前向多层人工神经网络.ppt
合集下载
《人工神经网络》课件
![《人工神经网络》课件](https://img.taocdn.com/s3/m/0326e3cf690203d8ce2f0066f5335a8103d26656.png)
添加项标题
动量法:在梯度下降法的基础上,引入动量项,加速收敛速 度
添加项标题
RMSProp:在AdaGrad的基础上,引入指数加权移动平 均,提高了算法的稳定性和收敛速度
添加项标题
随机梯度下降法:在梯度下降法的基础上,每次只使用一个 样本进行更新,提高了训练速度
添加项标题
AdaGrad:自适应学习率算法,根据历史梯度的平方和来 调整学习率,解决了学习率衰减的问题
情感分析:分析文本中的情感 倾向,如正面评价、负面评价 等
推荐系统
推荐系统是一种基于用户历史行为 和偏好的个性化推荐服务
推荐算法:协同过滤、深度学习、 矩阵分解等
添加标题
添加标题
添加标题
添加标题
应用场景:电商、社交媒体、视频 网站等
应用效果:提高用户满意度、增加 用户粘性、提高转化率等
Part Six
类型:Sigmoid、 Tanh、ReLU等
特点:非线性、可 微分
应用:深度学习、 机器学习等领域
权重调整
权重调整的目的:优化神经网络的性能 权重调整的方法:梯度下降法、随机梯度下降法等 权重调整的步骤:计算损失函数、计算梯度、更新权重 权重调整的影响因素:学习率、批次大小、优化器等
Part Four
《人工神经网络》PPT 课件
,
汇报人:
目录
01 添 加 目 录 项 标 题 03 神 经 网 络 基 础 知 识 05 神 经 网 络 应 用 案 例 07 未 来 发 展 趋 势 与 挑 战
02 人 工 神 经 网 络 概 述 04 人 工 神 经 网 络 算 法 06 神 经 网 络 优 化 与 改 进
深度学习算法
卷积神经网络(CNN):用于图像处理和识别 循环神经网络(RNN):用于处理序列数据,如语音识别和自然语言处理 长短期记忆网络(LSTM):改进的RNN,用于处理长序列数据 生成对抗网络(GAN):用于生成新数据,如图像生成和文本生成
动量法:在梯度下降法的基础上,引入动量项,加速收敛速 度
添加项标题
RMSProp:在AdaGrad的基础上,引入指数加权移动平 均,提高了算法的稳定性和收敛速度
添加项标题
随机梯度下降法:在梯度下降法的基础上,每次只使用一个 样本进行更新,提高了训练速度
添加项标题
AdaGrad:自适应学习率算法,根据历史梯度的平方和来 调整学习率,解决了学习率衰减的问题
情感分析:分析文本中的情感 倾向,如正面评价、负面评价 等
推荐系统
推荐系统是一种基于用户历史行为 和偏好的个性化推荐服务
推荐算法:协同过滤、深度学习、 矩阵分解等
添加标题
添加标题
添加标题
添加标题
应用场景:电商、社交媒体、视频 网站等
应用效果:提高用户满意度、增加 用户粘性、提高转化率等
Part Six
类型:Sigmoid、 Tanh、ReLU等
特点:非线性、可 微分
应用:深度学习、 机器学习等领域
权重调整
权重调整的目的:优化神经网络的性能 权重调整的方法:梯度下降法、随机梯度下降法等 权重调整的步骤:计算损失函数、计算梯度、更新权重 权重调整的影响因素:学习率、批次大小、优化器等
Part Four
《人工神经网络》PPT 课件
,
汇报人:
目录
01 添 加 目 录 项 标 题 03 神 经 网 络 基 础 知 识 05 神 经 网 络 应 用 案 例 07 未 来 发 展 趋 势 与 挑 战
02 人 工 神 经 网 络 概 述 04 人 工 神 经 网 络 算 法 06 神 经 网 络 优 化 与 改 进
深度学习算法
卷积神经网络(CNN):用于图像处理和识别 循环神经网络(RNN):用于处理序列数据,如语音识别和自然语言处理 长短期记忆网络(LSTM):改进的RNN,用于处理长序列数据 生成对抗网络(GAN):用于生成新数据,如图像生成和文本生成
神经网络专题ppt课件
![神经网络专题ppt课件](https://img.taocdn.com/s3/m/1a091a7bef06eff9aef8941ea76e58fafbb0454a.png)
(4)Connections Science
(5)Neurocomputing
(6)Neural Computation
(7)International Journal of Neural Systems
7
3.2 神经元与网络结构
人脑大约由1012个神经元组成,而其中的每个神经元又与约102~ 104个其他神经元相连接,如此构成一个庞大而复杂的神经元网络。 神经元是大脑处理信息的基本单元,它的结构如图所示。它是以细胞 体为主体,由许多向周围延伸的不规则树枝状纤维构成的神经细胞, 其形状很像一棵枯树的枝干。它主要由细胞体、树突、轴突和突触 (Synapse,又称神经键)组成。
15
4.互连网络
互连网络有局部互连和全互连 两种。 全互连网络中的每个神经元都 与其他神经元相连。 局部互连是指互连只是局部的, 有些神经元之间没有连接关系。 Hopfield 网 络 和 Boltzmann 机 属于互连网络的类型。
16
人工神经网络的学习
学习方法就是网络连接权的调整方法。 人工神经网络连接权的确定通常有两种方法:
4
5. 20世纪70年代 代表人物有Amari, Anderson, Fukushima, Grossberg, Kohonen
经过一段时间的沉寂后,研究继续进行
▪ 1972年,芬兰的T.Kohonen提出了一个与感知机等神经 网络不同的自组织映射理论(SOM)。 ▪ 1975年,福岛提出了一个自组织识别神经网络模型。 ▪ 1976年C.V.Malsburg et al发表了“地形图”的自形成
6
关于神经网络的国际交流
第一届神经网络国际会议于1987年6月21至24日在美国加州圣地亚哥 召开,标志着神经网络研究在世界范围内已形成了新的热点。
神经网络控制基础人工神经网络课件ppt课件
![神经网络控制基础人工神经网络课件ppt课件](https://img.taocdn.com/s3/m/fc8ab8745627a5e9856a561252d380eb63942343.png)
其他工业领域应用案例
电力系统
神经网络控制可以应用于电力系统的负荷预测、故障诊断和稳定性 分析等方面,提高电力系统的运行效率和安全性。
化工过程控制
神经网络控制可以对化工过程中的各种参数进行实时监测和调整, 确保生产过程的稳定性和产品质量。
航空航天
神经网络控制在航空航天领域的应用包括飞行器的姿态控制、导航控 制和故障诊断等,提高飞行器的安全性和性能。
05 神经网络控制性能评估与优化
性能评估指标及方法
均方误差(MSE)
衡量神经网络输出与真实值之间的误差,值越小表示性能越好。
准确率(Accuracy)
分类问题中正确分类的样本占总样本的比例,值越高表示性能越好。
交叉验证(Cross-Validation)
将数据集分成多份,轮流作为测试集和训练集来评估模型性能。
强化学习在神经网络控制中应用
强化学习原理
通过与环境进行交互并根据反馈信号进行学习的方法,使神经网络能够自主学习 到最优控制策略。
强化学习算法
包括Q-learning、策略梯度等算法,用于求解神经网络控制中的优化问题,实现 自适应控制。
04 神经网络控制系统设计与实现
系统需求分析
功能性需求
明确系统需要实现的功能,如 数据输入、处理、输出等。
非监督学习
无需已知输出数据,通过挖掘输入数 据中的内在结构和特征进行学习,常 用于聚类、降维等任务。
深度学习在神经网络控制中应用
深度学习模型
通过构建深层神经网络模型,实现对复杂非线性系统的建模与控制,提高控制 精度和性能。
深度学习优化算法
采用梯度下降等优化算法对深度学习模型进行训练,提高训练效率和模型泛化 能力。
BP神经网络PPTppt课件
![BP神经网络PPTppt课件](https://img.taocdn.com/s3/m/7e3f367a5627a5e9856a561252d380eb629423e9.png)
B .非 线 性 斜 面 函 数 (R am p F unction):
b
f
net
k
net
b
net net net
b 0为 常 数 , 称 饱 和 值 , 是 该 神 经 单 元 的 最 大 输 出 ;
输出函数值限制在 b,b范围内。
可编辑课件PPT
13
C(.2符) 号输出函函数数f
k 1,..., c
隐含层单元 可表达更为复杂的非线性函数
激活函数 不一定为符号函数 常要求激活函数是连续可微的
输出层与隐含层的激活函数可以不同,并且输出层
各单元的激活函数可有所区别
可编辑课件PPT
26
2 多层网络的表达能力
按照Kolmogorov定理,任何一个判决均可用 前式所示的三层神经网络实现。
理
解
为
函
数
逼
近
回 归
状
态
预
测
可 应 用 到 众 多 领 域 ,如 :
优化计算;信号处理;智能控制;
模式识别;机器视觉;等等。
可编辑课件PPT
18
主要内容
• 人工神经网络基本知识 二. 前馈神经网络、多层感知器、及非线性分类
三. BP神经网络 四. 数据处理及神经网络结 构的选择 五. 应用
可编辑课件PPT
将可能的无线域变换到指定的有限范围输出。
单 调 增 函 数 , 通 常 为 "非 线 性 函 数 "
网 络 输 入
net W
x
n
ixi
i 1
--神 经 元 的 输 入 兴 奋 总 量 是 多 个 输 入 的 代 数 和
其
中
《神经网络优化计算》PPT课件
![《神经网络优化计算》PPT课件](https://img.taocdn.com/s3/m/2b644005a32d7375a417807c.png)
l k
1
y
l j
y
l j
l j
f
' (v)
k k
k
l k
1
[(dk Ok ) f '(vk )]
f '(vk )
O
d O d
前向计算
反向传播
智能优化计算
3.3 反馈型神经网络
一般结构 各神经元之间存在相互联系
分类 连续系统:激活函数为连续函数 离散系统:激活函数为阶跃函数
3.2 多层前向神经网络
3.2.1 一般结构 3.2.2 反向传播算法
3.3 反馈型神经网络
3.3.1 离散Hopfield神经网络 3.3.2 连续Hopfield神经网络 3.3.3 Hopfield神经网络在TSP中的应用
智能优化计算
3.1 人工神经网络的基本概念
3.1.1 发展历史
“神经网络”与“人工神经网络” 1943年,Warren McCulloch和Walter Pitts建立了
ym 输出层
智能优化计算
3.1 人工神经网络的基本概念
3.1.3 网络结构的确定
网络的拓扑结构
前向型、反馈型等
神经元激活函数
阶跃函数
线性函数
f (x) ax b
Sigmoid函数
f
(
x)
1
1 e
x
f(x)
+1
0
x
智能优化计算
3.1 人工神经网络的基本概念
3.1.4 关联权值的确定
智能优化计算
第三章 神经网络优化计算
《MLP神经网络》课件
![《MLP神经网络》课件](https://img.taocdn.com/s3/m/1a50d7b4710abb68a98271fe910ef12d2af9a9ca.png)
常用的激活函数有sigmoid、 tanh、ReLU等,用于增加非线
性特性。
反向传播过程
01
02
03
04
误差计算
计算实际输出与目标输出之间 的误差。
权重调整
根据误差调整各层神经元的权 重。
梯度下降
按照梯度下降的方向更新权重 ,减小误差。
学习率
控制权重更新的步长,避免过 拟合或欠拟合。
参数更新过程
02
MLP神经网络的原理
前向传播过程
输入层
输入数据通过输入层进入神经 网络,每个神经元接收一个输
入信号。
隐藏层
隐藏层神经元接收来自输入层 神经元的输出信号,经过激活 函数处理后产生隐藏层的输出 信号。
输出层
输出层神经元接收来自隐藏层 神经元的输出信号,经过激活 函数处理后产生最终的输出结 果。
激活函数
感谢您的观看
THANKS
MLP神经网络的基本结构
总结词
多层感知器的组成
详细描述
MLP神经网络由输入层、隐藏层和输出层组成。输入层负责接收外部输入的数据 ,隐藏层通过非线性变换将输入转化为更有意义的高阶特征表示,输出层则根据 隐藏层的输出做出最终的决策或预测。
MLP神经网络的学习过程
总结词
多层感知器的学习过程
详细描述
MLP神经网络的学习过程包括前向传播和反向传播两个阶段。在前向传播阶段,输入数据通过各层传递,得到输 出结果;在反向传播阶段,根据输出结果与实际结果的误差,调整各层神经元的权重,以逐渐减小误差,提高模 型的准确率。
聚类问题
总结词
MLP神经网络在聚类问题中也有一定的应用,能够将相似的数据点聚集在一起,形成 不同的聚类。
性特性。
反向传播过程
01
02
03
04
误差计算
计算实际输出与目标输出之间 的误差。
权重调整
根据误差调整各层神经元的权 重。
梯度下降
按照梯度下降的方向更新权重 ,减小误差。
学习率
控制权重更新的步长,避免过 拟合或欠拟合。
参数更新过程
02
MLP神经网络的原理
前向传播过程
输入层
输入数据通过输入层进入神经 网络,每个神经元接收一个输
入信号。
隐藏层
隐藏层神经元接收来自输入层 神经元的输出信号,经过激活 函数处理后产生隐藏层的输出 信号。
输出层
输出层神经元接收来自隐藏层 神经元的输出信号,经过激活 函数处理后产生最终的输出结 果。
激活函数
感谢您的观看
THANKS
MLP神经网络的基本结构
总结词
多层感知器的组成
详细描述
MLP神经网络由输入层、隐藏层和输出层组成。输入层负责接收外部输入的数据 ,隐藏层通过非线性变换将输入转化为更有意义的高阶特征表示,输出层则根据 隐藏层的输出做出最终的决策或预测。
MLP神经网络的学习过程
总结词
多层感知器的学习过程
详细描述
MLP神经网络的学习过程包括前向传播和反向传播两个阶段。在前向传播阶段,输入数据通过各层传递,得到输 出结果;在反向传播阶段,根据输出结果与实际结果的误差,调整各层神经元的权重,以逐渐减小误差,提高模 型的准确率。
聚类问题
总结词
MLP神经网络在聚类问题中也有一定的应用,能够将相似的数据点聚集在一起,形成 不同的聚类。
神经网络基础PPT课件
![神经网络基础PPT课件](https://img.taocdn.com/s3/m/ca4b2ab3aff8941ea76e58fafab069dc502247c6.png)
AlexNet
VGGNet
ResNet
DenseNet
由Yann LeCun等人提出 ,是最早的卷积神经网 络之一,用于手写数字 识别。
由Alex Krizhevsky等人 提出,获得了2012年 ImageNet图像分类竞 赛的冠军,引入了ReLU 激活函数和数据增强等 技巧。
由牛津大学Visual Geometry Group提出 ,通过反复堆叠3x3的小 型卷积核和2x2的最大池 化层,构建了深度较深 的网络结构。
内部表示。
隐藏层
通过循环连接实现信息 的持久化,捕捉序列中
的动态信息。
输出层
将隐藏层的状态转化为 具体的输出。
循环连接
将隐藏层的状态反馈到 输入层或隐藏层自身, 实现信息的循环传递。
序列建模与长短时记忆网络(LSTM)
序列建模
01
RNN通过循环连接实现对序列数据的建模,能够处理任意长度
的序列输入。
久化。
Jordan网络
与Elman网络类似,但将输出 层的状态反馈到隐藏层。
LSTM网络
长短时记忆网络,通过引入门 控机制实现对长期依赖信息的
有效处理。
GRU网络
门控循环单元网络,一种简化 的LSTM结构,具有较少的参
数和较快的训练速度。
06 深度学习框架 TensorFlow使用指南
TensorFlow安装与配置教程
非线性可分问题
不存在一条直线(或超平面)能够将两类样本完全分开的 问题。对于这类问题,需要使用非线性分类器或者核方法 等技巧进行处理。
处理非线性可分问题的方法
包括使用多项式核、高斯核等核函数将数据映射到高维空 间使其线性可分;或者使用神经网络等非线性模型对数据 进行建模和分类。
神经网络理论基础PPT课件
![神经网络理论基础PPT课件](https://img.taocdn.com/s3/m/f011ad404b7302768e9951e79b89680202d86b62.png)
神经网络的复兴
20世纪80年代,随着反向传播算法的提出,神经网络重 新受到关注。反向传播算法使得神经网络能够通过学习来 调整权重,从而提高了网络的性能。
感知机模型
1957年,心理学家Frank Rosenblatt提出了感知机模型 ,它是最早的神经网络模型之一,用于解决模式识别问题 。
深度学习的兴起
神经网络的模型
总结词
神经网络的模型是由多个神经元相互连接而成的计算模型,它能够模拟生物神经系统的 复杂行为。
详细描述
神经网络模型可以分为前馈神经网络、反馈神经网络和自组织神经网络等类型。前馈神 经网络中,信息从输入层逐层传递到输出层,每一层的输出只与下一层相连。反馈神经 网络中,信息在神经元之间来回传递,直到达到稳定状态。自组织神经网络能够根据输
入数据的特性进行自组织、自学习。
神经网络的参数
总结词
神经网络的参数是用于调整神经元之间连接强度的可训练参 数,它们在训练过程中不断优化以实现更好的性能。
详细描述
神经网络的参数包括权重和偏置等。权重用于调整输入信号 对激活函数的影响程度,偏置则用于调整激活函数的阈值。 在训练过程中,通过反向传播算法不断调整参数,使得神经 网络能够更好地学习和逼近目标函数。
作用
误差函数用于指导神经网络的训练, 通过最小化误差函数,使网络逐渐 逼近真实数据。
梯度下降法
基本思想
梯度下降法是一种优化算法,通 过不断调整神经网络的参数,使
误差函数逐渐减小。
计算方法
计算误差函数的梯度,并根据梯 度信息更新网络参数。
优化策略
采用不同的学习率或适应学习 率策略,以加快训练速度并避免
2006年,深度学习的概念被提出,神经网络的层次开始 增加,提高了对复杂数据的处理能力。
20世纪80年代,随着反向传播算法的提出,神经网络重 新受到关注。反向传播算法使得神经网络能够通过学习来 调整权重,从而提高了网络的性能。
感知机模型
1957年,心理学家Frank Rosenblatt提出了感知机模型 ,它是最早的神经网络模型之一,用于解决模式识别问题 。
深度学习的兴起
神经网络的模型
总结词
神经网络的模型是由多个神经元相互连接而成的计算模型,它能够模拟生物神经系统的 复杂行为。
详细描述
神经网络模型可以分为前馈神经网络、反馈神经网络和自组织神经网络等类型。前馈神 经网络中,信息从输入层逐层传递到输出层,每一层的输出只与下一层相连。反馈神经 网络中,信息在神经元之间来回传递,直到达到稳定状态。自组织神经网络能够根据输
入数据的特性进行自组织、自学习。
神经网络的参数
总结词
神经网络的参数是用于调整神经元之间连接强度的可训练参 数,它们在训练过程中不断优化以实现更好的性能。
详细描述
神经网络的参数包括权重和偏置等。权重用于调整输入信号 对激活函数的影响程度,偏置则用于调整激活函数的阈值。 在训练过程中,通过反向传播算法不断调整参数,使得神经 网络能够更好地学习和逼近目标函数。
作用
误差函数用于指导神经网络的训练, 通过最小化误差函数,使网络逐渐 逼近真实数据。
梯度下降法
基本思想
梯度下降法是一种优化算法,通 过不断调整神经网络的参数,使
误差函数逐渐减小。
计算方法
计算误差函数的梯度,并根据梯 度信息更新网络参数。
优化策略
采用不同的学习率或适应学习 率策略,以加快训练速度并避免
2006年,深度学习的概念被提出,神经网络的层次开始 增加,提高了对复杂数据的处理能力。
人工神经网络理论及应用.ppt课件
![人工神经网络理论及应用.ppt课件](https://img.taocdn.com/s3/m/1e2b188481eb6294dd88d0d233d4b14e85243ec1.png)
ww1ij (k )
m
yi1
j1
1 yi1
w2ji e j
yi1 (1
yi1 )
uj
对比Hebb规则: 各项
如遇到隐含层多于1层,可依次类推
yi (1 yi ) y1jei
yi1(1
yi1) u j
m
yi1
1 yi1
w2jie
j
j1
演示
BP算法演示
BP学习算法评述
优点
代入上式,有 因此
ym yi1
ym (1
ym )wmi
J
T
e
e yi1
m j 1
y j (1
y j ) w2jiej
即误差进行反向传输
BP学习步骤:误差反传(隐含层)
w1
w2
u1
e1
yi1 wi1j
yi1(1 yi1)u j
un
… …
…
em
综合上述结果
y1
Δwi1j
k
dJ dwi1j
主要内容
神经元数学模型 感知器 多层前馈网络与BP算法※ BP算法评述
神经元数学模型
n
y f wjxj
j1
n
设 p wj x j 则 yi f ( pi ) j 1
作用 函数
f
(
x)
1, 0,
x0 x0
i
f (xi )
(a)
f (x)
1
0 x
(b) 作用函数
MP神经元模型
感知器(感知机)
包含感知层,连接层和反应层。
感知层:接受二值输入; 连接层:根据学习规则不断调整权值 输出层:取为对称型阶跃函数
机器学习与应用第02讲人工神经网络ppt课件
![机器学习与应用第02讲人工神经网络ppt课件](https://img.taocdn.com/s3/m/5d01ff99b8f3f90f76c66137ee06eff9aef8491c.png)
1
w(2) 21
y1
w222
y2
w223
y3
w224
y4
b22
神经网络每一层完成的变换
ul Wlxl1 bl
xl f ul
权重矩阵的每一行为本层神经元与上一层所有神经 元的连接权重
激活函数分别作用于每个神经元的输出值,即向量 的每个分量,且使用了相同的函数
内积 加偏置
激活函数
w11l
以下面的3层网络为例:
输入层
隐含层
输出层
激活函数选用sigmoid:
f
x
1
1 exp
x
隐含层完成的变换:
y1 1 exp
1
w(1) 11
x1
w112 x2
w113 x3
b11
1
y2 1 exp
w(1) 21
x1
w212 x2
w213 x3
b21
y3 1 exp
1
w(1) 31
分类问题-手写数字图像识别
28 28
输入层有784个神经元
隐含层的神经元数量根据需要设定
0 1 2 3 4 5 6 7 8 9
输出层有10个神经元
回归问题-预测人脸关键点 神经网络直接为输入图像预测出关键点的坐标(x, y)
反向传播算法简介 解决神经网络参数求导问题 源自微积分中多元函数求导的链式法则 与梯度下降法配合,完成网络的训练
y1
w122
y2
w132
y3
w142
y4
b12
z2 1 exp
1
w(2) 21
y1
w222
y2
w223
y3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 例如:看到柠檬,感觉到嘴里口水增多。因为,由柠檬联想到了酸味。 • 字符识别:
2006-09-14
第
➢ 再论模式识别:对表征事物或现象的各种形式的(数值的、文字的或逻 4
页
辑的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和 解释的过程称为“模式识别”,是信息科学和人工智能的重要组成部分。 ❖ 人在分辨不同类别的事物时,抽取了同类事物之间的相同点以及不
第
➢ 前项人工神经网络的拓扑结构
8 页
➢ 前层的输出作为后层的输入;
➢ 各层的神经元个数可以不同;
➢ 层数两层以上,目前大多为3层;
➢ 同层神经元不能连接,后层不 能向前层反向连接;
2. 给定未值模式,判断该样本所属类别,称为“工作”或“应用”。
✓ 以上所特说征的选“择学的习好”坏是或模“式训识练别”成,败是的根关据键若,干但已如知何样选本择在“空特间征找”到,合即,
适选的择分什类么面物。理对量于作一为个特样征本,X是i,具体用专yi表业示“它领所域属”的的类问别题,,例需如要,运它用属“于领 第域k”类的。专则业样知本识已来知解,决意。味着{Xi , yi}已知。这种“学习”又称为“有
第
第二讲 前向多层人工神经网络
1 页
§ 2.1 概 述
➢ ANN的主要功能之一 —— 模式识别 ( Pattern Recognition )
模式识别是人类的一项基本智能行为,在日常生活中,我们几乎 时刻在进行着“模式识别”。
✓模式: • 广义地说,存在于时间和空间中可观察的事物,如果可以区别它们是 否相同或相似,都可以称之为模式;
2006-09-14
第
➢ 模式识别,举例:水果分级系统。
2 页
水果品质参数:重量、大小、比重、果形、颜色等
特征矢量:X = [x1, x2, x3, x4, x5]
特征空间:用参数张成。 模式:每个苹果为一个模式,其特征矢量
为特征空间中的一个点; 模式类:一个级别为一个类,一类模式分
布在特征空间的某个特定区域; 模式识别:找出各类之间的分界面。
2006-09-14
第
➢ ANN的主要功能之二 —— 联想 ( Associative Memory )
3 页
联想的心理学定义:
当一个事物的表象被激活时,也就是说该表象所包含的若干属性单元同时 有效时,我们的注意力焦点就集中在这个表象上,如果对该表象的处理使的 表象被否决时,也就是说由于一些属性单元的失效(或被抑制,或处于高 阻),导致该表象无法成立的时候,剩余的属性单元或许可以构成另一种事 物的表象,或许还需要结合那些被激活了的新的属性(或是由外界事物具有 的新的属性所激活,或是因降低了对一些属性的抑制所导致的激活)。
监督”例学如习,,语即音,识给别出,学如习何样从本自同然时语还音指中定提了取它“的特类征别”。,是语音识别的
✓ 所专 域谓业的“问问工题题作;,”图即,象使则识在是别图给,象出如 处未何 理知从 领类C域C别,D的不图样同象本应获X用取i 目,适的问当所y的i 取等特的于征特多,征少是也。图不显象同然处。X理i来领 自于对模客式观识对别象的的全时过间程观,测应,该其包取括值特无征法提事取先阶限段定。。但但是表,示我y们i类这别里,将取要
• 狭义地说,模式是通过对具体的个别事物进行观测所得到的具有时间和 空间分布的信息;
✓ 模式类:把模式所属的类别或同一类中模式的总体称为模式类(或简称为类);
✓ 模式识别:—在—一对定表量征度事或物观或测现基象础的上各把种待形识式模的式(划数分值到的各,自文的字模的式和类逻中辑去 的关过 系程的叫)作信模息式进识行别处;理和分析,以对事物或现象进行描述、辨认、分类和 解释的过程,是信息科学和人工智能的重要组成部分。
称为第程i个。样本,或者第i个样本的特征矢量。 特征空间:即特征矢量张成的空间,每个样本对应于特征空间上的一点。
2006-09-14
第
✓ 模式类:特征参数选择合理时,不同类的模式,在特征空间中占据不
5 页
同的分布区域;
✓ 模式识别所要做的事情,包含两个方面:
1. 在不同类别样本点集之间,寻找合理的分界面,或称作“判别函数 (Decision Function)” —— 因为判别函数来自于实际观测数据, 因此称此阶段为 “学习” 或 “训练” ;
均为数景 做值物“。,正表判确示断”成所和特选“征择不矢的正量路确形线”式是的:否分X正i类=确判[。断x实i1。,际xi上2, ,xi是3, 对xi4眼, x睛i5看];到的图象 样本:人对脑一的个这具种体思对维象能进力行就观构测成得了到“的模一式个”特的征概矢念量和称“为模一式个识“别样”本的”过, Xi
值讲是到离的散有的关、智有能限方的法,,事都先只主涉观及规到定特的征。提取之后的工作。
2006-09-14
第
6
➢ 神经元模型
页
▪ 神经元的输入:
X x0 x1 xN1
▪ 所完成的运算为:
Net
W
XT
N-1
wi xi
i0
y f Net
式中: W w0 w1 wN1 称为神经元的“权值矢量”; f • 称为神经元的“功能函数”;
同类事物之间的不同点;
模式是和类别(集合)的概念分不开的,只要认识这个集合的有限数量的事物
或现象,就可以识别这个集合中的任意多的事物或现象。为了强调能从具体的 事物或字现符象识中别推:断例出如总汉体字,“我中们”就可把以个有别各的种事写物法或,现但象都称属作于“同模一式类”别,。而把总 体称作更类为别重或要范的畴是。,即使对于某个“中”的具体写法从未见过,也能把 特征矢它量分:到最“简中单”的这情一况类是别用。一组称为“特征参数”的数值信息表示一个客观 对象。识例别如目,标水:果人品们质走分向类一中个用目到的的地大的小时、候重,量总、是比在重不、断果的型观、察颜周色围,的其取值
2006-09-21
Net 称为神经元的“净输入”; y 称为神经元的“输出”;
第
7
➢ 常用的神经元功能函数类型
页
▪ 线性函数 f u u 又称为“恒同函数”
▪ 硬限幅函数
1, u 0 fh [u] 0, u 0
▪ S函数(Sigmoid)
f
s
ቤተ መጻሕፍቲ ባይዱ
[u
]
1
1 e
u
u取值于[0,1]之间。
2006-09-14