2018-2019学年甘肃省庆阳市镇原县九年级(上)期末数学试卷

合集下载

(完整word版)2018九年级上学期末考试数学试题

(完整word版)2018九年级上学期末考试数学试题

2018-2019九年级上学期末考试数学试题一、精心选一选(每小题3分,共36分)1、下列图形中,既是轴对称又是中心对称图形的是( )MN 上移动时,矩形PAOB 勺形状、大小随之变化,贝U AB 的长度()A 变大B 变小C 不变D 不能确定&如图是二次函数y=ax 2+bx+c 图象的一部分,图象过点 A (- 3,0),对称轴为直线x = - 1, 下列结论:① b 2>4ac :②2a + b = 0 ; @ a + b + c>0 ;④若 B (- 5,y 1 )、C (- 1,y ) 为函数图象上的两点,贝U %<y 2 •其中正确结论是( )A ②④B ①③④C ①④D ②③9、 如图,已知AB 是O O 的直径,AD 切O O 于点A ,点C 是EB 的中点,则下列结论: ①OC/ AE ②EC = BC ③/ DAE=Z ABE ④ACLOE 其中正确的有() A 1 个B 2 个C 3 个D 4 个10、 某种药品零售价经过两次降价后的价格为降价前的 81%则平均每场降价( )A 10%B 19%C 9.5%D 20%11、 如图,I 是厶ABC 的内心,AI 的延长线和△ ABC 的外接圆相交于点 连接BI ,BD DC 下列说法中错误的一项是( ) A 线段DB 绕点D 顺时针旋转一定能与线段DC 重合 B 线段DB 绕点D 顺时针旋转一定能与线段 DI 重合 C / CAD 绕点A 顺时针旋转一定能与/ DAB 重合A B C D 32、 盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同,从中任意拿出一支笔 芯,则拿出黑色笔芯的概率为2 1 2 A -B1 C-3553、 用配方法解一元二次方程X 2-6X +6 = 0时,配方后得到的方程是()A (X - 3)2=6B (X +3)2=3C (X - 3)2 =3D (X - 3)2 =-34、 抛物线y 二a (x • 1)(x —3)(a = 0)的对称轴是直线(A X = 1B 5、 如图,四边形) x = -1 C x = 3 DABCD 是O O 的内接四边形,若/第5题 6、 已知:如图,则/ BPC 的度数是( 7、 如图,四边形PAOB 是扇形OMN 勺内接矩形,顶点P 在MN ,且不与M N 重合,当P 点在 四边形 第6题 ABCD 是O O 的内接正方形,点 第8题P 是劣弧上不同于点C 的任意一点, C 75° D 90° 尸x = -3B=110°,则/ ADE 的度数为( )D线段ID绕点I顺时针旋转一定能与线段IB重合(11题)12、用一个圆心角为120°,半径为3的扇形作一个圆锥的侧面,则这个圆锥的底面半径为()1 3A 丄B 1C -D 、2二、细心填一填(每小题3分,共15分)13、把抛物线y = -2(x-1)2+3向右平移2个单位再向下平移5个单位,得到抛物线解析式为_____________________ 。

人教版2018-2019学年初三数学第一学期期末试卷及答案解析

人教版2018-2019学年初三数学第一学期期末试卷及答案解析

2018-2019学年九年级(上)期末数学试卷一、选择题.(每题只有一个正确答案,每题4分,共40分)1.已知(m﹣2)x n﹣3nx+2=0是关于x的一元二次方程,则()A.m≠0,n=2B.m≠2,n=2C.m≠0,n=3D.m≠2,n≠02.下列图形中,可以看作是中心对称图形的是()A.B.C.D.3.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是()A.51°B.56°C.68°D.78°4.分别写有数字0,﹣3,﹣4,2,5的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到非负数的概率是()A.B.C.D.5.下列运动属于旋转的是()A.足球在草地上滚动B.火箭升空的运动C.汽车在急刹车时向前滑行D.钟表的钟摆动的过程6.抛物线y=ax2+bx+c(a≠0)过(2,8)和(﹣6,8)两点,则此抛物线的对称轴为()A.直线x=0B.直线x=1C.直线x=﹣2D.直线x=﹣17.兴义市2014年财政总收入为60亿元,2016年财政总收入达80亿元,若平均每年的增长率为x,则可以列出方程为()A.60(1+x)2=80B.(60+x%)2=80C.60(1+x)(1+2x)2=80D.60(1+x%)2=808.如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A.110°B.90°C.70°D.50°9.为了响应“足球进校国”的目标,兴义市某学校开展了多场足球比赛在某场比赛中,一个足球被从地面向上踢出,它距地面的高度h(m)可以用公式h=﹣5t2+v0t表示,其中t(s)表示足球被踢出后经过的时间,v0(m/s)是足球被踢出时的速度,如果要求足球的最大高度达到20m,那么足球被踢出时的速度应该达到()A.5m/s B.10m/s C.20m/s D.40m/s10.如图,AB,CD是⊙O的直径,⊙O的半径为R,AB⊥CD,以B为圆心,以BC为半径作CED,则CED与CAD围成的新月形ACED的面积为()平方单位.A.(π﹣1)R2B.R2C.(π+1)R2D.πR2二.填空题.(每小题3分,共30分)11.“任意打开一本154页的九年级数学书,正好翻到第127页”这是(填“随机“或“必然”)事件.12.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的解析式为.13.点A(﹣2,3)关于原点对称的点的坐标是.14.如图,正六边形ABCDEF内接于⊙O.若直线PA与⊙O相切于点A,则∠PAB=.15.已知点A(x1,y1)、B(x2,y2)在二次函数y=(x﹣1)2+1的图象上,若x1>x2>1,则y1y2(填“>”、“<”或“=”).16.为了弘扬中华传统文化,营造书香校园文化氛围,2017年12月11日,兴义市新电学校举行中华传统文化知识大赛活动该学校从三名男生和两名女生中选出两名同学担任本次活动的主持人,则选出的恰为一男一女的概率是17.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为(结果保留π).18.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为度.19.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是.20.如图,矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线上进行两次旋转,则点B在两次旋转过程中经过的路径的长是.三.(本大题12分)21.(12分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标.四.(本大题12分)22.(12分)如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°(1)求∠B的大小;(2)已知AD=6,求圆心O到BD的距离.五.(本大题14分)23.(14分)兴义街心花园是位于兴义老城区的商业文化购物步行街,是贵州最长最大的步行街,在贵州乃至西南都相当有名.街心花园某商场经营某种品牌童装,购进时的单价是60元,根据市场调查,在一段时间内,销售单价是80元时,销售量是200件销售单价每降低1元,就可多售出20件.(1)求出销售量y(件)与销售单价x(元)之间的函数关系式;(2)求出销售该品牌童装获得的利润w(元)与销售单价x(元)之间的函数关系式;(3)若童装厂规定该品牌童装的销售单价不低于76元且不高于80元则商场销售该品牌童装获得的最大利润是多少?六.(本大题14分)24.(14分)如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC.(1)求证:;(2)求证:CD是⊙O的切线.七.(本大题16分)26.(16分)如图,在直角坐标系中,抛物线y=﹣(x+1)2+4与x轴交于点A、B,与y 轴交于点C.(1)写出抛物线顶点D的坐标;(2)点D1是点D关于y轴的对称点,判断点D1是否在直线AC上,并说明理由;(3)若点E是抛物线上的点,且在直线AC的上方,过点E作EF⊥x轴交线段AC于点F,求线段EF的最大值.八.(本大题12分)25.(12分)铁一中分校初二年级要组织一次学生的数学解题能力大赛.(1)现要从每班随机选出一名学生负责协调老师工作,小明所在的六班共有54名同学,请求出小明被选中的概率;(2)经过第一轮在班内的比赛,有六名同学小帆、小恒、小丽、小颖、小茹、小斌(分别依次记为A、B、C、D、E、F)成绩优秀,先要从这六名学生中随机选出两人代表本班参加年级的解题大赛,请求出小丽和小颖作为本班代表参赛的概率.2017-2018学年贵州省黔西南州兴义市九年级(上)期末数学试卷参考答案与试题解析一、选择题.(每题只有一个正确答案,每题4分,共40分)1.已知(m﹣2)x n﹣3nx+2=0是关于x的一元二次方程,则()A.m≠0,n=2B.m≠2,n=2C.m≠0,n=3D.m≠2,n≠0【分析】根据一元二次方程的定义列出关于m,n的方程,求出m,n的值即可.【解答】解:∵(m﹣2)x n﹣3nx+2=0是关于x的一元二次方程,∴m﹣2≠0,n=2,解得m≠2,n=2.故选:B.【点评】本题考查的是一元二次方程的定义,熟知只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解答此题的关键.2.下列图形中,可以看作是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;D、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误.故选:B.【点评】此题主要考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是()A.51°B.56°C.68°D.78°【分析】由==,可求得∠BOC=∠EOD=∠COD=34°,继而可求得∠AOE的度数;然后再根据等腰三角形的性质和三角形内角和定理来求∠AEO的度数.【解答】解:如图,∵==,∠COD=34°,∴∠BOC=∠EOD=∠COD=34°,∴∠AOE=180°﹣∠EOD﹣∠COD﹣∠BOC=78°.又∵OA=OE,∴∠AEO=∠OAE,∴∠AEO=×(180°﹣78°)=51°.故选:A.【点评】此题考查了弧与圆心角的关系.此题比较简单,注意掌握数形结合思想的应用.4.分别写有数字0,﹣3,﹣4,2,5的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到非负数的概率是()A.B.C.D.【分析】先求出非负数的个数,再根据概率公式计算可得.【解答】解:∵0,﹣3,﹣4,2,5这5个数中,非负数有0,2,5这3个,∴从中随机抽取一张,抽到写有非负数的卡片的概率是,故选:C.【点评】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,本题找到非负数的个数是关键.5.下列运动属于旋转的是()A.足球在草地上滚动B.火箭升空的运动C.汽车在急刹车时向前滑行D.钟表的钟摆动的过程【分析】根据旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转进行分析即可.【解答】解:A、足球在草地上滚动,不是旋转,故此选项错误;B、火箭升空的运动,是平移,故此选项错误;C、汽车在急刹车时向前滑行,是平移,故此选项错误;D、钟表的钟摆动的过程,是旋转,故此选项正确;故选:D.【点评】此题主要考查了生活中的旋转,关键是掌握旋转定义.6.抛物线y=ax2+bx+c(a≠0)过(2,8)和(﹣6,8)两点,则此抛物线的对称轴为()A.直线x=0B.直线x=1C.直线x=﹣2D.直线x=﹣1【分析】由二次函数的对称性可求得抛物线的对称轴【解答】解:∵抛物线y=ax2+bx+c(a≠0)过(2,8)和(﹣6,8)两点,∴抛物线的对称轴为x==﹣2,故选:C.【点评】本题主要考查二次函数的性质,掌握二次函数图象上关于对称轴对称的点所对应的函数值相等是解题的关键.7.兴义市2014年财政总收入为60亿元,2016年财政总收入达80亿元,若平均每年的增长率为x,则可以列出方程为()A.60(1+x)2=80B.(60+x%)2=80C.60(1+x)(1+2x)2=80D.60(1+x%)2=80【分析】2016年财政总收入=2014年财政总收入×(1+增长率)2,把相关数值代入即可.【解答】解:2015年财政总收入为60×(1+x),2016年财政总收入为60×(1+x)×(1+x)=60×(1+x)2,可列方程为60(1+x)2=80,故选:A.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.8.如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A.110°B.90°C.70°D.50°【分析】先根据圆内接四边形的对角互补得出∠D+∠B=180°,即可解答.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠D+∠B=180°,∴∠D=180°﹣70°=110°,故选:A.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形对角互补的性质是解答此题的关键.9.为了响应“足球进校国”的目标,兴义市某学校开展了多场足球比赛在某场比赛中,一个足球被从地面向上踢出,它距地面的高度h(m)可以用公式h=﹣5t2+v0t表示,其中t(s)表示足球被踢出后经过的时间,v0(m/s)是足球被踢出时的速度,如果要求足球的最大高度达到20m,那么足球被踢出时的速度应该达到()A.5m/s B.10m/s C.20m/s D.40m/s【分析】因为﹣5<0,抛物线开口向下,有最大值,根据顶点坐标公式表示函数的最大值,根据题目对最大值的要求,求待定系数v0.【解答】解:h=﹣5t2+v0•t,其对称轴为t=,5×()2+v0•=20,当t=时,h最大=﹣解得:v0=20,v0=﹣20(不合题意舍去),故选:C.【点评】本题考查的是二次函数的应用,关键是利用当对称轴为t=﹣时h将取到最大值.10.如图,AB,CD是⊙O的直径,⊙O的半径为R,AB⊥CD,以B为圆心,以BC为半径作CED,则CED与CAD围成的新月形ACED的面积为()平方单位.A.(π﹣1)R2B.R2C.(π+1)R2D.πR2【分析】从图中可以看出新月形ACED的面积是圆O半圆的面积﹣弓形CED的面积,弓形CED的面积又=扇形BCD面积﹣三角形BCD的面积,然后依面积公式计算即可.【解答】解:新月形ACED的面积==R2.故选:B.【点评】本题的关键是看出:新月形ACED的面积是圆O半圆的面积﹣弓形CED的面积,然后逐一求面积即可.二.填空题.(每小题3分,共30分)11.“任意打开一本154页的九年级数学书,正好翻到第127页”这是随机(填“随机“或“必然”)事件.【分析】直接利用随机事件的定义分析得出答案.【解答】解:任意打开一本154页的九年级数学书,正好翻到第127页”这是随机事件.故答案为:随机.【点评】此题主要考查了随机事件,正确把握随机事件的定义是解题关键.12.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的解析式为y=x2+1.【分析】直接利用二次函数的平移规律得出答案.【解答】解:将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的解析式为:y=x2+1.故答案为:y=x2+1.【点评】此题主要考查了二次函数的平移变换,正确掌握平移规律是解题关键.13.点A(﹣2,3)关于原点对称的点的坐标是(2,﹣3).【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P(﹣2,3)关于原点O的对称点是P′(2,﹣3)【解答】解:根据两个点关于原点对称,∴点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3);故答案为(2,﹣3).【点评】本题考查了关于原点对称的点的坐标,运用时要熟练掌握,可以不用图画和结合坐标系,只根据符号变化直接写出对应点的坐标.14.如图,正六边形ABCDEF内接于⊙O.若直线PA与⊙O相切于点A,则∠PAB=30°.【分析】连接OB,AD,BD,由多边形是正六边形可求出∠AOB的度数,再根据圆周角定理即可求出∠ADB的度数,利用弦切角定理求出∠PAB即可.【解答】解:连接OB,AD,BD,∵多边形ABCDEF是正多边形,∴AD为外接圆的直径,∠AOB==60°,∴∠ADB=∠AOB=×60°=30°.∵直线PA与⊙O相切于点A,∴∠PAB=∠ADB=30°.故答案为:30°.【点评】本题主要考查了正多边形和圆、圆周角定理、弦切角定理;作出适当的辅助线,利用弦切角定理是解答此题的关键.15.已知点A(x1,y1)、B(x2,y2)在二次函数y=(x﹣1)2+1的图象上,若x1>x2>1,则y1>y2(填“>”、“<”或“=”).【分析】先根据二次函数的解析式得出函数图象的对称轴,再判断出两点的位置及函数的增减性,进而可得出结论.【解答】解:∵a=1>0,∴二次函数的图象开口向上,由二次函数y=(x﹣1)2+1可知,其对称轴为x=1,∵x1>x2>1,∴两点均在对称轴的右侧,∵此函数图象开口向上,∴在对称轴的右侧y随x的增大而增大,∵x1>x2>1,∴y1>y2.故答案为:>.【点评】本题考查的是二次函数图象上点的坐标特点,根据题意判断出A、B两点的位置是解答此题的关键.16.为了弘扬中华传统文化,营造书香校园文化氛围,2017年12月11日,兴义市新电学校举行中华传统文化知识大赛活动该学校从三名男生和两名女生中选出两名同学担任本次活动的主持人,则选出的恰为一男一女的概率是【分析】画出树状图,再根据概率公式列式进行计算即可得解.【解答】解:画树状图如下:共有20种机会均等的结果,其中一男一女占12种,则恰好抽中一男一女的概率是=,故答案为:.【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.17.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为2π(结果保留π).【分析】根据切线的性质得到∠OBA=90°,求出∠OBC,根据三角形内角和定理求出∠BOC=120°,根据弧长公式计算即可.【解答】解:连接OB,∵AB与⊙O相切于点B,∴∠OBA=90°,∴∠OBC=∠ABC﹣∠ABO=30°,∵OB=OC,∴∠C=∠B=30°,∴∠BOC=120°,∴弧BC的长==2π,故答案为:2π.【点评】本题考查的是切线的性质、弧长的计算,掌握圆的切线垂直于经过切点的半径、弧长的计算公式是解题的关键..18.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为15度.【分析】此题只需根据旋转的性质发现等腰直角三角形CEF,进行求解.【解答】解:∵△DCF是△BCE旋转以后得到的图形,∴∠BEC=∠DFC=60°,∠ECF=∠BCE=90°,CF=CE.又∵∠ECF=90°,∴∠EFC=∠FEC=(180°﹣∠ECF)=(180°﹣90°)=45°,故∠EFD=∠DFC﹣∠EFC=60°﹣45°=15°.故答案为:15°【点评】本题考查了图形的旋转变化,学生主要要看清是顺时针还是逆时针旋转,旋转多少度.难度不大,但易错.19.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是20.【分析】根据利用频率估计概率得到摸到黄球的概率为30%,然后根据概率公式计算n 的值.【解答】解:根据题意得=30%,解得n=20,所以这个不透明的盒子里大约有20个除颜色外其他完全相同的小球.故答案为20.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.20.如图,矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线上进行两次旋转,则点B在两次旋转过程中经过的路径的长是.【分析】首先根据勾股定理计算出BD长,再根据弧长计算公式计算出,的长,然后再求和计算出点B在两次旋转过程中经过的路径的长即可.【解答】解:∵AB=5,AD=12,∴BD==13,∴==,==6π,∴点B在两次旋转过程中经过的路径的长是: +6π=,故答案为.【点评】此题主要考查了弧长计算,以及勾股定理的应用,关键是掌握弧长计算公式l=,是基础题目,解答时要注意旋转中心以及半径的变化.三.(本大题12分)21.(12分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标.【分析】(1)①根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;②根据网格结构找出A、B、C关于原点O的中心对称点A2、B2、C2的位置,然后顺次连接即可;(2)连接B1B2,C1C2,交点就是对称中心M.【解答】解:(1)①△A1B1C1如图所示;②△A2B2C2如图所示;(2)连接B1B2,C1C2,得到对称中心M的坐标为(2,1).【点评】本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.另外要求掌握对称中心的定义.四.(本大题12分)22.(12分)如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°(1)求∠B的大小;(2)已知AD=6,求圆心O到BD的距离.【分析】(1)先依据三角形的外角的性质求得∠C的度数,然后再根据圆周定理求解即可;(2)利用三角形中位线的性质得出EO=AD,即可得出答案.【解答】解:(1)∵∠APD=∠C+∠CAB,∴∠C=65°﹣40°=25°,∴∠B=∠C=25°;(2)作OE⊥BD于E,则DE=BE,又∵AO=BO,∴OE=AD,∴圆心O到BD的距离为3.【点评】此题主要考查了圆周角定理以及三角形中位线定理,根据已知得出EO=AD是解题关键.五.(本大题14分)23.(14分)兴义街心花园是位于兴义老城区的商业文化购物步行街,是贵州最长最大的步行街,在贵州乃至西南都相当有名.街心花园某商场经营某种品牌童装,购进时的单价是60元,根据市场调查,在一段时间内,销售单价是80元时,销售量是200件销售单价每降低1元,就可多售出20件.(1)求出销售量y(件)与销售单价x(元)之间的函数关系式;(2)求出销售该品牌童装获得的利润w(元)与销售单价x(元)之间的函数关系式;(3)若童装厂规定该品牌童装的销售单价不低于76元且不高于80元则商场销售该品牌童装获得的最大利润是多少?【分析】(1)销售量y件为200件加增加的件数(80﹣x)×20;(2)利润w等于单件利润×销售量y件,即W=(x﹣60)(﹣20x+1800),整理即可;(3)先利用二次函数的性质得到w=﹣20x2+3000x﹣108000的对称轴为x=﹣=75,而76≤x≤80,根据二次函数的性质得到当76≤x≤80时,W随x的增大而减小,把x=76代入计算即可得到商场销售该品牌童装获得的最大利润.【解答】解:(1)根据题意得,y=200+(80﹣x)×20=﹣20x+1800,所以销售量y件与销售单价x元之间的函数关系式为y=﹣20x+1800(60≤x≤80);(2)W=(x﹣60)y=(x﹣60)(﹣20x+1800)=﹣20x2+3000x﹣108000,所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式W=﹣20x2+3000x﹣108000;(3)根据题意得76≤x≤80,w=﹣20x2+3000x﹣108000的对称轴为x=﹣=75,∵a=﹣20<0,∴抛物线开口向下,∴当76≤x≤80时,W随x的增大而减小,∴x=76时,W有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元).所以商场销售该品牌童装获得的最大利润是4480元.【点评】本题考查了二次函数的应用:根据实际问题列出二次函数关系式,然后利用二次函数的性质,特别是二次函数的最值问题解决实际中的最大或最小值问题.六.(本大题14分)24.(14分)如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC.(1)求证:;(2)求证:CD是⊙O的切线.【分析】(1)连接OD,由平行可得∠DAO=∠COB,∠ADO=∠DOC;再由OA=OD,可得出,∠DAO=∠ADO,则∠COB=∠COD,从而证出=;(2)由(1)得,△COD≌△COB,则∠CDO=∠B.又BC⊥AB,则∠CDO=∠B=90°,从而得出CD是⊙O的切线.【解答】证明:(1)连接OD.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠DOC,又∵OA=OD,∴∠DAO=∠ADO,∴∠COB=∠COD,∴=;(2)由(1)知∠DOE=∠BOE,在△COD和△COB中,CO=CO,∠DOC=∠BOC,OD=OB,∴△COD≌△COB,∴∠CDO=∠B.又∵BC⊥AB,∴∠CDO=∠B=90°,即OD⊥CD.即CD是⊙O的切线.【点评】本题考查了切线的判定和圆周角定理以及圆心角、弧、弦之间的关系,注:在同圆或等圆中,圆心角、圆周角、弧、弦中有一组量相等,其余各组量也相等.七.(本大题16分)26.(16分)如图,在直角坐标系中,抛物线y=﹣(x+1)2+4与x轴交于点A、B,与y 轴交于点C.(1)写出抛物线顶点D的坐标(﹣1,4);(2)点D1是点D关于y轴的对称点,判断点D1是否在直线AC上,并说明理由;(3)若点E是抛物线上的点,且在直线AC的上方,过点E作EF⊥x轴交线段AC于点F,求线段EF的最大值.【分析】(1)根据抛物线的顶点解析式y=﹣(x+1)2+4,即可求出抛物线顶点D的坐标是(﹣1,4);(2)先根据抛物线的解析式y=﹣(x+1)2+4,求出A、C两点的坐标,再利用待定系数法求出直线AC的解析式,根据关于y轴对称的点的坐标特征得出D1(1,4),然后代入直线AC的解析式即可判断点D1在直线AC上;(3)设点E(x,﹣x2﹣2x+3),则F(x,x+3),求出EF=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x,利用配方法化成顶点式,根据二次函数的性质即可求出最大值.【解答】解:(1)∵y=﹣(x+1)2+4,∴抛物线顶点D的坐标是(﹣1,4).故答案为(﹣1,4);(2)点D1在直线AC上,理由如下:∵抛物线y=﹣(x+1)2+4与x轴交于点A、B,与y轴交于点C,∴当y=0时,﹣(x+1)2+4=0,解得x=1或﹣3,A(﹣3,0),B(1,0),当x=0时,y=﹣1+4=3,C(0,3).设直线AC的解析式为y=kx+b,由题意得,解得,∴直线AC的解析式为y=x+3.∵点D1是点D关于y轴的对称点,D(﹣1,4).∴D1(1,4),∵x=1时,y=1+3=4,∴点D1在直线AC上;(3)设点E(x,﹣x2﹣2x+3),则F(x,x+3),∵EF=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x=﹣(x+1.5)2+2.25,∴线段EF的最大值是2.25.【点评】本题是二次函数的综合题,其中涉及到二次函数的性质,利用待定系数法求直线的解析式,函数图象上点的坐标特征等知识,难度适中.八.(本大题12分)25.(12分)铁一中分校初二年级要组织一次学生的数学解题能力大赛.(1)现要从每班随机选出一名学生负责协调老师工作,小明所在的六班共有54名同学,请求出小明被选中的概率;(2)经过第一轮在班内的比赛,有六名同学小帆、小恒、小丽、小颖、小茹、小斌(分别依次记为A、B、C、D、E、F)成绩优秀,先要从这六名学生中随机选出两人代表本班参加年级的解题大赛,请求出小丽和小颖作为本班代表参赛的概率.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有30种等可能的结果数,再找出小丽和小颖作为本班代表参赛的结果数,然后根据概率公式求解.【解答】解:(1)小明被选中的概率=;(2)画树状图为:共有30种等可能的结果数,其中小丽和小颖作为本班代表参赛的结果数为2,所以小丽和小颖作为本班代表参赛的概率==.。

精品解析:甘肃省庆阳市环县第一中学2018-2019学年九年级上学期期末数学试题(解析版)

精品解析:甘肃省庆阳市环县第一中学2018-2019学年九年级上学期期末数学试题(解析版)

2018-2019学年九年级(上)期末数学试卷一.选择题(每小题3分,共36分)1. 方程x2﹣x=0的解为()A. x1=x2=1B. x1=x2=0C. x1=0,x2=1D. x1=1,x2=﹣1 【答案】C【解析】【分析】通过提取公因式对等式的左边进行因式分解,然后解两个一元一次方程即可.【详解】解:∵x2﹣x=0,∴x(x﹣1)=0,∴x=0或x﹣1=0,∴x1=0,x2=1,故选:C.【点睛】本题考查了一元二次方程的解法,属于基本题型,熟练掌握分解因式的方法是解题的关键.2. 抛物线y=﹣(x﹣1)2﹣2 的顶点坐标是()A. (1,2)B. (﹣1,﹣2)C. (﹣1,2)D. (1,﹣2)【答案】D【解析】【分析】根据顶点式解析式写出顶点坐标即可.【详解】抛物线y=﹣(x﹣1)2﹣2 的顶点坐标是(1,﹣2).故选D.【点睛】本题考查了二次函数的性质,熟练掌握利用顶点式解析式求顶点坐标的方法是解题的关键.3. 下列图形中,既是轴对称图形又是中心对称图形的是()A. 等边三角形B. 平行四边形C. 正五边形D. 圆【答案】D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】解:A 、等边三角形是轴对称图形,不是中心对称图形,故A 错误;B 、平行四边形不是轴对称图形,是中心对称图形,故B 错误;C 、正五边形是轴对称图形,不是中心对称图形,故C 错误;D 、圆是轴对称图形,也是中心对称图形,故D 正确.故选:D .【点睛】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.4. 将含有30°角的直角三角板OAB 如图放置在平面直角坐标系中,OB 在x 轴上,若OA =2,将三角板绕原点O 顺时针旋转75°,则点A 的对应点A ′的坐标为( )A. 31)B. (13C. 22D. (22) 【答案】C【解析】试题解析:∵三角板绕原点O 顺时针旋转75°, ∴旋转后OA 与y 轴夹角为45°, ∵OA=2,∴OA′=2, ∴点A′的横坐标为2×22, 纵坐标为-2×22 所以,点A′2,2)故选C.)5. 如图,CD是⊙O的直径,已知∠1=30°,则∠2等于(【答案】C【解析】试题分析:如图,连接AD.∵CD是⊙O的直径,∴∠CAD=90°(直径所对的圆周角是90°);在Rt△ABC中,∠CAD=90°,∠1=30°,∴∠DAB=60°;又∵∠DAB=∠2(同弧所对的圆周角相等),∴∠2=60°考点:圆周角定理6. 如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()A. 135°B. 122.5°C. 115.5°D. 112.5°【答案】D 【解析】分析:∵OA=OB,∴∠OAB=∠OBC=22.5°.∴∠AOB=180°﹣22.5°﹣22.5°=135°.如图,在⊙O取点D,使点D与点O在AB的同侧.则1D AOB67.52∠=∠=︒.∵∠C与∠D是圆内接四边形的对角,∴∠C=180°﹣∠D =112.5°.故选D.7. 如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么AB的值为()A. 3B. 33C. 23D. 2【答案】A【解析】【分析】【详解】解:∵AB=BC,∴∠BAC=∠C.∵∠ABC=120°,∴∠C=∠BAC=30°.∵∠C和∠D是同圆中同弧所对的圆周角,∴∠D=∠C=30°.∵AD直径,∴∠ABD=90°.∵AD=6,∴AB=12AD=3.故选A.8. 二次函数2()y a x m n=++的图象如图,则一次函数y mx n=+的图象经过【】A. 第一、二、三象限B. 第一、二、四象限C. 第二、三、四象限D. 第一、三、四象限【答案】C∵抛物线的顶点在第四象限,∴﹣m >0,n <0.∴m <0,∴一次函数y mx n =+的图象经过二、三、四象限.故选C .9. 下列事件是必然事件的是( )A. 某人体温是100℃B. 太阳从西边下山C. a 2+b 2=﹣1D. 购买一张彩票,中奖【答案】B【解析】【分析】根据必然事件的特点:一定会发生的特点进行判断即可【详解】解:A 、某人体温是100℃是不可能事件,本选项不符合题意;B 、太阳从西边下山是必然事件,本选项符合题意;C 、a 2+b 2=﹣1是不可能事件,本选项不符合题意;D 、购买一张彩票,中奖是随机事件,本选项不符合题意.故选B .【点睛】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10. 如图,AB 为⊙O 的直径,点C 在⊙O 上,若50OCA ∠=︒,4AB =,则BC 的长为( )A. 103πB. 109πC. 59π D. 518π 【答案】B【解析】【分析】直接利用等腰三角形的性质得出∠A 的度数,再利用圆周角定理得出∠BOC 的度数,再利用弧长公式求出【详解】解:∵∠OCA=50°,OA=OC,∴∠A=50°,∴∠BOC=2∠A=100°,∵AB=4,∴BO=2,∴BC的长为:10021819ππ⨯=故选B.【点睛】此题主要考查了弧长公式应用以及圆周角定理,正确得出∠BOC的度数是解题关键.11. 在△ABC中,I是内心,∠BIC=130°,则∠A的度数是()A. 40°B. 50°C. 65°D. 80°【答案】D【解析】试题分析:已知∠BIC=130°,则根据三角形内角和定理可知∠IBC+∠ICB=50°,则得到∠ABC+∠ACB=100度,则本题易解.解:∵∠BIC=130°,∴∠IBC+∠ICB=50°,又∵I是内心即I是三角形三个内角平分线的交点,∴∠ABC+∠ACB=100°,∴∠A=80°.故选D.考点:三角形内角和定理;角平分线的定义.12. 若函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,则a的值为( ).A. -1或2B. -1或1C. 1或2D. -1或2或1【答案】D【解析】当该函数是一次函数时,与x轴必有一个交点,此时a-1=0,即a=1.当该函数是二次函数时,由图象与x轴只有一个交点可知Δ=(-4)2-4(a-1)×2a=0,解得a1=-1,a2=2. 综上所述,a=1或-1或2.故选D.二.填空题(每小题4分,共32分)13. 若(m+1)x m(m+2﹣1)+2mx﹣1=0是关于x的一元二次方程,则m的值是_____.【答案】﹣2或1【解析】【分析】本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可.【详解】由题意得:(21)2 {10m mm-≠+=+解得m=−2或1.故答案为:﹣2或1.【点睛】考查一元二次方程的定义的运用,一元二次方程注意应着重考虑未知数的最高次项的次数为2,系数不为0.14. 边长为4cm的正方形ABCD绕它的顶点A旋转180°,顶点B所经过的路线长为()cm.【答案】4π【解析】试题解析:∵边长为4cm的正方形ABCD绕它的顶点A旋转180°,顶点B所经过的路线是一段弧长,弧长是以点A为圆心,AB为半径,圆心角是180°的弧长,∴根据弧长公式可得:1804180π⨯=4π.故选A .15. 过⊙O 内一点M 的最长弦为10cm ,最短弦为8cm ,则OM=_______cm【答案】3【解析】试题分析:最长弦即为直径,最短弦即为以M为中点的弦,所以此时3OM == 考点:弦心距与弦、半径的关系点评:弦心距16. 小明掷一枚硬币10次,有9次正面向上,当他掷第10次时,正面向上的概率是_____. 【答案】12. 【解析】【分析】根据概率的性质和概率公式即可求出,当他掷第10次时,正面向上的概率. 【详解】解:∵掷一枚质地均匀的硬币,有两种结果:正面朝上,反面朝上,每种结果等可能出现, ∴她第10次掷这枚硬币时,正面向上的概率是:12. 故答案为:12. 【点睛】本题考查了概率统计的问题,根据概率公式求解即可.17. 同一个圆中内接正三角形、内接正四边形、内接正六边形的边长之比为___________.【解析】【分析】 首先根据题意画出图形,设出圆的半径,分别求出圆中内接正三角形、内接正四边形、内接正六边形的边长,即可得出答案.【详解】设圆的半径为r , 如图①,13601203AOB ∠=⨯︒=︒ OA OB = 30OAB ∴∠=︒过点O 作OC AB ⊥于点C则2AB AC = 3cos302AC OA r =︒= 3AB r ∴=如图②,1360904AOB ∠=⨯︒=︒ OA OB = 22AB OA r ∴==如图③,1360606AOB ∠=⨯︒=︒ OA OB = OAB ∴为等边三角形AB OA r ∴== 32 32【点睛】本题主要考查圆的半径与内接正三角形,正方形和正六边形的边长之间的关系,能够画出图形是解题的关键.18. 如图,AB 为⊙O 的直径,CD 是弦,且CD ⊥AB 于点P ,若AB =4,OP =1,则弦CD 所对的圆周角等于_____度.【答案】60或120.【解析】【分析】先确定弦CD 所对的圆周角∠CBD 和∠CAD 两个,再利用圆的相关性质及菱形的判定证四边形ODBC 是菱形,推出2CBD CAD =∠∠,根据圆内接四边形对角互补即可分别求出CBD ∠和CAD ∠的度数.【详解】如图,连接OC ,OD ,BC ,BD ,AC ,AD ,∵AB 为⊙O 的直径,AB =4,∴OB =2,又∵OP =1,∴BP =1,∵CD ⊥AB ,∴CD 垂直平分OB ,∴CO =CB ,DO =DB ,又OC =OD ,∴OC =CB =DB =OD ,∴四边形ODBC 是菱形,∴∠COD =∠CBD ,∵∠COD =2∠CAD ,∴∠CBD =2∠CAD ,又∵四边形ADBC 是圆内接四边形,∴∠CAD +∠CBD =180°,∴∠CAD =60°,∠CBD =120°,∵弦CD 所对的圆周角有∠CAD 和∠CBD 两个,故答案:60或120.【点睛】本题考查了圆周角的度数问题,掌握圆的有关性质、菱形的性质以及判定定理是解题的关键.19. 如图:⊙A、⊙B、⊙C两两不相交,且半径均为1,则图中三个阴影扇形的面积之和为 .【答案】12π.【解析】试题分析:根据三角形的内角和是180°和扇形的面积公式进行计算.试题解析:∵∠A+∠B+∠C=180°,∴阴影部分的面积=2180113602ππ⨯=.考点:扇形面积的计算.20. 如图,圆锥的轴截面(过圆锥顶点和底面圆心的截面)是边长为4cm的等边三角形ABC,点D是母线AC的中点,一只蚂蚁从点B出发沿圆锥的表面爬行到点D处,则这只蚂蚁爬行的最短距离是_______cm.【答案】5【解析】【分析】【详解】解:∵圆锥的底面周长是4π,则4π=4 180nπ⨯,∴n=180°即圆锥侧面展开图的圆心角是180°,∴在圆锥侧面展开图中AD=2,AB=4,∠BAD=90°,∴在圆锥侧面展开图中 ,∴这只蚂蚁爬行的最短距离是.故答案为:三.解答题(共82分)21. 解方程(1)x2﹣6x﹣7=0(2)(x﹣1)(x+3)=12【答案】(1)x=7或x=﹣1(2)x=﹣5或x=3【解析】【分析】(1)方程两边同时加16,根据完全平方公式求解方程即可.(2)开括号,再移项合并同类项,根据十字相乘法求解方程即可.【详解】(1)∵x2﹣6x﹣7=0,∴x2﹣6x+9=16,∴(x﹣3)2=16,∴x﹣3=±4,∴x=7或x=﹣1;(2)原方程化为:x2+2x﹣15=0,∴(x+5)(x﹣3)=0,∴x=﹣5或x=3;【点睛】本题考查了解一元二次方程的问题,掌握解一元二次方程的方法是解题的关键.22. 已知抛物线的顶点坐标为(1,2),且经过点(3,10)求这条抛物线的解析式.【答案】y=2(x﹣1)2+2.【解析】【分析】根据题意设抛物线解析式为y=a(x﹣1)2+2,代入(3,10)求解即可.【详解】解:根据题意设抛物线解析式为y=a(x﹣1)2+2,把(3,10)代入得a(3﹣1)2+2=10,解得a=2,所以抛物线解析式为y=2(x﹣1)2+2.【点睛】本题考查了抛物线的问题,掌握抛物线的性质以及解析法、待定系数法是解题的关键.23. 某校薛老师所带班级的全体学生每两人都握一次手,共握手1540次,求薛老师所带班级的学生人数.【答案】薛老师所带班级有56人.【解析】【分析】设薛老师所带班级有x人,根据题意列出方程求解即可.【详解】解:设薛老师所带班级有x人,依题意,得:12x(x﹣1)=1540,整理,得:x2﹣x﹣3080=0,解得:x1=56,x2=﹣55(不合题意,舍去).答:薛老师所带班级有56人.【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.24. 有甲、乙、丙三个不透明的布袋,甲袋中装有2个相同的小球,它们分别标有字母A和B;乙袋中装有3个相同的小球,它们分别标有字母C、D和E;丙袋中装有2个相同的小球,它们分别标有字母H和I.从三个布袋中各随机取出一个小球.求:(1)取出的3个小球恰好有2个元音字母的概率;(2)取出的3个小球全是辅音字母的概率.【答案】(1)13;(2)16.【解析】【分析】(1)根据题意画出树状图,根据树状图作答即可;(2)根据树状图作答即可.【详解】解:(1)画树状图得:∵共有12种等可能的结果,取出的3个小球上恰好有2个元音字母的为4种情况,∴P(恰好有2个元音字母)41 123 ==;(2)∵取出的3个小球上全是辅音字母的有2种情况,∴取出的3个小球上全是辅音字母的概率是:21 126=.【点睛】本题考查了概率统计的问题,掌握树状图的性质以及画法是解题的关键.25. 如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E,连接AC、OC、BC(1)求证:∠ACO=∠BCD;(2)若EB=8cm,CD=24cm,求⊙O的面积.(结果保留π)【答案】(1)见解析;(2)169π(cm2).【解析】【分析】(1)根据垂径定理,即可得BC=BD,根据同弧所对的圆周角相等,证出∠BAC=∠BCD,再根据等边对等角,即可得到∠BAC=∠ACO,从而证出∠ACO=∠BCD;(2)根据垂径定理和勾股定理列出方程,求出圆的半径,即可求出圆的面积.【详解】解:(1)∵AB为⊙O的直径,AB⊥CD,∴BC=BD.∴∠BAC=∠BCD.∵OA=OC,∴∠BAC=∠ACO.∴∠ACO=∠BCD;(2)∵AB为⊙O的直径,AB⊥CD,∴CE=12CD=12×24=12(cm).在Rt△COE中,设CO为r,则OE=r﹣8,根据勾股定理得:122+(r﹣8)2=r2解得r=13.∴S⊙O=π×132=169π(cm2).【点睛】此题考查的是垂径定理、等腰三角形的性质、圆周角定理推论和求圆的面积,掌握垂径定理和勾股定理的结合是解决此题的关键.26. 如图,点B、C、D都在⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°,DB=63cm.(1)求证:AC是⊙O的切线;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)【答案】(1)证明见解析;(2)6πcm2.【解析】【分析】连接BC,OD,OC,设OC与BD交于点M.(1)求出∠COB的度数,求出∠A的度数,根据三角形的内角和定理求出∠OCA的度数,根据切线的判定推出即可;(2)证明△CDM≌△OBM,从而得到S阴影=S扇形BOC.【详解】如图,连接BC,OD,OC,设OC与BD交于点M.(1)根据圆周角定理得:∠COB=2∠CDB=2×30°=60°,∵AC∥BD,∴∠A=∠OBD=30°,∴∠OCA=180°﹣30°﹣60°=90°,即OC⊥AC,∵OC为半径,∴AC是⊙O的切线;(2)由(1)知,AC为⊙O的切线,∴OC⊥AC.∵AC∥BD,∴OC⊥BD.由垂径定理可知,MD=MB=1 2BD=33.在Rt△OBM中,∠COB=60°,OB=33cos303MB︒==6.在△CDM与△OBM中3090CDM OBMMD MBCMD OMB︒︒⎧∠=∠=⎪=⎨⎪∠=∠=⎩,∴△CDM≌△OBM(ASA),∴S△CDM=S△OBM∴阴影部分的面积S阴影=S扇形BOC=2606360π⋅=6π(cm2).考点:1.切线的判定;2.扇形面积的计算.27. ⊙O直径AB=12cm,AM和BN是⊙O的切线,DC切⊙O于点E且交AM于点D,交BN于点C,设AD=x,BC=y.(1)求y与x之间的关系式;(2)x,y是关于t的一元二次方程2t2﹣30t+m=0的两个根,求x,y的值;(3)在(2)的条件下,求△COD的面积.【答案】(1)y =36x ;(2)312x y =⎧⎨=⎩或123x y =⎧⎨=⎩;(3)45. 【解析】【分析】(1)如图,作DF ⊥BN 交BC 于F ,根据切线长定理得,BF AD x CE CB y ====,则DC =DE +CE =x +y ,在Rt DFC 中根据勾股定理,就可以求出y 与x 之间的关系式.(2)由(1)求得36xy =,由根与系数的关系求得a 的值,通过解一元二次方程即可求得x ,y 的值.(3)如图,连接OD ,OE ,OC ,由AM 和BN 是⊙O 的切线,DC 切⊙O 于点E ,得到OE CD ⊥,AD DE =,BC CE =,推出S △AOD =S △ODE ,S △OBC =S △COE ,即可得出答案.【详解】(1)如图,作DF ⊥BN 交BC 于F ;∵AM 、BN 与⊙O 切于点定A 、B ,∴AB ⊥AM ,AB ⊥BN .又∵DF ⊥BN ,∴∠BAD =∠ABC =∠BFD =90°,∴四边形ABFD 是矩形,∴BF =AD =x ,DF =AB =12,∵BC =y ,∴FC =BC ﹣BF =y ﹣x ;∵DE 切⊙O 于E ,∴DE =DA =xCE =CB =y ,则DC =DE +CE =x +y ,在Rt △DFC 中,由勾股定理得:(x +y )2=(y ﹣x )2+122,整理为:y =36x,∴y 与x 的函数关系式是y =36x . (2)由(1)知xy =36, x ,y 是方程2x 2﹣30x +a =0的两个根, ∴根据韦达定理知,xy =2a ,即a =72; ∴原方程为x 2﹣15x +36=0,解得312x y =⎧⎨=⎩或123x y =⎧⎨=⎩. (3)如图,连接OD ,OE ,OC , ∵AD ,BC ,CD 是⊙O 的切线, ∴OE ⊥CD ,AD =DE ,BC =CE , ∴S △AOD =S △ODE ,S △OBC =S △COE ,∴S △COD =12×12×(3+12)×12=45.【点睛】本题考查了圆切线的综合问题,掌握切线长定理、勾股定理、一元二次方程的解法是解题的关键.。

2018-2019学年九年级上期末数学试卷(含答案解析)

2018-2019学年九年级上期末数学试卷(含答案解析)

2018-2019学年九年级上期末数学试卷(含答案解析)一、选择题(本大题共16个小题,1-10题每小题3分,11-16每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的图形是天气预报使用的图标,其中是中心对称图形的是()A.B.C.D.2.图中的两个三角形相似,且AB=2,A′B′=1,则△A′B′C′与△ABC的相似比是()A.1:2B.2:1C.3:1D.1:33.抛物线y=﹣2(x+3)2+1对称轴是()A.直线x=3B.直线x=1C.直线x=﹣1D.直线x=﹣34.在下图中,反比例函数的图象大致是()A.B.C.D.5.连续四次抛掷一枚硬币都是正面朝上,则“第五次抛掷正面朝上”是()A.必然事件B.不可能事件C.随机事件D.概率为1的事件6.如图,在正三角形网格中,菱形M经过旋转变换能得到菱形N,下列四个点中能作为旋转中心的是()A.点A B.点B C.点C D.点D7.已知A(﹣1,y1),B(2,y2)是抛物线y=﹣(x+2)2+3上的两点,则y1,y2的大小关系为()A.y1>y2B.y1<y2C.y1≥y2D.y1≤y8.如果圆O是△ABC的外接圆,AC=BC,那么下列四个选项中,直线l必过圆心O的是()A.l⊥AC B.l平分AB C.l平分∠C D.l平分9.当k=﹣2时,下列双曲线中,在每一个象限内,y随x增大而减小的是()A.y=﹣B.y=C.y=D.y=10.起重机的滑轮装置如图所示,已知滑轮半径是10cm,当物体向上提升3πcm时,滑轮的一条半径OA绕轴心旋转的角度为()A.108°B.60°C.54°D.27°11.(2分)将方程x2﹣6x+3=0左边配成完全平方式,得到的方程是()A.(x﹣3)2=﹣3B.(x﹣3)2=6C.(x﹣3)2=3D.(x﹣3)2=1212.(2分)如图,⊙O中,弦AB⊥AC,OE⊥AB,垂足为E,OF⊥AC,垂足为F,若AB+AC=10,则四边形OEAF的周长为()A.10.B.9C.8D.713.(2分)在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:根据以上数据,估算袋中的白棋子数量为()A.60枚B.50枚C.40枚D.30枚14.(2分)如图,已知△ABC在平面直角坐标系中,点A的坐标为(0,3),若以点B 为位似中心,在平面直角坐标系内画出△A′BC′,使得△A′BC′与△ABC位似,且相似比为2:1,则点C′的坐标为()A.(0,0)B.(0,1)C.(1,﹣1)D.(1,0)15.(2分)在正六边形ABCDEF的中,若BE=10,则这个正六边形外接圆半径是()A.B.5C.D.516.(2分)如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a=b B.a=2b C.a=2b D.a=4b二、填空题(本大题共3个小题,19小题4分,17、18每小题3分,共计10分.)17.若3是一元二次方程x2+bx+3=0的一个根,则常数b的值为.18.抛物线y=ax2经过点(3,5),则a=.19.(4分)参加一次足球联赛的每两队之间都进行一场比赛,共要比赛28场,设有x 个队参赛,根据题意列出的方程是.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤) 20.(9分)若点A(a﹣2,3)和点B(﹣1,2b+2)关于原点对称,求a,b的值.21.(9分)小明到眼镜店调查了近视眼镜镜片的度数和镜片焦距的关系,发现镜片的度数y(度)是镜片焦距x(厘米)(x>0)的反比例函数,调查数据如表:(1)求y与x的函数表达式;(2)若小明所戴近视眼镜镜片的度数为500度,求该镜片的焦距.22.(9分)在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别.(1)随机从箱子里取出1个球,则取出黄球的概率是多少?(2)随机从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示出所有可能出现的结果,并求两次取出的都是白色球的概率.23.(9分)已知关于x的一元二次方程x2﹣6x+k+3=0有两个不相等的实数根(1)求k的取值范围;(2)若k为大于3的整数,且该方程的根都是整数,求k的值.24.(10分)如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC延长线于F.求证:(1)△ADF∽△EDB;(2)CD2=DE•DF.25.(10分)如图,P是⊙O的切线FA上的点,点A为切点,连接OP,OP的垂直平分线FE交OA于点E,连接EP,过点P作PC⊥EP(1)已知OA=8,AP=4,求OE的长(2)求证:PC与⊙O相切.26.(12分)某造纸厂生产甲、乙两种生活用纸的相关信息如下表,其中x(吨)表示甲、乙两种生活用纸的月产量,请根据表中的信息解答后面的问题:(1)设该造纸厂每月生产甲、乙两种生活用纸的利润分别为y1元和y2元,分别求出y1和y2与x的函数关系式(注:利润=总收入﹣总支出);(2)若某月要生产甲、乙两种生活用纸共300吨,求该月生产甲、乙两种生活用纸各多少吨,获得的总利润最大?最大利润是多少?2018-2019学年九年级上期末数学试卷(含答案解析)参考答案与试题解析一、选择题(本大题共16个小题,1-10题每小题3分,11-16每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的图形是天气预报使用的图标,其中是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.【点评】本题考查了中心对称图形的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.图中的两个三角形相似,且AB=2,A′B′=1,则△A′B′C′与△ABC的相似比是()A.1:2B.2:1C.3:1D.1:3【分析】根据相似三角形相似比等于对应边的比解答.【解答】解:∵AB=2,A′B′=1,∴△A′B′C′与△ABC的相似比=A′B′:AB=1:2.故选:A.【点评】本题考查了相似三角形的性质,求两三角形的相似比时要注意两个相似三角形的先后顺序.3.抛物线y=﹣2(x+3)2+1对称轴是()A.直线x=3B.直线x=1C.直线x=﹣1D.直线x=﹣3【分析】根据抛物线的顶点式方程y=﹣2(x+3)2+1可以直接写出它的对称轴直线方程.【解答】解:∵抛物线y=﹣2(x+3)2+1的对称轴直线是该图象的顶点坐标的横坐标,∴抛物线的对称轴是直线x=﹣3;故选:D.【点评】本题考查了二次函数的性质.抛物线的顶点式方程为y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.4.在下图中,反比例函数的图象大致是()A.B.C.D.【分析】由于y=,比例系数4>0,根据反比例函数的性质,可得图象在第一和第三象限.【解答】解:∵k=4,可根据k>0,反比例函数图象在第一、三象限;∴在每个象限内,y随x的增大而减小.故选:D.【点评】本题考查了反比例函数图象的性质:①k<0,反比例函数图象在第二、四象限,在每个象限内,y随x的增大而增大;②k>0,反比例函数图象在第一、三象限,在每个象限内,y随x的增大而减小.5.连续四次抛掷一枚硬币都是正面朝上,则“第五次抛掷正面朝上”是()A.必然事件B.不可能事件C.随机事件D.概率为1的事件【分析】根据随机事件的定义即可判断.【解答】解:“第五次抛掷正面朝上”是随机事件.故选:C.【点评】本题考查了随机事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.如图,在正三角形网格中,菱形M经过旋转变换能得到菱形N,下列四个点中能作为旋转中心的是()A.点A B.点B C.点C D.点D【分析】直接利用旋转的性质结合等边三角形的性质进而分析得出答案【解答】解:如图所示:菱形M绕点D经过顺时针旋转60°变换能得到菱形N,故选:D.【点评】此题主要考查了旋转的性质以及等边三角形的性质,正确把握旋转的性质是解题关键.7.已知A(﹣1,y1),B(2,y2)是抛物线y=﹣(x+2)2+3上的两点,则y1,y2的大小关系为()A.y1>y2B.y1<y2C.y1≥y2D.y1≤y【分析】抛物线的对称轴为直线x=﹣2,根据二次函数的性质,抛物线开口向下,在对称轴的右侧y随x的增大而减小,即可判定.【解答】解:∵y=﹣(x+2)2+3,∴抛物线的对称轴为直线x=﹣2,抛物线开口向下,∴当x>﹣2,y随x的增大而减小,∵﹣2<﹣1<2,所以y1>y2.故选:A.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.8.如果圆O是△ABC的外接圆,AC=BC,那么下列四个选项中,直线l必过圆心O的是()A.l⊥AC B.l平分AB C.l平分∠C D.l平分【分析】根据等腰三角形三线合一的性质即可得出结论.【解答】解:∵圆O是△ABC的外接圆,∴点O在三边的垂直平分线上.∵AC=BC,∴当l平分∠C时,l也是AB边的垂直平分线.故选:C.【点评】本题考查的是三角形的外接圆与外心,熟知三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心是解答此题的关键.9.当k=﹣2时,下列双曲线中,在每一个象限内,y随x增大而减小的是()A.y=﹣B.y=C.y=D.y=【分析】利用反比例函数的性质可解.【解答】解:当k=﹣2时,y=﹣的图象双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第二、第四象限,在每一象限内y 随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第一、第三象限,在每一象限内y 随x的增大而减小;故选:D.【点评】本题考查了反比例函数的性质,熟练掌握反比例函数的性质是本题的关键.10.起重机的滑轮装置如图所示,已知滑轮半径是10cm,当物体向上提升3πcm时,滑轮的一条半径OA绕轴心旋转的角度为()A.108°B.60°C.54°D.27°【分析】本题实质上还是一道利用弧长公式计算的题.【解答】解:,解得n=54度.故选:C.【点评】本题是一道弧长公式的实际应用题,学生平时学习要紧密联系实际,学以致用,不可死学.11.(2分)将方程x2﹣6x+3=0左边配成完全平方式,得到的方程是()A.(x﹣3)2=﹣3B.(x﹣3)2=6C.(x﹣3)2=3D.(x﹣3)2=12【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:移项,得x2﹣6x=﹣3,等式两边同时加上一次项系数一半的平方(﹣3)2,得x2﹣6x+(﹣3)2=﹣3+(﹣3)2,即(x﹣3)2=6.故选:B.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.12.(2分)如图,⊙O中,弦AB⊥AC,OE⊥AB,垂足为E,OF⊥AC,垂足为F,若AB+AC=10,则四边形OEAF的周长为()A.10.B.9C.8D.7【分析】先判断出四边形OEAF的形状,再根据垂径定理得出AF+AE的长,进而可得出结论.【解答】解:∵AB⊥AC,OE⊥AB,OF⊥AC,∴四边形OEAF是矩形,∴四边形OEAF的周长=2(AF+AE)=2×(AB+AC)=10.故选:A.【点评】本题考查的是垂径定理,熟知垂直于弦的直径平分线是解答此题的关键.13.(2分)在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:根据以上数据,估算袋中的白棋子数量为()A.60枚B.50枚C.40枚D.30枚【分析】利用已知提供的数据求出黑棋子的比例,进而假设出白棋子个数,列出方程,解方程即可得出白棋子个数.【解答】解:根据试验提供的数据得出:黑棋子的比例为:(1+3+0+2+3+4+2+1+1+3)÷100=20%,所以白棋子比例为:1﹣20%=80%,设白棋子有x枚,由题意,得=80%,x=0.8(x+10),x=0.8x+8,0.2x=8,所以x=40,经检验,x=40是原方程的解,即袋中的白棋子数量约40颗.故选:C.【点评】此题主要考查了利用频率估计概率,根据试验次数得出黑棋子的比例,从而得出白棋子个数是解决问题的关键.14.(2分)如图,已知△ABC在平面直角坐标系中,点A的坐标为(0,3),若以点B 为位似中心,在平面直角坐标系内画出△A′BC′,使得△A′BC′与△ABC位似,且相似比为2:1,则点C′的坐标为()A.(0,0)B.(0,1)C.(1,﹣1)D.(1,0)【分析】利用位似图形的性质结合位似比得出△BA′C′,进而得出C′点坐标.【解答】解:如图所示:△A′BC′与△ABC位似,相似比为2:1,点C′的坐标为:(1,0).故选:D.【点评】此题主要考查了位似变换以及坐标与图形的性质,正确得出对应点位置是解题关键.15.(2分)在正六边形ABCDEF的中,若BE=10,则这个正六边形外接圆半径是()A.B.5C.D.5【分析】根据正六边形的性质解答即可.【解答】解:因为正六边形ABCDEF的中,BE=10,所以这个正六边形外接圆半径是,故选:B.【点评】此题考查了正六边形的性质.此题难度适中,注意掌握数形结合思想的应用.16.(2分)如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a=b B.a=2b C.a=2b D.a=4b【分析】根据对折表示出小长方形的长和宽,再根据相似多边形的对应边成比例列式计算即可得解.【解答】解:对折两次后的小长方形的长为b,宽为a,∵小长方形与原长方形相似,∴=,∴a=2b.故选:B.【点评】本题考查了相似多边形对应边成比例的性质,准确表示出小长方形的长和宽是解题的关键.二、填空题(本大题共3个小题,19小题4分,17、18每小题3分,共计10分.)17.若3是一元二次方程x2+bx+3=0的一个根,则常数b的值为﹣4.【分析】已知了一元二次方程的一个实数根,可将其代入该方程中,即可求出b的值.【解答】解:∵3是一元二次方程x2+bx+3=0的一个根,∴32+3b+3=0,∴b=﹣4.故答案为﹣4.【点评】此题主要考查了一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.将方程的根代入方程即可得到关于b的一元一次方程,解此一元一次方程即可.18.抛物线y=ax2经过点(3,5),则a=.【分析】此题考查了待定系数法,把点代入即可求得.【解答】解:把点(3,5)代入y=ax2中,得:9a=5,解得a=.【点评】本题考查了点与函数的关系,考查了用待定系数法,难度不大.19.(4分)参加一次足球联赛的每两队之间都进行一场比赛,共要比赛28场,设有x个队参赛,根据题意列出的方程是x(x﹣1)=28.【分析】设有x个队参赛,根据参加一次足球联赛的每两队之间都进行一场比赛,共要比赛28场,可列出方程.【解答】解:设有x个队参赛,x(x﹣1)=28.故答案为:x(x﹣1)=28.【点评】本题考查由实际问题抽象出一元二次方程,关键是根据总比赛场数做为等量关系列方程求解.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(9分)若点A(a﹣2,3)和点B(﹣1,2b+2)关于原点对称,求a,b的值.【分析】根据关于原点对称的点的坐标特点进行解答即可.【解答】解:∵点A(a﹣2,3)和点B(﹣1,2b+2)关于原点对称,∴a﹣2=﹣(﹣1),3=﹣(2b+2),解得a=3,b=﹣.【点评】本题考查的是关于原点对称的点的坐标特点,即关于原点对称的点的坐标,横、纵坐标均互为相反数.21.(9分)小明到眼镜店调查了近视眼镜镜片的度数和镜片焦距的关系,发现镜片的度数y(度)是镜片焦距x(厘米)(x>0)的反比例函数,调查数据如表:(1)求y与x的函数表达式;(2)若小明所戴近视眼镜镜片的度数为500度,求该镜片的焦距.【分析】(1)根据图表可以得到眼镜片的度数与焦距的积是一个常数,因而眼镜片度数与镜片焦距成反比例函数关系,即可求解;(2)在解析式中,令y=500,求出x的值即可.【解答】解:(1)根据题意得:与x之积恒为10000,则函数的解析式是y=;(2)令y=500,则500=,解得:x=20.即该镜片的焦距是20cm.【点评】考查了反比例函数的应用,正确理解反比例函数的特点,两个变量的乘积是常数,是解决本题的关键.22.(9分)在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别.(1)随机从箱子里取出1个球,则取出黄球的概率是多少?(2)随机从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示出所有可能出现的结果,并求两次取出的都是白色球的概率.【分析】(1)由在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次取出白颜色球的情况,再利用概率公式即可求得答案.【解答】解:(1)∵在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别,∴随机地从箱子里取出1个球,则取出黄球的概率是:;(2)画树状图得:由树形图可知所有可能的情况有9种,其中两次取出的都是白色球有1种,所以两次取出的都是白色球的概率=.【点评】此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题属于放回实验.23.(9分)已知关于x的一元二次方程x2﹣6x+k+3=0有两个不相等的实数根(1)求k的取值范围;(2)若k为大于3的整数,且该方程的根都是整数,求k的值.【分析】(1)根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于k 的不等式,求出不等式的解集即可得到k的范围;(2)找出k范围中的整数解确定出k的值,再将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值.【解答】解:(1)△=(﹣6)2﹣4(k+3)=36﹣4k﹣12=﹣4k+24,∵原方程有两个不相等的实数根,∴﹣4k+24>0.解得k<6;(2)∵k<6且k为大于3的整数,∴k=4或5.①当k=4时,方程x2﹣6x+7=0的根不是整数.∴k=4不符合题意;②当k=5时,方程x2﹣6x+8=0根为x1=2,x2=4均为整数.∴k=5符合题意.综上所述,k的值是5.【点评】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.也考查了一元二次方程的解法.24.(10分)如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC延长线于F.求证:(1)△ADF∽△EDB;(2)CD2=DE•DF.【分析】(1)根据题意可得∠B+∠A=90°,∠A+∠F=90°,则∠B=∠F,从而得出△ADF∽△EDB;(2)由(1)得∠B=∠F,再CD是Rt△ABC斜边AB上的中线,得出CD=DB,根据等边对等角得∠DCE=∠F,则可证明△CDE∽△FDC,从而得出=,化为乘积式即可CD2=DF•DE.【解答】证明:(1)在Rt△ABC中,∠B+∠A=90°∵DF⊥AB∴∠BDE=∠ADF=90°∴∠B=∠F,∴△ADF∽△EDB;(2)由(1)可知△ADF∽△EDB ∴∠B=∠F,∵CD是Rt△ABC斜边AB上的中线∴CD=AD=DB,∴∠DCE=∠B,∴∠DCE=∠F,∴△CDE∽△FDC,∴=,∴CD2=DF•DE.【点评】本题考查了相似三角形的判定和性质,以及直角三角形斜边上的中线等于斜边的一半.25.(10分)如图,P是⊙O的切线FA上的点,点A为切点,连接OP,OP的垂直平分线FE交OA于点E,连接EP,过点P作PC⊥EP(1)已知OA=8,AP=4,求OE的长(2)求证:PC与⊙O相切.【分析】(1)由AP是⊙O的切线,得到∠OAP=90°,根据勾股定理列方程即可得到结论;(2)过O作OG⊥PC于G,根据余角的性质得到∠OPE+∠OPC=90°=∠AOP+∠OPA,等量代换得到∠OPC=∠OPA,推出△AOP≌△GOP,根据全等三角形的性质得到OG=OA,即可得到结论.【解答】(1)解:∵AP是⊙O的切线,∴PE2﹣AE2=AP2,∵OA=8,AP=4,∵OP的垂直平分线FE交OA于点E,∴OE=PE,∴OE2﹣(8﹣OE)2=42,∴OE=5;(2)证明:过O作OG⊥PC于G,∵CE垂直平分OP,∴∠AOP=∠OPE,∴∠OPE+∠OPC=90°=∠AOP+∠OPA,∴∠OPC=∠OPA,在△AOP与△POG中,,∴△AOP≌△GOP(AAS),∴OG=OA,∴PC与⊙O相切.【点评】本题考查了切线的判定和性质.全等三角形的判定和性质,线段垂直平分线的性质,正确的作出辅助线构造全等三角形的是解题的关键.26.(12分)某造纸厂生产甲、乙两种生活用纸的相关信息如下表,其中x(吨)表示甲、乙两种生活用纸的月产量,请根据表中的信息解答后面的问题:(1)设该造纸厂每月生产甲、乙两种生活用纸的利润分别为y1元和y2元,分别求出y1和y2与x的函数关系式(注:利润=总收入﹣总支出);(2)若某月要生产甲、乙两种生活用纸共300吨,求该月生产甲、乙两种生活用纸各多少吨,获得的总利润最大?最大利润是多少?【分析】(1)根据:总利润=每吨净利润﹣每月设备管理、维护费,分别列出函数解析式即可;(2)设该月生产乙种生活用纸m吨,则生产甲种生活用纸(300﹣m)吨,总利润为W 元,由(1)中函数关系式将甲、乙两种生活用纸的利润y1+y2列出W关于m的函数关系式,配方可得函数的最值情况.【解答】解:(1)依题意得:y1=(4800﹣2200﹣200)x﹣20000=2400x﹣20000y2=(7000﹣10x﹣1600﹣400)x=﹣10x2+5000x;(2)设该月生产乙种生活用纸m吨,则生产甲种生活用纸(300﹣m)吨,总利润为W 元,依题意得:W=2400(300﹣m)﹣20000﹣10m2+5000m=720000﹣2400 m﹣20000﹣10 m2+5000m=﹣10 m2+2600 m+700000∵W=﹣10(m﹣130)2+869000.∵﹣10<0∴当m=130时,W最大=869000即生产甲、乙生活用纸分别为170吨和130吨时总利润最大,最大利润为869000元.【点评】本题主要考查二次函数的实际应用能力,弄清题意抓住相等关系列出函数关系式是解题的关键.。

甘肃省庆阳市九年级上学期期末数学试卷

甘肃省庆阳市九年级上学期期末数学试卷

甘肃省庆阳市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)如图,已知△ABC与△A′B′C′关于点O成中心对称图形,则下列判断不正确的是()A . ∠ABC=∠A′B′C′B . ∠BOC=∠B′A′C′C . AB=A′B′D . OA=OA′2. (2分)如图,把抛物线y=x2沿直线y=x平移个单位后,其顶点在直线上的A处,则平移后的抛物线解析式是()A . y=(x+1)2-1B . y=(x+1)2+1C . y=(x-1)2+1D . y=(x-1)2-13. (2分)如图,AB、CD都是⊙O的弦,且AB⊥CD.若∠CDB=62°,则∠ACD的大小为()A . 28°B . 31°C . 38°D . 62°4. (2分)已知点P(﹣2,3),则点P关于原点的对称点的坐标是()A . (3,﹣2)B . (2,﹣3)C . (﹣3,2)D . (﹣2,﹣3)5. (2分) (2017八下·宜兴期中) “a是实数,a2≥0”这一事件是()A . 必然事件B . 不确定事件C . 不可能事件D . 随机事件6. (2分)下列图形中,旋转120°后能与原图形重合的是()A . 等边三角形B . 正方形C . 正五边形D . 正八边形7. (2分)如图所示的四个函数的图象分别对应的函数是① ;② ;③ ;④,则a, b, c, d的大小关系为()A .B .C .D .8. (2分)已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A . m2+2mn+n2=0B . m2﹣2mn+n2=0C . m2+2mn﹣n2=0D . m2﹣2mn﹣n2=09. (2分)(2011·福州) 如图是我们学过的反比例函数图象,它的函数解析式可能是()A . y=x2B .C .D .10. (2分)(2017·西秀模拟) 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc>0;②b<a+c;③4ac﹣b2>0;④2a+b=0其中正确的结论有()A . 1个B . 2个C . 3个D . 4个11. (2分) (2018七上·从化期末) 已知整数a1 , a2 , a3 ,a4……满足下列条件:a1=0,a2=-|a1+1| a3=-|a2+2|,a4=-|a3+3|……依次类推,则a2017的值为()A . -1009B . -1008C . -2017D . -201612. (2分)小红家有一个小口瓶(如图所示),她很想知道它的内径是多少?但是尺子不能伸到里边直接测,于是她拿来了两根长度相同的细木条,并且把两根细木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB的长,就可以知道玻璃瓶的内径是多少,那么△OAB≌△OCD理由是()A . 边角边B . 角边角C . 边边边D . 角角边二、填空题 (共6题;共7分)13. (1分)已知y是x的反比例函数,当x>0时,y随x的增大而减小.请写出一个满足以上条件的函数表达式________ .14. (1分)(2012·丽水) 半径分别为3cm和4cm的两圆内切,这两圆的圆心距为________ cm.15. (1分)(2018·大庆模拟) 在Rt△ABC中,∠C=90°,AC=BC=1,将其放入平面直角坐标系,使A点与原点重合,AB在x轴上,△ABC沿x轴顺时针无滑动的滚动,点A再次落在x轴时停止滚动,则点A经过的路线与x 轴围成图形的面积为________.16. (1分) (2017八下·海珠期末) 在△ABC中,AB=5cm,AC=12cm,BC=13cm,那么△ABC的面积是________cm2 .17. (2分) (2016八上·嵊州期末) 如图,在直角坐标系中,点A的坐标是(0,2),点B是x轴上的一个动点,始终保持△ABC是等边三角形(点A、B、C按逆时针排列),当点B运动到原点O处时,则点C的坐标是________.随着点B在x轴上移动,点C也随之移动,则点C移动所得图象的解析式是________.18. (1分) (2017八下·椒江期末) 如图1,在□ABCD中,设∠ABC=α,□ABCD的面积为s,s与α之间的关系如图2所示,则m=________.三、解答题 (共8题;共100分)19. (10分)如图,在Rt△ABC中,∠ACB=90°,AC、BC的长为方程x2﹣14x+a=0的两根,且AC﹣BC=2,D 为AB的中点.(1)求a的值.(2)动点P从点A出发,以每秒2个单位的速度,沿A→D→C的路线向点C运动;动点Q从点B出发,以每秒3个单位的速度,沿B→C的路线向点C运动,且点Q每运动1秒,就停止2秒,然后再运动1秒…若点P、Q同时出发,当其中有一点到达终点时整个运动随之结束.设运动时间为t秒.①在整个运动过程中,设△PCQ的面积为S,试求S与t之间的函数关系式;并指出自变量t的取值范围;②是否存在这样的t,使得△PCQ为直角三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.20. (10分)(2018·长清模拟) 如图(1)如图,在矩形ABCD中.点O在边AB上,∠AOC=∠BOD.求证:AO=OB.(2)如图,AB是的直径,PA与相切于点A,OP与相交于点C,连接CB,∠OPA=40°,求∠ABC的度数.21. (15分)(2016·龙东) 如图,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)(﹣2,1),先将△ABC沿一确定方向平移得到△A1B1C1 ,点B的对应点B1的坐标是(1,2),再将△A1B1C1绕原点O 顺时针旋转90°得到△A2B2C2 ,点A1的对应点为点A2 .(1)画出△A1B1C1;(2)画出△A2B2C2;(3)求出在这两次变换过程中,点A经过点A1到达A2的路径总长.22. (10分) (2018九上·华安期末) 有A、B两组卡片共5张,A组的三张分别写有数字2,4,6,B组的两张分别写有3,5.它们除了数字外没有任何区别,(1)随机从A组抽取一张,求抽到数字为2的概率;(2)随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?23. (15分)(2018·长沙) 如图,在平面直角坐标系xOy中,函数y= (m为常数,m>1,x>0)的图象经过点P(m,1)和Q(1,m),直线PQ与x轴,y轴分别交于C,D两点,点M(x,y)是该函数图象上的一个动点,过点M分别作x轴和y轴的垂线,垂足分别为A,B.(1)求∠OCD的度数;(2)当m=3,1<x<3时,存在点M使得△OPM∽△OCP,求此时点M的坐标;(3)当m=5时,矩形OAMB与△OPQ的重叠部分的面积能否等于4.1?请说明你的理由.24. (15分) (2016九上·乐昌期中) 如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.25. (10分) (2016九上·博白期中) 某宾馆有客房200间供游客居住,当每间客房的定价为每天180元时,客房恰好全部住满;如果每间客房每天的定价每增加10元,就会减少4间客房出租.设每间客房每天的定价增加x 元,宾馆出租的客房为y间.求:(1) y关于x的函数关系式;(2)如果某天宾馆客房收入38400元,那么这天每间客房的价格是多少元?26. (15分)(2016·呼和浩特模拟) 如图,在平面直角坐标系中,开口向下的抛物线y=ax2+bx+c交y轴于A点,交x轴于B、C两点(点B在点C的左侧).已知A点坐标为(0,﹣5),BC=4,抛物线过点(2,3).(1)求此抛物线的解析式;(2)记抛物线的顶点为M,求△ACM的面积;(3)在抛物线上是否存在点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共7分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共100分)19-1、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-1、26-2、。

甘肃省庆阳市九年级上学期数学期末考试试卷

甘肃省庆阳市九年级上学期数学期末考试试卷

甘肃省庆阳市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·北京模拟) 如果a+b=2,那么代数式的值是()A .B . 1C .D . 22. (2分)关于x的一元二次方程x2﹣4x+k=0有两个相等的实数根,则k的值是()A . 2B . -2C . 4D . -43. (2分)(2017·娄底模拟) 已知在Rt△ABC中,∠C=90°,sinA= ,则tanB的值为()A .B .C .D .4. (2分)某地近十天每天平均气温(℃)统计如下:4,3,2,4,4,7,10,11,10,9.关于这10个数据下列说法不正确的是()A . 众数是4B . 中位数是6C . 平均数是6.4D . 极差是95. (2分)(2016·自贡) 圆锥的底面半径为4cm,高为5cm,则它的表面积为()A . 12πcm2B . 26πcm2C . πcm2D . (4 +16)πcm26. (2分) (2019九上·江山期中) 已知△ABC的边BC= ,且△ABC内接于半径为2的⊙O,则∠A的度数是()A . 60°B . 120°C . 60°或120°D . 90°7. (2分) (2017九上·怀柔期末) 已知△ABC∽△A′B′C′,如果它们的相似比为3:2,那么它们的面积比应是()A . 3:2B . 2:3C . 4:9D . 9:48. (2分)有一圆内接正八边形ABCDEFGH ,若△ADE的面积为10,则正八边形ABCDEFGH的面积为()A . 40B . 50C . 60D . 809. (2分)正方形网格中,∠AOB如图放置,则cos∠AOB的值为()A .B .C .D .10. (2分) (2018九上·海安月考) 如图,抛物线()的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示,下列结论:① ;②方程的两个根是,;③ ;④当时,的取值范围是;⑤当时,随增大而增大.其中结论正确的个数是()A . 5个B . 4个C . 3个D . 2个二、填空题 (共8题;共8分)11. (1分) (2017九上·东丽期末) 已知一元二次方程的两根为、,则________.12. (1分)(2019·光明模拟) 如图,△ABC中,∠C=90°,AC=6,AB=10,D为BC边的中点,以AD上一点O为圆心的⊙O和AB、BC均相切,则OD的长为________.13. (1分)如图,在△ABC中,∠C=90°,AB=5,BC=4,点P在边AB上,若△APC为以AC为腰的等腰三角形,则tan∠BCP=________.14. (1分) (2020九下·中卫月考) 如图,将半径为2 cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB=________.15. (1分) (2020九上·醴陵期末) 抛物线的顶点坐标是________.16. (1分)(2017·宝山模拟) 如果点A(1,2)和点B(3,2)都在抛物线y=ax2+bx+c的图像上,那么抛物线y=ax2+bx+c的对称轴是直线________.17. (1分)(2019·梅列模拟) 如图,在菱形ABCD中,∠ABC=60°,AB=5,点E是AD边上的动点,过点B作直线CE的垂线,垂足为F ,当点E从点A运动到点D时,点F的运动路径长为________.18. (1分) (2017·哈尔滨模拟) 已知正方形ABCD中,点E在直线AB上,且AE=AC,则∠BCE的度数=________.三、解答题 (共10题;共96分)19. (5分) (2016七上·临洮期中) 若a,b互为相反数,c,d互为倒数,m的绝对值是1,n是有理数且既不是正数也不是负数,求20161﹣(a+b)+m2﹣(cd)2016+n(a+b+c+d)的值.20. (10分) (2016九上·姜堰期末) 计算题(1)计算:(3﹣π)0+(﹣)﹣2+ ﹣2|sin45°﹣1|;(2)先化简,再求值:,其中实数m使关于x的一元二次方程x2﹣4x﹣m=0有两个相等的实数根.21. (10分)(2018·阜宁模拟) 甲、乙两人进行射击训练,两人分别射击12次,下表分别统计了两人的射击成绩.成绩(环)78910甲(次数)1551乙(次数)2361经计算甲射击的平均成绩,方差 .(1)求乙射击的平均成绩;(2)你认为甲、乙两人成绩哪个更稳定,并说明理由.22. (11分) (2019九上·如东月考) 在平面直角坐标系xOy中,对于点P(x,y),如果点Q(x,y′)的纵坐标满足y′=,那么称点Q为点P的“关联点”.(1)请直接写出点(3,5)的“关联点”的坐标________;(2)如果点P在函数y=x﹣2的图象上,其“关联点”Q与点P重合,求点P的坐标;(3)如果点M(m,n)的“关联点”N在函数y=2x2的图象上,当0≤m≤2时,求线段MN的最大值.23. (10分)(2017·东湖模拟) 已知I是△ABC的内心,AI延长线交△ABC外接圆于D,连BD.(1)在图1中,求证:DB=DI;(2)如图2,若AB为直径,且OI⊥AD于I点,DE切圆于D点,求sin∠ADE的值.24. (5分)如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,求树高AB多少米.(结果保留根号)25. (5分)甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑摩托车,甲到达B地停留半小时后返回A地.如果是他们离A地的距离y(千米)与时间x(时)之间的函数关系图象.(1)求甲从B地返回A地的过程中,y与x之间的函数关系式,并写出自变量x的取值范围;(2)若乙出发后2小时和甲相遇,求乙从A地到B地用了多长时间?26. (10分)(2018·柘城模拟) 如图,在平面直角坐标系中,已知矩形ABCD的三个顶点、、抛物线过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动速度均为每秒1个单位长度,运动时间为t秒过点P作交AC于点E.过点E作于点F,交抛物线于点当t为何值时,线段EG最长?连接在点P、Q运动的过程中,判断有几个时刻使得是等腰三角形?请直接写出相应的t值.27. (15分) (2015九上·揭西期末) 如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长交AD于E,交BA的延长线于点F.(1)求证:△APD≌△CPD;(2)求证:△APE∽△FPA;(3)猜想:线段PC,PE,PF之间存在什么关系?并说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共96分)19-1、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、25-1、26-1、26-2、27-1、27-2、27-3、。

2018-2019学年甘肃省庆阳市九年级(上)期末数学试卷

2018-2019学年甘肃省庆阳市九年级(上)期末数学试卷
2018-2019 学年甘肃省庆阳市九年级(上)期末数学试卷
一、选择题:本大题共 10 个小题,每小题 3 分,共 30 分,每小题只有一个正确选项将此 选项的字母填涂在答题卡上
1.(3 分)一元二次方程 3x2+2x+1=0 的二次项系数是( )
A.3
B.2
C.1
2.(3 分)抛物线 y=3(x﹣1)2+1 的顶点坐标是( )
22.(8 分)如图,抛物线 y1=a(x﹣1)2+4 与 x 轴交于 A(﹣1,0). (1)求该抛物线所表示的二次函数的表达式; (2)一次函数 y2=x+1 的图象与抛物线相交于 A,C 两点,过点 C 作 CB 垂直于 x 轴于点 B,
求△ABC 的面积.
23.(10 分)甲、乙两人进行摸牌游戏现有三张形状大小完全相同的牌,正面分别标有数字
A.15°
B.30°
C.45°
D.60°
9.(3 分)如图,在等边△ABC 中,D 是边 AC 上一点,连接 BD,将△BCD 绕点 B 逆时针
第1页(共7页)
旋转 60°,得到△BAE,连接 ED,若 BC=10,BD=9,则△ADE 的周长为( )
A.19
B.20
C.27
D.30
10.(3 分)已知二次函数 y=﹣x2+3x+1,现有下列结论:①抛物线的开口向下;②其图象

12.(4 分)二次函数 y=x2﹣4x+2 的最小值为

13.(4 分)有一个边长为 2cm 的正六边形,如果要剪一张圆形纸片完全盖住这个图形,那
么这张圆形纸片的最小半径为
cm.
14.(4 分)如图,点 A、B、C、D 都在方格纸的格点上,若△AOB 绕点 O 按逆时针方向

2018-2019学年度九年级(上)期末数学试卷(含答案)

2018-2019学年度九年级(上)期末数学试卷(含答案)

2018—2019学年度九年级第一学期期末教学质量检测数 学 试 卷考试时间:120分钟;满分:120分.选择题答题卡一、选择题(本大题共16个小题,1—10小题,每小题3分;11—16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列方程是一元二次方程的是( ) A .x 2﹣y =1 B .x 2+2x ﹣3=0 C .x 2+x1=3 D .x ﹣5y =6 2.方程x 2-2x -3=0经过配方法化为(x +a )2=b 的形式,正确的是( ) A .()412=-xB .()412=+xC .()1612=-xD .()1612=+x3.有两个事件,事件A :367人中至少有2人生日相同;事件B :抛掷一枚均匀的骰子,朝上的面的点数为偶数.下列说法正确的是( ) A .事件A 、B 都是随机事件 B .事件A 、B 都是必然事件C .事件A 是随机事件,事件B 是必然事件D .事件A 是必然事件,事件B 是随机事件4.如图,有一电路AB 是由图示的开关控制,闭合a ,b ,c ,d ,e 五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是( )A .15B .25C .35D .455.下列关系式中,属于二次函数的是(x 是自变量)( ) A .y =31x 2B .y =12-xC .y =21xD .y =ax 2+bx +c6.下列关于二次函数y =-12x 2图象的说法:①图象是一条抛物线;②开口向下;③对称轴是y 轴;④顶点坐标为(0,0).其中正确的有( )A .1个B .2个C .3个D .4个7.二次函数图象上部分点的坐标对应值列表如下:则该函数图象的对称轴是( )A .直线x =-3B .直线x =-2C .直线x =-1D .直线x =08.已知⊙O 的直径是10,圆心O 到直线l 的距离是5,则直线l 和⊙O的位置关系是( )A .相离B .相交C .相切D .外切9.已知:如图,AB 是⊙O 的直径,C ,D 是BE ︵的三等分点,∠AOE =60°,则∠COE 等于 ( )A .40°B .60°C .80°D .120°10.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r ,扇形的圆心角等于120°,则围成的圆锥模型的高为( )A .r B .C D .3r 11.已知反比例函数y =x6-,下列结论中不正确的是() A .图象必经过点(-3,2) B .图象位于第二、四象限 C .若x <-2,则0<y <3D .在每一个象限内,y 随x 值的增大而减小 12.如图所示,反比例函数y =xk(k ≠0,x >0)的图象经过矩形OABC 的对角线AC 的中点D .若矩形OABC 的面积为8,则k 的值为( ) A .2 B .22 C .23 D .25AOBEDC (9题图) (10题图)13.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图,有下列5个结论:①abc <0;②3a+c>0;③4a +2b +c >0;④2a+b =0;⑤b 2>4ac .其中正确的结论有( )A .1个B .2个C .3个D .4个14.如图,如果正方形ABCD 旋转后能与正方形CDEF 重合,那么图形所在平面内,可作为旋转中心的点的个数是( )A .1个B .2个C .3个D .4个(13题图) 15.如图所示,长为8cm ,宽为6cm 的矩形中,截去一个矩形(图中阴影部分),如果剩下矩形与原矩形相似,那么剩下矩形的面积是( )A .28cm 2B .27cm 2C .21cm 2D .20cm 216.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,AC =43,BC 的中点为D .将△ABC 绕点C 顺时针旋转任意一个角度得到△FEC ,EF 的中点为G ,连接DG .在旋转过程中,DG 的最大值是 ( )A .4 3B .6C .2+2 3D .8二、填空题(本大题共有3个小题,共12分,17~18小题各3分,19小题有2个空,每空3分.把答案写在题中横线上)17.关于x 的一元二次方程ax 2+bx +1=0有两个相等的实数根,写出一组满足条件的实数a ,b 的值:a = ,b = .18.如图,已知⊙P 的半径为2,圆心P 在抛物线y =21x 2﹣1上运动,当⊙P 与x 轴相切时,圆心P 的坐标为 .19.如图,P A ,PB 分别切⊙O 于A ,B ,并与⊙O 的切线,分别相交于C ,D ,已知△PCD 的周长等于8cm ,则P A =__________ cm ;已知⊙O 的直径是6cm ,PO =______cm .三、解答题(本大题有7小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分10分) 选择适当的方法解下列方程(1)(3x -1)2=(x -1)2(2)3x (x -1)=2-2x21.(本小题满分8分)定义新运算:对于任意实数m ,n 都有m ☆n =m 2n +n ,等式右边是常用的加法、乘法及乘方运算.例如:-3☆2=(-3)2×2+2=20.根据以上知识解决问题:若2☆a 的值小于0,请判断方程:2x 2-bx +a =0的根的情况.22.(本小题满分9分)在围棋盒中有x 颗黑色棋子和y 颗白色棋子,从盒中随机取出一个棋子,它是黑色棋子的概率是83. (1)试写出y 与x 的函数解析式;(2)若往盒子中再放入10颗黑色棋子,则取得黑色棋子的概率变为21,求x 与y 的值.ABCD E F(14题图)(15题图)ABCD EF G(16题图) (18题图)(19题图)(22题图)(26题图)(23题图)ADE23.(本小题满分9分)如图,一次函数y =kx +b 与反比例函数y =xm(x <0)的图象相交于点A 、点B ,与x 轴交于点C ,其中点A (-1,3)和点B (-3,n ).(1)填空:m =_________,n =__________. (2)求一次函数的解析式和△AOB 的面积. (3)根据图象回答:当x 为何值时,kx +b ≥xm(请直接写出答案)____________24.(本小题满分9分)如图,△BAD 是由△BEC 在平面内绕点B 旋转60°而得,且AB ⊥BC ,BE =CE ,连接DE . (1)求证:△BDE ≌△BCE ;(2)试判断四边形ABED 的形状,并说明理由.25.(本小题满分10分)如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠EAC =∠D =60°. (1)求∠ABC 的度数; (2)求证:AE 是⊙O 的切线; (3)当BC =4时,求劣弧AC 的长.26.(本小题满分11分) 如图,已知抛物线y =41x 2+bx +4与x 轴相交于A 、B 两点,与y 轴相交于点C ,若已知A 点的坐标为A (-2,0). (1)求抛物线的解析式及它的对称轴;(2)求点C 的坐标,连接AC 、BC 并求线段BC 所在直线的解析式;(3)在抛物线的对称轴上是否存在点Q ,使△ACQ 为等腰三角形?若存在,求出符合条件的Q 点坐标;若不存在,请说明理由.ABCDOE(25题图)18—19学年度九年级(上)期末考试数学答案二、填空题17.1 2; 18.(6,2)或(﹣6,2); 19.4,5. 三、解答题20.解:∵2☆a 的值小于0,∴22·a +a =5a <0.解得a <0. ………………………3分在方程2x 2-bx +a =0中,Δ=(-b )2-8a ≥-8a >0,………………………6分 ∴方程2x 2-bx +a =0有两个不相等的实数根.………………………………8分 21.解:(1)由题意得x x +y =38,得y =53x …………………………………………4分(2)由题意得x +10x +y +10=12,结合y =53x ,联立方程组可求得⎩⎪⎨⎪⎧x =15,y =25………9分22.解:(1)∵反比例函数y =xm过点A (﹣1,3),B (﹣3,n ) ∴m =3×(﹣1)=﹣3,m =﹣3n∴n =1…………………………………………………………………………………2分 故答案为﹣3,1(2)设一次函数解析式y =kx +b ,且过(﹣1,3),B (﹣3,1)∴⎩⎨⎧+-=+-=b k b k 31,3解得:⎩⎨⎧==41b k ∴解析式y =x +4………………………………………………………………………5分 ∵一次函数图象与x 轴交点为C∴0=x +4 ∴x =﹣4 ∴C (﹣4,0) ∵S △AOB =S △AOC ﹣S △BOC ∴S △AOB =21×4×3﹣21×4×1=4…………………………………………………………7分 (3)∵kx +b ≥xm∴一次函数图象在反比例函数图象上方 ∴﹣3≤x ≤﹣1…………………………………………………………………………9分 故答案为﹣3≤x ≤﹣123.解:(1)证明:∵△BAD 是由△BEC 在平面内绕点B 旋转60°而得,∴DB =CB ,∠ABD =∠EBC ,∠ABE =60°. ……………………………………2分 ∵AB ⊥BC ,∴∠ABC =90°.∴∠DBE =∠CBE =30°. ……………………………3分在△BDE 和△BCE 中,⎩⎪⎨⎪⎧DB =CB ,∠DBE =∠CBE ,BE =BE ,∴△BDE ≌△BCE (SAS ).……………………………………………………………5分 (2)四边形ABED 为菱形.……………………………………………………………6分 理由如下:由(1)得△BDE ≌△BCE ,∵△BAD 是由△BEC 旋转而得,∴△BAD ≌△BE C. ∴BA =BE ,AD =EC =E D. 又∵BE =CE ,∴BA =BE =AD =E D.∴四边形ABED 为菱形.……………………………………………………………9分 24.25.解:(1)∵∠ABC 与∠D 都是弧AC 所对的圆周角,∴∠B =∠D =60°. ……2分(2)∵AB 是⊙O 的直径,∴∠ACB =90°.又∠B =60°∴∠BAC =30°. ∴∠BAE =∠BAC +∠EAC =30°+60°=90°,即BA ⊥AE .∴AE 是⊙O 的切线. ……………………………………………6分 (3)如图,连接OC ,∵∠ABC =60°,∴∠AOC =120°.∴劣弧AC 的长为1804120⋅π=38π.……………………………10分 26.解:(1)因为抛物线过点A ,所以将A (-2,0)代入 y =41-x 2+bx +4得:0=41-×(-2)2+b ×(-2)+4,解得b =23,所以,抛物线解析式为:y =-41x 2+23x +4,……………………………………2分由上得:y =-41 (x -3)2+425,对称轴是x =3;………4分 (2)C (0,4);………………………………………5分 由A 点坐标和对称轴可求出B 点坐标为:B (8,0) 由B 、C 两点的坐标可求出:y =−21x +4.……………7分 (3)Q 1(3,0),Q 2(3,4+11),Q 3(3,4-11).………………………11分 如求Q 2,由A ,C 两点的坐标,可求出AC =25, (由于5>2,25>4)以C 为圆心,AC 为半径画弧交对称轴于E ,过C 点 作CD ⊥对称轴于点D ,CE = AC =25,CD =3, 则DE =11,所以,E 点的坐标为(3,4+11)。

庆阳市九年级上学期期末数学试卷

庆阳市九年级上学期期末数学试卷

庆阳市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)已知如图①所示的四张牌,若将其中一张牌旋转180°后得到图②,则旋转的牌是()A .B .C .D .2. (2分)把抛物线y=5x2向上平移2个单位后,所得抛物线的解析式是()A . y=-5x2-2B . y=-5x2+2C . y=5x2-2D . y=5x2+23. (2分)(2018·资中模拟) 在半径等于5cm的圆内有长为5 cm的弦,则此弦所对的圆周角为()A . 120°B . 30°或120°C . 60°D . 60°或120°4. (2分)已知点A(a,1)与点A′(﹣5,b)是关于原点O的对称点,则a+b的值为()A . 1B . 5C . 6D . 45. (2分) (2016九上·微山期中) 下列事件属于必然事件的是()A . 明天太阳从东方升起B . 购买2张彩票,其中1张中奖C . 随机掷一枚骰子,朝上一面上的数字大于6D . 投篮10次,一次都没投中6. (2分)一个平行四边形绕着对角线的交点旋转90°能够与本身重合,则该平行四边形为()A . 矩形B . 菱形C . 正方形D . 无法确定7. (2分)小明从如图所示的二次函数y=ax2+bx+c图象中,观察得出了下面的五条信息:①a<0;②c=0;③函数的最小值为-3;④当x<0时,y>0;⑤当0<x1<x2<2时,y1>y2 .A . 2B . 3C . 4D . 58. (2分)如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A . ∠B=∠CB . AD⊥BCC . AD平分∠BACD . AB=2BD9. (2分)如图,反比例函数y= 的图象可能是()A .B .C .D .10. (2分)(2011·玉林) 已知二次函数y=ax2的图象开口向上,则直线y=ax﹣1经过的象限是()A . 第一、二、三象限B . 第二、三、四象限C . 第一、二、四象限D . 第一、三、四象限11. (2分)如图,Rt△APC的顶点A,P在反比例函数y=的图象上,已知P的坐标为(1,1),tanA=(n≥2的自然数);当n=2,3,4…2010时,A的横坐标相应为a2 , a3 , a4 ,…,a2010 ,则=()A .B . 2021054C . 2022060D .12. (2分)小明不慎将一个三角形玻璃摔碎成如图所示的四块,现要到玻璃店配一个与原来一样大小的三角形玻璃,你认为应带去的一块是()A . 第1块B . 第2块C . 第3块D . 第4块二、填空题 (共6题;共7分)13. (1分) (2020九上·鞍山期末) 如图,在平面直角坐标系中,菱形OABC的边OA在x轴的负半轴上,反比例函数y=(x<0)的图象经过对角线OB的中点D和顶点C.若菱形OABC的面积为6,则k的值等于________.14. (1分)已知⊙O1与⊙O2的半径r1=2、r2=4,若⊙O1与⊙O2的圆心距d=5.则⊙O1与⊙O2的位置关系是________ .15. (1分) (2019九上·台州期中) 如图所示,用一张斜边长为25的红色直角三角形纸片,一张斜边长为50的蓝色直角三角形纸片,一张黄色的正方形纸片,恰好能拼成一个直角三角形,则红、蓝两张三角形纸片的面积之和是________.16. (1分)已知△ABC的三边长分别是6cm、8cm、10cm,则△ABC的面积是________.17. (2分) (2016七下·潮南期末) 已知,若B(﹣2,0),A为象限内一点,且点A坐标是二元一次方程x+y=0的一组解,请你写出一个满足条件的点A坐标________(写出一个即可),此时△ABO的面积为________.18. (1分)已知:▱ABCD的周长为60cm,对角线AC、BD相交于点O,△AOB的周长比△DOA的周长长5cm,则这个平行四边形各边的长为________三、解答题 (共8题;共78分)19. (10分) (2017九上·官渡期末) 解下列方程:(1)x2﹣2x﹣5=0;(2)(x﹣3)2+2(x﹣3)=0.20. (5分) (2016九上·柘城期中) 如图,在⊙O中,AB为直径,C为⊙O上一点,过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=27°,求∠P的大小.21. (2分)如图,在正方形网格中,每个小正方形的边长都为1(1)如图1,两个半径为1的圆相交,则阴影部分的面积为________;(2)图2是以(1)中的图形为基本图形,通过一组图形变换得到的,这组变换可以是________.(写出一组即可)(填入序号).①轴对称变换;②平移变换;③旋转变换.22. (10分) (2016九上·仙游期末) 一个不透明的袋中装有5个黄球,13个黑球和22个红球,这些球除颜色外其他都相同.(1)求从袋中摸出一个球是黄球的概率.(2)现在从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率不小于,问:至少取出多少个黑球?23. (15分)如图,一次函数y=kx+b与反比例函数的图象交于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的表达式;(2)直线与y轴交于点C,连接OA、OC,计算△AOB的面积;(3)根据图象直接写出:当x取何值时,反比例函数的值大于一次函数的值.24. (6分)(2018·镇江模拟) 如果过抛物线与y的交点作y轴的垂线与该抛物线有另一个交点,并且这两点与该抛物线的顶点构成正三角形,那么我们称这个抛物线为正三角抛物线.(1)抛物线 ________正三角抛物线;(填“是”或“不是”)(2)如图,已知二次函数(m > 0)的图像是正三角抛物线,它与x轴交于A、B两点(点A在点B的左侧),点E在y轴上,当∠AEB=2∠ABE时,求出点E的坐标.25. (15分) (2017九上·合肥开学考) 某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1)若苗圃园的面积为72平方米,求x;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.26. (15分) (2018·湛江模拟) 如图,在平面直角坐标系中,直线y=x+2与坐标轴交于A、B两点,点A在x轴上,点B在y轴上,C点的坐标为(1,0),抛物线y=ax2+bx+c经过点A、B、C.(1)求该抛物线的解析式;(2)根据图象直接写出不等式ax2+(b﹣1)x+c>2的解集;(3)点P是抛物线上一动点,且在直线AB上方,过点P作AB的垂线段,垂足为Q点.当PQ= 时,求P 点坐标.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共7分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共78分)19-1、19-2、20-1、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、。

甘肃省庆阳市九年级上学期数学期末考试试卷

甘肃省庆阳市九年级上学期数学期末考试试卷

甘肃省庆阳市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018九上·新野期中) 关于x的方程ax2﹣3x+1=2x2是一元二次方程,则a的取值范围为()A . a≠0B . a>0C . a≠2D . a>22. (2分) (2017九上·顺义月考) 二次函数y=ax2+bx+c的自变量x与函数y的对应值如下表:x…-5-4-3-2-10…y…40-2-204…下列说法正确的是()A . 抛物线的开口向下B . 当x>-3时,y随x的增大而增大C . 二次函数的最小值是-2D . 抛物线的对称轴是直线x=-3. (2分)下列命题正确的个数是()①两个全等三角形必关于某一点中心对称②关于中心对称的两个三角形是全等三角形③两个三角形对应点连线都经过同一点,则这两个三角形关于该点成中心对称④关于中心对称的两个三角形,对应点连线都经过对称中心A . 1B . 2C . 3D . 44. (2分) (2020九上·北仑期末) 下列事件是必然事件的是()A . 明天太阳从西方升起B . 打开电视机,正在播放广告C . 掷一枚硬币,正面朝上D . 任意一个三角形,它的内角和等于180°5. (2分) (2017八下·大丰期中) 在下列调查中,适宜采用普查的是()A . 了解我省中学生的视力情况B . 了解八(1)班学生校服的尺码情况C . 检测一批炮弹的杀伤半径D . 调查电视剧《人民的名义》的收视率6. (2分) m、n是一元二次方程x2﹣5x﹣2=0的两个实数根,则m+n的值是()A . 5B . ﹣5C . 2D . ﹣27. (2分) (2017七上·赣县期中) 如图,一张半径为1的圆形纸片在边长为a(a≥3)的正方形内任意移动,则该正方形内,这张圆形纸片“不能接触到的部分”的面积是()A . a2﹣πB . (4﹣π)a2C . πD . 4﹣π8. (2分)(2017·日照模拟) 如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2011次运动后,动点P的坐标是()A . (2011,0)B . (2011,1)C . (2011,2)D . (2010,0)9. (2分)下列说法正确的是()A . 三角形的内心到三角形三个顶点的距离相等B . 三点确定一个圆C . 平分弦的直径垂直于弦D . 相等的弧所对的圆心角相等10. (2分) (2016九上·温州期末) 二次函数y=2(x+1)2﹣3的最小值是()A . 1B . ﹣1C . 3D . ﹣3二、填空题 (共6题;共7分)11. (1分) (2018九上·番禺期末) 受益于国家支持新能源汽车发展,番禺区某汽车零部件生产企业的利润逐年提高,据统计2015年利润为2亿元,2017年利润为2.88亿元.则该企业近2年利润的年平均增长率为________.12. (1分) (2017九上·黄岛期末) 把抛物线y=﹣2x2的图象先向上平移3个单位,再向右平移1个单位,则平移后抛物线的解析式为________.13. (1分)(2016·黄陂模拟) 掷一枚质地均匀的正方体骰子,前两次抛掷朝上一面点数都是3,那么第三次抛掷朝上一面的点数为3的概率是________.14. (1分)点C把线段AB分成两条线段AC和BC,如果________,那么称线段AB被点C黄金分割.15. (2分) (2018九上·宝应月考) 正方形的边长为2,则它的内切圆与外接圆围成的圆环面积为________.16. (1分)已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE=________ .三、解答题 (共8题;共53分)17. (5分) (2018九上·东台期中) 解一元二次方程(1) 2(x﹣3)2﹣18=0(2) x2﹣5x+3=018. (10分)已知:平面直角坐标系中,四边形OABC的顶点分别为O(0,0)、A(5,0)、B(m,2)、C(m ﹣5,2).(1)问:是否存在这样的m,使得在边BC上总存在点P,使∠OPA=90°?若存在,求出m的取值范围;若不存在,请说明理由.(2)当∠AOC与∠OAB的平分线的交点Q在边BC上时,求m的值.19. (5分)口袋装有编号是1、2、3、4、5的5只形状大小一样的球,其中1、2、3号球是红色,4、5号是白色。

甘肃省庆阳市九年级上学期期末数学试卷

甘肃省庆阳市九年级上学期期末数学试卷

甘肃省庆阳市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分)一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20 .则y与x的函数图象大致是()A .B .C .D .2. (2分)(2020·西安模拟) 如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为F,连接DF,则下列四个结论中,错误的是()A . △AEF∽△CABB . CF=2AFC . DF=DCD . tan∠CAD=3. (2分)已知点(﹣2,3)在函数 y=的图象上,则下列说法中,正确的是()A . 该函数的图象位于一、三象限B . 该函数的图象位于二、四象限C . 当x增大时,y也增大D . 当x增大时,y减小4. (2分)两个相似三角形的相似比为2:3,它们的面积之差为25cm2 ,则较大三角形的面积是()A . 75cm2B . 65cm2C . 50cm2D . 45cm25. (2分) (2016九上·太原期末) 已知△ABC∽△ ,△ 的面积为6 ,周长为△ABC周长的一半,则△ABC的面积等于()A . 1.5B . 3C . 12D . 246. (2分)如图所示,小华从一个圆形场地的A点出发,沿着与半径OA夹角为α的方向行走,走到场地边缘B后,再沿着与半径OB夹角为α的方向行走。

按照这种方式,小华第五次走到场地边缘时处于弧AB上,此时∠AOE=56°,则α的度数是()A . 52°B . 60°C . 72°D . 76°7. (2分)如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴交反比例函数y=﹣的图象于点B,以AB为边作▱ABCD,其中C、D在x轴上,则S□ABCD为()A . 2B . 3C . 4D . 58. (2分)如图所示是二次函数y=﹣ x2+2的图象在x轴上方的一部分,对于这段图象与x轴所围成的阴影部分的面积,你认为与其最接近的值是()A . 4B .C . 2πD . 89. (2分) (2017九上·宝坻月考) 如图,在Rt△ABC中,∠BAC=90°,AB=3,BC=5,若把Rt△ABC绕直线AC旋转一周,则所得圆锥的侧面积等于()A . 6πB . 9πC . 12πD . 15π10. (2分) (2019九上·新蔡期中) 在平面直角坐标系中,以原点O为位似中心,把△ABC放大得到△A1B1C1 ,使它们的相似比为1:2,若点A的坐标为(2,2),则它的对应点A1的坐标一定是()A . (﹣2,﹣2)B . (1,1)C . (4,4)D . (4,4)或(﹣4,﹣4)11. (2分)设直线与双曲线相交于P,Q两点,0为坐标原点,则∠POQ是().A . 锐角B . 直角C . 钝角D . 锐角或钝角12. (2分)已知二次函数y=a(x+1)2+b有最大值0.1,则a与b的大小关系为()A . a>bB . a<bC . a=bD . 不能确定13. (2分)如图,矩形纸片ABCD中,AB=5cm,BC=10cm,CD上有一点E,EC=2cm,AD上有一点P,PA=6cm,过点P作PF⊥AD交BC于点F,将纸片折叠,使P与E重合,折痕交PF于Q,则线段PQ的长是()cm.A . 4B . 4.5C .D .14. (2分)如图,平行四边形ABCD中,AB∶BC=3∶2,∠DAB=60°,E在AB上,且AE∶EB=1∶2,F是BC 的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP∶DQ等于A . 3∶4B . :C . :D . :二、填空题 (共4题;共4分)15. (1分)(2017·高邮模拟) 若a、b、c、d满足 = = ,则 =________.16. (1分) (2016九上·苍南月考) 已知抛物线开口向下,那么a的取值范围是________.17. (1分)(2016·葫芦岛) 如图,在△AOB中,∠AOB=90°,点A的坐标为(2,1),BO=2 ,反比例函数y= 的图象经过点B,则k的值为________.18. (1分) (2020九上·桂林期末) 如图,在中,,,轴,点、都在反比例函数上,点在反比例函数上,则 ________.三、解答题 (共8题;共70分)19. (5分)(2016·凉山) 计算:.20. (5分)已知m是一元二次方程x2﹣3x﹣2=0的实数根,求代数式的值.21. (5分)(2019·新疆模拟) 如图,在△ABC中,BC=12,tanA=,∠B=30°;求AC和AB的长.22. (5分) (2017九上·福州期末) 如图,△ABC中,点D在BC边上,有下列三个关系式:①BAC=90°,② = ,③AD⊥BC.选择其中两个式子作为已知,余下的一个作为结论,写出已知,求证,并证明.已知:求证:证明:23. (10分)如图,在平面直角坐标系xOy中,一次函数y=3x+2的图象与y轴交于点A,与反比例函数y=(k≠0)在第一象限内的图象交于点B,且点B的横坐标为1.过点A作AC⊥y轴交反比例函数y=(k≠0)的图象于点C,连接BC.(1)求反比例函数的表达式.(2)求△ABC的面积.24. (10分)(2017·黔西南) 如图,已知AB为⊙O直径,D是的中点,DE⊥AC交AC的延长线于E,⊙O 的切线交AD的延长线于F.(1)求证:直线DE与⊙O相切;(2)已知DG⊥AB且DE=4,⊙O的半径为5,求tan∠F的值.25. (15分) (2016九上·平定期末) 如图,在平面直角坐标系xOy中,一次函数y =ax+b(a,b为常数,且a≠0)与反比例函数y = (m为常数,且m≠0)的图象交于点A(-2,1)、B(1,n).(1)求反比例函数和一次函数的解析式;(2)连结OA、OB,求△AOB的面积;(3)直接写出当y1<y2<0时,自变量x的取值范围.26. (15分) (2016·南充) 如图,抛物线与x轴交于点A(﹣5,0)和点B(3,0).与y轴交于点C(0,5).有一宽度为1,长度足够的矩形(阴影部分)沿x轴方向平移,与y轴平行的一组对边交抛物线于点P和Q,交直线AC于点M和N.交x轴于点E和F.(1)求抛物线的解析式;(2)当点M和N都在线段AC上时,连接MF,如果sin∠AMF= ,求点Q的坐标;(3)在矩形的平移过程中,当以点P,Q,M,N为顶点的四边形是平行四边形时,求点M的坐标.参考答案一、选择题 (共14题;共28分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、填空题 (共4题;共4分)15-1、16-1、17-1、18-1、三、解答题 (共8题;共70分)19-1、20-1、21-1、22-1、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、。

2019-2020学年甘肃省庆阳市镇原县九年级(上)期末数学试卷解析版

2019-2020学年甘肃省庆阳市镇原县九年级(上)期末数学试卷解析版

2019-2020学年甘肃省庆阳市镇原县九年级(上)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.2.下列方程中是关于x的一元二次方程的是()A.x2+=0B.y2﹣3x+2=0C.x2=5x D.x2﹣4=(x+1)23.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的值可能是()A.3B.2C.1D.04.如图,P为⊙O外一点,P A、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交P A、PB于点C、D,若P A =6,则△PCD的周长为()A.8B.6C.12D.105.抛物线y=(x﹣4)2﹣5的顶点坐标和开口方向分别是()A.(4,﹣5),开口向上B.(4,﹣5),开口向下C.(﹣4,﹣5),开口向上D.(﹣4,﹣5),开口向下6.如图,AB是半圆的直径,AB=2r,C、D为半圆的三等分点,则图中阴影部分的面积是()A.B.C.D.7.如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=34°,那么∠BAD等于()A.34°B.46°C.56°D.66°8.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数9.在同一直角坐标系中,函数y=mx+m和函数y=mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.10.如图,点A、B、C都在⊙O上,若∠AOB=72°,则∠ACB的度数为()A.18°B.30°C.36°D.72°11.关于抛物线y=x2﹣4x+4,下列说法错误的是()A.开口向上B.与x轴有两个交点C.对称轴是直线线x=2D.当x>2时,y随x的增大而增大12.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C,与x轴交于A,B两点,其中点B的坐标为B(4,0),抛物线的对称轴交x轴于点D,CE∥AB,并与抛物线的对称轴交于点E.现有下列结论:①a>0;②b>0;③4a+2b+c<0;④AD+CE=4.其中所有正确结论的序号是()A.①②B.①③C.②③D.②④二、填空题(每题4分,共32分)13.请你写出一个二次函数,其图象满足条件:①开口向下;②与y轴的交点坐标为(0,3).此二次函数的解析式可以是.14.某农户2010年的年收入为4万元,由于“惠农政策”的落实,2012年年收入增加到5.8万元.设每年的年增长率x相同,则可列出方程为.15.已知圆锥的底面圆半径是1,母线是3,则圆锥的侧面积是.16.已知点A(a,1)与点B(﹣3,b)关于原点对称,则ab的值为.17.若正六边形外接圆的半径为4,则它的边长为.18.如图,⊙O是正五边形ABCDE的外接圆,则∠CAD=.19.圆心角为60°,且半径为l2的扇形的面积等于.20.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为度.三、解答题(82分)21.解方程(1)2x2﹣6x﹣1=0(2)(x+5)2=6(x+5)22.已知抛物线y=﹣x2+bx+c与直线y=﹣4x+m相交于第一象限不同的两点,A(5,n),B(3,9),求此抛物线的解析式.23.如图所示,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点,△ABC的三个顶点A,B,C都在格点上.(1)画出△ABC绕点A逆时针旋转90°后得到的△AB1C1;(2)求旋转过程中动点B所经过的路径长(结果保留π).24.京剧脸谱是京剧艺术独特的表现形式.京剧表演中,经常用脸谱象征人物的性格,品质,甚至角色和命运.如红脸代表忠心耿直,黑脸代表强悍勇猛.现有三张不透明的卡片,其中两张卡片的正面图案为“红脸”,另外一张卡片的正面图案为“黑脸”,卡片除正面图案不同外,其余均相同,将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图或列表的方法,求抽出的两张卡片上的图案都是“红脸”的概率.(图案为“红脸”的两张卡片分别记为A1、A2,图案为“黑脸”的卡片记为B)25.如图,已知△ABC和△AEF中,∠B=∠E,AB=AE,BC=EF,∠EAB=25°,∠F=57°;(1)请说明∠EAB=∠F AC的理由;(2)△ABC可以经过图形的变换得到△AEF,请你描述这个变换;(3)求∠AMB的度数.26.如图,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一点O,使OB=OC,以O为圆心,OB为半径作圆,过C作CD∥AB交⊙O于点D,连接BD.(1)猜想AC与⊙O的位置关系,并证明你的猜想;(2)已知AC=6,求扇形OBC围成的圆锥的底面圆半径.27.某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.28.如图,抛物线y=x2+x﹣与x轴相交于A,B两点,顶点为P.(1)求点A,点B的坐标;(2)在抛物线上是否存在点E,使△ABP的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由.2019-2020学年甘肃省庆阳市镇原县九年级(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.【解答】解:A、不是中心对称图形,本选项错误;B、不是中心对称图形,本选项错误;C、不是中心对称图形,本选项错误;D、是中心对称图形,本选项正确.故选:D.2.【解答】解:A、x2+=0是分式方程,故错误;B、y2﹣3x+2=0是二元二次方程,故错误;C、x2=5x是一元二次方程,故正确;D、x2﹣4=(x+1)2是一元一次方程,故错误,故选:C.3.【解答】解:根据题意得△=(﹣2)2﹣4m>0,解得m<1.故选:D.4.【解答】解:∵P A、PB分别切⊙O于点A、B,CD切⊙O于点E,∴P A=PB=6,AC=EC,BD=ED,∴PC+CD+PD=PC+CE+DE+PD=P A+AC+PD+BD=P A+PB=6+6=12,即△PCD的周长为12,故选:C.5.【解答】解:由y=(x﹣4)2﹣5,得开口方向向上,顶点坐标(4,﹣5).故选:A.6.【解答】解:连接OC、OD.∵△COD和△CDA等底等高,∴S△COD=S△ACD.∵点C,D为半圆的三等分点,AB=2r,∴∠COD=180°÷3=60°,OA=r,∴阴影部分的面积=S扇形COD==πr2.故选:B.7.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ACD=34°,∴∠ABD=34°∴∠BAD=90°﹣∠ABD=56°,故选:C.8.【解答】解:A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选:C.9.【解答】解:A.由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝下,对称轴为x==>0,则对称轴应在y轴右侧,与图象不符,故A选项错误;B.由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝下,开口方向朝下,与图象不符,故B 选项错误;C.由函数y=mx+m的图象可知m>0,即函数y=mx2+2x+2开口方向朝上,对称轴为x==<0,则对称轴应在y轴左侧,与图象不符,故C选项错误;D.由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝下,对称轴为x==>0,则对称轴应在y轴右侧,与图象相符,故D选项正确.故选:D.10.【解答】解:∵∠AOB=72°,∴∠ACB=36°.故选:C.11.【解答】解:∵y=x2﹣4x+4=(x﹣2)2,∴抛物线开口向上,对称轴为x=2,当x>2时,y随x的增大而增大,∴选项A、C、D说法正确;令y=0可得(x﹣1)2=0,该方程有两个相等的实数根,∴抛物线与x轴有一个交点,∴B选项说法错误;故选:B.12.【解答】解:①观察图象开口向下,a<0,所以①错误;②对称轴在y轴右侧,b>0,所以②正确;③因为抛物线与x轴的一个交点B的坐标为(4,0),对称轴在y轴右侧,所以当x=2时,y>0,即4a+2b+c>0,所以>③错误;④∵抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,∴AD=BD,∵CE∥AB,∴四边形ODEC为矩形,∴CE=OD,∴AD+CE=BD+OD=OB=4,所以④正确.综上:②④正确.故选:D.二、填空题(每题4分,共32分)13.【解答】解:设二次函数的解析式为y=ax2+bx+c.∵抛物线开口向下,∴a<0.∵抛物线与y轴的交点坐标为(0,3),∴c=3.取a=﹣1,b=0时,二次函数的解析式为y=﹣x2+3.故答案为:y=﹣x2+3(答案不唯一).14.【解答】解:设每年的年增长率为x,则2011年的年收入为4(1+x)万元,2012年的年收入为4(1+x)2万元,根据题意得:4(1+x)2=5.8.故答案为4(1+x)2=5.8.15.【解答】解:∵圆锥的底面圆半径是1,∴圆锥的底面圆的周长=2π,则圆锥的侧面积=×2π×3=3π,故答案为:3π.16.【解答】解:∵点A(a,1)与点B(﹣3,b)关于原点对称,∴a=3,b=﹣1,故ab=﹣3.故答案为:﹣3.17.【解答】解:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的外接圆半径等于4,则正六边形的边长是4.故答案为4.18.【解答】解:∵⊙O是正五边形ABCDE的外接圆,∴∠BAE=(5﹣2)×180°÷5=108°,BC=CD=DE,∴,∴∠CAD=×108°=36°;故答案为:36°.19.【解答】解:圆心角为60°,且半径为l2的扇形的面积是:=24π,故答案为:24π.20.【解答】解:∵△DCF是△BCE旋转以后得到的图形,∴∠BEC=∠DFC=60°,∠ECF=∠BCE=90°,CF=CE.又∵∠ECF=90°,∴∠EFC=∠FEC=(180°﹣∠ECF)=(180°﹣90°)=45°,故∠EFD=∠DFC﹣∠EFC=60°﹣45°=15°.故答案为:15°三、解答题(82分)21.【解答】解:(1)∵a=2,b=﹣6,c=﹣1,∴△=(﹣6)2﹣4×2×(﹣1)=44>0,则x==;(2)∵(x+5)2﹣6(x+5)=0,∴(x+5)(x﹣1)=0,则x+5=0或x﹣1=0,解得x=﹣5或x=1.22.【解答】解:(1)∵直线y=﹣4x+m过点B(3,9),∴9=﹣4×3+m,解得:m=21,∴直线的解析式为y=﹣4x+21,∵点A(5,n)在直线y=﹣4x+21上,∴n=﹣4×5+21=1,∴点A(5,1),将点A(5,1)、B(3,9)代入y=﹣x2+bx+c中,得:,解得:,∴此抛物线的解析式为y=﹣x2+4x+6.23.【解答】解:(1)如图:(2)从图中可看出这段弧的圆心角是90°半径AB==5∴点B所经过的路线==.24.【解答】解:画树状图为:由树状图可知,所有可能出现的结果共有9种,其中两次抽取的卡片上都是“红脸”的结果有4种,所以P(两张都是“红脸”)=,答:抽出的两张卡片上的图案都是“红脸”的概率是.25.【解答】解:(1)∵∠B=∠E,AB=AE,BC=EF,∴△ABC≌△AEF,∴∠C=∠F,∠BAC=∠EAF,∴∠BAC﹣∠P AF=∠EAF﹣∠P AF,∴∠BAE=∠CAF=25°;(2)通过观察可知△ABC绕点A顺时针旋转25°,可以得到△AEF;(3)由(1)知∠C=∠F=57°,∠BAE=∠CAF=25°,∴∠AMB=∠C+∠CAF=57°+25°=82°.26.【解答】解:(1)AC与⊙O相切,理由:∵AC=BC,∠ACB=120°,∴∠ABC=∠A=30°.∵OB=OC,∠CBO=∠BCO=30°,∴∠OCA=120°﹣30°=90°,∴AC⊥OC,又∵OC是⊙O的半径,∴AC与⊙O相切;(2)在Rt△AOC中,∠A=30°,AC=6,则tan30°===,∠COA=60°,解得:CO=2,∴弧BC的弧长为:=,设底面圆半径为:r,则2πr=,解得:r=.27.【解答】解:(1)由题意得,每件商品的销售利润为(x﹣30)元,那么m件的销售利润为y=m(x﹣30),又∵m=162﹣3x,∴y=(x﹣30)(162﹣3x),即y=﹣3x2+252x﹣4860,∵x﹣30≥0,∴x≥30.又∵m≥0,∴162﹣3x≥0,即x≤54.∴30≤x≤54.∴所求关系式为y=﹣3x2+252x﹣4860(30≤x≤54).(2)由(1)得y=﹣3x2+252x﹣4860=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.28.【解答】解:(1)令y=0,则x2+x﹣=0,解得x=﹣3或x=1,∴A(﹣3,0),B(1,0);(2)存在.理由如下:∵y=x2+x﹣=﹣(x+1)2﹣2,∴P(﹣1,﹣2),∵△ABP的面积等于△ABE的面积,∴点E到AB的距离等于2,当点E在x轴下方时,则E与P重合,此时E(﹣1,﹣2);当点E在x轴上方时,则可设E(a,2),∴a2+a﹣=2,解得a=﹣1﹣2或a=﹣1+2,∴存在符合条件的点E,其坐标为(﹣1﹣2,2)或(﹣1+2,2)或(﹣1,﹣2).。

庆阳市九年级数学期末检测题

庆阳市九年级数学期末检测题

庆阳市九年级数学期末检测题姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共30分)1. (3分) (2018九上·武昌期中) 下列四个黑体字母中,既是轴对称图形,又是中心对称图形的是()A . CB . LC . XD . Z2. (3分)若=3是方程x2-3mx+6m=0的一个根,则m的值为()A . 1B . 2C . 3D . 43. (3分) (2018九上·乌鲁木齐期末) 关于的一元二次方程有实数根,则的取值范围是()A .B .C .D .4. (3分) (2017八上·钦州期末) 函数 y=ax2+a与 y= (a≠0)在同一坐标系中的图象可能是图中的()A .B .C .D .5. (3分)下列事件中,随机事件是()A . 太阳绕着地球转B . 小明骑车经过某个十字路口时遇到红灯C . 地球上海洋面积大于陆地面积D . 一个月有37天6. (3分)(2019·海南模拟) 现有三张质地大小完全相同的卡片,上面分别标有数字﹣2,﹣1,1,把卡片背面朝上洗匀,从中任意抽取一张卡片,记下数字后放回,洗匀,再任意抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是()A .B .C .D .7. (3分)方程x2﹣2x+3=0的根的情况是()A . 有两个相等的实数根B . 只有一个实数根C . 没有实数根D . 有两个不相等的实数根8. (3分)如图,A、B、C三点在⊙O上、且∠A=50°,则∠BOC的度数为()A . 40°B . 50°C . 80°D . 100°9. (3分)在半径为2的圆中,弦AB的长为2,则的长等于()A .B .C .D .10. (3分)(2016·成都) 二次函数y=2x2﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A . 抛物线开口向下B . 抛物线经过点(2,3)C . 抛物线的对称轴是直线x=1D . 抛物线与x轴有两个交点二、填空题 (共6题;共24分)11. (4分) (2016九上·达州期末) 若关于的一元二次方程有两个不相等的实数根,则化简代数式的结果是________.12. (4分)小明和小颖做游戏:桌面上放有5支铅笔,每次取1支或2支,由小明先取,最后取完铅笔的人获胜.如果小明获胜的概率为1,那么小明第一次应取走________支.13. (4分) (2019九上·象山期末) 如图,在矩形ABCD中,,,E为AD上一点,将绕点B顺时针旋转得到,当点,分别落在BD,CD上时,则DE的长为________.14. (4分)二次函数y=m 有最低点,则m=________.15. (4分) (2018九上·大冶期末) 如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是________.16. (4分)(2019·蒙城模拟) 如图,在一个半径为3的圆中,若圆周角∠ABC为30°,则的长为________.三、计算题 (共4题;共28分)17. (7分) (2019九上·丹东期末) 解方程:2x2﹣4x﹣1=0(用配方法)18. (7分) (2018九上·三门期中) 解方程:(1) x2=x+56;(2)(2x﹣5)2﹣2x+5=0.19. (7分) (2020九上·南昌期末) 解方程:(1) x2-4x+2=0;(2) 2(x-3)=3x(x-3).20. (7分)一个不透明的盒子中有三张卡片,卡片上面分别标有字母a,b,c,每张卡片除字母不同外其他都相同,小玲先从盒子中随机抽出一张卡片,记下字母后放回并搅匀;再从盒子中随机抽出一张卡片并记下字母,用画树状图(或列表)的方法,求小玲两次抽出的卡片上的字母相同的概率.四、解答题 (共5题;共38分)21. (7分)如图,已知A(﹣4,﹣1),B(﹣5,﹣4),C(﹣1,﹣3),△ABC经过平移得到的△A′B′C′,△ABC中任意一点P(x1 , y1)平移后的对应点为P′(x1+6,y1+4).(1)请在图中作出△A′B′C′;(2)写出点A′、B′、C′的坐标.22. (7分) (2019九上·温州开学考) 如图,△ABC内接于⊙O,BC=8,AC=6,∠A-∠B=90°,求⊙O的面积.23. (7分)(2019·陕西模拟) 如图,AB为⊙O的直径,CD切⊙O于点D,AC⊥CD于点C,交⊙O于点E,连接AD、BD、ED.(1)求证:BD=ED;(2)若CE=3,CD=4,求AB的长.24. (8分) (2018九上·天台月考) 如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.(1)求证:△ABC是等边三角形;(2)若∠PAC=90°,AB= ,求PD的长.25. (9分)已知二次函数h=x2﹣(2m﹣1)x+m2﹣m(m是常数,且m≠0)(1)证明:不论m取何值时,该二次函数图象总与x轴有两个交点;(2)若A(n﹣3,n2+2)、B(﹣n+1,n2+2)是该二次函数图象上的两个不同点,求二次函数解析式和m的值;(3)设二次函数h=x2﹣(2m﹣1)x+m2﹣m与x轴两个交点的横坐标分别为x1 , x2(其中x1>x2),若y是关于m的函数,且y=2﹣,请结合函数的图象回答:当y<m时,求m的取值范围.参考答案一、单选题 (共10题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共24分)11-1、12-1、13-1、14-1、15-1、16-1、三、计算题 (共4题;共28分)17-1、18-1、18-2、19-1、19-2、20-1、四、解答题 (共5题;共38分) 21-1、22-1、23-1、23-2、24-1、24-2、25-1、。

【解析版】庆阳市镇原县平泉中学九年级上期末数学试卷

【解析版】庆阳市镇原县平泉中学九年级上期末数学试卷

-甘肃省庆阳市镇原县平泉中学九年级(上)期末数学试卷一、选择题(每小题3分,共30分.每小题只有一个选项是正确的)1.下列等式一定成立的是()A. B.=a﹣b C.D.=a+b2.已知x=﹣1是一元二次方程x2+mx+1=0的一个根,那么m的值是()A. 0 B. 1 C. 2 D.﹣23.已知一圆锥的母线长为6cm,底面圆的半径为3cm,则此圆锥侧面展开图的面积为()A. 18πcm2 B. 36πcm2 C. 12πcm2 D. 8πcm24.若式子有意义,则x的取值范围为()A. x≥2 B. x≠3 C. x≥2或x≠3 D. x≥2且x≠35.关于x的一元二次方程kx2﹣6x+1=0有两个不相等的实数根,则k的取值范围是()A. k≥9 B. k<9 C. k≤9且k≠0 D. k<9且k≠06.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.7.如图,EF是圆O的直径,OE=5cm,弦MN=8cm,则E,F两点到直线MN距离的和等于()A. 12cm B. 6cm C. 8cm D. 3cm8.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值是()A.﹣1 B. 1 C. 1或﹣1 D.﹣1或09.如图,AB为半圆O的直径,C为半圆上一点,且为半圆的.设扇形AOC、△COB、弓形BmC的面积分别为S1、S2、S3,则下列结论正确的是()A. S1<S2<S3 B. S2<S1<S3 C. S2<S3<S1 D. S3<S2<S110.如果a>0,c>0,那么二次函数y=ax2+bx+c的图象大致是()A. B. C.D.二、填空题:(每小题3分,共30分)11.两圆相内切,大圆的半径长为5cm,圆心矩为3cm,则小圆半径为cm.12.半径为6cm的圆,60°圆周角所对弧的弧长为cm.13.一元二次方程2x2+4x﹣1=0的二次项系数、一次项系数及常数项之和为.14.最简根式和是同类根式,则a=,b=.15.若将函数y=2x2的图象向右平行移动1个单位,再向上平移5个单位,可得到.16.△ABC内接于⊙O,∠ACB=36°,那么∠AOB的度数为.17.口袋中放有3只红球和11只黄球,这两种球除颜色外没有任何区别.随机从口袋中任取一只球,取到黄球的概率是.18.平面直角坐标系内一点P(3,﹣2)关于原点对称的点的坐标是.19.如图,在Rt△ABC中,∠C=90°,CA=CB=2.分别以A、B、C为圆心,以AC为半径画弧,三条弧与边AB所围成的阴影部分的面积是.(保留π)20.计算=.三、计算题(每小题10分,共20分)21.解方程:(1)(x﹣3)2=2x(3﹣x);(2)(x+3)(x﹣1)=5.22.计算:(1)(﹣)﹣2()(2)﹣.四、解答题(每题10分,共50分)23.已知a=8,求2a2•﹣﹣的值.24.已知关于x的方程x2+(4k+1)x+2k﹣1=0.(1)求证:此方程一定有两个不相等的实数根;(2)若x1,x2是方程的两个实数根,且(x1﹣2)(x2﹣2)=2k﹣3,求k的值.25.某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.26.如图,已知直角坐标系中一条圆弧经过正方形网格的格点A(0,4)、B(4,4)、C (6,2)(1)用直尺画出该圆弧所在圆的圆心M的位置,并标出M点的坐标;(2)若D点的坐标为(7,0),验证点D是否在经过点A、B、C的抛物线上;(3)若D点的坐标为(7,0),想一想直线CD与⊙M有怎样的位置关系,并证明你的猜想.27.有四张背面相同的纸牌A,B,C,D,其正面分别划有四个不同的稽核图形(如图).小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.(1)用树状图(或列表法)表示两次模牌所有可能出现的结果(纸牌可用A、B、C、D 表示);(2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.五、证明题28.如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,以DB的长为半径画圆.求证:(1)AC是⊙D的切线;(2)AB+EB=AC.六、阅读理解29.当抛物线的解析式中含有字母系数时,随着系数中字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线y=x2﹣2mx+m2+2m﹣1 (1)得:y=(x﹣m)2+2m﹣1 (2)∴抛物线的顶点坐标为(m,2m﹣1),设顶点为P(x0,y0),则:当m的值变化时,顶点横、纵坐标x0,y0的值也随之变化,将(3)代入(4)得:y0=2x0﹣1. (5)可见,不论m取任何实数时,抛物线的顶点坐标都满足y=2x﹣1.(1)根据阅读材料提供的方法,确定抛物线y=x2﹣2mx+2m2﹣4m+3的顶点纵坐标y与横坐标x之间的函数关系式.(2)是否存在实数m,使抛物线y=x2﹣2mx+2m2﹣4m+3与x轴两交点A(x1,0)、B (x2,0)之间的距离为AB=4?若存在,求出m的值;若不存在,说明理由.-甘肃省庆阳市镇原县平泉中学九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分.每小题只有一个选项是正确的)1.下列等式一定成立的是()A. B.=a﹣b C.D.=a+b考点:二次根式的混合运算.专题:计算题.分析:利用二次根式的性质计算合并.解答:解:A、不对,要先开方再相加;B、不对,这是平方差公式,不能直接开方;C、对,符合二次根式的乘法法则;D、不对,如果a+b小于0,则为它的相反数.故选C.点评:本题主要考查了根式的计算,注意根式的计算顺序.2.已知x=﹣1是一元二次方程x2+mx+1=0的一个根,那么m的值是()A. 0 B. 1 C. 2 D.﹣2考点:一元二次方程的解.专题:计算题.分析:一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值,再用这个数代替未知数所得式子仍然成立.解答:解:把x=﹣1代入方程可得1﹣m+1=0,∴m=2.故选C.点评:本题考查的是一元二次方程的根即方程的解的定义,是一道比较基础的题.3.已知一圆锥的母线长为6cm,底面圆的半径为3cm,则此圆锥侧面展开图的面积为()A. 18πcm2 B. 36πcm2 C. 12πcm2 D. 8πcm2考点:圆锥的计算.专题:压轴题.分析:圆锥的侧面积=底面周长×母线长÷2.解答:解:底面半径为3cm,则底面周长=6πcm,侧面面积=×6π×6=18πcm2.故选A.点评:本题利用了圆的周长公式和扇形面积公式求解.解题的关键是了解圆锥的有关元素与扇形的有关元素的对应.4.若式子有意义,则x的取值范围为()A. x≥2 B. x≠3 C. x≥2或x≠3 D. x≥2且x≠3考点:二次根式有意义的条件;分式有意义的条件.专题:计算题.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.解答:解:根据二次根式有意义,分式有意义得:x﹣2≥0且x﹣3≠0,解得:x≥2且x≠3.故选D.点评:本题考查了二次根式有意义的条件和分式的意义.考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.5.关于x的一元二次方程kx2﹣6x+1=0有两个不相等的实数根,则k的取值范围是()A. k≥9 B. k<9 C. k≤9且k≠0 D. k<9且k≠0考点:根的判别式;一元二次方程的定义.分析:在判断一元二次方程根的情况的问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有不相等的实数根时,必须满足△=b2﹣4ac>0.解答:解:根据题意,得(﹣6)2﹣4k>0,且k≠0,解得k<9且k≠0.故选D.点评:本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.6.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.考点:轴对称图形;中心对称图形.分析:根据中心对称图形的定义:旋转180°后能够与原图形完全重合即是中心对称图形;轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.解答:解:A、此图形既不是中心对称图形,也不是轴对称图形,故A错误;B、此图形是轴对称图形,不是中心对称图形,故B错误;C、此图形不是轴对称图形,是中心对称图形,故C错误;D、此图形既是轴对称图形,也是中心对称图形,故D正确.故选:D.点评:此题主要考查了中心对称图形与轴对称的定义,解题关键是找出图形的对称中心与对称轴,属于基础题,比较容易解答.7.如图,EF是圆O的直径,OE=5cm,弦MN=8cm,则E,F两点到直线MN距离的和等于()A. 12cm B. 6cm C. 8cm D. 3cm考点:垂径定理;勾股定理;梯形中位线定理.分析:由图可以明显的看出OK∥EG∥FH,而O是EF的中点,因此OK是梯形EGHF的中位线,欲求EG+FH的值,需求出OK的长;在Rt△OMK中,由垂径定理易知MK的长度,即可根据勾股定理求出OK的值,由此得解.解答:解:∵EG⊥GH,OK⊥GH,FH⊥GH,∴EG∥OK∥FH;∵EO=OF,∴OK是梯形EGHF的中位线,即EG+FH=2OK;Rt△OKM中,MK=MN=4cm,OM=OE=5cm;由勾股定理,得:OK==3cm;∴EG+FH=2OK=6cm.故选B.点评:此题主要考查了垂径定理、勾股定理以及梯形中位线定理的综合应用.8.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值是()A.﹣1 B. 1 C. 1或﹣1 D.﹣1或0考点:一元二次方程的解.分析:将x=0代入关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0即可求得a的值.注意,二次项系数a﹣1≠0.解答:解:∵关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,∴(a﹣1)×0+0+a2﹣1=0,且a﹣1≠0,解得a=﹣1;故选A.点评:本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.9.如图,AB为半圆O的直径,C为半圆上一点,且为半圆的.设扇形AOC、△COB、弓形BmC的面积分别为S1、S2、S3,则下列结论正确的是()A. S1<S2<S3 B. S2<S1<S3 C. S2<S3<S1 D. S3<S2<S1考点:扇形面积的计算.专题:压轴题.分析:首先根据△AOC的面积=△BOC的面积,得S2<S1.再根据题意,知S1占半圆面积的.所以S3大于半圆面积的.解答:解:根据△AOC的面积=△BOC的面积,得S2<S1,再根据题意,知S1占半圆面积的,所以S3大于半圆面积的.故选B.点评:此类题首先要比较有明显关系的两个图形的面积.10.如果a>0,c>0,那么二次函数y=ax2+bx+c的图象大致是()A. B. C.D.考点:二次函数图象与系数的关系.专题:数形结合.分析:由a>0可以判定二次函数的图象的开口方向;由已知条件“c>0”可以判定二次函数y=ax2+bx+c的图象与y轴的交点的大体位置.解答:解:∵a>0,∴二次函数y=ax2+bx+c的图象的开口向上;又∵c>0,∴二次函数y=ax2+bx+c的图象与y轴交于正半轴.故选A.点评:本题考查了二次函数图象与系数的关系.解答该题要弄清楚二次函数图象与二次函数y=ax2+bx+c的系数a、b、c的关系.二、填空题:(每小题3分,共30分)11.两圆相内切,大圆的半径长为5cm,圆心矩为3cm,则小圆半径为2cm.考点:圆与圆的位置关系.分析:根据两圆位置关系是内切,则圆心距=两圆半径之差,小圆半径=圆心距﹣大圆的半径.解答:解:∵两圆相内切,大圆的半径长为5cm,圆心矩为3cm,∴小圆半径为5﹣3=2cm.点评:本题用到的知识点为:两圆内切,圆心距=两圆半径之差.12.半径为6cm的圆,60°圆周角所对弧的弧长为4πcm.考点:弧长的计算.专题:压轴题.分析:根据弧长公式可得.解答:解:=4πcm.点评:注意圆周角要转化成圆心角.13.一元二次方程2x2+4x﹣1=0的二次项系数、一次项系数及常数项之和为5.考点:一元二次方程的定义.分析:一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,其中a,b,c分别叫二次项系数,一次项系数,常数项.确定二次项系数,一次项系数,常数项以后即可求解.解答:解:根据题意,可得一元二次方程2x2+4x﹣1=0的二次项系数为2,一次项系数为4,及常数项为﹣1;则其和为2+4﹣1=5;故答案为5.点评:求一元二次方程2x2+4x﹣1=0的二次项系数、一次项系数及常数项之和,就是求当x=1时,代数式2x2+4x﹣1的值.注意在说明二次项系数,一次项系数,常数项时,一定要带上前面的符号.14.最简根式和是同类根式,则a=1,b=1.考点:同类二次根式;解二元一次方程组.专题:计算题.分析:根据同类根式的根指数相同,且被开方数相同可得出关于a和b的方程组,解出即可得出a和b的值.解答:解:∵最简根式和是同类根式,∴,解得:.故答案为:1,1.点评:此题考查了同类根式的知识,解答本题的关键是掌握同类根式的根指数相同,且被开方数相同,属于基础题,难度一般.15.若将函数y=2x2的图象向右平行移动1个单位,再向上平移5个单位,可得到y=2(x﹣1)2+5.考点:二次函数图象与几何变换.分析:根据向右平移横坐标加,向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.解答:解:∵y=2x2的图象向右平行移动1个单位,向上平移5个单位,∴平移后的函数的顶点坐标为(1,5),∴所得抛物线的解析式为y=2(x﹣1)2+5.故答案为:y=2(x﹣1)2+5.点评:本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化更简便.16.△ABC内接于⊙O,∠ACB=36°,那么∠AOB的度数为72°.考点:圆周角定理.专题:推理填空题.分析:根据圆周角定理直接解答即可.解答:解:∵△ABC内接于⊙O,∴∠ACB是所对的圆周角,∠AOB是所对的圆心角,∴∠AOB=2∠ACB=2×36°=72°.故答案为:72°.点评:本题考查的是圆周角定理,即同弧所对的圆周角等于所对圆心角的一半.17.口袋中放有3只红球和11只黄球,这两种球除颜色外没有任何区别.随机从口袋中任取一只球,取到黄球的概率是.考点:概率公式.分析:由于口袋中放有3只红球和11只黄球,所以随机从口袋中任取一只球,取到黄球的概率是=.解答:解:P(摸到黄球)=.故本题答案为:.点评:本题考查的是概率的定义:P(A)=,n表示该试验中所有可能出现的基本结果的总数目,m表示事件A包含的试验基本结果数.这种定义概率的方法称为概率的古典定义.18.平面直角坐标系内一点P(3,﹣2)关于原点对称的点的坐标是(﹣3,2).考点:关于原点对称的点的坐标.专题:应用题.分析:平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),从而可得出答案.解答:解:根据中心对称的性质,得点P(3,﹣2)关于原点对称点P′的坐标是(﹣3,2),故答案为:(﹣3,2).点评:本题主要考查关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆.19.如图,在Rt△ABC中,∠C=90°,CA=CB=2.分别以A、B、C为圆心,以AC为半径画弧,三条弧与边AB所围成的阴影部分的面积是.(保留π)考点:扇形面积的计算.专题:压轴题.分析:三条弧与边AB所围成的阴影部分的面积=三角形的面积﹣三个小扇形的面积.解答:解:2×2÷2﹣﹣=2﹣.点评:本题的关键是理解阴影部分的面积=三角形的面积﹣三个小扇形的面积.20.计算=+.考点:二次根式的乘除法.专题:计算题.分析:先将原式变形(+)(+),再根据同底数幂乘法的逆运算即可.解答:解:原式=(+)(+)=[(+)(﹣)](+)=(+).故答案为(+).点评:本题考查了二根式的乘除法,是基础知识要熟练掌握.三、计算题(每小题10分,共20分)21.解方程:(1)(x﹣3)2=2x(3﹣x);(2)(x+3)(x﹣1)=5.考点:解一元二次方程-因式分解法.分析:(1)先移项,再用因式分解法求解即可;(2)先展开后化为一元二次方程的一般形式,再根据因式分解法求出其解即可.解答:解:(1)移项,得(3﹣x)2﹣2x(3﹣x)=0,(3﹣x)(3﹣x﹣2x)=0,∴3﹣x=0或3﹣3x=0,∴x1=3,x2=1;(2)原方程变形为x2+2x﹣3﹣5=0,x2+2x﹣8=0,∴(x+4)(x﹣2)=0,∴x1=﹣4,x2=2.点评:本题考查了因式分解法解一元二次方程的运用,整式乘法的运用,解答时运用因式分解法求解是关键.22.计算:(1)(﹣)﹣2()(2)﹣.考点:二次根式的混合运算.专题:计算题.分析:(1)先把各二次根式化为最简二次根式,然后去括号合并即可;(2)直接分母有理化和把化为最简二次根式即可,如果合并即可.解答:解:(1)原式=2﹣﹣﹣2=﹣;(2)原式=2(2+)﹣2.=4+2﹣2=4.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.四、解答题(每题10分,共50分)23.已知a=8,求2a2•﹣﹣的值.考点:二次根式的化简求值.分析:由a=8>0,首先把原式子通过开方运算、分母有理化进行化简,合并同类二次根式,然后把a的值代入求值即可.解答:解:∵a=8>0,∴原式=2a2•﹣a﹣=2a﹣a﹣===16.点评:本题主要考查二次根式的意义、二次根式的化简求值,关键在于根据a的取值范围把二次根式进行化简,然后再代入求值就容易多了.24.已知关于x的方程x2+(4k+1)x+2k﹣1=0.(1)求证:此方程一定有两个不相等的实数根;(2)若x1,x2是方程的两个实数根,且(x1﹣2)(x2﹣2)=2k﹣3,求k的值.考点:根与系数的关系;根的判别式.专题:计算题;证明题.分析:(1)需证得根的判别式恒为正值.(2)(x1﹣2)(x2﹣2)=2k﹣3,即x1x2﹣2(x1+x2)+4=2k﹣3,依据根与系数的关系,列出关于k的方程求解则可.解答:(1)证明:△=b2﹣4ac=(4k+1)2﹣4(2k﹣1)=16k2+8k+1﹣8k+4=16k2+5,∵k2≥0,∴16k2≥0,∴16k2+5>0,∴此方程有两个不相等的实数根.(2)解:根据题意,得x1+x2=﹣(4k+1),x1x2=2k﹣1,∴(x1﹣2)(x2﹣2)=x1x2﹣2(x1+x2)+4=(2k﹣1)+2(4k+1)+4=2k﹣1+8k+2+4=10k+5即10k+5=2k﹣3,∴k=﹣1.点评:本题考查了一元二次方程根与系数的关系及根的判别式,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.25.某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.考点:一元二次方程的应用.专题:增长率问题;压轴题.分析:本题是平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.如果设平均增长率为x,那么结合到本题中a就是400×(1+10%),即3月份的营业额,b就是633.6万元即5月份的营业额.由此可求出x的值.解答:解:设3月份到5月份营业额的月平均增长率为x,根据题意得,400×(1+10%)(1+x)2=633.6,解得,x1=0.2=20%,x2=﹣2.2(不合题意舍去).答:3月份到5月份营业额的月平均增长率为20%.点评:本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b(当增长时中间的“±”号选“+”,当降低时中间的“±”号选“﹣”).26.如图,已知直角坐标系中一条圆弧经过正方形网格的格点A(0,4)、B(4,4)、C (6,2)(1)用直尺画出该圆弧所在圆的圆心M的位置,并标出M点的坐标;(2)若D点的坐标为(7,0),验证点D是否在经过点A、B、C的抛物线上;(3)若D点的坐标为(7,0),想一想直线CD与⊙M有怎样的位置关系,并证明你的猜想.考点:垂径定理;二次函数图象上点的坐标特征;勾股定理;直线与圆的位置关系.专题:代数几何综合题.分析:(1)题利用“两弦垂直平分线的交点为圆心”可确定圆心位置;(2)先根据A、B、C三点坐标,用待定系数法求出抛物线的解析式,然后将D点坐标代入抛物线的解析式中,即可判断出点D是否在抛物线的图象上;(3)由于C在⊙M上,如果CD与⊙M相切,那么C点必为切点;因此可连接MC,证MC是否与CD垂直即可.可根据C、M、D三点坐标,分别表示出△CMD三边的长,然后用勾股定理来判断∠MCD是否为直角.解答:解:(1)如图1,点M就是要找的圆心.正确即可(2)由A(0,4),可得小正方形的边长为1.设经过点A、B、C的抛物线的解析式为y=ax2+bx+4,依题意有,解得,;所以经过点A、B、C的抛物线的解析式为y=﹣x2+x+4,把点D(7,0)的横坐标x=7代入上述解析式,得 y=﹣×49+×7+4=≠0,所以点D不在经过A、B、C的抛物线上;(3)证明:由A(0,4),可得小正方形的边长为1.如图2,设过C点与x轴垂直的直线与x轴的交点为E,连接MC,作直线CD,∴CE=2,ME=4,ED=1,MD=5,在Rt△CEM中,∠CEM=90°,∴MC2=ME2+CE2=42+22=20,在Rt△CED中,∠CED=90°,∴CD2=ED2+CE2=12+22=5,∴MD2=MC2+CD2,∴∠MCD=90°,又∵MC为半径,∴直线CD是⊙M的切线.点评:本题为综合题,涉及圆、平面直角坐标系、二次函数等知识,需灵活运用相关知识解决问题.本题考查二次函数、圆的切线的判定等初中数学的中的重点知识,试题本身就比较富有创新,在网格和坐标系中巧妙地将二次函数与圆的几何证明有机结合,很不错的一道题,令人耳目一新.27.有四张背面相同的纸牌A,B,C,D,其正面分别划有四个不同的稽核图形(如图).小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.(1)用树状图(或列表法)表示两次模牌所有可能出现的结果(纸牌可用A、B、C、D 表示);(2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.考点:列表法与树状图法;中心对称图形.专题:阅读型.分析:(1)画出树状图分析数据、列出可能的情况.(2)根据中心对称图形的概念可知,当摸出圆和平行四边形时为中心对称图形,除以总情况数即可.解答:解:(1)A B C DA (A,A)(A,B)(A,C)(A,D)B (B,A)(B,B)(B,C)(B,D)C (C,A)(C,B)(C,C)(C,D)D (D,A)(D,B)(D,C)(D,D)共产生16种结果,每种结果出现的可能性相同,即:(A,A)(A,B)(A,C)(A,D)(B,A)(B,B)(B,C)(B,D)(C,A)(C,B)(C,C)(C,D)(D,A)(D,B)(D,C)(D,D);(2)其中两张牌都是中心对称图形的有4种,即(B,B)(B,C)(C,B)(C,C)∴P(两张都是中心对称图形)==.点评:正确利用树状图分析两次摸牌所有可能结果是关键,区分中心对称图形是要点.用到的知识点为:概率=所求情况数与总情况数之比.五、证明题28.如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,以DB的长为半径画圆.求证:(1)AC是⊙D的切线;(2)AB+EB=AC.考点:切线的判定;直角三角形全等的判定.专题:证明题.分析:(1)过点D作DF⊥AC于F,求出BD=DF等于半径,得出AC是⊙D的切线.(2)先证明△BDE≌△FCD(HL),根据全等三角形对应边相等及切线的性质的AB=AF,得出AB+EB=AC.解答:证明:(1)过点D作DF⊥AC于F;∵AB为⊙D的切线,AD平分∠BAC,∴BD=DF,∴AC为⊙D的切线.(2)∵AC为⊙D的切线,∴∠DFC=∠B=90°,在Rt△BDE和Rt△FCD中;∵BD=DF,DE=DC,∴Rt△BDE≌Rt△FCD(HL),∴EB=FC.∵AB=AF,∴AB+EB=AF+FC,即AB+EB=AC.点评:本题考查的是切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线;及全等三角形的判断,全等三角形的对应边相等.六、阅读理解29.当抛物线的解析式中含有字母系数时,随着系数中字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线y=x2﹣2mx+m2+2m﹣1 (1)得:y=(x﹣m)2+2m﹣1 (2)∴抛物线的顶点坐标为(m,2m﹣1),设顶点为P(x0,y0),则:当m的值变化时,顶点横、纵坐标x0,y0的值也随之变化,将(3)代入(4)得:y0=2x0﹣1. (5)可见,不论m取任何实数时,抛物线的顶点坐标都满足y=2x﹣1.(1)根据阅读材料提供的方法,确定抛物线y=x2﹣2mx+2m2﹣4m+3的顶点纵坐标y与横坐标x之间的函数关系式.(2)是否存在实数m,使抛物线y=x2﹣2mx+2m2﹣4m+3与x轴两交点A(x1,0)、B (x2,0)之间的距离为AB=4?若存在,求出m的值;若不存在,说明理由.考点:二次函数综合题.分析:(1)根据材料给的方法:先配成y=(x﹣m)2+2m2﹣4m+2,得到顶点坐标,然后消去m,得到y与x的关系式;(2)先根据根与系数的关系得到x1+x2=2m,x1•x2=2m2﹣4m+3,然后利用AB=|x1﹣x2|,通过变形得到AB=,即可得到AB的最大值为2,由此得到不存在实数m,使AB=4.解答:解:(1)∵y=x2﹣2mx+2m2﹣4m+3=(x﹣m)2+2m2﹣4m+2,∴抛物线的顶点坐标为(m,2m2﹣4m+2),设顶点为P(x0,y0),则:,当m的值变化时,顶点横、纵坐标x0,y0的值也随之变化,∴y0=2x02﹣4x0+2,可见,不论m取任何实数时,抛物线的顶点坐标都满足y=2x2﹣4x+2;(2)不存在.理由如下:∵抛物线y=x2﹣2mx+2m2﹣4m+3与x轴两交点A(x1,0)、B(x2,0),∴x2﹣2mx+2m2﹣4m+3=0的两个根为x1、x2,∴x1+x2=2m,x1•x2=2m2﹣4m+3,∴AB=|x1﹣x2|===,∴AB的最大值为2,∴不存在实数m,使AB=4.点评:本题考查了二次函数综合题:抛物线的顶点式y=a(x﹣h)2+k(a≠0),则顶点坐标为(h,k);抛物线与x轴两交点的距离.也考查了代数式的变形能力.。

2018-2019学年甘肃省庆阳市镇原县九年级(上)期末数学试卷

2018-2019学年甘肃省庆阳市镇原县九年级(上)期末数学试卷

2018-2019学年甘肃省庆阳市镇原县九年级(上)期末数学试卷一、选择题(每小题 3分,共36分)1.( 3分)方程(x 1)2 =0的根是()C . X i - -1 , X 2 二 1D •无实根 2. ( 3分)下列4个图形中,是中心对称图形但不是轴对称的图形是( )23. ( 3分)关于X 的方程(m 1)X _(m_1)x ・1=0是一元二次方程,那么 m 是()A . m =1B . m = _1C . m =1 且 m = -1D . m=024.( 3分)将方程x4^5左边配方成完全平方式,右边的常数应该是()A . 9B . 1C . 6D . 45.( 3分)以坐标原点为圆心,以 2个单位为半径画L O ,下面的点中,在L O 上的是( ) A . (1,1)B . ( 2 ,C .(1,3)D . (1,6. ( 3分)点M (a,2a )在反比例函数 8 y =8的图象上, X那么 a 的值是( )A . 4B . -4C . 2D . _2 7. (3分)将下面的某一点向下平移 1个单位后,它在函数y=x 2,2x-3的图象上,这个点是()A. (1,1)B . (2,-3)C . (1,一3)D . (2,-1)& ( 3分)顶点在点 M (-2,1),且图象经过原点的二次函数解析式是()21 2A . y =(x —2) 1B . y (x 2)1421 2C . y =(x 2) 1D . y = — (x —2) 14A . X i 二 X 2 二 19. (3分)如图,L O是ABC的外接圆,• OCB =40,则.A的大小为()C .11. ( 3分)独山县开展关于精准扶贫、精准扶贫的决策部署以来,某贫困户2014年人均纯收入为2620元,经过帮扶到2016年人均纯收入为 均增长率为x ,则下面列出的方程中正确的是 ( )12 . (3分)已知二次函数 y=ax 2 bx c (^^0)的图象如图,有下列 5个结论: ① abc :::0 ;② 3a 亠c • 0 ;③ 4a 亠 2b 亠 c • 0 ;④ 2a 亠 b = 0 ;⑤ b 2 - 4acA . 1个B . 2个C . 3个D . 4个二、填空题(每小题 4分,共40分)113 . (4分)如果点(-1』1)、B (1,y 2)、C (2, y 3)是反比例函数y 图象上的三个点,贝U y 1、x y 2、y 3的大小关系是 _______B . 50C . 80D . 10010. ( 3分)一个袋子中装有3个红球和2个黄球,这些球的形状、大小、质地完全相同, 在看不到球的条件下,随机从袋中摸出 2个球,其中2个球颜色不相同的概率是 (3850元,设该贫困户每年纯收入的平A . 2620(1-x)2 =3850B. 2620(1 x)二 3850C. 2620(1 2x) =3850D . 2620(1 x)2 =3850A214 . (4分)已知关于x的方程x x 2a 0的一个根是0,则a二_______15 . (4分)已知二次函数y=(x-2)2-3,当x ____ 时,y随x的增大而减小.16. (4分)如图所示, "BC 中,.BAC =33,将. ABC 绕点A 按顺时针方向旋转50 ,对应得到厶AB C •,则.B AC 的度数为17. (4分)如图,在平面直角坐标系中,菱形 OABC 的面积为12,点B 在y 轴上,点C 在18.( 4分)如图,AB 为L O 的直径,CD 为L O 的一条弦,CD 丄AB ,垂足为E ,已知CD =6,C ,D 两点在L O 上,若.BCD = 40,则.ABD 的20. (4分)一个底面直径是80cm ,母线长为90cm 的圆锥的侧面展开图的圆心角的度数为 _____ .21. (4分)如图,四边形 ABCD 内接于L O , AB 是直径,过C 点的切线与 AB 的延长线交于P 点,若/P =40,则/ D 的度数为 ____________ .k 的值为度数为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


17.(4 分)如图,在平面直角坐标系中,菱形 OABC 的面积为 12,点 B 在 y 轴上,点 C 在
反比例函数 y= 的图象上,则 k 的值为

第2页(共7页)
18.(4 分)如图,AB 为⊙O 的直径,CD 为⊙O 的一条弦,CD⊥AB,垂足为 E,已知 CD
=6,AE=1,则⊙O 的半径为
2018-2019 学年甘肃省庆阳市镇原县九年级(上)期末数学试卷
一、选择题(每小题 3 分,共 36 分)
1.(3 分)方程(x+1)2=0 的根是( )
A.x1=x2=1
B.x1=x2=﹣1
C.x1=﹣1,x2=1 D.无实根
2.(3 分)下列 4 个图形中,是中心对称图形但不是轴对称的图形是( )

14.(4 分)已知关于 x 的方程 x2+x+2a﹣1=0 的一个根是 0,则 a=

15.(4 分)已知二次函数 y=(x﹣2)2﹣3,当 x
时,y 随 x 的增大而减小.
16.(4 分)如图所示,△ABC 中,∠BAC=33°,将△ABC 绕点 A 按顺时针方向旋转 50°,
对应得到△AB′C′,则∠B′AC 的度数为
①abc<0;②3a+c>0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac
其中正确的结论的有( )
A.1 个
B.2 个
二、填空题(每小题 4 分,共 40 分)
C.3 个
D.4 个
13.(4 分)如果点(﹣1,y1)、B(1,y2)、C(2,y3)是反比例函数 y= 图象上的三个
点,则 y1、y2、y3 的大小关系是
BDC=30°. (1)求证:DC 是⊙O 的切线; (2)若 AB=2,求 DC 的长.
25.(12 分)某商品的进价为每件 30 元,售价为每件 40 元,每周可卖出 180 件;如果每件 商品的售价每上涨 1 元,则每周就会少卖出 5 件,但每件售价不能高于 50 元,设每件商 品的售价上涨 x 元(x 为整数),每周的销售利润为 y 元.
C.(1,﹣3)
D.(2,﹣1)
8.(3 分)顶点在点 M(﹣2,1),且图象经过原点的二次函数解析式是( )
A.y=(x﹣2)2+1
B.y=﹣ (x+2)2+1
C.y=(x+2)2+1
D.y= (x﹣2)2+1
9.(3 分)如图,⊙O 是△ABC 的外接圆,∠OCB=40°,则∠A 的大小为( )
于 P 点,若∠P=40°,则∠D 的度数为

22.(4 分)如图,抛物线 y=ax2+bx+c 与 x 轴相交于点 A、B(m+2,0)与 y 轴相交于点 C,
点 D 在该抛物线上,坐标为(m,c),则点 A 的坐标是

第3页(共7页)
三、解答题(共 74 分) 23.(10 分)选择适当方法解下列方程 (1)(3x﹣1)2=(x﹣1)2 (2)3x(x﹣1)=2﹣2x 24.(10 分)已知:如图,AB 是⊙O 的直径,BC 是弦,∠B=30°,延长 BA 到 D,使∠

19.(4 分)如图,AB 是⊙O 的直径,C,D 两点在⊙O 上,若∠BCD=40°,则∠ABD 的
度数为

20.(4 分)一个底面直径是 80cm,母线长为 90cm 的圆锥的侧面展开图的圆心角的度数


21.(4 分)如图,四边形 ABCD 内接于⊙O,AB 是直径,过 C 点的切线与 AB 的延长线交
收入为 2620 元,经过帮扶到 2016 年人均纯收入为 3850 元,设该贫困户每年纯收入的平
均增长率为 x,则下面列出的方程中正确的是( )
A.2620(1﹣x)2=3850
B.2620(1+x)=3850
C.2620(1+2x)=3850
D.2620(1+x)2=3850
12.(3 分)已知二次函数 y=ax2+bx+c(a≠0)的图象如图,有下列 5 个结论:
(1)求 y 与 x 的函数关系式,并直接写出自变量 x 的取值范围; (2)每件商品的售价为多少元时,每周可获得最大利润?最大利润是多少? (3)每件商品的售价定为多少元时,每周的利润恰好是 2145 元? 26.(9 分)如图,已知反比例函数 y= 的图象与一次函数 y=x+b 的图象交于点 A(1,4),
(1)随机地从 A 中抽取一张,求抽到数字为 2 的概率; (2)随机地分别从 A、B 中各抽取一张,请你用画树状图或列表的方法表示所有等可能的
结果.现制定这样一个游戏规则:若所选出的两数之积为 3 的倍数,则甲获胜;否则乙 获胜.请问这样的游戏规则对甲乙双方公平吗?为什么? 28.(9 分)如图,在平面直角坐标系网格中,△ABC 的顶点都在格点上,点 C 坐标(0, ﹣1). (1)作出△ABC 关于原点对称的△A1B1C1,并写出点 A1 的坐标; (2)把△ABC 绕点 C 逆时针旋转 90°,得△A2B2C,画出△A2B2C,并写出点 A2 的坐标; (3)直接写出△A2B2C 的面积.
点 B(﹣4,n). (1)求 n 和 b 的值; (2)求△OAB 的面积; (3)直接写出一次函数值大于反比例函数值的自变量 x 的取值范围.
第4页(共7页)
27.(9 分)A、B 两组卡片共 5 张,A 中三张分别写有数字 2,4,6,B 中两张分别写有 3, 5,它们除数字外没有任何区别.
A.40°
B.50°
C.80°
D.100°
10.(3 分)一个袋子中装有 3 个红球和 2 个黄球,这些球的形状、大小、质地完全相同,
第1页(共7页)
在看不到球的条件下,随机从袋中摸出 2 个球,其中 2 个球颜色不相同的概率是( )
A.
B.
C.
D.
11.(3 分)独山县开展关于精准扶贫、精准扶贫的决策部署以来,某贫困户 2014 年人均纯
A.(1,1)
B.( , )
C.(1,3)
D.(1, )
6.(3 分)点 M(a,2a)在反比例函数 y= 的图象上,那么 a 的值是( )
A.4
B.﹣4
C.2
D.±2
7.(3 分)将下面的某一点向下平移 1 个单位后,它在函数 y=x2+2x﹣3 的图象上,这个点
是( )
A.(1,1)
B.(2,﹣3)
A.
B.

C.
D.
3.(3 分)关于 x 的方程(m+1)x2﹣(m﹣1)x+1=0 是一元二次方程,那么 m 是( )
A.m≠1
B.m≠﹣1
C.m≠1 且 m≠﹣1 D.m≠0
4.(3 分)将方程 x2+4x=5 左边配方成完全平方式,右边的常数应该是( )
A.9
B.1
C.6
D.4
5.(3 分)以坐标原点为圆心,以 2 个单位为半径画⊙O,下面的点中,在⊙O 上的是( )
相关文档
最新文档