平稳随机过程
平稳随机过程的概念
所以随机相位周期过程是平稳的. 特别, 随机相位 正弦波是平稳的.
例3
考虑随机电报信号 x( t ) I
信号X ( t )由只
取 I或 I
o
I
t
的电流给出 .
这里 P{ X ( t ) I } P{ X ( t ) I } 1 / 2
而正负号在区间 ( t , t )内变化的次数N ( t , t )
2. 广义平稳过程
{ X ( t ), t T }, 如果对任意 定义1 给定二阶矩过程
t,t T :
E[ X ( t )] X
(常数)
E[ X ( t ) X ( t )] RX ( )
则称{ X ( t ), t T }为宽平稳过程, 或广义平稳过程 .
其中A是服从瑞利分布的随机 变量, 其概率密度为
a e f (a ) 2 0,
a2 2 2
, a0 a0
是在(0,2π )上服从均匀分布且与 A 相互独立的 随机变量, 是一常数,问X n ( t ) 是不是平稳过程?
解 因 E ( A)
a
2 2
即相关函数只与k l 有关,
所以它是宽平稳的随机序列.
如果 X1 , X 2 ,, X k ,是独立同分布的 , 则序列是
严平稳的.
例2 设s( t )是一周期为T的函数,是在(0, t )上服
从均匀分布的随机变量 , 称X (t ) s(t )为随机
相位周期过程. 试讨论它的平稳性 .
说明 (1) 严平稳过程只要二阶矩存在, 则它必定也 是宽平稳的. 反之不成立. (2) 宽平稳的正态过程必定也是严平稳的.
Ch12-平稳随机过程
例 2 . 随机相位正弦波 X t aCos t , RV : f
1 2
, 0 2
试讨论平稳性
sol . X t 0 E X t X t E a a a
2
a R X t1 , t 2 Cos R X 2 随机相位正弦波为(宽 )平稳 sp
p p
T T
U x X t dt P X t x F1 x — — 分 布 函 数 各 态 历 经
p
(4).(1) 和 (2) — — 平 稳 过 程 各 态 历 经
例1 讨论随机相位正弦波的平稳性和各态历经性
1 随机相位正弦波 X t aCos t , RV : f , 0, 2 2 sol. 1: 平稳性
Fn x1 ,..., x n ; t1 ,..., t n Fn x1 ,..., x n ; t1 ,..., t n
2.严平稳过程的分布与数 字特征 1:一维分布 ,F1 x; t1 F1 x; t1 , f1 x; t1 f1 x;0 f1 x — —与 t 无关 则均值: EX t1 x1 f1 x1; t dx1 x1 f1 x dx1 X
( ) I e I 2 e 2 k 0关 , 故 若 τ<0 时 , 只 需 令 t ’=t+ τ,则有 E[X(t)X(t+τ)] =E[X(t`)X(t`+ τ )]= I2 e-2λ∣τ∣
图12-2
故这一过程的自相关函数为 E[X(t)X(t+τ)]= I2e-2λ∣τ∣ 它只与τ有关。因此随机电报信号X(t)是 一平稳过程。其图形如上图所示
平稳随机过程
e
2
只与 有关.
{X (t ), t 0}是平稳过程.
例4 设{Y(t),t≥0}是正态过程.且 a mY (t ) t, CY (t, t ) e , 其中,,a 0,
令 X (t ) Y (t b) Y (t ), t 0, 其中b 0, 试证明 {X (t ), t 0}是一严平稳过程.
试讨论{X(t),t≥0}的平稳性.
mX (t ) 0 常数.
RX (t, t ) E[ X (t ) X (t )]
P( X (t ) X (t ) 1) P( X (t ) X (t ) 1)
P( X (t ) X (t ) 1) P( X (t ) X (t ) 1)
n
由于 mX (tk ) mX mX (tk )
RX (tk , tl ) RX (tl tk ) RX (tk , tl ) k , l 1, 2,, n
(t1 , t2 ,, tn ; u1, u2 ,, un )
例1 设S(t)是周期为T的可积函数.令X(t)=S(t+Θ) t∈(-∞,+ ∞), Θ~U[0,T].称{X(t), -∞<t<+ ∞} 为随机相位周期过程,试讨论它的平稳性.
mX (t ) E[X(t)]
T 0
1 t T s( )d 为常数 T t
1 T R(t , t ) s(t )s(t )d X T 0 1 t T s( )s( )d 只与 有关系. T t 它是平稳过程
由于mX (t ) E[ X (t )] E[W (t a) W (t )] 0, t 0
平稳随机过程的概念
平稳过程旳参数集T, 一般为: (,), [0,), {0,1,2,} 或 {0,1,2,}.
当T为离散情况 , 称平稳过程X n 为平稳随
第一节 平稳随机过程旳概念
一、平稳随机过程旳概念 二、应用举例 三、小结
一、平稳随机过程旳概念
在实际中, 有相当多旳随机过程, 不但它现 在旳状态, 而且它过去旳状态, 都对将来状态旳 发生有着很强旳影响.
假如过程旳统计特征不随时间旳推移而变 化, 则称之为平稳随机过程.
1. 定义
如果对于任意的 n( 1,2,),t1, t2 ,, tn T和 任意实数h,当t1 h, t2 h,, tn h T时, n维随机 变量 ( X (t1 ), X (t2 ),, X (tn )) 和 ( X (t1 h), X (t2 h),, X (tn h))
T s(t )s(t ) 1 d
0
具有周T 期性
1
T
iT i
s( )s( )d RX ( )
所以随机相位周期过程是平稳旳. 尤其, 随机相位 正弦波是平稳旳.
例3 考虑随机电报信号 x(t) I
o
信号X (t)由只 取 I或 I t 的电流给出.
I 这里 P{ X (t) I } P{ X (t) I } 1/ 2
可见Y (t) X (t) X (0)不是平稳过程 .
三、小结
平稳随机过程、宽(广义)平稳随机过程旳概念 平稳过程数字特征旳特点
(1) 平稳过程的所有样本曲 线都在水平直线
x(t ) X 上下波动,平均偏离度为 X . (2) 平稳过程的自相关函数 仅是t2 t1 的单
第十二章-平稳随机过程
若T为离散集, 称平稳过程{X(t), t T }为 平稳序列.
广义平稳过程
严平稳过程
严平稳过程 二阶矩存在 广义平稳过程
严平稳过程 正态过程 广义平稳过程
8
例1 设{Xk , k = 1,2,…}是互不相关的随机变量 序列, E[Xk ] = 0, E[Xk ²] = σ², 则有
解 由假设, Θ的概率密度为
f
(
)
1
/
T, 0,
0 T,
其 它.
于是, X(t)的均值函数为
T
E[ X (t)] E[s(t )]
0
s(
t
)
1 T
d
1
t T
s( )d
Tt
10
利用s(φ)的周期性, 可知
E[X (t)] 1 T s( )d 常数. T0
而自相关函数
RX (t, t ) E[s(t )s(t )]
• 当X(t)和Y(t)是联合平稳随机过程时, W(t) = X(t) +Y(t)是平稳随机过程.
18
事实上, E[W(t)]= E[X(t)] + E[Y(t)] = 常数.
E[W (t)W (t )] E{[X (t) Y (t)][X (t ) Y (t )]} E[ X (t)X (t ) X (t)Y (t ) Y (t)X (t ) Y (t)Y (t )] E[ X (t)X (t )] E[ X (t)Y (t )] E[Y (t)X (t )] E[Y (t)Y (t )] RX ( ) RXY ( ) RYX ( ) RY ( ) RW ( )
t1, t2,, tnT, t1+h, t2 +h,,tn+h T, 若(X(t1), X(t2),, X(tn))与
平稳随机过程的概念
严平稳的.
例2 设s(t)是一周期为T的函数,是在(0,t)上服 从均匀分布的随机变量,称X (t) s(t )为随机
相位周期过程. 试讨论它的平稳性.
解 的概率密度为
f
(
)
1/T , 0
0, 其他.
T,
X(t) 的均值函数为
E[X (t)] E[s(t )]
T
s( t
) 1 d
定义1 给定二阶矩过程{ X (t), t T },如果对任意
t,t T : E[ X (t)] X (常数)
E[ X (t)X (t )] RX ( )
则称{ X (t), t T }为宽平稳过程,或广义平稳过程. 说明
(1) 严平稳过程只要二阶矩存在, 则它必定也 是宽平稳的. 反之不成立.ຫໍສະໝຸດ 2aea2 2 2
da
2
2
0
故 E[Acos(t )] EA E[cos(t )]
所以随机相位周期过程是平稳的. 特别, 随机相位 正弦波是平稳的.
例3 考虑随机电报信号 x(t) I
o
信号X (t )由只 取 I或 I
t 的电流给出.
I 这里 P{ X (t) I } P{ X (t) I } 1/ 2 而正负号在区间(t,t )内变化的次数N (t,t ) 是随机的, 假设N (t,t )服从泊松分布.
结果与t 无关
k0
I 2e
( )k
k0
I 2e2
.
k0 k!
而 0时,令t t , 则自相关函数: E[ X (t )X (t )] I 2e2 只与有关
所以随机电报信号 X (t) 是一平稳过程.
其图形为:
RX ( )
平稳随机过程
平稳随机过程1.平稳随机过程(1)严平稳随机过程的定义若ξ(t)的任意有限维概率密度函数与时间起点无关,即对于任意的正整数n和所有实数Δ,有则称该随机过程是在严格意义下的平稳随机过程,简称严平稳随机过程。
①一维概率密度与时间t无关,即②二维分布函数只与时间间隔τ=t2-t1有关,即(2)严平稳随机过程ξ(t)的数字特性①均值均值与t无关,为常数a,即(3-1-1)②自相关函数自相关函数只与时间间隔τ=t2-t1有关,即R(t1,t1+τ)=R(τ)。
即(3-1-2)(3)广义平稳随机过程把同时满足式(3-1-1)和式(3-1-2)的过程定义为广义平稳随机过程。
(4)严平稳随机过程与广义随机过程的关系严平稳随机过程必定是广义平稳的,反之不一定成立。
2.各态历经性(1)各态历经性的定义随机过程中的任一次实现都经历了随机过程的所有可能状态称为各态历经性。
(2)各态历经性的意义具有各态历经性的平稳随机过程的统计均值等于其任一次实现的时间均值。
(3)各态历经性与平稳随机过程的关系具有各态历经的随机过程一定是平稳过程,反之不一定成立。
(4)各态历经性的实现如果平稳过程使成立,则称该平稳过程具有各态历经性。
3.平稳过程的自相关函数(1)自相关函数的定义设ξ(t)为实平稳随机过程,则它的自相关函数为(2)自相关函数的性质①R(0)=E[ξ2(t)],表示ξ(t)的平均功率;②R(τ)=R(-τ),表示τ的偶函数;③|R(τ)|≤R(0),表示R(τ)的上界;④,表示ξ(t)的直流功率;这是因为当时,与没有任何依赖关系,即统计独立。
所以⑤R(0)-R(∞)=σ2,σ2是方差,表示平稳过程ξ(t)的交流功率。
当均值为0时,有R(0)=σ2。
4.平稳过程的功率谱密度(1)功率谱密度的定义平稳过程ξ(t)的功率谱密度Pξ(f)定义为(2)功率谱密度的特性①平稳过程的平均功率为②各态历经过程的任一样本函数的功率谱密度等于过程的功率谱密度。
概率论第三章 平稳随机过程
严平稳过程只要均方值有界, 就是广义平稳的, 但反之则不一定。
当我们同时考虑两个平稳过程X(t)和Y(t)时,若它 们的互相关函数仅是单变量τ 的函数,即
RX Y (t1, t2 ) E[ X (t1 )Y (t2 )] RXY ( ), t2 t1,
则称X(t)和Y(t)宽平稳相依,或称这两个随机过程 是联合宽平稳的。
例3.1 设随机过程 X (t) a cos(0 t )
式中a,ω0为常数,Φ是在区间(0,2π)上均匀分 布的随机变量, 这种信号通常称为随相正弦波。求 证X(t)是宽平稳的。
二、各态历经(遍历)随机过程
在上面的讨论中,每当谈到随机过程时,就意味 着所涉及的是大量的样本函数的集合。要得到随机过 程的统计特性,就需要观察大量的样本函数。
ln
p( X
/
mX
)
K
N 1
exp
i0
(xi
mX
2
2 X
)2
均值估计
让对数似然函数取最大值
ln p( X / mX ) 0 m X
得到均值的最大似然估值
mˆ X
1 N
N 1
xi
i0
此式说明,可用N个观测值的算术平均作为均值mX的估值。
估计量的性质(工程)
1.有偏估计与无偏估计
由于估计量依赖于观测结果,因此估计量本身是 随机变量,于是它也存在其均值和方差。
定义1:取对应于ρX(τ)=0.05的那个时间为相关 时间τ
0
定义2:用图3.6中的矩形(高为ρX(0)=1,底为τ0的
矩形)面积等于阴影面(ρX(τ)积分的一半)来定义
τ0,即
随机过程第六章平稳随机过程
6.1 平稳随机过程的概念
• 宽平稳过程
严平稳过程
• 严平稳过程 二阶矩存在 宽平稳过程
正态过程
• 严平稳过程
宽平稳过程
4
6.1 平稳随机过程的概念
例6.1 设X(t)=Ycos(t)+Zsin(t), t>0,且Y, Z相互独立, EY=EZ=0,DY=DZ=2,试讨论随机过程{X(t), t>0}的平稳 性。
其中ti1 ti ti (i 1, 2, , n)
36
6.3 随机分析简介
定义6.8 如果当n0时,Sn均方收敛于S,即
,
则称 f (t) X (t) 在区间[a, b]上均方可积,并记为
b
n
S
a
f (t) X (t)dt
l.i.m n 0
i 1
f (ti)X (ti)(ti ti1)
令
l.i.m
n
Xn
X,
l.i.m
n
Yn)
l.i.m
n
cn
lim
n
cn
c
(2) l.i.mU U n
(3)
l.i.m
n
cnU
cU
27
6.3 随机分析简介
(4)
l.i.m
n
aX
n
bYn
aX
bY
(5)
lim
n
EX
n
EX
E
ln.i.m
X
n
(6)
lim E
n
XnYm
E[XY ]
则称X(t)和Y(t)是联合平稳随机过程。
18
6.2 联合平稳随机过程
命题:当X(t)和Y(t)是联合平稳随机过程时,W(t)=X(t)+Y(t)是平 稳随机过程。事实上,EW(t)=EX(t)+EY(t)=常数,
平稳随机过程的概念
平稳随机过程的概念
平稳随机过程是指具有固定统计特性的随机过程。
具体而言,平稳随机过程在时间上的统计性质不随时间变化而变化,即其概率密度函数、平均值、自相关函数等都不受时间起点的影响。
平稳随机过程分为弱平稳和强平稳两种类型。
弱平稳是指随机过程的均值和自相关函数不随时间变化而变化,而强平稳还要求联合分布函数不随时间变化而变化。
对于弱平稳随机过程,其特点是平均值和自相关函数只与时间差有关,与时间起点无关。
具体来说,对于平稳随机过程X(t),其平均值为E[X(t)],自相关函数为R(t1,t2):
1. 平稳随机过程的平均值不随时间变化而变化,即对于任意t,有E[X(t)]= E[X(0)]。
2. 平稳随机过程的自相关函数只与时间差有关,即对于任意
t1,t2,有R(t1,t2) = R(t1-t2)。
强平稳过程除了满足弱平稳条件外,还要求联合分布函数不随时间变化而变化,即对于任意t1,t2和任意k1,k2,有联合分布
函数F(x1,x2,t1,t2) = F(x1,x2,t1+k,t2+k)。
这意味着在时间上的
任意平移,联合分布函数都保持不变。
平稳随机过程在实际应用中具有广泛的应用,例如信号处理、通信系统、金融市场等领域。
由于其统计特性不随时间变化而变化,使得对时间序列进行建模和预测更加稳定、可靠。
04 平稳随机过程 070924
则称
{X (t ), t T } 为广义平稳随机过程。 (弱平稳随机过程)
3、广义平稳与狭义平稳
当 E[ X (t )]
2
时, 狭义平稳 广义平稳
当X(t)为高斯过程时,
狭义平稳 广义平稳
广义平稳和狭义平稳并没有必然的
因果关系。
例2.2-1
设随机过程 X t At ,A为均匀分布于
同理
C ( ) C ( )
2、 在零点处达最大值
用公式表示:
同理可证:
(练习)
R(0) | R( ) |
C (0) C ( )
证明:E{[ X (t ) X (t )]2 } 0
即E[ X 2 (t ) 2 X (t ) X (t ) X 2 (t )] 0 而E[ X 2 (t )] E[ X 2 (t )] R(0) 故2 R(0) 2 R( ) 0 R(0) | R( ) |
1
1 2
1 2 0 ... n
或:
2
...
1 2 n RX t k , t m 0 ... n
狭义平稳随机过程的条件过于严格,
往往难于实现。 弱化条件,在二阶矩范围内(一阶 矩、二阶矩)满足平稳性,已经可 以满足实际中的分析要求。
2、广义平稳随机过程的定义
设 { X (t ), t T } 是一随机过程, E[ X 2 (t )] 且有:
(1) E[ X (t )] mx 常数 一阶矩 (2) R(t1 , t2 ) E[ X (t1 ) X (t2 )] R( ) 二阶矩
第六章 平稳随机过程.
S d 常数 T
T 0
t T t
RX t , t E S t S t
S t S t 1 d 1 T T
T 0
S S d
=== 1 T
,0,1,2, 。
tn T 和任意实数h
, X tn h
对任意的n n 1,2,
,t1, t2 ,
当t1 h, t2 h,
, tn h T 时,
d
X t , X t ,
1 2
, X tn X t1 h , X t2 h ,
解: (1)因为E( A) E( B) E( AB) 0, E( A2 ) E(B2 ) 2
故 X (t ) E Acost Bsint
E ( A)cost E ( B)sint 0
RX (t1 , t2 ) E[( Acost1 Bsint1 )( Acost2 Bsint2 )]
是平稳序列.
证:E Yn ak E X n k 0
又自相关函数RY n, n m E YnYnm
N N E ak X n k a j X n m j j 0 k 0
即:F x1 , x2 , F x1 , x2 ,
, xn ; t1 , t2 ,
tn , tn h
3
则称随机过程 X t , t T 具有平稳性,
, xn ; t1 h, t2 h,
称此过程为严平稳随机过程,简称严平稳过程。
严平稳过程的数字特征: 设严平稳过程 X t , t T 是二阶矩过程,则
随机过程第五章 平稳随机过程
1,
0,
T st;
其他.
E{Y (s)Y (t)} E{E[Y (s)Y (t) ]}
st
1 P{ T s t } 1 ,
T 对于 t 的其它情形可做类似推理.
电子科技大学
随机二元传输过程是一个平稳过程,记τ=s-t,
其自相关函数为
0,
),
a;
0,
a
RX(t, t+τ)与 t 无关, 故X(t) 是宽平稳过程.
P128例12 泊松过程不是平稳过程,
是平稳增量过程.
电子科技大学
三、两种平稳性的关系
1)严平稳过程不一定是宽平稳的; 因宽平稳过程一定是二阶矩过程,而严平稳 过程未必是二阶矩过程. 2)宽平稳不一定 严平稳;
CX (s,t) RX (s,t) mX 2 RX () mX 2
电子科技大学
注 自协方差函数与自相关函数都仅依赖于t-s.
平稳过程在实际中是常见过程,如
照明电网中电压的波动过程; 电子系统中的随机噪声; 稳定气象条件下海域中一定点处的海浪高度 随时间的变化或随地点的变化(平稳随机场); 卫星图片中相同条件下的灰度水平.
t 0,
随机变量与 随机过程》
其中X0 与N(t)相互独立,且
美 A.帕普
力斯,p303
C C
X0 ~ 1 1 C > 0,
2 2
电子科技大学
讨论{X(t), t≥0}的平稳性.
C
-C
解 因 X (t) X0(1)N(t) , t 0, mX (t) E[X(t)] E(X0 )E[(1)N(t)] 0, t 0
第3章平稳随机过程总
在通信中,常常把稳定状态下的随机过 程,当作平稳随机过程来处理,这样,对 这个随机过程任何时候来测量,都会得到 同样的结果,从而大大简化了数学模型。 对一些非平稳的随机过程,在较短的时间 内,常常把它作为平稳随机过程来处理。
第3章 平稳随机过程
1 平稳随机过程的定义
严格 平稳 随机 过程
如果随机过程的任意n维分布不随时间起点变 化,即当时间平移时,其任意的n维概率密度 不变,则称是严格平稳的随机过程或称为狭 义平稳随机过程。
2cos t1 cos t2 2sin t1 sin t2
2cos(t1 t2 )
2cos
t1 t2
Z(t)是广义平稳的
E[Z 3 (t)] E{[ X cos t Y sin t]3} E[ X 3 cos3 t Y 3 sin3 t 3X 2Y cos2 t sin t 3Y 2 X cos t sin t]
所以X(t)是非平稳的。
2 宽平稳随机过程(广义平稳过程,平稳过程) • 由于求n维概率密度比较困难,有时只用到一、二
阶矩,如功率(均方值和方差)和功率谱密度(自 相关函数),因此,平稳性的定义不需要那么严格, 若随机过程 X(t)满足
则称X(t)为宽平稳或广义平稳随机过程。
• 严平稳与宽平稳的关系: 宽平稳只涉及与一、二维概率密度有关的数字 特征; 严平稳过程只要均方值有界,则它必定是宽平 稳的,反之不一定成立; 正态随机过程的宽平稳与严平稳是等价的。
E(Y
2)
(1)2
2 3
22
1 3
2 3
4 3
2
E( X 3) E(Y 3) (1)3 2 23 1 2
第十二章 平稳随机过程
{ X t }是严平稳过程当且仅当 ()所有的X t同分布。 1 (2)对任意n ≥ 2, ( X t1 , X t2, ..., X tn )的分布 仅与时间差t2 − t1,t3 − t2, ..., tn − tn −1有关, 而与起始时间t1无关。
严平稳过程的数字特征:
设严平稳过程 { X ( t )} 是二阶矩过程,则 (1)µ X ( t ) = E X ( t ) = E X ( 0 ) == µ X ( 常数 ) (2)RX ( t1 , t2 ) = E X ( t1 ) X ( t2 ) = E X ( 0 ) X ( t2 − t1 ) == RX ( t2 − t1 )
解: X ( t ) > = lim 1 < T →+∞ 2T
将Θ看作一定值
X ( t ) = acos (ω t + Θ )的时间平均
T
∫
−T
acos (ω t + Θ ) dt
a sin (ωT + Θ ) − sin ( −ωT + Θ ) ==== lim T →+∞ 2T ω
20
独立同分布平稳序列的均值遍历性
设X 1 ,K , X n, , 独立同分布,EX 1 = µ , DX 1 = σ 2 > 0, K 则大数定理成立:
1 p → ∑ X i µ n i =1
n
定理一: (均值各态历经定理 ) P{< X (t ) >= µ X } = 1 ⇔ 1 lim T →+∞ T
1 2 n
t1 , t2 ,L tn ∈ T 和任意实数h,当t1 + h, t2 + h,L , tn + h ∈ T 时,
平稳随机过程
平稳随机过程平稳随机过程的是一种特殊而又广泛应用的随机过程。
一、平稳随机过程定义1.狭义平稳定义随机过程的维分布函数或维概率密度函数与时间起点无关,即对于任何和,随机过程的维概率密度函数满足则称是在严格意义下的平稳随机过程。
简称严平稳随机过程或狭义平稳随机过程。
平稳随机过程的统计特性将不随时间的推移而不同。
它的一维概率密度函数与时间无关,即而二维概率密度函数仅依赖于时间间隔有关,即 2.广义平稳定义:若随机过程的数学期望及方差与时间无关,而自相关函数仅与时间间隔有关,即则称为广义平稳随机过程或宽平稳随机过程。
通信系统中所遇到的信号及噪声大多数可视为广义平稳随机过程。
以后讨论平稳随机过程除特殊说明外均指广义平稳随机过程。
二、各态历经性各态历经性是平稳随机过程在满足一定条件下的一个非常重要的特性。
设是平稳随机过程中任取的一个样本函数,若的数字特征(统计平均)可由的时间平均值替代,即则称随机过程具有各态历经性。
“各态历经”的含义:从随机过程中得到的任何一个样本函数,都经历了随机过程的所有可能状态。
因此,可用一个样本函数得统计特性来了解整个过程的统计特性,从而使“统计平均”化为“时间平均”,使实际测量和计算的问题大为简化。
注意:只有平稳随机过程才可能具有各态历经性,但在通信系统中所遇到的随机信号和噪声,一般均能满足各态历经性条件。
三、平稳随机过程的相关函数与功率谱密度1.平稳随机过程自相关函数的性质平稳随机过程自相关函数的定义式性质:(1)(的平均功率)(2)(是偶函数)(3)(时有最大值,为上界值)(4)(的直流功率)(5)(方差,为的交流功率)由上述性质可知,用自相关函数可表述的几乎所有的数字特征,因而具有实用意义。
例3.3.1 设随机过程,其中是在内均匀分布的随机变量。
试证明:(1)是广义平稳的;(2)试说明它的自相关函数的性质。
证明:(1)按题意,随机相位的概率密度函数为则的数学期望为的自相关函数为令,得。
随机过程-2-平稳过程
CXY (t, t ) RXY (t, t ) mX (t)mY (t ) RXY ( ) mX mY CXY ( )
平稳相关随机过程互相关函数的性质( CXY ( ) 也具有相同的性质) ① RXY ( ) RYX ( ) ② RXY ( ) RX (0) RY (0)
例5 X (t), t ,X(t)只取 I , P{X (t) I} P{X (t) I} 1 2
[t,t ] 内正负号变化次数记为 N (t,t ),服从参数为 , ( 0)
的泊松分布。判断X(t)的平稳性。
复平稳过程
定义: {Z (t), t T}是复随机过程,若 mZ (t) mZ , (complex constant)
讨论 Z (t) 的平稳性。
复平稳过程的协方差函数
CZ (t1, t2 ) RZ (t1, t2 ) mZ (t1)mZ* (t2 ) RZ (t2 t1) | mZ |2
CZ ( ) CZ (t, t )
DZ (t) CZ (t, t) CZ (0)
§2 相关函数的性质
一、自相关函数的性质
mX (t) mX
f ( x1, x2;t1, t2 ) f ( x1, x2;t1 , t2 )
RX (t1, t2 ) x1x2 f ( x1, x2;t1, t2 )dx1dx2
x1x2 f ( x1, x2;t1 , t2 )dx1dx2
RX (t1 , t2 )
k
例3 X (t) a cos(0t Φ) ,a,0 为正常数,Φ ~ U[0,2 ]
判断 X (t) 是否弱平稳。
例4 X (t) Acos0t B sin0t, t , 0 为正常数, A, B独立,EA EB 0, DA DB 2 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平稳随机过程
⏹严格平稳随机过程
⏹广义平稳随机过程
⏹平稳随机过程自相关函数性质⏹各态历经过程
1. 严格平稳(Strict Sense Stationary, SSS)随机过程定义: 随机过程X (t )的任意N 维统计特性与时间起点无关。
1111(,,,,,)(,,,,,)
X N N X N N p x x t t t t p x x t t +∆+∆=如果X (t ) 是严格平稳的,则与t 无关。
(,)()X X p x t p x =即X(t)与X(t+∆t)具有相同的统计特性。
二维概率密度
只依赖于τ,与t 1和t 2的具体取值无关。
12121212121221212
(,,,)(,,,)
(,,,0)(,,)
X X X X p x x t t p x x t t t t p x x t t t t p x x t t =+∆+∆=-∆=-=ττ=-
如果X (t )是严格平稳随机过程, 则
121212121212
(,)(,,,)()
X X X R t t x x p x x t t dx dx R t t ∞
-∞
==ττ=-⎰()()X X X
m t xp x dx m ∞
-∞==⎰22
2()()()X
X X X
t x m p x dx ∞
-∞σ=-=σ
⎰
100200300400500
-4-3-2-101234Stationay Gaussian Noise
0100200300400500
-4
-3
-2-101234Non-stationay Gaussian Noise
可以证明:独立同分布(IID)的随机序列是严格平稳的。
IID: Independent and Identical Distribution
即对于任意的n ,X [n ]具有相同的一维概率密度,且对任意n 1和n 2(n 1≠n 2 ), X [n 1]和X [n 2]相互独立。
121111
(,,...,,,...,)(,)(,)
()
N
X N N X i i i N
X i i i N
X i i p x x x n n n n p x n n p x n p x ===+∆+∆=+∆==∏∏∏利用同分布
利用独立性
与n 无关
例1:随机幅度信号
0()cos X t Y t
=ω0ω是常数
~(0,1)
Y N 判断X (t )是否严平稳。
2
001
1(,)exp 2cos 2cos X x p x t t t ⎡⎤
⎛⎫=-⎢⎥ ⎪
⎢⎥⎝⎭⎣
⎦
ωπω由前一节的例题可知:
所以,X (t )不是严平稳的。
2.广义平稳(Wide-Sense Stationary, WSS)随机过程严格平稳
广义平稳
一定
不一定
随机相位信号是广义平稳随机过程
1212
(,)(),X X R t t R t t =ττ=-()X X
m t m =定义:
例2: 设随机过程定义为00()cos sin X t A t B t
=ω+ω其中ω0为常数,A 和B 是相互独立的随机变量,取-1的概率为2/3,取2的概率为1/3,判断该过程的平稳性? 解:
()()()E A E B ==-⨯+⨯=21
120
33
()()()E A E B ==-⨯+⨯=+=222
22124122
3333
A (B)-12P
2/3
1/3
()()()E AB E A E B ==0
()()()E A E B ==-⨯+⨯=-+=3
3
3
32128
122
3333
A (B)-12P
2/3
1/3
()[()]
[]cos []sin X m t E X t E A t E B t ==ω+ω=000
(,)[()()]
{[cos sin ][cos sin ]}[]cos cos []sin sin []cos sin []sin cos cos cos sin sin cos ()cos X R t t E X t X t E A t B t A t B t E A t t E B t t E AB t t E BA t t t t t t t t ==ω+ωω+ω=ωω+ωω+ωω+ωω=ωω+ωω=ω-=ωτ
τ1212010102022
2
01020102010201020102010201202222t t =-12
所以X (t )是广义平稳的
()
[()]{[cos sin ]}
[cos sin cos sin cos sin ]cos sin E X t E A t B t E A t B t A B t t B A t t t t =ω+ω=ω+ω+ωω+ωω=⋅ω+ω33
003
3
3
3
2
2
00002003
3
00332X (t ) 不是严格平稳的。