第09讲 零点存在的判定与证明
零点的存在性定理
06 参考文献
参考文献
01
[1] 张三. (2018). 零点存在性定理研究. 科学出版社.
02
[2] 李四, 王五. (2020). 数学分析中的零点存在性定理及其 应用. 高等教育出版社.
03
[3] 刘海涛. (2015). 实数完备性与零点存在性定理. 清华大 学出版社.
THANKS FOR WATCHING
扩展二
总结词
探索零点存在性定理在多维空间的应用
详细描述
零点存在性定理主要应用于一维实数线上。然而,这 个定理也可以推广到多维空间中。通过研究高维空间 中函数的零点存在性,可以揭示出更多有趣的数学现 象和性质。
扩展三
总结词
将零点存在性定理与其他数学定理结合
详细描述
零点存在性定理可以与其他重要的数学定理结合使用, 以解决更复杂的问题。例如,它可以与极限理论、积分 理论等结合,用于证明更广泛的数学命题。这种结合可 以促进数学不同分支之间的交叉融合,推动数学的发展 。
证明方法二
总结词
利用极限的存在性和函数值的符号变化证明。
详细描述
首先,我们需要证明函数在某一点的极限存在,并且函数值从正变为负或从负变为正。这样,我们可 以确定函数在这一点附近有零点。通过分析函数在区间两端的取值和变化趋势,我们可以找到这样的 点,从而证明零点的存在性。
证明方法三
总结词
利用导数和函数的单调性证明。
感谢您的观看
推论一
推论一
如果函数在区间两端取值异号,则函数在此区间内至少存在 一个零点。
证明
假设函数在区间$[a, b]$两端取值异号,即$f(a) cdot f(b) < 0$。 根据连续函数的性质,函数在区间$[a, b]$上必存在至少一个零 点,使得$f(c) = 0$,其中$c in (a, b)$。
零点存在定理说课稿
零点存在定理说课稿
零点存在定理是实分析中的一个重要定理,它是关于连续函数与零点的存在性的一个结果。
在说课稿中,我们可以从以下几个方面来全面介绍这个定理。
首先,我们可以从定理的内容和表述入手。
零点存在定理是指如果一个实数域上的连续函数在一个闭区间上取到了不同符号的函数值,那么在这个区间内一定存在至少一个零点。
这个定理的内容直观地说明了连续函数的零点存在性,对于理解连续函数的性质具有重要意义。
其次,我们可以从定理的证明方法和思路进行阐述。
零点存在定理的证明通常采用了实分析中的基本原理,比如区间套定理、连续函数的性质等。
可以从这些数学原理出发,详细介绍定理的证明思路,以及其中的关键步骤和推理过程,让听众对定理的成立有更深入的理解。
接着,我们可以从定理的应用和意义进行阐述。
零点存在定理在实际问题中有着广泛的应用,比如在方程求根、优化问题、微分方程的存在性等方面都有着重要的作用。
可以举一些具体的例子,
说明定理在实际问题中的应用,以及它对于数学建模和实际问题求解的意义。
最后,我们可以从定理的历史渊源和相关拓展进行介绍。
零点存在定理是实分析中的经典定理,可以简要介绍一下定理的历史渊源和相关的数学发展背景,以及定理的一些拓展和推广,让听众对于定理的来龙去脉有一个更加完整的认识。
通过以上几个方面的介绍,可以使听众对于零点存在定理有一个全面而深入的理解,从而更好地掌握这一重要的数学定理。
零点存在定理的条件
零点存在定理的条件
嘿,咱今天就来说说零点存在定理的条件哈!
你想啊,这零点存在定理就像是一个神秘的宝藏图,而它的条件呢,就是找到宝藏的关键线索。
首先呢,得有个连续的函数,就像我们走路得一步一步稳稳当当的,不能这儿断一下那儿断一下,不然怎么能找到零点这个宝贝呢。
这就好比我们要去一个地方,路得是通的呀,要是中间突然断了,那不就傻眼啦!
然后呢,函数在两端的值得一正一负,这多有意思呀!就好像是在两端摆了两个不同颜色的旗子,一个代表正数,一个代表负数,它们就像两个小卫兵,指引着我们去找中间那个零点。
要是两端都是一样的,那可就没头绪咯,就像两个卫兵都指一个方向,那我们还怎么找呢。
这条件其实就像是生活中的一些小规则,虽然看起来不起眼,但没了它们还真不行。
就像我们出门得知道路怎么走,不然就会迷路。
零点存在定理的条件就是给我们指引方向的,让我们能准确地找到那个神奇的零点。
有时候我就想啊,这数学里的定理和我们生活还真像呢。
有了这些条件,就像我们有了目标和方法,能让我们在数学的世界里畅游,找到那些隐藏的奥秘。
哎呀呀,说了这么多,总之呢,零点存在定理的条件可重要啦,没它们就没法玩啦!就像我们玩游戏得有规则一样,不然就乱套咯。
现在回想起来,这些条件还真是有趣又神奇呀,让我们能在数学的海洋里不断探索和发现。
就像我们在生活中不断追寻自己的梦想一样,有了方向和方法,才能走得更远更稳。
嘿嘿,这就是零点存在定理的条件的魅力所在啦!希望你们也能像我一样,感受到这份独特的乐趣哦!。
函数零点存在定理
函数零点存在定理一、函数零点的概念对于函数)(xfy=,我们把使xf=)(的实数x叫做函数)(xfy=的零点。
从几何角度来看,函数的零点就是函数图像与x轴交点的横坐标。
换句话说,函数的零点就是方程f(x)=0的实数解。
二、函数零点的性质函数y=f(x)的零点就是方程f(x)=0的实数根。
因此,求解函数的零点等价于求解对应的方程。
三、函数零点存在定理如果函数)(xfy=在区间[a,b]上的图像是连续不间断的一条曲线,并且有0bfaf)<()(∙,那么,函数)(xfy=在区间(a,b)内有零点推论(函数零点的唯一性)如果函数)(xfy=在区间[a,b]上的图象是连续不断的一条曲线,在区间[a,b]上具有单调性,且bfaf)<()(∙,那么函数)(xfy=在区间[a,b]上有唯一零点四、定理的证明思路为了证明这个定理,我们可以采用反证法结合连续函数的性质进行证明。
这里简要说明证明思路:假设:假设在开区间(a,b)内不存在零点,即对于所有x∈(a,b),都有f(x)≠0。
分类讨论:若f(x)在(a,b)内恒大于0或恒小于0,则与f(a)f(b)<0矛盾。
若f(x)在(a,b)内既有大于0的部分也有小于0的部分,则根据连续函数的介值性,存在某个点c∈(a,b)使得f(c)=0,与假设矛盾。
结论:因此,假设不成立,原命题得证。
五、零点个数的判断1、零点个数的定义对于函数y=f(x),使f(x)=0的实数x的个数即为该函数的零点个数。
从图象上看,函数的零点个数就是y=f(x)的图象与x轴交点的个数。
2、零点个数判断的主要方法(1)代数法解方程:最直接的方法是解方程f(x)=0。
如果方程可以求解,那么其解的个数即为函数的零点个数。
这种方法适用于能够直接求解的方程,如一元二次方程、一元一次方程等。
因式分解:对于多项式函数,可以通过因式分解将函数化为几个因式的乘积形式,然后令每个因式等于零,解得的解即为函数的零点。
函数零点存在定理
函数零点存在定理函数的零点存在定理在数学分析中起着重要的作用,它确保了函数在一定条件下存在零点。
具体来说,这个定理可以分为两部分:罗尔定理和零点存在定理。
首先,我们来看罗尔定理。
罗尔定理是数学分析中的一个基本定理,它断言了若函数在闭区间[a,b]上连续,在开区间(a,b)上可导,且函数的两个端点值相等,那么在(a,b)上至少存在一个点c,使得函数的导数在c 处为零。
简单来说,罗尔定理保证了连续函数在一些开区间上存在导数为零的点。
零点存在定理是建立在罗尔定理的基础上的。
它断言了若函数在一个闭区间[a,b]上连续,在开区间(a,b)上可导,且函数在该区间的两个端点值异号(即一个为负数,一个为正数),那么在该区间上至少存在一个根(即函数的零点)。
这是因为根据罗尔定理,可以找到一个导数为零的点c,而由于函数在该区间的两个端点值异号,所以在这个区间上函数必定穿过x轴,即存在根。
零点存在定理的证明可以用反证法来完成。
假设在闭区间[a,b]上连续且可导的函数f(x)没有任何零点。
那么我们可以得出以下两个结论:首先,函数在该区间上的值要么全部大于0,要么全部小于0;第二,由于函数没有零点,所以在该区间上函数的值要么一直大于0,要么一直小于0。
由于函数连续,根据介值定理,这与函数的值要么全部大于0,要么全部小于0的结论相悖,所以我们的假设是错误的。
因此,零点存在定理得证。
零点存在定理的应用非常广泛。
它可以用于找到函数的零点,即方程的根。
这在实际问题中经常遇到,例如求解方程、寻找曲线与坐标轴的交点等。
除此之外,零点存在定理还可以帮助我们研究函数的性质。
例如,通过研究函数的导数为零的点,我们可以找到函数的极值点,进而研究函数的增减性和凸凹性。
同时,零点存在定理还为数值计算提供了理论基础。
在计算机科学中,求解方程是一个重要的问题,通过零点存在定理,我们可以设计出一些高效的数值计算算法,用来求解方程的根。
零点存在定理的应用不仅局限于实数范围,它也可以推广到复数范围。
零点存在性定理
零点存在性定理前⾔函数的零点对于函数y =f (x )(x ∈D ),把使得f (x )=0的实数x 叫做函数y =f (x )(x ∈D )的零点.简⾔之,零点不是点,是实数;零点是函数对应的⽅程f (x )=0的根。
有关零点的⼏个结论(1).若连续不断的函数f (x )在定义域上是单调函数,则f (x )⾄多有⼀个零点,也可能没有零点,⽐如f (x )=2x 单调递增,但没有零点。
(2).连续不断的函数,其相邻两个零点之间的所有函数值保持同号。
⽐如函数f (x )=−(x −1)⋅(x −2),在1<x <2时,函数值f (x )都是正值。
(3).连续不断的函数图象通过零点时,函数值可能变号,如y =x 3在零点x =0处两侧的函数值不同;也可能不变号,如y =x 2在零点x =0处两侧的函数值相同。
重要转化函数y =f (x )=h (x )−g (x )有零点[数的⾓度]⟺函数y =f (x )与x 轴有交点[形的⾓度]⟺⽅程f (x )=0有实根[数的⾓度]⟺函数y =h (x )与函数y =g (x )的图像有交点[形的⾓度]具体应⽤时务必注意对函数f (x )的有效拆分,⽐如函数f (x )=lnx −x +2,拆分为①h (x )=lnx 和g (x )=x −2,或者拆分为②h (x )=lnx −2和g (x )=x ,都⽐拆分为③h (x )=ln x −x 和g (x )=2要强的多。
当拆分为①②时,我们都可以轻松的画出其图像,但是拆分为③时,要画出函数h (x )的图像,就需要导数参与。
这时候,我们也就能理解有时候选择⽐努⼒更重要。
拆分原则:尽可能的拆分为我们学过的基本初等函数或初等函数,这样的拆分是上上策。
零点存在性定理如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的⼀条曲线,并且有f (a )⋅f (b )<0,那么,函数y =f (x )在区间(a ,b )内⾄少有⼀个零点,即⾄少存在⼀个c ∈(a ,b ),使得f (c )=0,这个c 也就是⽅程f (x )=0的根.定理的理解需要注意:①零点存在性定理的使⽤有两个条件必须同时具备,其⼀在区间[a ,b ]上连续,其⼆f (a )⋅f (b )<0,缺⼀不可;⽐如,函数f (x )=1x在区间[−1,1]上满⾜f (−1)⋅f (1)<0,但是其在区间[−1,1]没有零点,原因是不满⾜第⼀条;再⽐如函数f (x )=2x ,在区间[−1,1]上满⾜连续,但是其在区间[−1,1]没有零点,原因是不满⾜第⼆条;②零点存在性定理只能判断函数的变号零点,不能判断不变号零点。
【高考数学热点问题】第9炼 零点存在的判定与证明
第9炼 零点存在的判定与证明一、基础知识:1、函数的零点:一般的,对于函数()y f x =,我们把方程()0f x =的实数根0x 叫作函数()y f x =的零点。
2、零点存在性定理:如果函数()y f x =在区间[],a b 上的图像是连续不断的一条曲线,并且有()()0f a f b ⋅<,那么函数()y f x =在区间(),a b 内必有零点,即()0,x a b ∃∈,使得()00f x =注:零点存在性定理使用的前提是()f x 在区间[],a b 连续,如果()f x 是分段的,那么零点不一定存在3、函数单调性对零点个数的影响:如果一个连续函数是单调函数,那么它的零点至多有一个。
因此分析一个函数零点的个数前,可尝试判断函数是否单调4、几个“不一定”与“一定”(假设()f x 在区间(),a b 连续)(1)若()()0f a f b ⋅<,则()f x “一定”存在零点,但“不一定”只有一个零点。
要分析()f x 的性质与图像,如果()f x 单调,则“一定”只有一个零点(2)若()()0f a f b ⋅>,则()f x “不一定”存在零点,也“不一定”没有零点。
如果()f x 单调,那么“一定”没有零点(3)如果()f x 在区间(),a b 中存在零点,则()()f a f b ⋅的符号是“不确定”的,受函数性质与图像影响。
如果()f x 单调,则()()f a f b ⋅一定小于05、零点与单调性配合可确定函数的符号:()f x 是一个在(),a b 单增连续函数,0x x =是()f x 的零点,且()0,x a b ∈,则()0,x a x ∈时,()0f x <;()0,x x b ∈时,()0f x >6、判断函数单调性的方法: (1)可直接判断的几个结论:① 若()(),f x g x 为增(减)函数,则()()f x g x +也为增(减)函数② 若()f x 为增函数,则()f x -为减函数;同样,若()f x 为减函数,则()f x -为增函数③ 若()(),f x g x 为增函数,且()(),0f x g x >,则()()f x g x ⋅为增函数(2)复合函数单调性:判断()()y f g x =的单调性可分别判断()t g x =与()y f t =的单调性(注意要利用x 的范围求出t 的范围),若()t g x =,()y f t =均为增函数或均为减函数,则()()y f g x =单调递增;若()t g x =,()y f t =一增一减,则()()y f g x =单调递减(此规律可简记为“同增异减”)(3)利用导数进行判断——求出单调区间从而也可作出图像 7、证明零点存在的步骤:(1)将所证等式中的所有项移至等号一侧,以便于构造函数(2)判断是否要对表达式进行合理变形,然后将表达式设为函数()f x (3)分析函数()f x 的性质,并考虑在已知范围内寻找端点函数值异号的区间 (4)利用零点存在性定理证明零点存在例1:函数()23xf x e x =+-的零点所在的一个区间是( )A. 1,02⎛⎫-⎪⎝⎭ B. 10,2⎛⎫ ⎪⎝⎭ C. 1,12⎛⎫ ⎪⎝⎭ D. 31,2⎛⎫⎪⎝⎭思路:函数()f x 为增函数,所以只需代入每个选项区间的端点,判断函数值是否异号即可解:1211234022f e -⎛⎫⎛⎫-=+⋅--=-< ⎪ ⎪⎝⎭⎝⎭,()020f =-<11232022f ⎛⎫=+⋅-=-<⎪⎝⎭()12310f e e =+-=-> ()1102f f ⎛⎫∴⋅< ⎪⎝⎭ 01,12x ⎛⎫∴∈ ⎪⎝⎭,使得()00f x =答案:C例2:函数()()ln 1f x x x =-+的零点所在的大致区间是( )A. 31,2⎛⎫⎪⎝⎭ B. 3,22⎛⎫ ⎪⎝⎭C. ()2,eD. (),e +∞ 思路:先能判断出()f x 为增函数,然后利用零点存在性判定定理,只需验证选项中区间端点函数值的符号即可。
高一数学函数的零点存在定理及其应用分析总结
零点存在定理:如果函数f(x)在区间[a, b]上连续,且f(a)·f(b)<0,则f(x)在区间(a, b)内有零点。
单调性判断:根据零点存在定理,如果函数f(x)在区间[a, b]上有零点,则f(x)在区间(a, b)上至少有一个单调区间。
应用实例:例如,判断函数f(x)=x^3-x在区间[-1, 1]上的单调性,可以通过零点存在定理来判断。
结合实际应用:结合实际例子,理解定理的应用方法和技巧
注意定理的局限性:了解定理的局限性和适用条件
掌握定理的应用范围:了解定理的应用条件和适用范围
感谢您的观看
注意事项:在使用零点存在定理判断函数单调性时,需要注意函数的连续性和零点的存在性。
在研究函数图像中的应用
求解函数方程:通过零点存在定理,可以求解函数方程,得到函数的解析式
确定函数图像的零点:通过零点存在定理,可以确定函数图像的零点位置
判断函数图像的性质:通过零点存在定理,可以判断函数图像的连续性、单调性等性质
研究函数图像的极限:通过零点存在定理,可以研究函数图像的极限,得到函数的极限值
在解决实际问题中的应用
零点存在定理在解决实际问题中的应用广泛,如求解方程、优化问题等
零点存在定理在解决实际问题时,需要注意定理的适用条件和范围,避免错误应用
零点存在定理在解决实际问题时,需要结合实际问题的具体情况,灵活运用
零点存在定理的数学表达
零点存在定理:如果函数f(x)在区间[a, b]上连续,且f(a)·f(b)<0,则函数f(x)在区间(a, b)内至少有一个零点。
零点:函数f(x)的零点是指使得f(x)=0的x值。
பைடு நூலகம்
连续函数:如果函数f(x)在区间[a, b]上每一点x都有定义,且对于任意的ε>0,存在δ>0,使得当|x-x0|<δ时,|f(x)-f(x0)|<ε,则称f(x)在区间[a, b]上是连续的。
零点定理证明
零点定理证明零点定理是数学中一个重要的定理,它可以帮助我们理解函数的局部性,提供了必要的工具来分析函数的行为。
它在高等数学中有着广泛的应用,甚至可以说没有它高等数学是难以完成的。
零点定理,也称为Rolle定理,是由18世纪法国数学家Joseph Louis Lagrange提出的,他是现代数学的开创者之一,他有一个伟大的贡献,就是把一般的变换的结论进行推广。
后来英国数学家Edmund Taylor Rolle也对该定理进行了改进,于是就有了今天的零点定理。
零点定理的核心思想是:如果在一个定义域内的两个连续的函数值在一个端点上相等,则在这个端点处必定有一个函数的导数值为零,即为零点。
也就是说,在连续函数的定义域内若满足某一端点处函数值相等,则必有一个零点存在。
事实上,这个零点可能是定义域内的唯一一个零点,也可能是定义域内的多个零点,具体情况取决于定义域内函数的情况,有解析学和几何学角度来看待这个定理。
解析学角度:可以把定理表示成曲线上的点,当两个端点的函数值相等,曲线在这两点之间必然存在一个点,使得曲线在这个点处的切线方向为静止(斜率为零),而曲线方程为零,这个点就是零点。
可见,求出零点实际上就是求函数的导数值,从而在连续函数定义域内寻找斜率为零的点,即为零点。
几何学角度:可以把定理表示成曲线的不动点,只存在于特定的点,当两个端点的函数值相等,则曲线在这两端点之间必然存在一个不动点,使得该点的曲线方程为零,也就是说该点的曲线方向是不变的,所以叫做零点。
为了证明零点定理,我们可以建立一个数学模型。
假设有一个函数f(x),定义域为[a,b],则该函数必然在区间[a,b]内递增或递减。
假设f(a)=f(b),我们令y=f(x),则函数f(x)可以表示为y=f(x) = f(a)+f(c)(x-a)其中c是[a,b]内的某一个实数。
由于f(a)=f(b),即f(a)+f(c)(a-a)=f(b)+f(c)(b-a),故f(c)=0,即在[a,b]内存在一个点c,使得f(c)=0.以,可以得出f(x)在[a,b]内的零点c的存在条件是f(a)=f(b),而这正是零点定理的关键所在。
微专题09 零点存在的判定与证明学生版
微专题09 零点存在的判定与证明一、基础知识:1、函数的零点:一般的,对于函数()y f x =,我们把方程()0f x =的实数根0x 叫作函数()y f x =的零点。
2、零点存在性定理:如果函数()y f x =在区间[],a b 上的图像是连续不断的一条曲线,并且有()()0f a f b ⋅<,那么函数()y f x =在区间(),a b 内必有零点,即()0,x a b ∃∈,使得()00f x =注:零点存在性定理使用的前提是()f x 在区间[],a b 连续,如果()f x 是分段的,那么零点不一定存在3、函数单调性对零点个数的影响:如果一个连续函数是单调函数,那么它的零点至多有一个。
因此分析一个函数零点的个数前,可尝试判断函数是否单调4、几个“不一定”与“一定”(假设()f x 在区间(),a b 连续)(1)若()()0f a f b ⋅<,则()f x “一定”存在零点,但“不一定”只有一个零点。
要分析()f x 的性质与图像,如果()f x 单调,则“一定”只有一个零点(2)若()()0f a f b ⋅>,则()f x “不一定”存在零点,也“不一定”没有零点。
如果()f x 单调,那么“一定”没有零点(3)如果()f x 在区间(),a b 中存在零点,则()()f a f b ⋅的符号是“不确定”的,受函数性质与图像影响。
如果()f x 单调,则()()f a f b ⋅一定小于05、零点与单调性配合可确定函数的符号:()f x 是一个在(),a b 单增连续函数,0x x =是()f x 的零点,且()0,x a b ∈,则()0,x a x ∈时,()0f x <;()0,x x b ∈时,()0f x >6、判断函数单调性的方法: (1)可直接判断的几个结论:① 若()(),f x g x 为增(减)函数,则()()f x g x +也为增(减)函数② 若()f x 为增函数,则()f x -为减函数;同样,若()f x 为减函数,则()f x -为增函数 ③ 若()(),f x g x 为增函数,且()(),0f x g x >,则()()f x g x ⋅为增函数(2)复合函数单调性:判断()()y f g x =的单调性可分别判断()t g x =与()y f t =的单调性(注意要利用x 的范围求出t 的范围),若()t g x =,()y f t =均为增函数或均为减函数,则()()y f g x =单调递增;若()t g x =,()y f t =一增一减,则()()y f g x =单调递减(此规律可简记为“同增异减”) (3)利用导数进行判断——求出单调区间从而也可作出图像 7、证明零点存在的步骤:(1)将所证等式中的所有项移至等号一侧,以便于构造函数(2)判断是否要对表达式进行合理变形,然后将表达式设为函数()f x (3)分析函数()f x 的性质,并考虑在已知范围内寻找端点函数值异号的区间 (4)利用零点存在性定理证明零点存在例1:函数()23x f x e x =+-的零点所在的一个区间是( )A. 1,02⎛⎫- ⎪⎝⎭ B. 10,2⎛⎫ ⎪⎝⎭ C. 1,12⎛⎫ ⎪⎝⎭ D. 31,2⎛⎫ ⎪⎝⎭例2:函数()()ln 1f x x x =-+的零点所在的大致区间是( )A. 31,2⎛⎫ ⎪⎝⎭B. 3,22⎛⎫ ⎪⎝⎭C. ()2,eD. (),e +∞ 例3:已知0x 是函数()121xf x x=+-的一个零点,若()()10201,,,x x x x ∈∈+∞,则( ) A. ()()120,0f x f x << B. ()()120,0f x f x <> C. ()()120,0f x f x >< D. ()()120,0f x f x >>例4:已知函数()()log 0,1a f x x x b a a =+->≠,当234a b <<<<时,函数()f x 的零点()0,1,x n n n N *∈+∈,则n =________ 例5:定义方程()()'f x fx =的实数根0x 叫做函数()f x 的“新驻点”,若()()()()3,ln 1,1g x x h x x x x ϕ==+=-的“新驻点”分别为,,αβγ,则( )A. αβγ>>B. βαγ>>C. γαβ>>D. βγα>>例6:若函数)(x f 的零点与()ln 28g x x x =+-的零点之差的绝对值不超过5.0, 则)(x f 可以是( ) A .63)(-=x x f B .2)4()(-=x x f C .1)(1-=-x ex f D .)25ln()(-=x x f例7:设函数()()224,ln 25xf x e xg x x x =+-=+-,若实数,a b 分别是()(),f x g x 的零点,则( )A. ()()0g a f b <<B. ()()0f b g a <<C. ()()0g a f b <<D. ()()0f b g a <<例8:已知定义在()1,+∞上的函数()ln 2f x x x =--,求证:()f x 存在唯一的零点,且零点属于()3,4 例9:已知0a >,函数()2ln f x x ax =-(()f x 的图像连续不断) (1)求()f x 的单调区间 (2)当18a =时,证明:存在()02,+x ∈∞,使得()032f x f ⎛⎫= ⎪⎝⎭例10:已知函数()ln x f x e a x a =--,其中常数0a >,若()f x 有两个零点()1212,0x x x x <<,求证:1211x x a a<<<<。
2021届高考数学二轮复习高频考点09 函数零点的判定与证明(原卷版)
微专题九 函数零点的判定与证明一、基础知识:1、函数的零点:一般地,对于函数()y f x =,我们把方程()0f x =的实数根0x 叫作函数()y f x =的零点。
2、零点存在性定理:如果函数()y f x =在区间[],a b 上的图像是连续不断的一条曲线,并且有()()0f a f b ⋅<,那么函数()y f x =在区间(),a b 内必有零点,即()0,x a b ∃∈,使得()00f x =注:零点存在性定理使用的前提是()f x 在区间[],a b 连续,如果()f x 是分段的,那么零点不一定存在 3、函数单调性对零点个数的影响:如果一个连续函数是单调函数,那么它的零点至多有一个。
因此分析一个函数零点的个数前,可尝试判断函数是否单调4、几个“不一定”与“一定”(假设()f x 在区间(),a b 连续)(1)若()()0f a f b ⋅<,则()f x “一定”存在零点,但“不一定”只有一个零点。
要分析()f x 的性质与图像,如果()f x 单调,则“一定”只有一个零点(2)若()()0f a f b ⋅>,则()f x “不一定”存在零点,也“不一定”没有零点。
如果()f x 单调,那么“一定”没有零点(3)如果()f x 在区间(),a b 中存在零点,则()()f a f b ⋅的符号是“不确定”的,受函数性质与图像影响。
如果()f x 单调,则()()f a f b ⋅一定小于05、零点与单调性配合可确定函数的符号:()f x 是一个在(),a b 单增连续函数,0x x =是()f x 的零点,且()0,x a b ∈,则()0,x a x ∈时,()0f x <;()0,x x b ∈时,()0f x >6、判断函数单调性的方法: (1)可直接判断的几个结论:① 若()(),f x g x 为增(减)函数,则()()f x g x +也为增(减)函数② 若()f x 为增函数,则()f x -为减函数;同样,若()f x 为减函数,则()f x -为增函数 ③ 若()(),f x g x 为增函数,且()(),0f x g x >,则()()f x g x ⋅为增函数(2)复合函数单调性:判断()()y f g x =的单调性可分别判断()t g x =与()y f t =的单调性(注意要利用x 的范围求出t 的范围),若()t g x =,()y f t =均为增函数或均为减函数,则()()y f g x =单调递增;若()t g x =,()y f t =一增一减,则()()y f g x =单调递减(此规律可简记为“同增异减”) (3)利用导数进行判断——求出单调区间从而也可作出图像 7、证明零点存在的步骤:(1)将所证等式中的所有项移至等号一侧,以便于构造函数(2)判断是否要对表达式进行合理变形,然后将表达式设为函数()f x (3)分析函数()f x 的性质,并考虑在已知范围内寻找端点函数值异号的区间 (4)利用零点存在性定理证明零点存在例1:函数()23xf x e x =+-的零点所在的一个区间是( )A. 1,02⎛⎫- ⎪⎝⎭ B. 10,2⎛⎫ ⎪⎝⎭ C. 1,12⎛⎫ ⎪⎝⎭ D. 31,2⎛⎫ ⎪⎝⎭例2:函数()()ln 1f x x x =-+的零点所在的大致区间是( )A. 31,2⎛⎫ ⎪⎝⎭B. 3,22⎛⎫ ⎪⎝⎭C. ()2,eD. (),e +∞【名师点睛】:(1)本题在处理1x →时,是利用对数的性质得到其()ln 1x -的一个趋势,从而确定符号。
证明零点存在的方法
证明零点存在的方法
从数学角度来看,证明一个函数存在零点通常有几种常见的方法。
一种方法是使用中值定理,该定理是微积分中的重要定理,它可以用来证明如果一个函数在一个区间上连续,并且在这个区间的两个端点处的函数值异号,那么在这个区间内至少存在一个零点。
另一种方法是使用不动点定理,该定理是函数分析中的一个重要定理,它可以用来证明如果一个函数满足一定的条件,那么它至少存在一个不动点,从而可以推导出存在零点的结论。
此外,还有诸如奇偶性分析、区间套定理等方法也可以用来证明函数存在零点。
从实际应用的角度来看,证明零点存在的方法取决于具体的问题背景。
例如,在工程领域,可以通过数值计算的方法来证明零点的存在,比如使用二分法、牛顿迭代法等数值计算方法来逼近零点并验证其存在性。
在物理学中,可以通过实验数据和理论模型相结合的方法来证明零点的存在,比如通过实验测量得到的数据与理论模型预测的结果进行对比来验证零点的存在。
在金融领域,可以通过统计分析的方法来证明零点的存在,比如利用时间序列数据进行统计分析来验证某个变量的零点存在性。
综上所述,证明零点存在的方法可以从数学和实际应用的角度
进行分析和论证,不同的方法适用于不同的问题背景和领域,选择合适的方法进行证明是非常重要的。
零点存在性定理
随着数学研究的不断深入,有望出现新的证明方法和思路,为定理的证明和应用提供新 的视角和途径。
感谢您的观看
THANKS
在微分方程中的应用
初始值问题的解的存在性
对于某些微分方程的初始值问题,可以利用零点存在性定理证明解的存在性。
周期解的存在性
对于某些具有周期性的微分方程,可以利用零点存在性定理证明周期解的存在性。
03
零点存在性定理的推广和深 化
推广到高维空间
零点存在性定理最初是在一维实数线上证明的,但后来被推 广到了高维空间。在高维空间中,零点存在性定理的应用更 加广泛,涉及到许多重要的数学问题,如多元函数的零点、 向量场的奇点等。
零点存在性定理
目录
• 零点存在性定理的概述 • 零点存在性定理的应用 • 零点存在性定理的推广和深化 • 零点存在性定理的进一步思考 • 零点存在性定理的实践应用案例 • 总结与展望
01
零点存在性定理的概述
定理的定义
• 零点存在性定理:如果函数$f(x)$在区间$[a, b]$上连续, 且$f(a) \cdot f(b) < 0$,则存在至少一个$c \in (a, b)$, 使得$f(c) = 0$。
零点存在性定理的证明和应用推 动了数学的发展,激发了众多数 学家和学者的研究热情,促进了 数学理论的不断完善和进步。
对未来研究的展望
探索更多应用领域
随着科学技术的不断进步,零点存在性定理有望在更多领域得到应用和推广,例如在数 据分析、机器学习等领域。
深化定理的理解
尽管零点存在性定理已经得到了广泛的应用和证明,但对其本质和内在机制的理解仍需 进一步深化和研究,以推动数学理论的进一步发展。
06
第09讲:函数的零点和函数的应用期末高频考点突破
第09讲:函数的零点和函数的应用期末高频考点突破高频考点梳理1.函数的零点 (1)函数零点的定义对于函数y =f (x )(x ∈D ),把使f (x )=0的实数x 叫做函数y =f (x )(x ∈D )的零点. (2)几个等价关系方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点. (3)函数零点的判定(零点存在性定理)如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个__c __也就是方程f (x )=0的根. 2.二分法对于在区间[a ,b ]上连续不断且f (a )·f (b )<0的函数y =f (x ),通过不断地把函数f (x )的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法. 3.二次函数y =ax 2+bx +c (a >0)的图象与零点的关系(x ,0),(x ,0)(x ,0) 无交点 题型一:函数零点存在定理1.(2022·黑龙江·佳木斯一中高一期末)函数3ln y x x=-的零点所在区间是( ) A .()3,4B .()2,3C .()1,2D .()0,12.(2021·河南·安阳市第三十九中学高一期末)关于函数2()311x f x x =+-的零点,下列判断正确的是( )A .()f x 只有一个零点,且这个零点在区间12(,)内B .()f x 有两个零点,且其中一个零点在区间12(,)内C .()f x 只有一个零点,且这个零点在区间2,3()内D .()f x 有两个零点,且其中一个零点在区间2,3()内3.(2022·河南安阳·高一期末)已知函数()f x 是定义在R 上的减函数,实数a ,b ,c 满足a b c <<,且()()()0f a f b f c ⋅⋅<,若0x 是函数()f x 的一个零点,则下列结论中一定不正确的是( )A .0x a <B .0a x b <<C .0b x c <<D .0x b <题型二:函数的零点个数分布问题(参数)4.(2021·河南·安阳一中高一期末)已知定义在R 上的奇函数,满足()()20f x f x -+=,当(]0,1x ∈时,()2log f x x =-,若函数()()()sin πF x f x x =-,在区间[]1,m -上有10个零点,则m 的取值范围是( )A .[)3.5,4B .(]3.5,4C .(]5,5.5D .[)5,5.55.(2022·全国·益阳平高学校高一期末)已知函数()22,02,0x x f x x x x -<⎧=⎨-+≥⎩若关于x 的方程()12f x x m =+恰有三个不相等的实数解,则m 的取值范围是( ) A .30,4⎡⎤⎢⎥⎣⎦B .30,4⎛⎫ ⎪⎝⎭C .90,16⎡⎤⎢⎥⎣⎦D .90,16⎛⎫ ⎪⎝⎭6.(2022·内蒙古·赤峰二中高一期末(文))已知()()2ln ,045,1x x f x x x x ⎧-<⎪=⎨-+≥⎪⎩,若方程()()f x m m =∈R 有四个不同的实数根1x ,2x ,3x ,4x ,则1234x x x x ⋅⋅⋅的取值范围是( ) A .(3,4)B .(2,4)C .[0,4)D .[3,4)题型三:用二分法求函数f (x )零点近似值7.(2022·江西新余·高一期末)若函数()31f x x x =--在区间[1,1.5]内的一个零点附近函数值用二分法逐次计算,列表如下:那么方程310x x --=的一个近似根(精确度为0.1)可以为( ) A .1.3B .1.32C .1.4375D .1.258.(2022·内蒙古·呼和浩特市教育教学研究中心高一期末)用二分法求方程的近似解,求得函数()329f x x x =+-的部分函数值数据如下:()16f =-,()23f =,()1.5 2.625f =-,()1.750.6406f =-,则方程3290x x +-=的一个近似根x 所在区间为( ) A .()0.6406,0-B .()1.75,2C .()1.5,1.75D .()1,1.59.(2021·安徽宿州·高一期末)已知函数3()2xf x x=-在区间(1,2)上有一个零点0x ,如果用二分法求0x 的近似值(精确度为0.01),则应将区间(1,2)至少等分的次数为( ) A .5B .6C .7D .8题型四:函数与方程的综合问题10.(2021·天津·高一期末)已知函数4(),01af x x a x=+<≤ (1)用定义法证明函数()f x 在[2,)+∞单调递增;(2)设()()22x xg x f a ⎡⎤=-⎣⎦,求()g x 在[1,0]-上的最大值(3)设2+1,<2()=5(),22x x x f x x ϕ≥-⎧⎪⎨-⎪⎩,若方程()20x a ϕ-=有两个不等实根,求实数a 的取值范围.11.(2022·安徽池州·高一期末)已知函数()214()log 21x f x +=+.(1)求函数()n x(2)若关于x 的方程2()14f x x m =+-在[2,3]-上有两个实数根,求实数m 的取值范围.12.(2022·江西抚州·高一期末)已知函数()ln 11ax f x x ⎛⎫=- ⎪+⎝⎭(其中a R ∈且0a ≠)的图象关于原点对称. (1)求a 的值;(2)①判断()xy f e =在区间()0,∞+上的单调性(只写出结论即可);①关于x 的方程()ln 0xf e x k -+=在区间(]0,ln 4上有两个不同的解,求实数k 的取值范围.题型五:函数模型的应用13.(2022·湖北武汉·高一期末)《湿地公约》第十四届缔约方大会部级高级别会议11月6日在湖北武汉闭幕,会议正式通过“武汉宣言”,呼吁各方采取行动,遏制和扭转全球湿地退化引发的系统性风险.武汉市某企业生产某种环保型产品的年固定成本为2000万元,每生产x 千件,需另投入成本()C x (万元).经计算若年产量x 千件低于100千件,则这x 千件产品成本21()1011002C x x x =++;若年产量x 千件不低于100千件时,则这x 千件产品成本4500()120540090C x x x =+--.每千件产品售价为100万元,设该企业生产的产品能全部售完.(1)写出年利润L (万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,企业所获得利润最大?最大利润是多少? 14.(2022·贵州六盘水·高一期末)2005年8月,时任浙江省省委书记的习近平同志就提出了“绿水青山就是金山银山”的科学论断.为了改善农村卫生环境,振兴乡村,加快新农村建设,某地政府出台了一系列惠民政策和措施某村民为了响应政府号召,变废为宝,准备建造一个长方体形状的沼气池,利用秸秆、人畜肥等做沼气原料,用沼气解决日常生活中的燃料问题.若沼气池的体积为18立方米,深度为3米,池底的造价为每平方米180元,池壁的造价为每平方米150元,池盖的总造价为2000元.设沼气池底面长方形的一边长为x 米,但由于受场地的限制,x 不能超过2米.(1)求沼气池总造价y 关于x 的函数解析式,并指出函数的定义域; (2)怎样设计沼气池的尺寸,可以使沼气池的总造价最低?并求出最低造价.15.(2022·江苏省灌云高级中学高一期末)我国某企业自主研发了一款具有自主知识产权的平板电脑,并从2021年起全面发售.经测算,生产该平板电脑每年需投入固定成本1350万元,每生产x (千台)电脑需要另投成本()T x 万元,且2+100+1000,0<<40,()=10000601+-7450,40,ax x x T x x x x ≥⎧⎪⎨⎪⎩另外每台平板电脑售价为0.6万元,假设每年生产的平板电脑能够全部售出.已知2021年共售出10000台平板电脑,企业获得年利润为1650万元.(1)求该企业获得年利润()W x (万元)关于年产量x (千台)的函数关系式; (2)当年产量为多少千台时,该企业所获年利润最大?并求最大年利润.参考答案:1.B【分析】根据解析式判断函数单调性,再应用零点存在性定理确定所在区间即可.【详解】由3,ln y y x x==-在(0,)+∞上递减,所以3ln y x x=-在(0,)+∞上递减,又3(2)ln 202f =-=>,e (3)1ln 3ln 03f =-=<,所以零点所在区间为()2,3. 故选:B 2.B【分析】根据零点存在性定理,特殊值检验解决即可. 【详解】由题知,2()311x f x x =+-,当2()3110x f x x =+-=时,2311x x =-+,令2123,11x y y x ==-+,如图有图知()f x 有两个零点; 因为(1)311170f =+-=-<, (2)941120f =+-=>, (3)27911250f =+-=>,1(1)11103f -=+-<,1(2)41109f -=+-<,1(3)911027f -=+-<,1(4)1611081f -=+->,说明()f x 有两个零点位于12(,)和3,4--(), 故选:B 3.B【分析】根据函数的单调性可得()()()f a f b f c >>,再分()0f a <和()0f a >两种情况讨论,结合零点的存在性定理即可得出结论.【详解】解:①()f x 是定义在R 上的减函数,a b c <<,①()()()f a f b f c >>, ①()()()0f a f b f c ⋅⋅<,①()()()0,0,0,f a f b f c <<<或()0f a >,()0f b >,()0f c <, 当()0f a <时,0x a <,0x b <;当()0f a >,()0f b >,()0f c <时,0b x c <<; ①0a x b <<是不可能的. 故选:B . 4.A【分析】根据题意可知()f x 和()sin πx 都是周期为2的周期函数,因此可将()()()sin πF x f x x =-的零点问题转换为()f x 和()sin πx 的交点问题,画出函数图形,找到交点规律即可找出第10个零点坐标,而m 的取值范围就在第10个零点和第11个零点之间.【详解】由()()()()()2022f x f x f x f x f x -+=⇒=--=-得()f x 是一个周期为2的奇函数,当(]0,1x ∈时,()2log f x x =-,因此211log 122f ⎛⎫=-= ⎪⎝⎭,()10f =因为()f x 是奇函数,所以()00f = ,112⎛⎫-=- ⎪⎝⎭f ,()10f -=且()()sin πg x x =的周期为2π2πT ==,且()10g -=,112g ⎛⎫-=- ⎪⎝⎭,()00g =,112g ⎛⎫= ⎪⎝⎭,()10g = 求()()()sin πF x f x x =-的零点,即是()f x 与()g x 的交点,如图:为()f x 与()g x 在[]1,1-区间的交点图形,因为()f x 与()g x 均为周期为2的周期函数,因此交点也呈周期出现,由图可知()F x 的零点周期为12,若在区间[]1,m -上有10个零点,则第10个零点坐标为()3.5,0,第11个零点坐标为()4,0,因此3.54m ≤< 故选:A 5.D【分析】根据题意,作出函数()22,0,2,0x x f x x x x -<⎧=⎨-+≥⎩与12y x m =+的图像,然后通过数形结合求出答案.【详解】函数()22,0,2,0x x f x x x x -<⎧=⎨-+≥⎩的图像如下图所示:若关于x 的方程()12f x x m =+恰有三个不相等的实数解, 则函数()f x 的图像与直线12y x m =+有三个交点,若直线12y x m =+经过原点时,m =0,若直线12y x m =+与函数()12f x x m =+的图像相切,令22123022x x x m x x m -+=⇒++-=,令9940416m m ∆=-=⇒=.故90,16m ⎛⎫∈ ⎪⎝⎭.故选:D . 6.D【分析】利用数形结合可得12m <≤,结合条件可得121=x x ,312x ≤<,423x <≤,且344x x +=,再利用二次函数的性质即得.【详解】由方程()()f x m m =∈R 有四个不同的实数根,得函数()y f x =的图象与直线y m =有四个不同的交点,分别作出函数()y f x =的图象与直线y m =.由函数()f x 的图象可知,当两图象有四个不同的交点时,12m <≤.设y m =与|ln()|(0)y x x =-<交点的横坐标为1x ,2x ,设12x x <,则11x <-,210x -<<, 由()()12ln ln x x -=-得()()12ln ln x x -=--, 所以()()121x x --=,即121=x x .设y m =与245(1)y x x x =-+≥的交点的横坐标为3x ,4x ,设34x x <,则312x ≤<,423x <≤,且344x x +=, 所以()()234333424[3,4)x x x x x =-=--+∈, 则1234[3,4)x x x x ∈. 故选:D. 7.B【分析】由零点存在性定理和二分法求解近似根.【详解】由()1.31250f <,()1.3750f >,且()f x 为连续函数,由零点存在性定理知:区间()1.3125,1.375内存在零点,故方程310x x --=的一个近似根可以为1.32,B 选项正确,其他选项均不可. 故选:B 8.B【分析】根据零点存在性定理可判断出函数零点所在的区间,从而可得到方程近似根x 所在的区间. 【详解】由题意,知()()()()()()120, 1.520, 1.7520f f f f f f ⋅<⋅<⋅<,所以函数的零点在区间()1.75,2内,即方程3290x x +-=的一个近似根x 所在区间为()1.75,2. 故选:B. 9.C【解析】根据二分法的定义可得10.012n<,解得6n >即得. 【详解】由于每等分一次,零点所在区间的长度变为原来的12,则等分n 次后的区间长度变为原来的12n, 则由题可得10.012n <,即621002n >>,6n ∴>, 则至少等分的次数为7.故选:C.10.(1)证明见解析 (2)31a + (3)518a <≤【分析】(1)先设12,[2,)x x ∀∈+∞,12x x <,再根据作差法只需证明()()12f x f x <即可; (2)根据换元法求21()4,,12h t t at a t ⎡⎤=-+∈⎢⎥⎣⎦的最大值即可;(3)根据函数在(,2)-∞和[2,)+∞上的单调性,即可求得实数a 的取值范围.(1)12,[2,)x x ∀∈+∞,且12x x <, ()()()12121212124444a a a a f x f x x x x x x x x x ⎛⎫⎛⎫-=+-+=-+- ⎪ ⎪⎝⎭⎝⎭ ()()()1212121212441x x x x a a x x x x x x --⎛⎫=--= ⎪⎝⎭ ①122x x ≤<,①21120,4x x x x >->①01a <≤,①044a <≤,①124x x a >,①1240x x a -> 所以()()120f x f x -<,即()()12f x f x <,①()f x 在[2,)+∞上单调递增, (2)设()24()222242x x x xx a g x a a a ⎛⎫=+-=-+ ⎪⎝⎭,令2x t =,①1[1,0],,12x t ⎡⎤∈-∴∈⎢⎥⎣⎦,21()4,,12h t t at a t ⎡⎤=-+∈⎢⎥⎣⎦①()h t 的对称轴为10,22a t ⎛⎤=∈ ⎥⎝⎦, ①()h t 在1,12⎡⎤⎢⎥⎣⎦上单调递增,①max max ()()(1)31g x h t h a ===+. (3))2+1,<2()=45+,22x x x a x x x ϕ≥-⎧⎪⎨-⎪⎩,①()x ϕ在(,2)-∞上单调递减,①5(),4x ϕ⎛⎫∈+∞ ⎪⎝⎭,由(1)可知()x ϕ在[2,)+∞上单调递增,①1()2,2x a ϕ⎡⎫∈-+∞⎪⎢⎣⎭,方程()20x a ϕ-=有两个不等实根,等价于函数()y x ϕ=与2y a =有两个不同的交点①1222a a >-,①(x ϕ在[2,)+∞上与2y a =必有一个交点,故只需①524a >,即58a >,又①01a <≤,①518a <≤. 11.(1)2115log ,22⎡⎫+∞⎪⎢⎣⎭(2)411log 3,28⎡⎫--⎪⎢⎣⎭【分析】(1)根据被开方数非负列出一个关于对数函数的不等式,然后解不等式即可求出其定义域;(2)构造一个新函数()2141()log 212x x g x ++=+-,转化成求新函数在[2,3]-上的值域,最后解不等式即可.(1)依题意,()n x =()214log 2120x ++-≥,则212116x ++≥,则21215x +≥,则221log 15x +≥,故2115log 22x ≥,即函数()n x 的定义域为2115log ,22⎡⎫+∞⎪⎢⎣⎭; (2)依题意,2()14f x x m =+-,故()2141log 2122x x m +++-=-; 令()()212114444111()log 21log 21log 2log 222x x x x x x g x +++++⎛⎫=+-=+-=+ ⎪⎝⎭; 令2x t =,因为[2,3]x ∈-,故1,84t ⎡⎤∈⎢⎥⎣⎦,故1112()22x x t h t t ++=+=,因为12t t +≥12t t =,即t =而19129,(8)4416h h ⎛⎫== ⎪⎝⎭,故49log 2log 4m -≤,即412log 914m <-≤-,即411log 328m -≤<-, 即实数m 的取值范围为411log 3,28⎡⎫--⎪⎢⎣⎭. 12.(1)2a =(2)①()x y f e =在区间()0,∞+上单调递增;①2033k <≤ 【分析】(1)由图象关于原点对称知:()()0f x f x -+=,结合函数解析式可得()211a -=,即可求参数.(2)由已知得()1ln 1x f x x -=+,①()x y f e =为211x t e =-+,()ln g t t =的构成的复合函数,由它们在()0,∞+上均单调递增,即知()x y f e =的单调性;①由①整理方程得()11x x x e e k e +=-在区间(]0,ln 4上有两个不同的解,令1x u e =-,(]0,3u ∈有23k u u =++,结合基本不等式求其最值,进而确定k 的取值范围.(1)由题意知()()0f x f x -+=,整理得()()1111ln 011a x a x x x -+--⎡⎤⨯=⎢⎥-+⎣⎦, 即()222111a x x --=-,对于定义域内任意x 都成立,则有()211a -=,解得2a =或0a =,又0a ≠,所以2a =,当2a =时,()1ln 1x f x x -=+,定义域为(1)(1)-∞-+∞,,,关于原点对称,符合题意, 故2a =.(2)由(1)可知,2a =,故()21ln 1ln 11x x x x f x -⎛⎫=-= ⎪++⎝⎭. ①()22ln 1ln 111x xx x e y f e e e ⎛⎫⎛⎫==-=- ⎪ ⎪++⎝⎭⎝⎭, 由211x t e =-+,()ln g t t =在()0,∞+上均单调递增, 得()x y f e =在区间()0,∞+上单调递增.①由①知1ln ln 01x x e x k e --+=+,可得1ln ln ln 01x x x e e k e --+=+, 即()11x x x e e k e +=-在区间(]0,ln 4上有两个不同的解. 令1x u e =-,(]0,3u ∈,所以()()()112231x x x e e u u k u e u u +++===++-, 因为23k u u =++在(上单调递减,在⎤⎦上单调递增,所以min 33k =+=, 且3u =时,2203333k =++=,从而2033k <≤. 13.(1)21903100,010024500203400,10090x x x L x x x ⎧-+-<<⎪⎪=⎨⎪--+≥⎪-⎩; (2)年产量为105千件,最大利润是1000万元.【分析】(1)年利润L 为销售收入减去生产成本,分情况讨论计算即可.(2)当0100x <<时,根据二次函数单调性求L 最大值;当100x ≥时,根据基本不等式求最大值,继而求出L 最大值.【详解】(1)当0100x <<时,2211100101100200090310022L x x x x x =----=-+-; 当100x ≥时,45004500100(1205400)20002034009090L x x x x x =-+--=--+--, 所以21903100,010024500203400,10090x x x L x x x ⎧-+-<<⎪⎪=⎨⎪--+≥⎪-⎩. (2)当0100x <<时,2211903100(90)95022L x x x =-+-=--+,当90x =时,L 取得最大值950, 当100x ≥时,22520(90)16001600100090L x x =--++≤-+=-, 当且仅当2259090x x -=-,即105x =时取等号,而1000950>, 所以当该企业年产量为105千件时,所获得利润最大,最大利润是1000万元.14.(1)()6308090002y x x x ⎛⎫=+⨯+<≤ ⎪⎝⎭ (2)当长2x =米,宽632=米时总造价最低,最低造价为7580元【分析】(1)池底、池壁、池盖的造价求得y 关于x 的解析式,并写出定义域.(2)利用函数的单调性求得设计方案并求得最低造价.【详解】(1)沼气池的宽为1863x x=, 依题意612180231502000y x x x x ⎛⎫=⨯⨯++⨯⨯+ ⎪⎝⎭ ()6661809002000308090002x x x x x ⎛⎫⎛⎫=⨯++⨯+=+⨯+<≤ ⎪ ⎪⎝⎭⎝⎭ (2)由(1)得()6308090002y x x x ⎛⎫=+⨯+<≤ ⎪⎝⎭, 对于函数()()602f x x x x=+<≤, 任取()()121212126602,x x f x f x x x x x <<≤-=+--()()1212126x x x x x x --=, 其中1212120,0,60x x x x x x -<>-<,所以()()()()12120,f x f x f x f x ->>,所以()f x 在(]0,2上递减,所以当长2x =米,宽632=米时,()f x 最小,也即总造价最小, 最小值为63080900275802⎛⎫+⨯+= ⎪⎝⎭元. 15.(1)210+500-2350,0<<40,()=10000+6100,40.x x x W x x x x ---≥⎧⎪⎨⎪⎩(2)100千台,最大年利润为5 900万元.【分析】(1)由已知的条件知道该函数为一个分段函数,所以分两种情况把表达式分别求出来即可(2)由(1)知当040x <<时,为二次函数,利用二次函数的性质求它在该区间上的最大值,当40x ≥时,利用基本不等式性质求最大值.(1)解:10 000台=10千台,则(10)1002000T a =+,根据题意得:0.610000100200013501650a ⨯---=,解得=10a , 当040x <<时,22()0.610001350101001000105002350W x x x x x x =⨯----=-+-,当40x ≥时,1000010000()0.61000135060174506100W x x x x x x=⨯---+=--+, 综上所述210+5002350,0<<40()=10000+6100,40x x x W x x x x ----≥⎧⎪⎨⎪⎩. (2)当040x <<时,22()10500235010(25)3900W x x x x =-+-=--+当25x =时, ()W x 取得最大值max ()3900W x =;当40x ≥时,1000010000()61006100900W x x x x x=--+≤-+=,当且仅当=100x 时,max ()5900W x =因为59003900>,故当年产量为100千台时,该企业所获年利润最大,最大年利润为5 900万元.。
高中数学讲义微专题09 零点存在的判定与证明
微专题09 零点存在的判定与证明一、基础知识:1、函数的零点:一般的,对于函数()y f x =,我们把方程()0f x =的实数根0x 叫作函数()y f x =的零点。
2、零点存在性定理:如果函数()y f x =在区间[],a b 上的图像是连续不断的一条曲线,并且有()()0f a f b ⋅<,那么函数()y f x =在区间(),a b 内必有零点,即()0,x a b ∃∈,使得()00f x =注:零点存在性定理使用的前提是()f x 在区间[],a b 连续,如果()f x 是分段的,那么零点不一定存在3、函数单调性对零点个数的影响:如果一个连续函数是单调函数,那么它的零点至多有一个。
因此分析一个函数零点的个数前,可尝试判断函数是否单调4、几个“不一定”与“一定”(假设()f x 在区间(),a b 连续)(1)若()()0f a f b ⋅<,则()f x “一定”存在零点,但“不一定”只有一个零点。
要分析()f x 的性质与图像,如果()f x 单调,则“一定”只有一个零点(2)若()()0f a f b⋅>,则()f x “不一定”存在零点,也“不一定”没有零点。
如果()f x 单调,那么“一定”没有零点(3)如果()f x 在区间(),a b 中存在零点,则()()f a f b ⋅的符号是“不确定”的,受函数性质与图像影响。
如果()f x 单调,则()()f a f b ⋅一定小于05、零点与单调性配合可确定函数的符号:()f x 是一个在(),a b 单增连续函数,0x x =是()f x 的零点,且()0,x a b ∈,则()0,x a x ∈时,()0f x <;()0,x x b ∈时,()0f x > 6、判断函数单调性的方法: (1)可直接判断的几个结论:① 若()(),f x g x 为增(减)函数,则()()f x g x +也为增(减)函数② 若()f x 为增函数,则()f x -为减函数;同样,若()f x 为减函数,则()f x -为增函数③ 若()(),f x g x 为增函数,且()(),0f x g x >,则()()f x g x ⋅为增函数(2)复合函数单调性:判断()()y f g x =的单调性可分别判断()t g x =与()y f t =的单调性(注意要利用x 的范围求出t 的范围),若()t g x =,()y f t =均为增函数或均为减函数,则()()y f g x =单调递增;若()t g x =,()y f t =一增一减,则()()y f g x =单调递减(此规律可简记为“同增异减”)(3)利用导数进行判断——求出单调区间从而也可作出图像 7、证明零点存在的步骤:(1)将所证等式中的所有项移至等号一侧,以便于构造函数(2)判断是否要对表达式进行合理变形,然后将表达式设为函数()f x (3)分析函数()f x 的性质,并考虑在已知范围内寻找端点函数值异号的区间 (4)利用零点存在性定理证明零点存在例1:函数()23xf x e x =+-的零点所在的一个区间是( )A. 1,02⎛⎫- ⎪⎝⎭ B. 10,2⎛⎫ ⎪⎝⎭ C. 1,12⎛⎫ ⎪⎝⎭ D. 31,2⎛⎫ ⎪⎝⎭思路:函数()f x 为增函数,所以只需代入每个选项区间的端点,判断函数值是否异号即可解:1211234022f e -⎛⎫⎛⎫-=+⋅--=-< ⎪ ⎪⎝⎭⎝⎭,()020f =-<11232022f ⎛⎫=⋅-=-<⎪⎝⎭()12310f e e =+-=-> ()1102f f ⎛⎫∴⋅< ⎪⎝⎭ 01,12x ⎛⎫∴∈ ⎪⎝⎭,使得()00f x =答案:C例2:函数()()ln 1f x x x =-+的零点所在的大致区间是( )A. 31,2⎛⎫⎪⎝⎭ B. 3,22⎛⎫ ⎪⎝⎭C. ()2,eD. (),e +∞ 思路:先能判断出()f x 为增函数,然后利用零点存在性判定定理,只需验证选项中区间端点函数值的符号即可。
零点判定定理
零点判定定理
零点判定定理是一种用于判断多项式函数是否具有零点(即方程 f(x) = 0 的解)的方法。
具体描述如下:
如果一个函数 f(x) 是一个实系数多项式,并且存在有理数 a/b (其中 a 和 b 是互质的整数,且 b 不等于零),满足以下条件之一,则 f(x) 必定有一个有理数根:
1. a 是多项式 f(x) 的常数项,并且 b 是 f(x) 的最高次项的系数;
2. a 是 f(x) 的前 n+1 个系数的最小公倍数,并且 b 是 f(x) 的第
n 个系数。
需要注意的是,这个定理只能判断是否存在有理根,但不能确定具体是哪些有理数。
例如,考虑多项式 f(x) = 2x^2 + 3x - 5。
根据零点判定定理,
常数项 -5 是最高次项系数 2 的倍数,并且前两个系数的最小
公倍数是 6,第三个系数是 1。
因此,根据零点判定定理,f(x) 有一个有理根。
这个定理提供了一种用于判断多项式是否有有理根的方法,但不适用于判断是否存在无理根或复根。
对于判断是否存在无理根或复根,通常需要使用其他方法,如因式分解、根的逼近等。
零点存在定理的条件
零点存在定理的条件1. 零点存在定理的条件之一就是函数要在闭区间上连续呀!就像你每天按时上学,这就是一种连续的状态嘛。
比如说函数 f(x)在[a,b]上连续不断,这是多么重要的前提呀!2. 函数在两端点的值要异号,这也是关键呢!这就好像你和朋友对一件事有完全不同的看法一样。
比如 f(a)和 f(b)一个是正的,一个是负的,这不就有戏了嘛!3. 连续性可不能马虎啊!好比你做一件事要一以贯之,不能半途而废呀。
像函数如果在某一处断开了,那还怎么满足零点存在定理呀!4. 端点值异号很关键呀,这就像比赛中两队分数差距很大一样明显。
比如一个函数在两端的取值差异很大,这不就暗示着中间肯定有零点嘛!5. 条件都要满足才行呀,这就跟搭积木一样,少一块都不行呢!要是函数不连续或者两端同号,那可就不行啦!6. 想想看,如果函数不连续,那不是乱套了嘛!就好像走路走一半突然没路了。
比如某个函数在中间断开了,还怎么找零点呀!7. 零点存在定理的这些条件,一个都不能少哇!就像组成一个团队,每个成员都有自己的作用。
像函数连续和端点异号,缺了哪个都不行呢!8. 不满足这些条件,零点存在定理可就用不了啦!这不是很明显嘛,就如同没有钥匙打不开锁一样。
比如函数不满足条件,还想找零点,那不是做梦嘛!9. 条件呀条件,真的太重要啦!好比是做菜的调料,缺了味道就不对啦。
像函数要是不符合零点存在定理的条件,那可就没辙咯!10. 零点存在定理的条件一定要牢记呀!这就像你牢记回家的路一样重要。
只有这样,我们才能准确地运用它找到零点呀!我的观点结论就是:零点存在定理的条件是非常明确且关键的,只有准确把握这些条件,才能更好地运用这个定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第9讲 零点存在的判定与证明一、基础知识:1、函数的零点:一般的,对于函数()y f x =,我们把方程()0f x =的实数根0x 叫作函数()y f x =的零点。
2、零点存在性定理:如果函数()y f x =在区间[],a b 上的图像是连续不断的一条曲线,并且有()()0f a f b ⋅<,那么函数()y f x =在区间(),a b 内必有零点,即()0,x a b ∃∈,使得()00f x =注:零点存在性定理使用的前提是()f x 在区间[],a b 连续,如果()f x 是分段的,那么零点不一定存在3、函数单调性对零点个数的影响:如果一个连续函数是单调函数,那么它的零点至多有一个。
因此分析一个函数零点的个数前,可尝试判断函数是否单调4、几个“不一定”与“一定”(假设()f x 在区间(),a b 连续)(1)若()()0f a f b ⋅<,则()f x “一定”存在零点,但“不一定”只有一个零点。
要分析()f x 的性质与图像,如果()f x 单调,则“一定”只有一个零点 (2)若()()0f a f b ⋅>,则()f x “不一定”存在零点,也“不一定”没有零点。
如果()f x 单调,那么“一定”没有零点(3)如果()f x 在区间(),a b 中存在零点,则()()f a f b ⋅的符号是“不确定”的,受函数性质与图像影响。
如果()f x 单调,则()()f a f b ⋅一定小于05、零点与单调性配合可确定函数的符号:()f x 是一个在(),a b 单增连续函数,0x x =是()f x 的零点,且()0,x a b ∈,则()0,x a x ∈时,()0f x <;()0,x x b ∈时,()0f x >6、判断函数单调性的方法: (1)可直接判断的几个结论:① 若()(),f x g x 为增(减)函数,则()()f x g x +也为增(减)函数② 若()f x 为增函数,则()f x -为减函数;同样,若()f x 为减函数,则()f x -为增函数 ③ 若()(),f x g x 为增函数,且()(),0f x g x >,则()()f x g x ⋅为增函数(2)复合函数单调性:判断()()y f g x =的单调性可分别判断()t g x =与()y f t =的单调性(注意要利用x 的范围求出t 的范围),若()t g x =,()y f t =均为增函数或均为减函数,则()()y f g x =单调递增;若()t g x =,()y f t =一增一减,则()()y f g x =单调递减(此规律可简记为“同增异减”)(3)利用导数进行判断——求出单调区间从而也可作出图像 7、证明零点存在的步骤:(1)将所证等式中的所有项移至等号一侧,以便于构造函数(2)判断是否要对表达式进行合理变形,然后将表达式设为函数()f x (3)分析函数()f x 的性质,并考虑在已知范围内寻找端点函数值异号的区间 (4)利用零点存在性定理证明零点存在例1:函数()23x f x e x =+-的零点所在的一个区间是( )A. 1,02⎛⎫- ⎪⎝⎭B. 10,2⎛⎫ ⎪⎝⎭C. 1,12⎛⎫ ⎪⎝⎭D. 31,2⎛⎫ ⎪⎝⎭思路:函数()f x 为增函数,所以只需代入每个选项区间的端点,判断函数值是否异号即可解:1211234022f e -⎛⎫⎛⎫-=+⋅--=-< ⎪ ⎪⎝⎭⎝⎭,()020f =-<11232022f ⎛⎫=+⋅-=< ⎪⎝⎭()12310f e e =+-=-> ()1102f f ⎛⎫∴⋅< ⎪⎝⎭ 01,12x ⎛⎫∴∈ ⎪⎝⎭,使得()00f x =答案:C例2:函数()()ln 1f x x x =-+的零点所在的大致区间是( )A. 31,2⎛⎫ ⎪⎝⎭B. 3,22⎛⎫ ⎪⎝⎭C. ()2,eD. (),e +∞思路:先能判断出()f x 为增函数,然后利用零点存在性判定定理,只需验证选项中区间端点函数值的符号即可。
1x →时,()ln 1x -→-∞,从而()f x ⇒-∞,313ln 0222f ⎛⎫=+> ⎪⎝⎭,所以031,2x ⎛⎫∈ ⎪⎝⎭,使得()00f x =答案:A小炼有话说:(1)本题在处理1x →时,是利用对数的性质得到其()ln 1x -的一个趋势,从而确定符号。
那么处理零点问题遇到无法计算的点时也要善于估计函数值的取向。
(2)本题在估计出1x →时,()ln 1x -→-∞后,也可举一个具体的函数值为负数的例子来说明,比如()11.1 1.1ln 010f =+<。
正是在已分析清楚函数趋势的前提下,才能保证快速找到合适的例子。
例3:(2010,浙江)已知0x 是函数()121xf x x=+-的一个零点,若()()10201,,,x x x x ∈∈+∞,则( )A. ()()120,0f x f x <<B. ()()120,0f x f x <>C. ()()120,0f x f x ><D. ()()120,0f x f x >>思路:条件给出了()f x 的零点,且可以分析出()f x 在()1,+∞为连续的增函数,所以结合函数性质可得()()()()10200,0f x f x f x f x <=>= 答案:B例4:已知函数()()log 0,1a f x x x b a a =+->≠,当234a b <<<<时,函数()f x 的零点()0,1,x n n n N *∈+∈,则n =________思路:由a 的范围和()f x 解析式可判断出()f x 为增函数,所以0x 是唯一的零点。
考虑()3log 33log 334log 310a a a f b =+->+-=->,()2log 22log 223log 210a a a f b =+-<+-=-<,所以()02,3x ∈,从而2n =答案:2n =例5:定义方程()()'fx f x =的实数根0x 叫做函数()f x 的“新驻点”,若()()()()3,ln 1,1g x x h x x x x ϕ==+=-的“新驻点”分别为,,αβγ,则( )A. αβγ>>B. βαγ>>C. γαβ>>D. βγα>> 思路:可先求出()()()''',,g x h x x ϕ,由“新驻点”的定义可得对应方程为:()3211,ln 1,131x x x x x =+=-=+,从而构造函数 ()()()()3211111,ln 1,311g x x h x x x x x x ϕ=-=+-=--+,再利用零点存在性定理判断,,αβγ的范围即可 解:()()()'''211,,31g x h x x x x ϕ===+ 所以,,αβγ分别为方程()3211,ln 1,131x x x x x =+=-=+的根,即为函数: ()()()()3211111,ln 1,311g x x h x x x x x x ϕ=-=+-=--+的零点 1α= ()()111010,1ln 202h h =-<=-> ()()()110100,1h h β∴⋅<⇒∈()()'213632x x x x x ϕ=-=- ()1x ϕ∴在()0,2单调减,在()(),0,2,-∞+∞单调增,而()1010ϕ=-<,(),2x ∴∈-∞时,()10x ϕ<,而()14150ϕ=>()()11240ϕϕ∴⋅< ()2,4γ∴∈βαγ∴<<答案:C例6:若函数)(x f 的零点与()ln 28g x x x =+-的零点之差的绝对值不超过5.0, 则)(x f 可以是( )A .63)(-=x x fB .2)4()(-=x x f C .1)(1-=-x ex f D .)25ln()(-=x x f思路:可判断出()g x 单增且连续,所以至多一个零点,但()g x 的零点无法直接求出,而各选项的零点便于求解,所以考虑先解出各选项的零点,再判断()g x 的零点所在区间即可解:设各选项的零点分别为,,,A B C D x x x x ,则有72,4,1,2A B C D x x x x ==== 对于()ln 28g x x x =+-,可得:()()3ln320,4ln40g g =-<=>()03,4x ∴∃∈ ()00g x =77=ln 1022g ⎛⎫-> ⎪⎝⎭ 073,2x ⎛⎫∴∈ ⎪⎝⎭,所以C 选项符合条件答案:C例7:设函数()()224,ln 25x f x e x g x x x =+-=+-,若实数,a b 分别是()(),f x g x 的零点,则( )A. ()()0g a f b <<B. ()()0f b g a <<C. ()()0g a f b <<D. ()()0f b g a <<思路:可先根据零点存在定理判断出,a b 的取值范围:()()030,1240f f e =-<=+->,从而()0,1a ∈;()()130,2ln230g g =-<=+>,从而()1,2b ∈ ,所以有012a b <<<<,考虑()()0f a g b ==,且发现()(),f x g x 为增函数。
进而()()()()0,0g a g b f b f a <=>=,即()()0g a f b <<答案:A例8:已知定义在()1,+∞上的函数()ln 2f x x x =--,求证:()f x 存在唯一的零点,且零点属于()3,4思路:本题要证两个要素:一个是存在零点,一个是零点唯一。
证明零点存在可用零点存在性定理,而要说明唯一,则需要函数的单调性 解:()'111x fx x x-=-= ()1,x ∈+∞()'0f x ∴> ()f x ∴在()1,+∞单调递增 ()()31ln30,42ln20f f =-<=->()()340f f ∴< ()03,4x ∴∃∈,使得()00f x =因为()f x 单调,所以若()''0003,4,x x x ∃∈≠,且()()'000f x f x == 则由单调性的性质:'00x x =与题设矛盾所以()f x 的零点唯一小炼有话说:如果函数()f x 在(),a b 单调递增,则在(),a b 中,()()1212x x f x f x =⇔=,即函数值与自变量一一对应。