人教版初中数学第二十九章投影与视图知识点
人教版 九年级下册 数学 第二十九章 投影与三视图
反思小结,形成方法
(1)什么是物体的三视图?它有什么特点? (2)如何画物体的三视图?
布置作业
教科书第116页习题29.2. 第1题、第2题、第3题.
第二十九章 投影与视图 投影
创设情境,引入新知
物体在日光或灯光的照射下会形成影子,你 发现影子能反映物体哪些方面的特征?影子的形 成与哪些因素有关?
创设情境,引入新知
一般地,用光线照射物体,在某个平面(地面、 墙壁等)上得到的影子叫做物体的投影,照射光线叫 做投影线,投影所在的平面叫做投影面.
创设情境,引入新知
你能说明下面实例中投影、投影线、投影 面分别是什么吗?
你能举出生活影子的实例,并指出其中的投 影、投影线、投影面吗?
分析光线特征,了解投影的分类
有时光线是一组互相平行的射线,由平行 光线形成的投影叫做平行投影.
由同一点(点光源)发出的光线形成的投 影叫做中心投影.
分析光线特征,了解投影的分类
你知道日晷和皮影戏所形成的投影分别是那种 投影吗?
(2)三视图之间有什么对应关系?如何反应物体 的形状和大小?
共同探究,获取新知
从左面看
主视图
ห้องสมุดไป่ตู้
从上面看
正面
主视图 长
左视图 高
宽
宽 俯视图
从正面看
新知应用,解决问题
例1 画出下面所示基本几何体的三视图.
新知应用,解决问题
主视图 左 视 图
俯视图
新知应用,解决问题
主视图 左 视 图
俯视图
新知应用,解决问题
你能举出一些平行投影和中心投影的实例吗?
观察思考,了解正投影的含义
观察下面三幅图中的投影线有什么区别?它 们分别形成了什么投影?
九年级数学下册讲义投影
第二十九章投影与视图29.1 投影1.投影的定义一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影.照射光线叫做投影线,投影所在的平面叫做投影面.物体投影的形成需要具备两个条件:一是投影线(光源),二是投影面.【注意】光线、物体、投影面的相对位置发生变化,物体的影子就会相应发生变化.2.平行投影(2)由平行光线形成的投影叫做平行投影.如物体在太阳光的照射下形成的影子(简称日影)就是平行光线.日影的方向可以反映当地时间.(2)平行投影的特征等高的物体垂直于地面放置时,同一时刻,同一地点,在太阳光下,它们的影子一样长.等长的物体平行于地方放置时,同一时刻,同一地点,它们在太阳光下的影子一样长,且影长等于物体本身的长度.同一物体在太阳光下,不同时刻,不仅影子的大小在改变,而且影子的方向也在改变,就我们所在北半球而言,从早晨到傍晚,物体的影子由西向东绕物体沿顺时针方向转动,其影长的变化规律是:长→短→长.在平行光线下,不同时刻,同一物体的影子长度不同;同一时刻,不同物体的影子长度与它们本身的高度成比例.【注意】确定平行投影中物体或影子的方法:平行投影中的物体,光线、影子构成一个三角形,在平行投影中光线是平行的,因此由一条光线就可以作出其他平行光线,进而可以作出相应的物体或影子.3.中心投影(1)由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯泡发出的光照射下形成的影子就是中心投影.(2)中心投影的特征:了解投影、平行投影、中心投影、正投影的概念,能够确定物体在太阳光下的K—重点一、平行投影平行投影的特点:(1)平行投影中,同一时刻的光线是平行的;(2)平行投影的物高与影长对应成比例.【例1】下列光线所形成投影是平行投影的是A.太阳光线B.台灯的光线C.手电筒的光线D.路灯的光线【名师点睛】判断投影是平行投影的方法是看光线是否是平行的,如果光线是平行的,所得到的投影就是平行投影.【例2】下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是A.③①④②B.③②①④C.③④①②D.②④①③【名师点睛】本题考查平行投影,解题的关键是熟练掌握太阳光是平行光线,本题属于基础题型.二、中心投影中心投影的特点:(1)等高的物体垂直地面放置时,在灯光下,离点光源近的物体影子短,离点光源的物体影子长;(2)等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度短.【例3】小红和小花在路灯下的影子一样长,则她们的身高关系是A.小红比小花高B.小红比小花矮C.小红和小花一样高D.不确定【名师点睛】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.三、利用投影解决实际问题两个多边形相似,必须同时具备两个条件:(1)角分别相等;(2)边成比例.【例4】如图,一位同学想利用树影测量树高(AB),他在某一时刻测得高为1m的竹竿影长为0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上(CD),他先测得留在墙上的影高(CD)为1.2m,又测得地面部分的影长(BC)为2.7m,他测得的树高应为多少米?【名师点睛】本题考查的是相似三角形的应用,解答此题的关键是正确求出树的影长,这是此题的易错点.1.下列说法错误的是A.太阳光所形成的投影是平行投影B.在一天的不同时刻,同一棵树所形成的影子长度不可能一样C.在一天中,不论太阳怎样变化,两棵相邻树的影子都是平行或重合的D.影子的长短不仅和太阳的位置有关,还与事物本身的长度有关2.小明拿一个等边三角形木框在阳光下玩,等边三角形木框在地上的投影不可能是A.线段B.一个点C.等边三角形D.等腰三角形3.在阳光下摆弄一个矩形,它的影子不可能是A.线段B.矩形C.等腰梯形D.平行四边形4.下面四幅图是小刚一天之中在学校观察到的旗杆的影子,请将它们按时间先后顺序进行排列A.(1)(2)(3)(4)B.(2)(3)(1)(4)C.(2)(1)(3)(4)D.(4)(1)(3)(2)5.下面说法正确的有①矩形的平行投影一定是矩形;②梯形的平行投影一定是梯形;③两条相交直线的平行投影可能是平行的;④如果一个三角形的平行投影是三角形,那么它的中位线平行投影一定是这个三角形平行投影对应的中位线.A.①②B.④C.②③D.①④6.如图,位似图形由三角尺与其在灯光照射下的中心投影组成,相似比为1:2,且三角尺一边长为5cm,则投影三角形的对应边长为A.8cm B.20cmC.3.2cm D.10cm7.下列说法正确的是A.皮影戏是在灯光下形成的中心投影B.甲物体比乙物体高,则甲的投影比乙的投影长C.物体的正投影与物体的大小相等D.物体的正投影与物体的形状相同8.如图中是两根直立的标杆同一时刻在太阳光线下形成的影子的是A.B.C.D.9.在____________的照射下,在同一时刻,不同物体的物高与其影长成比例.10.为了测量校园里水平地面上的一棵大树的高度,数学综合实践活动小组的同学们开展如下活动:某一时刻,测得身高1.6m的小明在阳光下的影长是1.2m,在同一时刻测得这棵大树的影长是3.6m,则此树的高度是________m.11.人在灯光下走动时,其自身的影子通常会发生变化,当人走近灯光时,其影子的长度就会________;当人远离灯光时,其影子的长度就会________.12.如图,在路灯的同侧有两根高度相同的木棒,请分别画出这两根木棒的影子.13.画图:如图是小明与妈妈(线段AB)、爸爸(线段CD)在同一路灯下的情景,其中粗线分别表示三人的影子.请根据要求进行作图(不写画法,但要保留作图痕迹)(1)画出图中灯泡P所在的位置.(2)在图中画出小明的身高(线段EF).。
人教版九年级下册数学作业课件 第二十九章 投影与视图 投影 第2课时 正投影
知识点一 正投影的概念
1.底面与投影面平行的圆锥体的正投影是( A )
ቤተ መጻሕፍቲ ባይዱ
A.圆
B.三角形
C.矩形
D.正方形
2.把一个正六棱柱如图摆放,光线由上向下照射此正 六棱柱时的正投影是( A )
3.正方形的正投影不可能是( D )
A.线段
B.矩形
C.正方形
D.梯形
知识点二 正投影的性质与计算
4.当棱长为 20 cm 的正方体的某个面平行于投影面时,
这个面的正投影的面积为( C )
A.20 cm2
B.300 cm2
C.400 cm2
D.600 cm2
5.一根笔直的小木棒(记为线段 AB),它的正投影为线
段 CD,则下列各式中一定成立的是( D )
A.AB=CD B.AB≤CD
C.AB>CD
∴V=1×π×32×4=12π(cm3), 3
S 侧=π×3×5=15π(cm2).
7.在太阳光下转动一个正方体,观察正方体在地上投
下的影子,那么这个影子最多可能是几边形( C )
A.四边形
B.五边形
C.六边形
D.七边形
8.如图,正三棱柱的面 EFDC∥平面 R 且 AE=EF= AF=2, AB=6, 正三棱柱在平面 R 上的正投影是 矩形 (填形状),正投影的面积为 12 .
9.把一个正三棱柱如图摆放,按要求画出其正投影.
(1)投影线由物体前方射到后方; (2)投影线由物体左方射到右方; (3)投影线由物体上方射到下方. 解:如图.
(1)
(2) (3)
10.(教材 P93 习题 T4 变式)一个圆锥的轴截面平行于 投影面,圆锥的正投影是△ABC.已知 AB=AC=5 cm, BC=6 cm,求圆锥的体积和侧面积. 解:如图,过点 A 作 AD⊥BC 于点 D. ∵AB=AC,∴BD=CD=3 cm. 则 AD= 52-32=4(cm).
人教版九年级数学下册《第二十九章投影与视图》教案
人教版九年级数学下册《第二十九章投影与视图》教案一. 教材分析《人教版九年级数学下册》第二十九章《投影与视图》是学生在学习了平面几何、立体几何的基础上,进一步研究三视图、投影等知识。
这一章节的内容既巩固了学生以前所学的几何知识,又为后续的立体几何学习打下基础。
本章主要包括以下几个知识点:1.投影的概念和分类2.正投影和斜投影3.视图的概念和分类4.一视图、二视图、三视图的画法5.几何体的三视图二. 学情分析学生在学习本章内容前,已经掌握了平面几何的基本知识,对几何图形的认知有一定的基础。
但投影与视图的概念对于他们来说比较抽象,需要通过具体的实例和实践活动来理解和掌握。
另外,学生对于空间想象能力的培养还不够,需要在教学过程中加强训练。
三. 教学目标1.让学生理解投影的概念,掌握正投影和斜投影的性质。
2.让学生掌握视图的分类,学会画一视图、二视图、三视图。
3.培养学生空间想象能力,提高他们解决实际问题的能力。
四. 教学重难点1.投影的概念和分类2.正投影和斜投影的性质3.视图的画法4.空间想象能力的培养五. 教学方法1.采用直观演示法,通过实物和模型展示投影与视图的概念和性质。
2.采用实践操作法,让学生动手画一视图、二视图、三视图,培养空间想象能力。
3.采用问题驱动法,引导学生思考和探讨,提高他们解决问题的能力。
六. 教学准备1.准备投影仪、实物、模型等教学道具。
2.准备相关的练习题和测试题。
3.准备黑板和粉笔。
七. 教学过程1. 导入(5分钟)教师通过展示实物和模型,引导学生观察和思考,让学生初步认识投影和视图的概念。
2. 呈现(10分钟)教师通过投影仪展示PPT,详细讲解投影的分类、正投影和斜投影的性质,以及视图的分类和画法。
3. 操练(10分钟)学生分组进行实践活动,每组选择一个几何体,分别画出它的三视图。
教师巡回指导,解答学生疑问。
4. 巩固(10分钟)教师出示一些练习题,让学生独立完成,检查他们对于投影与视图知识的掌握程度。
(人教版)南京九年级数学下册第二十九章《投影与视图》知识点总结
一、选择题1.下面几何体的左视图是( )A.B.C.D.2.一张矩形纸片在太阳光的照射下,在地面上的投影不可能是()A.正方形B.平行四边形C.矩形D.等边三角形3.用大小和形状完全相同的小正方体木块搭成一-个几何体,使得它的正视图和俯视图如图所示,则搭成这样的一个几何体至少需要小正方体木块的个数为( )A.22个B.19个C.16个D.13个4.一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何体最多可由多少个这样的正方体组成()A.12B.13C.14D.155.如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()A.B.C.D.6.如图,王华用橡皮泥做了个圆柱,再用手工刀切去一部分,则其左视图是()A .B .C .D . 7.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm 8.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有( )A .4个B .5个C .6个D .7个9.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为300,同一时 刻,一根长为l 米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为( )A .米B .12米C .米D .10米 10.如图是由五个相同的小正方体搭成的一个几何体,它的主视图是( )A .B .C .D . 11.如图,∠APD=90°,AP=PB=BC=CD ,则下列结论成立的是( )A.△PAB∽△PCA B.△ABC∽△DBA C.△PAB∽△PDA D.△ABC∽△DCA 12.下列几何体中,其主视图、俯视图和左视图分别是图中三个图形的是()A.B.C.D.13.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是() A.B.C.D.14.下面的三视图对应的物体是()A.B.C.D.15.如图的几何体由6个相同的小正方体搭成,它的主视图是()A.B.C.D.二、填空题16.如图是一个几何体的三视图,则这个几何体的侧面积是______.(结果保留 )17.如图,小明站在距离灯杆6m的点B处.若小明的身高AB=1.5m,灯杆CD=6m,则在灯C的照射下,小明的影长BE=______m.18.如图,用棱长为1cm的小立方块组成一个几何体,从正面看和从上面看得到的图形如图所示,则这样的几何体的表面积的最小值是__cm2.19.一个几何体由一些完全相同的小立方块搭成,从正面和从上面看到的这个几何体的形状如下,那么搭成这样一个几何体,最少需要_____个这样的小立方块,最多需要_____个这样的小立方块.20.若要使图中平面展开图按虚线折叠成正方体后,相对面上的两个数为相反数,则x+y =________.21.甲同学的身高为1.5m,某一时刻它的影长为1m,此时一塔影长为20m,则该塔高为____________m。
《常考题》初中九年级数学下册第二十九章《投影与视图》知识点总结(含答案解析)
一、选择题1.如图,正方形ABCD 的边长为3cm ,以直线AB 为轴,将正方形旋转一周,所得几何体的主视图的面积是( )A .29cmB .29πcmC .218πcmD .218cm 2.如图所示的几何体的俯视图是( )A .B .C .D . 3.如图是一个由多个相同小正方体搭成的几何体的俯视图,图中所标数字为该位置小正方体的个数,则这个几何体的主视图是( )A .B .C .D . 4.如图,是一个由若干个小正方体组成的几何体的主视图和左视图,则该几何体最多可由多少个小正方体组合而成?( )A .12个B .13个C .14个D .15个 5.一张矩形纸片在太阳光的照射下,在地面上的投影不可能是( ) A .正方形 B .平行四边形 C .矩形 D .等边三角形 6.由m 个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m 能取到的最大值是( )A.6 B.5 C.4 D.37.一个几何体由若干大小相同的小立方块搭成,从它的正面、左面看到的形状图完全相同(如下图所示),则组成该几何体的小立方块的个数至少有()A.3个B.4个C.5个D.6个8.下列各立体图形中,自己的三个视图都全等的图形有()个①正方体;②球;③圆柱;④圆锥;⑤正六棱柱.A.1个B.2个C.3个D.4个9.如图是小明一天看到的一根电线杆的影子的俯视图,按时间先后顺序排列正确的是( )A.(1)(2)(3)(4) B.(4)(3)(2)(1) C.(4)(3)(1)(2) D.(2)(3)(4)(1)10.圆桌面(桌面中间有一个直径为1m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为2m,桌面离地面1m,若灯泡离地面2m,则地面圆环形阴影的面积是()A.2πm2B.3πm2C.6πm2D.12πm211.如图所示是某几何体从三个方向看到的图形,则这个几何体是()A.三棱锥B.圆柱C.球D.圆锥12.如图是一个由若干个相同的小正方体组成的几何体的三种形状图,则组成这个几何体的小正体的个数是( )A .7B .8C .9D .1013.如图是由一些完全相同的小立方块搭成的几何体的三种视图.搭成这个几何体所用的小立方块的个数是( )A .5个B .6个C .7个D .8个14.如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是( )A .12πB .6πC .12π+D .6π+ 15.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是( ) A . B . C . D .二、填空题16.如图是由一些相同的小正方体构成的立体图形从三个方向看到的图形,那么构成这个立体图形的小正方体有_______个.17.棱长是1cm 的小立方体组成如图所示的几何体,那么这个几何体的表面积是____________.18.如图是由几个小立方块所搭成几何体的从上面、从正面看到的形状图.这样搭建的几何体最多需要__________个小立方块.19.如图,用棱长为1cm的小立方块组成一个几何体,从正面看和从上面看得到的图形如图所示,则这样的几何体的表面积的最小值是__cm2.20.如图,一根直立于水平地面的木杆AB在灯光下形成影子AC(AC>AB),当木杆绕点A按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE=5m,在旋转过程中,影长的最大值为5m,最小值3m,且影长最大时,木杆与光线垂直,则路灯EF的高度为_____ m.21.已知一个物体由x个相同的正方体堆成,它的正视图和左视图如图所示,那么x的最大值是_____.22.将若干个正方体小方块堆放在一起,形成一个几何体,分别从正面看和从上面看,得到的图形如图所示,则这对小方块共有____________块.23.如图,当太阳光与地面上的树影成45°角时,树影投射在墙上的影高CD等于2米,若树根到墙的距离BC等于8米,则树高AB等于___米.24.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.25.如图,是由一些相同的小正方体构成的立体图形的三视图这些相同的小正方体的个数是______.26.如图,在A 时测得某树的影长为4米,在B 时测得该树的影长为9米,若两次日照的光线互相垂直,则该树的高度为___________米.三、解答题27.晚上,小亮在广场乘凉,图中线段AB 表示站立在广场上的小亮,线段PO 表示直立在广场上的灯杆,点P 表示照明灯.(1)请你在图中画出小亮在照明灯P 照射下的影子BC (请保留作图痕迹,并把影子描成粗线);(2)如果小亮的身高 1.6AB m =,测得小亮影长2BC m =,小亮与灯杆的距离13BO m =,请求出灯杆的高PO .28.树AB 和木杆CD 在同一时刻的投影如图所示,木杆CD 高2m ,影子DE 长3m ;若树的影子BE 长7m ,则树AB 高多少m ?29.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图①,格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸图②中分别画出这个几何体的主视图和左视图.(2)根据三视图,这个组合几何体的表面积为多少个平方单位?(包括底面积)(3)若上述小立方块搭成的几何体的俯视图不变,如图③,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大(包括底面积)仿照图①,将数字填写在图③的正方形中.30.如图1,是一个由正方体截成的几何体,请在图2的网格中依次画出这个几何体从正面、上面、和左面看到的几何体的平面图形.。
九年级数学下册第二十九章《投影与视图》综合知识点总结(含答案)
学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图是某几何体的三视图及相关数据,则下面判断正确的是()A.a>c B.b>c C.a2+4b2=c2D.a2+b2=c22.如图由5个相同的小正方体组成的-个立体图形,其俯视图是()A.B.C.D.3.由m个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m能取到的最大值是()A.6 B.5 C.4 D.34.如图,是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的主视图(从正面看)是()A.B.C.D.5.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为()A.上午8时B.上午9时30分C.上午10时D.上午12时6.小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是()A.三角形B.线段C.矩形D.平行四边形7.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()A.B.C.D.8.下面的三视图对应的物体是()A.B.C.D.9.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影子长DE=1.8m,窗户下沿到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16m10.下列命题是真命题的是()A.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:911.如图所示几何体的左视图是()A.B.C.D.12.如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是()A.B.C.D.13.如图是有一些相同的小正方体构成的立体图形的三视图.这些相同的小正方体的个数是()A.4 B.5 C.6 D.714.如图是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数不可能是()A.6个B.7个C.8个D.9个第II卷(非选择题)请点击修改第II卷的文字说明参考答案二、填空题15.一个几何体是由一些大小相同的小正方块摆成的,从正面看与从上面看得到的形状图如图所示,则组成这个几何体的小正方体的个数n的所有可能值的和是______________16.如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m的竹竿的影长是0.5m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),她先测得留在墙壁上的影高为1m,又测得地面的影长为1.5m,请你帮她算一下,树高为______.17.某几何体从三个方向看到的图形分别如图,则该几何体的体积为___________.18.棱长是1cm的小立方体组成如图所示的几何体,那么这个几何体的表面积是____________.19.一个几何体由一些完全相同的小立方块搭成,从正面和从上面看到的这个几何体的形状如下,那么搭成这样一个几何体,最少需要_____个这样的小立方块,最多需要_____个这样的小立方块.20.如图是某几何体的三视图,则该几何体左视图的面积为_________.21.小新的身高是1.7m,他的影子长为5.1m,同一时刻水塔的影长是42m,则水塔的高度是_____m.22.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是_____.23.如图,是由一些相同的小正方体构成的立体图形的三视图这些相同的小正方体的个数是______.24.一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为__________米.25.一个几何体由几个大小相同的小正方体搭成,这个几何体的俯视图和左视图如图所示,则这个几何体中小正方体的个数最少是________个.26.由一些完全相同的小正方体组成的几何体,从正面看和左面看的图形如图所示,则组成这个几何体的小正方体的个数至少是_____个.三、解答题27.一个几何体的三种视图如图所示.(1)这个几何体的名称是 __,其侧面积为 __;(2)画出它的一种表面展开图;(3)求出左视图中AB的长.28.把棱长为1cm的若干个小正方体摆放成如图所示的几何体,然后在露出的表面上涂上颜色(不含底面)()1该几何体中有多少个小正方体?()2画出从正面看到的图形;()3写出涂上颜色部分的总面积.29.如图各图是棱长为1cm的小正方体摆成的,如图①中,从正面看有1个正方形,表面积为6cm2;如图②中,从正面看有3个正方形,表面积为18cm2;如图③,从正面看有6个正方形,表面积为36cm2;…(1)第6个图中,从正面看有多少个正方形?表面积是多少?(2)第n个图形中,从正面看有多少个正方形?表面积是多少?30.用六个小正方体搭成如图的几何体,请画出该几何体从正面,左面,上面看到的图形.参考答案【参考答案】一、选择题1.D2.C3.B4.B5.A6.A7.C8.D9.A10.B11.B12.D13.B14.D二、填空题15.11【分析】易得这个几何体共有2层由主视图和俯视图可得第一层最多正方体的个数为3块第二层最多正方体的个数为3块相加即可【详解】解:组成这个几何体的小正方体的个数有2+2+2=6或2+1+2=55+616.4m【分析】首先要知道在同一时刻任何物体的高与其影子的比值是相同的所以竹竿的高与其影子的比值和树高与其影子的比值相同利用这个结论可以求出树高【详解】解:如图所示:过点D作DC⊥AB于点C连接AE由题17.3π【分析】由三视图可得这个几何体为圆柱利用圆柱的体积公式求解即可【详解】由三视图可得此几何体为圆柱所以圆柱的体积为3×π•()2=3π故答案为3π【点睛】本题考查了与三视图有关的计算根据三视图确定18.36cm2【分析】从上面看到6个正方形从正面和右面可看到6个正方形从两个侧后面可看到6个正方形从底面可到到6个正方形面积相加即为所求【详解】从上面看到的面积为6从正面和右面看到的面积为从两个侧后面看19.68【解析】【分析】易得这个几何体共有2层由俯视图可得第一层立方体的个数由主视图可得第二层立方体的可能的个数相加即可【详解】综合主视图和俯视图这个几何体的底层有4个小正方体第二层最少有2个最多有4个20.【解析】【分析】由视图知此几何体的侧视图为一个长方形故由题设条件求出侧视图的面积即可【详解】由几何体的主视图与俯视图可得几何体为三棱柱所以该几何体的左视图的面积为2×6=12故答案为:【点睛】本题考21.14【分析】设水塔的高为xm根据同一时刻平行投影中物体与影长成正比得到x:42=17:51然后利用比例性质求x即可【详解】设水塔的高为xm根据题意得x:42=17:51解得x=14即水塔的高为14m22.7【解析】该几何体的主视图的面积为1×1×4=4左视图的面积是1×1×3=3所以该几何体的主视图和左视图的面积之和是3+4=7故答案为723.5【解析】试题分析:根据三视图可得这个立体图形有5个小正方体考点:几何体的三视图24.16【分析】易得△AOB∽△ECD利用相似三角形对应边的比相等可得旗杆OA的长度【详解】解:∵OA⊥DACE⊥DA∴∠CED=∠OAB=90°∵CD∥OE∴∠CDA=∠OBA∴△AOB∽△ECD∴解25.5【分析】易得这个几何体共有2层由俯视图可得第一层立方体的个数由左视图可得第二层所须小正方体最少的个数相加即可得答案【详解】由俯视图和左视图可知此几何体有2层第一层有4个小正方体第二层最少有1个小正26.4【分析】根据图示可知该几何体有2层由俯视图可得第一层小正方图的个数由主视图可得第二层小正方体的可能的个数即可解决问题【详解】由俯视图易得最底层有3个小正方体由主视图易得第二层最少有1个最多有2个小三、解答题27.28.29.30.【参考解析】一、选择题1.D解析:D【分析】由三视图可知该几何体是圆锥,圆锥的高是a,母线长是c,底面圆的半径是b,刚好组成一个以c为斜边的直角三角形,由勾股定理,可得解.【详解】由题意可知该几何体是圆锥,根据勾股定理得,a2+b2=c2故选:D.【点睛】本题考查三视图和勾股定理,关键是由三视图判断出几何体是圆锥.2.C解析:C【分析】根据立体图形三视图的性质进行判断即可.【详解】根据立体图形三视图的性质,该立体图形的俯视图为故答案为:C.【点睛】本题考查了立体图形的三视图,掌握立体图形三视图的性质是解题的关键.3.B解析:B【分析】根据主视图和俯视图分析每行每列小正方体最多的情况,即可得出答案.【详解】由题中所给出的主视图知物体共两列,且左侧一列高两层,右侧一列最高一层;由俯视图可知左侧两行,右侧一行,于是,可确定右侧只有一个小正方体,而左侧可能是一行单层一行两层,可能两行都是两层.最多的情况如图所示,所以图中的小正方体最多5块.故选:B.【点睛】本题考查根据三视图判断小正方体个数,需要一定空间想象力,熟练掌握主视图与俯视图的定义是解题的关键.4.B解析:B【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有4列,从左到右分别是1,2,3,2个正方形.【详解】由俯视图中的数字可得:主视图有4列,从左到右分别是1,2,3,2个正方形.故选B.【点睛】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.5.A解析:A【分析】根据从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长可知.【详解】解:根据从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.可知影子最长的时刻为上午8时.故选A.【点睛】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.6.A【分析】根据平行投影的性质进行分析即可得出答案.【详解】将长方形硬纸的板面与投影线平行时,形成的影子为线段;将长方形硬纸板与地面平行放置时,形成的影子为矩形;将长方形硬纸板倾斜放置形成的影子为平行四边形;由物体同一时刻物高与影长成比例,且长方形对边相等,故得到的投影不可能是三角形. 故选A .【点睛】本题考查了投影与视图的有关知识,是一道与实际生活密切相关的热点试题,灵活运用平行投影的性质是解题的关键.7.C解析:C【解析】分析:俯视图就是要从问题的正上方往下看,相当于把物体投影到平面.详解:圆柱体和球体投影到平面以后都是圆形,故排除A,因为圆形的轮廓线都是可以看到的,所以选C.点睛:三视图中,可以看到的轮廓线,要化成实线,看不到的轮廓线,要化成虚线. 8.D解析:D【解析】解:从俯视图可以看出直观图的下面部分为三个长方体,且三个长方体的宽度相同.只有D 满足这两点.故选D .点睛:本题主要考查学生对图形的三视图的了解及学生的空间想象能力.9.A解析:A【解析】∵BE ∥AD ,∴△BCE ∽△ACD , ∴CB CE AC CD =,即 CB CE AB BC DE EC=++, ∵BC=1,DE=1.8,EC=1.2 ∴1 1.21 1.8 1.2AB =++ ∴1.2AB=1.8,∴AB=1.5m .故选A . 10.B【分析】根据相似三角形的性质分别对每一项进行分析即可.【详解】解:A、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;B、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;C、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;D、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;故选B.【点睛】此题考查了命题与定理,用到的知识点是相似三角形的性质,关键是熟练掌握有关性质和定理.11.B解析:B【分析】根据左视图是从左边看得到的图形,可得答案.【详解】从左边看是:故选B.【点睛】本题考查了简单几何体的三视图,左视图是从物体的左面看得到的视图.12.D解析:D【解析】【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】从正面看易得第一层左侧有1个正方形,第二层有3个正方形.故选D.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.13.B解析:B【解析】根据题意可知:第一行第一列只能有1个正方体,第二列有3个正方体,第一行第3列有1个正方体,共需正方体1+3+1=5.故选B.14.D解析:D【解析】由俯视图可得得最底层有5个立方体,由左视图可得第二层最少有1个立方体,最多有3个立方体,所以小立方体的个数可能是6个或7个或8个,小立方体的个数不可能是9.故选D.点睛:本题主要考查了三视图的应用,掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.注意俯视图中有几个正方形,底层就有几个立方体.二、填空题15.11【分析】易得这个几何体共有2层由主视图和俯视图可得第一层最多正方体的个数为3块第二层最多正方体的个数为3块相加即可【详解】解:组成这个几何体的小正方体的个数有2+2+2=6或2+1+2=55+6解析:11【分析】易得这个几何体共有2层,由主视图和俯视图可得第一层最多正方体的个数为3块,第二层最多正方体的个数为3块,相加即可.【详解】解:组成这个几何体的小正方体的个数有2+2+2=6或2+1+2=5,5+6=11,故答案为:11.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.16.4m【分析】首先要知道在同一时刻任何物体的高与其影子的比值是相同的所以竹竿的高与其影子的比值和树高与其影子的比值相同利用这个结论可以求出树高【详解】解:如图所示:过点D作DC⊥AB于点C连接AE由题解析:4m【分析】首先要知道在同一时刻任何物体的高与其影子的比值是相同的,所以竹竿的高与其影子的比值和树高与其影子的比值相同,利用这个结论可以求出树高.【详解】解:如图所示:过点D作DC⊥AB于点C,连接AE,由题意可得:DE=BC=1m ,BE=1.5m ,∵一根长为1m 的竹竿的影长是0.5m ,∴AC=2CD=3m ,故AB=3+1=4(m ).故答案为4m .【点睛】此题主要考查了平行投影,解题的关键要知道竹竿的高与其影子的比值和树高与其影子的比值相同.17.3π【分析】由三视图可得这个几何体为圆柱利用圆柱的体积公式求解即可【详解】由三视图可得此几何体为圆柱所以圆柱的体积为3×π•()2=3π故答案为3π【点睛】本题考查了与三视图有关的计算根据三视图确定解析:3π.【分析】由三视图可得这个几何体为圆柱,利用圆柱的体积公式求解即可.【详解】由三视图可得,此几何体为圆柱,所以圆柱的体积为3×π•(22 )2=3π, 故答案为3π.【点睛】本题考查了与三视图有关的计算,根据三视图确定这个几何体为圆柱是解决问题的关键. 18.36cm2【分析】从上面看到6个正方形从正面和右面可看到6个正方形从两个侧后面可看到6个正方形从底面可到到6个正方形面积相加即为所求【详解】从上面看到的面积为6从正面和右面看到的面积为从两个侧后面看 解析:36cm 2【分析】从上面看到6个正方形,从正面和右面可看到62⨯个正方形,从两个侧后面可看到62⨯个正方形,从底面可到到6个正方形,面积相加即为所求.【详解】从上面看到的面积为62116cm ⨯⨯=,从正面和右面看到的面积为2621112cm ⨯⨯⨯=,从两个侧后面看到的面积为2621112cm ⨯⨯⨯=,从底面看到的面积为62116cm ⨯⨯=, 那么这个几何体的表面积为6+12+12+6=362cm .【点睛】本题考查了几何体的表面积,解决问题的关键是分别从各个视角求出面积,然后相加即可. 19.68【解析】【分析】易得这个几何体共有2层由俯视图可得第一层立方体的个数由主视图可得第二层立方体的可能的个数相加即可【详解】综合主视图和俯视图这个几何体的底层有4个小正方体第二层最少有2个最多有4个解析:6 8【解析】【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【详解】综合主视图和俯视图,这个几何体的底层有4个小正方体,第二层最少有2个,最多有4个,因此搭成这样的一个几何体至少需要小正方体木块的个数为:4+2=6个,至多需要小正方体木块的个数为:4+4=8个,故答案为6,8.【点睛】此题主要考查了几何体的三视图,考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.20.【解析】【分析】由视图知此几何体的侧视图为一个长方形故由题设条件求出侧视图的面积即可【详解】由几何体的主视图与俯视图可得几何体为三棱柱所以该几何体的左视图的面积为2×6=12故答案为:【点睛】本题考解析:2【解析】【分析】由视图知,此几何体的侧视图为一个长方形,故由题设条件求出侧视图的面积即可.【详解】由几何体的主视图与俯视图可得,几何体为三棱柱,所以该几何体的左视图的面积为=,故答案为:2.【点睛】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是三视图中的侧视图面积,解决本题的关键是由题设条件得出侧视图的形状及侧视图的几何特征.求解本题的关键是准确熟练理解三视图的投影规则,其规则是:主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等.21.14【分析】设水塔的高为xm根据同一时刻平行投影中物体与影长成正比得到x:42=17:51然后利用比例性质求x即可【详解】设水塔的高为xm根据题意得x:42=17:51解得x=14即水塔的高为14m解析:14.【分析】设水塔的高为xm,根据同一时刻,平行投影中物体与影长成正比得到x:42=1.7:5.1,然后利用比例性质求x即可.【详解】设水塔的高为xm,根据题意得x:42=1.7:5.1,解得x=14,即水塔的高为14m.故答案为14.【点睛】本题考查了平行投影的知识,解题的关键是熟练的掌握投影的性质与运用.22.7【解析】该几何体的主视图的面积为1×1×4=4左视图的面积是1×1×3=3所以该几何体的主视图和左视图的面积之和是3+4=7故答案为7解析:7【解析】该几何体的主视图的面积为1×1×4=4,左视图的面积是1×1×3=3,所以该几何体的主视图和左视图的面积之和是3+4=7,故答案为7.23.5【解析】试题分析:根据三视图可得这个立体图形有5个小正方体考点:几何体的三视图解析:5【解析】试题分析:根据三视图可得这个立体图形有5个小正方体.考点:几何体的三视图24.16【分析】易得△AOB∽△ECD利用相似三角形对应边的比相等可得旗杆OA的长度【详解】解:∵OA⊥DACE⊥DA∴∠CED=∠OAB=90°∵CD∥OE∴∠CDA=∠OBA∴△AOB∽△EC D∴解解析:16【分析】易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.【详解】解:∵OA⊥DA,CE⊥DA,∴∠CED=∠OAB=90°,∵CD∥OE,∴∠CDA=∠OBA,∴△AOB∽△ECD,∴CE OA16OA==,,DE AB220解得OA=16.故答案为16.25.5【分析】易得这个几何体共有2层由俯视图可得第一层立方体的个数由左视图可得第二层所须小正方体最少的个数相加即可得答案【详解】由俯视图和左视图可知此几何体有2层第一层有4个小正方体第二层最少有1个小正解析:5【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由左视图可得第二层所须小正方体最少的个数,相加即可得答案.【详解】由俯视图和左视图可知此几何体有2层,第一层有4个小正方体,第二层最少有1个小正方体,∴这个几何体中小正方体的个数最少是5个,故答案为:5【点睛】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.26.4【分析】根据图示可知该几何体有2层由俯视图可得第一层小正方图的个数由主视图可得第二层小正方体的可能的个数即可解决问题【详解】由俯视图易得最底层有3个小正方体由主视图易得第二层最少有1个最多有2个小解析:4【分析】根据图示可知,该几何体有2层,由俯视图可得第一层小正方图的个数,由主视图可得第二层小正方体的可能的个数,即可解决问题.【详解】由俯视图易得,最底层有3个小正方体,由主视图易得,第二层最少有1个,最多有2个小正方体,那么搭成这个几何体的小正方体最少为3+1=4个,最多为3+2=5个故答案为:4【点睛】本题考查了从不同方向观察几何体,难度适中,熟练掌握根据主视图和俯视图确定小正方体的个数是解题关键.三、解答题27.(1)正三棱柱,72;(2)见解析;(3)23 【分析】(1)由三视图可知,该几何体为正三棱柱,再根据正三棱柱侧面积计算公式计算可得; (2)画出正三棱柱的展开图即可;(3)在EFG ∆中,作EH FG ⊥于点H ,根据勾股定理求出EH ,即可得到AB .【详解】解:()1由三视图可知,该几何体为正三棱柱;这个几何体的侧面积为36472⨯⨯=;故答案为:正三棱柱;72.()2展开图如下:()3在EFG ∆中,作EH FG ⊥于点H ,则2FH =,224223EH =-=.AB ∴长23.【点睛】本题考查三视图、几何体的侧面展开图等知识,解题的关键是理解三视图、看懂三视图,属于中考常考题型.28.(1)14个;(2)见解析;(3)33cm2【分析】(1)该几何体中正方体的个数为最底层的9个,加上第二层的4个,再加上第三层的1个;(2)主视图从上往下三行正方形的个数依次为1,2,3;(3)涂上颜色部分的总面积可分上面,前面,后面,左面,右面,相加即可.【详解】解:(1)该几何体中正方体的个数为9+4+1=14个;(2);(3)前面,后面,左面,右面分别有1+2+3=6个面,上面有1+3+5=9个面,共有6×4+9=33个面所以,涂上颜色部分的总面积是:1×1×33=33(cm2).【点睛】考查几何体三视图的画法及有关计算;有规律的找到正方体的个数和计算露出部分的总面积是解决本题的关键.29.(1)126cm2;(2)3n(n+1)cm2.【分析】(1)由题意知,第4个图共有1+3+6+10=20个,从正面看有10个正方形,第5个图共有1+3+6+10+15=35个,从正面看有15个正方形,即可推出第6个图形的正方体和正面看到的正方形个数;(2)由题意知,从正面看有(1+2+3+4+…+n)个正方形,即可得出其表面积.【详解】(1)由题意可知,第6个图中,从正面看有1+2+3+4+5+6=21个正方形,表面积为:21×6=126cm2;(2)由题意知,从正面看到的正方形个数有(1+2+3+4+…+n)=(1)2n n+个,表面积为:(1)2n n+×6=3n(n+1)cm2.【点睛】本题主要考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题.30.【解析】【分析】从正面看为两层,下面是三个小正方形,上面最左边一个小正方形;从左边看分两层,下面是三个小正方形,上面中间一个小正方形;从上面看分三行,最上面一行最左边一个小正方形,中间三个小正方形,第三行最左边一个小正方形.【详解】如图所示:【点睛】本题主要考查简单几何体三视图,解决本题的关键是要熟练掌握观察三视图的方法.。
初中数学人教九年级下册第二十九章 投影与视图2 平行投影与中心投影(教案)
第二十九章投影与视图投影第1课时平行投影与中心投影教学目标【知识与技能】1.经历实践探索,了解投影、平行投影和中心投影的概念;2.了解平行投影和中心投影的区别.【过程与方法】经历观察、思考的过程,感受生活中的投影广泛存在着,从中体会平行投影与中心投影的联系和区别.【情感态度】使学生学会关注生活中有关投影的数学问题,提高数学应用意识.【教学重点】掌握投影的含义,体会中心投影与平行投影的联系和区别.【教学难点】中心投影与平行投影的联系与区别.教学过程一、情境导入,初步认识物体在日光或灯光的照射下,会在地面、墙壁等处形成影子.请观察下面三幅图片,感受日常生活中的一些投影现象,并引入教材练习以加深理解.二、思考探究,获取新知一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.有时光线是一组互相平行的射线,如太阳光或探照灯光的一束光中的光线.由平行光线形成的投影是平行投影,例如物体在太阳光的照射下形成的影子(简称日影)就是平行投影.由同一点(点光源)发出的光线形成的投影叫做中心投影,如物体在灯泡发出的光照射下形成影子就是中心投影.如图所示的是三角尺在灯光(点光源)下的投影.由此可以看出点光源下物体的投影是物体的放大图形,这两个图形是位似图形.【思考】如何判断一个物体的投影是平行投影还是中心投影呢?【教学说明】学生间相互交流,进一步体验平行投影和中心投影的关系.【归纳结论】如果投影与物体的对应点连线互相平行,则此时的投影是平行投影,如果对应点的连线交于一点,则此时的投影为中心投影.三、典例精析,掌握新知(2) 当乙木杆移动到什么位置时,其影子刚好不落在墙上?(3)在(2)的情况下,如果测得甲、乙木杆的影子长分别为和1m,那么你能求出甲木杆的高度吗?例2 请举出生活中的投影现象,说说它们是平行投影还是中心投影?【教学说明】本环节的两个问题都可让学生自主探究或相互交流.教师巡视指导,听取学生的观点,加深对知识的理解.四、师生互动,课堂小结通过这节课的学习你有哪些收获?你还有什么疑问?【教学说明】师生共同回顾本节知识,在相互交流中巩固新知.当堂测评2. 下面属于中心投影的是 ( )A. 太阳光下的树影B. 皮影戏C. 月光下房屋的影子D. 海上日出3. 晚上,人在马路上走过一盏路灯的过程中,其影子长度的变化情况是( )A. 先变短后变长B. 先变长后变短C. 逐渐变短D. 逐渐变长4. 小玲和小芳两人身高相同,两人站在灯光下的不同位置,已知小玲的影子比小芳的影子长,则可以判定小芳离灯光较______.(填“远”或“近”) .5.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察广场的旗杆随太阳转动的情况,无意之中,他发现这四个时刻广场的旗杆在地面上的影子的长度各不相同,那么影子最长的时刻为-----综合应用:如图,路灯(P点)距地面8米,身高米的小明从距路灯的底部(O点)20米的A点沿OA所在的直线行走14米到B点时,影子的长度是变长了还是变短了?变长或变短了多少米?教学反思本课时通过引入具体情境,让学生感受平行投影与中心投影的特征,进而探讨中心投影与平行投影的区别与联系,这进一步发展了学生的抽象概括能力.。
人教版九年级数学下册作业课件 第二十九章 投影与视图 投影 第1课时 平行投影与中心投影
(2)若桌面直径和桌面与地面的距离均为1.2 m,测得影子的最大跨度MN为2 m,求 路灯O与地面的距离.
解:(1)如图,点O和PQ即为所求 (2)如图,作OF⊥MN于点F,交AB于点E,则OE⊥AB,AB=1.2 m,EF=1.2 m, MN=2 m.∵AB∥MN,∴△OAB∽△OMN,∴AB∶MN=OE∶OF,即1.2∶2= (OF-1.2)∶OF,解得OF=3.答:路灯O与地面的距离为3 m
解:连接A′C,B′D并延长,交点P即为光 源的位置;连接点P与人的头顶并延长,交过 点E的水平线于点F,则EF即为人在此光源下 的影子,画图略.
Байду номын сангаас10.在同一时刻,两根长度不等的竹竿置于阳光之下,但它们的影长相等,那么这 两根竹竿的相对位置是 ( C)
A.都垂直于地面 B.平行斜插在地上 C.不平行 D.一根倒在地上 11.下面四幅图是两个物体不同时刻在太阳光下的影子,按照时间的先后顺序正确 的是 ( C )
5.有两根木棒AB,CD在同一平面上直立着,其中木棒AB在太阳光下的影子是 BE,如图所示,请你在图中画出这时木棒CD的影子.
解:如图,连接AE,过点C作AE的平行线, 过点D作BE的平行线,相交于点F,则DF即为 这时木棒CD的影子
知识点2:中心投影 6.下列光线形成的投影是中心投影的有 ( C ) ①汽车头灯 ②太阳 ③手电筒 ④路灯 A.1个 B.2个 C.3个 D.4个 7.夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子 ( B ) A.越长 B.越短 C.一样长 D.随时间变化而变化
8.如图,小树 AB 在路灯 O 的照射下形成投影 BC.若树高 AB=2 m,树影 BC 14
第二十九章投影与视图复习课件
课堂练习
1、你能找出主视图和左视图 完全相同的几何体吗? 你能找出三种视图完全相同 的几何体吗?请各举两例。
课堂练习
2、如下图,是由一些相同的小正方 体构成的几何体的三视图,请问这几 A 何体小正方体中的个数是———。
主视图
左视图
俯视图
A. 4 B. 5 C. 6 D. 7
课堂练习
3.下面的四组图形中,如图所示的圆 B 柱体的三视图的是————
3 、 探照灯、手电筒、路灯和台灯 的光线可以看成是从一点出发的, 像这样的光线所形成的投影称为 中 心 投 影 ( central projection).
知识点回顾
(4)已知两棵小树在同一时刻 的影子,你如何确定影子是在 太阳光线下还是在灯光的光线 下形成的。
两条光线是平行,因此 它们是太阳光下形成的.
11、 如图是一根电线杆在一天中不同时刻 的影长图,试按其一天中发生的先后顺序 排列,正确的是【 】 A. ①②③④ B. ④①③② C. ④②③① D. ④③②①
12.有一实物如图,那么它的 主视图 ( )
A
B
C
D
13、与一盏路灯相对,有一玻璃幕墙,幕 墙前面的地面上有一盆花和一棵树。 晚上,幕墙反射路灯灯光形成了那盆花的 影子(如图所示),树影 P是路灯灯光形成 的。你能确定此时路灯光源的位置吗?
14平地上立有三根等高等距的木杆,其俯视图如 图所示(图⑴⑵⑶表示三种不同的情况),图中画 出了其中一根木杆在路灯灯光下的影子,你能分 别在图中画出另外两根木杆在同一路灯灯光下的 影子的位置吗?能确定影子的长短吗?
15.为解决楼房之间的挡光问题,某地区规定:两幢楼房 间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一 楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该 地区冬天中午12时阳光从正南方照射,并且光线与水平线的 夹角最小为30°,在不违反规定的情况下,请问新建楼房最 高多少米?(结果精确到1米. 1.414 , 1.732 ) 2 3
初中数学知识点投影与视图:平行投影定义及特点
初中数学知识点——投影与视图:平行投影定义
及特点
1、一般地,用光线照射物体,在某个平面(地面或墙壁等)上得到的影子,叫做物体的投影。
只要有光线,有被光线照到的物体,就存在影子。
太阳光线可看做平行的,像这样的光线照射在物体上,所形成的投影叫做平行投影。
由此我们可得出这样两个结论:
(1)等高的物体垂直地面放置时,如图1所示,在太阳光下,它们的影子一样长。
(2)等长的物体平行于地面放置时,如图2所示,它们在太阳光下的影子一样长,且影长等于物体本身的长度。
2、①在不同时刻,同一物体的影子的方向和大小可能不同。
不同时刻,物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚,物体影子的指向是:西→西北→北→东北→东,影长也是由长变短再变长。
②在同一时刻,不同物体的物高与影长成正比例。
即:。
利用上面的关系式可以计算高大物体的高度,比如旗杆的高度等。
注意:利用影长计算物高时,要注意的是测量两物体在同一时刻的影长。
要点诠释:
1.平行投影是物体投影的一种,是在平行光线的照射下产生的。
利用平行投影知识解题要分清不同时刻和同一时刻。
2.物体与影子上的对应点的连线是平行的就说明是平行光线。
人教版数学九年级下册:第二十九章《投影与视图》知识点
第29章投影与三视图一、目标与要求1.会从投影的角度理解视图的概念2.会画简单几何体的三视图3.通过观察探究等活动使学生知道物体的三视图与正投影的相互关系及三视图中位置关系、大小关系4.明确正投影与三视图的关系5.经历探索简单立体图形的三视图的画法,能识别物体的三视图6.培养动手实践能力,发展空间想象能力。
二、知识框架四、重点、难点重点:从投影的角度加深对三视图的理解和会画简单的三视图,能够做出简单立体图形的三视图的画法。
难点:对三视图概念理解的升华及正确画出三棱柱的三视图,三视图中三个位置关系的理解。
四、中考所占分数及题型分布本章在中考中会出1道选择或者填空,也有可能不出。
在简答题中会在几何题中穿插应用,本章约占3-5分。
第29章 投影与三视图29.1 投影1.投影:用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面。
2.平行投影:有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。
由平行光线形成的投影是平行投影.3.中心投影:由同一点(点光源发出的光线)形成的投影叫做中心投影。
4.正投影:投影线垂直于投影面产生的投影叫做正投影。
例.把一根直的细铁丝(记为线段AB)放在三个不同位置:(1)铁丝平行于投影面;(2)铁丝倾斜于投影面;(3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点).三种情形下铁丝的正投影各是什么形状?通过观察、测量可知:(1)当线段AB 平行于投影面P 时,它的正投影是线段11A B ,线段与它的投影的大小关系为11AB A B =;(2)当线段AB 倾斜于投影面P 时,它的正投影是线段22A B ,线段与它的投影的大小关系为22AB A B =;(3)当线段AB 垂直于投影面P 时,它的正投影是一个点3A .例.把一正方形硬纸板P (记正方形ABCD )放在三个不同位置:(1)纸板平行于投影面;(2)纸板倾斜于投影面;(3)纸板垂直于投影面。
九年级数学下册第二十九章《投影与视图》综合知识点总结(培优提高)
学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.“圆柱与球的组合体”如下图所示,则它的三视图是()A.B.C.D.2.如图,是由一些大小相同的小正方体组成的几何体的主视图和俯视图,则组成这个几何体的小正方体最多块数是()A.9 B.10 C.11 D.123.如图所示,该几何体的主视图为()A .B .C .D . 4.如图所示的几何体的主视图是( )A .B .C .D . 5.如图由5个相同的小正方体组成的-个立体图形,其俯视图是( )A .B .C .D .6.用大小和形状完全相同的小正方体木块搭成一-个几何体,使得它的正视图和俯视图如图所示,则搭成这样的一个几何体至少需要小正方体木块的个数为( )A .22个B .19个C .16个D .13个7.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm 8.如图所示,所给的三视图表示的几何体是( )A.圆锥B.四棱锥C.三棱锥D.三棱柱9.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影子长DE=1.8m,窗户下沿到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16m10.如图所示是某几何体从三个方向看到的图形,则这个几何体是()A.三棱锥B.圆柱C.球D.圆锥11.某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如图所示,请判断搭成此展台共需这样的正方体()A.3个B.4个C.5个D.6个12.一个几何体由一些大小相同的小正方体组成,如图是它的主视图和左视图,那么组成该几何体所需小正方体的个数最少为()A.4 B.5C.6 D.713.如图,是一块带有圆形空洞和正方形空洞(圆面直径与正方形边长相等)的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的可能是().A.B.C.D.14.如图的几何体由6个相同的小正方体搭成,它的主视图是()A.B.C.D.二、填空题15.已知:如图是由若干个大小相同的小正方体所搭成的几何体从正面、左面和上面看到的形状图,则搭成这个几何体的小正方体的个数是_______.16.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外币A处到达内壁B处的最短距离为_______.17.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.18.如图是某几何体的三视图,则该几何体左视图的面积为_________.19.一个几何体的主视图和俯视图如图所示,若这个几何体最多有m个小正方体组成,最少有n个小正方体组成,m+n=_____.20.将若干个正方体小方块堆放在一起,形成一个几何体,分别从正面看和从上面看,得到的图形如图所示,则这对小方块共有____________块.21.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多有________.22.如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是____.23.如图,△ABC与△A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是__.24.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由___________个这样的正方体组成.25.由n个相同的小正方体堆成的几何体,其视图如下所示,则n的最大值是_____.26.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是________.三、解答题27.如图,若干个完全相同的小正方体堆成一个几何体.(1)请在图中方格中画出该几何体的左视图和俯视图.(2)用若干小立方体搭一个几何体,使得它的左视图和俯视图与你在方格中所画的一致,则这样的几何体最多要个小立方块.(3)若小正方体的棱长为1cm,如果将图1中几何体的表面(不含几何体之间叠合部分及与地面接触的底面)喷上油漆,求需喷漆部分的面积.28.如图,AB和DE直立在地面上的两根立柱,已知AB=5m,某一时刻AB在太阳光下的影子长BC=3m.(1)在图中画出此时DE在太阳光下的影子EF;(2)在测量AB影子长时,同时测量出EF=6m,计算DE的长.29.用5个棱长为1的正方体组成如图所示的几何体.(1)该几何体的体积是立方单位,表面积是平方单位(包括底面积);(2)请在方格纸中用实线画出它的三个视图.30.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图①,格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸图②中分别画出这个几何体的主视图和左视图.(2)根据三视图,这个组合几何体的表面积为多少个平方单位?(包括底面积)(3)若上述小立方块搭成的几何体的俯视图不变,如图③,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大(包括底面积)仿照图①,将数字填写在图③的正方形中.【参考答案】一、选择题1.A2.C3.B4.C5.C6.D7.C8.D9.A10.D11.B12.B13.B14.A二、填空题15.【分析】根据主视图和俯视图判断几何体的底层的正方体的个数根据主视图和左视图判断几何体的第二和第三层的正方体的个数计算即可【详解】解:从主视图和俯视图可知几何体的底层有4个正方体从主视图和左视图可知几16.20cm【分析】将杯子侧面展开建立A关于EF的对称点A′根据两点之间线段最短可知A′B的长度即为所求【详解】解:如答图将杯子侧面展开作A关于EF的对称点A′连接A′B则A′B即为最短距离根据勾股定理17.64【分析】根据平行投影同一时刻物长与影长的比值固定即可解题【详解】解:由题可知:解得:树高=64米【点睛】本题考查了投影的实际应用属于简单题熟悉投影概念列比例式是解题关键18.【解析】【分析】由视图知此几何体的侧视图为一个长方形故由题设条件求出侧视图的面积即可【详解】由几何体的主视图与俯视图可得几何体为三棱柱所以该几何体的左视图的面积为2×6=12故答案为:【点睛】本题考19.16【分析】主视图俯视图是分别从物体正面上面看所得到的图形【详解】易得第一层有4个正方体第二层最多有3个正方体最少有2个正方体第三层最多有2个正方体最少有1个正方体M=4+3+2=9N=4+2+1=20.4或5【解析】如图方块有4或5块21.6【解析】符合条件的最多情况为:即最多为2+2+2=622.8【解析】试题分析:根据从上边看得到的图形是俯视图可知从上边看是一个梯形:上底是1下底是3两腰是2周长是1+2+2+3=8故答案为8考点:1简单组合体的三视图;2截一个几何体23.(90)【详解】根据位似图形的定义连接A′AB′B并延长交于(90)所以位似中心的坐标为(90)故答案为:(90)24.13【分析】主视图左视图是分别从物体正面左面看所得到的图形【详解】易得第一层最多有9个正方体第二层最多有4个正方体所以此几何体共有13个正方体故答案为1325.18【分析】根据主视图和俯视图得出几何体的可能堆放从而即可得出答案【详解】综合主视图和俯视图底面最多有个第二层最多有个第三层最多有个则n的最大值是故答案为:18【点睛】本题考查了三视图中的主视图和俯26.18【分析】这个几何体的表面积是主视图左视图俯视图的面积和的2倍【详解】(3+3+3)×2=18故答案为18【点睛】本题考查了几何体的表面积的计算方法将问题转化为三视图面积和的2倍是解决问题的关键三、解答题27.28.29.30.【参考解析】一、选择题1.A解析:A【分析】根据几何体三视图的定义即可得.【详解】从正面看和从左面看得到的平面图形都是一个圆和一个矩形的组合图形,从上面看得到的平面图形是一个圆环,观察四个选项可知,只有选项A符合,故选:A.【点睛】本题考查了几何体的三视图,熟练掌握定义是解题关键.2.C解析:C【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据主视图与俯视图得出答案.【详解】解:根据几何体的主视图和俯视图,可以得出那个主视图看最少5个,那个俯视图看,最左边正方形前后可以有三列,分别有三个⨯+个.故最多有332=11故选C.【点睛】本题考查了三视图的应用,根据从俯视图看,最左边正方形前后可以有三列,分别有三个从而得出答案是解决问题的关键.3.B解析:B【分析】找到从正面看所得到的图形即可.【详解】从正面看两个矩形,中间的线为虚线,故选B.【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图.4.C解析:C【分析】根据三视图的定义,主视图是底层有两个正方形,左侧有三层,即可得到答案.【详解】解:由题图可知,主视图为故选:C【点睛】本题考查了简单几何体的三视图,解题的关键是熟练掌握三视图的定义.5.C解析:C【分析】根据立体图形三视图的性质进行判断即可.【详解】根据立体图形三视图的性质,该立体图形的俯视图为故答案为:C.【点睛】本题考查了立体图形的三视图,掌握立体图形三视图的性质是解题的关键.6.D解析:D【分析】先根据俯视图判断出这个几何体的行列数,然后根据正视图推算每列小正方体的最少个数,最后将各列的小正方体个数求和即可得.【详解】由俯视图可得,这个几何体共有3行3列,其中左边一列有2行,中间一列有2行,右边一列有3行由正视图可得,左边一列2行中的最高层数为2,则这列小正方体最少有213+=个中间一列2行中的最高层数为3,则这列小正方体最少有314+=个右边一列3行中的最高层数为4,则这列小正方体最少有4116++=个因此,这个几何体的一种可能的摆放为2,3,41,1,10,0,1(数字表示所在位置小正方体的个数),小正方体最少有34613++=个故选:D.【点睛】本题考查了三视图(俯视图、正视图)的定义,根据俯视图和正视图得出几何体的实际可能摆放是解题关键.另一个重要概念是左视图,这是常考知识点,需掌握.7.C解析:C【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).故选C.【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.8.D解析:D【解析】分析:由左视图和俯视图可得此几何体为柱体,根据主视图是三角形可判断出此几何体为正三棱柱.详解:∵左视图和俯视图都是长方形,∴此几何体为柱体,∵主视图是一个三角形,∴此几何体为三棱柱.故选D .点睛:考查了由三视图判断几何体,用到的知识点为:由左视图和俯视图可得几何体是柱体,锥体还是球体,由主视图可确定几何体的具体形状.9.A解析:A【解析】∵BE ∥AD ,∴△BCE ∽△ACD , ∴CB CE AC CD =,即 CB CE AB BC DE EC=++, ∵BC=1,DE=1.8,EC=1.2 ∴1 1.21 1.8 1.2AB =++ ∴1.2AB=1.8,∴AB=1.5m .故选A . 10.D解析:D【解析】试题∵主视图和左视图都是三角形,∴此几何体为椎体,∵俯视图是一个圆,∴此几何体为圆锥.故选D .11.B解析:B【解析】试题根据俯视图而得出,第一行第一列有2个正方形,第二列有1个正方体,第二行第二列有1个正方体,共需正方体2+1+1=4.故选B.12.B解析:B【分析】从俯视图中可以看出最底层小正方体的个数及形状,从左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】由题中所给出的主视图知物体共三列,且左侧一列高两层,中间一列高1层,右侧一列最高两层;由左视图可知左侧两,右侧一层,所以图中的小正方体最少3+2=5块.故选B.【点睛】本题主要考查三视图的相关知识:主视图主要确定物体的长和高,左视图确定物体的宽和高,俯视图确定物体的长和宽.13.B解析:B【分析】根据题意,满足条件的空间几何体的三视图中含有圆和正方形.然后分别进行判断即可.【详解】A.正方体的正视图为正方形,侧视图为正方形,俯视图也为正方形,不满足条件.B.圆柱的正视图和侧视图为相同的矩形,俯视图为圆,满足条件.C.圆锥的正视图为三角形,侧视图为三角形,俯视图为圆,不满足条件.D.球的正视图,侧视图和俯视图相同的圆,不满足条件.故选B.【点睛】本题主要考查三视图的识别和判断,解题关键在于熟练掌握常见空间几何体的三视图,比较基础.14.A解析:A【分析】根据从正面看得到的视图是主视图,可得答案.【详解】从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A符合题意,故选A.【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.二、填空题15.【分析】根据主视图和俯视图判断几何体的底层的正方体的个数根据主视图和左视图判断几何体的第二和第三层的正方体的个数计算即可【详解】解:从主视图和俯视图可知几何体的底层有4个正方体从主视图和左视图可知几解析:6【分析】根据主视图和俯视图判断几何体的底层的正方体的个数,根据主视图和左视图判断几何体的第二和第三层的正方体的个数,计算即可.【详解】解:从主视图和俯视图可知,几何体的底层有4个正方体,从主视图和左视图可知,几何体的第二和第三层各一个正方体,则搭成这个几何体的小正方体的个数为:4+1+1=6,故答案为:6.【点睛】本题考查的是由三视图判断几何体,掌握几何体的主视图、左视图和俯视图的概念是解题的关键.16.20cm【分析】将杯子侧面展开建立A关于EF的对称点A′根据两点之间线段最短可知A′B的长度即为所求【详解】解:如答图将杯子侧面展开作A关于EF 的对称点A′连接A′B则A′B即为最短距离根据勾股定理解析:20 cm.【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】解:如答图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离.根据勾股定理,得2222A B A D BD121620'='+=+=(cm).故答案为:20cm.【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.17.64【分析】根据平行投影同一时刻物长与影长的比值固定即可解题【详解】解:由题可知:解得:树高=64米【点睛】本题考查了投影的实际应用属于简单题熟悉投影概念列比例式是解题关键解析:6.4【分析】根据平行投影,同一时刻物长与影长的比值固定即可解题.【详解】解:由题可知:1.628树高,解得:树高=6.4米.【点睛】本题考查了投影的实际应用,属于简单题,熟悉投影概念,列比例式是解题关键.18.【解析】【分析】由视图知此几何体的侧视图为一个长方形故由题设条件求出侧视图的面积即可【详解】由几何体的主视图与俯视图可得几何体为三棱柱所以该几何体的左视图的面积为2×6=12故答案为:【点睛】本题考解析:2【解析】【分析】由视图知,此几何体的侧视图为一个长方形,故由题设条件求出侧视图的面积即可.【详解】由几何体的主视图与俯视图可得,几何体为三棱柱,所以该几何体的左视图的面积为=,故答案为:2.【点睛】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是三视图中的侧视图面积,解决本题的关键是由题设条件得出侧视图的形状及侧视图的几何特征.求解本题的关键是准确熟练理解三视图的投影规则,其规则是:主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等.19.16【分析】主视图俯视图是分别从物体正面上面看所得到的图形【详解】易得第一层有4个正方体第二层最多有3个正方体最少有2个正方体第三层最多有2个正方体最少有1个正方体M=4+3+2=9N=4+2+1=解析:16【分析】主视图、俯视图是分别从物体正面、上面看所得到的图形.【详解】易得第一层有4个正方体,第二层最多有3个正方体,最少有2个正方体,第三层最多有2个正方体,最少有1个正方体,M=4+3+2=9,N=4+2+1=7,所以M+N=9+7=16.故答案为:16.【点睛】此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.20.4或5【解析】如图方块有4或5块解析:4或5【解析】如图方块有4或5块.21.6【解析】符合条件的最多情况为:即最多为2+2+2=6解析:6【解析】符合条件的最多情况为:即最多为2+2+2=622.8【解析】试题分析:根据从上边看得到的图形是俯视图可知从上边看是一个梯形:上底是1下底是3两腰是2周长是1+2+2+3=8故答案为8考点:1简单组合体的三视图;2截一个几何体解析:8【解析】试题分析:根据从上边看得到的图形是俯视图,可知从上边看是一个梯形:上底是1,下底是3,两腰是2,周长是1+2+2+3=8,故答案为8.考点:1、简单组合体的三视图;2、截一个几何体23.(90)【详解】根据位似图形的定义连接A′AB′B并延长交于(90)所以位似中心的坐标为(90)故答案为:(90)解析:(9,0)【详解】根据位似图形的定义,连接A′A,B′B并延长交于(9,0),所以位似中心的坐标为(9,0).故答案为:(9,0).24.13【分析】主视图左视图是分别从物体正面左面看所得到的图形【详解】易得第一层最多有9个正方体第二层最多有4个正方体所以此几何体共有13个正方体故答案为13解析:13【分析】主视图、左视图是分别从物体正面、左面看,所得到的图形.【详解】易得第一层最多有9个正方体,第二层最多有4个正方体,所以此几何体共有13个正方体.故答案为13.25.18【分析】根据主视图和俯视图得出几何体的可能堆放从而即可得出答案【详解】综合主视图和俯视图底面最多有个第二层最多有个第三层最多有个则n 的最大值是故答案为:18【点睛】本题考查了三视图中的主视图和俯 解析:18【分析】根据主视图和俯视图得出几何体的可能堆放,从而即可得出答案.【详解】综合主视图和俯视图,底面最多有2327++=个,第二层最多有2327++=个,第三层最多有2024++=个则n 的最大值是77418++=故答案为:18.【点睛】本题考查了三视图中的主视图和俯视图,掌握三视图的相关概念是解题关键.26.18【分析】这个几何体的表面积是主视图左视图俯视图的面积和的2倍【详解】(3+3+3)×2=18故答案为18【点睛】本题考查了几何体的表面积的计算方法将问题转化为三视图面积和的2倍是解决问题的关键解析:18【分析】这个几何体的表面积是主视图、左视图、俯视图的面积和的2倍.【详解】(3+3+3)×2=18.故答案为18.【点睛】本题考查了几何体的表面积的计算方法,将问题转化为三视图面积和的2倍是解决问题的关键.三、解答题27.(1)见解析;(2)14;(3)230cm【分析】(1)从上面看得到从左往右3列正方形的个数依次为3,2,1,依此画出图形即可;从左面看得到从左往右3列正方形的个数依次为3,2,1,;依此画出图形即可;(2)由俯视图易得最底层小立方块的个数,由左视图找到其余层数里最多个数相加即可;(3)数一数有多少个正方形露在外面即可求得面积.【详解】解:(1)如图所示:(2)由俯视图易得最底层有6个小立方块,第二层最多有5个小立方块,第三层最多有3个小立方块,所以最多有6+5+3=14个小立方块.故答案为:14;(3)若将图1中几何体的表面(不含几何体之间叠合部分及与地面接触的底面)喷上油漆,30cm,则需要喷6×2+6×2+6=30个小正方形,面积为230cm.故需喷漆部分的面积为2【点睛】本题考查了作图-三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形,俯视图决定底层立方块的个数,易错点是由左视图得到其余层数里最多的立方块个数.28.(1)详见解析;(2)10m【分析】(1)连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE的投影;(2)易证△ABC∽△DEF,再根据相似三角形的对应边成比例进行解答即可.【详解】(1)连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE的投影.(2)∵AC∥DF,∴∠ACB=∠DFE,∵∠ABC=∠DEF=90°,∴△ABC∽△DEF,∴AB:DE=BC:EF,∵AB=5m,BC=3m,EF=6m,∴5:DE=3:6,∴DE=10m.【点睛】本题主要考查相似三角形的应用,解此题的关键在于熟练掌握相似三角形的判定与性质. 29.(1)5;22;(2)见解析.【分析】(1)根据几何体的形状得出立方体的体积和表面积即可;(2)主视图有3列,从左往右每一列小正方形的数量为2,1,1;左视图有2列,小正方形的个数为2,1;俯视图有3列,从左往右小正方形的个数为1,2,1.【详解】解:(1)几何体的体积:1×1×1×5=5(立方单位),表面积:小正方体被遮住的面有8个,所以表面积为:1×1×22=22(平方单位);(2)如图所示:【点睛】此题主要考查了画几何体的三视图,关键是掌握三视图所看位置.30.(1)见解析;(2)24;(3)1,4,1;1,1,4;4,1,1,见解析【分析】(1)从正面看到的图形是两列,第一列有两个正方形,第二列有三个正方形;从左面看有两列,第一列有三个正方形,第二列有一个正方形.(2)根据三视图可以求出表面积,(3)要使表面积最大,则需满足两正方体重合的最少,将其中的两个位置各放1个,其余都放在剩下的位置上即可.【详解】解:(1)这个几何体的主视图和左视图如图所示:(2)俯视图知:上面共有3个小正方形,下面共有3个小正方形;由左视图知:左面共有4个小正方形,右面共有4个正方形;由主视图知:前面共有5个小正方形,后面共有5个正方形,故可得表面积为:2×(3+4+5)=24;(3)要使表面积最大,则需满足两正方体重合的最少,此时俯视图为:【点睛】考查简单几何体的三视图,从三个方向看物体的形状实际就是从三个方向的正投影所得到的图形.。
人教版初中九年级下册数学课件 《投影》投影与视图授课课件
定此时路灯光源的位置吗?
1.一个人离开灯光的过程中人的影长()C
A、不变B、变短C、变长D、不确定
2.同一灯光下两个物体的影子可以是()D
A、同一方向B、不同方向 C、相反方向D、以上都有可能 3.在同一时刻,两根长度不等的竿子置于阳光之下,但它们的
影长相等,那么这两根竿子的相对位置是()C
A、两根都垂直于地面B、两根平行斜插在地上 C、两根竿子不平行D、一根倒在地上
4.下面两幅图分别是两棵小树在同一时刻的影子.你能判 断出哪幅图是在灯光下形成的,哪幅图是在太阳光下形 成的吗?
【答案】左图是在太阳光下形成的,右图是在灯光下形成 的
5.如图是一根电线杆在一天中不同时刻的影长图,试按 其一天中发生的先后顺序排列:
第二十九章投影与视图 29.1投影
1、了解投影、投影面、平行投影和中心投影的 概念; 2、关注生活中有关投影的数学问题,提高数学 的应用意识.
晷针的影子、窗户的影子、遮阳伞的影 子都是在光线下形成的.
欣 赏
你知道物体与影子有什么关系吗?
物体在日光或灯光的照射下,会在地面、墙壁等处形成 影子,影子与物体的形状有密切的关系.
都是物体在光线的照射下,在某个平 面内形成的影子.(即都是投影)
区别
光线
物体与投影面 平行时的投影
联系
平行 投影
平行的投射线
中心 从一点出发的投射 投影 线
全等
放大 (位似变换)
都是物体在光
线的照射下,
在某个平面内 形成的影子.(即 都是投影)
一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子 叫做物体的投影(projection) 照射光线叫做投影线, 投影所在的平面叫做投影面.
第二十九章 投影与视图
第二十九章投影与视图
知识点1投影
1.平行投影:由平行光线形成的投影叫做平行投影.
2.中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.
3.正投影:投影线垂直于投影面产生的投影叫做正投影,正投影是一种特殊的平行投影.
知识点2三视图
三视图主视图在正面内得到的由前向后观察物体的视图,叫做主视图.左视图在侧面内得到的由左向右观察物体的视图,叫做左视图.俯视图在水平面内得到的由上向下观察物体的视图,叫做俯视图.
三视图的画法(1)主视图与俯视图的长对正,主视图与左视图高平齐,左视图与俯视图的宽相等:
(2)在画图时,看得见的轮廓线画成实线,看不见的轮廓线画成虚线.
附:常见几何体的三视图
续表
知识点3立体图形的展开和折叠
1.常见几何体的展开图:
(1)正方体的展开图:
①“1-4-1”型
②“2-3-1”型
③“2-2-2”及“3-3”型
(2)圆柱、圆锥、三棱柱的展开图:
2.立体图形上两点之间的最短距离的求法:
将立体图形展开转化为平面图形或将曲面转化为平面图形,然后运用“两点之
间,线段最短”结合勾股定理求解.
蚂蚁要吃到蜂蜜的最短路线长是圆柱的侧面展开图中线段AB的长度.。
新人教版九年级数学教材(第二十九章投影与视图)
第二十九章“投影与视图”教材分析课程教材研究所田载今一、教科书内容和课程学习目标(一)教科书内容本章的主要内容包括:1.投影的基础知识,包括投影、平行投影、中心投影、正投影等概念,正投影的成像规律;2.视图、三视图等概念,三视图的位置和度量规定,一些基本几何体的三视图,简单立体图形(包括相应的表面展开图)与它的三视图的相互转化;3.课题学习:制作立体模型。
这是由三视图向立体图形转化的实践活动。
全章共包括三节:29.1 投影29.2 三视图29.3 课题学习制作立体模型29.1 节首先从物体在日光或灯光下的影子说起,引出投影、平行投影、中心投影、正投影等概念;然后以铁丝和正方形纸板的影子为例,讨论当直线和平面多边形与投影面成三种不同的位置关系时的正投影,归纳出其中蕴涵的正投影的一般规律;最后以正方体为例,讨论立体图形与投影面成不同位置关系时的正投影。
可以发现,整个讨论过程是按照一维、二维和三维的顺序发展的。
29.2节讨论的重点是三视图,其中包括三视图的成像原理、三视图的位置和度量规定、一些基本几何体的三视图等,最后通过6道例题讨论简单立体图形(包括相应的表面展开图)与它的三视图的相互转化。
这一节是全章的重点内容,它不仅包括了有关三视图的基本概念和规律,而且包括了反映立体图形和平面图形的联系与转化的内容,与培养空间想象能力有直接的关系。
29.3节安排了观察、想象、制作相结合的实践活动──“课题学习制作立体模型”,这是结合实际动脑与动手并重的学习内容。
进行这个课题学习既可以采用独立完成的形式,也可以采用合作式学习的方式。
应该把这个课题学习看作对前面学习的内容是否切实理解掌握以及能否灵活运用的一次联系实际的检验。
本章内容与其他章有较为明显的区别,它与直观图形的关系密切,需要在图形形状方面进行想象和判断,要完成的题目多是识图、画图、制作模型等类型的问题,而很少涉及定量的计算。
(二)本章知识结构框图(三)课程学习目标1.以分析实际例子为背景,认识投影和视图的基本概念和基本性质;2.通过讨论简单立体图形(包括相应的表面展开图)与它的三视图的相互转化,使学生经历画图、识图等过程,分析立体图形和平面图形之间的联系,提高空间想象能力;3.通过制作立体模型的课题学习,在实际动手中进一步加深对投影和视图知识的认识,加强在实践活动中手脑结合的能力.(四)课时安排本章教学时间约需11课时,具体分配如下(仅供参考):29.1 投影2课时29.2 三视图5课时29.3 课题学习制作立体模型2课时数学活动小结2课时二、本章的编写特点本章教科书在编写中力图体现以下两个特点。
新人教版初中数学——视图与投影-知识点归纳及中考典型题解析
新人教版初中数学——视图与投影知识归纳及中考典型题解析一、投影1.投影在光线的照射下,空间中的物体落在平面内的影子能够反映出该物体的形状和大小,这种现象叫做投影现象.影子所在的平面称为投影面.2.平行投影、中心投影、正投影(1)中心投影:在点光源下形成的物体的投影叫做中心投影,点光源叫做投影中心.【注意】灯光下的影子为中心投影,影子在物体背对光的一侧.等高的物体垂直于地面放置时,在灯光下,离点光源近的物体的影子短,离点光源远的物体的影子长.(2)平行投影:投射线相互平行的投影称为平行投影.【注意】阳光下的影子为平行投影,在平行投影下,同一时刻两物体的影子在同一方向上,并且物高与影长成正比.(3)正投影:投射线与投影面垂直时的平行投影,叫做正投影.二、视图1.视图由于可以用视线代替投影线,所以物体的正投影通常也称为物体的视图.2.三视图(1)主视图:从正面看得到的视图叫做主视图.(2)左视图:从左面看得到的视图叫做左视图.(3)俯视图:从上面看得到的视图叫做俯视图.【注意】在三种视图中,主视图反映物体的长和高,左视图反映了物体的宽和高,俯视图反映了物体的长和宽.3.三视图的画法(1)画三视图要注意三要素:主视图与俯视图长度相等;主视图与左视图高度相等;左视图与俯视图宽度相等.简记为“主俯长对正,主左高平齐,左俯宽相等”.(2)注意实线与虚线的区别:能看到的线用实线,看不到的线用虚线.三、几何体的展开与折叠1.常见几何体的展开图2.正方体的展开图正方体有11种展开图,分为四类:第一类,中间四连方,两侧各有一个,共6种,如下图:第二类,中间三连方,两侧各有一、二个,共3种,如下图:第三类,中间二连方,两侧各有二个,只有1种,如图10;第四类,两排各有三个,也只有1种,如图11.考向一三视图在判断几何体的三视图时,注意以下两个方面:(1)分清主视图、左视图与俯视图的区别;(2)看得见的线画实线,看不见的线画虚线.典例1【广西壮族自治区南宁市2019–2020学年七年级上学期期末数学试题】如图是从不同方向看某一几何体得到的平面图形,则这个几何体是A.圆锥B.长方体C.球D.圆柱【答案】D【解析】∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故选D.【名师点睛】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.1.如图所示的几何体的俯视图是A.B.C.D.考向二几何体的还原与计算解答此类问题时,首先要根据三视图还原几何体,再根据图中给出的数据确定还原后的几何体中的数据,最后根据体积或面积公式进行计算.典例2如图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位置的小立方体的个数,则从左面看这个几何体所得到的图形是A.B.C.D.【答案】D【解析】如图,左视图如下:,故选D.2.某一几何体的三视图均如图所示,则搭成该几何体的小正方体的个数为A.9 B.5C.4 D.33.如图是一零件的三视图,则该零件的表面积为A.15πcm2B.24πcm2C.51πcm2D.66πcm2考向三投影1.根据两种物体的影子判断其是在灯光下还是在阳光下的投影,关键是看这两种物体的顶端和其影子的顶端的连线是平行还是相交,若平行则是在阳光下的投影,若相交则是在灯光下的投影.2.光源和物体所处的位置及方向影响物体的中心投影,光源或物体的方向改变,则该物体的影子的方向也发生变化,但光源、物体的影子始终在物体的两侧.3.物体的投影分为中心投影和平行投影.典例3如图是小明一天看到的一根电线杆的影子的俯视图,按时间先后顺序排列正确的是A.①②③④B.④③②①C.④③①②D.②③④①【答案】C【解析】根据平行投影的规律以及电线杆从早到晚影子的指向规律,可知:俯视图的顺序为:④③①②,故选C.【名师点睛】本题主要考查平行投影的规律,掌握“就北半球而言,从早到晚物体影子的指向是:西–西北–北–东北–东”,是解题的关键.4.小明在太阳光下观察矩形木板的影子,不可能是A.平行四边形B.矩形C.线段D.梯形考向四立体图形的展开与折叠正方体展开图口诀:正方体展有规律,十一种类看仔细;中间四个成一行,两边各一无规矩;二三紧连错一个,三一相连一随意;两两相连各错一,三个两排一对齐;一条线上不过四,田七和凹要放弃;相间之端是对面,间二拐角面相邻.典例4如图是一个正方体的表面展开图,把展开图折叠成正方体后,与标号为1的顶点重合的是A.标号为2的顶点B.标号为3的顶点C.标号为4的顶点D.标号为5的顶点【答案】D【解析】根据正方体展开图的特点得出与标号为1的顶点重合的是标号为5的顶点.故选D.5.如图所示正方体的平面展开图是A.B.C.D.1.如图所示几何体的主视图是A.B.C.D.2.如图的几何体是由五个相同的小正方体组合面成的,从左面看,这个几何体的形状图是A.B.C.D.3.如图是一棵小树一天内在太阳下不同时刻的照片,将它们按时间先后顺序进行排列正确的是A.③—④—①—②B.②—①—④—③C.④—①—②—③D.④—①—③—②4.如图,某一时刻太阳光下,小明测得一棵树落在地面上的影子长为2.8米,落在墙上的影子高为1.2米,同一时刻同一地点,身高1.6米他在阳光下的影子长0.4米,则这棵树的高为A.6.2米B.10米C.11.2米D.12.4米5.如图,(1)是几何体(2)的___________视图.6.如图,某长方体的底面是长为4cm,宽为2cm的长方形,如果从左面看这个长方体时看到的图形面积为6cm2,那么这个长方体的体积等于__________.7.如图是一个正方体的展开图,折叠成正方体后与“创”字相对的一面上的字是__________.8.一个几何体由12个大小相同的小正方体搭成,从上面看到的这个几何体的形状图如图所示,若小正方形中的数字表示在该位置小正方体的个数,则从正面看,一共能看到________个小正方体(被遮挡的不计).9.画出如图所示物体的主视图、左视图、俯视图.10.【山东省威海市乳山市2019–2020学年九年级上学期期末数学试题】数学实践小组的同学利用太阳光下形成的影子测量大树的高度.在同一时刻下,他们测得身高为1.5米的同学立正站立时的影长为2米,大树的影子分别落在水平地面和台阶上.已知大树在地面的影长为2.4米,台阶的高度均为0.3米,宽度均为0.5米.求大树的高度AB.1.如图是手提水果篮抽象的几何体,以箭头所指的方向为主视图方向,则它的俯视图为A.B.C.D.2.某几何体的俯视图如图所示,图中数字表示该位置上的小正方体的个数,则这个几何体的主视图是A.B.C.D.3.如图是一个几何体的三视图,则这个几何体是A.三棱锥B.圆锥C.三棱柱D.圆柱4.如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为A.B.C.D.5.如图,是由棱长都相等的四个小正方体组成的几何体.该几何体的左视图是A.B.C.D.6.如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同7.图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S俯=A.x2+3x+2 B.x2+2 C.x2+2x+1 D.2x2+3x8.如图是由一个长方体和一个球组成的几何体,它的主视图是A.B.C.D.9.下列四个几何体中,主视图为圆的是A.B.C.D.10.一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是A.B.C.D.11.如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是A.俯视图不变,左视图不变B.主视图改变,左视图改变C.俯视图不变,主视图不变D.主视图改变,俯视图改变12.某个几何体的三视图如图所示,该几何体是A.B.C.D.13.下列哪个图形是正方体的展开图A.B.C.D.14.如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是A.B.C.D.15.在如图所示的几何体中,其三视图中有矩形的是_________.(写出所有正确答案的序号)16.如图是一个多面体的表面展开图,如果面F 在前面,从左面看是面B ,那么从上面看是面__________.(填字母)17.已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为__________.1.【答案】D【解析】根据题意得:几何体的俯视图为,故选C .【名师点睛】此题考查了简单组合体的三视图,熟练掌握几何体三视图的画法是解本题的关键.2.【答案】C【解析】从主视图看第一列有两个正方体,说明俯视图中的左边一列有两个正方体,主视图右边的一列有一个,说明俯视图中的右边一列有一个正方体,所以此几何体共有4个正方体.故选C.3.【答案】B【解析】由三视图知,该几何体是底面半径为3cm、高为4cm的圆锥体,则该圆锥的母线长为(cm),∴该零件的表面积为π•32+12•(2π•3)•5=9π+15π=24π(cm2),故选B.4.【答案】D【解析】A.将木框倾斜放置形成的影子为平行四边形,故该选项不符合题意,B.将矩形木框与地面平行放置时,形成的影子为矩形,故该选项不符合题意,C.将矩形木框立起与地面垂直放置时,形成的影子为线段,D.∵由物体同一时刻物高与影长成比例,且矩形对边相等,梯形两底不相等,∴得到投影不可能是梯形,故该选项符合题意,故选D.【名师点睛】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例,平行物体的影子仍旧平行或重合.灵活运用平行投影的性质是解题的关键.5.【答案】B1.【答案】C【解析】从正面看,共有两列,第一列有两个小正方形,第二列有一个小正方形,在下方,只有选项C符合,故答案选择C.【名师点睛】本题考查的是三视图,比较简单,需要熟练掌握三视图的画法.2.【答案】D【解析】从左边看第一层是两个小正方形,第二层左边一个小正方形,故选D【名师点睛】本题考查了简单几何体的三视图,从左边看得到的图是左视图.3.【答案】B【解析】众所周知,影子方向的变化是上午时朝向西边,中午时朝向北边,下午时朝向东边;影子长短的变化是由长变短再变长,结合方向和长短的变化即可得出答案,故选B【名师点睛】本题主要考查影子的方向和长短变化,掌握影子的方向和长短的变化规律是解题的关键.4.【答案】D【解析】设从墙上的影子的顶端到树的顶端的垂直高度是x米,则1.60.4 2.8x,解得:x=11.2,所以树高=11.2+1.2=12.4(米),故选D.【名师点睛】本题考查的是投影的知识,解本题的关键是正确理解题意、根据同一时刻物体的高度与其影长成比例求出从墙上的影子的顶端到树的顶端的垂直高度.5.【答案】俯【解析】在图中(1)是几何体(2)的俯视图.6.【答案】24cm3【解析】根据题意,得:6×4=24(cm3),因此,长方体的体积是24cm3.故答案为:24cm3.7.【答案】园【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,“创”与“园”是相对面.8.【答案】8【解析】一共看到的图形是3列,左边一列看到3个,中间一列看到2个,右边一列看到3个.则一共能看到的小正方体的个数是:3+2+3=8.故答案为:8.9.【解析】主视图是从正面看到的图形,左视图是从左面看到的图形,俯视图是从上面看到的图形,据此画出看到的图形如图所示.10.【答案】3.45米【解析】延长DH交BC于点M,延长AD交BC于N.可求 3.4BM =,0.9DM =. 由1.50.92MN =,可得 1.2MN =. ∴ 3.4 1.2 4.6BN =+=. 由1.52 4.6AB =,可得 3.45AB =. 所以,大树的高度为3.45米.【名师点睛】考核知识点:平行投影.弄清平行投影的特点是关键.1.【答案】A【解析】它的俯视图为,故选A .【名师点睛】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键. 2.【答案】B【解析】从正面看去,一共两列,左边有2竖列,右边是1竖列.故选B .【名师点睛】本题考查了由三视图判断几何体,解题的关键是具有几何体的三视图及空间想象能力. 3.【答案】B【解析】由于主视图和左视图为三角形可得此几何体为锥体,由俯视图为圆形可得为圆锥.故选B .【名师点睛】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查. 4.【答案】D【解析】从上面看可得四个并排的正方形,如图所示:,故选D .【名师点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图. 5.【答案】B【解析】该几何体的左视图只有一列,含有两个正方形.故选B .【名师点睛】此题主要考查了简单组合体的三视图,关键是掌握左视图所看的位置.6.【答案】C【解析】图①的三视图为:图②的三视图为:,故选C.【名师点睛】本题考查了由三视图判断几何体,解题的关键是学生的观察能力和对几何体三种视图的空间想象能力.7.【答案】A【解析】∵S主=x2+2x=x(x+2),S左=x2+x=x(x+1),∴俯视图的长为x+2,宽为x+1,则俯视图的面积S俯=(x+2)(x+1)=x2+3x+2,故选A.【名师点睛】本题主要考查由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.8.【答案】C【解析】几何体的主视图为:,故选C.【名师点睛】此题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图.9.【答案】D【解析】A.主视图为正方形,不合题意;B.主视图为长方形,不合题意;C.主视图为三角形,不合题意;D.主视图为圆,符合题意,故选D.【名师点睛】此题考查了简单几何体的三视图,解决此类图的关键是由三视图得到立体图形.10.【答案】C【解析】几何体的俯视图是:,故选C.【名师点睛】本题考查了三视图的知识,俯视图是从物体的正面看得到的视图.11.【答案】A【解析】将正方体①移走后,新几何体的三视图与原几何体的三视图相比,俯视图和左视图没有发生改变,故选A.【名师点睛】此题主要考查了简单组合体的三视图,根据题意正确掌握三视图的观察角度是解题关键.12.【答案】D【解析】由三视图可知:该几何体为圆锥.故选D.【名师点睛】考查了由三视图判断几何体的知识,解题的关键是具有较强的空间想象能力,难度不大.13.【答案】B【解析】根据正方体展开图的特征,选项A、C、D不是正方体展开图;选项B是正方体展开图.故选B.【名师点睛】此题主要考查了正方体的展开图,正方体展开图有11种特征,分四种类型,即:第一种:“1﹣4﹣1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2﹣2﹣2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3﹣3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1﹣3﹣2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.14.【答案】B【解析】选项A和C带图案的一个面是底面,不能折叠成原几何体的形式;选项B能折叠成原几何体的形式;选项D折叠后下面带三角形的面与原几何体中的位置不同.故选B.【名师点睛】本题主要考查了几何体的展开图.解题时勿忘记正四棱柱的特征及正方体展开图的各种情形.注意做题时可亲自动手操作一下,增强空间想象能力.15.【答案】①②【解析】长方体主视图,左视图,俯视图都是矩形,圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,故答案为:①②.【名师点睛】本题主要考查三视图的知识,熟练掌握常见几何体的三视图是解题的关键.16.【答案】E【解析】由题意知,底面是C,左侧面是B,前面是F,后面是A,右侧面是D,上面是E,故答案为:E.【名师点睛】考查了几何体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.17.【答案】cm2【解析】该几何体是一个三棱柱,底面等边三角形的边长为2 cm,三棱柱的高为3,所以其左视图的面积为cm2),故答案为cm2.【名师点睛】本题考查了三视图,三视图是中考经常考查的知识内容,难度不大,但要求对三视图画法规则要熟练掌握,对常见几何体的三视图要熟悉.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三视图就是主视图、俯视图、左视图的总称。
3.投影规则:主俯长对正、主左高平齐、俯左宽相等
即:
主视图和俯视图的长要相等
主视图和左视图的高要相等
左视图和俯视图的宽要相等。
4.三视图-画法:在画组合体三视图之前,首先运用形体分析法把组合体分解为若干个形体,确定它们的组合形式,判断形体间邻接表面是否处于共面、相切和相交的特殊位置;然后逐个画出形体的三视图;最后对组合体中的垂直面、一般位置面、邻接表面处于共面、相切或相交位置的面、线进行投影分析。当组合体中出现不完整形体、组合柱或复合形体相贯时,可用恢复原形法进行分析。
(4)布图、画基准线
先固定图纸,然后,画出各视图的基准线。每个视图在图纸上的具体位置就确定了。基准线是指画图时测量尺寸的基准,每个视图需要确定两个方向的基准线。一般常用对称中心线,轴线和较大的平面作为基准线,
逐个画出各形体的三视图
(5)画法
根据各形体的投影规律,逐个画出形体的三视图。画形体的顺序:一般先实(实形体)后空(挖去的形体);先大(大形体)后小(小形体);先画轮廓,后画细节。画每个形体时,要三个视图联系起来画,并从反映形体特征的视图画起,再按投影规律画出其他两个视图。对称图形、半圆和大线和轴线用细点划线画出。
四、中考所占分数及题型分布
本章在中考中会出1道选择或者填空,也有可能不出。在简答题中会在几何题中穿插应用,本章约占3-5分。
第29章投影与三视图
29.1投影
1.投影:用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面。
2.平行投影:有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。由平行光线形成的投影是平行投影.
3.中心投影:由同一点(点光源发出的光线)形成的投影叫做中心投影。
4.正投影:投影线垂直于投影面产生的投影叫做正投影。
例.把一根直的细铁丝(记为线段AB)放在三个不同位置:
(1)铁丝平行于投影面;
(2)铁丝倾斜于投影面;
(3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点).
三种情形下铁丝的正投影各是什么形状?
所以帐篷的表面积=S圆锥+S圆柱=9.6πm2.
故答案为:9.6πm2.
选最能反映组合体的形体特征及各个基本体之间的相互位置,并能减少俯、左视图上虚线的那个方向,作为主视图投影方向。图9-10(a)中箭头所指的方向,即为选定的主视图投影方向。
(3)选比例,定图幅
画图时,尽量选用1:1的比例。这样既便于直接估量组合体的大小,也便于画图。按选定的比例,根据组合体长、宽、高预测出三个视图所占的面积,并在视图之间留出标注尺寸的位置和适当的间距,据此选用合适的标准图幅。
解:圆柱;四棱锥
例.某工厂加工一批无底帐篷,设计者给出了帐篷的三视图.请你按照三视图确定每顶帐篷的表面积(图中尺寸单位:cm)
解:由题意可得,因为该帐篷无底,
所以帐篷的表面积=顶部圆锥的侧面积+下部圆柱的侧面积,
则S圆锥= 12(母线长×底面周长)=12×240×300π=3.6πm2,
S圆柱=底面周长×高=300π×200=6πm2,
通过观察、测量可知:
(1)当线段AB平行于投影面P时,它的正投影是线段 ,线段与它的投影的大小关系为 ;
(2)当线段AB倾斜于投影面P时,它的正投影是线段 ,线段与它的投影的大小关系为 ;
(3)当线段AB垂直于投影面P时,它的正投影是一个点 .
例.把一正方形硬纸板P(记正方形ABCD)放在三个不同位置:
4.明确正投影与三视图的关系
5.经历探索简单立体图形的三视图的画法,能识别物体的三视图
6.培养动手实践能力,发展空间想象能力。
二、知识框架
四、重点、难点
重点:从投影的角度加深对三视图的理解和会画简单的三视图,能够做出简单立体图形的三视图的画法。
难点:对三视图概念理解的升华及正确画出三棱柱的三视图,三视图中三个位置关系的理解。
例.画出图中几何体的三视图.
解:主视图是一个长方形的上方有一个等腰梯形的缺口;左视图是一个长方形,中间的棱实际存在,从左面看不到,应画成虚线;俯视图应看到一个长方形内有2条实线和两条虚线(下面的2条棱看不到).
例.如下图所示,图中(1)和(2)各是一些立体图形的三视图,请你根据视图,说出立体图形的名称
例.
29.2三视图
1.三视图是观测者从三个不同位置观察同一个空间几何体而画出的图形。
2.视图:将人的视线规定为平行投影线,然后正对着物体看过去,将所见物体的轮廓用正投影法绘制出来该图形称为视图。
一个物体有六个视图:从物体的前面向后面投射所得的视图称主视图——能反映物体的前面形状。
从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状。
(1)纸板平行于投影面;
(2)纸板倾斜于投影面;
(3)纸板垂直于投影面。
三种情形下纸板的正投影各是什么形状?
通过观察、测量可知:
(1)当纸板P平行于投影面时,P的正投影于P的形状、大小一样;
(2)当纸板P倾斜于投影面时,P的正投影于P的形状、大小不完全一样;
(3)当纸板P垂直于投影面时,P的正投影于成为一条线段。
(1)进行形体分析
把组合体分解为若干形体,并确定它们的组合形式,以及相邻表面间的相互位置,
(2)确定主视图
三视图中,主视图是最主要的视图。
a.确定放置位置
要确定主视投影方向,首先解决放置问题。选择组合体的放置位置以自然平稳为原则。并使组合体的表面相对于投影面尽可能多地处于平行或垂直的位置。
b.确定主视投影方向
人教版初中数学第二十九章投影与视图知识点
———————————————————————————————— 作者:
———————————————————————————————— 日期:
第29章投影与三视图
一、目标与要求
1.会从投影的角度理解视图的概念
2.会画简单几何体的三视图
3.通过观察探究等活动使学生知道物体的三视图与正投影的相互关系及三视图中位置关系、大小关系