10KV的电网中性点不接地单相接地时的电容电流

合集下载

10kV变配电站单相接地与零序过电流保护有关问题分析

10kV变配电站单相接地与零序过电流保护有关问题分析

10kV变配电站单相接地与零序过电流保护有关问题分析
10kV变配电站单相接地与零序过电流保护有关问题分析
微机保护装置有单相接地保护与零序过电流保护,单相接地保护又称为小电流接地选线。

单相接地保护与零序过电流保护是两种完全不同的保护。

1
倍。

1.2
序过电流保护。

2电源中性点不接地的供电系统单相接地小电流接地选线
2.1电源中性点不接地的供电系统单相接地保护可选用小电流接地选线装置。

二次电路设计时将所有零序电流互感器和Y/Y/△(开口三角形)型电压互感器的开口三角形电压接到小电流接地选线装置的测量端子上,就可以检测出是某一路线路发
生单相接地故障,然后进行报警或跳闸。

需要跳闸时还应将跳闸输出接到所需要跳闸的回路。

二次电路接线比较多。

2.2微机保护装置都有单相接地保护后,保护原理与小电流接地选线装置完全相同,不仅节省了一套设备,可以直接跳闸,二次电路接线也简化了许多。

3电源中性点不接地的供电系统单相接地保护的整定
3 3.2
4
随着10kV供电系统电网的不断扩大,对地电容电流也随之增加,发生单相接地故障后故障电流比较大,需要立即跳闸,为了提高单相接地故障后保护跳闸的可靠性,将电源中性点串联一个电阻后接地,发生单相接地故障后故障电流就成为对地短路电流。

此时零序电流互感器就可以感应出三相不平衡电流,发生单相接地故障后故障电流为对地短路电流。

零序过电流保护整定可以按照躲过三相不平衡电流来
整定。

单相接地保护动作的可靠性就可以提高。

10kV系统不同接地方式的优缺点比较

10kV系统不同接地方式的优缺点比较

10kV系统不同接地方式的优缺点比较摘要:本文简要研究比较了10kV系统不同接地方式之间的优缺点,主要研究比较中性点不接地、中性点经消弧线圈接地、中性点经小电阻接地和中性点经消弧线圈并联小电阻接地四种方式。

关键词:10kV系统;接地方式;优缺点一、前言本文针对工作中遇到的多个变电站10kV系统由中性点不接地系统或经消弧线圈接地系统改造为中性点经小电阻接地系统。

简要研究了10kV系统的不同接地方式的优缺点比较,主要研究比较中性点不接地、中性点经消弧线圈接地、中性点经小电阻接地和中性点经消弧线圈并联小电阻接地四种方式。

中性点接地的方式对电力系统稳定运行会产生影响,考虑供电的可靠性和连续性、设备安全和人身安全、过电压和设备绝缘水平、继电保护和是否准确跳闸等因素。

近年来,10kV配电网中的接地故障或者线路断线造成的社会人员伤亡等事故时有发生。

10kV配电网中,中性点接地方式不同,有的线路接地故障发生时,该线路未能及时切除,故障点未能及时与电源断开。

二、10kV系统的不同接地方式的优缺点比较1、中性点不接地方式主要优点:(1)在单相接地故障发生时,故障点流过的电流只是系统等值的电容电流。

在接地故障电流小于10A的情况下,一般息弧能自动发生。

(2)故障发生时,该相电压将降低至零,非故障相线电压将保持不变,相电压升为原来的倍,故障线路可保持1~2小时运行状态,供电的可靠性相对地提高了。

主要缺点:(1)在单相接地故障发生时,非故障相的电压会上升到线电压,且因为过电压会保持较长的一段时间,在选择设备的耐压水平时需要按线电压的电压水平考虑,提高了设备绝缘水平要求。

(2)因为线路对地的电容中积蓄的能量得不到释放,电容电压伴随每个循环会升高,因而在弧光接地过程中,中性点不接地系统的电压能达到比较高的倍数,极大地危害了系统设备的绝缘。

(3)在一定条件下,由于故障或者倒闸操作,线性谐振或铁磁谐振可能引起谐振过电压,电压互感器的绝缘容易被击穿。

10kV接地变的作用及接地方式

10kV接地变的作用及接地方式

10kV接地变的作用及接地方式接地变压器简称为接地变。

当中性点不接地系统发生单相接地故障时,线电压三角形仍然保持对称,因此对继续供电影响不大,并且当电容电流比较小(小于10A)时,一些瞬时性接地故障能够自行消失。

但现在随着城市中电缆电路的增多,电容电流也越来越大,甚至超过10A。

这将导致相关问题的产生,危及电网的安全运行。

根据国家原电力工业部《交流电气装置的过电压保护和绝缘配合》规定,3~66kV系统的单相接地故障电容电流超过10A时,应采用消弧线圈接地方式。

我国电力系统中的10kV电网中一般都采用中性点不接地的运行方式,变压器的10kV低压侧采用三角形接线,无中性点引出。

因此需要考虑设置10kV接地变。

接地变的作用是为中性点不接地的系统提供一个人为的中性点,便于采用消弧线圈或小电阻的接地方式,从而减少配电网发生接地短路故障时的对地电容电流的大小,提高配电系统的供电可靠性。

接地变压器有两种:Z型接地变压器和星型/三角形接地变压器。

在我国,接地变通常采用Z型接线(或称曲折型接线),其中性点可接入消弧线圈。

此外,为节省投资和变电所空间,通常在接地变压器上增加第三绕组,替代所用变压器,为变电所用设备供电。

Z型接地变压器,在结构上与普通三相芯式电力变压器相同,只是每相分为上、下相等匝数的两部分,接成曲折型连接,这样连接的好处是零序磁通可沿磁柱流通,而普通变压器的零序磁通是沿着漏磁磁路流通,所以Z型接地变压器的零序阻抗很小,而普通变压器要大很多。

因此规程规定,用普通变压器带消弧线圈时,其容量不得超过变压器容量的20%,而Z型变压器则可以带90%~100%容量的消弧线圈。

当系统发生接地故障时,接地变对正序负序电流呈高阻抗,对零序电流呈低阻抗性使接地保护可靠工作。

10kV系统中性点接地方式

10kV系统中性点接地方式
10kV系统的接地方式
10kV系统中性点接地可分为:
中性点不接地系统(中性点非有效接地系统)(包括中性点不接地系统、经消弧线圈接地系统、高电阻接地系统);
中性点接地系统(中性点有效接地系统)(中性点直接接地系统或经低电阻接地系统)。
1.10kV系统中性点不接地系统
(பைடு நூலகம்)接地故障特点
配电系统在正常运行时,三相基本平衡电压作用下,各相对地电容电流ICL1、ICL2、ICL3相等,分别超前相电压90°,ICL1=ICL2=ICL3=UΦωC,其ICL1+ICL2+ICL3=0,系统中性点与地有相同电位。
过补偿方式,接地故障残余电流Id较大,不利于接地故障点电弧自熄,但它不易产生串联谐振过电压。实际运行中,过补偿方式常被采用。
系统在运行中,经常接通或切除部分回路,系统中分布电容电流有较大的变化,满足脱谐度的要求,消弧线圈的电感也相应改变,需人工改变消弧线圈的抽头位置,接地故障残余电流Id小于5A~10A以下,系统出现谐振过电压可能性降低。发生接地故障时,非故障相对地电压升高 倍。
IC——接地电容电流(单位:A)。
上述电容电流的计算值只能用于某些对准确度要求不很高的场合.
通过上述估算,可知道系统的总的零序电流,然后进行电流互感器的选择,电流互感器选择的基本原则是:线路发生单相故障时,安装在该线路的零序电流电流互感器二次侧能提供大于10mA ,且小于800mA的零序电流。
零序电流的检测,架空出线是采用三相电流组成滤过器来检测零序电流,接线如图14.2-5所示;电缆出线是采用零序电流互感器,电缆穿过零序电流互感器内孔,电缆头的接地线务必穿过零序电流互感器后再接地,接线如图14.2-6所示。
10kV经低电阻接地系统中,发生接地故障时的故障电压虽时间不长,但幅值很高。低压采用TN系统供电时,应采取以下措施:变电所内设置两组接地极;采用主等电位联结措施;在主等电位联结范围外供电时,采用局部TT系统供电。低压采用TT系统供电时,变电所的外露可导电部分的接地电阻不超过1Ω或带有已接地的合适的有金属护层的高压电缆和低压电缆总长度超过1km。

10kV中心点不接地系统单相接地故障分析及处理

10kV中心点不接地系统单相接地故障分析及处理

10kV中心点不接地系统单相接地故障分析及处理文章结合宝钢冷轧薄板厂的相关经验,综述了中性点不接地系统发生单相接地短路故障的原因、影响,从管理及技术两方面总结了预防、处理小电流接地系统发生单相接地短路故障的措施、步骤和办法。

标签:不接地系统;单相接地;小电流接地宝钢冷轧薄板厂10kV系统属于中性点不接地的系统,也成为小电流接地的系统。

这种系统的最大的优点是:采用中性点不接地的,“三相三线”的供电方式,大大地提高了供电的可靠性,减少了线路损耗,降低了跳闸发生率,增强了线路的绝缘。

当电网发生单相接地故障时,暂时不会影响用户的用电,电网可以带故障运行1-2小时。

然而当发生单相接地故障后,非故障相对地电压将抬升至接近线电压,对地电容电流亦将增大。

如此极易导致电网非故障相的绝缘的薄弱处发生对地绝缘的击穿,造成两相或者三相短路,事故范围扩大。

急剧增加的电容电流极容易造成接地弧光,而且难以自动熄灭,还会产生间隙弧光性过电压,损坏设备,破坏电网的稳定性。

因此,如果系统发生单相接地故障,必须在最短的时间内查到故障点,并及时处理。

1 中性点不接地系统单相接地原理中性点不接地电网在正常运行时,三相对地电压呈对称性,中性点对地电压为零,无零序电压。

由于各相对地电容均相同,故各相电容电流相等,并超前于各相电压90度。

可得出下列结论[1]:(1)中性点不接地电网发生单相接地后,中性点电压UN上升为相压电(-EA),A、B、C三相对地电压:冷轧薄板厂发生此类故障后,读取各相相电压,故障相相电压平均在0.6kV,其余两相相电压平均在9.8kV。

各相相电压情况也是我厂单相接地故障报警是否真是的最终判断标准,即为电网线电压。

同时电网出现零序电压:(2)所有线路都出现零序电流,故障线路的接地电容电流等于所有其他线路的接地电容电流的总和。

根据历史统计,冷轧薄板厂单相接地电流一般在40至60安培之间。

(3)故障线路零序电流相位滞后零序电压90度,非故障线路的零序电流相位超前零序电压90度两者之间相差180度。

中性点不接地系统发生单相接地时向量分析

中性点不接地系统发生单相接地时向量分析

中性点不接地系统单相接地时的向量分析为了熟悉不接地电网的零序保护,需要首先熟悉这类电网发生单相接地故障时电压、电流零序分量的特点。

下面着重介绍单相接地时稳态电容电流的特点。

下面图a示出最简单的中性点不接地网,图中表示负荷就是断开的,因为单相接地时三相的相线电压与负荷电流仍然对称,所以不考虑负荷电流,不会影响分析的结果。

正常运行情况下,各相对地有相同的电容C(用集中参数表示),在相电压的作用下,每相都有一超前电压90°的电容电流流入地中,并三相电容电流之与为零,中性点对地无电压,因为电容电流很小,其在线路上产生的电压降可以忽略不计,故可以认为各相电压均与各相电势相等,电压、电流向量图如图b所示。

发生单相(例如A相)金属性接地时,若忽略较小的电容电流产生的电压降,则电网中各处故障相的对地电压都变为零。

于就是A 相对地电容被短接,只有B 相与C 相对地电容中还存在电流,此时中性点对地电压上升为相电压(-aE ),非故障相的对地电压变为线间电压(升高3倍),其向量关系图如下图c 。

这时三相对地电压可分别写为:A U =0,B U =BA U =A B E E =3A E 0150j e ,C U =CA U =C E -A E =3AE 0150j e ,由于相电压与电容电流的对称性已破坏,因而出现了零序电压与零序电流,因为A U =0,所以零序电压03U =B U +C U =-3A E ,即等于故障相正常电势的三倍,则相位与之相反。

在B U 与C U 的作用下,在两非故障相及其对地电容中出现超前电压90°的电流,B I =C B jX U - =B U 0jWC ,C I =CC jX U - =C U 0jWC ,其有效值为B I +C I =3X U 0WC ,X U 为相电压的有效值,从故障点流回的电流即零序电流为:03I =-(B I +C I )=-(B U +C U )0jWC 。

中性点不接地系统单相接地电容电流的工程计算方法

中性点不接地系统单相接地电容电流的工程计算方法

计 算往 往只 计算 电力线路 的 电容 电流 。近 几年 ,余
热 发 电、热 电联 产 、小水 电发 电、小 风 电等项 目大 量接 入 6 - 3 5 k V系统 , 配 电网中存 在大 量 的 同步 发 电
说 明几 点:①水 泥 杆线 路 ,铁 塔 ( 钢杆 ) ,增 加 1 0 9 6 ;② 2 . 7 一 系数 ,适用 于无 架 空地线 的 线路 ,3 . 3 一 系数 ,适 用于 有架 空地 线 的线路 ;③ 同杆双 回架 空 线 电容 电流 :I c 2 =( 1 . 3 1 . 6 )I c ( 1 . 3 一 对应 1 0 K V 线路 , l _ 6 一 对应 3 5 k V线 路 , I c 一 单 回线路 电容 电流 ) ;
首先选择出线电力电缆较多的2实际测试对比验证分析110kv科技园变该站10kv母线共有24回电缆出随着电网的改造建设供电负荷迅速增加配线我们详细统计输电线路参数电力电缆架空网网架结构在飞速的优化和延伸同杆多回线路线路型号长度
4 2






中性 点不接地 系统单相接 地 电容 电流 的工程 计算方法
④根据 实际测量积累经验:夏季比冬季 电容 电流增
加 1 0 % 左右 。
( 2 ) 6 — 3 5 k V架空 线路 单相 电容 电流经 验数 据 如
表 1 所 示
1 电容 电流 计算
( 1 ) 6 - 3 5 k V架 空线 路单 相接 地单 位 长度 的 电容
电流 为 :
吴玉硕 杨志华 。 贺得瑁 。 张兰平
( 国网甘肃省 电力公司电力科学研究院 甘肃省 兰州市 7 3 0 0 5 0
国网 白银供 电公 司 甘 肃省 白银 市 7 3 0 9 0 0 )

10kV电网单相接地电容电流测量的研究

10kV电网单相接地电容电流测量的研究

10kV电网单相接地电容电流测量的研究随着系统电容电流的不断增大,越来越多的电網采用谐振接地的方式,谐振接地能有效补偿接地电容电流,如何准确地跟踪测量接地电容电流成为了关键。

本文首先分析了传统极值法的局限性,提出了采用改进极值法测量单相接地电容电流,并经过实际测量证明了该方法的有效性和准确性。

标签:接地电容电流;改进极值法;跟踪测量;谐振接地0 引言我国10 kV电网一般采用中性点不接地方式,但随着电力系统的不断发展,发生单相接地故障时电网对地电容电流不断增大,接地故障容易发生电缆绝缘击穿事故,引发相间短路等严重的事故[1]。

目前有效方法是加装消弧线圈补偿装置,利用消弧线圈来补偿电网对地的电容电流,由于有电感和电容的存在,因此形成了并联谐振和串联谐振,构成了谐振接地的基本原理[2]。

在实际应用中,由于电网运行方式的变化会引起电网对地电容电流值的改变,必须使消弧补偿装置对电网接地电容电流实现自动跟踪补偿,这就需要准确快速地测量出单相接地电容电流,基于这个目的,本文采用改进极值法跟踪测量接地电容电流,为消弧线圈补偿电容电流提供依据。

1 电容电流在线测量方法研究本文采用改进极值法跟踪测量接地电容电流。

极值法[3]:中性点的位移电压零序电压的幅值表示为:(1)由式(1)可知,当电网的阻尼率以及电网自然位移电压一定时,随的下降而增大,当=0,将达到极大值,此时,接地电流最小,处于最佳补偿状态[4]。

对(1)式求一阶导数可得:(2)该式说明随的变化呈单调递减的规律,当电感电流的数值远离电网对地电容电流的数值(即较大),和在接近全补偿状态附近(即较小),的变化对影响较小,这是极值法的不足。

根据极值法的不足,本文采用了改进的极值法。

以电缆作为供电线路的6~10kV电网,取不平衡度且则可求出当时,。

图1为时的曲线图。

由图可以看出当时曲线陡度明显减小,曲线的顶端较平缓,即在全补偿附近零序电压随脱谐度的变化较小,所以如果直接采用极值法误差较大,难以调节到最佳补偿点。

煤矿高压电网单相接地电容电流计算方法

煤矿高压电网单相接地电容电流计算方法

煤矿高压电网单相接地电容电流计算方法高压电网单相接地电容电流运算近年来,随着矿井井型的增大,井下用电设备的增多,煤矿机械化程度的提高,供电线路逐步增加,煤矿高压电网的单相接地电容电流也在增大,给供电系统的正常运行带来一系列安全性和可靠性问题。

随着接地电容电流的增大,降低了电缆的绝缘程度,易形成绝缘击穿从而发生两相或三相短路故障,当电网的接地电容电流增大到一定值后,接地故障点电弧便难以自熄,容易引起间隙电弧过电压。

为减少煤矿安全事故发生的可能,必须对煤矿高压电网的单相接地电容电流进行准确的治理和补偿,因此准确运算煤矿供电系统对地电容电流具有重要的现实意义。

单相接地故障是阻碍煤矿高压电网安全供电的要紧因素之一,当单相接地电容电流超过一定值时,必须对煤矿高压电网的单相接地电容电流进行准确的治理和补偿,本文在分析煤矿高压电网电容电流理论准确运算基础上,应用了综合考虑电缆系数、天气系数及高压电器设备增值系数的改进的单相接地电容电流运算方法。

最后,通过实例运算验证了该改进运算方法的正确性。

1 、电网单相接地电容电流的理论运算煤矿10kV高压电网中性点不接地系统能够由图1模拟表。

图1 10kV 中性点不接地模拟电网图中,A E •、B E •、C E •为电网各相相电势,14~C C 为各线路每相对地分布电容,0C 为电力系统中其它线路与设备的一相对地总电容,01234d I i i i i i =++++为电力系统单相接地电容电流。

当配电网发生A 相单相接地故障时,故障点的接地电容电流由式3d A I CU ω=运算,其中01234C C C C C C =++++为配电网一相对地总电容值, 为电网的相电压,大小为6000/3则电网的对地电容就越大,接地电流也越大。

煤矿配电网中性点不接地系统单相接地故障时,有如下的故障特点:流过所有非故障线路零序电流的方向相同,故障线路零序电流方向与非故障线路相反,且故障线路电流突变的幅值大于所有非故障相的幅值,其值为所有非故障相的幅值之和。

10_kV_配电网单相接地故障短路电流研究

10_kV_配电网单相接地故障短路电流研究

运营维护技术1131XXRR≤≤(1)中性点的非有效接地需满足1131XXRR>>(2)在10 kV配电网的接地系统中,中性点的有效接地系统包括经小电阻接地系统、低电抗接地系统和直接接地系统;中性点的非有效接地系统包括不接地系统、中性点经消弧线圈接地系统、中性点经高阻接地系统、中性点经高电抗接地系统以及中性点经消弧线圈并联电阻接地系统。

1.1 不接地系统实际上,配电网通过对地电容进行接地。

当不接地的配电网系统发生接地故障时,线电压不变,非接地相的相电压升高至原来的3倍,因此配电网中的三相设备可正常工作。

当接地电流较小时,配电网能够正常运行1~2 h。

但是随着电网容量的增加,单相接地电流增加,接地处易发生电弧,且无法自行灭弧。

一旦电弧发生弧光接地,相电压就会大幅度升高,危及配电网中的用电设备,加速绝缘系统老化,缩短系统寿命。

1.2 消弧线圈接地10 kV配电网系统中,接地电流大于10 A时,需经过消弧线圈接地以减小接地电流。

消弧线圈提供感性电流,补偿对地电容的容性电流,进而可减小接地电流。

因此,消弧线圈接地的方式又被称为谐振接地。

配电网的正常工况下,三相电网电压平衡,中性点的电压较低,因此经消弧线圈接地的电流较低。

当发生接地故障时,三相线电压仍然平衡,在接地电流较小的情况下,允许配电网工作1~2 h。

采用消弧线圈接地系统,故障点的接地电流较小,接地处的电弧容易熄灭。

1.3 经电阻接地经电阻接地的配电网系统又可分为经高电阻接地、经中电阻接地、经低电阻接地。

高电阻接地系统的接地电阻通常为数百欧姆至数千欧姆,接地电流小于10 A;中电阻接地系统的接地电阻通常为20~100 Ω,接地电流为10~600 A;低电阻接地系统的接地电阻通常小于20 Ω,接地电流为600~1000 A。

一般情况下,经高电阻接地的配电网只能用于10 kV及以下的系统。

经中、低电阻接地的配电网接地电流较大,接地处的电弧强烈,因此容易产生人身安全问题。

10kV配电网单相故障电流计算及跨步电压的分析

10kV配电网单相故障电流计算及跨步电压的分析

摘要10kV配电网主要有中性点不接地、中性点经消弧线圈接地、中性点经小电阻接地等运行方式。

不同的配电网中性点接地方式各有其特点和优势。

本文详细分析计算了三种主要接地方式下配电网在发生单相短路故障时的零序电压、短路电流和暂态特性;并利用有限元分析软件,详细分析了小电阻接地运行方式下,单相短路故障时的大地电场分布,计算了短路点附近的跨步电压。

为配电网接地方式的合理选择及继电保护提供了理论依据。

本文研究内容主要包括以下几个方面:介绍了10kV配电网的不同接地方式发展概况,详细分析了配电网中接地变压器的结构与工作原理,总结并对比了不同接地方式的优缺点。

针对三种主要接地方式的配电网络,首先分析出了其发生单相短路故障时的稳态等效电路,在此基础上推导出其短路接地电流计算公式,并给出了其电容电流分布图。

其次详细推导出其暂态等效电路,同样详细计算了其暂态短路接地电流。

最后建立了配电网发生单相接地短路的MATLAB仿真模型,得出了与理论分析结果相符的仿真波形与数据。

阐述了接地电阻、跨步电压和接触电压的概念,详细推导了它们的理论计算公式。

开创性地运用有限元分析软件ANSYS来定量仿真发生单相对地短路后的跨步电压,仿真结果与理论计算结果基本吻合。

设计了10kV配电网小电阻接地运行方式下发生单相对地和单相对电线横担的两种常见短路的实验方案,给出了详细实验操作步骤及需要注意的事项,通过实验验证了论文中有关短路时接地电流及跨步电压的计算分析结果。

关键词:10kV配电网;中性点接地方式;短路接地电流;跨步电压;有限元分析AbstractNeutral grounding without impedance,neutral grounding through suppression coil and neutral grounding through low resistor are the most common neutral grounding in the l0kV distribution network. There are different characteristics and application advantages with different neutral grounding. When the single phase short-circuit fault occur in the l0kV distribution network, zero sequence voltage, short-circuit current are calculated in detail and transient characteristics are analyzed for the three main neutral grounding in this paper. Then, Electric field distribution and step voltage are also calculated with Finite element analysis software for grounding through low resistor. The study of this paper is helpful to the choice of neutral grounding and power system relay protection for the l0kV distribution network.The study of this paper focuses on the following aspects:The development and application trends of neutral grounding in l0kV distribute network are introduced in this thesis, then the structure and work principle of grounding transformer is analyzed in detail. The advantages and disadvantages of three main neutral grounding are summarized and compared with each other.For the three main neutral grounding distribute network, Firstly, the steady-state equivalent circuit is proposed through careful analysis when the single phase short-circuit fault occur and the short circuit current formula is derived in detail on the basis of the steady-state equivalent circuit. The distribution figure of capacitive current is given. Secondly, the transient-state equivalent circuit is presented through careful analysis and the transient short-circuit current is solved based on the transient-state equivalent circuit. Finally, a single phase short-circuit fault model is established in the MATLAB software, the simulation results and data are consistent with the theoretical analysis results.The concept of grounding resistance, step voltage and touch voltage are expounded,and the theoretical formula is also deduced. The step voltage when the single phase short-circuit fault occur is calculated quantitatively with the finiteelement analysis software ANSYS. The simulation results are consistent with the theoretical calculation results.Two common short-circuit experimental program are designed and the experimental procedures and some notes are given in detail. It is demonstrated that the theoretical analysis about the short-circuit current and the step voltage in the paper is correct.Key Words: l0kV distribution network; neutral grounding; short-circuit ground current; step voltage; finite element analysis第1章绪论1.1课题研究背景及意义电力是人类文明生活的原动力,是最重要的二次能源和工商业界主要的动力及照明来源,其需求与经济发展之间有着密不可分的关系。

10kV中心点不接地系统单相接地故障分析及处理

10kV中心点不接地系统单相接地故障分析及处理

10kV中心点不接地系统单相接地故障分析及处理作者:刘兆炼来源:《科技创新与应用》2016年第09期摘要:文章结合宝钢冷轧薄板厂的相关经验,综述了中性点不接地系统发生单相接地短路故障的原因、影响,从管理及技术两方面总结了预防、处理小电流接地系统发生单相接地短路故障的措施、步骤和办法。

关键词:不接地系统;单相接地;小电流接地宝钢冷轧薄板厂10kV系统属于中性点不接地的系统,也成为小电流接地的系统。

这种系统的最大的优点是:采用中性点不接地的,“三相三线”的供电方式,大大地提高了供电的可靠性,减少了线路损耗,降低了跳闸发生率,增强了线路的绝缘。

当电网发生单相接地故障时,暂时不会影响用户的用电,电网可以带故障运行1-2小时。

然而当发生单相接地故障后,非故障相对地电压将抬升至接近线电压,对地电容电流亦将增大。

如此极易导致电网非故障相的绝缘的薄弱处发生对地绝缘的击穿,造成两相或者三相短路,事故范围扩大。

急剧增加的电容电流极容易造成接地弧光,而且难以自动熄灭,还会产生间隙弧光性过电压,损坏设备,破坏电网的稳定性。

因此,如果系统发生单相接地故障,必须在最短的时间内查到故障点,并及时处理。

1 中性点不接地系统单相接地原理中性点不接地电网在正常运行时,三相对地电压呈对称性,中性点对地电压为零,无零序电压。

由于各相对地电容均相同,故各相电容电流相等,并超前于各相电压90度。

可得出下列结论[1]:(1)中性点不接地电网发生单相接地后,中性点电压UN上升为相压电(-EA),A、B、C三相对地电压:冷轧薄板厂发生此类故障后,读取各相相电压,故障相相电压平均在0.6kV,其余两相相电压平均在9.8kV。

各相相电压情况也是我厂单相接地故障报警是否真是的最终判断标准,即为电网线电压。

同时电网出现零序电压:(2)所有线路都出现零序电流,故障线路的接地电容电流等于所有其他线路的接地电容电流的总和。

根据历史统计,冷轧薄板厂单相接地电流一般在40至60安培之间。

10kV系统中性点接地方式

10kV系统中性点接地方式

10kV系统的接地方式10kV系统中性点接地可分为:中性点不接地系统(中性点非有效接地系统)(包括中性点不接地系统、经消弧线圈接地系统、高电阻接地系统);中性点接地系统(中性点有效接地系统)(中性点直接接地系统或经低电阻接地系统) 。

1.10kV系统中性点不接地系统(1) 接地故障特点配电系统在正常运行时,三相基本平衡电压作用下,各相对地电容电流I CL1、I CL2、I CL3相等,分别超前相电压90°,I CL1=I CL2=I CL3=UΦωC,其I CL1+I CL2+I CL3=0,系统中性点与地有相同电位。

如L1相发生接地故障,忽略接地过渡电阻,视为金属性接地,10kV系统各支路的电容电流的流向如下图所示:图14.2-1 10kV系统接地故障示意从10kV系统接地故障示意图可以得出结论:a)全系统所有非故障的各支路,故障相的电容电流均为零,非故障相均有电容电流;b)在故障支路,故障相流过所有各支路的电容电流的总和;c)故障支路的电容电流其方向由负载流向电源,非故障各支路的电容电流其方向由电源流向负载;d)故障支路检测的零序电流为各非故障支路电容电流总和;e)接地故障电流大小与接地故障点的位置无关,只与接地故障点的过渡电阻有关。

10kV系统接地故障,电压与电流矢量关系如下图所示:图14.2-2 10kV系统接地故障矢量图L1相发生接地故障,相当于在L1相上加上U0=-U L1,L2相L3相也加上U0=-U L1,非故障相对地电压升高3倍,其夹角由120°变成60°,合成的电容电流增大3倍,接地故障电流为单相电容电流的3倍,I d=3UΦωC。

(2) 优缺点a)接地故障引起系统内部过电压可达3.5倍相电压,易使设备和线路绝缘被击穿。

b)油浸纸绝缘电力电缆达20A,聚乙烯绝缘电力电缆达15A,交联聚乙烯绝缘电力电缆达10A,接地故障电流引燃电弧则不能自熄,引起间歇性电弧,产生过电压易产生相间短路或火灾;c)非故障相对地电压升高3倍。

10KV的电网中性点不接地单相接地时的电容电流

10KV的电网中性点不接地单相接地时的电容电流

10KV的电网中性点不接地单相接地时的电容电流下面是一些摘录资料:在GB50070-94《矿山电力设计规范》第2。

0。

10条中规定,“矿井6-10KV电网,当单相接地电容电流小于等于10A时,宜采用电源中性点不接地方式;大于10A时,必须采取限制措施”。

这条规定是依据国内外有关科研成果和国内外现行规程、标准以及人身触电安全要求等三方面作出的。

现分述如下:1、试验研究和运行经验数据①《电缆网络单相接地电弧电流不自熄下限试验研究》技术鉴定书指出,“电弧引弧试验的数据近200个。

这些数据客观地、真实地描述了在给定工况条件下,电缆接地电弧电流的熄灭情况”。

部级鉴定委员会同意由西北电力中试所和北京煤炭设计研究院完成的试验研究报告,并肯定该报告可供修改规程、规范时参考。

该报告的结论是,电弧接地不自熄电流下限值:全塑电缆25A;油浸纸绝缘电缆15A;交联电缆10A。

以安全计应取其中最小值10A。

②华中、湖北电力试验研究所1992年试验研究的成果表明,3-10KV架空配电线路,当电容电流在16A及以上时,不能自熄电弧;当电容电流小于10A,几乎全能自熄。

③湖北省6-10KV配电网运行经验与上述试验研究结果一致。

④开滦矿务局赵各庄煤矿从60年代以来,单相接地电容电流达18A左右,井下高压电缆发生着火事故次数显著增多。

⑤原中国统配煤矿总公司6KV电网安全调研组于1988年对引起矿井电缆“放炮”事故做了统计分析。

结论是,电容电流在20A左右的矿井电缆“放炮”事故仍很严重。

⑥(GB50070-94)《矿山电力设计规范》专题组编写的《关于矿井高压电网单相接地电流限值问题的分析讨论》报告中指出,某矿实测6KV电网电容电流为16A,曾发生多重接地故障。

⑦中国矿业大学《矿井6KV电网单相接地电流及限制方案的制定》一文指出,实验研究和仿真计算结果表明,当单相接地电弧电流小于10A时,电弧可自熄。

⑧前苏联《煤矿供电效率的提高》专著中指出,当接地电容电流大于10A时,中性点应采用消弧线圈补偿方式。

10kV系统单相接地电容电流的工程计算

10kV系统单相接地电容电流的工程计算

10kV系统单相接地电容电流的工程计算摘要:经过简化架空线路、电力电缆线路及变电站电气设备电容电流的计算,提出了10kV系统(交联聚乙烯电缆)单相接地电容电流的工程计算公式。

关键词:中性点;单相接地;电容电流;工程计算1、问题的提出计算10kV系统单相接地电容电流,是10kV系统短路电流计算的内容,也是确定10kV系统继电保护的基础。

《交流电气装置的过电压保护和绝缘配合设计规范》(GB/T 50064-2014)规定:不直接连接发电机、由电缆线路构成的6kV~20kV系统,当单相接地故障电容电流不大于10A时,可采用中性点不接地方式;当大于10A又需在接地故障条件下运行时,宜采用中性点谐振接地方式。

由此可见,10kV系统单相接地电容电流是否超过10A,还是10kV系统中性点是否采用谐振接地方式的关键因素。

10kV系统单相接地电容电流由电力线路(架空线路、电缆线路)和电气设备(变压器、断路器、同步发电机、异步电动机等)两部分电容电流组成。

如果不进行简化,单相接地电容电流的计算将会很繁杂。

本文拟对10kV系统单相接地电容电流的计算方法予以介绍。

2、10kV系统架空线路单相接地单位长度的电容电流架空线路单位长度的电容电流计算公式:Icj=2πf*3Cj*Un*10-3(A/km),Cj为架空线路对地电容计算值(uF/km),Un为相电压(kV)。

对于10kV系统,Un=10/kV。

根据是否架设架空地线,架空线路分为有架空地线和无架空地线两类。

有架空地线架空线路近似计算公式:Icj=3.3Ue*10-3(A/km),Ue为线电压(kV);无架空地线架空线路近似计算公式:Icj=2.7Ue*10-3(A/km)。

对于10kV架空线路,单位长度的电容电流计算公式可进一步简化。

10kV架空线路(有架空地线)单位长度的电容电流:Icj=0.036A/km;10kV架空线路(无架空地线)单位长度的电容电流:Icj=0.029A/km 以上计算方法适用于水泥杆单回架设方式;若采用铁塔(或钢杆),电容电流增加10%;若采用同杆双回架设,电容电流增加30%;夏季比冬季增加10%。

10kV配电网单相接地电容电流的工程计算法探讨_陈立军

10kV配电网单相接地电容电流的工程计算法探讨_陈立军

10kV配电网单相接地电容电流的工程计算法探讨陈立军(广东电网公司惠州供电局,广东惠州516300)摘要:10kV配电网中性点采用经小电阻接地方式或经消弧线圈接地方式,关键问题是10k V母线接地电容电流值的计算是否正确。

简要介绍了配电网中的小电流接地系统中的单相接地电容电流的组成,论述了电容电流工程计算法是判断新建工程项目是否装设小电阻或消弧系统的有效手段,分析了不同情况下单相接地电容电流的算法,通过对110k V变电站10kV母线电容电流进行现场测量并和计算值对比的实例,分析和验证了该工程计算方法具有很高的精度,可以大力推广应用。

关键词:配电网;小电阻接地;消弧线圈接地;单相接地;电容电流中图分类号:TM744文献标识码:B文章编号:1003-4897(2006)15-0083-030引言配电网中小电流接地系统中的单相接地电容电流由电力线路(电缆和架空线路)及电力设备(同步发电机、大容量同步电动机和变压器等)两部分的电容电流组成。

此外,旋转电机的过电压保护用的吸收电容、高压真空断路器中用于限制操作过电压的RC吸收装置的电容,其值也要计算在内。

架空线路的电容电流比同样长度下的电缆电容电流小得多,而电力设备的电容电流比电力线路小得更多,故通常只计算电缆和架空线路的电容电流。

如果电网中有同步发电机或大容量同步电动机时,也应计算其电容电流;或是按经验统计数据,估算因电力设备引起的电容电流值。

现将10kV及以下配电网单相接地电容电流的工程计算法介绍如下。

16~10kV电力线路电容电流6~10kV电缆线路每公里长度的单相接地电容电流按下列公式计算:6kV电缆I c6=U n(95+2.84S)/(2200+6S)10kV电缆I c10=U n(95+2.84S)/(2200+ 6S)式中:S为电缆芯线截面,mm2;U n为额定电压,kV。

为简化计算,6~10kV电缆线路每公里长度的电容电流值列于表1中。

10kV配电网中性点接地方式探讨

10kV配电网中性点接地方式探讨

10kV配电网中性点接地方式探讨【摘要】配电网中性点接地运行方式因为直接影响到10kV配电网的正常运行,所以对于城市日常用电来说具有重要的意义。

本文就10kV配电网中性点接地方式进行了探讨,详细分析了几种常用的接地方式并进行了比较,从而给出了10kV配电网中性点接地方式的选择原则。

【关键词】10kV配电网;中性点;接地方式0 前言电力系统中性点接地方式是一个涉及电力系统许多方面的综合性技术课题,它不仅涉及到电网本身的安全可靠性、过电压绝缘水平的选择,而且对通讯干扰、人身安全有重要影响。

过去我国10kV配电网主要采用中性点不接地和经消弧线圈接地方式,20世纪80年代中后期为适应城区电网的迅速发展,特别是电缆的大量使用后,出现了l0kV配电网中性点经低电阻接地方式。

当然,每一种中性点接地方式各有其特点和优缺点,因此,若想发挥出每一种中性点接地方式最大的用处,就要因地制宜地确定配电网中性点接地方式。

1 各种配电网常用的接地方式的单相接地故障分析1.1 中性点不接地中性点不接地系统C相不完全接地故障的电路图和矢量图如图1所示。

图1 中性点不接地系统C相不完全接地故障C相经过过渡电阻Rd接地,各相对地电压由下式表示:分析式(5)可知,当Rd变化时,矢量UNd始端的轨迹是以接地相的相电压UC为直径的位于其顺时针一侧的半圆,如图1(b)所示。

1.2 中性点经消弧线圈接地中性点经消弧线圈接地系统C相不完全接地故障电路图如图2所示。

显然在此系统中,式(2)将变为:分析式(9)可知,当Rd变化时,可分3种情况讨论:(1)欠补偿。

矢量UNd始端的轨迹是以接地相的相电压Uc为直径的位于其顺时针一侧的半圆,跟中性点不接地系统完全一样。

(2)全补偿。

矢量UNd始端固定在点C,此时C′等于0。

(3)过补偿。

矢量UNd始端的轨迹是以接地相电压Uc为直径的位于其逆时针一侧的半圆,与中性点不接地系统相位相反。

1.3 中性点经电阻接地中性点经电阻接地系统只是将图2的消弧线圈换成电阻R,显然式(6)将变为:当发生C相不完全接地故障时,随着Rd的变化,矢量UNd始端的轨迹是以接地相的相电压Uc为直径的位于其顺时针一侧的半圆,当Rd为无穷大时,系统对称运行,无接地现象;当Rd=0时,系统处于金属性单相接地状态,流入接地点的电流为电阻电流和系统对地电容电流之和。

10KV电网单相接地电容电流1

10KV电网单相接地电容电流1

山西朔州平鲁区西易党新煤矿有限公司10KV电网单相接地电容电流测试报告山西朔州平鲁区西易党新煤矿有限公司201 年月日山西朔州平鲁区西易党新煤矿有限公司35KV变电站10KV母线单相接地电容电流测试报告中性点不接地系统的优点是单相接地电流较小,单相电流不形成短路回路,电力系统安全运行规章规定可继续运行1~2小时。

但是,长时间接地运行,极易形成俩相接地短路,弧光接地还会引起全系统过电压。

特别是矿井电网,因其大部分为电缆供电,若单相接地电流较大,加之井下环境恶劣,故障多,高压电缆经常发生单相漏电或单相接地故障,且过大的单相接地电流经常引起电缆放炮和击穿现象,影响正常生产,并给矿井和人身安全带来严重后果。

因此,正确测量、了解电网单相接地电流情况,对保证矿井安全运行极为重要。

1、单相接地电流及其分量的测量方法电网单相对地绝缘参数的常用测量方法有:附加电源测量法,交流伏安法,中性点位移电压法,谐振测量法。

其中第一种方法所测的是测量频率下的绝缘参数,只可间接地反映工频下的绝缘参数;而后三种方法是采用电网工作电源进行测量,反映了电网的实际绝缘参数。

中性点位移电压法也称间接测量法,是目前测量小电流接地系统单相接地电容电流的常用方法。

其一般作法是在电网一相与地之间接入一个附加电容,实测流过此电容的电流与中性点位移电压,通过计算来求得电网单相接地电容电流。

但由于电容的充电效应,在人为接地的瞬间,相当于在电网中产生了一个金属性接地故障,这显然不利于安全。

因此,有必要研究一种更加安全可靠地新方法,即单相经电阻接地的间接测量方法。

图1 中性点不接地电网绝缘参数测量模型图1为一中性点不接地电网的绝缘参数测量模型,C 、r 分别为各相对地电容和绝缘电阻。

考虑到实验的安全性,采用电网单相经电阻接地的方法,电网的任何一相(如A 相)经附加电阻R 和电流表A 接地。

接地电阻R 选用500—1000 Ω,接地电流可控制在几安培,并通过理论计算,求出电网单相直接接地时的电流。

10kV配电网不同接地方式分析与比较

10kV配电网不同接地方式分析与比较

10kV配电网不同接地方式分析与比较摘要:10kV配电系统是连接电力系统和电力用户的终端网络,其接地方式的选择对着整个电力系统可靠性有至关重要意义,在我国的10kV配电网中,中性点的运行方式主要存在不接地、经消弧线圈接地和低阻接地三种形式。

不同的接地方式各有优缺点,在进行接地方案选取的时候需要针对不同地域的用电特点从实际出发做出选择。

1.中性点不接地电力系统中采用中性点不接地方式运行时,系统中发生的单相接地故障将导致中性点电压发生位移,非故障相电压的幅值将会被增大到原来的两倍,即线电压,但是此种方式的最大优点在于可带故障运行。

如下图1中表示中性点不接地系统中的电路图和系统不接地运行时的电流和电压的向量图。

系统在正常运行的情况下,三相电压、、容性电流IC1、IC2、IC3是对称,因此其相量和为零,即中性点电流为零。

图1 中性点不接地运行方式的示意图及相量图(a)电路图;(b)相量图在发生单相接地故障时,中性点不接地系统的故障电流通过下式(1)的公式计算。

(1)其中:代表系统的电压,为向量,C代表了系统中所有的对地电容之和,因此,系统的中性点电压为:(2)短路电流幅值为:(3)非故障相电压为:(4)式中:为系统相电压。

根据电力系统的实际运行,通常单相接地故障发生后总会伴随着间歇性电弧过电压。

2.经消弧线圈接地中性点经消弧线圈的接地方式的实现时通过变压器的中性点与大地接地点之间通过一个电感线圈连接。

当系统发生故障,如系统中常见的单相接地,中性点的消弧线圈两端的电压为相电压,而故障点处的故障电流则为接地电容电流和电感电流的矢量和。

系统中接地电容电流与电压相差90°,且超前;电感电流则滞后电压90°,因此接地电容电流和电感电流相差90°,因此他们可以在故障点进行互补。

图2经消弧线圈接地的系统示意图及相量图(a)电路图;(b)相量图中性点经消弧线圈接地的系统中,如果发生单相接地故障时,可以通过与形成接地电容电流大小相等的电感电流,用其与电容电流做到相互补偿,这样可以实现降低故障点的接地电流,同时减轻接地点的电弧及其危害的目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10KV的电网中性点不接地单相接地时的电容电流
下面是一些摘录资料:
在GB50070-94《矿山电力设计规范》第2。

0。

10条中规定,“矿井6-10KV电网,当单相接地电容电流小于等于10A时,宜采用电源中性点不接地方式;大于10A时,必须采取限制措施”。

这条规定是依据国内外有关科研成果和国内外现行规程、标准以及人身触电安全要求等三方面作出的。

现分述如下:
1、试验研究和运行经验数据
①《电缆网络单相接地电弧电流不自熄下限试验研究》技术鉴定书指出,“电弧引弧试验的数据近200个。

这些数据客观地、真实地描述了在给定工况条件下,电缆接地电弧电流的熄灭情况”。

部级鉴定委员会同意由西北电力中试所和北京煤炭设计研究院完成的试验研究报告,并肯定该报告可供修改规程、规范时参考。

该报告的结论是,电弧接地不自熄电流下限值:全塑电缆25A;油浸纸绝缘电缆15A;交联电缆10A。

以安全计应取其中最小值10A。

②华中、湖北电力试验研究所1992年试验研究的成果表明,3-10KV架空配电线路,当电容电流在16A及以上时,不能自熄电弧;当电容电流小于10A,几乎全能自熄。

③湖北省6-10KV配电网运行经验与上述试验研究结果一致。

④开滦矿务局赵各庄煤矿从60年代以来,单相接地电容电流达18A左右,井下高压电缆发生着火事故次数显著增多。

⑤原中国统配煤矿总公司6KV电网安全调研组于1988年对引起矿井电缆“放炮”事故做了统计分析。

结论是,电容电流在20A左右的矿井电缆“放炮”事故仍很严重。

⑥(GB50070-94)《矿山电力设计规范》专题组编写的《关于矿井高压电网单相接地电流限值问题的分析讨论》报告中指出,某矿实测6KV电网电容电流为16A,曾发生多重接地故障。

⑦中国矿业大学《矿井6KV电网单相接地电流及限制方案的制定》一文指出,实验研究和仿真计算结果表明,当单相接地电弧电流小于10A时,电弧可自熄。

⑧前苏联《煤矿供电效率的提高》专著中指出,当接地电容电流大于10A时,中性点应采用消弧线圈补偿方式。

⑨美国EBASCO公司认为,为了减少单相接地故障对设备的损坏程度,应限制单相接地电流在10-15A范围之内。

⑩前苏联电力专家石林才思认为,接地故障电流减小到10A以下,配电装置单相接地故障不易转变为相间短路故障。

2、国内外标准、规程的相关规定
①《苏联电气装置安装法规》(1988年版)规定,3-20KV架空线路电网(钢筋水泥或金属电杆)和所有35KV电网,当接地电容电流大于10A时,应进行补偿。

②美国电气标准规定,为了减少单相接地故障时对设备的损坏程度,单相接地电流应限制在不大于10-15A。

③英国电气规程规定,由于电弧接地引起电缆故障,并常引起电气灾害,为此限制接地故障电流小于等于15A。

英国变压器制造厂向我国及英国国内供货时,均保证符合这一要求。

④德国矿业电气规程规定,接地故障电流大于10A时,必须加装自动跟踪补偿灭弧装置,以把接地残流限制在4A以内。

⑤瑞典推荐中性点消弧装置的补偿效果是应使6-11KV电网故障点的残流小于等于7A。

⑥罗马尼亚国家电气规程规定,接地电容电流大于10A时,应采用连续可调式消弧装置。

⑦法国电力公司(EDF)近年决定,改变60年代制定的电阻接地方式,将中压电网的中性点全部改为自动调谐消狐线圈接地方式,并已有实施运行经验,效果良好。

⑧我国现行国标(GB50062-92)《电力装置继电保护和自动装置设计规范》规定,“3KV 及以上电机,当单相接地电流为10A及以上时,保护装置应动作于跳闸;3KV以上电力线路的接地保护装置,当危及人身及设备安全时,保护装置应动作于跳闸”。

这说明,从人身及设备安全考虑,10A是分界点。

⑨我国现行国标(GBJ63-83)《电力设备过电压保护及设计规范》中规定,“60KV及以下电网,故障点的残流不得超过10A”。

⑩《矿山电力设计规范》等效采用《苏联电气装置安装法规》的规定,即当接地电容电流大于10A时应进行补偿。

综上所述,国内外的国家标准、规程均把中压网络的接地故障电流补偿值界定在10-15A。

3、保证人身间接触电安全的必要条件
我国规定人身安全电流极限值为30mA。

目前,西欧、日本、前苏联等国家均规定为25 mA。

其科学依据是考虑了人的心脏对电流存在着敏感相位,该相位刚好与心电图T波段相对应,称为复极化期。

其时间约为0.2秒。

如果电流持续0.2秒通过心脏,则心脏对电流最敏感,只要数十毫安的电流,即可引起人的心室颤动,造成人员死亡。

由此可以看出,任何想借助快速断电的方式来实现对人的安全保护意图是很难实现的。

如果把继电保护整定在0.5秒时,则危险性更大。

而把故障点的残流降下来,才是比较有效的途径。

《矿山电力设计规范》在确定电网电容电流限值时,只考虑6-10KV电网结构特点和电弧特征,与矿井客观条件(如煤矿沼气)无关,因为引爆煤矿瓦斯的能量只需要28mJ。

企图用降低电容电流的办法,去避免瓦斯引爆是不现实的。

但是,这种接地方式具有灭弧条件好、残流小、故障电位低、安全性高、供电可靠性等优点,是其他接地方式不可比拟的。

相关文档
最新文档