得a =4,b =3,∴椭圆C 的方程为x 216+y 29=1.(2)证明:∵P (x 0,y 0)是椭圆上的动点,∴x 2016+y 209=1,∴y 20=9-9x 2016, ∴圆心O 到直线l :x 0x +y 0y =2的距离d =2x 20+y 20=2x 20+9-916x 20=2716x 20+9<1(0≤x 20≤16), ∴直线l :x 0x +y 0y =2与圆O :x 2+y 2=1恒有两个交点, L =2r 2-d 2=21-4716x 20+9(r 为圆x 2+y 2=1的半径), ∵0≤x 20≤16,∴9≤716x 20+9≤16,∴253≤L ≤ 3.2.[2015·唐山统考]已知函数f (x )=a e x +x 2,g (x )=sin x +bx ,直线l 与曲线C 1:y =f (x )切于点(0,f (0)),且与曲线C 2:y =g (x )切于点⎝ ⎛⎭⎪⎫π2,g ⎝ ⎛⎭⎪⎫π2. (1)求a ,b 的值和直线l 的方程;(2)证明:除切点外,曲线C 1,C 2位于直线l 的两侧.解 (1)f ′(x )=a e x +2x ,g ′(x )=cos x +b ,f (0)=a ,f ′(0)=a ,g ⎝ ⎛⎭⎪⎫π2=1+π2b ,g ′⎝ ⎛⎭⎪⎫π2=b , 曲线y =f (x )在点(0,f (0))处的切线方程为y =ax +a ,曲线y =g (x )在点⎝⎛⎭⎪⎫π2,g ⎝ ⎛⎭⎪⎫π2处的切线方程为y = b ⎝ ⎛⎭⎪⎫x -π2+1+π2b ,即y =bx +1. 依题意,有a =b =1,直线l 的方程为y =x +1.(2)证明:由(1)知f (x )=e x +x 2,g (x )=sin x +x .设F (x )=f (x )-(x +1)=e x +x 2-x -1,则F ′(x )=e x +2x -1, 当x ∈(-∞,0)时,F ′(x )<F ′(0)=0;当x ∈(0,+∞)时,F ′(x )>F ′(0)=0.F (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增,故F (x )≥F (0)=0.设G (x )=x +1-g (x )=1-sin x ,则G (x )≥0,当且仅当x =2k π+π2(k ∈Z )时等号成立.综上可知,f (x )≥x +1≥g (x ),且两个等号不同时成立,因此f (x )>g (x ).所以除切点外,曲线C 1,C 2位于直线l 的两侧.3.选做题(1)[选修4-1:几何证明选讲]在Rt △ABC 中,∠B =90°,AB =4,BC =3,以AB 为直径作圆O 交AC 于点D .①求线段CD 的长度;②点E 为线段BC 上一点,当点E 在什么位置时,直线ED 与圆O 相切,并说明理由.(2)[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧ x =-5+22t ,y =5+22t (t 为参数),以O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,曲线C 的极坐标方程为ρ=4cos θ.①求曲线C 的直角坐标方程及直线l 的普通方程;②将曲线C 上的所有点的横坐标缩短为原来的12,再将所得曲线向左平移1个单位,得到曲线C 1.求曲线C 1上的点到直线l 的距离的最小值.(3)[选修4-5:不等式选讲]已知a +b =1,对∀a ,b ∈(0,+∞),1a +4b ≥|2x -1|-|x +1|恒成立,求x 的取值范围.解 (1)①连接BD ,在直角三角形ABC 中,易知AC =5,∠BDC =∠ADB =90°,所以∠BDC =∠ABC ,又因为∠C =∠C ,所以Rt △ABC ∽Rt △BDC , 所以CD BC =BC AC ,所以CD =BC 2AC =95.②当点E 是BC 的中点时,ED 与⊙O 相切;证明:连接OD ,∵DE 是Rt △BDC 的中线,∴ED =EB ,∴∠EBD =∠EDB ,∵OB =OD ,∴∠OBD =∠ODB ,∴∠ODE =∠ODB +∠BDE =∠OBD +∠EBD =∠ABC =90°, ∴ED ⊥OD ,∴ED 与⊙O 相切.(2)①曲线C 的直角坐标方程为:x 2+y 2=4x ,即:(x -2)2+y 2=4, 直线l 的普通方程为x -y +25=0.②将曲线C 上的所有点的横坐标缩为原来的12,得(2x -2)2+y 2=4,即(x -1)2+y 24=1. 再将所得曲线向左平移1个单位,得C 1:x 2+y 24=1.又曲线C 1的参数方程为⎩⎪⎨⎪⎧x =cos θy =2sin θ(θ为参数), 设曲线C 1上任一点P (cos θ,2sin θ),则d p →l =|cos θ-2sin θ+25|2=|25-5sin (θ-φ)|2≥102(其中tan φ=12),∴点P 到直线l 的距离的最小值为102.(3)∵a >0,b >0且a +b =1,∴1a +4b =(a +b )⎝ ⎛⎭⎪⎫1a +4b =5+b a +4a b ≥9, 故1a +4b 的最小值为9,因为对a ,b ∈(0,+∞),使1a +4b ≥|2x -1|-|x +1|恒成立,所以|2x -1|-|x +1|≤9,当x ≤-1时,2-x ≤9,∴-7≤x ≤-1,当-1<x <12时,-3x ≤9,∴-1<x <12,当x ≥12时,x -2≤9,∴12≤x ≤11,∴-7≤x ≤11.。

数学高考压轴题含答案

数学高考压轴题含答案

数学高考压轴题学校:___________姓名:___________班级:___________考号:___________评卷人得分一、解答题1.已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值.(1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.2.已知点(2,1)A 在双曲线2222:1(1)1x y C a a a -=>-上,直线l 交C 于P ,Q 两点,直线,AP AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ∠=PAQ △的面积.3.已知函数()e e ax x f x x =-.(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围;(3)设n *∈Nln(1)n ++>+ .4.已知双曲线2222:1(0,0)x y C a b a b -=>>的右焦点为(2,0)F ,渐近线方程为y =.(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点()()1122,,,P x y Q x y 在C 上,且1210,0x x y >>>.过P 且斜率为Q M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ AB ∥;③||||MA MB =.注:若选择不同的组合分别解答,则按第一个解答计分.5.已知函数()e ln(1)x f x x =+.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)设()()g x f x '=,讨论函数()g x 在[0,)+∞上的单调性;(3)证明:对任意的,(0,)s t ∈+∞,有()()()f s t f s f t +>+.6.如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点0,21Q ⎛⎫ ⎪⎝⎭在线段AB 上,直线,PA PB 分别交直线132y x =-+于C ,D两点.(1)求点P 到椭圆上点的距离的最大值;(2)求||CD 的最小值.7.设函数e()ln (0)2f x x x x=+>.(1)求()f x 的单调区间;(2)已知,a b ∈R ,曲线()y f x =上不同的三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a ⎛⎫<-<- ⎪⎝⎭;(ⅱ)若1230e,a x x x <<<<,则22132e 112e e 6e 6ea ax x a --+<+<-.(注:e 2.71828= 是自然对数的底数)参考答案:1.(1)1a =(2)见解析【解析】【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.(2)根据(1)可得当1b >时,e x x b -=的解的个数、ln x x b -=的解的个数均为2,构建新函数()e ln 2x h x x x =+-,利用导数可得该函数只有一个零点且可得()(),f x g x 的大小关系,根据存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点可得b 的取值,再根据两类方程的根的关系可证明三根成等差数列.(1)()e x f x ax =-的定义域为R ,而()e '=-x f x a ,若0a ≤,则()0f x '>,此时()f x 无最小值,故0a >.()ln g x ax x =-的定义域为()0,∞+,而11()ax g x a x x'-=-=.当ln x a <时,()0f x '<,故()f x 在(),ln a -∞上为减函数,当ln x a >时,()0f x '>,故()f x 在()ln ,a +∞上为增函数,故()min ()ln ln f x f a a a a ==-.当10x a <<时,()0g x '<,故()g x 在10,a ⎛⎫⎪⎝⎭上为减函数,当1x a >时,()0g x '>,故()g x 在1,a ⎛⎫+∞ ⎪⎝⎭上为增函数,故min 11()1ln g x g a a ⎛⎫==- ⎪⎝⎭.因为()e x f x ax =-和()ln g x ax x =-有相同的最小值,故11lnln a a a a-=-,整理得到1ln 1a a a -=+,其中0a >,设()1ln ,01a g a a a a -=->+,则()()()222211011a g a a a a a --'=-=≤++,故()g a 为()0,∞+上的减函数,而()10g =,故()0g a =的唯一解为1a =,故1ln 1aa a-=+的解为1a =.综上,1a =.(2)由(1)可得e ()x x f x =-和()ln g x x x =-的最小值为11ln11ln 11-=-=.当1b >时,考虑e x x b -=的解的个数、ln x x b -=的解的个数.设()e xS x x b =--,()e 1x S x '=-,当0x <时,()0S x '<,当0x >时,()0S x '>,故()S x 在(),0∞-上为减函数,在()0,∞+上为增函数,所以()()min 010S x S b ==-<,而()e0bS b --=>,()e 2b S b b =-,设()e 2b u b b =-,其中1b >,则()e 20bu b '=->,故()u b 在()1,+∞上为增函数,故()()1e 20u b u >=->,故()0S b >,故()e xS x x b =--有两个不同的零点,即e x x b -=的解的个数为2.设()ln T x x x b =--,()1x T x x-'=,当01x <<时,()0T x '<,当1x >时,()0T x '>,故()T x 在()0,1上为减函数,在()1,+∞上为增函数,所以()()min 110T x T b ==-<,而()ee0bbT --=>,()e e 20b b T b =->,()ln T x x x b =--有两个不同的零点即ln x x b -=的解的个数为2.当1b =,由(1)讨论可得ln x x b -=、e x x b -=仅有一个零点,当1b <时,由(1)讨论可得ln x x b -=、e x x b -=均无零点,故若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,则1b >.设()e ln 2x h x x x =+-,其中0x >,故1()e 2xh x x'=+-,设()e 1x s x x =--,0x >,则()e 10xs x '=->,故()s x 在()0,∞+上为增函数,故()()00s x s >=即e 1x x >+,所以1()1210h x x x'>+-≥->,所以()h x 在()0,∞+上为增函数,而(1)e 20h =->,31e 333122(e 3e 30e e eh =--<--<,故()h x 在()0,∞+上有且只有一个零点0x ,0311ex <<且:当00x x <<时,()0h x <即e ln x x x x -<-即()()f x g x <,当0x x >时,()0h x >即e ln x x x x ->-即()()f x g x >,因此若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,故()()001b f x g x ==>,此时e x x b -=有两个不同的零点1010,(0)x x x x <<,此时ln x x b -=有两个不同的零点0404,(01)x x x x <<<,故11e xx b -=,00e x x b -=,44ln 0x x b --=,00ln 0x x b --=所以44ln x b x -=即44ex bx -=即()44e0x bx b b ----=,故4x b -为方程e x x b -=的解,同理0x b -也为方程e x x b -=的解又11e x x b -=可化为11e xx b =+即()11ln 0x x b -+=即()()11ln 0x b x b b +-+-=,故1x b +为方程ln x x b -=的解,同理0x b +也为方程ln x x b -=的解,所以{}{}1004,,x x x b x b =--,而1b >,故0410x x b x x b =-⎧⎨=-⎩即1402x x x +=.【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系.2.(1)1-;(2)9.【解析】【分析】(1)由点(2,1)A 在双曲线上可求出a ,易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,再根据0AP BP k k +=,即可解出l 的斜率;(2)根据直线,AP AQ 的斜率之和为0可知直线,AP AQ的倾斜角互补,再根据tan PAQ ∠=,AP AQ 的斜率,再分别联立直线,AP AQ 与双曲线方程求出点,P Q 的坐标,即可得到直线PQ 的方程以及PQ 的长,由点到直线的距离公式求出点A 到直线PQ 的距离,即可得出PAQ △的面积.(1)因为点(2,1)A 在双曲线2222:1(1)1x yC a a a -=>-上,所以224111a a -=-,解得22a =,即双曲线22:12x C y -=易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,联立2212y kx m x y =+⎧⎪⎨-=⎪⎩可得,()222124220k x mkx m ----=,所以,2121222422,2121mk m x x x x k k ++=-=--,()()22222216422210120m k m k m k ∆=++->⇒-+>.所以由0AP BP k k +=可得,212111022y y x x --+=--,即()()()()122121210x kx m x kx m -+-+-+-=,即()()()1212212410kx x m k x x m +--+--=,所以()()2222242124102121m mk k m k m k k +⎛⎫⨯+-----= ⎪--⎝⎭,化简得,()2844410k k m k +-++=,即()()1210k k m +-+=,所以1k =-或12m k =-,当12m k =-时,直线():21l y kx m k x =+=-+过点()2,1A ,与题意不符,舍去,故1k =-.(2)不妨设直线,PA PB 的倾斜角为(),αβαβ<,因为0AP BP k k +=,所以παβ+=,因为tan PAQ ∠=,所以()tan βα-=,即tan 2α=-,2tan 0αα-=,解得tan α,于是,直线):21PA y x =-+,直线):21PB y x =-+,联立)222112y x x y ⎧=-+⎪⎨-=⎪⎩可得,(23211002x x +-+-=,因为方程有一个根为2,所以103P x -=,P y=53,同理可得,103Q x +=,Q y=53-.所以5:03PQ x y +-=,163PQ =,点A 到直线PQ的距离3d =,故PAQ △的面积为11623⨯=3.(1)()f x 的减区间为(),0-∞,增区间为()0,+∞.(2)12a ≤(3)见解析【解析】【分析】(1)求出()f x ¢,讨论其符号后可得()f x 的单调性.(2)设()e e 1ax xh x x =-+,求出()h x '',先讨论12a >时题设中的不等式不成立,再就102a <≤结合放缩法讨论()h x '符号,最后就0a ≤结合放缩法讨论()h x 的范围后可得参数的取值范围.(3)由(2)可得12ln t t t<-对任意的1t >恒成立,从而可得()ln 1ln n n +-的*n N ∈恒成立,结合裂项相消法可证题设中的不等式.(1)当1a =时,()()1e x f x x =-,则()e xf x x '=,当0x <时,()0f x ¢<,当0x >时,()0f x ¢>,故()f x 的减区间为(),0-∞,增区间为()0,+∞.(2)设()e e 1ax xh x x =-+,则()00h =,又()()1e e ax x h x ax '=+-,设()()1e e ax xg x ax =+-,则()()22e e ax xg x a a x '=+-,若12a >,则()0210g a '=->,因为()g x '为连续不间断函数,故存在()00,x ∈+∞,使得()00,x x ∀∈,总有()0g x ¢>,故()g x 在()00,x 为增函数,故()()00g x g >=,故()h x 在()00,x 为增函数,故()()01h x h >=-,与题设矛盾.若102a <≤,则()()()ln 11e e ee ax ax ax xx h x ax ++'=+-=-,下证:对任意0x >,总有()ln 1x x +<成立,证明:设()()ln 1S x x x =+-,故()11011x S x x x-'=-=<++,故()S x 在()0,+∞上为减函数,故()()00S x S <=即()ln 1x x +<成立.由上述不等式有()ln 12e e e e e e 0ax ax x ax ax x ax x +++-<-=-≤,故()0h x '≤总成立,即()h x 在()0,+∞上为减函数,所以()()01h x h <=-.当0a ≤时,有()e e e 1100ax x axh x ax '=-+<-+=,所以()h x 在()0,+∞上为减函数,所以()()01h x h <=-.综上,12a ≤.(3)取12a =,则0x ∀>,总有12e e 10x x x -+<成立,令12e x t =,则21,e ,2ln x t t x t >==,故22ln 1t t t <-即12ln t t t<-对任意的1t >恒成立.所以对任意的*n N ∈,有<整理得到:()ln 1ln n n +-()ln 2ln1ln 3ln 2ln 1ln n n +-+-+++- ()ln 1n =+,故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.4.(1)2213y x -=(2)见解析【解析】【分析】(1)利用焦点坐标求得c 的值,利用渐近线方程求得,a b 的关系,进而利用,,a b c 的平方关系求得,a b 的值,得到双曲线的方程;(2)先分析得到直线AB 的斜率存在且不为零,设直线AB 的斜率为k ,M (x 0,y 0),由③|AM |=|BM |等价分析得到200283k x ky k +=-;由直线PM 和QM 的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ 的斜率03x m y =,由②//PQ AB 等价转化为003ky x =,由①M在直线AB 上等价于()2002ky k x =-,然后选择两个作为已知条件一个作为结论,进行证明即可.(1)右焦点为(2,0)F ,∴2c =,∵渐近线方程为y =,∴ba=b ,∴222244c a b a =+==,∴1a =,∴b =∴C 的方程为:2213y x -=;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而12x x =,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为()2y k x =-,则条件①M 在AB 上,等价于()()2000022y k x ky k x =-⇔=-;两渐近线的方程合并为2230x y -=,联立消去y 并化简整理得:()22223440k x k x k --+=设()()3334,,,A x y B x y ,线段中点为(),N N N x y ,则()2342226,2233N N N x x k kx y k x k k +===-=--,设()00,M x y ,则条件③AM BM =等价于()()()()222203030404x x y y x x y y -+-=-+-,移项并利用平方差公式整理得:()()()()3403434034220x x x x x y y y y y ⎡⎤⎡⎤--++--+=⎣⎦⎣⎦,()()3403403434220y y x x x y y y x x -⎡⎤⎡⎤-++-+=⎣⎦⎣⎦-,即()000N N x x k y y -+-=,即200283k x ky k +=-;由题意知直线PM 的斜率为直线QM ,∴由))10102020,y y x x y y x x -=--=-,∴)121202y y x x x -=+-,所以直线PQ的斜率)1201212122x x x y y m x x x x +--==--,直线)00:PM y x x y =-+,即00y y =,代入双曲线的方程22330x y --=,即)3yy +-=中,得:()()00003y y ⎡⎤-=⎣⎦,解得P的横坐标:100x y ⎛⎫=+⎪⎪⎭,同理:200x y ⎛⎫=⎪⎪⎭,∴0012012002222000033,2,33y x x x y x x x x y x y x ⎛⎫-=++-=--⎪--⎭∴03x m y =,∴条件②//PQ AB 等价于003m k ky x =⇔=,综上所述:条件①M 在AB 上,等价于()2002ky k x =-;条件②//PQ AB 等价于003ky x =;条件③AM BM =等价于200283kx ky k +=-;选①②推③:由①②解得:2200002228,433k k x x ky x k k =∴+==--,∴③成立;选①③推②:由①③解得:20223k x k =-,20263k ky k =-,∴003ky x =,∴②成立;选②③推①:由②③解得:20223k x k =-,20263k ky k =-,∴02623x k -=-,∴()2002ky k x =-,∴①成立.5.(1)y x=(2)()g x 在[0,)+∞上单调递增.(3)证明见解析【解析】【分析】(1)先求出切点坐标,在由导数求得切线斜率,即得切线方程;(2)在求一次导数无法判断的情况下,构造新的函数,再求一次导数,问题即得解;(3)令()()()m x f x t f x =+-,(,0)x t >,即证()(0)m x m >,由第二问结论可知()m x 在[0,+∞)上单调递增,即得证.(1)解:因为()e ln(1)x f x x =+,所以()00f =,即切点坐标为()0,0,又1()e (ln(1))1xf x x x=+++',∴切线斜率(0)1k f '==∴切线方程为:y x =(2)解:因为1()()e (ln(1))1xg x f x x x=++'=+,所以221()e (ln(1))1(1)xg x x x x =++++',令221()ln(1)1(1)h x x x x =++-++,则22331221()01(1)(1)(1)x h x x x x x +=-+=>++++',∴()h x 在[0,)+∞上单调递增,∴()(0)10h x h ≥=>∴()0g x '>在[0,)+∞上恒成立,∴()g x 在[0,)+∞上单调递增.(3)解:原不等式等价于()()()(0)f s t f s f t f +->-,令()()()m x f x t f x =+-,(,0)x t >,即证()(0)m x m >,∵()()()e ln(1)e ln(1)x t x m x f x t f x x t x +=+-=++-+,e e ()e ln(1)e ln(1)()()11x t x x tx m x x t x g x t g x x t x++=++++-=+-++'+,由(2)知1()()e (ln(1))1xg x f x x x=++'=+在[)0,∞+上单调递增,∴()()g x t g x +>,∴()0m x '>∴()m x 在()0,∞+上单调递增,又因为,0x t >,∴()(0)m x m >,所以命题得证.6.(1)11;(2)5.【解析】【分析】(1)设,sin )Q θθ是椭圆上任意一点,再根据两点间的距离公式求出2||PQ ,再根据二次函数的性质即可求出;(2)设直线1:2AB y kx =+与椭圆方程联立可得1212,x x x x +,再将直线132y x =-+方程与PA PB 、的方程分别联立,可解得点,C D 的坐标,再根据两点间的距离公式求出CD ,最后代入化简可得231CD k =⋅+,由柯西不等式即可求出最小值.(1)设,sin )Q θθ是椭圆上任意一点,(0,1)P ,则222221144144||12cos (1sin )1311sin 2sin 11sin 111111PQ θθθθθ⎛⎫=+-=--=-+≤⎭+⎪⎝,当且仅当1sin 11θ=-时取等号,故||PQ (2)设直线1:2AB y kx =+,直线AB 方程与椭圆22112x y +=联立,可得22130124k x kx ⎛⎫++-= ⎪⎝⎭,设()()1122,,,A x y B x y ,所以12212211231412k x x k x x k ⎧+=-⎪+⎪⎪⎨⎪=-⎛⎫⎪+ ⎪⎪⎝⎭⎩,因为直线111:1y PA y x x -=+与直线132y x =-+交于C ,则111114422(21)1C x x x x y k x ==+-+-,同理可得,222224422(21)1D x x x x y k x ==+-+-.则224||(21)1C D x CD x k x =-=+-2=35161656565231555k =⋅=≥=+,当且仅当316k =时取等号,故CD 的最小值为5.【点睛】本题主要考查最值的计算,第一问利用椭圆的参数方程以及二次函数的性质较好解决,第二问思路简单,运算量较大,求最值的过程中还使用到柯西不等式求最值,对学生的综合能力要求较高,属于较难题.7.(1)()f x 的减区间为e 02⎛⎫⎪⎝⎭,,增区间为e ,2⎛⎫+∞ ⎪⎝⎭.(2)(ⅰ)见解析;(ⅱ)见解析.【解析】【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)(ⅰ)由题设构造关于切点横坐标的方程,根据方程有3个不同的解可证明不等式成立,(ⅱ)31x k x =,1e a m =<,则题设不等式可转化为()()()2131313122236m m m t t m m t t --++--<+,结合零点满足的方程进一步转化为()()()()211312ln 0721m m m m m m ---++<+,利用导数可证该不等式成立.(1)()22e 12e 22xf x x x x -'=-+=,当e02x <<,()0f x ¢<;当e 2x >,()0f x ¢>,故()f x 的减区间为e 02⎛⎫⎪⎝⎭,,()f x 的增区间为e ,2⎛⎫+∞ ⎪⎝⎭.(2)(ⅰ)因为过(),a b 有三条不同的切线,设切点为()(),,1,2,3i i x f x i =,故()()()i i i f x b f x x a '-=-,故方程()()()f x b f x x a '-=-有3个不同的根,该方程可整理为()21e e ln 022x a x b x x x ⎛⎫----+= ⎪⎝⎭,设()()21e e ln 22g x x a x b x x x ⎛⎫=---+ ⎪⎝⎭,则()()22321e 1e 1e22g x x a x x x x x x⎛⎫'=-+-+--+ ⎪⎝⎭()()31e x x a x =---,当0e x <<或x a >时,()0g x ¢<;当e x a <<时,()0g x ¢>,故()g x 在()()0,e ,,a +∞上为减函数,在()e,a 上为增函数,因为()g x 有3个不同的零点,故()e 0g <且()0>g a ,故()21e e e ln e 0e 2e 2e a b ⎛⎫----+< ⎪⎝⎭且()21e e ln 022a a a b a a a ⎛⎫---+> ⎪⎝⎭,整理得到:12e a b <+且()e ln 2b a f a a >+=,此时()1e 13e11ln ln 2e 2e 22e 222a a a b f a a a a a ⎛⎫⎛⎫---<-+-+=-- ⎪ ⎪⎝⎭⎝⎭,设()3e ln 22u a a a =--,则()2e-202au a a '=<,故()u a 为()e,+∞上的减函数,故()3eln e 022eu a <--=,故()1012e a b f a ⎛⎫<-<- ⎪⎝⎭.(ⅱ)当0e a <<时,同(ⅰ)中讨论可得:故()g x 在()()0,,e,a +∞上为减函数,在(),e a 上为增函数,不妨设123x x x <<,则1230e x a x x <<<<<,因为()g x 有3个不同的零点,故()0g a <且()e 0g >,故()21e e e ln e 0e 2e 2e a b ⎛⎫----+> ⎪⎝⎭且()21e e ln 022a a a b a a a ⎛⎫---+< ⎪⎝⎭,整理得到:1ln 2e 2ea ab a +<<+,因为123x x x <<,故1230e x a x x <<<<<,又()2e e 1ln 2a ag x x b x x+=-+-+,设e t x =,()0,1e a m =∈,则方程2e e 1ln 02a ax b x x+-+-+=即为:2e ln 0e 2ea at t t b +-+++=即为()21ln 02m m t t t b -++++=,记123123e e e ,,,t t t x x x ===则113,,t t t 为()21ln 02m m t t t b -++++=有三个不同的根,设3131e 1x t k t x a ==>>,1eam =<,要证:22122e 112e e 6e 6e a a x x a --+<+<-,即证13e 2e e 26e 6ea at t a --+<+<-,即证:13132166m mt t m --<+<-,即证:131********m m t t t t m --⎛⎫⎛⎫+-+-+< ⎪⎝⎭⎝⎭,即证:()()()2131313122236m m m t t m m t t --++--<+,而()21111ln 02m m t t t b -++++=且()23331ln 02mm t t t b -++++=,故()()()22131313ln ln 102m t t t t m t t -+--+-=,故131313ln ln 222t t t t m m t t -+--=-⨯-,故即证:()()()21313131312ln ln 236m m m t t m t t m t t --+--⨯<-+,即证:()()()1213313ln1312072t t t m m m t t t +--++>-即证:()()()213121ln 0172m m m k k k --+++>-,记()()1ln ,11k k k k k ϕ+=>-,则()()2112ln 01k k k kk ϕ⎛⎫'=--> ⎪⎝⎭-,设()12ln u k k k k =--,则()2122210u k k k k k'=+->-=即()0k ϕ'>,故()k ϕ在()1,+∞上为增函数,故()()k m ϕϕ>,所以()()()()()()22131213121ln 1ln 172172m m m m m m k k m m k m --+--++++>+--,记()()()()()211312ln ,01721m m m m m m m m ω---+=+<<+,则()()()()()()()2232322132049721330721721m mm m m mm m m m m ω---+-+'=>>++,所以()m ω在()0,1为增函数,故()()10m ωω<=,故()()()()211312ln 0721m m m m m m ---++<+即()()()213121ln 0172m m m m m m --+++>-,故原不等式得证:【点睛】思路点睛:导数背景下的切线条数问题,一般转化为关于切点方程的解的个数问题,而复杂方程的零点性质的讨论,应该根据零点的性质合理转化需求证的不等式,常用的方法有比值代换等.。

2025届高考数学复习:压轴好题专项(构造函数证明不等式)练习(附答案)

2025届高考数学复习:压轴好题专项(构造函数证明不等式)练习(附答案)

2025届高考数学复习:压轴好题专项(构造函数证明不等式)练习1. (2024届云南省昆明市第一中学高三上学期第一次月考)已知函数()()2ln f x x a x =-,R a ∈. (1)若()10f '=,求a ;(2)若()1,e a ∈,()f x 的极大值大于b2e <.2.(2024届全国名校大联考高三上学期第一联考)已知函数()2ln f x x ax =+(a ∈R ). (1)若()0f x ≤在()0,∞+上恒成立,求a 的取值范围:(2)设()()3g x x f x =-,1x ,2x 为函数()g x 的两个零点,证明:121x x <.3.(2024届山东省青岛市高三上学期期初调研检测)已知1ea ≥,函数()e ln ln xf x a x a =-+.(1)若1a =,求()f x 在点()()1,1f 处的切线方程; (2)求证:()44f x x ≥-+;(3)若β为()f x 的极值点,点()(),f ββ在圆22117416x y ⎛⎫++= ⎪⎝⎭上.求a .4.(2024届湖南省株洲市第二中学教育集团2高三上学期开学联考)已知函数()21e 12xf x x x =---, (1)证明:当0x >时,()0f x >恒成立; (2)若关于x 的方程()sin 2f x xa x x +=在()0,π内有解,求实数a 的取值范围. 5.(2024届辽宁省十校联合体高三上学期八月调研考试)设方程()22e x x a -=有三个实数根123123,,()x x x x x x <<.(1)求a 的取值范围;(2)请在以下两个问题中任选一个进行作答,注意选的序号不同,该题得分不同.若选①则该小问满分4分,若选②则该小问满分9分.①证明:12(2)(2)4x x --<;②证明:1231231113e 2x x x x x x +++++<. 6.(2024届安徽省江淮十校高三第一次联考)已知函数()2k f x x x=+,0k ≠.(1)讨论()f x 的单调性;(2)设函数()3ln g x x x =-n m ≤<,当13k =-时,证明:()()()()332g m g n f m f n m n -+<-. 7.(2024届内蒙古包头市高三上学期调研考试)设函数()()ln 1f x a x =+-,已知2x =是函数()()2y x f x =-的极值点.(1)求a ; (2)设函数()()()()22x f x g x x f x -=-+,证明:()1g x >.8.(2024届北京市景山学校高三上学期开学考试)已知函数())(0)f x x b a =+≠,曲线()y f x =在点(1,(1))f 处的切线方程是1y x =-.(1)求a 、b 的值; (2)求证:()f x x <;(3)若函数()2()()g x f x t x x =+-在区间(1,)+∞上无零点,求t 的取值范围.9.(2024届山西省大同市高三上学期质量检测)已知函数2()ln (R)af x ax x a x=--∈. (1)讨论()f x 的单调性;(2)若()f x 的两个极值点分别为1x ,2x ,证明:12|()()|2f x f x a-<.10.(2024届黑龙江省哈尔滨市第三中学校高三上学期开学测试)已知函数()()111ln f x ax a x x=+--+.(1)讨论函数()f x 的单调性;(2)求证:n *∀∈N ,)21+⋅⋅⋅++>.参考答案1. (2024届云南省昆明市第一中学高三上学期第一次月考)已知函数()()2ln f x x a x =-,R a ∈. (1)若()10f '=,求a ;(2)若()1,e a ∈,()f x 的极大值大于b 2e <.【过程详解】(1)()212()ln ()f x x a x x a x'=-+-⋅,由()10f '=,即202(1)ln1(1)a a --=+,解得1a =. (2)()()(2ln 1)af x x a x x'=--+, 令()2ln 1ag x x x=-+, ()1,e a ∈ ,111(,1e ),a a a∴∈∴<,()21()2ln 11)2ln (10g a a a a a a=--+=-++-<, ()2ln 112ln 0g a a a =-+=>, 22()0ag x x x+'=>在(0,)+∞恒成立, 故()g x 在(0,)+∞递增,而1lg()0,()0g a a <>,01(,)x a a∴∃∈,使得g 0()0,x =令()0f x '=,有1201,,x a x x x =<=故0(0,)x x ∈时()0f x ¢>,0(,)x x a ∈时()0f x '<,(,)x a ∈+∞时()0f x ¢>, 故()f x 在0(0,)x 上递增,在0(,)x a 上递减,在(,)a +∞上递增,∴()f x 极大值2000()()ln ,f x x a x b =->由000()2ln 10,ag x x x =-+=得0002ln ,a x x x =+ 故23004(ln ),b x x <则230028(ln ),ab ax x <01,e 1e x a a<<<< 0e,e a x ∴<<,23233008(ln )8e e 18e ax x ∴<⋅⋅⋅=,328e ,ab ∴<2e <.2.(2024届全国名校大联考高三上学期第一联考)已知函数()2ln f x x ax =+(a ∈R ). (1)若()0f x ≤在()0,∞+上恒成立,求a 的取值范围:(2)设()()3g x x f x =-,1x ,2x 为函数()g x 的两个零点,证明:121x x <.【过程详解】(1)若()0f x ≤在()0,∞+上恒成立,即2ln xa x≤-, 令()2ln x u x x =-,所以()()222ln 122ln x x u x x x --'=-=, 所以当0e x <<时,()0u x '<,当e x >时,()0u x '>, 所以()u x 在()0,e 上单调递减,在()e,+∞上单调递增, 所以()()min 2e eu x u ==-,所以2a e ≤-,即a 的取值范围是2,e ⎛⎤-∞- ⎝⎦.(2)令()0g x =,即22ln 0xx a x--=, 令()22ln x h x x a x =--,则()()()3222ln 121ln 2x x x h x x x x +--'=-=, 令()3ln 1r x x x =+-,所以()2130r x x x'=+>,所以()r x 在()0,∞+上单调递增,又()10r =,所以当01x <<时,()0r x <,所以()0h x '<, 当1x >时,()0r x >,所以()0h x '>,所以()h x 在()0,1上单调递减,在()1,+∞上单调递增. 不妨设12x x <,则1201x x <<<,2101x <<, 因为()()120h x h x ==,所以()()22212222222212ln 2ln 1111x x h x h h x h x a a x x x x x ⎛⎫ ⎪⎛⎫⎛⎫⎛⎫ ⎪-=-=----- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪⎝⎭22222112ln x x x x x ⎛⎫⎛⎫=+--- ⎪ ⎪⎝⎭⎝⎭. 设函数()12ln x x x x ϕ=--(1x >),则()()22211210x x x x xϕ-'=+-=>在()1,+∞上恒成立, 所以()x ϕ在()1,+∞上单调递增,所以()()222212ln 10x x x x ϕϕ=-->=, 所以()1210h x h x ⎛⎫-> ⎪⎝⎭,即()121h x h x ⎛⎫> ⎪⎝⎭.又函数()22ln xh x x a x=--在()0,1上单调递减, 所以12101x x <<<,所以121x x <. 3.(2024届山东省青岛市高三上学期期初调研检测)已知1ea ≥,函数()e ln ln xf x a x a =-+.(1)若1a =,求()f x 在点()()1,1f 处的切线方程; (2)求证:()44f x x ≥-+;(3)若β为()f x 的极值点,点()(),f ββ在圆22117416x y ⎛⎫++= ⎪⎝⎭上.求a .【过程详解】(1)1a =,()e ln xf x x =-,0x >由()11e ln1e f =-=,得切点为()1,e由()1e xf x x'=-,有()1e 1f '=-,即()f x 在点()1,e 处的切线斜率为e 1-,所以()f x 在点()1,e 处的切线方程为:()e 11y x =-+. (2)证明:因为()1e xf x a x '=-(1ea ≥,0x >),设函数()()g x f x '=,则()21e 0xg x a x '=+>(1e a ≥,0x >),所以()f x '在()0,∞+上单调递增又因为()212e 02f a '=->,112e2e 1e 2e e 2e 02e a a f a a a a ⎛⎫⎛⎫'=-=-< ⎪ ⎪⎝⎭⎝⎭, 所以存在1,22e a β⎛⎫∈⎪⎝⎭,使得()0f β'=, 即1e a ββ=,1e a ββ=,所以,当()0,x ∈β时,()0f x '<,()f x 在()0,β上单调递减; 当(),x β∈+∞时,()0f x ¢>,()f x 在(),β+∞上单调递增;所以()()1e ln ln 2lnf x f a a ββββββ≥=-+=--令()12ln =--h x x x x ,()()()()14432ln 40x h x x x x x xϕ=--+=+-->, 则()()()2131x x x x ϕ-+'=,()0x ϕ'<解得01x <<,()0x ϕ'>解得1x >,所以,()x ϕ在()0,1上单调递减,在()1,+∞上单调递增; 所以,()()10x ϕϕ≥=,所以,()h x 的图像在44y x =-+的上方,且()h x 与44y x =-+唯一交点为()1,0, 所以,()44f x x ≥-+.(3)圆22117416x y ⎛⎫++= ⎪⎝⎭的圆心坐标为10,4⎛⎫- ⎪⎝⎭,半径r =圆心到直线44y x =-+的距离174d ===, 所以直线44y x =-+为圆22117416x y ⎛⎫++= ⎪⎝⎭的切线,由2211741644x y y x ⎧⎛⎫++=⎪ ⎪⎨⎝⎭⎪=-+⎩解得切点坐标为()1,0, 显然,圆22117416x y ⎛⎫++= ⎪⎝⎭在直线44y x =-+的下方又因为()44f x x ≥-+,且点()(),f ββ在圆22117416x y ⎛⎫++= ⎪⎝⎭上,则点()(),f ββ即为切点为()1,0,所以1β=,1ea =.4.(2024届湖南省株洲市第二中学教育集团2高三上学期开学联考)已知函数()21e 12xf x x x =---, (1)证明:当0x >时,()0f x >恒成立;(2)若关于x 的方程()sin 2f x xa x x +=在()0,π内有解,求实数a 的取值范围. 【过程详解】(1)函数21()e 12xf x x x =---,0x >,求导得()e 1x f x x '=--,令e 1x y x =--,0x >,求导得e 10x y '=->, 则函数()f x '在(0,)+∞上单调递增,()(0)0f x f ''>=, 因此函数()f x 在(0,)+∞上单调递增,()(0)0f x f >=, 所以当0x >时,()0f x >恒成立.(2)设sin y x x =-,()0,πx ∈,则1cos 0y x '=->, 则sin y x x =-在()0,π上递增,0y >,即sin 0x x >>, 方程()sin 2f x xa x x +=等价于e sin 10x ax x x ---=,()0,πx ∈, 令()e sin 1xg x ax x x =---,原问题等价于()g x 在()0,π内有零点,由()0,πx ∈,得2sin x x x <, 由(1)知,当12a ≤时,()21e sin 1e 102x xg x ax x x x x =--->--->, 当()0,πx ∈时,函数()y g x =没有零点,不合题意; 当12a >时,由()e sin 1x g x ax x x =---,求导得()()e cos sin 1xg x a x x x '=-+-, 令()()()e cos sin 1x t x g x a x x x '==-+-,则()()e sin 2cos xt x a x x x '=+-,当π[,π)2x ∈时,()0t x '>恒成立,当π(0,)2x ∈时,令()()()e sin 2cos x s x t x a x x x '==+-,则()()e 3sin cos xs x a x x x '=++,因为e 0x >,()3sin cos 0a x x x +>,则()0s x '>,即()t x '在π(0,2上单调递增,又()0120t a '=-<,π2ππ(e 022t a '=+>,因此()t x '在π(0,)2上存在唯一的零点0x ,当()00,x x ∈时,()0t x '<,函数()g x '单调递减,当()0,πx x ∈时,()0t x '>,函数()g x '单调递增,显然()()000g x g ''<=,()ππe π10g a '=+->,因此()g x '在()0,π上存在唯一的零点1x ,且()10,πx x ∈,当()10,x x ∈时,()0g x '<,函数()g x 单调递减,当()1,πx x ∈时,()0g x '>,()g x 单调递增, 又()00g =,()()100g x g <=,由(1)知,21e 112x x x x >++>+,则()ππe π10g =-->,所以()g x 在()10,x 上没有零点,在()1,πx 上存在唯一零点,因此()g x 在()0,π上有唯一零点, 所以a 的取值范围是1(,)2+∞.5.(2024届辽宁省十校联合体高三上学期八月调研考试)设方程()22e x x a -=有三个实数根123123,,()x x x x x x <<.(1)求a 的取值范围;(2)请在以下两个问题中任选一个进行作答,注意选的序号不同,该题得分不同.若选①则该小问满分4分,若选②则该小问满分9分.①证明:12(2)(2)4x x --<;②证明:1231231113e2x x x x x x +++++<. 【过程详解】(1)由题意设()()22e x f x x =-(x ∈R ),则()f x '=()2e xx x -,x ∈R ,令()0f x '=,得0x =或2x =,当0x <或2x >时,()0f x ¢>,所以()f x 在(),0∞-,()2,+∞上单调递增; 当02x <<时,()0f x '<,所以()f x 在()0,2上单调递减;又()20f =,()04f =,()33e 4f =>,且()()22e 0x f x x =-≥,当x 趋向于+∞时,()f x 也趋向于+∞,又方程()22e x x a -=有三个实数根123123,,()x x x x x x <<, 等价于直线y a =与()y f x =的函数图像有三个交点, 即04a <<,所以a 的取值范围为()0,4.(2)选①,证明如下:由(1)得:1202x x <<<,则122220x x -<-<-<, 设112t x =-,222t x =-,则1220t t <-<<, 不妨设121t k t =>,则12t kt =(1k >), 又()()1222122e 2e x x x x a -=-=,即12222212e e t t t t a ++==,故22222222e e 0e kt ta k t t ==>,即222e e kt t k =,所以22ln 1k t k=-,212ln 1k k t kt k ==-,1k >, 则()()()2222121222ln 2ln 22111k x x t t k k ⎛⎫⎫ ⎪⎛⎫⎪--==⋅==⎪ ⎪ ⎪-⎝⎭⎪⎪-⎪⎝⎭⎭,设()l 1n 2x g x x x=-+,1x >, 则()()222121=10x g x x x x -'--=-≤,所以()g x 在()1,+∞上单调递减,即()()10g x g <=,1>,则0<,即,0>2<,故()()212122241x x t t ⎛⎫ ⎪--==<⎪ ⎪⎪⎝⎭. 选②,证明如下:由(1)得:1202x x <<<,则122220x x -<-<-<, 设112t x =-,222t x =-,则1220t t <-<<, 不妨设121t k t =>,则12t kt =(1k >), 又()()1222122e 2e x x x x a -=-=,即12222212e e t t t t a ++==,故22222222e e 0e kt ta k t t ==>,即222e e kt t k =,所以22ln 1k t k=-,212ln 1k k t kt k ==-(1k >),则()()()2222121222ln 2ln 22111k x x t t k k ⎛⎫⎫ ⎪⎛⎫⎪--==⋅==⎪ ⎪ ⎪-⎝⎭⎪⎪-⎪⎝⎭⎭1>), 设()l 1n 2x g x x x=-+,1x >, 则()()222121=10x g x x x x -'--=-≤,所以()g x 在()1,+∞上单调递减,即()()10g x g <=,1>,则0<,即,0>2<,故()()212122241x x t t ⎛⎫ ⎪--==<⎪ ⎪⎪⎝⎭. 所以()()()12121222244x x x x x x --=-++<,则()12122x x x x <+, 又因为1202x x <<<,所以120x x <,从而()12121221121x x x x x x +⎛⎫=+< ⎪⎝⎭,故121112x x +<①,下证120x x +<, 有12122ln 2ln 44011k k kx x t t k k+=++=++<--(1k >), 即证1k >时,()()1ln 21k k k +>-,即()214ln 211k k k k ->=-++, 即证4ln 21k k +>+(1k >), 设()4ln 1h x x x =++(1x >),则()()()()22211411x h x x x x x -'=-=++,当1x >时,()0h x '>,所以()h x 在()1,+∞上单调递增, 则()()12h x h >=,所以120x x +<②,又()()33e 0f f =>,所以得323x <<,设()1x x xϕ=+,(23x <<),则()211x x ϕ'=-,当23x <<时,()0x ϕ'>,所以()x ϕ在()2,3上单调递增, 则331103x x +<③, 联立①②③得:123123*********e 042362x x x x x x +++++<++=<<,故1231231113e2x x x x x x +++++<. 6.(2024届安徽省江淮十校高三第一次联考)已知函数()2k f x x x=+,0k ≠.(1)讨论()f x 的单调性;(2)设函数()3ln g x x x =-n m ≤<,当13k =-时,证明:()()()()332g m g n f m f n m n -+<-. 【过程详解】(1)解:函数()f x 的定义域为{}|0x x ≠,()32222k x kf x x x x -='-=, 令()0f x '=,则x =①当0k<时,当x <()0f x '<,()f x0x <<时,()0f x ¢>,()f x 单调递增;当0x >时,()0f x ¢>,()f x 单调递增;②当0k>时,当0x <时,()0f x '<,()f x 单调递减;当0x <<()0f x '<,()f x 单调递减;当x >时,()0f x ¢>,()f x 单调递增.综上:当0k <时,单调增区间为⎫⎪⎪⎭,()0,∞+,单调递减区间为⎛-∞ ⎝; 当0k >时,单调递增区间为⎫+∞⎪⎪⎭,单调递减区间为(),0∞-,⎛ ⎝. (2)对任意的m,n ⎫∈+∞⎪⎭,且m n >,令mt n =(1t >),因为()()()()()()()32m n f m f n g m g n -+--()22333311ln 2222m m n m n m n m n n ⎛⎫⎛⎫=-+----- ⎪ ⎪⎝⎭⎝⎭33221133ln 222222n m m m n mn m n m n n=-+-+-+ 323111332ln 22m m m m n m n n n n n mn ⎡⎤⎛⎫⎛⎫⎛⎫=-+⋅----⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦()332331*********ln (1)2ln 2222n t t t t t n t t t t t ⎛⎫⎛⎫=-+----=---- ⎪ ⎪⎝⎭⎝⎭ ()33211111(1)2ln 33132ln 626t t t t t t t t t t ⎡⎤⎛⎫⎛⎫≥----=-+---- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 321336ln 16t t t t ⎛⎫=-++- ⎪⎝⎭, 记()32336ln 1h t t t t t =-++-,则()22226311113636320h t t t t t t t t t t t t t ⎛⎫⎛⎫⎛⎫⎛⎫=-+-=---'=-+-> ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以()h t 在()1,+∞单调递增,所以()()10h t h >=,故32336ln 10t t t t-++->,所以()()()()()()()302m n f m f n g m g n -+-->, 故()()()()332g m g n f m f n m n-+<-.7.(2024届内蒙古包头市高三上学期调研考试)设函数()()ln 1f x a x =+-,已知2x =是函数()()2y x f x =-的极值点.(1)求a ; (2)设函数()()()()22x f x g x x f x -=-+,证明:()1g x >.【过程详解】(1)由题意可知,()()()()22ln 1y x f x x a x =-=-+-,则()2ln 11xy a x a x-'=+-++-,因为2x =是函数()()2ln 1y x a x =-+-的极值点, 所以()ln 120a +-=,解得2a =, 经检验满足题意,故2a =;(2)由(1)得()()ln 3f x x =-,(),3x ∞∈-, 设()()()22ln 3h x x f x x x =-+=-+-,则()12133x h x x x -'=-=--, 当2x <时,203x x ->-,即()0h x '>,所以()h x 在区间(),2-∞单调递增; 当23x <<时,203x x -<-,即()0h x '<,所以()h x 在区间()2,3单调递减, 因此当(),3x ∞∈-时,()()20h x h ≤=,因为()g x 的定义域要求()f x 有意义,即(),3x ∞∈-,同时还要求()2ln 30x x -+-≠,即要求2x ≠,所以()g x的定义域为{|3x x < 且}2x ≠, 要证()()()()212x f x g x x f x -=>-+,因为()20x f x -+<,所以需证()()()22x f x x f x -<-+, 即需证()()23ln 30x x x -+-->,令3x t -=,则0t >且1t ≠,则只需证1ln 0t t t -+>,令()1ln m t t t t =-+,则()ln m t t '=,令()ln 0m t t '==,可得1t =, 所以()0,1t ∈,()0m t '<;()1,t ∈+∞,()0m t '>;所以()m t 在区间()0,1上单调递减,在区间()1,+∞上单调递增, 所以()()10m t m >=,即()1g x >成立.8.(2024届北京市景山学校高三上学期开学考试)已知函数())(0)f x x b a =+≠,曲线()y f x =在点(1,(1))f 处的切线方程是1y x =-.(1)求a 、b 的值; (2)求证:()f x x <;(3)若函数()2()()g x f x t x x =+-在区间(1,)+∞上无零点,求t 的取值范围.【过程详解】(1)()()f x x b '=+由切线方程知()()1110f f ⎧=⎪⎨='⎪⎩,即()()1110b b +=+=,注意到0a ≠,解得1a =,0b =.(2)由(1)可知()f x x,若要()f x x x =<且注意到0x >,所以只需ln x < 构造函数()ln h x x =()122h x x x '==,令()0h x '=得4x =,所以()h x 、()h x '随x 的变化情况如下表:()0,4 ()4,+∞()h x '+-()h x所以()h x 有极大值()244ln 42ln 0eh =-=<,综上()0h x <,结合分析可知命题得证. (3)由题意分以下三种情形讨论:情形一:注意到当0t ≥且1x >0x >,()10txx -≥,此时有()0g x >,即()g x 在区间(1,)+∞上无零点,符合题意.情形二:对()2()g x x t x x =+-求导得()()21g xt x x '=+-,所以有()11g t '=+;进一步对()()21g x t x x '=++- 求导得()32ln 24x g x t x-''=+,注意到当1t ≤-且1x >时,有20t <,32ln 04x x-< ,进而有()0g x ''<,所以()g x '单调递减,所以()()110g x g t ''<=+≤,因此()g x 单调递减,故()()10g x g <=,即()g x 在区间(1,)+∞上无零点,符合题意.情形三:由(2)可知1x >lnx <,且注意到当10t -<<时有()()()1()21211212g x t x t x t x '=-<+-<++-成立, 所以11(02a g a a -'<-<,此时()110g t '=+>, 所以存在011,a x a -⎛⎫∈ ⎪⎝⎭使得()00g x '=,且注意到此时有()32ln 204x g x t x -''=+<成立, 所以()g x 、()g x '随x 的变化情况如下表:()01,x ()0,x +∞()g x ' +-()g x故一方面当0x x =时,()g x 取极大值(或最大值)()0g x ,显然有()()010g x g >=;ln x <可得()()()22()1g x x t x x x t x x x tx t +-<+-=+-,所以有10a g a -⎛⎫< ⎪⎝⎭,由零点存在定理并结合这两方面可知函数()g x 在区间(1,)+∞上存在零点.综上所述,符合题意的t 的取值范围为(][),10,-∞-⋃+∞.9.(2024届山西省大同市高三上学期质量检测)已知函数2()ln (R)af x ax x a x=--∈. (1)讨论()f x 的单调性;(2)若()f x 的两个极值点分别为1x ,2x,证明:12|()()|f x f x -<. 【过程详解】(1)依题意,222122()(0)a ax x af x a x x x x -+'=-+=>,当0a ≤时,()0f x '<,所以()f x 在(0,)+∞上单调递减;当0a <<()0f x '>,解得102x a <<或12x a>,令()0f x '<,解得112x a <<,所以()f x在1(0,2a 上单调递增,在11(22a a上单调递减,在)+∞上单调递增;当a ≥时,()0f x '≥,所以()f x 在(0,)+∞上单调递增. (2)不妨设120x x <<,由(1)知,当04a <<时,()f x 在1(0,)x 上单调递增,在12(,)x x 上单调递减,在2(,)x +∞上单调递增,所以1x 是()f x 的极大值点,2x 是()fx的极小值点,所以12()()f x f x >,所以1212|()()|()()f x f x f xf x -=-.由(1)知,122x x =,121x x a+=,则21x xa-==.要证12|()()|f x f x -<1221()())2f x f x x x -<-.因为22121122121112()()()()()ln 222x x xx x f x f x x x a x x a x x x ---+=-+--+⋅2212212111212()2()()ln ln 2x x x x a x x x x x x x x -=-+--=+ 2122112(1)ln 1x x xx x x -=+, 设211x t x =>,2(1)()ln 1t g t t t -=++.所以222414()0(1)(1)g t t t t '==>++, 所以()g t 在(1,)+∞上单调递增,所以()(1)0g t g >=.所以2112)()()02x x f x f x --+>,即得1221()()()2f x f x x x -<-成立. 所以原不等式成立.10.(2024届黑龙江省哈尔滨市第三中学校高三上学期开学测试)已知函数()()111ln f x ax a x x=+--+.(1)讨论函数()f x 的单调性;(2)求证:n *∀∈N ,)21+⋅⋅⋅++>.【过程详解】(1)()f x 的定义域为()0,∞+,()()()221111ax x a f x a x x x --+'=+-=, 当0a ≤时,10ax -<,令()0f x ¢>,解得01x <<,令()0f x '<,解得1x >,所以()f x 在()0,1上单调递增,()1,+∞上单调递减;当01a <<时,令()0f x ¢>,解得01x <<或1x a >,令()0f x '<,解得11x a <<,所以()f x 在()0,1,1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,11,a ⎛⎫⎪⎝⎭上单调递减;当1a =时,()0f x '≥恒成立,所以()f x 在()0,∞+上单调递增;当1a >时,令()0f x ¢>,解得10x a <<或1x >,令()0f x '<,解得11x a <<,所以()f x 在10,a ⎛⎫⎪⎝⎭,()1,+∞上单调递增,1,1a ⎛⎫⎪⎝⎭上单调递减;综上所述,当0a ≤时,()f x 在()0,1上单调递增,()1,+∞上单调递减;当01a <<时,()f x 在()0,1,1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,11,a ⎛⎫⎪⎝⎭上单调递减;当1a =时,()f x 在()0,∞+上单调递增;当1a >时,()f x 在10,a ⎛⎫⎪⎝⎭,()1,+∞上单调递增,1,1a ⎛⎫ ⎪⎝⎭上单调递减.(2)当0a =时,由(1)可得()()11ln 10f x x f x=--<=,()1x >,因为N n *∈1>,则10<,即11>>所以n ++>-+L L2n =-L2n =-)21=-,即)2ln 1+>L .。

高考压轴高等数学试卷

高考压轴高等数学试卷

一、选择题(每题5分,共50分)1. 下列函数中,定义域为实数集R的是()A. f(x) = x² + 1B. f(x) = 1/xC. f(x) = √(x - 2)D. f(x) = |x|2. 函数f(x) = e^(2x)的导数为()A. f'(x) = 2e^(2x)B. f'(x) = e^(2x)C. f'(x) = 4e^(2x)D. f'(x) = 2xe^(2x)3. 若lim(x→0) (f(x) - f(0))/(x - 0) = 2,则f'(0)等于()A. 2B. -2C. 0D. 不存在4. 函数y = x^3 - 3x + 1在x = 0处的切线方程为()A. y = 1B. y = xC. y = x + 1D. y = -x5. 下列极限计算正确的是()A. lim(x→∞) (1 + 1/x)^x = eB. lim(x→0) x / (sin x) = 1C. lim(x→0) (1 - cos x) / x = 1/2D. lim(x→0) (e^x - 1) / x = 16. 若函数f(x) = x²lnx在区间[1, 2]上单调递增,则f'(x)在区间[1, 2]上的符号为()A. 恒正B. 恒负C. 先正后负D. 先负后正7. 函数y = sin(3x)的周期为()A. π/3B. 2π/3C. πD. 2π8. 已知函数f(x) = x² + 2x + 1,则f(x)的极值点为()A. x = -1B. x = 0C. x = 1D. x = -29. 下列级数收敛的是()A. ∑(n=1 to ∞) 1/nB. ∑(n=1 to ∞) (-1)^n/nC. ∑(n=1 to ∞) n^2D. ∑(n=1 to ∞) 1/n²10. 曲线y = e^(-x)在x = 0处的切线斜率为()A. 1B. -1C. 0D. 不存在二、填空题(每题5分,共50分)1. 函数f(x) = x³ - 3x² + 2x在x = 1处的二阶导数为__________。

2023年数学高考压轴题

2023年数学高考压轴题

选择题:1. 解方程x^2 + 4x - 5 = 0,那么x 的值是:A. -5, 1B. -1, 5C. -5, -1D. 1, 5答案:A2. 在直角三角形ABC 中,∠B = 90°,且边长满足a^2 + b^2 = c^2。

如果a = 5,c = 13,那么边b 的长是:A. 12B. 8C. 10D. 15答案:C3. 设函数f(x) = 2x - 3,那么f(5) 的值是:A. -8B. 2C. 7D. 13答案:74. 若集合A = {1, 2, 3},集合B = {2, 3, 4},则A - B = ?A. {2, 3}B. {1}C. {1, 2, 3, 4}D. 空集答案:{1}5. 解不等式2x - 5 < 3x + 2,得到的解集是:A. x < -7B. x > -7C. x < 7D. x > 7答案:A填空题:1. 若a^2 + b^2 = 25,且a > 0, b < 0,那么a 和b的符号分别是_______。

答案:a为正,b为负2. 解方程3x - 4 = 14,得到的解是_______。

答案:x = 63. 已知函数f(x) = x^3 + 2x^2 - 3x + 1,那么f(-1) = _______。

答案:-14. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},则A ∩ B 的个数是_______。

答案:25. 在平面直角坐标系中,点P(3, 4) 的横坐标是_______。

答案:3应用题:1. 甲乙两人共有80元,如果甲比乙少20元,那么乙有多少元?答案:乙有60元2. 车从A 地到B 地需要6小时,车速为50千米/小时;往返B 地又需要4小时,返回的车速为60千米/小时。

求A 地和B 地的距离。

答案:A和B地的距离为300千米3. 某电器商店购进一种电器,进价为500元,商店出售时要求获利20%,那么出售价格是多少?答案:出售价格为600元4. 一袋小米重3千克,一袋大米重5千克,已知小米和大米总重25千克,袋数比为3:2,问小米和大米各有几袋?答案:小米有9袋,大米有6袋5. 某学生参加一次考试,满分为100分,他得了x分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题型突破练——压轴题专练压轴题专练(一)建议用时:40分钟1.[2015·山西质监]已知椭圆E 的两焦点分别为(-1,0),(1,0),且经过点⎝⎛⎭⎪⎪⎫1,22. (1)求椭圆E 的方程;(2)过P (-2,0)的直线l 交E 于A ,B 两点,且PB →=3PA →,设A ,B 两点关于x 轴的对称点分别是C ,D ,求四边形ACDB 的外接圆的方程.解 (1)由题意知c =1,2a -22=22+⎝ ⎛⎭⎪⎪⎫222,∴a =2,b =a 2-c 2=1,椭圆E 的方程为x 22+y 2=1.(2)设l :x =my -2,代入椭圆方程得(m 2+2)y 2-4my +2=0, 由Δ=8m 2-16>0得m 2>2.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m m 2+2,①y 1y 2=2m 2+2.②由PB →=3PA→,得y 2=3y 1.③由①②③解得m 2=4,符合m 2>2.不妨取m =2,则线段AB 的垂直平分线的方程为y =-2x -23,则所求圆的圆心为⎝ ⎛⎭⎪⎫-13,0.又B (0,1),∴圆的半径r =103.∴圆的方程为⎝⎛⎭⎪⎫x +132+y 2=109.2.已知函数f (x )=(ax 2+bx +c )e x 在[0,1]上单调递减且满足f (0)=1,f (1)=0.(1)求实数a 的取值范围;(2)设g (x )=f (x )-f ′(x ),求g (x )在[0,1]上的最大值和最小值.解 (1)由f (0)=1,f (1)=0得c =1,a +b =-1, 则f (x )=[ax 2-(a +1)x +1]e x ,f ′(x )=[ax 2+(a -1)x -a ]e x .依题意知,对任意的x ∈[0,1],有f ′(x )≤0.当a >0时,因为二次函数y =ax 2+(a -1)x -a 的图象开口向上,而f ′(0)=-a <0,所以f ′(1)=(a -1)e ≤0,即0<a ≤1;当a =0时,对任意的x ∈[0,1],f ′(x )=-x e x ≤0,符合条件;当a <0时,f ′(0)=-a >0,不符合条件.故实数a 的取值范围是[0,1].(2)因为g (x )=(-2ax +1+a )e x ,g ′(x )=(-2ax +1-a )e x , ①当a =0时,g ′(x )=e x >0,g (x )在x =0处取得最小值g (0)=1,在x =1处取得最大值g (1)=e.②当a =1时,对任意的x ∈[0,1]有g ′(x )=-2x e x ≤0,g (x )在x =0处取得最大值g (0)=2,在x =1处取得最小值g (1)=0.③当0<a <1时,由g ′(x )=0得x =1-a2a>0.a .当1-a 2a ≥1,即0<a ≤13时,g (x )在[0,1]上单调递增,g (x )在x =0处取得最小值g (0)=1+a ,在x =1处取得最大值g (1)=(1-a )e.b .当1-a 2a <1,即13<a <1时,g (x )在x =1-a 2a处取得最大值g ⎝ ⎛⎭⎪⎫1-a 2a =2a e 1-a 2a ,在x =0或x =1处取得最小值,而g (0)=1+a ,g (1)=(1-a )e ,则当13<a ≤e -1e +1时,g (x )在x =0处取得最小值g (0)=1+a ;当e -1e +1<a <1时,g (x )在x =1处取得最小值g (1)=(1-a )e.3.选做题(1)[选修4-1:几何证明选讲]如图,P 是⊙O 外一点,PA 是切线,A 为切点,割线PBC 与⊙O 相交于点B ,C ,PC =2PA ,D 为PC 的中点,AD 的延长线交⊙O 于点E .证明:①BE =EC ; ②AD ·DE =2PB 2.(2)[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos αy =2+2sin α(α为参数),M 为C 1上的动点,P点满足OP →=2OM→,点P 的轨迹为曲线C 2. ①求C 2的参数方程;②在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |. (3)[选修4-5:不等式选讲]已知函数f (x )=|x -m |+|x +6|(m ∈R ).①当m =5时,求不等式f (x )≤12的解集;②若不等式f (x )≥7对任意实数x 恒成立,求m 的取值范围. 解 (1)证明:①∵PC =2PA ,PD =DC ,∴PA =PD ,△PAD 为等腰三角形.连接AB ,则∠PAB =∠DEB =β,∠BCE =∠BAE =α, ∵∠PAB +∠BCE =∠PAB +∠BAD =∠PAD =∠PDA =∠DEB +∠DBE ,∴β+α=β+∠DBE ,即α=∠DBE ,即∠BCE =∠DBE ,所以BE =EC .②∵AD ·DE =BD ·DC ,PA 2=PB ·PC ,PD =DC =PA ,BD ·DC =(PA -PB )PA =PB ·PC -PB ·PA =PB ·(PC -PA ), PB ·PA =PB ·2PB =2PB 2.(2)①设P (x ,y ),则由条件知M ⎝ ⎛⎭⎪⎫x 2,y 2.由于M 点在C 1上,所以⎩⎪⎨⎪⎧x2=2cos αy 2=2+2sin α,即⎩⎪⎨⎪⎧x =4cos αy =4+4sin α.从而C 2的参数方程为⎩⎪⎨⎪⎧x =4cos αy =4+4sin α(α为参数).②曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的极坐标方程为ρ=8sin θ.射线θ=π3与C 1的交点A 的极径为ρ1=4sin π3,射线θ=π3与C 2的交点B 的极径为ρ2=8sin π3.所以|AB |=|ρ2-ρ1|=2 3.(3)①当m =5时,f (x )≤12即|x -5|+|x +6|≤12, 当x <-6时,得-2x ≤13, 即x ≥-132,所以-132≤x <-6; 当-6≤x ≤5时,得11≤12成立,所以-6≤x ≤5; 当x >5时,得2x ≤11, 即x ≤112,所以5<x ≤112.故不等式f (x )≤12的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-132≤x ≤112.②f (x )=|x -m |+|x +6|≥|(x -m )-(x +6)|=|m +6|, 由题意得|m +6|≥7,则m +6≥7或m +6≤-7,解得m ≥1或m ≤-13,故m 的取值范围是(-∞,-13]∪[1,+∞).压轴题专练(二)建议用时:40分钟1.如图,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 是椭圆的两个顶点,椭圆的离心率为12,点C 在x 轴上,BC ⊥BF ,B ,C ,F 三点确定的圆M 恰好与直线x +3y +3=0相切.(1)求椭圆的方程;(2)过F 作一条与两坐标轴都不垂直的直线l 交椭圆于P ,Q 两点,在x 轴上是否存在点N ,使得NF 恰好为△PNQ 的内角平分线,若存在,求出点N 的坐标,若不存在,请说明理由.解 (1)由题意可知F (-c,0),∵e =12,∴b =3c ,即B (0,3c ),∵k BF =3c 0-(-c )=3,又∵k BC =-33,∴C (3c,0),圆M 的圆心坐标为(c,0),半径为2c , 由直线x +3y +3=0与圆M 相切可得|c +3|1+(3)2=2c ,∴c =1.∴椭圆的方程为x 24+y 23=1.(2)假设存在满足条件的点N (x 0,0)由题意可设直线l 的方程为y =k (x +1)(k ≠0), 设P (x 1,y 1),Q (x 2,y 2) ∵NF 为△PNQ 的内角平分线, ∴k NP =-k NQ ,即y 1x 1-x 0=-y 2x 2-x 0,∴k (x 1+1)x 1-x 0=-k (x 2+1)x 2-x 0⇒(x 1+1)(x 2-x 0)=-(x 2+1)(x 1-x 0).∴x 0=x 1+x 2+2x 1x 2x 1+x 2+2.又⎩⎪⎨⎪⎧y =k (x +1)x 24+y23=1,∴3x 2+4k 2(x +1)2=12.∴(3+4k 2)x 2+8k 2x +4k 2-12=0. ∴x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2.∴x 0=-8k 23+4k 2+8k 2-243+4k 22-8k 23+4k 2=-4,∴存在满足条件的点N ,点N 的坐标为(-4,0).2.[2015·沈阳质监(一)]已知函数f (x )=a ln x (a >0),e 为自然对数的底数.(1)若过点A (2,f (2))的切线斜率为2,求实数a 的值;(2)当x >0时,求证:f (x )≥a ⎝⎛⎭⎪⎫1-1x ;(3)在区间(1,e)上f (x )x -1>1恒成立,求实数a 的取值范围.解 (1)f ′(x )=a x ,f ′(2)=a2=2,a =4.(2)令g (x )=a ⎝ ⎛⎭⎪⎫ln x -1+1x ,g ′(x )=a ⎝ ⎛⎭⎪⎫1x -1x 2.令g ′(x )>0,即a ⎝ ⎛⎭⎪⎫1x -1x 2>0,解得x >1,所以g (x )在(0,1)上单调递减,在(1,+∞)上单调递增.所以g (x )的最小值为g (1)=0,所以f (x )≥a ⎝⎛⎭⎪⎫1-1x .(3)令h (x )=a ln x +1-x ,则h ′(x )=ax-1,令h ′(x )>0,解得x <a .当a >e 时,h (x )在(1,e)上单调递增,所以h (x )>h (1)=0. 当1<a ≤e 时,h (x )在(1,a )上单调递增,在(a ,e)上单调递减, 所以只需h (e)≥0,即a ≥e -1.当a ≤1时,h (x )在(1,e)上单调递减,则需h (e)≥0, 而h (e)=a +1-e <0,不合题意. 综上,a ≥e -1.3.选做题(1)[选修4-1:几何证明选讲]如图所示,AB 为圆O 的直径,CD 为圆O 的切线,切点为D ,AD ∥OC .①求证:BC 是圆O 的切线; ②若AD ·OC =2,试求圆O 的半径. (2)[选修4-4:坐标系与参数方程]以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,并在两种坐标系中取相同的单位长度.设圆C :⎩⎪⎨⎪⎧x =2cos θy =2sin θ(θ为参数)上的点到直线l :ρcos ⎝⎛⎭⎪⎫θ-π4=2k 的距离为d .①当k =3时,求d 的最大值;②若直线l 与圆C 相交,试求k 的取值范围. (3)[选修4-5:不等式选讲] 设f (x )=|x -3|+|2x -4|. ①解不等式f (x )≤4;②若对任意实数x ∈[5,9],f (x )≤ax -1恒成立,求实数a 的取值范围.解 (1)①证明:如图,连接BD 、OD . ∵CD 是圆O 的切线,∴∠ODC =90°. ∵AD ∥OC ,∴∠BOC =∠OAD . ∵OA =OD ,∴∠OAD =∠ODA . ∴∠BOC =∠DOC .又∵OC =OC ,OB =OD ,∴△BOC ≌△DOC . ∴∠OBC =∠ODC =90°,即OB ⊥BC . ∴BC 是圆O 的切线.②由①知∠OAD =∠DOC ,∴Rt △BAD ∽Rt △COD ,∴AD AB =OD OC. AD ·OC =AB ·OD =2r ×r =2,∴r =1.(2)①由l :ρcos ⎝⎛⎭⎪⎫θ-π4=32,得l :ρcos θcos π4+ρsinθsin π4=32,整理得l :x +y -6=0.则d =|2cos θ+2sin θ-6|2=⎪⎪⎪⎪⎪⎪2sin ⎝⎛⎭⎪⎫θ+π4-62∴d max =82=4 2. ②将圆C 的参数方程化为普通方程得x 2+y 2=2,直线l 的极坐标方程化为普通方程得x +y -k =0.∵直线l 与圆C 相交,∴圆心O 到直线l 的距离d <2,即|-k |2<2,解得-2<k <2.(3)①当x <2时,f (x )=7-3x ≤4,得1≤x <2; 当2≤x ≤3时,f (x )=x -1≤4,得2≤x ≤3; 当x >3时,f (x )=3x -7≤4,得3<x ≤113.综上可得不等式f (x )≤4的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1≤x ≤113 ②∵x ∈[5,9],∴f (x )≤ax -1即3x -7≤ax -1, ∴a ≥3-6x ,即a ≥3-69=73.压轴题专练(三)建议用时:40分钟1.[2015·河南洛阳统考]已知椭圆的中心是坐标原点O ,焦点在x 轴上,离心率为22,坐标原点O 到过右焦点F 且斜率为1的直线的距离为22.(1)求椭圆的标准方程;(2)设过右焦点F 且与坐标轴不垂直的直线l 交椭圆于P ,Q 两点,在线段OF 上是否存在点M (m,0),使得|MP |=|MQ |?若存在,求出m 的取值范围;若不存在,请说明理由.解 (1)设椭圆方程为x 2a 2+y 2b2=1(a >b >0),F (c,0)(c >0),由坐标原点O 到直线x -y -c =0的距离为22,得|0-0-c |2=22,解得c =1.又e =c a =22,故a =2,b =1.∴所求椭圆方程为x 22+y 2=1.(2)假设存在点M (m,0)(0<m <1)满足条件,则以MP ,MQ 为邻边的平行四边形是菱形.∵直线l 与x 轴不垂直,∴设直线l 的方程为y =k (x -1)(k ≠0),P (x 1,y 1),Q (x 2,y 2).由⎩⎪⎨⎪⎧x 2+2y 2=2y =k (x -1)可得(1+2k 2)x 2-4k 2x +2k 2-2=0,Δ>0恒成立,∴x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-21+2k 2.设线段PQ 的中点为N (x 0,y 0), 则x 0=x 1+x 22=2k 21+2k 2,y 0=k (x 0-1)=-k1+2k 2. ∵|MP |=|MQ |,∴MN ⊥PQ ,∴k MN ·k PQ =-1, 即-k1+2k 22k 21+2k 2-m ·k =-1,∴m =k 21+2k 2=12+1k 2.∵k 2>0,∴0<m <12. 2.[2015·九江一模]设函数f (x )=12x 2-(a +b )x +ab ln x (其中e 为自然对数的底数,a ≠e ,b ∈R ),曲线y =f (x )在点(e ,f (e))处的切线方程为y =-12e 2.(1)求b ;(2)若对任意x ∈⎣⎢⎡⎭⎪⎫1e ,+∞,f (x )有且只有两个零点,求a 的取值范围.解 (1)f ′(x )=x -(a +b )+ab x =(x -a )(x -b )x,∵f ′(e)=0,a ≠e ,∴b =e.(2)由(1)得f (x )=12x 2-(a +e)x +a eln x ,f ′(x )=(x -a )(x -e )x,①当a ≤1e 时,由f ′(x )>0得x >e ;由f ′(x )<0得1e<x <e.此时f (x )在⎝ ⎛⎭⎪⎫1e ,e 上单调递减,在(e ,+∞)上单调递增.∵f (e)=12e 2-(a +e)e +a elne =-12e 2<0, f (e 2)=12e 4-(a +e)e 2+2a e =12e(e -2)(e 2-2a )≥12e(e -2)⎝⎛⎭⎪⎫e 2-2e >0,(或当x →+∞时,f (x )>0亦可)∴要使得f (x )在⎣⎢⎡⎭⎪⎫1e ,+∞上有且只有两个零点,则只需f ⎝ ⎛⎭⎪⎫1e =12e2-a +e e +a eln 1e =(1-2e 2)-2e (1+e 2)a2e 2≥0,即a ≤1-2e 22e (1+e 2). ②当1e <a <e 时,由f ′(x )>0得1e<x <a 或x >e ;由f ′(x )<0得a <x <e.此时f (x )在(a ,e)上单调递减,在⎝ ⎛⎭⎪⎫1e ,a 和(e ,+∞)上单调递增.f(a)=-12a2-ae+a eln a<-12a2-a e+a elne=-12a2<0,∴此时f(x)在⎣⎢⎡⎭⎪⎫1e,+∞上至多只有一个零点,不合题意.③当a>e时,由f′(x)>0得1e<x<e或x>a,由f′(x)<0得e<x<a,此时f(x)在⎝⎛⎭⎪⎫1e,e和(a,+∞)上单调递增,在(e,a)上单调递减,且f(e)=-12e2<0,∴f(x)在⎣⎢⎡⎭⎪⎫1e,+∞上至多只有一个零点,不合题意.综上所述,a的取值范围为⎝⎛⎦⎥⎤-∞,1-2e22e(1+e2).3.选做题(1)[选修4-1:几何证明选讲]如图,四边形ABCD内接于圆O,∠BAD=60°,∠ABC=90°,BC=3,CD=5.求对角线BD、AC的长.(2)[选修4-4:坐标系与参数方程]已知直线l的参数方程为⎩⎪⎨⎪⎧x=12t,y=1+32t(t为参数),曲线C的极坐标方程为ρ=22sin⎝⎛⎭⎪⎫θ+π4,直线l与曲线C交于A,B两点,与y轴交于点P.①求曲线C 的直角坐标方程; ②求1|PA|+1|PB |的值.(3)[选修4-5:不等式选讲]已知实数m ,n 满足:关于x 的不等式|x 2+mx +n |≤|3x 2-6x -9|的解集为R .①求m ,n 的值;②若a ,b ,c ∈R +,且a +b +c =m -n ,求证:a +b +c ≤ 3. 解 (1)如图,延长DC ,AB 交于点E .∵∠BAD =60°,∴∠ECB =60°, ∵∠ABC =90°,BC =3,CD =5, ∴∠EBC =90°,∴∠E =30°,∴EC =2BC =2×3=6,∴EB =3BC =33, ∴ED =DC +EC =5+6=11, ∵EC ×ED =EB ×(EB +AB ),则6×11=33×(33+AB ),解得AB =1333,∴AC =32+⎝ ⎛⎭⎪⎪⎫13332=1433. ∵∠EDB =∠EAC ,∠E =∠E ,∴△EDB ∽△EAC ,∴BD AC =BECE,∴BD =AC ·BECE =1433×336=7.(2)①利用极坐标公式,把曲线C 的极坐标方程ρ=22sin ⎝⎛⎭⎪⎫θ+π4化为ρ2=2ρsin θ+2ρcos θ,∴普通方程是x 2+y 2=2y +2x , 即(x -1)2+(y -1)2=2.②∵直线l 与曲线C 交于A ,B 两点,与y 轴交于点P ,把直线l 的参数方程⎩⎪⎨⎪⎧x =12t ,y =1+32t代入曲线C 的普通方程(x -1)2+(y -1)2=2中,得t 2-t -1=0,∴⎩⎪⎨⎪⎧t 1·t 2=-1,t 1+t 2=1,∴1|PA |+1|PB |=1|t 1|+1|t 2| =|t 1-t 2||t 1t 2|=(t 1+t 2)2-4t 1t 2 =12-4×(-1)= 5.(3)①由于解集为R ,那么x =3,x =-1都满足不等式,即有⎩⎪⎨⎪⎧|9+3m +n |≤0|1-m +n |≤0,即⎩⎪⎨⎪⎧9+3m +n =01-m +n =0,解得m =-2,n =-3,经验证当m =-2,n =-3时,不等式的解集是R .②证明:a +b +c =1,a +b ≥2ab ,b +c ≥2bc ,c +a ≥2ca , ∴(a +b +c )2=a +b +c +2ab +2bc +2ca ≤3(a +b +c )=3,故a +b +c ≤3(当且仅当a =b =c =13时取等号).压轴题专练(四)建议用时:40分钟1.[2015·九江一模]已知椭圆C 的中心在坐标原点,右焦点为F (7,0),A 、B 分别是椭圆C 的左、右顶点,D 是椭圆C 上异于A 、B 的动点,且△ADB 面积的最大值为12.(1)求椭圆C 的方程;(2)求证:当点P (x 0,y 0)在椭圆C 上运动时,直线l :x 0x +y 0y =2与圆O :x 2+y 2=1恒有两个交点,并求直线l 被圆O 所截得的弦长L 的取值范围.解 (1)设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),由已知可得(S △ADB )max =12·2a ·b =ab =12,①∵F (7,0)为椭圆右焦点,∴a 2=b 2+7,②由①②可得a =4,b =3,∴椭圆C 的方程为x 216+y 29=1.(2)证明:∵P (x 0,y 0)是椭圆上的动点,∴x 2016+y 29=1, ∴y 20=9-9x 2016,∴圆心O 到直线l :x 0x +y 0y =2的距离d =2x 20+y 20=2x 20+9-916x 2=2716x 20+9<1(0≤x 20≤16), ∴直线l :x 0x +y 0y =2与圆O :x 2+y 2=1恒有两个交点,L =2r 2-d 2=21-4716x 20+9(r 为圆x 2+y 2=1的半径), ∵0≤x 20≤16,∴9≤716x 20+9≤16,∴253≤L ≤ 3.2.[2015·唐山统考]已知函数f (x )=a e x +x 2,g (x )=sin x +bx ,直线l 与曲线C 1:y =f (x )切于点(0,f (0)),且与曲线C 2:y =g (x )切于点⎝ ⎛⎭⎪⎫π2,g ⎝ ⎛⎭⎪⎫π2.(1)求a ,b 的值和直线l 的方程;(2)证明:除切点外,曲线C 1,C 2位于直线l 的两侧. 解 (1)f ′(x )=a e x +2x ,g ′(x )=cos x +b ,f (0)=a ,f ′(0)=a ,g ⎝ ⎛⎭⎪⎫π2=1+π2b ,g ′⎝ ⎛⎭⎪⎫π2=b ,曲线y =f (x )在点(0,f (0))处的切线方程为y =ax +a ,曲线y =g (x )在点⎝ ⎛⎭⎪⎫π2,g ⎝ ⎛⎭⎪⎫π2处的切线方程为y =b ⎝⎛⎭⎪⎫x -π2+1+π2b ,即y =bx +1.依题意,有a =b =1,直线l 的方程为y =x +1. (2)证明:由(1)知f (x )=e x +x 2,g (x )=sin x +x .设F (x )=f (x )-(x +1)=e x +x 2-x -1,则F ′(x )=e x +2x -1, 当x ∈(-∞,0)时,F ′(x )<F ′(0)=0; 当x ∈(0,+∞)时,F ′(x )>F ′(0)=0.F (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增,故F (x )≥F (0)=0.设G (x )=x +1-g (x )=1-sin x ,则G (x )≥0,当且仅当x =2kπ+π2(k ∈Z )时等号成立.综上可知,f (x )≥x +1≥g (x ),且两个等号不同时成立,因此f (x )>g (x ).所以除切点外,曲线C 1,C 2位于直线l 的两侧. 3.选做题(1)[选修4-1:几何证明选讲]在Rt △ABC 中,∠B =90°,AB =4,BC =3,以AB 为直径作圆O 交AC 于点D .①求线段CD 的长度;②点E 为线段BC 上一点,当点E 在什么位置时,直线ED 与圆O 相切,并说明理由.(2)[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =-5+22t ,y =5+22t(t 为参数),以O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,曲线C 的极坐标方程为ρ=4cos θ.①求曲线C 的直角坐标方程及直线l 的普通方程;②将曲线C 上的所有点的横坐标缩短为原来的12,再将所得曲线向左平移1个单位,得到曲线C 1.求曲线C 1上的点到直线l 的距离的最小值.(3)[选修4-5:不等式选讲]已知a +b =1,对∀a ,b ∈(0,+∞),1a +4b≥|2x -1|-|x +1|恒成立,求x 的取值范围.解 (1)①连接BD ,在直角三角形ABC 中,易知AC =5,∠BDC =∠ADB =90°,所以∠BDC =∠ABC ,又因为∠C =∠C , 所以Rt △ABC ∽Rt △BDC ,所以CD BC =BC AC ,所以CD =BC 2AC =95.②当点E 是BC 的中点时,ED 与⊙O 相切;证明:连接OD ,∵DE 是Rt △BDC 的中线,∴ED =EB , ∴∠EBD =∠EDB ,∵OB =OD ,∴∠OBD =∠ODB , ∴∠ODE =∠ODB +∠BDE =∠OBD +∠EBD =∠ABC =90°, ∴ED ⊥OD ,∴ED 与⊙O 相切.(2)①曲线C 的直角坐标方程为:x 2+y 2=4x ,即:(x -2)2+y 2=4,直线l 的普通方程为x -y +25=0.②将曲线C 上的所有点的横坐标缩为原来的12,得(2x -2)2+y 2=4,即(x -1)2+y 24=1.再将所得曲线向左平移1个单位,得C 1:x 2+y 24=1.又曲线C 1的参数方程为⎩⎪⎨⎪⎧x =cos θy =2sin θ(θ为参数),设曲线C 1上任一点P (cos θ,2sin θ),则d p →l =|cos θ-2sin θ+25|2=|25-5sin (θ-φ)|2≥102(其中tan φ=12), ∴点P 到直线l 的距离的最小值为102. (3)∵a >0,b >0且a +b =1,∴1a +4b =(a +b )⎝ ⎛⎭⎪⎫1a +4b =5+b a +4ab≥9,故1a +4b的最小值为9,因为对a ,b ∈(0,+∞),使1a +4b≥|2x -1|-|x +1|恒成立,所以|2x -1|-|x +1|≤9,当x ≤-1时,2-x ≤9,∴-7≤x ≤-1, 当-1<x <12时,-3x ≤9,∴-1<x <12,当x ≥12时,x -2≤9,∴12≤x ≤11,∴-7≤x ≤11.。

相关文档
最新文档