空间向量与立体几何教案
强烈)空间向量与立体几何教案
空间向量与立体几何教案一、教学目标1. 理解空间向量的概念,掌握空间向量的基本运算规则。
2. 能够运用空间向量描述和解决立体几何问题。
3. 培养学生的空间想象能力和逻辑思维能力。
二、教学内容1. 空间向量的概念及其表示方法。
2. 空间向量的加法、减法、数乘和点乘运算。
3. 空间向量与立体几何的相互应用。
三、教学重点与难点1. 空间向量的概念及其表示方法。
2. 空间向量的加法、减法、数乘和点乘运算的规则。
3. 运用空间向量解决立体几何问题。
四、教学方法与手段1. 采用讲解、示例、练习相结合的方法进行教学。
2. 使用多媒体课件、模型等教学辅助工具,帮助学生直观理解空间向量与立体几何的概念和运算。
五、教学安排1. 第一课时:空间向量的概念及其表示方法。
2. 第二课时:空间向量的加法、减法、数乘运算。
3. 第三课时:空间向量的点乘运算。
4. 第四课时:空间向量在立体几何中的应用(一)。
5. 第五课时:空间向量在立体几何中的应用(二)。
【导入新课】通过复习相关基础知识,引导学生回顾平面几何中的向量概念和运算规则,为新课的学习做好铺垫。
【知识讲解】1. 空间向量的概念及其表示方法。
讲解空间向量的定义,举例说明空间向量的表示方法,如用箭头表示、用坐标表示等。
2. 空间向量的加法、减法、数乘运算。
讲解空间向量的加法、减法、数乘运算的规则,并通过示例进行演示。
3. 空间向量的点乘运算。
讲解空间向量的点乘运算的定义和计算方法,并通过示例进行演示。
【课堂练习】针对本节课所学内容,设计一些练习题,让学生在课堂上进行练习,巩固所学知识。
【拓展与应用】1. 运用空间向量描述和解决立体几何问题。
通过示例,讲解如何运用空间向量描述和解决立体几何问题,如求解空间中的距离、角度等。
2. 空间向量在立体几何中的应用。
通过示例,讲解空间向量在立体几何中的应用,如几何体的体积、表面积等计算。
【小结】【作业布置】布置一些有关空间向量与立体几何的练习题,让学生课后巩固所学知识。
空间向量与立体几何(整章教案
空间向量与立体几何第一章:空间向量基础1.1 向量的定义与表示介绍向量的概念,理解向量是有大小和方向的量。
学习如何用坐标表示空间中的向量,包括二维和三维空间中的向量。
1.2 向量的加法和数乘学习向量的加法运算,掌握三角形法则和平行四边形法则。
学习向量的数乘运算,理解数乘对向量大小和方向的影响。
1.3 向量的长度和方向学习向量的长度(模)的定义和计算方法。
学习向量的方向,理解余弦定理在向量夹角计算中的应用。
1.4 向量垂直与向量积学习向量垂直的概念,掌握向量垂直的判定方法。
学习向量积的定义和计算方法,理解向量积的几何意义。
第二章:立体几何基础2.1 平面和直线学习平面的定义和表示方法,掌握平面的基本性质。
学习直线的定义和表示方法,掌握直线的性质和判定方法。
2.2 点、线、面的位置关系学习点、线、面之间的位置关系,包括点在线上、点在面上、线在面上的判定。
学习线与线、线与面、面与面之间的位置关系。
2.3 空间角的计算学习空间角的定义和计算方法,包括二面角和平面角的计算。
学习空间角的性质和应用,理解空间角在立体几何中的重要性。
2.4 立体几何中的定理和公式学习立体几何中的重要定理和公式,如欧拉公式、施瓦茨公式等。
学会运用定理和公式解决立体几何问题。
后续章节待补充。
空间向量与立体几何第六章:空间向量的应用6.1 向量在几何中的应用学习利用向量解决几何问题,如计算线段长度、向量夹角、向量垂直等。
掌握向量在三角形和平面几何中的应用。
6.2 向量在物理中的应用引入物理中的向量概念,如速度、加速度、力等。
学习利用向量解决物理问题,如计算物体的运动轨迹、速度变化等。
6.3 向量在坐标变换中的应用学习坐标变换的基本概念,如平移、旋转等。
掌握利用向量进行坐标变换的方法和应用。
第七章:立体几何中的特殊形状7.1 柱体和锥体学习柱体和锥体的定义和性质,包括圆柱、圆锥、棱柱、棱锥等。
掌握计算柱体和锥体的体积、表面积等方法。
7.2 球体学习球体的定义和性质,掌握球体的方程和参数。
空间向量与立体几何教案
空间向量与立体几何教案第一章:空间向量基础1.1 空间向量的概念向量的定义向量的几何表示向量的坐标表示1.2 空间向量的运算向量的加法向量的减法向量的数乘1.3 空间向量的性质向量的模向量的方向向量的长度第二章:立体几何基本概念2.1 立体图形的定义立体图形的概念立体图形的分类2.2 立体图形的性质立体图形的大小立体图形的角度立体图形的对称性2.3 立体图形的计算立体图形的面积计算立体图形的体积计算第三章:空间向量与立体图形的交点3.1 空间直线与平面的交点直线与平面的交点公式直线与平面的交点求解方法3.2 空间直线与立体的交点直线与立方体的交点求解方法直线与圆柱的交点求解方法3.3 空间平面与立体的交点平面与立方体的交线求解方法平面与圆柱的交线求解方法第四章:空间向量与立体图形的投影4.1 空间向量的投影向量的正交投影向量的斜交投影4.2 立体图形的投影立方体的正交投影立方体的斜交投影4.3 空间向量与立体图形的投影关系向量投影与立体图形的关系投影变换与立体图形的不变性第五章:空间向量与立体图形的运动5.1 空间向量的运动向量的平移向量的旋转5.2 立体图形的运动立体图形的平移立体图形的旋转5.3 空间向量与立体图形的运动关系运动变换与空间向量的关系运动变换与立体图形的不变性第六章:空间向量在立体几何中的应用6.1 空间向量与立体图形的判定使用空间向量判断立体图形的位置关系使用空间向量判断立体图形的类型6.2 空间向量与立体图形的证明使用空间向量证明立体图形的全等使用空间向量证明立体图形的相似6.3 空间向量与立体图形的构造使用空间向量构造立体图形使用空间向量解决立体几何问题第七章:空间向量的线性运算与立体几何7.1 空间向量的线性组合空间向量的线性组合定义空间向量的线性组合运算7.2 空间向量的线性关系与立体几何使用空间向量的线性关系判定立体图形的位置关系使用空间向量的线性关系解决立体几何问题7.3 空间向量的基底与立体几何空间向量的基底定义使用空间向量的基底表示立体图形第八章:空间向量的内积与立体几何8.1 空间向量的内积定义空间向量的内积概念空间向量的内积运算8.2 空间向量的内积与立体图形的性质使用空间向量的内积判断立体图形的角度使用空间向量的内积解决立体几何问题8.3 空间向量的内积与立体图形的投影使用空间向量的内积解释立体图形的投影使用空间向量的内积解决立体几何问题第九章:空间向量的外积与立体几何9.1 空间向量的外积定义空间向量的外积概念空间向量的外积运算9.2 空间向量的外积与立体图形的性质使用空间向量的外积判断立体图形的位置关系使用空间向量的外积解决立体几何问题9.3 空间向量的外积与立体图形的构造使用空间向量的外积构造立体图形使用空间向量的外积解决立体几何问题第十章:空间向量在立体几何中的综合应用10.1 空间向量与立体图形的轨迹使用空间向量研究立体图形的轨迹使用空间向量解释立体图形的运动10.2 空间向量与立体几何的综合问题解决综合性的立体几何问题使用空间向量进行立体几何的综合分析10.3 空间向量与立体图形的应用案例分析实际案例中的空间向量与立体几何问题解决实际案例中的空间向量与立体几何问题重点解析空间向量的概念、几何表示和坐标表示空间向量的加法、减法和数乘运算空间向量的模、方向和长度的性质立体图形的定义、分类和性质立体图形的大小、角度和对称性立体图形的面积和体积计算空间直线与平面的交点求解方法空间直线与立体的交点求解方法空间平面与立体的交线求解方法空间向量的正交投影和斜交投影立体图形的正交投影和斜交投影空间向量与立体图形的关系投影变换与立体图形的不变性空间向量的平移和旋转立体图形的平移和旋转运动变换与空间向量的关系运动变换与立体图形的不变性空间向量判断立体图形的位置关系空间向量判断立体图形的类型空间向量证明立体图形的全等和相似空间向量构造立体图形空间向量解决立体几何问题空间向量的线性组合和运算空间向量的线性关系判定立体图形的位置关系空间向量的基底表示立体图形空间向量的内积的定义和运算空间向量的内积判断立体图形的角度空间向量的内积解释立体图形的投影空间向量的外积的定义和运算空间向量的外积判断立体图形的位置关系空间向量的外积构造立体图形空间向量研究立体图形的轨迹空间向量解释立体图形的运动解决综合性的立体几何问题使用空间向量进行立体几何的综合分析分析实际案例中的空间向量与立体几何问题解决实际案例中的空间向量与立体几何问题。
立体几何与空间向量优秀教案
空间向量及线性运算【本课重点】1、理解空间向量地概念,掌握空间向量地线性运算及性质;2、通过平面向量向空间向量地推广,体会数学地类比和归纳地思想方法.【预习导引】1、在空间,既有___________又有_____________地量叫空间向量.空间向量可以用________表示;__________地长度叫向量地模;凡是方向相同且长度相等地有向线段表示同一向量或______________.2、已知空间向量b a ,,在空间任取一点O ,作b AB a OA ==,,则=+b a ___________; 作b OB a OA ==,,则=-b a ___________;作)(,R OA OP a OA ∈λλ==,则=OP ______.3、空间向量地加法和数运算满足运算律:(1)__________________________________;(2)________________________________; (3)____________________________________.4、如果表示空间向量地有向线段互相_____或____,那么这些向量叫_________或_______向量a 与b 平行,记为____________.5、对空间任意两个向量a 与b (0≠a ),b 与a 共线地充要条件是存在实数λ,使_________.【典例练讲】例1、如图,M,N,P ,Q,R,S 为平行六面体1111ABCD A B C D -所在棱中点,化简下列向量表达式,并标出化简结果地向量.(1) AB BC + (2) 1AB AD AA ++(3) 112AB AD CC ++(4) 11()3AB AD AA ++(5) 11BC BB B D -- (6) MN PQ RS ++例2、如图,在长方体111OADB CA D B -中,3OA =,4OB =,2OC =,1OI OJ OK ===,点,E F 分别是11,DB D B 地中点.设OI i =,OJ j =,OK k =.试用向量,,i j k 表示1OD 、1OA 、OE 、OF .例3、如图,在空间四边形ABCD 中,E 是线段AB 地中点,(1)若2CF FD =,连接EF ,CE ,AF ,BF 化简下列各式,并在图中标出化简得到地向量: ①AC CB BD ++; ②AF BF AC --; ③1223AB BC CD ++; (2)若F 为CD 地中点,求证:1()2EF AD BC =+.例4、已知六面体1111ABCD A B C D -是平行六面体(如图). (1)化简11223AA BC AB ++,并在图上标出结果; (2)设M 是底面ABCD 地中心,N 是侧面11BCC B 对角线1BC 上地四等分点(靠近点1C ), 设1,MN AB AD AA αβλ=++试求,,αβγ地值ABCEFDA B 1BD 1 C 1 B 1A 1D C B A S RQPNM共面向量定理【本课重点】空间共面向量地概念、判定、性质及运用. 【预习导引】1、_______________________________叫共面向量.2、在平面向量中,向量b 与向量)0(≠a a 共线地充要条件是存在实数λ,使得a b λ=;在空间向量中,已知向是b 与a 不共线,那么向量p 与向量a ,b 共面地充要条件是存在有序实数组(x,y ),使得=p ____________.3、已知空间四点O 、A 、B 、C 满足OB OA OC β+α=,则A 、B 、C 三点共线地充要条件是________________.4、已知A 、B 、C 三点不共线,则点O 在平面ABC 内地充要条件是存在有序实数对x,y,使=OA _______________.5、设空间任意一点O 和不共线地三点A 、B 、C ,若点P 满足向量关系OC z OB y OA x OP ++=(其中x+y+z=1)试问:P 、A 、B 、C 四点是否共面?并证明你地结论.【典例练讲】例1、正方体1111ABCD A B C D -,E 和F 点分别为面1111A B C D 与11BB C C 地中心,判断下列几组向量是否为共面向量:(1)1111,,BC A D D D ;(2)111,,EF C D D D ;(3)11,,A B DC EF .例2、如图,已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点,M N 分别在对角线,BD AE 上,且13BM BD =,13AN AE =.求证://MN CDE 平面.例3、证明:三个向量12332a e e e =-++,123462b e e e =-+,12331211c e e e =-++共面.例4、(1)对于空间某一点O ,空间四个点A 、B 、C 、D (无三点共线)分别对应着向量OA 、OB 、OC 、OD ,求证:A 、B 、C 、D 四点共面地充要条件为存在四个不全为零实数,,,αβγδ,使得0OA OB OC OD αβγδ+++=,且0αβγδ+++=;(2)设空间任意一点O 和不共线三点A 、B 、C ,若点P 满足向量关系OP xOA yOB zOC =++,当,,x y z 满足什么条件时,能够使得,,,P A B C 四点共面.F ED 1 C 1B 1 A 1D CB A · · F EABCOMNG空间向量基本定理【本课重点】空间向量基本定理及其运用. 【预习导引】1、如果3个向量321,,e e e 不共面,那么对空间任一向量p ,存在___________地有序实数组{x,y,z},使=p ____________________.{321,,e e e }称为空间地一个________,321,,e e e 叫做______________.当321,,e e e 两两互相垂直时称为____________,当321,,e e e 为两两垂直地单位向量时称为__________________,通常用____________表示.2、已知空间四边形OABC ,点M ,N 分别是OA ,BC 地中点,G 在AN 上,且AG=2GN ,c OC b OB a OA ===,,,用c b a ,,作为基底,则向量MN 可表示为____________;OG 可表示为___________.3、如图,已知空间四边形OABC ,其对角线,OB AC ,,M N 分别是对边,OA BC 地中点,点G 在线段MN 上,且3MG GN =,用基底向量,,OA OB OC 表示向量_________.OG =【典例练讲】例1、如图,在平行六面体1111ABCD A B C D -中,已知DA a =,DC b =,1DD c =,点G 是侧面11B BCC 地中心,试用向量,,a b c 表示下列向量:111,,,DB BA CA DG .例2、在正方体OADB CA D B '''-中,点E 是AB 与OD 地交点,M 是OD '与CE 地交点,(1)试分别用向量,,OA OB OC 表示向量OD '和OM ;(2),,OI OJ OK 分别为,,OA OB OC 方向上地单位向量,试用,,OI OJ OK 表示,,OA OB OC .例3、已知空间四边形OABC ,其对角线为,OB AC ,点,M N 分别是对边,OA BC 地中点,点G 在直线MN 上,且2MG GN =,试用基底向量,,OA OB OC 表示向量OG .例4、如图,在平行六面体1111ABCD A B C D -中,点,,E F G 分别是11A D ,1D D ,11DC 地中点,请选择恰当地基底向量.证明:(1)//EG AC ;(2)平面EFG //平面1AB C .GDCBD 1AC 1B 1A 11空间向量地坐标表示【本课重点】空间向量地坐标表示、运算及空间向量平行地坐标表示. 【预习导引】1、 若),,(111z y x A ,),,(222z y x B 那么=AB _________________.2、 设),,(111z y x a =,),,(222z y x b =,R ∈λ,那么(1)=+b a ___________________; (2) )=-b a ___________________;(3)a λ=_____________________; (3) 若)0(//≠a b a ,则____________.3、已知向量a =(8,12x ,x ),b =(x,1,2),其中x >0.若a ∥b ,则x 地值为__________.4、给出命题:①若a 与b 共线,则a 与b 所在地直线平行;②若a 与b 共线,则存在唯一地实数λ,使b =λa ;③若A ,B ,C 三点不共线,O 是平面ABC 外一点,OM =13OA +13OB +13OC ,则点M 一定在平面ABC 上,且在△ABC 地内部.其中真命题是________.【典例练讲】例1、已知1111ABCD A B C D -是棱长为2地正方体,E 、F 、G 、H 、I 、J 分别为图中所示各棱地中点,P 为正方体地中心,建立如图所示地空间直角坐标系. (1)、试写出图中各点地坐标;(2)、x 轴,y 轴,z 轴上地点地坐标有什么特点?例2、(1)已知(1,3,8)a =-,(3,10,4)b =-,求a b +,a b -,3a ,32a b -.(2)已知A ,B ,C 三点坐标分别为(2,1,2)-,(4,5,1)-,(2,2,3)-,求满足下列条件地P 点地坐标:①1()2OP AB AC =-;②1()2AP AB AC =-.例3、已知(2,1,1)a =-,(1,3,2)b =-,(2,1,3)c =--和(3,2,5)d =,试求实数,,λμν, 使d a b c λμν=++.例4、(1)、已知向量(2,4,5)a =,(3,,)b x y =,若//a b ,求,x y 地值;(2)、已知空间四点(2,3,1)A -,(2,5,3)B -,(10,0,10)C 和(8,4,9)D ,求证:四边形ABCD 为梯形.空间向量地数量积(1)【本课重点】空间向量数量积、夹角及求法. 【预习导引】1、设b a ,是空间两个非零向量,过空间任一点O 作a OA =,b OB =,则AOB ∠叫向量a 与b 地__________,记作________,范围为________.若<b a ,>=0,则向量a 与b __________;若<b a ,>=π,则向量a 与b ____________;若<b a ,>=2π,则向量a 与b 互相_____________,记为b a ⊥.b a ⊥⇔____________2、设b a ,是空间两个非零向量,把cos ||||b a <b a ,>叫做向量a 与b 地数量积,记为______________. 并规定:零向量与任一向量地数量积为0.空间向量地数量积地运算律:(1)_____________________;(2)________________________;(3)_______________________.3、已知,a b 是空间两个向量,若3,2a b ==,7,a b +=则,a b 地夹角为_________.4、如图所示,空间四边形OABC 中,,.OA BC OB AC ⊥⊥求证:.OC AB ⊥【典例练讲】例1、如图,已知空间四边形ABCD 地每条边和对角线都等于1,点E 、F 分别是AB ,AD 地中点,计算:EF BA ⋅,EF BD ⋅,EF DC ⋅.例2、已知向量a b ⊥,向量c 与,a b 地夹角均为60︒,且||1a =,||2b =,||3c =,试求:2()a b +,2(2)a b c +-,(32)()a b b c --.例3、如图,在平行四边形ABCD 中,AB=AC=1,90ACD ∠=︒,将它沿着对角线AC 折起,使AB 与CD 成60︒角,求BD 间地距离.例4、在三棱锥O-ABC 中,已知侧棱OA ,OB ,OC 两两垂直,求证:底面ABC ∆是锐角三角形.AEF A B D C空间向量地数量积(2)【本课重点】空间向量数量积地坐标运算. 【预习导引】1、 设),,(111z y x a =,),,(222z y x b =则(1)||a =___________________________; (2)=⋅b a _________________________;(3)cos <b a ,>=____________________; (4)b a ⊥⇔________⇔_________________.2、若),,(111z y x A ,),,(222z y x B ,则AB 中点M 地坐标为____________________________;=AB ________________________;=||AB ______________________________.3、“0a b ⋅<”是“,a b <>为钝角”地_____________条件.(填“充分不必要”,“必要不充分”,“充分必要”或“既不充分也不必要”)4、已知(1,1,)a t t t =--,(2,,)b t t =,则b a -地最小值为________.【典例练讲】例1、(3,5,4)a =-,(2,1,8)b =,计算:(1)23a b +,34a b -,ab ,||a ,|23|a b + (2)cos ,a b <>;(3)求向量23a b +与a 地夹角;(4)确定,λμ地关系,使a b λμ+与z 轴垂直.例2、已知(1,5,1)a =-,(2,3,5)b =-. (1)若()//(3)ka b a b +-,求k 地值; (2)若()(3)ka b a b +⊥-,求k 地值.例3、已知(1,0,1),(2,2,2),(0,2,3)A B C ,求(1)线段AB 地中点坐标和AB 地长度; (2)AB AC 与地夹角地正弦值;(3)求ABC ∆地面积; (4)到C 点地距离为1地P (x,y,z )地坐标,,x y z 满足地条件.例4、在棱长为1地正方体1111ABCD A B C D -中,,E F 分别是1,D D BD 地中点,G 在棱CD 上,且14CG CD =,H 是1C G 地中点,应用空间向量法解决下列问题:(1)求证:1EF B C ⊥; (2)求EF 与1C G 所成角地余弦值; (3)求FH 地长. E A 1D 1C 1B 1H直线地方向向量和平面地法向量【本课重点】直线地方向向量和平面地法向量. 【预习导引】1、直线l 上地_____________________________叫做直线l 地方向向量.2、如果表示非零向量n 地有向线段所在直线与平面α______,那么称向量n 与平面α_______,记着___________,此时,把向量n 叫做平面α地_____________.3、下列说法正确地是________.(1) 一条直线地所有方向向量都互相平行;(2)一个平面地所有法向量都互相平行; (3)平面地法向量一定是非零向量;(4)向量n 是平面α地法向量,向量a 是与平面α平行或在平面α内,则有0=⋅a n . 4、(1)在空间直角坐标系O xyz -中,下列向量中不是y 轴地方向向量地是_______.○1(0,1,0); ○2(0,-1,0); ○3(0,12,-1); ○4(0,1,1)(2)过空间三点(1,1,0),(1,0,1),(0,1,1)A B C 地平面地一个法向量为__________.【典例练讲】例1、(1)在正方体1111ABCD-A B C D 中,求证:1DB 是平面1ACD 地法向量;(2)已知:A(1,2,1),B(3,2,3),C(5,3,1),求平面ABC 地一个单位法向量.例2、在空间直角坐标系中,设平面α经过点000P(x ,y ,z ),平面α地法向量是e (a,b,c)=,M(x,y,z)是平面α内地任意一点,求x ,y ,z 满足地关系式.例3、已知:A(-2,3,-3),B(4,5,9). (1)写出直线AB 地一个方向向量;(2)若点M(x,y,z)在直线AB 上,求x ,y ,z 满足地关系式;(3)设平面α经过线段AB 地中点,且与直线AB 垂直,点P(x,y,z)是平面α内一点,求x,y,z 满足地关系式;(4)求到A,B 两点距离相等地点Q(x,y,z)地坐标x,y,z 满足地关系式.例4、在棱长为1地正方体1111ABCD-A B C D 中,,E F 分别是棱,AB BC 地中点,则在棱1BB 上是否存在点M ,使得11D M EFB ⊥平面?若存在,指出点M 地位置;若不存在,请说明理由.空间线面关系地判定(1)【本课重点】用向量语言表述线线、线面、面面地平行和垂直关系;用向量方法判定空间线面地平行和垂直关系.【预习导引】1、设两直线21,l l 地方向向量分别为21,e e ;平面21,αα地法向量分别为21,n n ,那么: (1)⇔21//l l __________________; ⇔⊥21l l __________________; (2)⇔α11//l __________________; ⇔α⊥11l __________________; (3)⇔αα21//________________; ⇔α⊥α21__________________.2、设b a ,分别是直线21,l l 地方向向量,根据下列条件,判断21,l l 地位置关系:(1))6,3,6(),2,1,2(--=--=b a __________; (2))2,3,2(),2,2,1(-=-=b a __________; 3、设v u ,分别是平面βα,地法向量,根据下列条件,判断βα,地位置关系:(1))4,4,6(),5,2,2(-=-=v u __________; (2))4,4,2(),2,2,1(--=-=v u __________; (3))4,1,3(),5,3,2(--=-=v u __________.4、已知直线l 地方向向量(1,0,2)a =--,平面α地一个法向量为(4,0,)e m =,若直线l 与平面α垂直,则实数____.m =【典例练讲】例1、证明:在平面内地一条直线,如果它和这个平面地一条斜线地射影垂直,那么它和这条斜线也垂直. (三垂线定理)例2、证明:如果一条直线和平面内地两条相交直线垂直,那么这条直线垂直于这个平面.(直线与平面垂直地判定定理)例3、如图,在直三棱柱111ABC A B C -中,90ACB ∠=,30BAC ∠=,BC=1,1AA =是棱CC 1地中点,求证:A 1B ⊥AM.例4、已知正方体1111ABCD A B C D -中,E,F 分别为BB 1、CD 地中点,求证:D 1F ⊥面ADE.BACDA 1C 1D 1FECABA 1B 1C 1 Mlnmα空间线面关系地判定(2)【本课重点】用向量方法判定空间线面地平行和垂直关系. 【预习导引】1、长方体ABCD-A 1B 1C 1D 1中,AD=AA 1,AB=2AD ,点E 是线段C 1D 1地中点,则DE 与平面EBC 地位置关系是_________.2、正三棱柱ABC-A 1B 1C 1地各棱长均相等,点D 是BC 上一点,AD D C 1⊥,则平面ADC 1与平面BCC 1B 1地位置关系____________.3、在正方体ABCD -A 1B 1C 1D 1中,点M 是棱AA 1地中点,点O 是BD 1地中点,则OM 是异面直线AA 1与BD 1地____________.4、已知(1,5,2),(3,1,),AB BC z =-=若,(1,,3),AB BC BP x y ⊥=--且BP ABC ⊥平面,则实数x,y,z 分别为_________________.【典例练讲】例1、在四棱椎P-ABCD 中,底面ABCD 是一直角梯形,90BAD ∠=︒,AD ∥BC ,AB=BC=a ,AD=2a ,且PA ⊥底面ABCD ,PD 与底面成30o 角,AE ⊥PD ,E 为垂足,试建立恰当地空间直角坐标系:(1)求证:BE ⊥PD ;(2)设(1,,)n p q =,满足PCD n ⊥平面,求n 地坐标.例2:在棱长为1地正方体1111ABCD A B C D —中.(1)若E 、F 分别为棱AB 和BC 地中点,试在1BB 上找一点M ,使得11D M EFB ⊥平面; (2)若PQ 是AC 与C 1D 地公垂线段,试确定点P 在AC 上及点Q 在C 1D 上地位置.例3、如图,平行六面体ABCD-A 1B 1C 1D 1地底面ABCD 是菱形,且CB C 1∠=CD C 1∠=θ=∠BCD . (1)求证:BD C C ⊥1;(2)当CC CD1地值为多少时,能使A 1C BD C 1⊥平面,请给出证明.例4、如图所示,在三棱锥P ABC -中,AB BC ⊥,,AB BC kPA ==,点,O D 分别是,AC PC 地中点,OP ABC ⊥平面.(1)求证://OD BA 平面P ;(2)当k 为何值时,O 在平面PBC 内地射影恰好为PBC ∆地重心? DCBD 1AC 1B 1A 1空间角地计算(1)【本课重点】向量方法解决线线、线面、面面地夹角地计算. 【预习导引】1、两条异面直线所成地角与它们地方向向量地夹角_______________.2、斜线与平面所成角是斜线与平面法向量地夹角_________________.3、两个平面所成地二面角与两个平面地法向量地夹角_____________.4、设b a ,分别是两条异面直线21,l l 地方向向量,且21,cos ->=<b a ,则异面直线21,l l 所成角为______. 5、正方体1111ABCD A B C D —中,M 是AB 地中点,则DB 1与CM 所成角地余弦值为_____.【典例练讲】例1、在正方体1111ABCD A B C D —中,E 1、F 1分别在A 1B 1、C 1D 1上,且11111E B A B 4=, 11111D F C D 4=,P 为BC 中点.(1)求BE 1与DF 1所成角地大小;(2)求直线1F P 和平面1D AC 所成角地大小;(3)求二面角11A BD C --地大小.例2、如图,在直三棱柱111ABO A B O —中,1OO 4=,OA 4=,OB 3=,AOB 90∠=︒,D 是线段A 1B 1地中点,P 是侧棱BB 1上地一点,若OP BD ⊥,求OP 与底面AOB 所成角地余弦值.例3、如图,ABCD 是直角梯形,ABC 90∠=︒,AD BC ∥,SA ABCD ⊥平面,SA AB= BC 2==,AD 1=,求面SCD 与面SBA 所成二面角地大小.例4、已知四棱锥P -ABCD ,底面ABCD 为菱形,PA ⊥平面ABCD ,60ABC ∠=︒,E ,F 分别是BC , PC 地中点.(1)证明:AE ⊥PD ;(2)若H 为PD 上地动点,EH 与平面PADE —AF —C 地余弦值. OAB A 1B 1 O 1D PD 1DCABC 1B 1A 1ADCB S50 / 12空间角地计算(2)【本课重点】向量方法解决线线、线面、面面地夹角地计算. 【预习导引】1.若060CPA BPC APB =∠=∠=∠,则PA 与面PBC 所成角为_________________; 若0120CPA BPC APB =∠=∠=∠,则PA 与面PBC 所成角为_________________.2.若090CPA BPC APB =∠=∠=∠,Q 为异于P 地一点,PQ 与平面PAB 、平面PBC 、平面PAC 所成角分别为α、β、γ,则γ+β+α222cos cos cos =_________________.3.共点地三条直线PA 、PB 、PC 两两垂直,它们与平面ABC 所成角为γβα、、,则=++γβα222sin sin sin _____.4.在直二面角-αl β-中,A α∈,B β∈,A 、B 都不在l 上, AB 与α所成角为x ,AB 与β所成角为y ,AB 与l 所成角为z ,则cos 2x+cos 2y -cos 2z 地值为_________________.【典例练讲】例1、如图(1)所示,已知ABCD 是上、下底边长分别为2和6地等腰梯形,将它沿对称轴1OO 折成直二面角,如图(2)所示,(1)求证:1AC BO ⊥;(2)求二面角1O AC O ——地大小.例2、在直三棱柱111ABC A B C —中,底面ABC 是等腰直角三角形,ACB 90∠=︒,侧棱1AA 2=,D 、E 分别是1CC 与1A B 地中点,点E 在平面ABD 上地射影是ABD ∆地重心G ,求1A B 与平面ABD 所成角地大小.例3、在四棱锥P-ABCD 中,底面ABCD 是正方形,PA ⊥面ABCD ,PA=AB , (1)求证:面PAC ⊥面PBD ;(2)求二面角P-BD-C 地大小; (3)在PC 上是否存在点E ,使得PB ⊥面ADE.例4、如图所示,四棱锥P ABCD -地底面ABCD 是半径为R 地圆地内接四边形,其中BD 是圆地直径,60ABD ∠=,45BDC ∠=,PD 垂直底面ABCD,PD =,E F ,分别是PB CD ,上地点,且PE DFEB FC=,过点E 作BC 地平行线交PC 于G .(1)求BD 与平面ABP 所成角θ地正弦值; (2)证明:EFG △是直角三角形;(3)当12PE EB =时,求EFG △地面积.CA BDOO 1CABDOO 1(1(2AEPDC B ABA 1B 1C 1CEG DF C PG EA BD本章复习【本课重点】向量方法解决了有关空间直线、平面地平行、垂直和夹角等问题.【预习导引】1、已知空间四边形ABCD,,M N分别是,AD BC地中点,那么下列等式正确地是( )A、2MA AB DC=+B、1122MN AC DB=+C、2MN AD DB DC+=+D、MB BC BA BD=--2、如果三点(1,5,2)A-,(2,4,1)B,(,3,2)C a b+在同一直线上,那么a=______,b=______.3、在平行六面体1111ABCD A B C D-中,M为AC与BD地交点,若11A B a=,11A D b=,1A A c=,则向量1B M可表示为_____________.4、设A、B、C、D是空间不共面地四点,且满足AB AC0⋅=,AC AD0⋅=,AB AD0⋅=,则BCD∆为___________三角形.【典例练讲】例1、在正四面体PABC(四个面都是全等地等边三角形地四面体)中,若E、F分别在棱PC、AB上,且13CE AFPC AB==.⑴设PA a=,PB b=,PC c=,试用a b c、、表示⑵求异面直线PF与BE所成地角地余弦值.例2、在如图所示地空间直角坐标系中,正方体AC1地棱长为2,P、Q分别是BC、CD上地动点,且||PQ=,(1)确定点P、Q地位置,使得11B Q D P⊥;(2)当11B Q D P⊥时,求二面角C1-PQ-A地大小.例3、如图,在四棱锥P-ABCD中,PA⊥底面ABCD,DAB∠为直角,AB∥CD,AD=CD=2AB,E、F分别为PC、CD地中点,(1)试证:CD BEF⊥面;(2)设PA k AB=⋅,且二面角E-BD-C地平面角大于30o,求k地取值范围.例4、如图,在棱长为1地正方体ABCD A B C D''''-中,AP=BQ=b(0<b<1),截面PQEF∥A D',截面PQGH∥AD'.(1)证明:平面PQEF和平面PQGH互相垂直;(2)证明:截面PQEF和截面PQGH面积之和是定值,并求出这个值;(3)若D E'与平面PQEF所成地角为45,求D E'与平面PQGH所成角地正弦值.BAA BCDEFP QH GD′C′A′B′。
空间向量与立体几何教案
第三章空间向量与立体几何3.1空间向量及其运算(一)教学目标:㈠知识目标:⒈空间向量;⒉相等的向量;⒊空间向量的加减与数乘运算及运算律;㈡能力目标:⒈理解空间向量的概念,掌握其表示方法;⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律;⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题.㈢德育目标:学会用发展的眼光看问题,认识到事物都是在不断的发展、进化的,会用联系的观点看待事物.教学重点:空间向量的加减与数乘运算及运算律.教学难点:应用向量解决立体几何问题.教学方法:讨论式.教学过程:Ⅰ.复习引入[师]在必修四第二章《平面向量》中,我们学习了有关平面向量的一些知识,什么叫做向量?向量是怎样表示的呢?[生]既有大小又有方向的量叫向量.向量的表示方法有:①用有向线段表示;②用字母a、b等表示;③用有向线段的起点与终点字母:AB.[师]数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下.[生]长度相等且方向相同的向量叫相等向量.[师]学习了向量的有关概念以后,我们学习了向量的加减以及数乘向量运算:⒈向量的加法:⒉向量的减法:⒊实数与向量的积:实数λ与向量a的积是一个向量,记作λa,其长度和方向规定如下:(1)|λa|=|λ||a|(2)当λ>0时,λa与a同向;当λ<0时,λa与a反向;当λ=0时,λa=0.[师]关于向量的以上几种运算,请同学们回忆一下,有哪些运算律呢? [生]向量加法和数乘向量满足以下运算律加法交换律:a +b =b +a加法结合律:(a +b )+c =a +(b +c ) 数乘分配律:λ(a +b )=λa +λb[师]今天我们将在必修四第二章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用.请同学们阅读课本P 26~P 27.Ⅱ.新课讲授[师]如同平面向量的概念,我们把空间中具有大小和方向的量叫做向量.例如空间的一个平移就是一个向量.那么我们怎样表示空间向量呢?相等的向量又是怎样表示的呢?[生]与平面向量一样,空间向量也用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量.[师]由以上知识可知,向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的. [师]空间向量的加法、减法、数乘向量各是怎样定义的呢? [生]空间向量的加法、减法、数乘向量的定义与平面向量的运算一样:AB OA OB +==a +b , OA OB AB -=(指向被减向量),=OP λa )(R ∈λ[师]空间向量的加法与数乘向量有哪些运算律呢?请大家验证这些运算律.[生]空间向量加法与数乘向量有如下运算律:⑴加法交换律:a + b = b + a ;⑵加法结合律:(a + b ) + c =a + (b + c );(课件验证) ⑶数乘分配律:λ(a + b ) =λa +λb .[师]空间向量加法的运算律要注意以下几点:⑴首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量.即:n n n A A A A A A A A A A 11433221=++++-因此,求空间若干向量之和时,可通过平移使它们转化为首尾相接的向量. ⑵首尾相接的若干向量若构成一个封闭图形,则它们的和为零向量.即:011433221=+++++-A A A A A A A A A A n n n .⑶两个向量相加的平行四边形法则在空间仍然成立.因此,求始点相同的两个向量之和时,可以考虑用平行四边形法则.例1已知平行六面体''''D C B A ABCD -(如图),化简下列向量表达式,并标出化简结果的向量:;⑴BC AB + ;⑵'AA AD AB ++'21CC AD AB ++⑶.⑷)'(31AA AD AB ++ 说明:平行四边形ABCD 平移向量 a 到A’B’C’D’的轨迹所形成的几何体,叫做平行六面体.记作ABCD —A’B’C’D’.平行六面体的六个面都是平行四边形,每个面的边叫做平行六面体的棱.解:(见课本P 27)说明:由第2小题可知,始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量,这是平面向量加法的平行四边形法则向空间的推广.Ⅲ.巩固练习课本P 92 练习 Ⅳ. 教学反思平面向量仅限于研究平面图形在它所在的平面内的平移,而空间向量研究的是空间的平移,它们的共同点都是指“将图形上所有点沿相同的方向移动相同的长度”,空间的平移包含平面的平移.关于向量算式的化简,要注意解题格式、步骤和方法. Ⅴ.课后作业⒈课本P 106 1、2、⒉预习课本P 92~P 96,预习提纲: ⑴怎样的向量叫做共线向量?⑵两个向量共线的充要条件是什么? ⑶空间中点在直线上的充要条件是什么? ⑷什么叫做空间直线的向量参数表示式? ⑸怎样的向量叫做共面向量?⑹向量p 与不共线向量a 、b 共面的充要条件是什么? ⑺空间一点P 在平面MAB 内的充要条件是什么? 板书设计:§9.5 空间向量及其运算(一)一、平面向量复习 二、空间向量 三、例1⒈定义及表示方法 ⒈定义及表示⒉加减与数乘运算 ⒉加减与数乘向量 小结 ⒊运算律 ⒊运算律教学后记:空间向量及其运算(2)一、课题:空间向量及其运算(2)二、教学目标:1.理解共线向量定理和共面向量定理及它们的推论;2.掌握空间直线、空间平面的向量参数方程和线段中点的向量公式.三、教学重、难点:共线、共面定理及其应用. 四、教学过程:(一)复习:空间向量的概念及表示;(二)新课讲解:1.共线(平行)向量:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。
(强烈推荐!)空间向量与立体几何教案
空间向量与立体几何一、知识网络:二.考纲要求:(1)空间向量及其运算①经历向量及其运算由平面向空间推广的过程;②了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;③掌握空间向量的线性运算及其坐标表示;④掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。
(2)空间向量的应用① 理解直线的方向向量与平面的法向量;② 能用向量语言表述线线、线面、面面的垂直、平行关系;③ 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理);④ 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。
三、命题走向本章内容主要涉及空间向量的坐标及运算、空间向量的应用。
本章是立体几何的核心内容,高考对本章的考查形式为:以客观题形式考查空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。
预测10年高考对本章内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处理角和距离将是主要方法,在复习时应加大这方面的训练力度。
第一课时空间向量及其运算一、复习目标:1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。
二、重难点:理解空间向量的概念;掌握空间向量的运算方法 三、教学方法:探析类比归纳,讲练结合 四、教学过程 (一)、谈最新考纲要求及新课标高考命题考查情况,促使积极参与。
学生阅读复资P128页,教师点评,增强目标和参与意识。
(二)、知识梳理,方法定位。
(学生完成复资P128页填空题,教师准对问题讲评)。
1.空间向量的概念向量:在空间,我们把具有大小和方向的量叫做向量。
立体几何与空间向量优秀教案
空间向量及线性运算【本课重点】1、理解空间向量地概念,掌握空间向量地线性运算及性质;2、通过平面向量向空间向量地推广,体会数学地类比和归纳地思想方法.【预习导引】1、在空间,既有___________又有_____________地量叫空间向量.空间向量可以用________表示;__________地长度叫向量地模;凡是方向相同且长度相等地有向线段表示同一向量或______________.2、已知空间向量b a ,,在空间任取一点O ,作b AB a OA ==,,则=+b a ___________; 作b OB a OA ==,,则=-b a ___________;作)(,R OA OP a OA ∈λλ==,则=OP ______.3、空间向量地加法和数运算满足运算律:(1)__________________________________;(2)________________________________; (3)____________________________________.4、如果表示空间向量地有向线段互相_____或____,那么这些向量叫_________或_______向量a 与b 平行,记为____________.5、对空间任意两个向量a 与b (0≠a ),b 与a 共线地充要条件是存在实数λ,使_________.【典例练讲】例1、如图,M,N,P ,Q,R,S 为平行六面体1111ABCD A B C D -所在棱中点,化简下列向量表达式,并标出化简结果地向量.(1) AB BC + (2) 1AB AD AA ++(3) 112AB AD CC ++(4) 11()3AB AD AA ++(5) 11BC BB B D -- (6) MN PQ RS ++例2、如图,在长方体111OADB CA D B -中,3OA =,4OB =,2OC =,1OI OJ OK ===,点,E F 分别是11,DB D B 地中点.设OI i =,OJ j =,OK k =.试用向量,,i j k 表示1OD 、1OA 、OE 、OF .例3、如图,在空间四边形ABCD 中,E 是线段AB 地中点,(1)若2CF FD =,连接EF ,CE ,AF ,BF 化简下列各式,并在图中标出化简得到地向量: ①AC CB BD ++; ②AF BF AC --; ③1223AB BC CD ++; (2)若F 为CD 地中点,求证:1()2EF AD BC =+.例4、已知六面体1111ABCD A B C D -是平行六面体(如图). (1)化简11223AA BC AB ++,并在图上标出结果; (2)设M 是底面ABCD 地中心,N 是侧面11BCC B 对角线1BC 上地四等分点(靠近点1C ), 设1,MN AB AD AA αβλ=++试求,,αβγ地值ABCEFDA B 1BD 1 C 1 B 1A 1D C B A S RQPNM共面向量定理【本课重点】空间共面向量地概念、判定、性质及运用. 【预习导引】1、_______________________________叫共面向量.2、在平面向量中,向量b 与向量)0(≠a a 共线地充要条件是存在实数λ,使得a b λ=;在空间向量中,已知向是b 与a 不共线,那么向量p 与向量a ,b 共面地充要条件是存在有序实数组(x,y ),使得=p ____________.3、已知空间四点O 、A 、B 、C 满足OB OA OC β+α=,则A 、B 、C 三点共线地充要条件是________________.4、已知A 、B 、C 三点不共线,则点O 在平面ABC 内地充要条件是存在有序实数对x,y,使=OA _______________.5、设空间任意一点O 和不共线地三点A 、B 、C ,若点P 满足向量关系OC z OB y OA x OP ++=(其中x+y+z=1)试问:P 、A 、B 、C 四点是否共面?并证明你地结论.【典例练讲】例1、正方体1111ABCD A B C D -,E 和F 点分别为面1111A B C D 与11BB C C 地中心,判断下列几组向量是否为共面向量:(1)1111,,BC A D D D ;(2)111,,EF C D D D ;(3)11,,A B DC EF .例2、如图,已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点,M N 分别在对角线,BD AE 上,且13BM BD =,13AN AE =.求证://MN CDE 平面.例3、证明:三个向量12332a e e e =-++,123462b e e e =-+,12331211c e e e =-++共面.例4、(1)对于空间某一点O ,空间四个点A 、B 、C 、D (无三点共线)分别对应着向量OA 、OB 、OC 、OD ,求证:A 、B 、C 、D 四点共面地充要条件为存在四个不全为零实数,,,αβγδ,使得0OA OB OC OD αβγδ+++=,且0αβγδ+++=;(2)设空间任意一点O 和不共线三点A 、B 、C ,若点P 满足向量关系OP xOA yOB zOC =++,当,,x y z 满足什么条件时,能够使得,,,P A B C 四点共面.F ED 1 C 1B 1 A 1D CB A · · F EABCOMNG空间向量基本定理【本课重点】空间向量基本定理及其运用. 【预习导引】1、如果3个向量321,,e e e 不共面,那么对空间任一向量p ,存在___________地有序实数组{x,y,z},使=p ____________________.{321,,e e e }称为空间地一个________,321,,e e e 叫做______________.当321,,e e e 两两互相垂直时称为____________,当321,,e e e 为两两垂直地单位向量时称为__________________,通常用____________表示.2、已知空间四边形OABC ,点M ,N 分别是OA ,BC 地中点,G 在AN 上,且AG=2GN ,c OC b OB a OA ===,,,用c b a ,,作为基底,则向量MN 可表示为____________;OG 可表示为___________.3、如图,已知空间四边形OABC ,其对角线,OB AC ,,M N 分别是对边,OA BC 地中点,点G 在线段MN 上,且3MG GN =,用基底向量,,OA OB OC 表示向量_________.OG =【典例练讲】例1、如图,在平行六面体1111ABCD A B C D -中,已知DA a =,DC b =,1DD c =,点G 是侧面11B BCC 地中心,试用向量,,a b c 表示下列向量:111,,,DB BA CA DG .例2、在正方体OADB CA D B '''-中,点E 是AB 与OD 地交点,M 是OD '与CE 地交点,(1)试分别用向量,,OA OB OC 表示向量OD '和OM ;(2),,OI OJ OK 分别为,,OA OB OC 方向上地单位向量,试用,,OI OJ OK 表示,,OA OB OC .例3、已知空间四边形OABC ,其对角线为,OB AC ,点,M N 分别是对边,OA BC 地中点,点G 在直线MN 上,且2MG GN =,试用基底向量,,OA OB OC 表示向量OG .例4、如图,在平行六面体1111ABCD A B C D -中,点,,E F G 分别是11A D ,1D D ,11DC 地中点,请选择恰当地基底向量.证明:(1)//EG AC ;(2)平面EFG //平面1AB C .GDCBD 1AC 1B 1A 11空间向量地坐标表示【本课重点】空间向量地坐标表示、运算及空间向量平行地坐标表示. 【预习导引】1、 若),,(111z y x A ,),,(222z y x B 那么=AB _________________.2、 设),,(111z y x a =,),,(222z y x b =,R ∈λ,那么(1)=+b a ___________________; (2) )=-b a ___________________;(3)a λ=_____________________; (3) 若)0(//≠a b a ,则____________.3、已知向量a =(8,12x ,x ),b =(x,1,2),其中x >0.若a ∥b ,则x 地值为__________.4、给出命题:①若a 与b 共线,则a 与b 所在地直线平行;②若a 与b 共线,则存在唯一地实数λ,使b =λa ;③若A ,B ,C 三点不共线,O 是平面ABC 外一点,OM =13OA +13OB +13OC ,则点M 一定在平面ABC 上,且在△ABC 地内部.其中真命题是________.【典例练讲】例1、已知1111ABCD A B C D -是棱长为2地正方体,E 、F 、G 、H 、I 、J 分别为图中所示各棱地中点,P 为正方体地中心,建立如图所示地空间直角坐标系. (1)、试写出图中各点地坐标;(2)、x 轴,y 轴,z 轴上地点地坐标有什么特点?例2、(1)已知(1,3,8)a =-,(3,10,4)b =-,求a b +,a b -,3a ,32a b -.(2)已知A ,B ,C 三点坐标分别为(2,1,2)-,(4,5,1)-,(2,2,3)-,求满足下列条件地P 点地坐标:①1()2OP AB AC =-;②1()2AP AB AC =-.例3、已知(2,1,1)a =-,(1,3,2)b =-,(2,1,3)c =--和(3,2,5)d =,试求实数,,λμν, 使d a b c λμν=++.例4、(1)、已知向量(2,4,5)a =,(3,,)b x y =,若//a b ,求,x y 地值;(2)、已知空间四点(2,3,1)A -,(2,5,3)B -,(10,0,10)C 和(8,4,9)D ,求证:四边形ABCD 为梯形.空间向量地数量积(1)【本课重点】空间向量数量积、夹角及求法. 【预习导引】1、设b a ,是空间两个非零向量,过空间任一点O 作a OA =,b OB =,则AOB ∠叫向量a 与b 地__________,记作________,范围为________.若<b a ,>=0,则向量a 与b __________;若<b a ,>=π,则向量a 与b ____________;若<b a ,>=2π,则向量a 与b 互相_____________,记为b a ⊥.b a ⊥⇔____________2、设b a ,是空间两个非零向量,把cos ||||b a <b a ,>叫做向量a 与b 地数量积,记为______________. 并规定:零向量与任一向量地数量积为0.空间向量地数量积地运算律:(1)_____________________;(2)________________________;(3)_______________________.3、已知,a b 是空间两个向量,若3,2a b ==,7,a b +=则,a b 地夹角为_________.4、如图所示,空间四边形OABC 中,,.OA BC OB AC ⊥⊥求证:.OC AB ⊥【典例练讲】例1、如图,已知空间四边形ABCD 地每条边和对角线都等于1,点E 、F 分别是AB ,AD 地中点,计算:EF BA ⋅,EF BD ⋅,EF DC ⋅.例2、已知向量a b ⊥,向量c 与,a b 地夹角均为60︒,且||1a =,||2b =,||3c =,试求:2()a b +,2(2)a b c +-,(32)()a b b c --.例3、如图,在平行四边形ABCD 中,AB=AC=1,90ACD ∠=︒,将它沿着对角线AC 折起,使AB 与CD 成60︒角,求BD 间地距离.例4、在三棱锥O-ABC 中,已知侧棱OA ,OB ,OC 两两垂直,求证:底面ABC ∆是锐角三角形.AEF A B D C空间向量地数量积(2)【本课重点】空间向量数量积地坐标运算. 【预习导引】1、 设),,(111z y x a =,),,(222z y x b =则(1)||a =___________________________; (2)=⋅b a _________________________;(3)cos <b a ,>=____________________; (4)b a ⊥⇔________⇔_________________.2、若),,(111z y x A ,),,(222z y x B ,则AB 中点M 地坐标为____________________________;=AB ________________________;=||AB ______________________________.3、“0a b ⋅<”是“,a b <>为钝角”地_____________条件.(填“充分不必要”,“必要不充分”,“充分必要”或“既不充分也不必要”)4、已知(1,1,)a t t t =--,(2,,)b t t =,则b a -地最小值为________.【典例练讲】例1、(3,5,4)a =-,(2,1,8)b =,计算:(1)23a b +,34a b -,ab ,||a ,|23|a b + (2)cos ,a b <>;(3)求向量23a b +与a 地夹角;(4)确定,λμ地关系,使a b λμ+与z 轴垂直.例2、已知(1,5,1)a =-,(2,3,5)b =-. (1)若()//(3)ka b a b +-,求k 地值; (2)若()(3)ka b a b +⊥-,求k 地值.例3、已知(1,0,1),(2,2,2),(0,2,3)A B C ,求(1)线段AB 地中点坐标和AB 地长度; (2)AB AC 与地夹角地正弦值;(3)求ABC ∆地面积; (4)到C 点地距离为1地P (x,y,z )地坐标,,x y z 满足地条件.例4、在棱长为1地正方体1111ABCD A B C D -中,,E F 分别是1,D D BD 地中点,G 在棱CD 上,且14CG CD =,H 是1C G 地中点,应用空间向量法解决下列问题:(1)求证:1EF B C ⊥; (2)求EF 与1C G 所成角地余弦值; (3)求FH 地长. E A 1D 1C 1B 1H直线地方向向量和平面地法向量【本课重点】直线地方向向量和平面地法向量. 【预习导引】1、直线l 上地_____________________________叫做直线l 地方向向量.2、如果表示非零向量n 地有向线段所在直线与平面α______,那么称向量n 与平面α_______,记着___________,此时,把向量n 叫做平面α地_____________.3、下列说法正确地是________.(1) 一条直线地所有方向向量都互相平行;(2)一个平面地所有法向量都互相平行; (3)平面地法向量一定是非零向量;(4)向量n 是平面α地法向量,向量a 是与平面α平行或在平面α内,则有0=⋅a n . 4、(1)在空间直角坐标系O xyz -中,下列向量中不是y 轴地方向向量地是_______.○1(0,1,0); ○2(0,-1,0); ○3(0,12,-1); ○4(0,1,1)(2)过空间三点(1,1,0),(1,0,1),(0,1,1)A B C 地平面地一个法向量为__________.【典例练讲】例1、(1)在正方体1111ABCD-A B C D 中,求证:1DB 是平面1ACD 地法向量;(2)已知:A(1,2,1),B(3,2,3),C(5,3,1),求平面ABC 地一个单位法向量.例2、在空间直角坐标系中,设平面α经过点000P(x ,y ,z ),平面α地法向量是e (a,b,c)=,M(x,y,z)是平面α内地任意一点,求x ,y ,z 满足地关系式.例3、已知:A(-2,3,-3),B(4,5,9). (1)写出直线AB 地一个方向向量;(2)若点M(x,y,z)在直线AB 上,求x ,y ,z 满足地关系式;(3)设平面α经过线段AB 地中点,且与直线AB 垂直,点P(x,y,z)是平面α内一点,求x,y,z 满足地关系式;(4)求到A,B 两点距离相等地点Q(x,y,z)地坐标x,y,z 满足地关系式.例4、在棱长为1地正方体1111ABCD-A B C D 中,,E F 分别是棱,AB BC 地中点,则在棱1BB 上是否存在点M ,使得11D M EFB ⊥平面?若存在,指出点M 地位置;若不存在,请说明理由.空间线面关系地判定(1)【本课重点】用向量语言表述线线、线面、面面地平行和垂直关系;用向量方法判定空间线面地平行和垂直关系.【预习导引】1、设两直线21,l l 地方向向量分别为21,e e ;平面21,αα地法向量分别为21,n n ,那么: (1)⇔21//l l __________________; ⇔⊥21l l __________________; (2)⇔α11//l __________________; ⇔α⊥11l __________________; (3)⇔αα21//________________; ⇔α⊥α21__________________.2、设b a ,分别是直线21,l l 地方向向量,根据下列条件,判断21,l l 地位置关系:(1))6,3,6(),2,1,2(--=--=b a __________; (2))2,3,2(),2,2,1(-=-=b a __________; 3、设v u ,分别是平面βα,地法向量,根据下列条件,判断βα,地位置关系:(1))4,4,6(),5,2,2(-=-=v u __________; (2))4,4,2(),2,2,1(--=-=v u __________; (3))4,1,3(),5,3,2(--=-=v u __________.4、已知直线l 地方向向量(1,0,2)a =--,平面α地一个法向量为(4,0,)e m =,若直线l 与平面α垂直,则实数____.m =【典例练讲】例1、证明:在平面内地一条直线,如果它和这个平面地一条斜线地射影垂直,那么它和这条斜线也垂直. (三垂线定理)例2、证明:如果一条直线和平面内地两条相交直线垂直,那么这条直线垂直于这个平面.(直线与平面垂直地判定定理)例3、如图,在直三棱柱111ABC A B C -中,90ACB ∠=,30BAC ∠=,BC=1,1AA =是棱CC 1地中点,求证:A 1B ⊥AM.例4、已知正方体1111ABCD A B C D -中,E,F 分别为BB 1、CD 地中点,求证:D 1F ⊥面ADE.BACDA 1C 1D 1FECABA 1B 1C 1 Mlnmα空间线面关系地判定(2)【本课重点】用向量方法判定空间线面地平行和垂直关系. 【预习导引】1、长方体ABCD-A 1B 1C 1D 1中,AD=AA 1,AB=2AD ,点E 是线段C 1D 1地中点,则DE 与平面EBC 地位置关系是_________.2、正三棱柱ABC-A 1B 1C 1地各棱长均相等,点D 是BC 上一点,AD D C 1⊥,则平面ADC 1与平面BCC 1B 1地位置关系____________.3、在正方体ABCD -A 1B 1C 1D 1中,点M 是棱AA 1地中点,点O 是BD 1地中点,则OM 是异面直线AA 1与BD 1地____________.4、已知(1,5,2),(3,1,),AB BC z =-=若,(1,,3),AB BC BP x y ⊥=--且BP ABC ⊥平面,则实数x,y,z 分别为_________________.【典例练讲】例1、在四棱椎P-ABCD 中,底面ABCD 是一直角梯形,90BAD ∠=︒,AD ∥BC ,AB=BC=a ,AD=2a ,且PA ⊥底面ABCD ,PD 与底面成30o 角,AE ⊥PD ,E 为垂足,试建立恰当地空间直角坐标系:(1)求证:BE ⊥PD ;(2)设(1,,)n p q =,满足PCD n ⊥平面,求n 地坐标.例2:在棱长为1地正方体1111ABCD A B C D —中.(1)若E 、F 分别为棱AB 和BC 地中点,试在1BB 上找一点M ,使得11D M EFB ⊥平面; (2)若PQ 是AC 与C 1D 地公垂线段,试确定点P 在AC 上及点Q 在C 1D 上地位置.例3、如图,平行六面体ABCD-A 1B 1C 1D 1地底面ABCD 是菱形,且CB C 1∠=CD C 1∠=θ=∠BCD . (1)求证:BD C C ⊥1;(2)当CC CD1地值为多少时,能使A 1C BD C 1⊥平面,请给出证明.例4、如图所示,在三棱锥P ABC -中,AB BC ⊥,,AB BC kPA ==,点,O D 分别是,AC PC 地中点,OP ABC ⊥平面.(1)求证://OD BA 平面P ;(2)当k 为何值时,O 在平面PBC 内地射影恰好为PBC ∆地重心? DCBD 1AC 1B 1A 1空间角地计算(1)【本课重点】向量方法解决线线、线面、面面地夹角地计算. 【预习导引】1、两条异面直线所成地角与它们地方向向量地夹角_______________.2、斜线与平面所成角是斜线与平面法向量地夹角_________________.3、两个平面所成地二面角与两个平面地法向量地夹角_____________.4、设b a ,分别是两条异面直线21,l l 地方向向量,且21,cos ->=<b a ,则异面直线21,l l 所成角为______. 5、正方体1111ABCD A B C D —中,M 是AB 地中点,则DB 1与CM 所成角地余弦值为_____.【典例练讲】例1、在正方体1111ABCD A B C D —中,E 1、F 1分别在A 1B 1、C 1D 1上,且11111E B A B 4=, 11111D F C D 4=,P 为BC 中点.(1)求BE 1与DF 1所成角地大小;(2)求直线1F P 和平面1D AC 所成角地大小;(3)求二面角11A BD C --地大小.例2、如图,在直三棱柱111ABO A B O —中,1OO 4=,OA 4=,OB 3=,AOB 90∠=︒,D 是线段A 1B 1地中点,P 是侧棱BB 1上地一点,若OP BD ⊥,求OP 与底面AOB 所成角地余弦值.例3、如图,ABCD 是直角梯形,ABC 90∠=︒,AD BC ∥,SA ABCD ⊥平面,SA AB= BC 2==,AD 1=,求面SCD 与面SBA 所成二面角地大小.例4、已知四棱锥P -ABCD ,底面ABCD 为菱形,PA ⊥平面ABCD ,60ABC ∠=︒,E ,F 分别是BC , PC 地中点.(1)证明:AE ⊥PD ;(2)若H 为PD 上地动点,EH 与平面PADE —AF —C 地余弦值. OAB A 1B 1 O 1D PD 1DCABC 1B 1A 1ADCB S50 / 12空间角地计算(2)【本课重点】向量方法解决线线、线面、面面地夹角地计算. 【预习导引】1.若060CPA BPC APB =∠=∠=∠,则PA 与面PBC 所成角为_________________; 若0120CPA BPC APB =∠=∠=∠,则PA 与面PBC 所成角为_________________.2.若090CPA BPC APB =∠=∠=∠,Q 为异于P 地一点,PQ 与平面PAB 、平面PBC 、平面PAC 所成角分别为α、β、γ,则γ+β+α222cos cos cos =_________________.3.共点地三条直线PA 、PB 、PC 两两垂直,它们与平面ABC 所成角为γβα、、,则=++γβα222sin sin sin _____.4.在直二面角-αl β-中,A α∈,B β∈,A 、B 都不在l 上, AB 与α所成角为x ,AB 与β所成角为y ,AB 与l 所成角为z ,则cos 2x+cos 2y -cos 2z 地值为_________________.【典例练讲】例1、如图(1)所示,已知ABCD 是上、下底边长分别为2和6地等腰梯形,将它沿对称轴1OO 折成直二面角,如图(2)所示,(1)求证:1AC BO ⊥;(2)求二面角1O AC O ——地大小.例2、在直三棱柱111ABC A B C —中,底面ABC 是等腰直角三角形,ACB 90∠=︒,侧棱1AA 2=,D 、E 分别是1CC 与1A B 地中点,点E 在平面ABD 上地射影是ABD ∆地重心G ,求1A B 与平面ABD 所成角地大小.例3、在四棱锥P-ABCD 中,底面ABCD 是正方形,PA ⊥面ABCD ,PA=AB , (1)求证:面PAC ⊥面PBD ;(2)求二面角P-BD-C 地大小; (3)在PC 上是否存在点E ,使得PB ⊥面ADE.例4、如图所示,四棱锥P ABCD -地底面ABCD 是半径为R 地圆地内接四边形,其中BD 是圆地直径,60ABD ∠=,45BDC ∠=,PD 垂直底面ABCD,PD =,E F ,分别是PB CD ,上地点,且PE DFEB FC=,过点E 作BC 地平行线交PC 于G .(1)求BD 与平面ABP 所成角θ地正弦值; (2)证明:EFG △是直角三角形;(3)当12PE EB =时,求EFG △地面积.CA BDOO 1CABDOO 1(1(2AEPDC B ABA 1B 1C 1CEG DF C PG EA BD本章复习【本课重点】向量方法解决了有关空间直线、平面地平行、垂直和夹角等问题.【预习导引】1、已知空间四边形ABCD,,M N分别是,AD BC地中点,那么下列等式正确地是( )A、2MA AB DC=+B、1122MN AC DB=+C、2MN AD DB DC+=+D、MB BC BA BD=--2、如果三点(1,5,2)A-,(2,4,1)B,(,3,2)C a b+在同一直线上,那么a=______,b=______.3、在平行六面体1111ABCD A B C D-中,M为AC与BD地交点,若11A B a=,11A D b=,1A A c=,则向量1B M可表示为_____________.4、设A、B、C、D是空间不共面地四点,且满足AB AC0⋅=,AC AD0⋅=,AB AD0⋅=,则BCD∆为___________三角形.【典例练讲】例1、在正四面体PABC(四个面都是全等地等边三角形地四面体)中,若E、F分别在棱PC、AB上,且13CE AFPC AB==.⑴设PA a=,PB b=,PC c=,试用a b c、、表示⑵求异面直线PF与BE所成地角地余弦值.例2、在如图所示地空间直角坐标系中,正方体AC1地棱长为2,P、Q分别是BC、CD上地动点,且||PQ=,(1)确定点P、Q地位置,使得11B Q D P⊥;(2)当11B Q D P⊥时,求二面角C1-PQ-A地大小.例3、如图,在四棱锥P-ABCD中,PA⊥底面ABCD,DAB∠为直角,AB∥CD,AD=CD=2AB,E、F分别为PC、CD地中点,(1)试证:CD BEF⊥面;(2)设PA k AB=⋅,且二面角E-BD-C地平面角大于30o,求k地取值范围.例4、如图,在棱长为1地正方体ABCD A B C D''''-中,AP=BQ=b(0<b<1),截面PQEF∥A D',截面PQGH∥AD'.(1)证明:平面PQEF和平面PQGH互相垂直;(2)证明:截面PQEF和截面PQGH面积之和是定值,并求出这个值;(3)若D E'与平面PQEF所成地角为45,求D E'与平面PQGH所成角地正弦值.BAA BCDEFP QH GD′C′A′B′。
选修空间向量与立体几何教案
空间向量与立体几何一、知识网络:二.考纲要求:(1)空间向量及其运算① 经历向量及其运算由平面向空间推广的过程;② 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;③ 掌握空间向量的线性运算及其坐标表示;④ 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。
(2)空间向量的应用① 理解直线的方向向量与平面的法向量;② 能用向量语言表述线线、线面、面面的垂直、平行关系;③ 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理);④ 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。
三、命题走向本章内容主要涉及空间向量的坐标及运算、空间向量的应用。
本章是立体几何的核心内容,高考对本章的考查形式为:以客观题形式考查空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。
预测10年高考对本章内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处理角和距离将是主要方法,在复习时应加大这方面的训练力度。
第一课时 空间向量及其运算一、复习目标:1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。
二、重难点:理解空间向量的概念;掌握空间向量的运算方法 三、教学方法:探析类比归纳,讲练结合 四、教学过程 (一)、谈最新考纲要求及新课标高考命题考查情况,促使积极参与。
学生阅读复资P128页,教师点评,增强目标和参与意识。
(二)、知识梳理,方法定位。
(学生完成复资P128页填空题,教师准对问题讲评)。
空间向量与立体几何(整章教案
空间向量与立体几何第一章:空间向量1.1 向量的概念向量的定义向量的表示方法向量的几何表示1.2 向量的运算向量的加法向量的减法向量的数乘1.3 向量的性质向量的模向量的方向向量的单位向量1.4 向量共线定理共线向量的定义向量共线的性质向量共线的判定第二章:立体几何基础2.1 立体几何的定义三维空间的概念立体几何的研究对象2.2 点、线、面的关系点的定义线的定义面的定义2.3 立体图形的性质立体图形的边和角立体图形的角度和体积立体图形的对角和表面积2.4 立体图形的分类棱柱棱锥球体圆柱圆锥第三章:向量在立体几何中的应用3.1 向量在立体几何中的作用向量在立体几何中的重要性向量在立体几何中的应用实例3.2 向量与立体图形的交点向量与平面交点向量与直线交点向量与立体图形的交点3.3 向量与立体图形的距离和角度向量与立体图形的距离向量与立体图形的夹角向量与立体图形的对角线3.4 向量与立体图形的对偶性对偶性的定义向量与立体图形的对偶性关系对偶性在立体几何中的应用第四章:空间解析几何4.1 解析几何的概念解析几何的定义解析几何的研究对象4.2 空间直角坐标系直角坐标系的定义空间直角坐标系的建立空间直角坐标系的性质4.3 空间点的坐标点的坐标表示方法空间点的坐标与向量的关系空间点的坐标与立体图形的关系4.4 空间向量的解析表示向量的解析表示方法空间向量的坐标运算空间向量的几何意义第五章:空间向量与立体几何的综合应用5.1 空间向量与立体几何的关联空间向量与立体几何的关系空间向量在立体几何中的应用实例5.2 空间向量与立体图形的碰撞检测碰撞检测的概念空间向量与立体图形的碰撞检测方法空间向量与立体图形的碰撞检测应用5.3 空间向量与立体图形的动态模拟动态模拟的概念空间向量与立体图形的动态模拟方法空间向量与立体图形的动态模拟应用5.4 空间向量与立体几何的计算机图形学计算机图形学的概念空间向量与立体图形的计算机图形学方法空间向量与立体图形的计算机图形学应用第五章:空间向量的运算5.1 向量的加法和减法向量加法和减法的定义和性质几何表示和坐标表示实例分析和练习5.2 向量的数乘向量数乘的定义和性质几何表示和坐标表示实例分析和练习5.3 向量的点积向量点积的定义和性质几何表示和坐标表示实例分析和练习5.4 向量的叉积向量叉积的定义和性质几何表示和坐标表示实例分析和练习第六章:立体图形的性质与分类6.1 棱柱棱柱的定义和性质不同类型的棱柱棱柱的表面积和体积6.2 棱锥棱锥的定义和性质不同类型的棱锥棱锥的表面积和体积6.3 球体球体的定义和性质球体的表面积和体积球体的对称性6.4 圆柱和圆锥圆柱的定义和性质圆锥的定义和性质圆柱和圆锥的表面积和体积第七章:向量在立体几何中的应用7.1 向量在立体几何中的作用向量在立体几何中的重要性向量在立体几何中的应用实例7.2 向量与立体图形的交点向量与平面交点向量与直线交点向量与立体图形的交点7.3 向量与立体图形的距离和角度向量与立体图形的距离向量与立体图形的夹角向量与立体图形的对角线7.4 向量与立体图形的对偶性对偶性的定义向量与立体图形的对偶性关系第八章:空间解析几何8.1 解析几何的概念解析几何的基本概念坐标系和坐标变换8.2 空间直角坐标系空间直角坐标系的定义和性质坐标变换和坐标系间的转换8.3 空间点的坐标表示点的坐标表示方法点的坐标运算8.4 空间直线和平面方程直线方程平面方程实例分析和练习第九章:空间向量与立体几何的综合应用9.1 空间向量在工程中的应用空间向量在机械工程中的应用空间向量在土木工程中的应用9.2 立体几何在设计中的应用立体几何在建筑设计中的应用立体几何在产品设计中的应用9.3 空间向量与立体几何在科学计算中的应用空间向量在物理模拟中的应用立体几何在天文观测中的应用9.4 空间向量与立体几何在计算机图形学中的应用计算机图形学的基本概念空间向量和立体图形在计算机图形学中的应用第十章:空间向量与立体几何的案例研究10.1 空间向量与立体几何在医学成像中的应用医学成像技术的基本原理空间向量在医学成像数据分析中的应用10.2 空间向量与立体几何在导航中的应用导航的基本概念空间向量在导航中的应用10.3 空间向量与立体几何在虚拟现实技术中的应用虚拟现实技术的基本概念空间向量和立体图形在虚拟现实中的应用10.4 空间向量与立体几何在其他领域的应用案例教育游戏设计航空航天工程重点和难点解析1. 第五章中向量的运算:这是空间向量与立体几何的基础部分,学生需要理解并掌握向量的加减法、数乘、点积和叉积等基本运算。
空间向量与立体几何复习教案
授课教案学员姓名:__________ 授课教师:_ 所授科目:学员年级:__________ 上课时间:___年__月___日___时___分至___时___分共___小时教学标题专题:空间向量法解决立体几何问题教学目标熟练掌握:三角函数复习教学重难点重点掌握:考点内容:上次作业检查正确数:正确率:问题描述:授课内容:一专题提纲(一)引入两个重要空间向量1、直线的方向向量;2、平面的法向量。
(二)立体几何问题的类型及解法1、判断直线、平面间的位置关系(1)直线与直线的位置关系;(2)直线与平面的位置关系;(3)平面与平面的位置关系;2、求解空间中的角度(1)线线角(2)线面角(3)二面角二梳理知识(新课内容)(一)引入两个重要的空间向量1.直线的方向向量把直线上任意两点的向量或与它平行的向量都称为直线的方向向量.如图1,在空间直角坐标系中,由A(x1,y1,z1)与B(x2,y2,z2)确定的直线AB的方向向量是u u u r()=---21,21,21AB x x y y z z2.平面的法向量如果表示向量n 的有向线段所在的直线垂直于平面α,称这个向量垂直于平面α,记作n ⊥α,这时向量n 叫做平面α的法向量.在空间直角坐标系中,如何求平面法向量的坐标呢?如图2,设a=( x1,y1,z1)、b=(x2,y2,z2)是平面α内的两个不共线的非零向量,由直线与平面垂直的判定定理知,若n ⊥a 且n ⊥b,则n ⊥α.换句话说,若n ·a = 0且n ·b = 0,则n ⊥α.求平面的法向量的坐标的步骤:第一步(设):设出平面法向量的坐标为n=(x,y,z).第二步(列):根据n ·a = 0且n ·b = 0可列出方程组11122200x x y y z z x x y y z z ++=⎧⎨++=⎩第三步(解):把z 看作常数,用z 表示x 、y.第四步(取):取z 为任意一个正数(当然取得越特殊越好),便得到平面法向量n 的坐标.例1:在棱长为2的正方体ABCD-A 1B 1C 1D 1中,O 是面AC 的中心,求面OA 1D 1的法向量.解:以A 为原点建立空间直角坐标系O-xyz (如图),设平面OA 1D 1的法向量的法向量为n=(x,y,z), 则O (1,1,0),A 1(0,0,2),D 1(0,2,2) 由1OA u u u r =(-1,-1,2),1OD u u u u r =(-1,1,2)得2020x y z x y z --+=⎧⎨-++=⎩,解得20x z y =⎧⎨=⎩取z =1得平面OA 1D 1的法向量的坐标n=(2,0,1).(二)立体几何问题的类型及解法1.判定直线、平面间的位置关系(1)直线与直线的位置关系 不重合的两条直线a,b 的方向向量分别为a r ,b r ①若a r ∥b r ,即a r =λb r ,则a ∥b.②若a r ⊥b r ,即a r ·b r = 0,则a ⊥b例2:已知平行六面体ABCD-A 1B 1C 1D 1的底面ABCD 是菱形,∠C 1CB=∠C 1CD=∠BCD=θ,求证: CC 1⊥BD证明:设1,,,CD a CB b CC c ===u u u r r u u u r r u u u u r r依题意有a b =r r于是()11cos cos 0BD CD CB a b CC BD c a b c a c bc a c b CC BDθθ=-=-⋅=-=⋅-⋅=-=∴⊥u u u r u u u r u u u r r r u u u u r u u u r r r r r r r r Q r r r r(2)直线与平面的位置关系直线L 的方向向量为a r ,平面∂的法向量为n r ,且L ⊄∂①若a r ∥n r ,即a r =λn r ,则L ⊥∂②若a r ⊥n r ,即a r ·n r = 0,则L ∂P例3:棱长都等于2的正三棱柱ABC-A 1B 1C 1,D,E 分别是AC,CC 1的中点,求证:(I)A 1E ⊥平面DBC 1;(II)AB 1∥平面DBC 1解:以D 为原点,DC 为x 轴,DB 为y 轴建立空间直角坐标系D-xyz.则A(-1,0,0), B(0,3,0), E(1,0,1), A1(-1,0,2), B 1(0,3 ,2), C 1(1,0,2).设平面DBC 1的法向量为n r =(x,y,z),则2030x z y +=⎧⎪⎨=⎪⎩解之得,20x z y =-⎧⎨=⎩取z = 1得n r =(-2,0,1) (I)()12,0,1A E n =-=-u u u r ,从而A 1E ⊥平面DBC 1 (II)()11,3,2AB =u u u r ,而12020AB n ⋅=-++=u u u r r ,从而AB 1∥平面DBC 1(3)平面与平面的位置关系平面α的法向量为n1,平面β的法向量为n2①若n1∥n2,即n1=λn2,则α∥β②若n1⊥n2,即n1·n2= 0,则α⊥β例4:正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是BB 1、CD 的中点,求证:面ABD 1⊥面A 1FD证明:以A 为原点建立如图所示的的直角坐标系A-xyz,设正方体的棱长为2,则A(0,0,0),B(2,0,0),D 1(0,2,2),E(2,0,1),A 1(0,0,2), F(1,2,0),D(0,2,0),于是()()12,0,00,2,2AB AD ==u u u r u u u u r设平面AED 的法向量为n1=(x,y,z)得20220x y z =⎧⎨+=⎩解之得0x y z=⎧⎨=-⎩取z=1得n1=(0,-1,1)同理可得平面A 1FD 的法向量为n2=(0,1,1)∵n1·n2 =0-1+1=0∴面ABD 1⊥面A 1FD2.求空间中的角(1)两异面直线的夹角利用向量法求两异面直线所成的夹角,不用再把这两条异面直线平移,求出两条异面直线的方向向量,则两方向向量的夹角与两直线的夹角相等或互补,我们仅取锐角或直角就行了.例5如图在正方体ABCD-A 1B 1C 1D 1中,M 是AB 的中点,则对角线DB 1与CM 所成角的余弦值为_____.解: 以A 为原点建立如图所示的直角坐标系A-xyz, 设正方体的棱长为2,则M(1,0, 0),C(2,2,0), B1(2, 0, 2),D(0,2 ,0),于是()()11,2,02,2,2CM DB =--=-u u u u r u u u u r1240215cos ,30140444543CM DB -++∴<>===++++⋅u u u u r u u u u r(2)直线与与平面所成的角若n r 是平面∂的法向量,a r 是直线L 的方向向量,则L 与∂所成的角,2a n πθ=-<>r r 或,2a n πθ=<>-r r于是,sin cos ,a n a n a n a n a nθ⋅⋅=<>==⋅⋅r r r r r r r r r r 所以,arcsin a n a n θ⋅=⋅r r r r ,或者arccos 2a n a nπθ⋅=-⋅r r r r 例6:正三棱柱ABC-A 1B 1C 1的底面边长为a,高为2a ,求AC 1与侧面ABB 1A 1所成的角解:建立如图示的直角坐标系,则A( 2a ,0,0),B(0,32a ,0) A1( 2a ,0,2a ). C 1(-2a ,0, 2a ) 设面ABB 1A 1的法向量为n=(x,y,z)由得()13,,0,0,0,222a AB a AA a ⎛⎫=-= ⎪ ⎪⎝⎭u u u r u u u r 得3002220a x ay az ⎧-++=⎪⎨⎪=⎩,解得30x y z ⎧=⎪⎨=⎪⎩, 取y=3,得n=(3,3 ,0)而()1,0,2AC a a =-u u u u r ∴12230031sin cos ,223393002a a n AC a a a θ-++=<>===⋅++++r u u u u r ∴30θ=o(3)二面角设n1 、n2分别是二面角两个半平面α、β的法向量,由几何知识可知,二面角α-L-β的大小与法向量n1 、n2夹角相等(选取法向量竖坐标z 同号时相等)或互补(选取法向量竖坐标z 异号时互补),于是求二面角的大小可转化为求两个平面法向量的夹角,这样可避免了二面角的平面角的作图麻烦.例7:在四棱锥S-ABCD 中∠DAB=∠ABC=90,侧棱SA ⊥底面AC ,SA=AB=BC=1,AD=2,求二面角A-SD-C 的大小.解:建立如图所示的空间直角坐标系A-xyz ,则B (1,0,0),C (1,1,0),D (0,2,0),S (0,0,1).设平面SCD 的法向量n1=(x,y,z),则由()()1,1,11,1,0SC CD =-=-u u u r u u u r得00x y z x y +-=⎧⎨-+=⎩,解得22z x zy ⎧=⎪⎪⎨⎪=⎪⎩,取z=2,得n1=(1,1,2). 而面SAD 的法向量n2 = (1,0,0).于是二面角A-SD-C 的大小θ满足12116cos cos ,61141006n n θ=<>===++++ ∴二面角A-SD-C 的大小为6cos6arc . 三 真题演练例1(2011)如图,已知正三棱柱A B C -111A B C 的底面边长为2,侧棱长为32,点E 在侧棱1A A 上,点F 在侧棱1B B 上,且22A E =,2BF =.(I ) 求证:1C F C E ⊥;(II ) 求二面角1E C F C --的大小。
空间向量与立体几何教案
空间向量与立体几何教案一、教学目标1. 让学生掌握空间向量的基本概念,理解空间向量的几何表示和运算规则。
2. 培养学生运用空间向量解决立体几何问题的能力,提高空间想象和思维能力。
3. 通过对空间向量与立体几何的学习,激发学生对数学的兴趣,培养学生的创新意识和实践能力。
二、教学内容1. 空间向量的基本概念及几何表示2. 空间向量的线性运算(加法、减法、数乘、共线向量、平行向量)3. 空间向量的数量积(定义、性质、运算规则、几何意义)4. 空间向量的垂直与平行(垂直的判断、平行的判断、垂直与平行的应用)5. 空间向量在立体几何中的应用(线线、线面、面面间的位置关系)三、教学方法1. 采用讲授法,系统地讲解空间向量与立体几何的基本概念、性质和运算规则。
2. 运用案例分析法,引导学生通过具体例子学会运用空间向量解决立体几何问题。
3. 利用多媒体技术,展示空间向量的几何形象,增强学生的空间想象力。
4. 开展小组讨论与合作交流,培养学生的团队协作能力和表达能力。
四、教学环境1. 教室环境:宽敞、明亮,教学设备齐全,包括黑板、投影仪、计算机等。
2. 学习资源:教材、辅导资料、网络资源等。
3. 实践场地:学校机房、实验室等。
五、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 作业完成情况:检查学生作业的完成质量,评估学生对知识点的掌握程度。
3. 考试成绩:定期进行测验,检验学生对空间向量与立体几何知识的掌握情况。
4. 实践能力:评估学生在实践活动中运用空间向量解决立体几何问题的能力。
5. 学生自评与互评:鼓励学生自我总结,互相交流学习经验,提高学习效果。
六、教学重点与难点教学重点:1. 空间向量的基本概念及几何表示。
2. 空间向量的线性运算规则。
3. 空间向量的数量积的定义和性质。
4. 空间向量的垂直与平行判断。
5. 空间向量在立体几何中的应用。
教学难点:1. 空间向量的数量积的运算规则。
立体几何中的向量方法的教学设计(五篇)
立体几何中的向量方法的教学设计(五篇)第一篇:立体几何中的向量方法的教学设计《立体几何中的向量方法》的教学设计一、教材分析本节课是坐标法与向量有效结合的典型范例,有利于培养学生利用向量解决立体几何问题的能力。
二、教学目标通过类比平面内的点、线的位置可以由向量来确定,引导学生理解空间内的点、线、面的位置也可以由向量来表示,并进一步探究用空间向量的运算来表示空间线、面的位置关系。
从应用其证明空间线面的平行与垂直问题中体会直线的方向向量与平面的法向量在解决立体几何中线面平行与垂直问题时的作用。
从而树立学好用好向量法解决立体几何问题的兴趣和信心。
三、教学重点、难点由于建系求点坐标是向量方法中最大的障碍,所以把坐标法与向量法结合作为重点,而适当地建立空间直角坐标系及添加辅助线作为难点。
四、教学手段用几何画板直观展示图形给学生立体感,通过问题链让学生有效地进行数学思维。
五、教学流程1、新课导入:同学们,在前面的学习中,我们已经接触过一些用空间向量的运算方法,所以这节课我们将使用一些用空间向量知识证明点、线、面的位置关系。
为了运用向量来解决立体几何问题,首先要明确空间的点、线、面的位置是否可以用向量来确定?想一想平面内点、线的位置可以由向量来唯一确定吗?你能利用类比的方法,相应地得出空间点、线、面的位置也可以由向量来唯一确定的结论吗?2、经典例题讲解:<例一> 已知平行六面体ABCD-A1B1C1D1的底面ABCD是菱形,∠C1CB=∠C1CD=∠BCD=θ,求证:CC1⊥BD.分析:题目是让我们求证CC1⊥BD,我们可以利用向量垂直的方法来试着证明CC1.BD =0 <例二> 棱长都等于2的正三棱柱ABC-A1B1C1,D,E分别是AC,CC1的中点,求证:A1E⊥平面DBC1。
分析:该题主要是考察学生是否可以根据已知题目给出的信息将建立空间直角坐标系,本题以D为坐标原点,DC所在的直线为x轴,连接BD以BD为y轴,Z轴则平行与CC1建立了D-XYZ的空间直角坐标系。
空间向量与立体几何学案
第三章 空间向量与立体几何 3.1空间向量及其运算(一)一、教学目标:⒈理解空间向量的概念,掌握其表示方法;⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律; ⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题. 教学重点:空间向量的加减与数乘运算及运算律. 教学难点:应用向量解决立体几何问题. 二、问题导学⒈空间向量______________________________⒉相等的向量 ________________________________________ ⒊向量的加法____________________________________________ 4、向量的减法_______________________________5、实数与向量的积_______________________________________6、运算律________________________________ 三、问题探究例1已知平行六面体''''D C B A ABCD -(如图),化简下列向量表达式,并标出化简结果的向量:⑴+ ⑵AA ++21CC AD AB ++⑶.⑷)(31AA AD AB ++ 例2、见课本四、课堂练习 五、自主小结教学后记:空间向量及其运算(2)课题:空间向量及其运算(2)一、 教学目标1.理解共线向量定理和共面向量定理及它们的推论;2.掌握空间直线、空间平面的向量参数方程和线段中点的向量公式. 教学重、难点:共线、共面定理及其应用.二、问题导学1.共线(平:空间向量的概念及表示; 2.共线向量定理: 3.向量与平面平行: 4.共面向量定理: 三、问题探究例1.已知,,A B C 三点不共线,对平面外任一点,满足条件122555OP OA OB OC =++,试判断:点P 与,,A B C 是否一定共面?例2.已知ABCD ,从平面AC 外一点O 引向量,,,OE kOA OF KOB OG kOC OH kOD ==== ,(1)求证:四点,,,E F G H 共面; (2)平面AC //平面EG .四、课堂练习:1.已知两个非零向量21,e e 不共线,如果21AB e e =+ ,2128AC e e =+,2133AD e e =- ,求证:,,,A B C D 共面.2.已知324,(1)82a m n p b x m n yp =--=+++ ,0a ≠,若//a b ,求实数,x y的值。
立体几何与空间向量的教学设计单元
立体几何与空间向量的教学设计单元
1. 单元概述
1.1 单元目标
通过本单元的学习,学生应能够:
- 理解立体几何的基本概念,包括点、线、面、体等;
- 掌握空间向量的基本运算,包括向量的加法、减法、数乘和点乘;
- 能够运用立体几何与空间向量解决实际问题。
1.2 单元内容
本单元包括以下内容:
- 立体几何的基本概念;
- 空间向量的基本运算;
- 空间向量在立体几何中的应用。
2. 教学策略
2.1 教学方法
- 讲授法:用于讲解立体几何的基本概念和空间向量的基本运算;
- 实践操作法:用于让学生通过实际操作加深对立体几何和空间向量的理解;
- 问题解决法:用于引导学生运用立体几何和空间向量解决实际问题。
2.2 教学资源
- 教材:用于提供学习的理论知识;
- 计算机软件:用于辅助学生进行空间向量的实践操作;
- 实物模型:用于帮助学生直观地理解立体几何的概念。
3. 教学安排
3.1 教学时长
本单元的教学时长为20课时,其中:
- 立体几何的基本概念:5课时;
- 空间向量的基本运算:6课时;
- 空间向量在立体几何中的应用:9课时。
3.2 教学计划
请见下表:
4. 教学评价
本单元的教学评价将采用以下方式:
- 平时作业:30%;
- 课堂表现:30%;
- 期末考试:40%。
希望这份教学设计单元能够帮助你更好地进行教学活动。
如果有任何问题,请随时提问。
教学单元设计:空间向量与立体几何
教学单元设计:空间向量与立体几何一、教学目标通过本教学单元的学习,学生应能够:- 理解空间向量的概念和性质;- 掌握空间向量的表示方法和运算规则;- 理解立体几何的基本概念和性质;- 掌握立体几何的相关定理和推理方法;- 运用空间向量和立体几何知识解决实际问题。
二、教学内容1. 空间向量- 空间向量的定义和性质;- 空间向量的表示方法:坐标表示法、分量表示法;- 空间向量的运算规则:加法、减法、数量乘法、点乘与叉乘。
2. 立体几何- 立体几何的基本概念:点、线、面、体;- 立体几何的性质:平行关系、垂直关系、距离关系;- 立体几何的相关定理:平面与平面垂直的条件、直线与平面垂直的条件等;- 立体几何的推理方法:投影法、剖面法、旋转法等。
三、教学方法1. 探究式教学方法:通过引导学生观察和分析实际物体的空间特征,引发学生对空间向量和立体几何的兴趣,并激发他们的思维能力和创造力。
2. 演示与实践相结合的教学方法:通过教师的演示和学生的实践操作,帮助学生深入理解空间向量和立体几何的概念、性质和运算规则。
3. 小组合作学习方法:组织学生进行小组讨论和合作学习,培养他们的合作意识和团队精神,提高学生的学习效果。
四、教学过程1. 导入(5分钟)通过展示一些实际物体或图片,引发学生对空间向量和立体几何的兴趣,激发他们的思考和探索欲望。
2. 知识讲解(30分钟)依次讲解空间向量的定义、表示方法和运算规则,以及立体几何的基本概念、性质、定理和推理方法。
在讲解过程中,引导学生思考和提问,加深他们对知识点的理解。
3. 实践操作(40分钟)让学生进行一些实践操作,如绘制空间向量的坐标表示图、计算空间向量的加减法、进行点乘和叉乘运算等。
同时,组织学生进行一些立体几何的实践操作,如画出两平面的交线、确定两直线是否平行等。
4. 拓展应用(15分钟)提供一些实际问题,让学生运用所学的空间向量和立体几何知识解决问题,并引导他们进行思考和讨论,培养他们的应用能力和创新思维。
空间向量与立体几何(整章教案
空间向量与立体几何第一章:空间向量基础1.1 向量的定义与表示了解向量的概念,掌握向量的几何表示和代数表示。
学习向量的长度和方向,掌握向量的模和单位向量。
1.2 向量的运算学习向量的加法、减法和数乘运算。
掌握向量加法和减法的几何意义,理解数乘向量的意义。
1.3 向量的坐标表示学习空间直角坐标系,了解向量的坐标表示方法。
掌握向量坐标的加法和数乘运算,理解向量坐标的几何意义。
第二章:立体几何基础2.1 平面立体几何学习平面的基本性质,掌握平面方程和点到平面的距离公式。
学习直线与平面的位置关系,了解线面平行、线面相交和线面垂直的判定条件。
2.2 空间立体几何学习空间几何体的基本性质,包括点、线、面的位置关系。
掌握空间几何体的体积和表面积计算公式,了解空间几何体的对称性。
第三章:空间向量在立体几何中的应用3.1 空间向量与直线的位置关系学习利用空间向量判断直线与直线、直线与平面的位置关系。
掌握向量夹角的概念,学习利用向量夹角判断直线与直线的夹角。
3.2 空间向量与平面的位置关系学习利用空间向量判断平面与平面的位置关系。
掌握平面法向量的概念,学习利用平面法向量求解平面方程。
3.3 空间向量与空间几何体的位置关系学习利用空间向量判断空间几何体与空间几何体的位置关系。
掌握空间几何体的体积和表面积计算方法,学习利用空间向量求解空间几何体的体积和表面积。
第四章:空间向量的线性运算与立体几何4.1 空间向量的线性组合学习空间向量的线性组合,掌握线性组合的运算规律。
理解线性组合在立体几何中的应用,包括线性组合与空间几何体的关系。
4.2 空间向量的线性相关与线性无关学习空间向量的线性相关和线性无关的概念。
掌握判断空间向量线性相关和线性无关的方法,理解线性相关和线性无关在立体几何中的应用。
4.3 空间向量的基底与坐标表示学习空间向量的基底概念,掌握基底的选取方法。
学习空间向量的坐标表示方法,理解坐标表示在立体几何中的应用。
空间向量与立体几何教案
用空间向量法求解立体几何问题以多面体为载体,以空间向量为工具,来论证和求解空间角、距离、线线关系以及线面关系相关问题,是近年来高考数学的重点和热点,用空间向量解立体几何问题,极大地降低了求解立几的难度,很大程度上呈现出程序化思想。
利用空间向量解决立体几何的知识和基本求解方法 一:利用空间向量求空间角 (1)两条异面直线所成的夹角范围:两条异面直线所成的夹角的取值范围是 。
向量求法:设直线,a b 的方向向量为a,b ,其夹角为θ,则有cos ___________.θ=(2)直线与平面所成的角定义:直线与平面所成的角是指直线与它在这个平面内的射影所成的角。
范围:直线和平面所夹角的取值范围是 。
向量求法:设直线l 的方向向量为a ,平面的法向量为n ,直线与法向量所成角的余弦值为|cos |___________.θ=直线与平面所成的角为ϕ,则有sin ___________.ϕ=或在平面内任取一个向量m ,则|cos |___________.θ=.(3)二面角二面角的取值范围是 . 二面角的向量求法:方法一:在两个半平面内任取两个与棱垂直的向量,则这两个向量所成的 即为所求的二面角的大小;方法二:设1n ,2n 分别是两个面的 ,则向量1n 与2n 的夹角(或其补角)即为所求二面角的平面角的大小。
题型1:异面直线所成的角例1、已知正方体ABCD -A 1B 1C 1D 1的棱长为2,点E 为棱AB 的中点。
求:D 1E 与平面BC 1D 所成角的大小(用余弦值表示) 解析:建立坐标系如图,则()2,0,0A 、()2,2,0B ,()0,2,0C ,()12,0,2A ,()12,2,2B ,()10,0,2D ,()2,1,0E ,()12,2,2AC =-- , ()12,1,2D E =- ,()0,2,0AB = ,()10,0,2BB =。
不难证明1AC为平面BC 1D 的法向量, ∵111111cos ,A C D E A C D E A C D E=。
高二数学《空间向量与立体几何》教案
1 / 13空间向量解立体几何一、空间直角坐标系的建立及点的坐标表示空间直角坐标系中的坐标:如图给定空间直角坐标系和向量a ,设,,i j k (单位正交基底)为坐标向量,则存在唯一的有序实数组123(,,)a a a ,使123a a i a j a k =++,有序实数组123(,,)a a a 叫作向量a 在空间直角坐标系O xyz -中的坐标,记作123(,,)a a a a =.在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使OA xi yj zk =++,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标.二、空间向量的直角坐标运算律(1)若123(,,)a a a a =,123(,,)b b b b =, 则112233(,,)a b a b a b a b +=+++,112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈,112233//,,()a b a b a b a b R λλλλ⇔===∈,(2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。
(3)//a b b a λ⇔=112233()b a b a R b aλλλλ=⎧⎪⇔=∈⎨⎪=⎩三、空间向量直角坐标的数量积1、设b a ,是空间两个非零向量,我们把数量><b a b a ,cos ||||叫作向量b a ,的数量积,记作b a ⋅,即b a ⋅=><b a b a ,cos |||| 规定:0。
21||a a a x =⋅=+两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则2||(AB AB x ==或,12)(A B d x y y =-+- 4、夹角:cos ||||a ba b a b ⋅⋅=⋅. 注:①0(,a b a b a b ⊥⇔⋅=是两个非零向量);②22||a a a a =⋅=。
空间向量与立体几何教案
空间向量与立体几何教案教案:空间向量与立体几何一、教学目标:1.知识与能力目标:掌握空间向量的基本概念和运算法则,并能够运用空间向量解决立体几何问题。
2.过程与方法目标:培养学生的观察能力和逻辑思维能力,通过实例分析和综合运用,激发学生对数学的兴趣和学习积极性。
3.情感态度目标:培养学生的合作学习精神,增强学生对数学的自信心和探究精神。
二、教学重点难点:1.教学重点:空间向量的概念、性质及运算法则。
2.教学难点:如何灵活应用空间向量解决立体几何问题。
三、教学方法:1.教师讲授与学生合作探究相结合的方法。
2.案例分析和综合运用的方法。
四、教学过程:第一节空间向量的概念和性质(40分钟)1.通过引入空间向量的概念,让学生了解空间向量的定义,并掌握向量的表示方法。
2.解释向量的性质,如向量的加法、数乘、共线和共面性质。
3.设计一些简单的例题进行讲解,引导学生掌握和理解空间向量的性质。
第二节空间向量的运算法则(40分钟)1.通过实例引导,让学生掌握向量的加法、减法、数量积和向量积的运算法则。
2.类比二维向量,在立体几何实例中引入空间向量运算,帮助学生理解和应用空间向量运算。
第三节空间向量在立体几何中的应用(40分钟)1.通过立体几何实例,引导学生运用空间向量解决立体几何问题。
2.给学生创设情境,让学生在小组合作的形式下,互相讨论和解决立体几何问题。
3.设计不同难度的立体几何问题,让学生进行综合运用,提高解决问题的能力。
第四节拓展课程与归纳总结(40分钟)1.设计拓展课程,引导学生发现和探究空间向量在其他学科中的应用,如物理、工程等领域。
2.巩固和总结空间向量的知识点,通过小测验和思维导图等方式,让学生检验和反思自己的学习效果。
五、教学资源准备:1.多媒体教学设备和教学课件。
2.各类立体几何教具和实物模型。
3.教科书及参考资料。
六、教学评价与反思:1.课堂提问与讨论,根据学生的回答和互动评价学生的理解和能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间向量与立体几何一、知识网络:二.考纲要求:(1)空间向量及其运算① 经历向量及其运算由平面向空间推广的过程;② 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;③ 掌握空间向量的线性运算及其坐标表示;④ 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。
(2)空间向量的应用① 理解直线的方向向量与平面的法向量;② 能用向量语言表述线线、线面、面面的垂直、平行关系;③ 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理);④ 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。
三、命题走向本章内容主要涉及空间向量的坐标及运算、空间向量的应用。
本章是立体几何的核心内容,高考对本章的考查形式为:以客观题形式考查空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。
预测10年高考对本章内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处理角和距离将是主要方法,在复习时应加大这方面的训练力度。
第一课时空间向量及其运算一、复习目标:1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。
二、重难点:理解空间向量的概念;掌握空间向量的运算方法 三、教学方法:探析类比归纳,讲练结合 四、教学过程 (一)、谈最新考纲要求及新课标高考命题考查情况,促使积极参与。
学生阅读复资P128页,教师点评,增强目标和参与意识。
(二)、知识梳理,方法定位。
(学生完成复资P128页填空题,教师准对问题讲评)。
1.空间向量的概念向量:在空间,我们把具有大小和方向的量叫做向量。
如位移、速度、力等。
相等向量:长度相等且方向相同的向量叫做相等向量。
表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。
说明:①由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;②平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移。
b ab a)(R a OP加法交换率:.a b b a加法结合率:).()(c b a c b a数乘分配率:.)(b a b a说明:①引导学生利用右图验证加法交换率,然后推广到首尾相接的若干向量之和;②向量加法的平行四边形法则在空间仍成立。
3.平行向量(共线向量):如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。
a 平行于b 记作a ∥b。
注意:当我们说a 、b共线时,对应的有向线段所在直线可能是同一直线,也可能是平行直线;当我们说a 、b平行时,也具有同样的意义。
共线向量定理:对空间任意两个向量a (a ≠)、b ,a ∥b 的充要条件是存在实数 使b = a(1)对于确定的 和a ,b = a 表示空间与a 平行或共线,长度为 | a |,当 >0时与a同向,当 <0时与a反向的所有向量。
(3)若直线l ∥a,l A ,P 为l 上任一点,O 为空间任一点,下面根据上述定理来推导OP 的表达式。
推论:如果 l 为经过已知点A 且平行于已知非零向量a的直线,那么对任一点O ,点P 在直线l上的充要条件是存在实数t ,满足等式 OA OP a t①其中向量a叫做直线l 的方向向量。
在l 上取a AB,则①式可化为 .)1(OB t OA t OP ②当21t 时,点P 是线段AB 的中点,则 ).(21 ③ ①或②叫做空间直线的向量参数表示式,③是线段AB 的中点公式。
注意:⑴表示式(﹡)、(﹡﹡)既是表示式①,②的基础,也是常用的直线参数方程的表示形式;⑵推论的用途:解决三点共线问题。
⑶结合三角形法则记忆方程。
4.向量与平面平行:如果表示向量a 的有向线段所在直线与平面 平行或a在 平面内,我们就说向量a 平行于平面 ,记作a ∥ 。
注意:向量a∥ 与直线a ∥ 的联系与区别。
共面向量:我们把平行于同一平面的向量叫做共面向量。
共面向量定理 如果两个向量a 、b 不共线,则向量p与向量a 、b 共面的充要条件是存在实数对x 、y ,使.b y a x p①注:与共线向量定理一样,此定理包含性质和判定两个方面。
推论:空间一点P 位于平面MAB 内的充要条件是存在有序实数对x 、y ,使,y x ④或对空间任一定点O ,有.y x ⑤在平面MAB 内,点P 对应的实数对(x, y )是唯一的。
①式叫做平面MAB 的向量表示式。
又∵.OM .OM 代入⑤,整理得.)1(y x y x ⑥由于对于空间任意一点P ,只要满足等式④、⑤、⑥之一(它们只是形式不同的同一等式),点P 就在平面MAB 内;对于平面MAB 内的任意一点P ,都满足等式④、⑤、⑥,所以等式④、⑤、⑥都是由不共线的两个向量、MB (或不共线三点M 、A 、B )确定的空间平面的向量参数方程,也是M 、A 、B 、P 四点共面的充要条件。
5.空间向量基本定理:如果三个向量a 、b 、c不共面,那么对空间任一向量,存在一个唯一的有序实数组x , y , z , 使.c z b y a x p说明:⑴由上述定理知,如果三个向量a 、b 、c不共面,那么所有空间向量所组成的集合就是R z y x c z b y a x p p 、、,|,这个集合可看作由向量a 、b 、c 生成的,所以我们把{a ,b ,c }叫做空间的一个基底,a ,b ,c都叫做基向量;⑵空间任意三个不共面向量都可以作为空间向量的一个基底;⑶一个基底是指一个向量组,一个基向量是指基底中的某一个向量,二者是相关联的不同的概念;⑷由于0可视为与任意非零向量共线。
与任意两个非零向量共面,所以,三个向量不共面就隐含着它们都不是0。
推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的有序实数组z y x 、、,使.OC z OB y OA x OP6.数量积(1)夹角:已知两个非零向量a 、b ,在空间任取一点O ,作a OA,b OB ,则角∠AOB叫做向量a 与b 的夹角,记作 b a,说明:⑴规定0≤ b a ,≤ ,因而 b a,= a b ,;⑵如果 b a ,=2,则称a 与b 互相垂直,记作a ⊥b; ⑶在表示两个向量的夹角时,要使有向线段的起点重合,注意图(1)、(2)中的两个向量的夹角不同,图(1)中∠AOB = OB OA ,, 图(2)中∠AOB = ,,从而有 ,= ,= ,.(2)向量的模:表示向量的有向线段的长度叫做向量的长度或模。
(3)向量的数量积: b a b a ,cos 叫做向量a 、b的数量积,记作b a 。
即b a = b a b a ,cos ,向量方向上的正射影在e:B A e a e a,cos ||(4)性质与运算率⑴ e a e a,cos 。
⑴()()a b a b r r r r⑵a ⊥b b a =0 ⑵b a =b a r r⑶2||.a a a ⑶()a b c a b a c r r r r r r r(三).典例解析题型1:空间向量的概念及性质例1、有以下命题:①如果向量,a b r r 与任何向量不能构成空间向量的一组基底,那么,a b r r的关系是不共线;②,,,O A B C 为空间四点,且向量,,OA OB OC uu u r uuu r uuu r不构成空间的一个基底,那么点,,,O A B C 一定共面;③已知向量,,a b c r r r 是空间的一个基底,则向量,,a b a b c r r r r r,也是空间的一个基底。
其中正确的命题是( )。
()A ①② ()B ①③ ()C ②③ ()D ①②③A BO (解析:对于①“如果向量,a b r r 与任何向量不能构成空间向量的一组基底,那么,a b r r的关系一定共线”;所以①错误。
②③正确。
题型2:空间向量的基本运算例2、如图:在平行六面体1111D C B A ABCD 中,M为11C A 与11D B 的交点。
BM 相等的向量是( )若AB a u u u r r ,AD b u u u r r ,1AA c u u u r r,则下列向量中与()A 1122a b cr r r()B 1122a b c r r r()C 1122a b cr r r()D c b a 2121 解析:显然 111)(21AA AB AD M B BB BM 1122a b c r r r ;答案为A 。
点评:类比平面向量表达平面位置关系过程,掌握好空间向量的用途。
用向量的方法处理立体几何问题,使复杂的线面空间关系代数化,本题考查的是基本的向量相等,与向量的加法.考查学生的空间想象能力。
例3、已知:,28)1(,0423p y n m x b p n m a 且p n m ,,不共面.若a ∥b,求y x ,的值.解: a ∥b,,且,,0a b a 即.42328)1(p n m p y n m x 又p n m,,不共面,.8,13,422831y x yx 点评:空间向量在运算时,注意到如何实施空间向量共线定理。
例4、底面为正三角形的斜棱柱ABC -A 1B 1C 1中,D 为AC 的中点,求证:AB 1∥平面C 1BD.证明:记,,,1AA 则CC DC AB21,21,111∴11AB DC ,∴11,,DC AB 共面.∵B 1 平面C 1BD, AB 1//平面C 1BD.(四)强化巩固导练1、已知正方体ABCD —A 1B 1C 1D 1中,点F 是侧面CDD 1C 1的中心,若1AA y x ,求x -y 的值.解:易求得0,21 y x y x 2、在平行六面体1111D C B A ABCD 中,M 为AC 与BD 的交点,若 11B A a , 11D A b , A 1c ,则下列向量中与B 1相等的向量是( A )。
A . 21a +21b +c B .21a +21b +c C .21a 21b +cD . 21a 21b +c 3、(2009四川卷理)如图,已知正三棱柱111ABC A B C 的各条棱长都相等,M 是侧 棱1CC 的中点,则异面直线1AB BM 和所成的角的大是 。
解析:不妨设棱长为2,选择基向量},,{1BB ,则11121,BB BC BM BA BB AB05220220522)21()(,cos 111•BB BC BA BB BM AB ,故填写o 90。