金属材料与热处理考试复习笔记
金属材料及热处理考试知识点
《金属材料及热处理》考试知识点考试要求要求学生全面、系统的掌握“金属学与热处理”课程的基础理论、基本知识和基本技能,并能灵活运用金属学与热处理理论分析和解决工程的实际问题的综合能力。
考试知识点(一)金属的晶体结构1、金属的宏观特性。
2、金属的晶体结构;晶体学基础——晶体结构、空间点阵、晶格常数、晶向指数和晶面指数、晶面间距。
三种典型金属晶体结构。
3、实际金属的晶体结构;晶体缺陷——点缺陷、位错和面缺陷。
(二)纯金属的结晶1、金属结晶的基本规律——结晶的两个基本过程,冷却曲线、过冷度。
2、金属结晶的基本条件——结晶的动力学条件、热力学条件和结构条件。
3、形核——均匀形核与非均匀形核。
4、长大——液/固界面的微观结构、晶核的长大机制与晶体的长大形态及温度梯度。
5、结晶理论的应用——结晶理论在实际生产中的具体应用。
(三)合金相结构与二元相图1、合金的相结构——合金、组元、系(统)、相(变)、相平衡、固溶体与金属化合物(中间相)。
2、二元合金相图概论——相图、相律,杠杆定律的应用。
3、匀晶相图——结晶规律、平衡结晶和不平衡结晶。
4、共晶相图——结晶规律、平衡结晶的组织与不平衡结晶组织。
5、包晶相图——结晶规律、平衡结晶的组织与不平衡结晶组织。
6、金属铸锭的组织与缺陷——合金铸锭的三晶区和铸锭组织的缺陷。
(四)铁碳合金1、铁碳相图——基本相的组成及相图的特点。
2、铁碳合金的平衡结晶——铁碳合金的分类,平衡结晶过程及其组织形貌。
3、含碳量的影响——掌握含碳量对铁碳合金平衡组织、机械性能和工艺性能的影响。
(五)金属及合金的塑性变形1、金属的应力-应变曲线——应力-应变曲线、弹性极限、屈服强度、抗拉强度、延伸率和断面收缩率。
2、(金属)单晶体的塑性变形——滑移、滑移系、位错的运动和增殖、弗兰克-瑞德源、位错的交割与塞积。
3、多晶体的塑性变形——晶粒尺寸对塑性变形的影响,Hall-Patch公式。
4、合金的塑性变形——合金相对塑性变形的影响,固溶强化、弥散强化、沉淀强化、加工硬化。
(完整版)金属热处理知识点概括
(一)淬火--将钢加热到Ac3或Ac1以上,保温一段时间,使之奥氏体化后,以大于临界冷速的速度冷却的一种热处理工艺。
淬火目的:提高强度、硬度和耐磨性。
结构钢通过淬火和高温回火后,可以获得较好的强度和塑韧性的配合;弹簧钢通过淬火和中温回火后,可以获得很高的弹性极限;工具钢、轴承钢通过淬火和低温回火后,可以获得高硬度和高耐磨性;对某些特殊合金淬火还会显著提高某些物理性能(如高的铁磁性、热弹性即形状记忆特性等)。
表面淬火--表面淬火是将钢件的表面层淬透到一定的深度,而心部分仍保持未淬火状态的一种局部淬火的方法。
分类——感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火、电解液加热表面淬火、激光加热表面淬火、电子束加热表面淬火、离子束加热表面淬火、盐浴加热表面淬火、红外线聚焦加热表面淬火、高频脉冲电流感应加热表面淬火和太阳能加热表面淬火。
单液淬火——将奥氏体化后的钢件投入一种淬火介质中,使之连续冷却至室温(图9-1a线)。
淬火介质可以是水、油、空气(静止空气或风)或喷雾等。
双液淬火——双液淬火方法是将奥氏体化后的钢件先投人水中快冷至接近MS点,然后立即转移至油中较慢冷却(图9-1b线)。
分级淬火——将奥氏体化后的钢件先投入温度约为MS点的熔盐或熔碱中等温保持一定时间,待钢件内外温度一致后再移置于空气或油中冷却,这就是分级淬火等温淬火--奥氏体化后淬入温度稍高于Ms点的冷却介质中等温保持使钢发生下贝氏体相变的淬火硬化热处理工艺。
等温淬火与分级淬火的区别是:分级淬火的最后组织中没有贝氏体而等温淬火组织中有贝氏体。
根据等温温度不同,等温淬火得到的组织是下贝氏体、下贝氏体+马氏体以及残余奥氏体等混合组织。
(二)回火--将淬火后的钢/铁,在AC1以下加热、保温后冷却下来的金属热处理工艺。
回火的目的:为了稳定组织,减小或消除淬火应力,提高钢的塑性和韧性,获得强度、硬度和塑性、韧性的适当配合,以满足不同工件的性能要求。
《金属材料与热处理》复习资料.docx
《金属材料与热处理》复习思考题参考答案第一章金属的力学性能1.解释下列名词金属的力学性能,弹性极限,载荷,应力,强度,硬度,塑性。
答:金属的力学性能:是指金属在外力作用下所表现出来的性能。
弹性极限:是指金屈材料在外力作用下,只发生弹性变形而不发生塑性变时所能承受的最大应力。
载荷:是指金属材料在加工及使用过程中所受到的各种外力。
其符号用F表示。
应力:指单位面积上的内应力。
强度:是指金属材料抵抗塑性变形或断裂的能力,是工程技术上重要的力学性能指标。
硬度:材料抵抗局部变形特别是塑性变性压痕或划痕的能力。
塑性:是金属材料断裂前产生塑性变形的能力。
2、什么是金属的疲劳?简述疲劳断裂的特点。
答:金属材料在受到交变应力或重复循环应力吋往往在工作应力小于屈服强度的情况下突然断裂,这种现象称为疲劳。
疲劳断裂的特点:由丁•疲劳的应力比屈服强度低,所以不论是韧性材料还是脆性材料, 在疲劳断裂前,均没有明显的塑性变形,它是在长期累积损伤过程中,经裂纹萌生和缓慢扩展到临界尺寸时突然发生的。
曲于断裂询没冇明显的预兆,故疲劳断裂危险性极大。
宏观断口一般可明显地分为三个区域,即疲劳源,疲劳裂纹扩展区和瞬间断裂区。
疲劳源多在机件的表面处。
第二章金属的晶体结构1.解释下列名词点缺陷,线缺陷,面缺陷,晶体,晶格,晶胞,单晶体,晶粒,晶界,合金,组亓,相,固溶体,金属化合物。
答:点缺陷:原子排列不规则的区域在空间三个方向尺寸都很小,主要指空位间隙原子、置换原子等。
线缺陷:原子排列的不规则区域在空间一个方向上的尺寸很大,而在其余两个方向上的尺寸很小。
如位错。
面缺陷:原子排列不规则的区域在空间两个方向上的尺寸很大,而另一方向上的尺寸很小。
如晶界和亚晶界。
晶体:是指组成物质的原子或分子在空间排列是冇规则、冇序排列的物体。
晶格:把点阵中的结点假想用一系列平行直线连接起来构成空间格架称为晶格。
晶胞:构成晶格的最基本单兀。
单晶体:如果一块晶体,其内部的晶格位向完全-•致,则称这块晶体为单晶体。
金属学与热处理复习资料(本)
金属学与热处理复习资料一、名词解释1、晶体:原子在三维空间做有规则的周期性重复排列的物质。
2、非晶体:指原子呈不规则排列的固态物质。
3、晶格:一个能反映原子排列规律的空间格架。
4、晶胞:构成晶格的最基本单元。
5、晶界:晶粒和晶粒之间的界面。
6、单晶体:只有一个晶粒组成的晶体。
7、合金:是以一种金属为基础,加入其他金属或非金属,经过熔合而获得的具有金属特性的材料。
8、组元:组成合金最基本的、独立的物质称为组元。
9、相:金属中具有同一化学成分、同一晶格形式并以界面分开的各个均匀组成部分称为相。
10、固熔体:合金组元通过溶解形成成分和性能均匀的、结构上与组元之一相同的固相。
11、结晶:纯金属或合金由液体转变为固态的过程。
12、重结晶:金属从一种固体晶态改变了晶体结构转变为另一种固体晶态的过程。
13、过冷度:理论结晶温度(T0)和实际结晶温度(T1)之间存在的温度差。
14、铁素体:碳溶解于α-Fe中形成的间隙固溶体。
15、渗碳体:是铁与碳形成的质量分数为6.69%的金属化合物。
16、奥氏体:碳溶解于γ-Fe中形成的间隙固溶体。
17、珠光体:是由铁素体与渗碳体组成的机械化合物。
18、莱氏体:奥氏体与渗碳体的混合物为莱氏体。
19、同素异构转变:一些金属,在固态下随温度或压力的改变,还会发生晶体结构变化,即由一种晶格转变为另一种晶格的变化,称为同素异构转变。
20、实际晶粒度:某一具体热处理或热加工条件下的奥氏体的晶粒度叫实际晶粒度,它决定钢冷却后的组织和性能。
21、马氏体:碳在α-Fe 中的过饱和间隙固溶体,具有很大的晶格畸变,强度很高。
22、贝氏体:渗碳体分布在含碳过饱和的铁素体基体上或的两相混合物。
根据形貌不同又可分为上贝氏体和下贝氏体。
23、淬透性:淬透性是指在规定条件下,钢在淬火冷却时获得马氏体组织的能力。
24、淬硬性:淬硬性是指钢在理想的淬火条件下,获得马氏体所能达到的最高硬度。
25、调质处理:淬火后高温回火的热处理工艺组合。
金属材料与热处理-考试复习笔记
热处理复习重点第一章金属材料基础知识1. 材料力学性能(1)材料在外力作用下抵抗变形和破坏的能力称为强度。
强度有多种指标,如屈服强度(σs)、抗拉强度(σb)、抗压强度、抗弯强度、抗剪强度等。
(2)塑性是指材料受力破坏前承受最大塑性变形的能力,指标为伸长率(δ)和断面收缩率(φ),δ和φ越大,材料的塑性越好。
(3)材料受力时抵抗弹性变形的能力称为刚度,其指标是弹性模量(弹性变形范围内,应力与应变的比值)。
(4)硬度(材料表面局部区域抵抗更硬物体压入的能力)a. 布氏硬度(测较低硬度材料)用一定直径的钢球或硬质合金球,在一定载荷的作用下,压入试样表面,保持一定时间后卸除载荷,所施加的载荷与压痕表面积的比值。
HBS(钢球,<450)、HBW(硬质合金球,>650)。
b. 洛氏硬度(测较高硬度材料)利用一定载荷将交角为120°的金刚石圆锥体或直径为1.588mm的淬火钢球压入试样表面,保持一定时间后卸除载荷,根据压痕深度确定的硬度值。
HRA(金刚石圆锥,20~80)、HRB (1.588mm钢球,20~100)、HRC(金刚石圆锥,20~70)c. 维氏硬度(适用范围较广)维氏硬度其测定原理基本与布氏硬度相同,但使用的压头是锥面夹角为136°的金刚石正四棱锥体。
(5)冲击韧性材料抵抗冲击载荷作用而不被破坏的能力。
通常用冲击功A k来度量,A k是冲击试样在摆锤冲击试样机上一次冲击试验所消耗的冲击功。
(6)疲劳强度材料在规定次数(钢铁材料为107次,有色金属为108次)的交换载荷作用下,不发生断裂时的最大应力,用σ-1表示。
2. 铁碳相图第二章钢的热处理原理1. 钢的临界温度A c1——加热时珠光体向奥氏体转变的开始温度A c3——加热时先共析铁素体全部溶入奥氏体的终了温度A ccm——加热时二次渗碳体全部溶入奥氏体的终了温度A r1——冷却时奥氏体向珠光体转变的开始温度A r3——冷却时奥氏体开始析出先共析铁素体的温度A rcm——冷却时奥氏体开始析出二次渗碳体的温度2. 钢在加热时的转变(1)共析钢由珠光体向奥氏体的转变包括以下四个阶段:奥氏体形核(相界面处)、奥氏体晶核长大、剩余渗碳体溶解、奥氏体成分均匀化。
金属材料及热处理复习资料
金属材料及热处理复习《金属材料与热处理》是一门技术基础课,它的内容主要包含以下几个部门:1、钢铁材料的冶炼介绍金属材料的概念、分类及其生产过程。
重点放在钢铁材料的生产过程。
2、金属的性能介绍金属的物理、化学、力学及工艺等性能。
3、金属学的基础知识介绍金属和合金的晶体构造及其结晶过程,以及金属的成分、温度和组织之间的相互关系及变化规律。
4、钢的热处理介绍热处理的基本理论及各种热处理工艺的目的和方法。
5、常用的金属材料介绍碳钢、合金钢、铸铁、有色金属及硬质合金等金属材料的牌号、成分、组织、热处理、性能及用途。
鉴于机械专业技校生掌握这门课的必需性以及同学们学起来有一定难度,平时往往还未全面掌握,在期末进行复习时,提高他们复习效率,帮助他们理解和融会贯通尤为重要,采用一般从前到后按顺序复习方法,往往效果不太好,为此笔者经过一段时间探索,概括全书,提出了“顺口溜”的复习方法,共10句,它们是:1金属材料热处理,2钢铁材料最重要。
3铁碳相图作纲要,4选材热处理有依靠。
5硬质合金作刀具,6轴承合金作滑动。
7正火退火去应力,8淬火回火变魔术。
9牢牢记住主干线,10成分组织与性能。
首先要求大家熟读这10句话,多读几遍,然后一句一句加以理解。
1金属材料热处理同学们读这句话,首先要知道,这本书主要由金属材料和热处理两部分组成,要知道金属材料分类和工厂中热处理种类。
热处理共分正火、退火、淬火、回火、表面热处理等五种。
2钢铁材料最重要读这句话大家要知道,工厂中用得最多的材料是钢和铁,许多重要关键场合都是用钢铁材料制造的,钢铁的产量、质量,在当今世界甚至是一个国家综合实力的标志。
同时同学们要简单了解钢铁是怎么生产出来的,钢与铁是完全不同的两种材料,它们彼此之间的性能完全不一样,联系到以后的热处理,即使是同一种钢,经过不同的热处理,其最后性能不一样。
3铁碳相图作纲要4选材热处理有依靠读了这两句话,同学们要知道,铁碳相图,是我们选材的基础,它是清楚地表明了铁碳合金成分、温度、组织三者之间关系的一个“地图”,同一种成分不同温度,同一种温度不同成分,它们组织不同,以及室温组织随含碳量的变化,最终导致钢材力学性能的变化,只有掌握和透彻理解铁碳相图,才能得心应手地选材用材。
机械基础复习资料金属材料和热处理含习题答案
第二部分 机械基础第四章 金属材料和热处理本章重点1.掌握:强度、硬度、塑性、韧性、疲劳强度的含义。
2.了解:工艺性能的含义。
3.了解:热处理的概念及目的。
4.熟悉:退火、正火、淬火、回火,表面热处理的方法。
5.掌握:碳素钢的概念、分类、牌号的表示方法及性能。
6.掌握:合金钢的牌号及表示方法。
7.熟悉:铸铁分类牌号及用途。
本章内容提要一.金属材料的性能1.物理、化学性能物理性能是指金属材料的密度、熔点、导电性、导热性、热膨胀性、磁性等具有物理特征的一些性能。
化学性能是指金属在化学作用下所表现的性能。
如:耐腐蚀性、抗氧化性和化学稳定性。
2.金属材料的机械性能金属材料在外力作用下所表现出来的性能就是力学性能。
主要有强度、塑性、硬度、韧性和疲劳强度等。
(1)强度强度是材料在静载荷作用下抵抗变形和破坏的能力。
可分为抗拉强度、抗压强度、抗剪强度和抗扭强度。
常用的强度是抗拉强度。
工程上常用的强度指标是屈服点和抗拉强度。
(2)塑性塑性是金属材料在静载荷作用下产生永久变形的能力。
常用塑性指标是伸长率和断面收缩率。
伸长率:是指试样拉断后的伸长与原始标距的百分比。
式中,L 0表示试样原长度(mm ),L 1表示试样拉断时的长度(mm )。
断面收缩率:是指试样拉断后,缩颈处横截面积(A 1)的最大缩减量与原始横截面积(A 0)的百分比。
(3)硬度硬度是金属材料表面抵抗比它更硬的物体压入时所引起的塑性变形能力;是金属表面局部体积内抵抗塑性变形和破裂的能力。
目前最常用的硬度是布氏硬度(HB )、洛氏硬度(HRC 、HRB 、HRA )和维氏硬度(HV )。
(4)韧性1o o 100%L L L -=⨯δ010A A 100%A -=⨯ψ韧性是脆性的反意,指金属材料抵抗冲击载荷的能力。
工程技术上常用一次冲击弯曲试验来测定金属抵抗冲击载荷的能力。
(5)疲劳强度疲劳强度是指材料在无限多次交变载荷作用下不发生断裂的最大应力。
一般规定,钢铁材料的应力循环次数取108,有色金属取107。
金属学与热处理期末复习总结
一、名词解释:1热强性:在室温下,钢的力学性能与加载时间无关,但在高温下钢的强度及变形量不但与时间有关,而且与温度有关,这就是耐热钢所谓的热强性;2形变热处理:是将塑性变形同热处理有机结合在一起,获得形变强化和相变强化综合效果的工艺方法;3热硬性:热硬性是指钢在较高温度下,仍能保持较高硬度的性能;4固溶处理:指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到的热处理工艺;5回火脆性:是指回火后出现韧性下降的;6二次硬化:某些铁碳合金如高速钢须经多次回火后,才进一步提高其硬度;7回火稳定性:在时,抵抗强度、硬度下降的能力称为回火稳定性;8淬硬性:指钢在淬火时硬化能力,用淬成马氏体可能得到的最高硬度表示;9水韧处理:将钢加热至奥氏体区温度1050-1100℃,视钢中碳化物的细小或粗大而定并保温一段时间每25mm壁厚保温1h,使铸态组织中的碳化物基本上都固溶到奥氏体中,然后在水中进行淬火,从而得到单一的奥氏体组织;10分级淬火:将奥氏体状态的工件首先淬入温度略高于钢的Ms点的盐浴或碱浴炉中保温,当工件内外温度均匀后,再从浴炉中取出空冷至室温,完成马氏体转变;11临界淬火冷却速度:是过冷奥氏体不发生分解直接得到全部马氏体含残留奥氏体的最低冷却速度;12季裂:它指的是经冷变形后的金属内有拉伸应力存在又处于特定环境中所发生的断裂; 13奥氏体化:将钢加热至临界点以上使形成奥氏体的金属热处理过程;14本质晶粒度:本质晶粒度用于表征钢加热时晶粒长大的倾向;二、简答:1 何为奥氏体化简述共析钢的奥氏体化过程;答:1、将钢加热至临界点以上使形成奥氏体的金属热处理过程;2、它是一种扩散性相变,转变过程分为四个阶段;1形核;将珠光体加热到Ac1以上,在铁素体和渗碳体的相界面上奥氏体优先形核;珠光体群边界也可形核;在快速加热时,由于过热度大,铁素体亚边界也能形核;2长大;奥氏体晶粒长大是通过渗碳体的溶解、碳在奥氏体和铁素体中的扩散和铁素体向奥氏体转变;为了相平衡,奥氏体的两个相界面自然地向铁素体和渗碳体两个方向推移,奥氏体便不断长大;3残余渗碳体的溶解;铁素体消失后,随着保温时间的延长,通过碳原子扩散,残余渗碳体逐渐溶入奥氏体;4奥氏体的均匀化;残余渗碳体完全溶解后,奥氏体中碳浓度仍是不均匀的;只有经长时间的保温或继续加热,让碳原子进行充分地扩散才能得到成分均匀的奥氏体;2 奥氏体晶粒大小对冷却转变后钢的组织和性能有何影响简述影响奥氏体晶粒大小的因素;答:1、奥氏体晶粒度大小对钢冷却后的组织和性能有很大影响;奥氏体晶粒度越细小,冷却后的组织转变产物也越细小,其强度也越高,此外塑性,韧性也较好;但奥氏体化温度过高或在高温下保持时间过长会显着降低钢的冲击韧度、减少裂纹扩展功和提高脆性转变温度;2、奥氏体晶粒大小是影响使用性能的重要指标,主要有下列因素影响奥氏体晶粒大小;1加热温度和保温时间的影响加热温度越高,保温时间越长,奥氏体晶粒越粗大;2加热速度的影响加热速度越快,奥氏体的实际形成温度越高,形核率和长大速度越大,则奥氏体的起始晶粒越细小,但快速加热时,保温时间不能过长,否则晶粒反而更加粗大;3钢的化学成分的影响在一定含碳量范围内,随着奥氏体中含碳量的增加,碳在奥氏体中的扩散速度及铁的自扩散速度增大,晶粒长大倾向增加,但当含碳量超过一定限度后,碳能以未溶碳化物的形式存在,阻碍奥氏体晶粒长大,使奥氏体晶粒长大倾向减小;4钢的原始组织的影响钢的原始组织越细,碳化物弥散速度越大,奥氏体的起始晶粒越细小,相同的加热条件下奥氏体晶粒越细小;3 简述影响过冷奥氏体等温转变的因素;答:奥氏体成分含碳量、合金元素、奥氏体状态钢的原始组织、奥氏体化的温度和保温时间及应力和塑性变形;1、含碳量的影响亚共析钢随奥氏体含碳量增加,使C曲线右移,Ms和Mf点降低;过共析钢随含碳量的增加,使C曲线向左移,Ms和Mf点降低;2、合金元素的影响除Co、AlWAl>%外,所有合金元素的溶解到奥氏体中后,都增大过冷奥氏体的稳定性,使C曲线右移,Ms和Mf点降低;3、奥氏体状态的影响奥氏体化温度越低,保温时间越短,奥氏体晶粒越细小,C曲线左移;4、应力和塑性变形的影响在奥氏体状态下承受拉应力会加速奥氏体的等温转变,承受压应力则会阻碍这种转变;对奥氏体进行塑性变形有加速奥氏体转变的作用,C曲线左移;4简述片状珠光体和粒状珠光体的组织和性能;答:1、片状珠光体组织:WC=%的奥氏体在近于平衡的缓慢冷却条件下形成的珠光体是由铁素体和渗碳体组成的片层相间的组织;性能:主要决定于片间距;片间距越小,钢的断裂强度和硬度均随片间距的缩小而增大;随片间距减小,钢的塑性显着增加;片间距减小,塑性变形抗力增大,故强度;硬度提高;2、粒状珠光体组织:渗碳体呈颗粒状分布在连续的铁素体基体中的组织性能:主要取决于渗碳体颗粒的大小,形态与分布;钢的成分一定时,渗碳体颗粒越细,相界面越多,则刚的硬度和强度越高;碳化物越接近等轴状、分布越均匀,则钢的韧性越好;粒状珠光体的硬度和强度较低,塑性和韧性较好,冷变形性能,可加工性能以及淬火工艺性能都比珠光体好;5何为马氏体简述马氏体的晶体结构、组织形态、性能及转变特点;答:是碳在α-Fe中过饱和的间隙固溶体;2、马氏体的晶体结构在钢中有两种:体心正方结构WC<%,c/a=1;体心正方结构WC>%,c/a>1;组织形态:板条马氏体、片状马氏体200℃以上,WC<%,完全形成板条马氏体,因其体内含有大量位错又称位错马氏体;特点强而韧%<WC<1%,为板条马氏体和片状马氏体的混合物;200℃以下,WC>%,完全形成片状马氏体,因其亚结构主要为孪晶又称孪晶马氏体;特点硬而脆4、1马氏体的显着特点是高硬度和高强度,原因包括固溶强化、相变强化、时效强化、原始奥氏体晶粒大小及板条马氏体束大小;马氏体的硬度主要取决于马氏体的含碳量;合金元素对马氏体的硬度影响不大,但可以提高其强度;2马氏体的塑性和韧性主要取决于马氏体的亚结构;5、1无扩散性;奥氏体成分保留在马氏体中2马氏体转变的切变共格性3马氏体转变具有特定的惯习面和位向关系4马氏体转变是在一定温度范围内进行的6 简述淬火钢的回火转变、组织及淬火钢在回火时的性能变化;答:1、钢的回火转变包括五个方面180℃-100℃以下温度回火,马氏体中碳的偏聚,组织是马氏体马氏体:碳溶于α-Fe的过饱和的固溶体280℃-100℃回火,马氏体开始分解,组织是回火马氏体回火马氏体:低碳马氏体和ε碳化物组成的混合物,称为回火马氏体;3200℃-300℃回火,残余奥氏体开始转变,组织是回火马氏体4200℃-400℃回火,碳化物的转变为Fe3C,组织是回火托氏体回火托氏体:由针状α相和无共格联系的细粒状渗碳体组成的机械混合物;5500℃-650℃渗碳体的聚集长大和α相回复或再结晶,组织是回火索氏体回火索氏体:回复或再结晶的铁素体和粗粒状渗碳体的机械混合物;2、回火时力学性能变化总的趋势是随回火温度提高,钢的抗拉强度、屈服强度和硬度下降,塑性、韧性提高;7 简述回火脆性的分类、特点及如何消除;答:1分类:第一类回火脆性低温回火脆性250℃-400℃和第二类回火脆性高温回火脆性450℃-650℃2特点第一类回火脆性:1具有不可逆性第二类回火脆性:1具有可逆性;2与后的有关3与组织状态无关,但以M的脆化倾向3如何消除第一类回火脆性:无法消除,合金元素会提高脆化温度;第二类回火脆性:1选择含杂质元素极少的优质钢材以及采用形变热处理;2加入适量的Mo、W等合金元素阻碍杂质元素在晶界上便聚;3对亚共析钢在A1~A3临界区可采用4采用高温回火后快冷的方法可抑制回火脆性,但不适用于对回火脆性敏感的较大工件;8 叙述淬透性和淬硬性及淬透性和实际条件下淬透层深度的区别;答:1、淬透性:是指奥氏体化后的钢在淬火时获得马氏体的能力,它反映过冷奥氏体的稳定性,与钢的临界冷却速度有关;临界冷却速度越慢,淬透性越大;其大小以钢在一定条件下淬火获得的淬透层深度和硬度分布来表示;2、淬硬性:是指奥氏体化后的钢在淬火时硬化的能力,主要取决于马氏体中的含碳量,含碳量越高,淬硬性越大;用淬火马氏体可能达到的最高硬度来表示;3、实际条件下的淬透层深度:是指具体条件下测定的半马氏体区至表面的深度;4、区别:1同一材料的淬透层深度与工件尺寸、冷却介质有关.工件尺寸小、介质冷却能力强,淬透层深;2淬透性与工件尺寸、冷却介质无关,它是钢的一种属性;相同奥氏体化温度下的同一钢种,其淬透性是确定不不变的;9 何谓淬火热应力、组织应力影响因素都是什么简述热应力和组织应力造成的变形规律;答:1、淬火热应力:工件在加热或冷却时由于内外的温度差异导致热涨或冷缩的不一致所引起的内应力;2、组织应力:工件在冷却过程中,由于内外温差造成组织转变不同时,引起内外比体积的不同变化而引起的内应力;3、影响因素:1含碳量的影响:随着含碳量的增加热应力作用逐渐减弱组织应力逐渐增强;2合金元素的影响:加入合金元素热应力和组织应力增加;3工件尺寸的影响:a.在完全淬透的情况下随着工件直径的增大淬火后残余应力将由组织应力性逐渐变成热应力性;b.在未完全淬透的情况下所产生的应力特性是与热应力相似的,工件直径越大淬硬层越薄,热应力特性越明显;4淬火介质和冷却方法的影响:如果在高于Ms点以上的温度区域冷却速度快而在温度低于Ms点区域冷却速度慢则为热应力性,反之则为组织应力型;4、变形规律:1热应力引起的变形①沿最大尺寸方向收缩,沿最小尺寸方向伸长;②平面凸起,直角变钝,趋于球形;③外径胀大,内径缩小;2组织应力引起变形与热应力相反;10 何谓回火叙述回火工艺的分类,得到的组织,性能特点及应用;答:1、回火:回火是指将淬火钢加热到A1以下的某温度保温后冷却的工艺;2、分类: 低温回火:1得到回火马氏体;2在保留高硬度、高强度及良好的耐磨性的同时又适当提高了韧性,降低内应力;3适用于刀具、量具、滚动轴承、渗碳件及高频表面淬火件;中温回火:1得到回火托氏体;2基本消除了淬火应力,具有高的弹性极限,较高的强度和硬度,良好的塑性和韧性;3适用于弹簧热处理及热锻模具;高温回火:1得到回火索氏体;2获得良好的综合力学性能,即在保持较高的强度同时,具有良好的塑性和韧性;3广泛用于各种结构件如轴、齿轮等热处理;也可作为要求较高精密件、量具等预备热处理;11 简述化学热处理的一般过程;渗碳的工艺、渗层深度、渗碳后表层含碳量、用钢、热处理、组织和应用;答:1、过程:1介质渗剂的分解2工件表面的吸收3原子向内部扩散;2、渗碳工艺:气体渗碳法,固体渗碳,离子渗碳3、渗碳层厚度由表面到过度层一半处的厚度:一般为-2mm;4、渗碳层表面含碳量:以%%为最好;5、用刚:为含的低碳钢和低碳合金钢;碳高则心部韧性降低;6、热处理:常用方法是渗碳缓冷后,重新加热到Ac1+30-50℃淬火分三类:遇冷直接淬火、一次淬火、二次淬火+低温回火;7、组织:表层:高碳M回+颗粒状碳化物+A少量心部:低碳M回+铁素体淬透时、铁素体+索氏体8、应用:拖拉机履带板,坦克履带板。
金属学与热处理笔记
金属学与热处理总结一、金属的晶体结构重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。
基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。
晶体的特征、晶体中的空间点阵。
晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。
金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。
位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。
位错的柏氏矢量具有的一些特性:①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。
刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。
晶界具有的一些特性:①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。
12二、纯金属的结晶重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。
基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。
铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。
相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。
过冷度:理论结晶温度与实际结晶温度的差称为过冷度。
变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。
过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。
金属学及热处理复习思考题与期末考试题型特征
《金属学及热处理》复习资料第1章金属的性能1、名词解释强度、塑性、韧性、硬度。
强度:材料在外力作用下抵抗永久变形和破坏的能力。
塑性:材料受力破坏前可承受最大塑性变形的能力。
指标为伸长率3和断面收缩率2。
韧性:材料断裂前吸收塑性变形功和断裂功的能力。
硬度:指材料对局部塑性变形、压痕或划痕的抗力。
是材料力学性能的一个综合物理量。
第2章金属与合金的结构1、名词解释空间点阵、晶格、晶胞、晶体缺陷、合金、组元、相、组织、固溶体、固溶强化、中间相、同素异构转变。
空间点阵:将构成晶体的原子等抽象为几何点(阵点),得到一个由无数阵点在三维空间规则排列而成的阵列,阵点的周围环境必须相同。
晶格:描述原子或原子团在晶体中排列方式的几何空间格架。
晶胞:从晶格中选取出来的一个能够完全反映晶格特征的最小几何单元晶体缺陷:实际晶体中原子组合(原子、分子、离子或原子团)排列在局部区域的某些不规则现象。
合金:由一种金属元素跟其他金属或非金属熔合而成的、具有金属特性的物质。
组元:组成合金的最基本的独立的物质。
可以是元素,也可以是化合物。
相:指合金中具有同一聚集状态、结构相同、成分和性能均一,并有明确界面与其他部分分开的均匀组成部分。
合金在固态下相即为合金相。
组织:用肉眼或显微镜所观察到的组成相的形状、分布及各相之间的组合状态。
固溶体:以合金某一组元为溶剂,在其晶格中溶入其它组元原子(溶质)后所形成的一种合金相。
仍然保持溶剂的晶体结构。
固溶强化:溶质元素产生晶格畸变,使固溶体强度、硬度升高的现象。
中间相:当溶质含量超过固溶体的溶解度时,将出现晶体结构和任一组元都不相同的新相,即金属间化合物。
由于金属间化合物在二元合金相图中总是处于两个组元或端际固溶体区域之间的中间部位,故又称之为中间相。
多晶型转变或同素异构转变:具有多晶型性的金属在温度或压力变化时,由一种晶体结构转变为另一种晶体结构的过程。
2、金属有哪几种常见的晶体结构?晶胞内原子数和致密度各为多少?a-Fe、Y -Fe、Al、Cu、Ni、Cr、V、Mg W Mo Zn各属何种晶体结构?答:体心立方结构:a -Fe、Cr、V W和Mo等30多种纯金属。
金属学与热处理-期末复习重点
第一章金属的晶体结构第一节金属1度系数为负值。
第二节金属的晶体结构1、晶体的特征:1、具有一定的熔点2、各向异性非晶体为各向同性23、为了清楚地表明原子在空间排列的规律性,常常将构成晶体的原子抽象为纯粹的几何点,称之为点阵。
这些点阵有规则地周期性重复排列所形成的三维空间阵列称为空间点阵。
常人4567、常见的三种晶体结构主要是指体心立方、面心立方和密排六方结构,其中体心立方结构(BCC)每个晶胞含有2原子,其原子配位数为8,致密度是68%面心立方结构(FCC)每个晶胞含有4原子,其原子配位数为12;致密度是74%密排六方结构(HCP)每个晶胞含有6原子,其原子配位数为12,致密度是74% 。
8、密排面的堆垛顺序是AB AB AB……,构成密排六方结构ABCABCABC……,构成面心立方结构9、通常以[uvw]表示晶向指数的普遍形式原子排列相同但空间位向不同的所有晶向成为晶向族,<uvw>表示晶面指数的一般表示形式为(hkl)晶面族用大括号{hkl}表示10、在立方结构的晶体中,当一晶向[uvw]位于或平行于某一晶面(hkl)时,必须满足以下关系:hu+kv+lw=0当某一晶向与某一晶面垂直时,则其晶向指数和晶面指数必须完全相等,即u=b、v=k、w=l。
12、由于多晶体中的晶粒位向是任意的,晶粒的各向异性被互相抵消,因此在一般情况下整个晶体不显示各向异性,称之为伪等向性。
一般金属都是多晶体第三节实际金属的晶体结构1、晶体中的线缺陷就是各种类型的位错,它是在晶体中某处有一列或若干列原子发生了有规律的错排现象。
2、刃型位错的重要特征:1、刃型位错有一额外半原子面;2、位错线是一个具有一定宽度的管道3、位错线与晶体的滑移方向相垂直,位错线运动的方向垂直于位错线螺型位错的重要特征:1、螺型位错没有额外半原子面;2、螺型位错线是一个具有一定宽度的管道,其中只有切应变,而无正应变3、位错线与晶体的滑移方向平行,位错线运动的方向与位错线垂直4、位错线与柏氏矢量垂直就是刃型位错,位错线与柏氏矢量平行,就是螺型位错。
金属学级热处理笔记
本科生上课笔记重点宏观的塑性变形是位错在外力作用下运动的结果。
位错在晶体中的运动方式有两种:滑移slip:与金属的变形密切相关攀移climba位错的滑移是在切应力作用下进行的,存在一个最小切应力。
使刃型位错滑移的切应力必须与位错线垂直。
对于刃型位错,晶体滑移的方向与位错运动方向一致。
滑移面:位错线与柏氏矢量组成的原子面,对于刃型位错,位错线与柏氏矢量垂直,因此刃位错的滑移面是唯一确定的。
使螺型位错滑移的切应力必须与位错线平行。
对于螺型位错,晶体滑移的方向与位错运动方向垂直。
滑移面:对于螺型位错,位错线与柏氏矢量平行,因此螺型位错可以有多个滑移面。
要点(1)位错的滑移面包含柏氏矢量和位错线。
(2)对于一根位错线而言,柏氏矢量是固定不变(3 )可以通过柏氏矢量和位错线的关系来判断位错特征。
b⊥t时为刃型位错,b∥t为螺型位错,对于混合型位错,b和t的角度在0°和90°。
的。
(4)位错线不能终止于完整晶体之中。
位错通常可以在包含位错线和柏氏矢量的面上滑移,在某些情况下,还能发生垂直于滑移面方向的移动,称为攀移。
只有刃型位错会发生攀移。
攀移的本质是刃型位错半原子面的向上(正攀移)或向下运动(负攀移)。
攀移时伴随物质的迁移,需要空位的扩散,需要热激活,比滑移需要更大的能量原子正常的堆剁次序遭到破坏的现象称为堆垛层错。
面缺陷包括晶界、相界和表面前面举例晶体有规则的外形,金属内部是由大量的小的单晶体组成,称为晶粒,每个晶粒内部,原子是规则排列的。
晶粒之间的界面称为晶界。
在晶界部分,原子呈不规则排列。
晶界两侧晶粒的位相差θθ<10o 小角度晶界θ>10o 大角度晶界在晶界处,原子处于较高能量状态。
这部分能量称为晶界能点缺陷、线缺陷、面缺陷、肖脱基空位、弗兰克耳缺陷、间隙原子、置换原子、刃型位错、螺型位错、位错密度、滑移、攀移、全位错、不全位错、层错、大角度晶界、小角度晶界、晶界能刃型位错和螺型位错的特征。
《金属材料与热处理》综合训练知识点训练解答(大学期末复习资料)
《金属材料与热处理》综合训练知识点训练解答(大学期末复习资料)模块二金属的晶体结构(P36)1.名词解释:晶体、晶格、晶胞、多晶体、晶粒、晶界、点缺陷。
答:晶体:晶体是指组成物质的微粒在三维空间做有规则、周期性排列形成的物质。
晶格:为了更清楚地表示晶体中原子的排列规律,可以将原子简化为一个质点,并且用假想的线条将各个原子的中心连接起来,这样就形成了一个能够抽象的、用于反映原子排列规律的空间格架,称为晶格晶胞:晶体中能够完全反映晶格特征的最小的几何单元。
多晶体:多晶体是指整块金属材料包含着许多小晶体,每个小晶体的晶格位向基本一致,但是各个小晶体之间的位向不同。
由许多小晶体组成的晶体结构称为多晶体结构。
晶粒:多晶体中的每个外形不规则的、呈颗粒状的小晶体称为晶粒。
晶界:多晶体材料中相邻晶粒的界面称为晶界。
点缺陷:是指在原子尺寸范围内在长、宽、高三个尺寸方向上尺寸都很小的缺陷。
2.实际金属晶体中存在哪几种缺陷?这些缺陷对金属性能有何影响?答:按照几何特征不同,晶体缺陷可分为点缺陷、线缺陷和面缺陷三类。
其中点缺陷包括空位、间隙原子和置换原子;线缺陷就是各种类型的位错,基本类型有刃型位错和螺型位错两种;面缺陷就是晶界、亚晶界。
各类缺陷的出现使原子间作用力的平衡遭到破坏,促使缺陷周围的原子发生靠拢或撑开,即产生了晶格畸变。
晶格畸变将会引起金属强度、硬度、电阻等性能的变化。
3.金属中常见的晶体结构有哪几种?答:体心立方晶格(bcc)、面心立方晶格(fcc)和密排六方晶格(hcp)三种。
模块三金属的结晶(P46)一、填空题1、金属的结晶是指由原子不规则排列的近程有序,转变为原子规则排列的晶体过程。
2、纯金属的冷却曲线是用热分析法测定的。
冷却曲线的纵坐标表示温度,横坐标表示冷却时间。
3、金属的理论结晶温度和金属的实际结晶温度之差称为过冷度。
4、过冷度的大小与冷却速度有关,冷速越快,金属的实际结晶温度越,过冷度也就越大。
金属学与热处理笔记
【EP01】金属学及热处理绪论【材料科学与工程领域内比较重要/基本的实验规律】:材料的性能是有什么决定的:性质(内在联系)——组织结构——制备与加工工艺材料的结构:构成材料的基本质点(离子,原子或分子等)是如何结合与排列的,它表明材料的构成方式。
材料的显微组织:指借助于显微镜所观察到的材料微观组成与形貌,通常称为显微组织。
包括晶粒大小、合金相种类、数量、大小及分布等。
【材料制备与加工工序】:【材料分类】(1)以性能特点和用途为依据:结构材料:强调利用材料的力学性能来满足使用要求。
功能材料:强调材料具有特殊的光电磁热等物理性能。
如半导体、芯片、单片机、dsp 等。
(2)以原子间键合特点为依据:金属材料:具有正电阻温度系数(电阻(电阻率)与温度成正比(反比))的物质,具有良好导电性、导热性、延展性、高密度和光泽。
陶瓷材料:金属和非金属元素间化合物。
具有很高强度和硬度,较低导电性、导热性,延性、成型性及耐冲击性很差。
极好耐高温性及耐腐蚀性,一些还具有独特光电性能。
高分子材料:非金属原子共有电子而构成大分子材料。
每个分子有许多结构相同的单元相互连接而成,又称聚合物,较高强度,良好塑性,较强耐腐蚀性,绝缘性,低密度等优良性能。
复合材料:两种及以上材料组成,具备有其他组成材料不具备的性能,很有可能具有非凡的刚度、强度、耐高温性能、耐腐蚀性能。
(如黄泥+稻草制土坯)思考题:1.简述材料组织结构、性能及加工工艺之间的关系:材料性能决定于其组织结构;要想改变材料的性能,需要通过材料的加工工序过程来改变材料的组织结构,从而改变其性能;材料性能反过来会影响加工工序的选择。
【EP02】第一章金属和合金的晶体结构结构:(1)原子结构——原子核、核外电子——原子核外电子排布方式显著影响着材料的电磁光热性能,还影响到原子彼此结合方式,从而决定材料类型;(2)原子之间的空间排列——具有晶态与非晶态之分,晶体结构影响性能;(3)显微组织——晶粒大小、合金相种类、数量、大小及分布等。
《 金属材料与热处理》(4学时和12学时)总复习题
基础课程《金属材料与热处理》应掌握知识重庆市机械高级技工学校培训中心备注:1、未标注“▲”符号的内容是培训4学时的班级必须掌握。
2、已标注“▲”符号的内容是培训12学时的班级在完成4学时培训的基础上增加的必须掌握内容,也就是说,培训12学时的班级对给出的内容应全部掌握。
复习要求第二章金属材料的性能一、了解金属的性能概述二、理解金属的力学性能定义及其应用▲三、理解金属的工艺性能定义及其应用第三章铁碳合金▲一、了解金属的实际晶体结构二、了解合金的基本组织▲三、熟悉铁碳合金的基本组织四、二元Fe3C相图的运用1、了解二元Fe3C相图的运用▲2、理解二元Fe3C相图,并会运用相图分析钢铁热处理组织转变过程4、基本会用二元Fe3C相图铸造、锻造、热处理工艺制定依据五、掌握碳素钢的分类、牌号表示方法及性能第四章钢的热处理一、理解钢的热处理原理,并掌握热处理分类方法二、基本熟悉常见钢的整体热处理工艺方法▲三、基本熟悉钢表面热处理工艺方法▲四、了解钢在加热和冷却时的组织转变五、基本能对典型零件的热处理后给予质量评价和分析第五章合金钢▲一、了解合金元素在钢中的作用二、掌握合金钢分类和牌号表示方法▲三、基本熟悉合金结构钢和合金工具钢常用牌号、性能和用途第六章铸铁▲一、了解铸铁的基本组织,熟知铸铁的分类二、常用铸铁(灰铸铁、可锻铸铁、球墨铸铁)的牌价、性能、用途第七章有色金属及硬质合金▲一、了解纯铝的牌号、性能和用途二、基本熟悉铝合金分类、牌号、性能和用途附基本复习题于后第二章金属材料的性能—.填空题(将正确答案填写在横线上)2. 强度的常用衡量指标有.屈服强度、和抗拉强度,分别用符号ReL、和Rm表示。
二.判断题(正确的打“√”,错误的打“×”)▲3. 做布氏硬度试验时,在相同实验条件下,压痕直径越小说明材料的硬度越低。
(×)7. 一般用洛氏硬度机而不用布氏硬度机来检测淬火钢成品工件的硬度。
(√)▲9. 一般来说,硬度高的材料其强度也较高。
金属材料与热处理基本知识
金属材料与热处理基本知识一、铁碳合金的基本组织1、铁素体碳在α-Fe中的间隙固溶体称为铁素体,用F表示。
强度和硬度很低,塑韧性好。
2、奥氏体碳在γ-Fe中的间隙固溶体称为奥氏体,用A表示。
塑性好,在锻造、轧制时常要加热到A区域,易于加工。
3、渗碳体铁与碳形成的金属化合物称为渗碳体,用Fe3C表示。
硬度高,脆性大。
4、珠光体F与Fe3C混合物,用P表示。
强、韧性介于两者之间。
5、莱氏体A与Fe3C混合物(P+Fe3C)用Ld表示。
硬度高,塑性差。
二、铁碳合金状态图1、状态图主要点、线ABCD线:液相线,液相冷却至此开始析出,加热至此全部转化。
AHJECF线:固相线,液态合金至此线全部结晶为固相,加热至此开始转化GS线:A3线,A开始析出F的转变线,加热时F全部溶入AES线:Acm线,C在A中溶解度曲线,Fe3CⅡ析出线加热时Fe3CⅡ全部溶入AECF线:共晶线,含C量2.11-6.69%至此发生共晶反应,结晶出A与Fe3C混合物,莱氏体。
PSK线:共析线(A1线),含C量在0.0218-6.69%至此反生共析反应,产生出珠光体GP线—铁素体析出终了线PQ线—Fe3CⅢ析出线2、典型铁碳合金的结晶过程(1)、60钢1点以上 L → 1~2 点 L+A → 2~3点A → 3~4点A+F → 4点室温P+F(2)、 T7钢1点以上 L → 1~2 点 L+A → 2~3点A → 3点室温P(3)、T12钢1点以上 L → 1~2 点 L+A → 2~3点A → 3~4点A+ Fe3CⅡ→ 4点室温P+ Fe3CⅡ3、铁碳合金分类钢是含C量0.0218~2.11%的铁碳合金。
亚共析钢含C量0.0218-0.77%;共析钢:含C量 0.77%;过共析钢含C量0.77-2.11%4、铁碳合金相图的应用铸造方面:选择合适的浇铸温度,流动性好。
煅造方面:选择合适的温度区,奥氏体区。
热处理方面:退火、正火、淬火、回火等。
金属材料热处理总结复习
第二章1.气体腐蚀:金属在加热过程中与大气或燃料气体当中的氧或氧化性气体相互作用而使工件表面发生破坏的行为2.脱碳:指钢铁材料在加热过程中表层的碳与加热介质中的脱碳气体相互作用而烧损的现象3.氧化:指材料中金属元素在加热过程中与氧化性气氛发生作用,形成金属氧化物层的现象4.加热温度不当造成的缺陷,欠热,过热,过烧①欠热:加热时间不足时,由于未充分A体化,钢中的第二相未能完全溶解,冶炼及热加工过程中存在成分及组织上的缺陷②过热:加热温度过高或保温时间太长将导致A晶粒剧烈长大,过热使铁素体量增多,热加工性恶化,淬火后硬度下降③经常产生在高温扩散退火或高速钢淬火过程中,基本特征是在粗大晶粒的晶界上出现局部熔化或氧化现象,易导致淬火开裂,在铝合金中,产生晶界裂纹5.加热时间不当造成热处理缺陷:①加热时间不够,对大型或高合金钢制工件热处理的质量会产生重大影响,由于组织转变不能充分进行,致使热加工过程中引起的某些缺陷不能消除,钢中C,N化物不能充分溶解,导致A耐磨钢切削加工性能下降,不锈钢耐蚀性恶化,工具钢红硬性降低,大型工件由于加热不足淬透性降低②加热时间过长,不仅容易造成工件表面严重的氧化脱碳,还使晶粒粗化,耐热钢长时间加热导致σ相脆化6.加热速度的确定:①由A等温形成动力学曲线得知,钢在加热时加热速度越快,Ac1,Ac3, Acm临界点温度提高越多,A形成各个阶段移向较高温度,完成A体化时间变短②加热速度升高还使A形成时起始晶粒显著细化,对于改善提高材料性能产生有利影响③特别快速加热使A超细化并随之淬火,可以使工件有较高的表面硬度,强度,耐磨性,塑性韧性较高④快速加热还具有表面质量好,不易氧化脱碳,节约能源,提高生产率⑤从上述技术和经济效果考虑,希望尽可能采用快的加热速度,但加热速度提高,工件截面温差增加,增加体积热应力,使工件产生变形扭曲,开裂第三章1.孕育期:过冷A只有经过一定时间才能开始转变,这段时间称为孕育期2.过冷A:在临界温度(A1)以下存在且不稳定的,将要发生转变的A3.本质晶粒度:反映钢材加热时A晶粒长大的倾向4.影响A形成速度的因素:(1)温度升高,A形成速度越高(2)钢中碳含量愈高,A形成速度越快,C化物数量多,增加铁素体与渗碳体相界面,增加成核部位(3)合金元素,强碳化物形成元素,在一定含量范围内,Cr,Mo,W,V,Ti降低C在A中扩散系数,使A形成速度降低;弱碳化物形成元素及非碳化物形成元素增大扩散系数,加快形成速度(4)原始组织愈细,A形成速度愈快5.影响A晶粒度因素:(1)A的起始晶粒度取决于形核率和N和长大速率G的比值N/G,比值越大,其越细小,越易长大(2)加热温度和保温时间的影响,温度越高,保温时间越长,A晶粒越粗大(3)加热速度的影响:加热速度越高,过热度越大,形核率越高,短时保温获得细小的晶粒,长时保温获得晶粒更加粗大(4)钢的含碳量的影响:在一定碳含量范围内,随着碳↑↑,反之↑↓(5)合金元素的影响:Mn和P促进A晶粒长大,其它的阻碍,一般(6)原始组织的影响:其主要影响起始晶粒度,原始组织越细,得到的A起始晶粒度越小,长大倾向越大6.为什么常规热处理时不用非平衡组织作为原始组织:(1)直接用非平衡组织进行A体化时,若加热条件不当,往往造成旧A晶粒复原,发生“遗传”现象(2)以C及合金元素含量比较高的马氏体组织进行A体化时,因其性质硬脆,导热能力差,造成工件在加热过程中开裂7.影响临界冷却速度的因素:(1)钢的成分 C%<0.3%随C↑Vc↓,到C%<1%随C↑Vc↓不多,C%>1%随C↑Vc↑(2)随A晶粒度尺寸↑Vc↓(3)A体化温度,多数钢在高温加热时,会使A晶粒增大,促使碳化物或其它非金属夹杂物溶入和A成分均匀化,推迟转变和Vc↓(4)A氏体中非金属夹杂物和稳定碳化物,S,O,N化物阻碍加热时A晶粒的长大.使Vc↑8.影响Ms点的因素①A化学成分对Ms点的影响显著,随钢中C%↑Ms点↓,合金元素除Al,Co 外均使Ms点↓②形变与应力:(塑性)形变使Ms点升高,产生形变马氏体, M转变量增加,形变量越大M转变量越多,形变温度越低M也越多,弹性应力对M与形变有类似影响③A体化条件,加热温度和保温时间对Ms点的影响较为复杂,随着T和t↑使Ms↓但T再升高使A晶粒长大使Ms↑④淬火速度:在一定范围内,Ms点随淬火速度↑而↑9.影响TTT图的因素:(过冷A等温转变图):①A中的C质量分数,在正常加热条件下,亚共钢的TTT曲线中的铁素体-珠光体转变部分随碳含量的增加而向右移,但当C从0.3-1%时很小,大于1.2%时左移②合金元素,一般来说,降Co外,常用合金元素都增加过冷A 的稳定性,推迟转变和降低转变速度,使TTT曲线右移③A晶粒尺寸,超细的A晶粒会加速过A向珠光体的转变,对贝氏体转变影响小,粗大的推迟珠对贝有小推迟④原始组织,加热温度,保温时间,原始组织越细,越易得均匀A,使TTT右移,原始组织相同时,提高A体化时间,右移⑤变形对过A转变有加速作用第四章1.退火:将金属及其合金加热,保温和冷却,使其组织结构达到或接近平衡状态的热处理工艺称为退火或正火。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热处理复习重点第一章金属材料基础知识1. 材料力学性能(1)材料在外力作用下抵抗变形和破坏的能力称为强度。
强度有多种指标,如屈服强度(σs)、抗拉强度(σb)、抗压强度、抗弯强度、抗剪强度等。
(2)塑性是指材料受力破坏前承受最大塑性变形的能力,指标为伸长率(δ)和断面收缩率(φ),δ和φ越大,材料的塑性越好。
(3)材料受力时抵抗弹性变形的能力称为刚度,其指标是弹性模量(弹性变形范围内,应力与应变的比值)。
(4)硬度(材料表面局部区域抵抗更硬物体压入的能力)a. 布氏硬度(测较低硬度材料)用一定直径的钢球或硬质合金球,在一定载荷的作用下,压入试样表面,保持一定时间后卸除载荷,所施加的载荷与压痕表面积的比值。
HBS(钢球,<450)、HBW(硬质合金球,>650)。
b. 洛氏硬度(测较高硬度材料)利用一定载荷将交角为120°的金刚石圆锥体或直径为的淬火钢球压入试样表面,保持一定时间后卸除载荷,根据压痕深度确定的硬度值。
HRA(金刚石圆锥,20~80)、HRB(钢球,20~100)、HRC(金刚石圆锥,20~70)c. 维氏硬度(适用范围较广)维氏硬度其测定原理基本与布氏硬度相同,但使用的压头是锥面夹角为136°的金刚石正四棱锥体。
(5)冲击韧性材料抵抗冲击载荷作用而不被破坏的能力。
通常用冲击功A k来度量,A k是冲击试样在摆锤冲击试样机上一次冲击试验所消耗的冲击功。
(6)疲劳强度材料在规定次数(钢铁材料为107次,有色金属为108次)的交换载荷作用下,不发生断裂时的最大应力,用σ-1表示。
v1.0 可编辑可修改2. 铁碳相图第二章钢的热处理原理1. 钢的临界温度A c1——加热时珠光体向奥氏体转变的开始温度A c3——加热时先共析铁素体全部溶入奥氏体的终了温度A ccm——加热时二次渗碳体全部溶入奥氏体的终了温度A r1——冷却时奥氏体向珠光体转变的开始温度A r3——冷却时奥氏体开始析出先共析铁素体的温度A rcm——冷却时奥氏体开始析出二次渗碳体的温度2. 钢在加热时的转变(1)共析钢由珠光体向奥氏体的转变包括以下四个阶段:奥氏体形核(相界面处)、奥氏体晶核长大、剩余渗碳体溶解、奥氏体成分均匀化。
(2)铁素体向奥氏体的转变的速度远比渗碳体溶解速度快的多。
所以转变过程中珠光体中总是铁素体首先消失,铁素体全部转化为奥氏体时,可以认为奥氏体长大完成。
(3)影响奥氏体形成速度的因素:加热温度、加热速度、化学成分、原始组织。
(4)加热速度越快,奥氏体形成的开始温度和终了温度越高,而孕育期和转变时间越短,奥氏体形成速度越快。
(5)钢中含碳量越高,奥氏体形成速度越快;碳化物形成元素减小碳在奥氏体中的扩散速度,故减慢奥氏体的形成速度;费碳化物形成元素增大碳在奥氏体中的扩散速度,因而加快了奥氏体中的形成速度。
(6)当钢的化学成分相同时,原始组织越细,相界面面积越大,形核率越高,奥氏体形成速度越快。
(7)奥氏体的晶粒度可以用起始晶粒度、实际晶粒度和本质晶粒度等描述。
(8)起始晶粒度是指把钢加热到临界温度以上,奥氏体转变刚刚完成,其晶粒边界刚刚接触时的奥氏体晶粒大小;实际晶粒度是指钢在某一具体的热处理或热加工条件下实际获得的奥氏体晶粒大小;本质晶粒度表示在规定的加热条件下奥氏体晶粒长大的倾向。
1~4级为本质粗晶粒度,5~8级为本质细晶粒度。
(9)影响奥氏体晶粒长大的因素:加热温度和保温时间、加热速度、钢的化学成分、原始组织。
(10)实际生产中采取快速加热和短时保温的方法获得细小晶粒。
(11)当成分一定时,原始组织越细,碳化物弥散度越大,则奥氏体晶粒越细。
与粗珠光体相比,细珠光体总是易于获得细小而均匀的奥氏体晶粒。
片状珠光体比球状珠光体在加热时奥氏体晶粒易于粗化。
(12)时效强化:合金元素经固溶处理后,获得过饱和固溶体。
在随后的室温放置或低温加热保温时,第二相从过饱和固溶体中析出,引起强度,硬度以及物理和化学性能的显著变化。
3. 钢在冷却时的转变(1)常用的冷却方式有两种:等温冷却——将奥氏体状态的钢迅速由高温冷却到临界点以下某一温度等温停留一段时间,使奥氏体在该温度下发生组织转变,然后再冷到室温。
过冷奥氏体等温转变曲线(TTT曲线或C曲线)连续冷却——将奥氏体状态的钢以一定的速度连续从高温冷到室温,使奥氏体在一个温度范围内发生连续转变。
过冷奥氏体连续转变曲线(CCT曲线)(2)TTT曲线反映转变开始和转变终了时间,转变产物的类型以及转变量与时间、温度之间的关系。
(3)在A1温度以下某一确定温度,过冷奥氏体转变开始线与纵坐标之间的水平距离为过冷奥氏体在该温度下的孕育期,孕育期的长短表示过冷奥氏体稳定性的高低。
过冷奥氏体转变终了线与纵坐标之间的水平距离则表示在不同温度下转变完成所需要的总时间。
(4)在A1~550℃温度范围内,发生珠光体转变,转变产物是珠光体型组织;在550℃~Ms温度范围内,发生贝氏体转变,转变产物是贝氏体。
(5)影响过冷奥氏体等温转变的因素:含碳量(随含碳量增加,C曲线先右移再左移)、合金元素、加热温度和保温时间。
(6)珠光体转变是单相奥氏体分解为铁素体和渗碳体两个新相的机械混合物的相变过程。
(7)根据渗碳体的形态不同,把珠光体分为片状珠光体和粒状珠光体;根据珠光体片间距的大小,把珠光体分为普通珠光体(P)、索氏体(S)、和屈氏体(T)。
(8)珠光体团的直径和片间距越小,钢的强度和硬度越高;为获得片间距离均匀一致,强度高的珠光体,应采用等温处理;粒状珠光体强度、硬度较低,但塑性较好;高碳钢在机加工和热处理前,常要求先经球化退火处理得到粒状珠光体。
(9)钢中马氏体是碳在α-Fe中的过饱和固溶体,具有很高的强度和硬度。
马氏体组织形态多种多样,其中板条马氏体(亚结构为高密度位错)和片状马氏体(亚结构为孪晶)最为常见。
(10)碳浓度越高,板条马氏体数量越少,而片状马氏体数量越多。
(11)马氏体具有高强度、高硬度的主要原因是固溶强化、相变强化、时效强化以及晶界强化。
(12)贝氏体,尤其是下贝氏体组织具有良好的综合力学性能,故生产中常将钢奥氏体化后过冷至中温转变区等温停留,使之获得贝氏体组织。
(13)从奥氏体晶界生长出来的近于平行的或其它规则排列的针状铁素体或渗碳体以及其间存在的珠光体组织称为魏氏组织。
奥氏体晶粒越粗大,越容易形成魏氏组织。
(14)一般采用膨胀法或金相-硬度法等来测定CCT曲线。
(15)共析钢的连续冷却曲线只有珠光体转变区和马氏体转变区,没有贝氏体转变区。
珠光体转变区由三条曲线构成——转变开始线、转变终了线、转变中止线。
(16)冷却速度V<V k’时,形成全部珠光体;V k’<V<V k时,发生部分珠光体转变;V>V k时,只发生马氏体转变。
(17)连续冷却转变曲线位于等温转变曲线右下方,表明在连续冷却转变过程中过冷奥氏体的转变温度低于相应的等温转变温度,且孕育期较长。
4. 钢的回火转变(1)回火是将淬火钢加热到低于临界点A1的某一温度保温一段时间,使淬火组织转变为稳定的回火组织,然后以适当的方式冷却到室温的一种热处理工艺。
(2)淬火钢必须立即回火,以消除或减少内应力,防止变形和开裂,并获得稳定的组织和所需的性能。
(3)随着回火温度升高和时间延长,相应会发生以下几种组织转变:马氏体中碳的偏聚、马氏体的分解,残余奥氏体的转变,碳化物的转变,渗碳体的聚集长大和α相回复、再结晶。
(4)随着回火温度的升高,钢的硬度连续下降。
但含碳量大于%的高碳钢在100℃左右回火时,硬度反而略有升高,这是由于马氏体中碳原子的偏聚及ε碳化物析出引起弥散强化造成的。
(5)淬火钢回火时冲击韧度并不总是随回火温度升高而单调增大,有些钢在一定的温度范围内回火时,其冲击韧度显著下降,这种脆化现象叫做钢的回火脆性。
(6)第一类回火脆性采用的办法是壁面在催化温度范围内回火;第二类回火脆性通过减小杂质原子在原始奥氏体晶界上的偏聚,可显著减弱回火脆性。
采用形变热处理也可以减弱回火脆性。
第三章钢的热处理工艺1. 钢的退火与正火(1)退火是将组织偏离平衡状态的钢加热到适当的温度,经保温后随炉缓慢冷却下来,以获得接近平衡状态组织的热处理工艺。
(2)退火可以分为完全退火、不完全退火、球化退火、扩散退火、再结晶退火、去应力退火等。
(3)各类退火加热温度,目的及适用范围(4)正火是将钢加热到A c3(亚共析钢)和A ccm(过共析钢)以上30~50℃,保温一段时间,使之完全奥氏体化,然后再空气中冷却到室温,以得到珠光体类型组织的热处理工艺。
(5)正火的目的:作为最终热处理、作为预备热处理、改善切削加工性能(6)正火与退火的区别:正火的冷却速度比退火稍快,过冷度较大;正火后所得到的组织比较细,强度硬度比退火高。
(7)退火和正火的选择:a. 从切削加工性上考虑;b. 从使用性能上考虑;c. 从经济成本上考虑2. 钢的淬火(1)淬火是指将钢加热到临界温度以上,保温后以大于临界冷却速度的速度冷却,使奥氏体转变成马氏体的热处理工艺。
(2)淬火加低温回火可以提高工具、轴承、渗碳零件的硬度和耐磨性;结构钢通过淬火加高温回火可以获得较好的强度和塑性、韧性的配合;弹簧钢通过淬火加中温回火,可以获得很高的弹性极限。
(3)淬火温度主要根据钢的临界点确定,亚共析钢同场加热至Ac3以上30~50℃;共析钢、过共析钢加热至A c1以上30~50℃。
(4)冷却速率:盐水、碱水>水>油>盐浴、碱浴(5)淬火方法:单液淬火、双液淬火、分级淬火、等温淬火(6)等温淬火的目的是提高奥氏体的稳定性和增大其冷却速度,防止等温冷却过程中发生珠光体型组织转变。
(7)未淬透的工件上具有高硬度马氏体组织的这一层称为淬硬层(8)淬透性是指钢在淬火时获得马氏体的能力,它是钢材固有的一种属性。
(9)淬硬性是指钢在正常淬火条件下所能达到的最高硬度。
(10)淬透性反映钢的过冷奥氏体的稳定性,主要取决于钢的临界冷却速度。
过冷奥氏体越稳定,临界淬火速度越小,钢在一定条件下淬透层深度越深,则钢的淬透性越好。
(11)淬透性的测量方法是端淬法。
(12)影响淬透性的因素:含碳量、合金元素、奥氏体化条件、钢中未溶第二相。
(13)热应力:表面压应力,心部拉应力;组织应力:表面拉应力,心部压应力。
(14)工件在淬火加热时,由于温度过高或者时间过长造成奥氏体晶粒粗大的缺陷称为过热;淬火加热温度太高,使奥氏体晶界处局部熔化或者发生氧化的现象称为过烧。
3. 钢的回火(1)各类回火温度范围,目的及应用(2)二次硬化: W、Mo、V等较强的碳化物形成元素含量较高的搞合金钢回火时,硬度随回火温度升高不是单调降低,而是在某一温度后,硬度反而增加,并在某一温度达到顶峰(一般为550℃),这种在一定回火温度下出现峰值的现象称为二次硬化。