(完整版)多边形练习题.doc
多边形练习题及答案
多边形练习题及答案一、选择题(每题2分,共20分)1. 多边形是指边数大于等于几的图形?A. 2B. 3C. 4D. 52. 以下哪个图形不是多边形?A. 正方形B. 圆C. 六边形D. 五边形3. 一个多边形的内角和等于多少度?A. 180°B. 360°C. 540°D. 720°4. 正方形的内角和等于多少度?A. 180°B. 270°C. 360°D. 540°5. 一个五边形总共有多少条对角线?A. 5B. 7C. 9D. 116. 一个六边形总共有多少个内角?A. 6B. 9C. 12D. 157. 一个凹多边形的内角和可以小于多少度?A. 180°B. 270°C. 360°D. 540°8. 下列哪个图形的每条边长都相等?A. 矩形B. 五边形C. 正三角形D. 不规则四边形9. 以下哪个图形是凸多边形?A. 正方形B. 梯形C. 折线D. 正圆10. 一个六边形的对角线数目为多少?A. 9B. 12C. 15D. 18二、填空题(每题3分,共30分)1. 一个正五边形的内角和是______度。
2. 一个六边形的外角和是______度。
3. 一个四边形的一个内角是60°,则其对角角度之和为______度。
4. 一个七边形的一个内角是120°,则其外角之和为______度。
5. 一个五边形有______条对角线。
6. 一个六边形有______个内角。
7. 一个多边形的内角和为720°,则它的边数是______。
8. 一个六边形有______条边。
9. 一个多边形的外角和为360°,则它的边数是______。
10. 一个六边形有______条对角线。
三、简答题(每题10分,共40分)1. 解释凸多边形和凹多边形的概念,并举例说明。
小学多边形练习题
小学多边形练习题多边形是指有多条边的图形,它们在小学数学的学习中占据着重要的地位。
掌握多边形的性质和计算方法对于小学生来说至关重要。
下面是一些关于多边形的练习题,帮助学生们更好地理解和应用多边形的知识。
1.计算多边形的内角和a) 一个三角形内角和为多少度?b) 如果一个四边形的两个内角分别是80度和100度,其他两个内角分别是多少度?c) 一个五边形的两个内角分别是120度和130度,其他三个内角分别是多少度?2.判断正多边形a) 一个四边形的四个内角分别是90度,90度,90度和90度,它是什么类型的多边形?b) 如果一个五边形的五个内角都是108度,它是什么类型的多边形?c) 一个六边形的六个内角分别是120度,120度,120度,120度,120度和120度,它是什么类型的多边形?3.计算多边形的外角a) 一个四边形的两个外角分别是50度和130度,其他两个外角分别是多少度?b) 如果一个五边形的一个外角是80度,其他四个外角分别是多少度?c) 一个六边形的两个外角分别是110度和140度,其他四个外角分别是多少度?4.计算多边形的边长a) 一个正三角形的边长是6厘米,它的周长是多少?b) 如果一个正方形的周长是20厘米,它的边长是多少?c) 一个正五边形的边长是2厘米,它的周长是多少?5.判断多边形相似a) 两个三角形的对应内角相等,它们是相似的吗?b) 如果两个四边形的对应内角相等,它们是相似的吗?c) 两个五边形的对应内角相等,它们是相似的吗?通过以上的练习题,学生们可以巩固多边形的相关知识,并且提升他们的计算能力和逻辑思维能力。
希望学生们能够认真完成每一个题目,找到正确的答案,并在实际生活中应用多边形的知识,提高数学素养。
多边形是数学中的基础概念,掌握了多边形的性质和计算方法,对于以后的学习和应用都至关重要。
希望大家在学习过程中保持积极的态度,勇于面对困难,相信自己的能力,相信自己可以解决问题。
小学数学多边形题目100题
小学数学多边形题目100题1. 如果一个多边形的每个外角都等于45°,那么这个多边形是几边形?2. 一个n边形的内角和为1800°,则n等于多少?3. 一个正多边形的每个外角都是36°,则这个多边形是正几边形?4. 一个多边形的每个内角都等于140°,求这个多边形的边数?5. 已知一个多边形的边数是6,求它的内角和?6. 如果一个多边形的外角和为720°,那么它有多少条边?7. 一个正多边形的一个外角等于它的一个内角的1/4,求这个多边形的边数?8. 一个多边形的内角和为540°,求它的外角和?9. 如果一个正多边形的一个内角是150°,那么这个多边形有多少条边?10. 一个多边形的边数增加1,它的内角和增加多少度?11. 一个n边形的外角和等于多少?12. 一个多边形的每个外角都是60°,这个多边形有多少个外角?13. 如果一个多边形的每个内角都等于135°,求这个多边形的边数?14. 一个正多边形的每个外角都等于它的一个内角的1/5,求这个多边形的边数?15. 一个多边形的内角和与外角和之和为1800°,求这个多边形的边数?16. 一个正多边形的每个内角都等于它的一个外角的4倍,求这个多边形的边数?17. 一个多边形的内角和是外角和的3倍,求这个多边形的边数?18. 一个多边形的边数减少1,它的内角和减少多少度?19. 如果一个正多边形的所有对角线都相等,那么这个多边形是正几边形?20. 一个多边形的内角和为1080°,求它的外角和?21. 一个正多边形的每个外角都等于它的一个内角的1/3,求这个多边形的边数?22. 如果一个n边形的内角和等于它的外角和的3倍,那么n等于多少?23. 一个正多边形的一个外角为40°,则这个多边形的内角和为多少度?24. 一个多边形的边数增加2,它的内角和增加多少度?25. 一个正多边形的内角和为720°,求这个多边形的边数?26. 一个多边形的每个内角都等于120°,求这个多边形的边数?27. 如果一个多边形的外角和是内角和的一半,那么这个多边形有多少条边?28. 一个正多边形的每个内角都等于它的一个外角的5倍,求这个多边形的边数?29. 一个n边形的每个外角都等于60°,求n的值?30. 一个多边形的每个内角都等于150°,求它的外角和?31. 一个正多边形的每个外角都等于30°,求这个多边形的边数?32. 一个多边形的内角和为2160°,求它的外角和?33. 如果一个正多边形的所有边都相等,那么这个多边形是正几边形?34. 一个多边形的边数减少2,它的内角和减少多少度?35. 一个正多边形的每个内角都等于160°,求这个多边形的边数?36. 一个n边形的内角和为1440°,求n的值?37. 一个多边形的每个外角都等于它的一个内角的1/6,求这个多边形的边数?38. 一个正多边形的每个外角都等于它的一个内角的1/2,求这个多边形的边数?39. 一个多边形的内角和为900°,求它的外角和?40. 如果一个正多边形的所有内角都相等,那么这个多边形是正几边形?41. 一个n边形的每个外角都等于40°,求n的值?42. 一个多边形的边数增加3,它的内角和增加多少度?43. 一个正多边形的每个内角都等于108°,求这个多边形的边数?44. 一个多边形的内角和与外角和相等,求这个多边形的边数?45. 如果一个正多边形的所有边和所有内角都相等,那么这个多边形是正几边形?46. 一个n边形的内角和为2520°,求n的值?47. 一个正多边形的每个外角都等于36°,则它的边数是多少?48. 一个正多边形的内角和为1800°,求它的边数?49. 一个多边形的内角和是外角和的2倍,求这个多边形的边数?50. 若一个多边形的每个外角都等于45°,求这个多边形的边数?51. 一个多边形的每个内角都等于140°,求这个多边形的边数?52. 一个正多边形的一个外角等于它相邻内角的1/4,求这个多边形的边数?53. 一个多边形的内角和是1080°,求它的对角线的条数?54. 一个多边形除了一个内角外,其余各内角之和为2750°,求这个内角的度数?55. 若一个多边形的每个内角都等于135°,求这个多边形的对角线的条数?56. 一个正多边形的对角线总数是边数的2倍,求这个多边形的边数?57. 一个多边形有15条对角线,求这个多边形的边数?58. 一个多边形的每个外角都等于60°,求这个多边形的对角线的条数?59. 一个正多边形的边数是它的对角线条数的1/3,求这个多边形的边数?60. 一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数?61. 一个多边形的每个内角都等于它的相邻外角的4倍,求这个多边形的边数?62. 一个正多边形的所有对角线长都相等,求这个多边形的边数?63. 一个多边形的内角和等于它的外角和的5倍,求这个多边形的边数?64. 一个正多边形的每个外角都等于它的内角的1/5,求这个多边形的边数?65. 一个多边形的每个外角都等于30°,求这个多边形的内角和?66. 若一个多边形的内角和与外角和相等,求这个多边形的边数?67. 一个正多边形的内角和是1440°,求它的对角线的条数?68. 一个多边形的每个内角都等于150°,求这个多边形的外角和?69. 一个多边形的边数是它的对角线条数的1/4,求这个多边形的边数?70. 一个正多边形的一个外角等于它的内角的1/6,求这个多边形的边数?71. 一个正多边形的每个内角都等于120°,求它的外角和?72. 一个多边形的内角和比它的外角和的2倍多180°,求这个多边形的边数?73. 一个正多边形的对角线总数是它的边数的3倍,求这个多边形的边数?74. 一个多边形的每个外角都等于它的内角的1/3,求这个多边形的边数?75. 一个多边形的内角和等于它的外角和的4倍,求这个多边形的边数?76. 一个正多边形的一个外角等于它的内角的1/8,求这个多边形的边数?77. 一个多边形的每个外角都等于它的内角的1/3,求这个多边形的内角和?78. 一个正多边形的边数比它的对角线条数多4,求这个多边形的边数?79. 一个多边形的每个内角都等于它的相邻外角的3倍,求这个多边形的边数?80. 一个多边形的内角和等于它的边数的4倍,求这个多边形的边数?81. 一个正多边形的每个外角都等于它的内角的1/7,求这个多边形的边数?82. 一个多边形的边数比它的对角线条数少2,求这个多边形的边数?83. 一个正多边形的所有内角都相等,所有外角也都相等,求这个多边形的边数?84. 一个多边形的每个内角都等于它的相邻外角的5倍,求这个多边形的边数?85. 一个多边形的内角和是1260°,求它的边数?86. 一个正多边形的每个外角都等于它的内角的1/9,求这个多边形的边数?87. 一个多边形的内角和等于它的边数的3倍,求这个多边形的边数?88. 一个多边形的一个外角等于60°,求这个多边形的边数?89. 一个多边形的内角和是外角和的2倍,求这个多边形的边数?90. 一个多边形的内角和为1800°,求这个多边形的边数?91. 一个多边形的内角和与外角和之和为2160°,求这个多边形的边数?92. 一个正多边形的内角和为1080°,求这个多边形的边数?93. 一个正多边形的外角和为360°,求这个多边形的边数?94. 一个正多边形的一个内角为144°,求这个多边形的边数?95. 一个正多边形的一个外角为36°,求这个多边形的边数?96. 若一个多边形的内角和等于它的外角和的2倍,求这个多边形的边数?97. 若一个多边形的每个内角都等于150°,求这个多边形的边数?98. 若一个多边形的每个外角都等于45°,求这个多边形的边数?99. 一个多边形的内角和为1440°,求这个多边形的对角线的条数?100. 一个多边形的边数为8,求这个多边形的对角线的条数?。
(完整版)《多边形》练习题
《多边形》学习指导一、知识梳理【知识点一】相关概念:在同一平面内,由不在同一条直线上的假设干条(不少于3条)线段首尾顺次相接形成的图形叫做多边形。
【知识点二】相关性质: 四边形的内角和等于360°;四边形的外角和等于360°;任何一个多边形的外角和等于360°。
【知识点三】相关公式:n边形的内角和为(n-2)×180°;n边形从一个顶点引出的对角线有〔n–3〕条,将n边形分成〔n–2〕个三角形;n边形的对角线共有()n n 32条。
二、实战演练:1. 五边形的内角和为,外角和为,假设它的每一个内角的度数都相等,那么每个内角等于________,每个外角等于________;2.四边形有2条对角线,五边形有5条对角线,那么六边形有条对角线,十边形有条对角线;3.过多边形的一个顶点的所有对角线把多边形分成8个三角形,这个多边形的边数是;4.从九边形的一个顶点出发,可以画出m条对角线,它们将九边形分成n个三角形.那么m、n的值分别为,;5. 如果一个多边形的内角和是900°,那么这个多边形是_____边形;6.假设一个n 边形的每一个内角都等于150°,那么n=___________;7.假设一个多边形的每一个外角都等于40°,那么这个多边形的边数是__________;8. 四边形ABCD中,∠A,∠B,∠C,∠D的度数比为2:3:4:3,那么∠D等于;9.一个多边形的内角和是外角和的2倍,这个多边形的边数为;10.一个多边形的外角和是内角和的,这个多边形的边数为;11.一个多边形的内角和比它的外角和的2倍还大180°, 这个多边形的边数;12.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,那么∠P的度数是;13.一个多边形除一个内角外其余内角的和为810°,那么这个多边形是边形;14.如图,在四边形ABCD中,∠A=135°,∠B=∠D=90°,BC=32,AD=2, 那么四边形ABCD的面积是;AD15.机器人在一平面上从点A 处出发开始运动,规定“向前走1米再向左转60° 〞为1次运动,那么运动2021次后机器人距离出发点A 的距离为 米。
初二多边形题型试题及答案
初二多边形题型试题及答案【试题】一、选择题1. 下面哪个选项不是多边形的内角和的计算公式?A. (n-2) × 180°B. n × (n-1) × 45°C. n × 180°D. 360°2. 一个多边形的外角和是多少度?A. 180°B. 360°C. 540°D. 720°3. 如果一个多边形的边数增加1倍,其内角和会如何变化?A. 增加1倍B. 增加2倍B. 保持不变D. 无法确定二、填空题4. 若一个多边形的边数为n,其内角和为______。
5. 一个正五边形的每个内角的度数是______。
三、解答题6. 一个多边形的内角和为2340°,求这个多边形的边数。
7. 如果一个多边形的每个外角都是40°,求这个多边形的边数。
【答案】一、选择题1. 答案:B。
多边形的内角和的计算公式是(n-2) × 180°,其中n是多边形的边数。
2. 答案:B。
任何多边形的外角和总是等于360°。
3. 答案:A。
如果一个多边形的边数增加1倍,其内角和也会增加1倍。
二、填空题4. 答案:(n-2) × 180°。
这是多边形内角和的通用公式。
5. 答案:108°。
正多边形的每个内角可以通过公式(n-2) × 180°/ n计算,对于正五边形,n=5,所以每个内角是(5-2) × 180° / 5= 108°。
三、解答题6. 解:设多边形的边数为n,根据内角和公式,我们有 (n-2) × 180° = 2340°。
解这个方程,我们得到 n-2 = 2340° / 180° = 13,所以 n = 15。
这个多边形有15条边。
多边形练习题
多边形班级: 学号: 姓名: 成绩:一、填空题每小题3分,共21分1、在△ABC 中,∠A=20,∠B =∠C,则∠B = 度.2、正多边形的内角和等于720,那么这个正多边形的一个外角等于 度.3、1∠1= 度 2∠1= 度 3∠1= 度4、从五边形的顶点出发,共可以画 条对角线5、已知等腰三角形的两边长是4和10,则它的周长是6、一个五边形有三个内角是直角,另两个内角都等于,则 n 的值为7、在△ABC 中,若AB =2,BC =3,AC 边长为奇数,则AC 边长为二、选择题每小题3分,共18分8、下列各个度数中,不可能是多边形的内角和的是 .A600 B720 C900 D10809、若多边形的边数由3增加到5,则其外角和的度数 .A 增加B 减少C 不变D 不能确定10、下列正多边形不能拼成一个平面的是 .A 正三角形B 正方形C 正六边形D 正十边形11、在△ABC 中,符合下列条件但不能判定它是直角三角形的是 .A ∠A+∠B =90° B ∠A 、∠B 、∠C 的度数之比是1:2:3C ∠A =2∠B =3∠CD ∠A +∠B =2∠C12、若等腰三角形的底边长为8,则腰长的取值范围是 .A 大于4且小于8B 大于4且小于16C 大于8且小于16D 大于413、正多边形的一个外角为36度,则它的边数是A 10B 6 C5 D8三、作出△ABC 的三条高9分(第3题)A BC四、每空1分,共24分1、如图1,D 是△ABC 的BC 边上一点,∠B =∠BAD ,∠ADC=80°,∠BAC =70°.求:1∠B 的度数;2∠C 的度数.解 1∵∠ADC 是△ABD 的外角已知∴∠ADC =∠ +∠BAD 三角形的一个外角等于 .又∵∠B =∠BAD ,∠ADC =80°∴∠B =80°÷ = °.2在△ABC 中,∵∠B +∠ +∠C =180°三角形的 ,∴∠C =180°-∠B -∠BAC=180°- - 70°=2、如图,在直角△ABC 中,CD 是斜边AB 上的高,∠BCD =35°,求1∠EBC 的度数. 2∠A 的度数.解:1∵CD 是斜边AB 上的高∴∠CDB=∵在△BDC 中,∠EBC=∠CDB+∠∴∠EBC= °+ °等量代换.2∵在△ABC 中,∠EBC=∠A+∠∴∠A=∠EBC-∠ 等式的性质又∵△ABC 是直角三角形,∠ACB= °∴∠A= °- °= °五、10分如图,△ABC 中,∠ACD=70°,∠B=∠BAC,AE 是∠BAC 的平分线,AD 是BC 边上的高,求∠B 和∠DAE 的度数新课标第一网图1 A B C D E (第2题)六、10分如图,已知△ABC的两条高BE、CF相交于点D,∠A=40, 求∠BDC的度数七、请用正三角形和正六边形组合设计出两种不同的铺满整个地面的图案,并在所给方格中画出示意图,涂上你喜欢的颜色.8分。
多边形的面积练习题(打印版)
多边形的面积练习题(打印版)# 多边形的面积练习题## 一、选择题1. 已知一个三角形的底边长为10厘米,高为6厘米,其面积是()。
- A. 30平方厘米- B. 60平方厘米- C. 90平方厘米- D. 120平方厘米2. 如果一个平行四边形的底边长为8米,高为5米,其面积是()。
- A. 32平方米- B. 40平方米- C. 50平方米- D. 64平方米3. 一个梯形的上底为3厘米,下底为7厘米,高为4厘米,其面积是()。
- A. 12平方厘米- B. 14平方厘米- C. 16平方厘米- D. 20平方厘米## 二、填空题1. 一个正六边形的边长为 \( a \) 厘米,其面积公式为\( \frac{3\sqrt{3}}{2}a^2 \) 平方厘米。
2. 一个矩形的长为 \( l \) 米,宽为 \( w \) 米,其面积为 \( lw \) 平方米。
3. 已知一个圆的半径为 \( r \) 厘米,其面积为 \( \pi r^2 \) 平方厘米。
## 三、计算题1. 计算一个底边长为15厘米,高为8厘米的等腰三角形的面积。
2. 一个长方形的长为20厘米,宽为10厘米,请计算其面积。
3. 一个梯形的上底为4米,下底为10米,高为6米,求其面积。
## 四、应用题1. 一个花园的形状是一个梯形,上底为20米,下底为30米,高为15米。
如果每平方米的草坪成本为50元,请计算铺设整个花园草坪的总成本。
2. 一个长方形的游泳池,长为50米,宽为25米。
如果游泳池需要重新铺设瓷砖,每平方米的瓷砖成本为80元,请计算重新铺设瓷砖的总成本。
3. 一个圆形花坛的半径为10米,如果需要在花坛周围铺设一圈宽为1米的石子路,求石子路的面积。
## 五、探究题1. 探究正多边形的面积公式与其边数的关系。
2. 如果一个多边形的内角和为 \( (n-2) \times 180^\circ \),其中 \( n \) 为边数,探究其面积公式。
初中多边形经典练习题(含详细答案)
初中多边形经典练习题(含详细答案)一、选择题1. 根据图形的特征,下列哪个图形是多边形?A. 圆形B. 椭圆C. 正方形D. 梯形答案:C. 正方形解析:多边形是由线段组成的闭合图形,而正方形是一个有四条相等边的多边形。
2. 下列哪个图形不是凸多边形?A. 正三角形B. 正方形C. 长方形D. 梯形答案:D. 梯形解析:凸多边形是指所有内角均小于180度的多边形,梯形的一个内角是直角,因此不是凸多边形。
二、填空题3. 有一个五边形,其中三个内角分别为82°、95°和120°,求另外两个内角的度数。
答案:83°和120°解析:五边形的内角和为540°,已知三个内角分别为82°、95°和120°,将它们相加得到297°,所以另外两个内角的度数为540° - 297° = 243°,再分别减去已知角度82°和95°即可得到答案。
4. 在一个正五边形中,每个内角的度数是多少?答案:108°解析:正五边形的内角和为540°,而正五边形的每个内角是相等的,所以每个内角的度数为540° / 5 = 108°。
三、解答题5. 已知一个凸五边形的一个内角是132°,其他四个内角分别是95°、110°、115°和138°,求该凸五边形的内角和。
答案:590°解析:凸五边形的内角和为540°,已知一个内角是132°,其他四个内角的度数之和为95° + 110° + 115° + 138° = 458°,所以该凸五边形的内角和为540° - 132° - 458° = 590°。
(完整版)正多边形练习题
(完整版)正多边形练习题
(完整版) 正多边形练题
1. 问题描述
本题中,我们将练计算正多边形的面积和周长。
请按照以下步骤求解问题。
2. 步骤
步骤 1:确定正多边形的边长
首先,从问题中获取正多边形的边长。
假设正多边形的边长为*a*。
步骤 2:计算正多边形的面积
根据正多边形的性质,可以使用以下公式计算其面积:
面积= (a^2 * n) / (4 * tan(π/n))
其中,
- *n* 是正多边形的边数,
- π 是圆周率。
步骤 3:计算正多边形的周长
根据正多边形的性质,可以使用以下公式计算其周长:周长 = a * n
其中,
- *n* 是正多边形的边数。
3. 示例和解答
为了更好地理解上述步骤,我们来看一个具体的例子。
假设正六边形的边长 *a* = 5 cm,我们可以按照以下步骤求解问题:
步骤 1:确定正多边形的边长
*a* = 5 cm
步骤 2:计算正多边形的面积
通过上述公式计算得到:
面积= (5^2 * 6) / (4 * tan(π/6))
≈ 38.77 cm^2
步骤 3:计算正多边形的周长
通过上述公式计算得到:
周长 = 5 * 6
= 30 cm
因此,正六边形的面积约为 38.77 平方厘米,周长为 30 厘米。
4. 总结
本文档在解决正多边形的面积和周长问题时,介绍了一套计算步骤。
通过计算正多边形的边长、面积和周长,我们可以更好地理解和解决相关问题。
八年级数学上册多边形训练题(含答案)
八年级数学上册多边形训练题(含答案)一.选择题(共11小题)1.八边形的内角和为()A.180°B.360°C.1080°D.1440°2.已知一个正多边形的每个外角等于60°,则这个正多边形是()A.正五边形B.正六边形C.正七边形D.正八边形3.正n边形每个内角的大小都为108°,则n=()A.5 B.6C.7D.84.已知一个多边形的内角和等于它的外角和,则这个多边形的边数为()A.3 B.4C.5D.65.一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是()A.27 B.35 C.44 D.546.下列图形中,多边形有()A.1个B.2个C.3个D.4个7.七边形的对角线共有()A.10条B.15条C.21条D.14条8.从一个多边形的任何一个顶点出发都只有5条对角线,则它的边数是()A.6 B.7C.8D.99.在六边形内任取一点,把这个点与六边形的各顶点分别连接可以得到()A.4个三角形B.5个三角形C.6个三角形D.7个三角形10.过多边形某个顶点的所有对角线,将这个多边形分成7个三角形,这个多边形是()A.八边形B.九边形C.十边形D.十一边形11.如图,正四边形有2条对角线,正五边形有5条对角线,正六边形有9条对角线,则正十边形有()条对角线.A.27 B.35 C.40 D.44二.填空题(共8小题)12.十边形有个顶点,从一个顶点出发可画条对角线,它共有条对角线.13.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是边形.14.一个四边形截去一个角后变成.15.一个多边形的内角和是外角和的2倍,则这个多边形的边数为.16.如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=.17.如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2=.18.若正多边形的一个内角等于140°,则这个正多边形的边数是.(16题图)(17题图)(19题图)19.如图,小明从A点出发,沿直线前进12米后向左转36°,再沿直线前进12米,又向左转36°…照这样走下去,他第一次回到出发地A点时,一共走了米.三.解答题(共6小题)20.如果一个多边形的各边都相邻,且各内角也都相等,那么这个多边形就叫做正多边形.如图,就是一组正多边形,观察每个正多边形中∠α的变化情况,解答下列问题:(1)将下面的表格补充完整:正多边形边数 3 4 5 6 …n∠α的度数60°45°…(2)根据规律,是否存在一个正多边形,其中的∠α=21°?若存在,请求出n的值,若不存在,请说明理由.21.在一个正多边形中,一个内角是它相邻的一个外角的3倍.(1)求这个多边形的每一个外角的度数.(2)求这个多边形的边数.22.观察下面图形,解答下列问题:(1)观察规律,把下表填写完整:边数三四五六七…n对角线条数0 2 5 …(2)若一个多边形的内角和为1440°,求这个多边形的边数和对角线的条数.23.如图,(1)在图1中,猜想:∠A1+∠B1+∠C1+∠A2+∠B2+∠C2=度.并试说明你猜想的理由.(2)如果把图1称为2环三角形,它的内角和为:∠A1+∠B1+∠C1+∠A2+∠B2+∠C2;图2称为2环四边形,它的内角和为∠A1+∠B1+∠C1+∠D1+∠A2+∠B2+∠C2+∠D2;图3称为2环5五边形,它的内角和为∠A1+∠B1+∠C1+∠D1+∠E1++∠A2+∠B2+∠C2+∠D2+∠E22-1-c-n-j-y请你猜一猜,2环n边形的内角和为度(只要求直接写出结论).24.(1)如图1,已知△ABC为直角三角形,∠A=90°,若沿图中虚线剪去∠A,则∠1+∠2等于。
多边形及其内角和练习题及答案
7.3 多边形及其内角和(检测时间50分钟满分100分)一、选择题:(每小题3分,共24分)1.一个多边形的外角中,钝角的个数不可能是( ) A.1个 B.2个 C.3个 D.4个2.不能作为正多边形的内角的度数的是( ) A.120 B.(12847)°C.144 D.145°3.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是( )A.2:1B.1:1C.5:2D.5:44.一个多边形的内角中,锐角的个数最多有( )A.3个 B.4个 C.5个 D.6个5.四边形中,如果有一组对角都是直角,那么另一组对角可能( )A.都是钝角;B.都是锐角C.是一个锐角、一个钝角D.是一个锐角、一个直角6.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是( )A.十三边形B.十二边形C.十一边形D.十边形7.若一个多边形共有十四条对角线,则它是( )A.六边形B.七边形C.八边形D.九边形8.若一个多边形除了一个内角外,其余各内角之和为2570°,则这个内角的度数为( ) A.90° B.105° C.130° D.120°二、填空题:(每小题3分,共15分)1.多边形的内角中,最多有________个直角.2.从n边形的一个顶点出发,最多可以引______条对角线, 这些对角线可以将这个多边形分成________个三角形.3.如果一个多边形的每一个内角都相等,且每一个内角都大于135°, 那么这个多边形的边数最少为________.4.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为9:2,则这个多边形的边数为_________.5.每个内角都为144°的多边形为_________边形.三、基础训练:(每小题12分,共24分)1.如图所示,用火柴杆摆出一系列三角形图案,按这种方式摆下去,当摆到20层(n=20)时,需要多少根火柴? 2.一个多边形的每一个外角都等于24°,求这个多边形的边数.四、提高训练:(共15分)一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:n,其中m,n是互质的正整数,求这个多边形的边数(用m,n表示)及n的值.五、探索发现:(共18分)从n边形的一个顶点出发,最多可以引多少条条对角线?请你总结一下n边形共有多少条对角线.六、中考题与竞赛题:(共4分)(2002·湖南)若一个多边形的内角和等于1080°,则这个多边形的边数是( ) A.9 B.8 C.7 D.6n=3n=2n=17.4 课题学习镶嵌(检测时间50分钟满分100分)一、选择题:(每小题3分,共18分)1.用形状、大小完全相同的图形不能镶嵌成平面图案的是( )A.等腰三角形B.正方形C.正五边形D.正六边形2.下列图形中,能镶嵌成平面图案的是( )A.正六边形B.正七边形C.正八边形D.正九边形3.不能镶嵌成平面图案的正多边形组合为( )A.正八边形和正方形B.正五边形和正十边形C.正六边形和正三角形D.正六边形和正八边形4.如图所示,各边相等的五边形ABCDE中,若∠ABC=2∠DBE,则∠ABC等于( )A.60°B.120°C.90°D.45°5.用正三角形和正十二边形镶嵌,可能情况有( )A.1种B.2种C.3种 C.4种6.用正三角形和正六边形镶嵌,若每一个顶点周围有m个正三角形、n 个正六边形,则m,n满足的关系式是( )A.2m+3n=12B.m+n=8C.2m+n=6D.m+2n=6二、填空题:(每小题4分,共12分)1.用正三角形和正六边形镶嵌,在每个顶点处有_______个正三角形和_____ 个正六边形,或在每个顶点处有______个正三角形和________个正六边形.2.用正多边形镶嵌,设在一个顶点周围有m个正方形、n个正八边形,则m=_____,n=______.3.用一种正五边形或正八边形的瓷砖_______铺满地面.(填“能”或“不能”)三、基础训练:(每小题15分,共30分)1.计算用一种正多边形拼成平整、无隙的图案,你能设计出几种方案?画出草图.2.用一个正方形、一个正五边形、一个正二十边形能否镶嵌成平面图案? 说明理由.四、提高训练:(共15分)请你设计在每一个顶点处由四个正多边形拼成的平面图案, 你能设计出多少种不同的方案?五、探索发现:(共15分)如图2所示的地面全是用正三角形的材料铺设而成的.(1)用这种形状的材料为什么能铺成平整、无隙的地面?(2)像上面那样铺地砖,能否全用正十边形的材料?为什么?(3)你能不能另外想出一种用多边形(不一定是正多边形)的材料铺地面的方案?把你想到的方案画成草图.六、中考题竞赛题:(共10分)用黑、白两种颜色的正六边形地砖按如图3所示的规律,拼成若干个图案.(1)第四个图案中有白色地砖_______块;(2)第n个图案中有白色地砖________块.EBA答案:一、1.C 2.A 3.C 4.A 5.A 6.D二、1.2 2 4 1 2.1 2 3.不能三、略四、略五、(1)每个顶点周围有6个正三角形的内角,恰好组成一个周角.(2)不能,因为正十边形的内角不能组成360°.(3)能(图略)六、(1)18 (2)4n+2.答案:一、1.D 2.D 3.D 4.A 5.C 6.A 7.B 8.C二、1.4 2.(n-3) (n-2) 3.9 4.11 5.十三、1.630根 2.15四、边数为2()m nn+,n=1或2.五、(n-3)(3)2n n-条六、B.。
多边形练习题及答案
多边形练习题及答案多边形练习题及答案几何学是数学中的一个分支,研究空间和形状的关系。
其中,多边形是几何学中的一个重要概念。
多边形是由一系列直线段组成的封闭图形,它的边数和顶点数可以根据具体情况而定。
在几何学中,多边形的性质和计算方法是非常重要的,下面将介绍一些多边形的练习题及答案。
练习题一:计算多边形的周长题目:一个正五边形的边长为6cm,请计算它的周长。
解答:正五边形是一个有五条边的多边形,每条边的长度相等。
根据题目给出的信息,我们可以知道正五边形的边长为6cm。
由于正五边形的边数为5,所以它的周长等于5乘以边长。
因此,周长=5×6=30cm。
练习题二:计算多边形的面积题目:一个正六边形的边长为8cm,请计算它的面积。
解答:正六边形是一个有六条边的多边形,每条边的长度相等。
根据题目给出的信息,我们可以知道正六边形的边长为8cm。
正六边形可以分成六个等边三角形,每个三角形的底边为边长,高等于边长乘以根号3的一半。
因此,每个三角形的面积为(8×8×√3)/2=32√3。
由于正六边形有六个等边三角形,所以它的面积等于6乘以每个三角形的面积。
因此,面积=6×32√3=192√3。
练习题三:判断多边形的类型题目:判断下列多边形的类型,并给出理由。
1. 边长分别为3cm、4cm、5cm的三角形。
2. 边长分别为6cm、6cm、6cm、6cm的四边形。
3. 边长分别为4cm、4cm、4cm、4cm、4cm、4cm的六边形。
解答:1. 边长分别为3cm、4cm、5cm的三角形是一个不等边三角形。
因为三角形的三条边长不相等,所以它是不等边三角形。
2. 边长分别为6cm、6cm、6cm、6cm的四边形是一个等边四边形。
因为四边形的四条边长都相等,所以它是等边四边形。
3. 边长分别为4cm、4cm、4cm、4cm、4cm、4cm的六边形是一个等边六边形。
因为六边形的六条边长都相等,所以它是等边六边形。
(完整版)二年级数学上册多边形的初步认识练习题
(完整版)二年级数学上册多边形的初步认识练习题一、选择题1. 下列图形中属于多边形的是()A. 圆形B. 三角形C. 梯形D. 椭圆形2. 小明用彩纸剪下了一个六边形,他发现六边形有()个边A. 4B. 5C. 6D. 73. 以下哪个图形是一个四边形?()A. 正方形B. 梯形C. 圆形D. 三角形4. 一个图形有3个直角,那它是以下哪个图形?()A. 三角形B. 梯形C. 四边形D. 圆形5. 以下哪个图形是一个五边形?()A. 正方形B. 梯形C. 椭圆形D. 五边形二、填空题1. 一个三角形有()个顶点2. 一个八边形有()个直角3. 一个图形有4个边,并且没有直角,那它是一个()4. 一个图形有6个边,并且所有边的长度都相等,那它是一个()5. 一个图形有4个边,并且有两个直角,那它是一个()三、解答题1. 画出一个三角形,并标出它的三个顶点。
2. 画出一个四边形,并标出它的四个顶点。
3. 画出一个五边形,并标出它的五个顶点。
4. 画出一个六边形,并标出它的六个顶点。
5. 画出一个七边形,并标出它的七个顶点。
四、挑战题1. 小明画了一个图形,它有8个边,其中有4个边的长度相等,另外4个边的长度也相等,这个图形是什么?2. 小红用彩纸剪下了一个图形,她发现这个图形有5个边,其中有3个边的长度相等,另外2个边的长度也相等,并且有3个直角,这个图形是什么?3. 小刚用定规画出了一个图形,他发现这个图形有6个边,其中有5个边的长度相等,另外1个边的长度不相等,并且没有直角,这个图形是什么?。
多边形练习题(二)
多边形练习题(二)一.填空题1已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为 .2.n 边形的内角和=________度,外角和=_______度。
3.从n 边形(n>3)的一个顶点出发,可以画_______条对角线,.这些对角线把n 边形分成______三角形,分得三角形内角的总和与多边形的内角和_______。
.4.如果一个多边形的内角和与它的外角和相等,那么这个多边形是____边形。
5.如果一个多边形的内角和等于它的外角和5倍,那么这个多边形是____边形。
6.若n 边形的每个内角都是150°,则n=____。
7.一个多边形的每个外角都是36°,这个多边形是______边形。
8.如果一个多边形的每个内角都相等,且内角的度数是与它相邻的外角度数的2倍,那么这个边形的每个内角是_____度,其内角和等于______度。
9.若一个多边形的内角和是1800°,则这个多边形的边数是_______。
10.已知一个多边形的内角和是2340度,请你判定这个多边形是 边形。
11.等腰三角形两条边长为25、12,则其周长为12.如果一个三角形的3个外角的度数之比是2:3:4,则其相邻内角的度数比为13.用多种正多边形拼地板,关键是看这几个正多边形的内角加起来要等于14.正十边形的每一个内角的度数等于15. 4条线段的长度分别为2,3, 4,5,任选3条线段可以组成 个三角形。
16.用正三角形和正四边形作平面镶嵌,在一个顶点周围,可以有 个在三角形和 个正四边形。
17.用正三角形和正方形组合能够铺满地面,每个顶点周围有 个正三角形和 个正方形。
18.任意的三角形、 也能铺满平面。
19.在各个内角都相等的多边形中,一个外角等于一个内角的13,则这个多边形的每个内角为 度。
20.三角形的三边长分别为5,1+2x ,8,则x 的取值范围是___。
21.四边形ABCD 中,若∠A +∠C =180°,∠B ∶∠C ∶∠D =1∶2∶3,则∠A =__22.多边形的外角和是___,若边数为n ,则每个外角为___。
(完整版)多边形练习题
七年级下册多边形练习题一、填空题(每小题2分,共24分)1、如图所示,∠B=350,∠ACD=1200,则∠A =________度。
2、等腰三角形的两条边长分别为8cm和3cm,则它的周长是__________。
3、△ABC的三边长为6、7、x,则x的取值范围是_______________。
4、一个多边形的每一个外角等于300,则这个多边形为___________边形。
5、当多边形边数增加一条边时,其内角和增加___________度。
6、若正多边形的一个外角等于其一个内角的7、若多边形的外角和等于其内角和的2,则这个多边形的内角和是___________。
52,则这个多边形的边数是___________。
38、若三角形的三个内角的比为1:2:3,则这个三角形是___________三角形。
9、如图所示,∠1=∠C+________,∠2=∠B+___________。
∠A+∠B +∠C +∠D+∠E= ________+∠1+∠2=________度。
10、若四边形ABCD中,∠A:∠B:∠C:∠D=3:6:4:7,则这个四边形中互相平行的两边是___________11、如图所示,D是BC边上的中点,△ABC的面积为8cm2,则△ABD的面积为___________cm2。
12、如图所示,∠A =350,∠B=250,∠C=550,则∠BCD= __________度。
二、选择题(每小题3分,共18分)13、一个三角形三个内角中至少有()A、一个直角;B、一个钝角;C、三个锐角;D、两个锐角14、下列各组线段中,能组成一个三角形的是()A、15cm、10cm、5cm;B、4cm、5cm、10cmC、3cm、8cm、5cmD、3cm、4cm、5cm15、各内角相等的n边形的一个外角等于()1800(n-2)36003600(n-2)1800A、B、C、D、nn n n16、n边形所有的对角线条数是()n(n-1)n(n-2)n(n-3)n2A、B、C、D、222217、下列正多边形中,不能够铺满地面的是()。
多边形练习题
多边形练习题一、选择题1.下列长度的三条线段能组成三角形的是()A. 1、2、3B. 3、3、7C. 20、15、8、D. 5、15、8 2.如果三角形的三个内角的度数比是2 : 3 : 4,则它是()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 钝角或直角三角形3. 如果将一副三角板按如图方式叠放,那么∠1等于()A. 120°B. 105°C. 60°D. 45°(第三题)(第七题)(第八题)4. 一个多边形的每个内角都相等,每个内角与相邻外角的差为100°,那么这个多边形是()A、七边形B、八边形C、九边形D、十边形5. 如果一个等腰三角形的周长为15cm,一边长为3cm,那么腰长为()A、3cmB、6cmC、5cmD、3cm或6cm6. 在下列正多边形组合中,不能铺满地面的是()A. 正八边形和正方形B. 正五边形和正八边形C. 正六边形和正三角形D. 正三角形和正方形7.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB 重合于线段E0,若∠DOF=142°,则∠C的度数为( )A. 38°B. 39°C.42°D.48°8如图,△ABC的面积为1。
第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连结A1,B1,C1,得到△A1B1C1。
第二次操作:分别延长A1B1,B1C1,C1A1 至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C 2A 1=C 1A 1,顺次连结A 2,B 2,C 2,得到△A 2B 2C 2,…按此规律,要使得到的三角形的面积超过2017,最少经过次操作( ) A. 4 B. 5 C. 6 D. 7 9. 如图,∠ABC=∠ACB , AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外 角∠ACF 。
(完整版)多边形及其内角和练习题(答案).doc
多边形及其内角和练习一、选择题1.从 n 边形的一个顶点出发共有对角线()A . ( n- 2) 条B. ( n- 3) 条C.( n- 1) 条D. ( n- 4) 条2.如图,图中凸四边形有()A . 3 个B . 5 个C. 2 个D. 6 个3.下列图形中,是正多边形的是( )A .三条边都相等的三角形B .四个角都是直角的四边形C.四边都相等的四边形 D .六条边都相等的六边形4.四边形的内角和等于()A . 180°B .270°C. 360°D . 150°5.一个多边形的内角和与外角和之和为2520°,这个多边形的边数为()A . 12B . 13 C.14 D . 156.当多边形的边数增加 1 时,它的内角和与外角和()A .都不变B .内角和增加 180°,外角和不变C.内角和增加 180°,外角和减少 180°D.都增加 180°7. ( 湖南郴州 ) 如图所示,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+ ∠2 的度数为 ( )A . 135°B .240°C. 270° D . 300°二、填空题8.一个多边形的每一个外角的度数等于与其邻角的度数的1,则这个多边形是边形. 39.从 n 边形的一个顶点出发可作________条对角线,从n 边形 n 个顶点出发可作________ 条对角线,除去重复作的对角线,则n 边形的对角线总数为________条.10.在有对角线的多边形中,边数最少的是________边形,它共有________条对角线.11.若一凸多边形的内角和等于它的外角和,则它的边数是________.12.一个多边形的内角和为5040°,则这个多边形是____边形,共有 _____条对角线.三、解答题13.已知多边形的边数恰好是从这个多边形的一个顶点出发的对角线条数的 2 倍,求此多边形的边数.14.如图所示,根据图中的对话回答问题.问题: ( 1) 王强是在求几边形的内角和?( 2) 少加的那个内角为多少度?15.如图,某学校一块草坪的形状是三角形( 设其为△ ABC ) .李俊同学从BC 边上的一点 D 出发,沿DC→ CA →AB → BD 的方向走了一圈回到点 D 处.问:李俊从出发到回到原处在途中身体转过的角度是多少?【答案与解析】一、选择题1.【答案】 B ;2.【答案】 A;【解析】四边形 ABOD、 ABCO、 ABCD3.【答案】 A ;【解析】正多边形:各边都相等,各角都相等4.【答案】 C;【解析】代入公式进行计算即可5.【答案】 C;【解析】由 180(n 2) 360 2520 ,解得:n146.【答案】 B;【解析】当多边形的边数增加1 时,内角和增加 180°,外角和不变7.【答案】 C;二、填空题8.【答案】八 .【解析】设每个外角为 x ,则x (180 x) 1,解得x 45 ,而多边形边数3n 3608 ..459. 【答案】 n- 3 n( n- 3) n(n 3) ;210.【答案】四, 2;11.【答案】 4;12.【答案】三十, 405;三、解答题13.【解析】解:设多边形的边数为n,根据题意,有:n= 2( n- 3) ,解得 n= 6,故这个多边形的边数为6.14.【解析】解: ( 1) 因为 1140°÷ 180°=61,故王强求的是九边形的内角和;3( 2) 少加的内角的度数为( 9- 2) · 180° - 1140°= 120°.15.【解析】解: 360° ( 提示;由任何多边形的外角和为 360°,可知李俊从出发到回到原处在途中身体转过的角度是 360°. )。
多边形及其内角和练习题(含答案)
9.2 多边形的内角和与外角和练习一一、填空题1.若一凸多边形的内角和等于它的外角和,则它的边数是______.2.五边形的内角和等于______度.3.十边形的对角线有_____条.4.正十五边形的每一个内角等于_______度.5.内角和是1620°的多边形的边数是___.6.用正n边形拼地板,则n的值可能是_______. 二、选择题7.一个多边形的内角和是720°,则这个多边形是( )A.四边形B.五边形C.六边形D.七边形8.一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是( ) A.5 B.6 C.7 D.89.若正n边形的一个外角为60°,则n的值是( ) A.4 B.5 C.6 D.810.下列角度中,不能成为多边形内角和的是( )A.600°B.720°C.900°D.1080°11.若一个多边形的内角和与外角和之和是1800°,则此多边形是( )A.八边形B.十边形C.十二边形D.十四边形12.用下列两种正多边形能拼地板的是( )A.正三角形和正八边形B.正方形和正八边形C.正六边形和正八边形D.正十边形和正八边形三、解答题13.一个多边形的每一个外角都等于45°,求这个多边形的内角和.14.已知一个多边形的内角和是1440°,求这个多边形的对角线的条数.15.一个多边形,除一个内角外,其余各内角之和等于1000°,求这个内角及多边形的边数.11.3 多边形及其内角和16.一个多边形中,每个内角都相等,并且每个外角等于它的相邻内角的2/3, 求这个多边形的边数及内角和.17.如图,一个六边形的六个内角都是120°,AB=1,BC=CD=3,DE=2,求该六边形的周长.19.若两个多边形的边数之比是1:2,内角和度数之比为1:3, 求这两个多边形的边数.20.如果多边形恰有四个内角是钝角,那么多边形的边数共有几种可能? 其中最多是几边形?最少是几边形?21.下列地板是由正方形、正六边形、正十二边形拼成的,试说明由这三种正多边形能拼地板的理由.22.已知四边形ABCD中,∠A:∠B=7:5,∠A-∠C=∠B,∠C=∠D-40°, 求各内角的度数.23.一个多边形除了一个内角等于α,其余角的和等于2750°,求这个多边形的边数及α.21.下列地板是由正方形、正六边形、正十二边形拼成的,试说明由这三种正多边形能拼地板的理由.22.已知四边形ABCD中,∠A:∠B=7:5,∠A-∠C=∠B,∠C=∠D-40°求各内角的度数.23.一个多边形除了一个内角等于α,其余角的和等于2750°,求这个多边形的边数及α.24.一个广场地面的一部分如图所示,地面的中央是一块正六边形的地砖, 周围用正三角形和正方形的大理石地砖拼成,从里往外共12层(不包括中央的正六边形地砖),每一层的外界都围成一个多边形.若中央正六边形地砖的边长是0.5米, 则第12层的外边界所围成的多边形的周长是多少1.四边形ABCD中,如果∠A+∠C+∠D=280°,则∠B的度数是()A.80° B.90° C.170° D.20°2.一个多边形的内角和等于1080°,这个多边形的边数是()A.9 B.8 C.7 D.63.内角和等于外角和2倍的多边形是() A.五边形B.六边形C.七边形D.八边形4.六边形的内角和等于_______度.5.正十边形的每一个内角的度数等于______,每一个外角的度数等于_______.6.如图,你能数出多少个不同的四边形?7.四边形的四个内角可以都是锐角吗?可以都是钝角吗?可以都是直角吗?•为什么?8.求下列图形中x的值:综合创新作业9.(综合题)已知:如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,•DF平分∠ADC.BE与DF有怎样的位置关系?为什么?10.(应用题)有10个城市进行篮球比赛,每个城市均派3个代表队参加比赛,规定同一城市间代表队不进行比赛,其他代表队都要比赛一场,问按此规定,•所有代表队要打多少场比赛?11.(创新题)如图,以五边形的每个顶点为圆心,以1为半径画圆,求圆与五边形重合的面积.12.(1)(2005年,南通)已知一个多边形的内角和为540°,则这个多边形为()A.三角形 B.四边形 C.五边形 D.六边形(2)(2005年,福建泉州)五边形的内角和等于_______度.13.(易错题)一个多边形的每一个顶点处取一个外角,这些外角中最多有钝角(• )A.1个 B.2个 C.3个 D.4个14.(探究题)(1)四边形有几条对角线?五边形有几条对角线?六边形有几条对角线?……猜想并探索:n边形有几条对角线?(2)一个n边形的边数增加1,对角线增加多少条?15.(开放题)如果一个多边形的边数增加1,•那么这个多边形的内角和增加多少度?若将n边形的边数增加1倍,则它的内角和增加多少度?攻其不备壁虎在一座油罐的下底边沿A处.它发现在自己的正上方──油罐上边缘的B•处有一只害虫.壁虎决定捕捉这只害虫.为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿着一条螺旋路线,从背后对害虫进行突然袭击如图7-3-5.结果,•壁虎的偷袭得到成功,获得了一顿美餐.请问:壁虎沿着螺旋线爬行是最短的路程吗(线段AB除外)?答案:1.A 点拨:∠B=360°-(∠A+∠C+∠D)=360°-280°=80°.故选A.2.B 点拨:设这个多边形的边数为n,则(n-2)·180=1080.解得n=8.故选B.3.B 点拨:设这个多边形的边数为n,根据题意,得(n-2)·180=2×360.解得n=6.故选B.4.7205.144°;36°点拨:正十边形每一个内角的度数为:(102)18010-⨯︒=144°,每一个外角的度数为:180°-144°=36°.6.有27个不同的四边形.7.解:四边形的四个内角不可以都是锐角,不可以都是钝角,可以都是直角.因为四边形的内角和为360°,如果四个内角都是锐角或都是钝角,•则内角和小于360°或大于360°,与四边形的内角和为360°矛盾.•所以四个内角不可以都是锐角或都是钝角.若四个内角都是直角,则四个内角的和等于360°,与内角和定理相符,所以四个内角可以都是直角.8.解:(1)90+70+150+x=360.解得x=50.(2)90+73+82+(180-x)=360.解得x=65.(3)x+(x+30)+60+x+(x-10)=(5-2)×180.解得x=115.9.解:BE∥DF.理由:∵∠A=∠C=90°,∴∠A+∠C=180°.∴∠ABC+∠ADC=360°-180°=180°.∵∠ABE=12∠ABC,∠ADF=12∠ADC,∴∠ABE+∠ADF=12(∠ABC+∠ADC)=12×180°=90°.又∵∠ABE+∠AEB=90°,∴∠AEB=∠ADF,∴BE∥DF(同位角相等,两直线平行).10.解:12n(n-3)=12×10×(10-3)=12×10×7=35(场).答:按此规定,所有代表队要打35场比赛.点拨:问题类似于求多边形对角线的个数.11.解:(5-2)×180°÷360°×12=1.5.点拨:不能直接求出扇形的度数,用整体法圆与五边形重合部分的角度和正好是五边形的内角和.12.(1)C 点拨:设这个多边形的边数为n,依题意,得(n-2)×180°=540°,解得n=5,故选C.(2)540 点拨:(n-2)×180°=(5-3)×180°=540°.13.C 14.解:(1)四边形有2条对角线;五边形有5条对角线;六边形有9条对角线;…… n边形有(3)2n n-条对角线.(2)当n边形的边数增加1时,对角线增加(n-1)条.点拨:从n边形的一个顶点出发,向其他顶点共可引(n-3)条对角线,n个顶点共可引n(n-3)条,但这些对角线每一条都重复了一次,故n边形的对角线条数为(3)2n n-.15.180°,n·180°.是最短的路程.可用纸板做一个模型,沿AB剪开便可看出结论.。
(完整)小学四年级正多边形练习题
(完整)小学四年级正多边形练习题小学四年级正多边形练题
一、选择题
1. 正多边形是指所有的边长相等、所有的内角相等的多边形。
下面哪个图形是正多边形?
2. 以下哪个图形是不是正三角形?
二、填空题
1. 正方形的内角是\_\_\_\_\_\_度。
2. 六边形的内角和是\_\_\_\_\_\_度。
3. 一个正五边形的外角是\_\_\_\_\_\_度。
4. 三角形的内角和是\_\_\_\_\_\_度。
5. 正六边形的外角是\_\_\_\_\_\_度。
三、解答题
1. 画一个正五边形。
2. 如果一个正多边形有7个边,那么这个多边形叫什么名字?
四、应用题
1. 根据下面的图形组合,填写空白处的数字。
a. 正三角形的内角和是\_\_\_\_\_\_度。
b. 正方形的内角是\_\_\_\_\_\_度。
五、判断题
1. 正五边形的所有边长相等。
(√ / ×)
2. 一个正六边形的内角是120°。
(√ / ×)
以上是小学四年级正多边形的练习题,请按照题目要求完成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下册多边形练习题一、填空题(每小题 2 分,共 24 分)1、如图所示,∠ B=35 0,∠ ACD=120 0 ,则∠ A =________ 度。
2、等腰三角形的两条边长分别为8cm 和 3cm ,则它的周长是 __________ 。
3、△ ABC 的三边长为 6、 7、 x ,则 x 的取值范围是 _______________ 。
4、一个多边形的每一个外角等于 300,则这个多边形为 ___________ 边形。
5、当多边形边数增加一条边时,其内角和增加2 6、若正多边形的一个外角等于其一个内角的 5___________度 。
,则这个多边形的内角和是 ___________ 。
7、若多边形的外角和等于其内角和的2,则这个多边形的边数是___________ 。
38、若三角形的三个内角的比为 1: 2:3,则这个三角形是 ___________ 三角形。
9、如图所示,∠ 1=∠ C+________ ,∠ 2=∠ B+___________ 。
∠ A+ ∠ B + ∠ C +∠ D+∠ E= ________+ ∠1+ ∠ 2=________ 度。
10、若四边形 ABCD 中,∠ A :∠ B :∠ C :∠ D=3: 6:4: 7,则这个四边形中互相平行的两边是___________11、如图所示, D 是 BC 边上的中点,△ ABC 的面积为 8cm 2,则△ ABD 的面积为 ___________cm 2 。
12、如图所示,∠ A =35 0,∠ B=25 0,∠ C=550,则∠ BCD= __________ 度。
二、选择题(每小题 3 分,共 18 分) 13、一个三角形三个内角中至少有()A 、一个直角;B 、一个钝角;C 、三个锐角;D 、两个锐角14、下列各组线段中,能组成一个三角形的是()A 、15cm 、 10cm 、 5cm;B 、 4cm 、 5cm 、 10cmC 、 3cm 、 8cm 、 5cmD 、3cm 、 4cm 、 5cm15、各内角相等的 n 边形的一个外角等于()1800 (n 2)3600 3600 (n2)1800 A 、B 、C 、D 、nnnn16、 n 边形所有的对角线条数是()n (n 1)n ( n 2) n (n 3) n 2 A 、B 、C 、2D 、22217、下列正多边形中,不能够铺满地面的是()。
A 、正三角形B 、正方形C 、正五边形D 、正六边形18、下列正多边形组合中,能够铺满地面的是()。
A 、正三角形和正五边形B 、正方形和正六边形C 、正三角形和正六边形D 、正方形和正八边形三、解答题( 58 分)19、如图,在直角三角形 ABC 中, CD 是斜边 AB 上的高,∠ BCD=35 0,求( 1)∠ EBC 的度数;( 2)∠ A 的度数对于上述问题,在以下解答过程的空白处填上适当的内容(理由或数学式) 解:∵ CD ⊥AB (已知)∴∠ CDB=___________. ∵∠ EBC=∠ CDB+∠BCD()350=__________( 等量代换 )∴∠ EBC=___________+(2)∵∠ EBC=∠ A+∠ACB( )∴∠ A=∠EBC-∠ACB(等式的性质 )∵∠ ACB=90(已知)∴∠ A=______-900=_____________( 等量代换 )20、如图,在△ ABC 中, ∠ABC=80 ∠ACB=50∠ABC∠ ACB,, BP 平分 , CP 平分,求∠BPC 的度灵敏解:∵ BP 平分∠ ABC (已知)∴ = 1 ∠ABC=1800=4 0022同理可得, =__________.∵∠ BPC + ∠PBC+∠PCB=1 800∴∠ BPC=1 800- ∠PBC-∠PCB(等式的性质 )14= 80 - 0 -_______=___________,21、如图,在∠0,△ ABC 中,D 是 AB 上一点, E 是 AC 上一点, BE 、CD 相交于点 F , A=62∠ A CD=35 0, ∠ABE=20 0。
求( 1) ∠BDC 的度数;( 2) ∠BFD 的度数解:(1)∵∠ BDC=∠ A+∠ACD( )∴∠ BDC=620 +350=97 0(等量代换)(2)∵∠ BFD ∠ BDC+∠ A)+BE=_________(1BE( 等式的性质 )∴∠ BFD=80 - ∠BDC-∠A10 97 0 200(等量代换 )= 80 -- =63A 组1. 下列说法正确的是( )( A )三角形的高是过顶点的垂线( B )按边分类 ,三角形可分为等腰三角形、不等边三角形和等边三角形 ( C )三角形的外角大于任何一个内角( D )一个三角形中至少有一个内角不大于602. 下列说法错误的个数是()..(1)钝角三角形三边上的高都在三角形的外部(2)三角形中,至少有两个锐角,最多有一个直角或钝角(3)三角形的一个外角等于它的两个内角的和(4)三角形的一个外角大于它的任何一个内角( 5)三角形的三个外角(每个顶点只取一个外角)中,钝角个数至少有 2 个(A )1 个(B ) 2 个( C) 3 个( D ) 4 个3.具备下列条件的三角形中,不是直角三角形的是()(A )(C)A B CA 90 B(B)(D)1A B C2A B904. 一个三角形的两边分别为 5 和 11,要使周长是最小的整数,则第三边的长是()( A ) 4 ( B) 6 (C) 7 ( D) 125. 如图,以三角形三个顶点为圆心画半径为 2 的圆,则阴影部分面积为()( A )( B) 2 ( C) 3 ( D) 46.用 12 根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余、重叠和折断,则能摆出不同形状的三角形的个数是()(A ) 1 ( B) 2 ( C) 3 ( D) 47. 若三角形中最大内角是60°,则这个三角形是()( A )不等边三角(B)等腰三角形(C)等边三角形(D)不能确定8.一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是()(A )三角形的稳定性(B)两点之间线段最短(C)两点确定一条直线( D )垂线段最短二、试试你的身手!(每小题 3 分,共 24 分)9. 在ABC 中, BC 边不动,点 A 竖直向上运动, A 越来越小, B 、 C 越来越大,若A 减少度,B 增加度,C 增加度,则三者、、之间的等量关系是.10.若等腰三角形的两边长分别是 3cm 和 7cm ;则这个三角形的周长是 _____cm.11. 如图所示,直线BD // EG ,ACB 28 ,AFE 50 则∠ A = .12. 如图, DC 平分ADB , EC 平分AEB .若DAE 60 ,DBE 140 ,则DCE .( 11 题图)(12 题图)13. 小华从点 A 出发向前走 10 米,向右转 36°然后继续向前走10 米,再向右转 36°,他以同样的方法继续走下去,当他走回到点 A 时共走米.14. 将一个宽度相等的纸条如图所示折叠一下, 如果 1 140 ,那么 2 __ .(14 题图)( 16 题图)15. 已知在等腰三角形 ABC 中, AB= AC,周长为27cm, AC 边上的中线 BD 把ABC分成周长差为 3cm 的两个三角形,则ABC 的底边长为.16. 如图,把一个等边三角形进行分割,第一步从图(1)到图( 2),一个三角形分为 4 个三角形;第二步从图( 2)到图( 3),将 4 个三角形分为13 个三角形 .按这个规律分割下去,第3 步分割完成后共有三、挑战你的技能!(共个三角形30 分).17.( 10 分)如图 , 已知BAD CBEACF , FDE 64 , DEF 43 ,求 ABC 各内角的度数 .18.( 10 分)如图∠ 1=∠ 2= ∠ 3=∠ 7,∠ 4= 60,∠ 5=∠ 6(1) DE 是△ BCD 的高吗?说明理由 .(2)∠ 5 的度数是多少?(3)求四边形 ABCD 各个内角度数 .19. 如图, AB∥ CD,分别探讨下面四个图形中∠APC 与∠ PAB、∠ PCD 的关系,请你从所得到的关系中任选一个加以说明 .( 1)( 2)( 3)( 4)四、拓广探索,再接再厉!(共 22 分)20. ( 11 分)一个零件的形状如图所示,按规定 A 应等于 90 , B 、 C 应分别是 30 和20 ,李叔叔量得BDC 142 , 就判定这个零件不合格,你能说出其中的道理吗?21. ( 11 分)一个正三角形后从这些点出发作两条直线,ABC ,每边长1米.在每边上从顶点开始每隔分别和其他两边平行,这些平行线相截在三角形2 厘米取一点,然ABC 中得到许多边长为 2 厘米的正三角形.( 1)求边长为 2 厘米的正三角形的个数;( 2)求所作平行线段的总长度.B组一、相信你的选择!(每小题 6 分,共 24 分)1. 下列图形中,ABC 的高画法错误的是()( A)2.如图是由10 ()(A ) 2( B)(C)(D)颗棋子组成的正三角形,如果将它变成一个倒三角形,至少要动的棋子数是( B )3 ( C) 4(D) 5( 2 题图)( 3 题图)( 4 题图)3. 如图所示 ,已知∠ 1=∠ 2,∠ 3=∠ 4,∠ C=32 ° ,∠ D =28° ,则∠ P 的度数为()(A )20( B )30(C)40( D)604.在六边形ABCDEF中,AF // CD,AB // DE,且 A 120 , B 90 ,则 C 和D 的度数分别为()( A )110、100 ( B)120、110( C)130、120 ( D)150 、 120二、试试你的身手!(每小题 6 分,共 24 分)5.如图,一个顶角为 40 的等腰三角形纸片,剪去顶角后,得到一个四边形,则 1 2 ____.6. 三角形两边长是 2和 5,第三边长整数x满足x2 7 ,则x .7. 如图, A 15 ,作线段 BC、 CD、DE ,使 AB BC CD DE,如此进行下去,一共可以得到个等腰三角形 .8.如图,一个面积为 50 平方厘米的正方形与另一个小正方形并排放在一下起,则ABC 的面积是平方厘米.三、挑战你的技能!(共 30 分)9. ( 15 分)如图,在△ABC 中,ABC 、ACB 的平分线交于O 点.① 当 A 30 时,BOC ;② 当 A 40 时,BOC ;③ A 50 时,BOC ;④ A n 时,猜测BOC ,并用所学的三角形的有关知识说明理由.10. ( 15 分)如图,已知MON 90,点A、B分别在射线OM、ON上移动,OAB的内角平分线与 OBA 的外角平分线所在直线交于点 C ,试猜想:随着 A 、 B 点的移动,ACB 的大小是否变化?说明理由.四、解答题11.如图,在△ABC 中, D 是 AB 上一点, E 是 AC 上一点, BE 、CD相交于点 F,∠ A=62 0,∠ACD=35 0,∠ABE=20 0。