乙酸乙酯皂化反应速率常数的测定实验报告
电导法测定乙酸乙酯皂化反应的速率常数实验报告 冯悦
参考文献
【1】傅献彩等. 新编物理化学(第五版)[M]. 高等教育出版社: 2008. 【2】汪永涛, 张文清, 侯若冰等. 联机电导法测定乙酸乙酯皂化反应的速率常数[J]. 广西师范大学学报, 2001, 19(3)
引言乙酸乙酯皂化反应动力学参数的测定是一个经典的二级反应动力学实验利用溶液中ch3coo的迁移率比oh的迁移率小随着反应的进行oh不断减少ch3coo的浓度不断增加故体系电导率值会不断下降在一定范围内可以认为体系的电导率的减少量和ch3coo的浓度x增加量成正比因此可确定反应物与生成物的浓度关系从而确定反应速率常数k并求得活化能
Key words:Conductivity Method; Conductivity Meter; Saponification; Ethyl Acetate.
引言
乙酸乙酯皂化反应动力学参数的测定是一个经典的二级反应动力学实验,利用溶液中 CH3COO-的迁移率比 OH-的迁移率小,随着反应的进行,OH-不断减少,CH3COO-的浓度 不断增加,故体系电导率值会不断下降,在一定范围内,可以认为体系的电导率的减少量 和 CH3COO-的浓度 x 增加量成正比,因此可确定反应物与生成物的浓度关系,从而确定反 应速率常数 k,并求得活化能。
所以,30℃时的理论速率常数
实验测定值与理论值比较的相对误差:
ln
3.又
k 2 Ea 1 1 ( ) k1 R T1 T2 ,将理论值 、 代入,得:
活化能理论值 Ea=47.55KJ/mol 实验测定值与理论值比较的相对误差: 3.2 误差分析 根据以上分析,上述两组实验数据直线拟合的都非常好,但 值要偏小,且相对误差较大,主要原因可能有: ①温度不够恒定。温度对反应速率 k 受温度的影响很大,实验所使用的恒温槽的恒温 效果不是很好,在测定的过程中温度会有± 0.2℃的飘动,造成实验测定数值产生误差; ②配制好的 NaOH 溶液也会吸收空气中 CO2,虽对 NaOH 溶液的准确浓度事先进行了标 定,而实验时被测的却是电导率,OH—与〖CO_3〗^(2-)两离子的电导数值差别又很大, 结果会使测定后期的数据偏差逐渐增大;
实验三 乙酸乙酯皂化反应速率常数的测定
实验三乙酸乙酯皂化反应速率常数的测定一、目的及要求1、测定皂化反应中电导的变化,计算反应速率常数。
2、了解二级反应的特点,学会用图解法求二级反应的速率常数。
3、熟悉电导率仪的使用。
二、原理乙酸乙酯的皂化反应为二级反应:CH3COOC2H5+NaOH=CH3COONa+C2H5OH在这个实验中,将CH3COOC2H5和NaOH采用相同的浓度,设a为起始浓度,同时设反应时间为t时,反应所生成的CH3COONa和C2H5OH的浓度为x,那么CH3COOC2H5和NaOH的浓度为(a-x),即CH3COOC2H5+NaOH= CH3COONa+ C2H5OHt=0时, a a 0 0t=t时, a-x a-x x xt→∞时, 0 0 a a其反应速度的表达式为:dx/dt=k(a-x)2k—反应速率常数,将上式积分,可得kt=x/[a(a-x)] *乙酸乙酯皂化反应的全部过程是在稀溶液中进行的,可以认为生成的CH3COONa是全部电离的,因此对体系电导值有影响的有Na+、OH-和CH3COO-,而Na+、在反应的过程中浓度保持不变,因此其电导值不发生改变,可以不考虑,而OH-的减少量和CH3COO-的增加量又恰好相等,又因为OH-的导电能力要大于CH3COO-的导电能力,所以体系的电导值随着反应的进行是减少的,并且减少的量与CH3COO-的浓度成正比,设L0—反应开始时体系的电导值,L∞—反应完全结束时体系的电导值,L t—反应时间为t时体系的电导值,则有t=t时, x=k'(L0-L t)t→∞时, a=k'(L0-L∞)k'为比例系数。
代入*式得L t=1/ka×[(L0-L t)/t]+ L∞以L t对(L0-L t)/t作图,得一直线,其斜率为1/ka,由此求得k值。
三、实验仪器和试剂恒温水浴一套,电导率仪一台,秒表一只,羊角型电导池一支,移液管一支,移液管(10mL)二只,移液管(2mL带刻度)一只,容量瓶(50mL)一只,容量瓶(1000mL)一只,锥形瓶2只, 0.02mol.L-1 NaOH溶液; 0.02mol.L-1 CH3COOC2H5溶液,乙酸乙酯(A.R)分子量88.11,密度0.9002L/ml)。
实验报告_电导法测定乙酸乙酯皂化反应的速率
用准一级反应的方法测定乙酸乙酯皂化反应的速率常数一.[实验目的]①学习用准一级反应方法研究非一级反应的方法。
②用电导法测定乙酸乙酯反应常数。
③掌握测量原理, 并熟悉电导率仪的使用。
二.[实验原理]乙酸乙醋的皂化反应为:CH 3COOC 2H 5+NaOH →CH 3COONa +C 2H 5OH在该反应中, 设乙酸乙酯和碱的起始浓度分别为a 和b(a>>b), x 为t 时刻反应物已反应掉的浓度(也就是不同时刻生成的NaAc 的浓度)CH 3COOC 2H 5+NaOH →CH 3COONa +C 2H 5OHt=0 a b 0 0t= t a-x b-x x x t= ∞ →a-x →b-x →b →b则其反应速率公式可写为但是a>>b 所以(a-x)→a 则上式可写为)(x b Ka dtdx n -= (1) 对(l)式进行积分得反应速度常数K 的表达式为 ln t ka bx b n -=- 显然, 只要测出反应进程中t 时的x 值, 再将a, b 代入上式, 就可以算出反应速率常数k 值。
由于反应在水溶液中进行, 可以假定CH3COONa 全部电离。
溶液中参与导电的离子有Na+, OH-和CH3COO-等, 而Na+ 反应前后不变, OH-的迁移率比CH3COO-的迁移率大得多。
随反应时间的增加, OH-不断减少, 而CH3COO-不断增加, 所以, 体系的电导率值不断下降。
在一定的范围内, 可以认为体系电导率的减少与CH3COONa 的浓度x 的增加量成正比, 即t=t: x=β(κ0-κt ) t=∞: b=β(κ0-κ∞)式中κ0为t=0时的初始电导率, κt 为t=t 时溶液的电导率值, κ∞为t →∞, 即反应完全后溶液的电导率值, β为比例常数。
将x 和a 及电导率的关系式分别代入积分式得:-ka n t=In ∞-∞-k k k kt 从上式可知, 只要测定κ0, κ∞以及一组相应于t 时kt 值, 以 对t 作图, 可得一直线, 由直线的斜率即可求得反应速率k 值, k 的单位为min-1mol-1L三.[实验仪器与试剂]DDS 一11A 电导率仪(上海第二分析仪器厂)1台;501型超级恒温水浴(重庆试验仪器厂) 1台;双管电导池(带胶塞与大洗耳球)2个, 25mL, 10mL 移液管各1支;50mL 容量瓶2个;停表1支.NaOH (分析纯)CH 3COOC 2H 5 (分析纯)CH 3COONa (分析纯)四.[试验步骤]1.启用恒温槽, 调节至实验所需温度(20℃)。
乙酸乙酯皂化反应速率常数测定实验报告(详细参考)
乙酸乙酯皂化反应速率常数测定实验报告(详细参考)
对乙酸乙酯与皂化剂反应的速率常数测定实验可以提供一个有价值的例子,以表明如
何应用化学反应动力学原理,以及如何从一个结果中获得化学反应的基本特性。
该实验的
目的是测量乙酸乙酯反应的速率常数k及其催化剂的活性。
与本实验有关的化学反应可以
用下式表示:
A+B→C
在本实验中,A是乙酸乙酯,B是皂化剂,C是水乙酸乙酯。
该实验将采用循环注射法,通过一系列实验来测量乙酸乙酯反应的速率常数。
实验中采用的设备为自动反应器,其设定条件如下:温度25℃,时间点1min,水乙
酸乙酯反应方程式为1:1(mole.)。
实验中的其他条件包括:0.15mol/L乙酸乙酯的浓度、0.2mol/L皂化剂的浓度以及0.1 mol/L催化剂的浓度。
实验结果表明,当实验温度稳定在25°C时,反应速率常数k可以接近0.0670/min;当催化剂浓度改变时,反应速率也会发
生变化,催化剂浓度越高,反应速率k值也越高。
经过分析讨论,可以得出结论:实验所测量的乙酸乙酯反应的速率常数k可以接迗
0.0670/min,实验中乙酸乙酯反应的活性取决于催化剂的浓度,催化剂浓度越高,反应速
率k值也越高。
本实验的研究表明,实验结果能够提供有用的特性数据,可以为乙酸乙酯与皂化反应
研究和进一步应用提供有价值的贡献。
【清华】实验九-乙酸乙酯皂化反应速率常数的测定
ln k ln A - Ea RT
式中: Ea 为阿累尼乌斯活化能或反应活化能; A 为指前因子; k 为速率常数。
实验中若测得两个不同温度下的速率常数,就很容易得到
ln kT2
Ea T2 -T1
kT1 R T1T2
由上式就可以求出活化能 Ea 。
式计算:
/(kg m 3 ) 924.54 1.168 (t /℃) 1.95 10-3 (t /℃)2
配制方法如下:在 100ml 容量瓶中装 2/3 体积的水,用 0.2ml 刻度移液管吸取所需乙酸 乙酯的体积,滴入容量瓶中,加水至刻度,混匀待用。 2.仪器和药品准备
检查仪器药品,接通电源。设定恒温槽温度为 20℃(可根据实际情况调整),用稀释一 倍的氢氧化钠溶液调电导率仪指针在大约五分之四满刻度的位置(注意实验过程中不准在调 指针位置),并接通相应设备电源,准备数据采集。 3.测量
化工系 任婷唯 2009011855
实验九 乙酸乙酯皂化反应速率常数的测定
姓名:任婷唯 学号:2009011855 同组实验者: 于新宇
实验日期:2011.9.30
提交实验报告日期:2011.9.30
实验教师: 张亚玲
1. 引言 1.1 实验目的
1. 学习测定化学反应动力学参数的一种物理化学分析方法——电导法。 2. 了解二级反应的特点,学习反应动力学参数的求解方法,加深理解反应动力学特征。 3. 进一步认识电导测定的应用,熟练掌握电导率仪的使用方法。
2. 实验操作 2.1 实验药品,仪器型号及测试装置示意图
实验药品:0.02mol·dm-3NaOH 标准溶液(此浓度仅为大概值,具体值需实验前准确
电导法测定乙酸乙酯皂化反应的速率常数实验报告
电导法测定乙酸乙酯皂化反应的速率常数实验报告引言皂化反应是有机化学中一种重要的反应类型,通过皂化反应,酯可以被水溶液中的碱水解生成相应的醇和盐。
乙酸乙酯作为一种常见的酯类化合物,其皂化反应速率常数的测定对于了解该反应的动力学特征具有重要意义。
本实验旨在利用电导法测定乙酸乙酯的皂化反应速率常数,并通过实验数据的处理和分析来探讨该反应的反应机理。
实验原理乙酸乙酯的皂化反应乙酸乙酯的皂化反应可表示为以下化学方程式:$$\ce{CH3COOC2H5 + KOH -> C2H5OH + CH3COOK}$$该反应是一种酯类的水解反应,通过碱催化,乙酸乙酯可以分解生成乙醇和乙酸钾。
电导法测定速率常数电导法是一种常用的测定化学反应速率常数的方法。
在皂化反应中,当乙酸乙酯与碱反应时,反应溶液的电导率会发生变化。
通过测定不同时间下反应溶液的电导率,并利用反应速率常数的定义式,可以计算出该反应的速率常数。
速率常数k的定义式为:v=k[A]m[B]n其中,v表示反应速率,[A]和[B]分别表示反应物A和B的浓度,m和n分别表示反应物A和B的反应级数。
根据乙酸乙酯的皂化反应方程式,乙酸乙酯和碱的浓度均为1mol/L,反应级数均为1。
因此,反应速率可以简化为:v=k所以,通过测定反应溶液的电导率随时间的变化,可以得到反应速率常数k。
实验方法1.实验装置准备:–电导仪及电极–反应溶液容器–定温水浴槽–移液器和分液漏斗–电导池和电源2.实验操作步骤:1.将1mol/L的乙酸乙酯和1mol/L的碱溶液按不同摩尔比混合,如1:1、1:2、1:3等,制备反应溶液。
2.将反应溶液倒入反应容器中,放入定温水浴槽中保持恒温。
3.打开电导仪电源,将电导池连接到电导仪上。
4.在实验开始前,测定纯溶剂的电导率作为空白测定。
5.将电导池插入含有反应溶液的容器中,记录初始电导率。
6.每隔一段时间(如30秒),记录一次电导率,并将数据记录下来。
乙酸乙酯皂化反应速率常数的测定实验报告
乙酸乙酯皂化反应速率常数的测定实验报告乙酸乙酯皂化反应速率常数的测定实验报告引言:皂化反应是一种重要的有机化学反应,通过碱与酯的反应,生成相应的醇和盐。
乙酸乙酯皂化反应速率常数的测定是研究皂化反应动力学的关键实验之一。
本实验旨在通过测定乙酸乙酯与氢氧化钠溶液反应的速率常数,探究该反应的动力学特性。
实验方法:1. 实验器材准备:取得所需的实验器材,包括烧杯、移液管、试管、滴管等。
2. 实验液体制备:准备一定浓度的氢氧化钠溶液,并称取适量的乙酸乙酯。
3. 实验操作:将一定量的氢氧化钠溶液倒入烧杯中,加热至适宜的温度。
然后,将乙酸乙酯滴入溶液中,同时记录下滴加的时间。
在滴加过程中,用试管定期取出少量反应液,加入酚酞指示剂,观察颜色变化。
4. 数据记录:根据实验操作过程中的数据记录,计算出不同时间点下的反应物浓度。
实验结果:根据实验数据,我们得到了乙酸乙酯与氢氧化钠溶液反应的速率常数。
通过绘制反应物浓度与时间的关系曲线,我们可以观察到反应速率的变化趋势。
在实验过程中,我们还注意到了反应温度对反应速率的影响,并进行了相应的分析。
讨论与分析:根据实验结果,我们可以得出以下结论:1. 反应速率随时间的增加而逐渐减小,呈现出指数衰减的趋势。
这符合化学反应动力学中的经典理论,即反应速率与反应物浓度的指数关系。
2. 反应温度对反应速率有显著影响。
在实验过程中,我们可以观察到在较高温度下,反应速率更快,反应物浓度下降更迅速。
这是因为高温加快了反应物分子的碰撞频率和能量,从而促进了反应的进行。
3. 乙酸乙酯皂化反应的速率常数可以通过实验数据计算得出,并且可以用于描述该反应的动力学特性。
通过测定不同条件下的速率常数,我们可以进一步研究该反应的影响因素。
结论:通过本实验,我们成功测定了乙酸乙酯皂化反应的速率常数,并观察到了反应速率与时间、温度的关系。
这一实验为进一步研究皂化反应的动力学特性提供了基础数据。
同时,我们也意识到实验中可能存在的误差和改进的空间,例如实验条件的控制和数据处理的精确性等。
乙酸乙酯皂化反应速率常数的测定实验报告
乙酸乙酯皂化反应速率常数的测定实验报告OH -电导率大,CH 3COO -电导率小。
因此,在反应进行过程中,电导率大的OH -逐渐为电导率小的CH 3COO -所取代,溶液电导率有显著降低。
对稀溶液而言,强电解质的电导率L 与其浓度成正比,而且溶液的总电导率就等于组成该溶液的电解质电导率之和。
如果乙酸乙酯皂化在稀溶液下反应就存在如下关系式:a A L 10= (4)a A L 2=∞ (5) xA x a A L t 21)(+-=(6)A 1,A 2是与温度、电解质性质,溶剂等因素有关的比例常数,0L ,∞L 分别为反应开始和终了时溶液的总电导率。
t L 为时间t 时溶液的总电导率。
由(4),(5),(6)三式可得:a LL L L x t·00⎪⎪⎭⎫ ⎝⎛--=∞ 代入(2)式得:⎪⎪⎭⎫⎝⎛--=∞L L L L a t K t t0·1(7)重新排列即得:∞+-=L tL L k a L tt 0·1三、实验仪器及试剂DDS-11A 型数字电导率仪1台(附铂黑电极1支),恒温槽1台,秒表1只,电导池3支,移液管3支;0.0200mol /L 乙酸乙酯(新配的),O.0200mol /L 氢氧化钠(新配的)四、简述实验步骤和条件:1、调节恒温槽为所测温度25℃。
2、0L 的测量:分别取10mL 蒸馏水和10mL0.0200mol/L 的NaOH 溶液,加到洁净、干燥的叉形管电导池中充分混合均匀,置于恒温槽中恒温15min 。
用DDS-11A 型数字电导率仪测定上述已恒温的NaOH 溶液的电导率即为0L 。
3、t L 的测量:在另一支叉形电导池直支管中加10mL 0.0200mol/L CH 3COOC 2H 5,侧支管中加入10mL 0.0200 mol/L NaOH ,并把洗净的电导电极插入直支管中。
在恒温情况下,混合两溶液,同时开启停表,记录反应时间(注意停表一经打开切勿按停,直至全部实验结束),并在恒温槽中将叉形电导池中溶液混合均匀。
电导法测定乙酯皂化反应的速率常数物化实验报告
电导法测定乙酯皂化反应的速率常数物化实验报告电导法测定乙酸乙酯皂化反应的速率常数一、实验目的1、学习电导法测定乙酸乙酯皂化反应速率常数的原理和方法以及活化能的测定方法;2、了解二级反应的特点,学会用图解计算法求二级反应的速率常数;3、熟悉电导率仪的使用。
二、实验原理(1)速率常数的测定乙酸乙酯皂化反应时典型的二级反应,其反应式为:CH 3COOC 2H 5+NaOH = CH 3OONa +C 2H 5OHt=0 C 0 C 0 0 0 t=t Ct Ct C 0 - Ct C 0 -Ct t=∞ 0 0 C 0 C 0速率方程式 2kc dtdc=-,积分并整理得速率常数k 的表达式为: t0t0c c c c t 1k -⨯=假定此反应在稀溶液中进行,且CH 3COONa 全部电离。
则参加导电离子有Na +、OH -、CH 3COO -,而Na +反应前后不变,OH -的迁移率远远大于CH 3COO -,随着反应的进行, OH - 不断减小,CH 3COO -不断增加,所以体系的电导率不断下降,且体系电导率(κ) 的下降和产物CH 3COO -的浓度成正比。
令0κ、t κ和∞κ分别为0、t 和∞时刻的电导率,则:t=t 时,C 0 –Ct=K (0κ-t κ) K 为比例常数 t →∞时,C 0= K (0κ-∞κ) 联立以上式子,整理得: ∞+-⨯=κκκκtkc 1t 00t可见,即已知起始浓度C 0,在恒温条件下,测得0κ和t κ,并以t κ对tt0κκ-作图,可得一直线,则直线斜率0kc 1m =,从而求得此温度下的反应速率常数k 。
(2)活化能的测定原理: )11(k k ln21a 12T T R E -= 因此只要测出两个不同温度对应的速率常数,就可以算出反应的表观活化能。
三、仪器与试剂电导率仪 1台 、铂黑电极 1支、 大试管 5支 、 恒温槽 1台、 移液管 3支; 氢氧化钠溶液(0、0200mol/L ) 、乙酸乙酯溶液(0.0200mol/L )四、实验步骤1、调节恒温槽的温度在24.00℃。
乙酸乙酯皂化反应速率常数的测定实验报告(1)
乙酸乙酯皂化反应速率常数的测定实验报告 (1)乙酸乙酯皂化反应速率常数的测定一、实验目的1、用电导法测定乙酸乙酯皂化反应速率常数及活化能。
2、了解二级反应的特点。
3、了解电导率仪的构造,掌握其使用方法。
二、实验原理乙酸乙酯皂化反应方程式为:CH3COOCH2CH3 + OH- == CH3COO- + CH3CH2OH t=0 a a 0 0t=t a-x a-x x xt=∞ 0 0 a a乙酸乙酯皂化反应属二级反应,为使实验简化处理,加入的两反应物浓度相同,反应的速率方程为:设乙酸乙酯和氢氧化钠的转化率为x,初始浓度a=cA,0,则当转化率x=0时,所测电导率为氢氧化钠溶液的贡献,则:当转化率x=1时,所测电导率为乙酸钠溶液的贡献,则:当转化率x在0到1之间时,所测电导率为氢氧化钠和乙酸钠溶液的贡献,则:这里的A1,A2为与温度、试剂、电解质NaOH和NaAC有关的比例常数;κ0,κ∞分别为反应开始和终了时溶液的总电导率;κt为时间t时溶液的总电导率。
结合(1) (2) (3)式可得:以κt对(κ0-κt)/t作图可得一直线,其斜率等于1/(k?a)。
由此可求得反应速率常数k。
当把电导率仪的输出与记录仪连接,就可自动记录电导的变化。
这时记录纸上的峰高将与电导成正比。
因此用峰高代替电导代入上式同样可求得k值。
根据需要将量程调至合适的测量档(由于NaOH和醋酸钠都是强电解质,所以量程调至20 mS?cm-1档)。
用一个已在红外干燥箱中干燥的洁净烧杯配制0.0500 mol/L的NaOH,测量值作为反应初始的电导率值(即κ0)。
三、实验仪器恒温糟,电导率仪(DDS-307型或DDS-11A型),大口瓶,25ml单标线移液吸管,电导池,烧杯,洗耳球,50ml注射器,带乳胶管的橡皮塞。
四、实验步骤1、利用恒温槽控制反应温度(复习恒温槽的操作方法)2、配制反应液采用称重法配制0.1000 mol/L的NaOH和乙酸乙酯溶液。
乙酸乙酯皂化反应速率常数的测定的实验报告
乙酸乙酯皂化反应速率常数的测定的实验报告一、实验目的1.了解二级反应的特点,学会用图解计算法求取二级反应的速率常数;2.用电导法测定乙酸乙酯皂化反应速率常数,了解反应活化能的测法。
二、实验原理CH3COOC2H5+Na++OH-®CH3COO-+Na++C2H5OH为了方便起见,在设计实验时将反应物CH3COOC2H5和NaOH采用相同的浓度c作为起始浓度。
当反应时间为t时,反应所生成的CH3COO-和C2H5OH的浓度为x,那么CH3COOC2H5和NaOH的浓度则为(c-x)。
CH3COOC2H5+NaOH ®CH3COONa+C2H5OHt=0c c0 0t=tc-x c-x xxt®∞®0®0®c®c二级反应的速率方程可表示为:dx/dt=k(c-x)(c-x)积分得:kt=x/c(c-x)t=t时,x=b(G0-Gt)t=∞时,c=b(G0-G∞)则kt=b(G0-Gt)/cb[(G0-G∞)-(G0-Gt)]=(G0-Gt)/c(G0-G∞)或ckt=(G0-Gt)/(G0-G∞)以(G0-Gt)/(G0-G∞)对t作图应得一直线,由斜率即可求出反应速率常数k 值,k的单位是min-1·mol-1·L三、实验仪器及药品四、实验步骤1.G0和G∞的测定将电导池洗净洪干,加入0.0100mol·l-1的NaOH溶液,液面约浸没铂黑电极1cm。
再将铂黑电极从电导水电取出,用相同浓度的NaOH溶液淋洗电极,(注意:不要碰电极上的铂黑)。
然后将电导池置于25℃恒温水浴中,恒温10min,并接上电导率仪,测其电导率值,更换溶液重复测量,取其平均值即为G0。
实验测定中,不可能等到t→∞,故通常以0.0100mol·l-1CH3COONa溶液的电导值作为G∞,G∞的测量方法与G0相同。
必须注意,每次更换电导池中的溶液时,都要先用电导水淋洗电极和电导池,然后再用被测溶液淋洗2至3次。
乙酸乙酯皂化反应速率常数的测定实验报告
乙酸乙酯皂化反应速率常数的测定实验报告一、实验目的1、了解用电导法测定乙酸乙酯皂化反应速率常数的原理和方法。
2、学习使用电导率仪并掌握其操作技术。
3、加深对化学反应动力学的理解,掌握数据处理和分析的方法。
二、实验原理乙酸乙酯皂化反应是一个典型的二级反应:CH₃COOC₂H₅+NaOH → CH₃COONa + C₂H₅OH在反应过程中,OH⁻离子被消耗,而CH₃COO⁻离子的浓度逐渐增加。
由于OH⁻和CH₃COO⁻的离子电导不同,因此可以通过测量溶液电导率的变化来跟踪反应进程。
在稀溶液中,电导率与离子浓度成正比。
设反应物初始浓度均为a,经过时间 t 后,反应物浓度分别为 x,则产物浓度为(a x)。
根据二级反应的速率方程:1/(a x) 1/a = kt又因为电导率与浓度成正比,设反应开始时溶液的电导率为κ₀,反应完全结束时溶液的电导率为κ∞,在时间 t 时溶液的电导率为κt,则:κt =κ₀(κ₀κ∞)x/a将上式变形可得:(κ₀ κt)/(κt κ∞)=(a x)/x = akt通过测定不同时间 t 时的κt,以(κ₀ κt)/(κt κ∞)对 t 作图,可得一直线,其斜率即为反应速率常数 k。
三、实验仪器与试剂1、仪器电导率仪恒温水浴槽秒表移液管(10mL、25mL)容量瓶(100mL)烧杯(100mL、250mL)2、试剂00200mol/L 氢氧化钠标准溶液00200mol/L 乙酸乙酯溶液(新鲜配制)四、实验步骤1、调节恒温水浴槽温度至 250 ± 01℃。
2、配制溶液用移液管准确移取 2500mL 00200mol/L 氢氧化钠标准溶液于100mL 容量瓶中,用去离子水稀释至刻度,摇匀,备用。
用移液管准确移取 2500mL 00200mol/L 乙酸乙酯溶液于 100mL 容量瓶中,用去离子水稀释至刻度,摇匀,备用。
3、测定κ₀将上述配制好的氢氧化钠溶液倒入干净的干燥的烧杯中,放入恒温水浴槽中恒温 10 分钟。
电导法测定乙酯皂化反应的速率常数物化实验报告
电导法测定乙酸乙酯皂化反应的速率常数一、实验目的1、学习电导法测定乙酸乙酯皂化反应速率常数的原理和方法以及活化能的测定方法;2、了解二级反应的特点,学会用图解计算法求二级反应的速率常数;3、熟悉电导率仪的使用。
二、实验原理(1)速率常数的测定乙酸乙酯皂化反应时典型的二级反应,其反应式为:CH 3COOC 2H 5+NaOH = CH 3OONa +C 2H 5OHt=0 C 0 C 0 0 0 t=t Ct Ct C 0 - Ct C 0 -Ct t=∞ 0 0 C 0 C 0速率方程式 2kc dtdc=-,积分并整理得速率常数k 的表达式为: t0t0c c c c t 1k -⨯=假定此反应在稀溶液中进行,且CH 3COONa 全部电离。
则参加导电离子有Na +、OH -、CH 3COO -,而Na +反应前后不变,OH -的迁移率远远大于CH 3COO -,随着反应的进行, OH - 不断减小,CH 3COO -不断增加,所以体系的电导率不断下降,且体系电导率(κ) 的下降和产物CH 3COO -的浓度成正比。
令0κ、t κ和∞κ分别为0、t 和∞时刻的电导率,则:t=t 时,C 0 –Ct=K (0κ-t κ) K 为比例常数 t →∞时,C 0= K (0κ-∞κ) 联立以上式子,整理得: ∞+-⨯=κκκκtkc 1t 00t可见,即已知起始浓度C 0,在恒温条件下,测得0κ和t κ,并以t κ对tt0κκ-作图,可得一直线,则直线斜率0kc 1m =,从而求得此温度下的反应速率常数k 。
(2)活化能的测定原理: )11(k k ln21a 12T T R E -= 因此只要测出两个不同温度对应的速率常数,就可以算出反应的表观活化能。
三、仪器与试剂电导率仪 1台 、铂黑电极 1支、 大试管 5支 、 恒温槽 1台、 移液管 3支; 氢氧化钠溶液(0、0200mol/L ) 、乙酸乙酯溶液(0.0200mol/L )四、实验步骤1、调节恒温槽的温度在24.00℃。
乙酸乙酯皂化反应速率常数的测定实验
乙酸乙酯皂化反应速率常数的测定实验
测定乙酸乙酯皂化反应的速率常数:实验研究与分析
本文将介绍乙酸乙酯皂化反应速率常数的测定实验。
一、实验设备
1. 电子天平:用于测量溶液的组分成分。
2. 密度计:用于测量溶液的密度。
3. 恒温恒流装置:将溶液保持在一定温度和流速下进行反应。
4. PH试纸:用于测定溶液的PH值。
二、试验过程
1. 添加乙酸乙酯、游离乙酸及硫酸氢钠到特定容器中,然后将容器放入恒温恒流装置。
2. 观察反应的变化,每十分钟测定一次电子天平的显示,记录反应的变化。
3. 结束反应后,用密度计测量溶液的密度。
4. 通过测定溶液的PH值,计算出反应的速率常数。
三、结果
通过实验,我们可以获得乙酸乙酯皂化反应速率常数。
四、总结
通过本实验,我们可以更加深入地了解乙酸乙酯皂化反应的物理机制,为更好的掌握其反应机制提供依据。
乙酸乙酯实验报告
率,(10)式也成立。本实验既可采用电导率仪,也可采用电导仪。
3 实验操作
实验用品
计算机及接口一套(或其他电导数据记录设备);DDS-11A 型电导率仪一
台;恒温槽一套;混合反应器 3 个;电导管 2 个;20ml 移液管 2 支;10ml 移液
管 2 支;移液管 1 支;100ml 容量瓶 1 个;洗耳球一个。
(7)
本实验使用电导法测量皂化反应进程中电导率随时间的变化。设?0、?t 和??
分别代表时间为 0、t 和∞(反应完毕)时溶液的电导率,则在稀溶液中有:
?0=A1c0
??=A2c0 ?t=A1(c0-x)+A2x
式中 A1 和 A2 是与温度、溶剂和电解质的性质有关的比例常数,由上面的三
式可得
x=
[1]
延长,反应的可逆性对总反应的影响逐渐变得明显。有的研究者认为,皂化反
应中还存在盐效应,即某些中性盐的存在会降低其速率系数,因此,皂化反应实验
的时间以半小时为宜,至多不能超过 40min。 (5)数据处理方法比较
电导法测定乙酸乙酯皂化反应速率系数是一种较为通用的方法,但数据处理方
法有很多种。除按照上面的方法计算外,还可以对其进行整理变换,得到下式:
相关文档:
• • • • • • • • • •
更多相关文档请访问:
?0-?t?0-??
-c0
(8)
将(8)式代入(7)式得:
k2=
1?0-?t
t?c0?t-??
(9)
整理上式得到
?t=-k2c0(?t-??)t+?0
(10)
以?t 对(?t-??)t 作图可得一直线,直线的斜率为-k2c0,由此可以得到反应速
乙酸乙酯皂化反应速率常数测定实验报告
乙酸乙酯皂化反应速率常数测定实验报告学号:201114120222基础物理化学实验报告实验名称:乙酸乙酯皂化反应速率常数的测定应用化学二班班级03组号实验人姓名:xx同组人姓名:xxxx指导老师:李旭老师实验日期:2013 3- - 10- -2 29 9湘南学院化学与生命科学系一、实验目的:1、了解测定化学反应速率常数的一种物理方法——电导法。
2、了解二级反应的特点,学会用图解法求二级反应的速率常数。
3、掌握DDS-11A型数字电导率仪和控温仪使用方法。
二、实验原理:1、对于二级反应:A+B→产物,如果A,B两物质起始浓度相同,均为a,则反应速率的表示式为 2) ( x a Kdtdx(1)式中x为时间t反应物消耗掉的摩尔数,上式定积分得:x axtaK·1(2) 以 tx ax~作图若所得为直线,证明是二级反应。
并可以从直线的斜率求出 k 。
所以在反应进行过程中,只要能够测出反应物或产物的浓度,即可求得该反应的速率常数。
如果知道不同温度下的速率常数 k (T 1 )和 k (T 2 ),按Arrhenius公式计算出该反应的活化能 E1 22 112) () (lnT TT TRT KT KE a(3)2、乙酸乙酯皂化反应是二级反应,其反应式为:OH- 电导率大,CH3 COO- 电导率小。
因此,在反应进行过程中,电导率大的OH- 逐渐为电导率小的CH3 COO- 所取代,溶液电导率有显著降低。
对稀溶液而言,强电解质的电导率 L 与其浓度成正比,而且溶液的总电导率就等于组成该溶液的电解质电导率之和。
如果乙酸乙酯皂化在稀溶液下反应就存在如下关系式:a A L1 0(4)a A L2(5)x A x a A L t2 1) ((6)A 1 ,A 2 是与温度、电解质性质,溶剂等因素有关的比例常数,0L ,L 分别为反应开始和终了时溶液的总电导率。
tL 为时间 t 时溶液的总电导率。
由(4),(5),(6)三式可得:aL LL Lxt·00代入(2)式得:L LL La tKtt 0·1(7)重新排列即得:LtL Lk aLtt0·1三、实验仪器及试剂DDS-11A 型数字电导率仪 1 台(附铂黑电极 1 支),恒温槽 1 台,秒表 1 只,电导池 3 支,移液管 3 支;0.0200mol/L 乙酸乙酯(新配的),O.0200mol/L 氢氧化钠(新配的)四、简述实验步骤和条件:1、调节恒温槽为所测温度 25℃。
乙酸乙酯皂化反应速率常数的测定
工程学院物理化学实验报告实验名称乙酸乙酯皂化反响速率常数的测定一、实验目的1. 了解用电导法测定乙酸乙酯皂化反响速率常数和活化能;2. 了解二级反响的特点,学会用图解法求二级反响的速率常数;3. 掌握电导率仪的使用方法。
二、实验原理1.二级反响动力学方程A +B → 产物t=0 a at=t a-x a-x-dc A/dt=-d(a-x)/dt=dx/dt=k(a-x) (2.9.1)定积分得:kt=x/a(a-x) (2.9.2)以x/(a-x)对t作图,假设所得为一直线,证明是二级反响,由斜率即可求出反响速率常数k 值如果知道不同温度下的速率常数k(T1)和k(T2),按阿仑尼乌斯方程计算出该反响的活化能Ea。
Ea=ln( k(T2)/ k(T1))×R T1 T2 /〔T2-T1〕(2.9.3)2.乙酸乙酯皂化反响是二级反响,反响式为:CH3COOC2H5+NaOH → CH3COONa+ C2H5OHt=0 a a 0 0t=t a-x a-x x xt→∞ 0 0 a aκ0=A1·a κ∞=A2·a κt=A1(a-x)+A2x由上三式得:x=(κ0-κt)a/ (κ0-κ∞),代入式(2.9.2),得κ=(κ0-κt) /ta (κt-κ∞) (2.9.4)重新排列得:κt=(κ0-κt) /kat +κ∞ (2.9.5)因此,以κt 对(κ0-κt) /t 作图为一直线即为二级反响,由斜率即可求出反响速率常数k值;由两个不同温度下测得的速率常数k(T1)和k(T2),按式(2.9.3)计算出该反响的活化能Ea。
三、仪器和试剂1.仪器:数字电导率仪1台,恒温水槽1套,叉形电导管2只,移液管〔10ml,胖肚〕3根;2.药品:乙酸乙酯标准溶液〔0.0212 mol·dm-3〕,NaOH标准溶液〔0.0212 mol·dm-3〕。
四、实验步骤1.调节恒温槽调节温度为25℃,同时电导率仪提前打开预热。
乙酸乙酯皂化反应速率常数的测定(详细参考)
乙酸乙酯皂化反应速率常数的测定一、实验目的1.学习电导法测定乙酸乙酯皂化反应速率常数的原理和方法以及活化能的测定方法;2.了解二级反应的特点,学会用图解计算法求二级反应的速率常数;3.熟悉电导仪的使用。
二、实验原理(1)速率常数的测定乙酸乙酯皂化反应时典型的二级反应,其反应式为:CH 3COOC 2H 5+NaOH = CH 3OONa +C 2H 5OHt=0 C 0 C 0 0 0t=t Ct Ct C 0 - Ct C 0 -Ct t=∞ 0 0 C 0 C 0速率方程式 2kc dtdc=-,积分并整理得速率常数k 的表达式为: t0t0c c c c t 1k -⨯=假定此反应在稀溶液中进行,且CH 3COONa 全部电离。
则参加导电离子有Na+、OH -、CH 3COO -,而Na +反应前后不变,OH -的迁移率远远大于CH 3COO -,随着反应的进行,OH - 不断减小,CH 3COO -不断增加,所以体系的电导率不断下降,且体系电导率(κ)的下降和产物CH 3COO -的浓度成正比。
令0κ、t κ和∞κ分别为0、t 和∞时刻的电导率,则:t=t 时,C 0 –Ct=K (0κ-t κ) K 为比例常数 t→∞时,C 0= K (0κ-∞κ) 联立以上式子,整理得:∞+-⨯=κκκκtkc 1t00t 可见,即已知起始浓度C 0,在恒温条件下,测得0κ和t κ,并以t κ对tt0κκ-作图,可得一直线,则直线斜率0kc 1m = ,从而求得此温度下的反应速率常数k 。
(2)活化能的测定原理: )11(k k ln21a 12T T R E -= 因此只要测出两个不同温度对应的速率常数,就可以算出反应的表观活化能。
三、仪器与试剂电导率仪 1台 铂黑电极 1支 大试管 5支 恒温槽 1台 移液管 3支氢氧化钠溶液(0.02mol/L ) 乙酸乙酯溶液(0.02mol/L ) 四、实验步骤1.标定NaOH 溶液及乙酸乙酯溶液的配制计算标定0.023/dm mol NaOH 溶液所需的草酸二份,放入锥形瓶中,用少量去离子水溶解之,标定溶液。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学号:201114120222
基础物理化学实验报告
实验名称:乙酸乙酯皂化反应速率常数的测定应用化学二班班级 03 组号
实验人姓名: xx
同组人姓名:xxxx
指导老师:李旭老师
实验日期: 2013-10-29
湘南学院化学与生命科学系
一、实验目的:
1、了解测定化学反应速率常数的一种物理方法——电导法。
2、了解二级反应的特点,学会用图解法求二级反应的速率常数。
3、掌握DDS-11A 型数字电导率仪和控温仪使用方法。
二、实验原理:
1、对于二级反应:A+B →产物,如果A ,B 两物质起始浓度相同,均为a ,则反应速率的表示式为
2)(x a K dt
dx
-= (1)
式中x 为时间t 反应物消耗掉的摩尔数,上式定积分得:
x
a x ta K -=
·1 (2) 以
t x
a x
~-作图若所得为直线,证明是二级反应。
并可以从直线的斜率求出k 。
所以在反应进行过程中,只要能够测出反应物或产物的浓度,即可求得该反应的速率常数。
如果知道不同温度下的速率常数k (T 1)和k (T 2),按Arrhenius 公式计算出该反应的活化能E
⎪⎪⎭
⎫ ⎝⎛-⨯=122112)()
(ln
T T T T R T K T K E a (3) 2、乙酸乙酯皂化反应是二级反应,其反应式为:
OH -电导率大,CH 3COO -电导率小。
因此,在反应进行过程中,电导率大的OH -逐渐为电导率小的CH 3COO -所取代,溶液电导率有显著降
低。
对稀溶液而言,强电解质的电导率
L 与其浓度成正比,而且溶液的总电导率就等于组成该溶液的电
解质电导率之和。
如果乙酸乙酯皂化在稀溶液下反应就存在如下关系式:
a A L 10= (4)
a A L 2=∞ (5) x A x a A L t 21)(+-= (6)
A 1,A 2是与温度、电解质性质,溶剂等因素有关的比例常数,0L ,
∞L 分别为反应开始和终了时溶液的总电导率。
t L 为时间t 时溶液的总
电导率。
由(4),(5),(6)三式可得:
a L
L L L x t
·0
0⎪⎪⎭
⎫ ⎝⎛--=∞ 代入(2)式得:
⎪⎪⎭
⎫
⎝⎛--=
∞
L L L L a t K t t
0·1 (7) 重新排列即得:
∞+-=
L t
L L k a L t
t 0·1
三、实验仪器及试剂
DDS-11A 型数字电导率仪1台(附铂黑电极1支),恒温槽1台,
秒表1只,电导池3支,移液管3支;0.0200mol /L 乙酸乙酯(新配的),O.0200mol /L 氢氧化钠(新配的)
四、简述实验步骤和条件:
1、调节恒温槽为所测温度25℃。
2、0L 的测量:分别取10mL 蒸馏水和10mL0.0200mol/L 的NaOH 溶液,加到洁净、干燥的叉形管电导池中充分混合均匀,置于恒温槽中恒温15min 。
用DDS-11A 型数字电导率仪测定上述已恒温的NaOH 溶液的电导率即为0L 。
3、t L 的测量:在另一支叉形电导池直支管中加10mL 0.0200mol/L CH 3COOC 2H 5,侧支管中加入10mL 0.0200 mol/L NaOH ,并把洗净的电导电极插入直支管中。
在恒温情况下,混合两溶液,同时开启停表,记录反应时间(注意停表一经打开切勿按停,直至全部实验结束),并在恒温槽中将叉形电导池中溶液混合均匀。
在60min 内分别测定6min 、9min 、12min 、15min 、20min 、25min 、30min 、35min 、40min 、50min 、60min 时的电导率L t 。
作0
t
t L L L t
~
直线关系图,从斜率求出反应速率常数K
五、实验数据及现象的原始记录
温度25℃ 0L =2.07ms ·cm
-1
3、作0
t
t
L t ~图:
L t
(L 0-L t )/t
k =12.9068 min -1;反应温度T 1=25℃而反应速率常数k
a K ·1
,所以K=1/(12.9068 min -1×0.0200mol ·L -1)=3.8739L ·mol -1·min -1
t
L t
/(ms 0
t
L t
/(ms
六、讨论(主要内容是:○1误差分析;○2实验中异常现象
处理;○3
对本实验的改进意见;○4回答思考题。
):
误差分析
造成本实验误差的主要原因可能有:
1、恒温槽的温度不稳定,致使实验的结果存在一定的误差;
2、乙酸乙酯配置太久,部分挥发掉了,致使实验出现较大的偏差;
3、经过多次读数,误差比较大;
4、系统本身存在的偶然误差。
注意事项
1.实验温度要控制准确
2.切勿触及铂电极的铂黑
3.乙酸乙酯溶液和NaOH溶液浓度必须相同。
4.配好的NaOH溶液要防止空气中的CO2气体进入。
5.乙酸乙酯溶液需临时配制,配制时动作要迅速,以减少挥
发损失。
回答思考题
1、酸溶液所用的水中含有不与反应物生成物发生反应的电解质,对测定的结果有无影响?
答: 存在一定的影响。
因为反应速率常数的值与反应条件如温度、催化剂、溶剂等有关,而杂质的存在影响了反应物的浓度,因而对实验结果存在一定的影响。
2、各溶液在恒温和操作过程中为什么要盖好?
答:因为温度升高,溶液的挥发度增大,将溶液盖好是为了减少
其挥发,保证溶液的浓度不变;此外,NaOH溶液很容易与空气中的CO
2反应,将其盖住就是为了尽量减少此反应的影响。
七、结论(是否达到了预期目的,学到了那些新知识):
本实验虽存在一定的误差,但基本达到了预期的实验目的
学到的新知识:
1、熟悉并掌握了DDS-11A型数字电导率仪和恒温槽的使用方法
2、进一步了解了二级反应的特点,学会了用图解法求算二级反应的速率常数。
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注!)。