椭圆习题精选精讲
椭圆经典例题讲解
椭圆1.椭圆的两种定义(1) 平面内与两定点F 1,F 2的距离的和等于常数(大于21F F )的点的轨迹叫椭圆,这两个定点叫做椭圆的 , 之间的距离叫做焦距.注:①当2a =|F 1F 2|时,P 点的轨迹是 .②当2a <|F 1F 2|时,P 点的轨迹不存在.(2) 椭圆的第二定义:到 的距离与到 的距离之比是常数e ,且∈e 的点的轨迹叫椭圆.定点F 是椭圆的 ,定直线l 是 ,常数e 是 . 2.椭圆的标准方程(1) 焦点在x 轴上,中心在原点的椭圆标准方程是:12222=+b y a x ,其中( > >0,且=2a )(2) 焦点在y 轴上,中心在原点的椭圆标准方程是12222=+bx ay ,其中a ,b 满足: .(3)焦点在哪个轴上如何判断 3.椭圆的几何性质(对12222=+b y a x ,a > b >0进行讨论)(1) 范围: ≤ x ≤ , ≤ y ≤(2) 对称性:对称轴方程为 ;对称中心为 .(3) 顶点坐标: ,焦点坐标: ,长半轴长: ,短半轴长: ;准线方程: .(4) 离心率:=e ( 与 的比),∈e ,e 越接近1,椭圆越 ;e 越接近0,椭圆越接近于 .(5) 焦半径公式:设21,F F 分别为椭圆的左、右焦点,),(00y x P 是椭圆上一点,则=1PF ,122PF a PF -== 。
4.焦点三角形应注意以下关系(老师补充画出图形):(1) 定义:r 1+r 2=2a(2) 余弦定理:21r +22r -2r 1r 2cos θ=(2c )2(3) 面积:21F PF S ∆=21r 1r 2 sin θ=21·2c | y 0 |(其中P(00,y x )为椭圆上一点,|PF 1|=r 1,|PF 2|=r 2,∠F 1PF 2=θ)基础过关变式训练2:已知P (x 0,y 0)是椭圆12222=+by a x (a >b >0)上的任意一点,F 1、F 2是焦点,求证:以PF 2为直径的圆必和以椭圆长轴为直径的圆相内切.证明 设以PF 2为直径的圆心为A ,半径为r .∵F 1、F 2为焦点,所以由椭圆定义知|PF 1|+|PF 2|=2a ,|PF 2|=2r∴|PF 1|+2r =2a ,即|PF 1|=2(a -r )连结OA ,由三角形中位线定理,知|OA |=.)(221||211r a r a PF -=-⨯=故以PF 2为直径的圆必和以长轴为直径的圆相内切.评注 运用椭圆的定义结合三角形中位线定理,使题目得证。
椭圆讲解(定义+性质+习题)
椭圆讲解+性质+习题 (一)定义部分(重点掌握)一.椭圆基本定义(必须掌握)1.定义:①平面内一个动点到两个定点F 1、F 2的距离之和等于常数(大于|F 1F 2|,即21212F F a PF PF >=+),这个动点的轨迹叫椭圆(这两个定点叫焦点).②点M 与一个定点的距离和它到一条定直线的距离的比是常数e (0<e<1),则P 点的轨迹是椭圆2.椭圆参数的几何意义,如下图所示:(1)|PF 1|+|PF 2|=2a ,|PM 2|+|PM 1|=c a 22,||||11PM PF =||||22PM PF =e ;(2)=11F A c a F A -=22,=21F A c a F A +=12;c a PF c a +≤≤-1 (3)|BF 2|=|BF 1|=a ,|OF 1|=|OF 2|=c ;(4)|F 1K 1|=|F 2K 2|=p =cb 2,21A B A B ==3.标准方程:椭圆标准方程的两种形式12222=+b y a x 和12222=+bx a y )0(>>b a 其中222b a c -=椭圆12222=+b y a x )0(>>b a 的焦点坐标是)0(,c ±,准线方程是c a x 2±=,离心率是a c e =a b 22焦准距(焦点到准线的距离)c b p 2=,焦参数2b a(通径长的一半)范围:}{a x a x ≤≤-,}{b y b x ≤≤-,长轴长=a 2,短轴长=2b ,焦距=2c ,焦半径:21()a PF e x a ex c =+=+,22()a PF e x a ex c=-=-.4.21F PF ∆中经常利用余.弦定理...、三角形面积公式.......12212tan2PF F F PF S b ∆∠=将有关线段1PF 、2PF 、2c ,有关角21PF F ∠(1212F PF F BF ∠≤∠)结合起来,建立1PF +2PF 、1PF ∙2PF 等关系.二. 第二定义(拓展掌握,有些题目用第二定义做会有事半功倍的效果):平面内与一个定点的距离和它到一条定直线的距离之比是常数e ca e M =<<()01的动点的轨迹叫做椭圆,定点为椭圆的一个焦点,定直线为椭圆的准线,常数e 是椭圆的离心率。
椭圆高中练习题及讲解
椭圆高中练习题及讲解椭圆是圆锥曲线的一种,其定义为平面上所有到两个固定点(焦点)距离之和为常数的点的集合。
这个常数称为椭圆的长轴长度,而长轴长度的一半称为椭圆的长半轴。
椭圆的另一个重要参数是短半轴,它的长度是长半轴的一半乘以椭圆的离心率的倒数。
### 练习题1. 椭圆的基本性质给定一个椭圆,其长半轴为6,短半轴为4,求椭圆的离心率。
2. 椭圆的方程已知椭圆的中心在原点,焦点在x轴上,求椭圆的方程,其中长半轴a=5,短半轴b=3。
3. 椭圆的切线若点P(2,3)在椭圆x²/16 + y²/9 = 1上,求过点P的椭圆切线的方程。
4. 椭圆与直线的位置关系直线y=2x+4与椭圆x²/25 + y²/16 = 1相交于两点,求这两点的坐标。
5. 椭圆的面积求椭圆x²/100 + y²/64 = 1的面积。
### 讲解1. 椭圆的基本性质离心率e定义为焦点到椭圆上任意一点的距离与长半轴的比值。
由于椭圆上任意一点到两个焦点的距离之和等于长轴长度,设长轴长度为2a,那么离心率e = √(1 - (b²/a²))。
对于本题,a=6,b=4,所以e = √(1 - (4²/6²)) = √(1 - 4/9) = √(5/9)。
2. 椭圆的方程当椭圆的中心在原点,焦点在x轴上时,椭圆的方程为x²/a² + y²/b² = 1。
代入a=5,b=3,得到椭圆的方程为x²/25 + y²/9 = 1。
3. 椭圆的切线对于椭圆上的点P(2,3),切线斜率可以通过椭圆的梯度求得。
首先求椭圆在点P处的梯度,然后切线的斜率是梯度的负倒数。
具体计算过程涉及到求导和使用点斜式方程。
4. 椭圆与直线的位置关系将直线方程代入椭圆方程,得到一个关于x的二次方程,解此方程可得x的值,再代回直线方程求得y的值,从而得到交点的坐标。
专题60:椭圆知识点和典型例题(解析版)
专题60:椭圆知识点和典型例题(解析版)1、定义:平面内与两个定点,的距离之和等于常数(大于)的点的轨迹称为椭圆.即:。
这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.2、椭圆的几何性质:焦点的位置焦点在轴上焦点在轴上图形标准方程范围且且顶点、、、、轴长短轴的长长轴的长焦点、、焦距对称性关于轴、轴、原点对称离心率e越小,椭圆越圆;e越大,椭圆越扁通径过椭圆的焦点且垂直于对称轴的弦称为通径:2b2/a焦半径公式题型一:求椭圆的解析式例1.求椭圆224936x y +=的长轴长、焦距、焦点坐标、顶点坐标;【详解】椭圆224936x y +=化为标准方程22194x y +=,∴3a =,2b =,∴c =∴椭圆的长轴长为26a =,焦距为2c =焦点坐标为()1F,)2F ,顶点坐标为()13,0A -,()23,0A ,()10,2B -,()20,2B . 例2.求适合下列条件的椭圆标准方程:(1)与椭圆2212x y +=有相同的焦点,且经过点3(1,)2(2)经过(2,(A B 两点 【详解】(1)椭圆2212x y +=的焦点坐标为(1,0)±,∵椭圆过点3(1,)2,∴24a =,∴2,a b ==,∴椭圆的标准方程为22143x y +=.(2)设所求的椭圆方程为221(0,0,)x y m n m n m n+=>>≠.把(2,(A B 两点代入, ⎪⎭⎫ ⎝⎛-2325,得:14213241mnm n⎧⎪+=⎪⎪⎨⎪⎪+=⎪⎩,解得81m n ==,, ∴椭圆方程为2218x y +=.题型二:求轨迹例3.在同一平面直角坐标系xOy 中,圆224x y +=经过伸缩变换:12x x y y ϕ=⎧⎪⎨=''⎪⎩后,得到曲线C .求曲线C 的方程; 【详解】设圆224x y +=上任意一点(),M x y 经过伸缩变换:12x xy y ω=⎧⎪⎨=''⎪⎩得到对应点(),M x y '''.将x x '=,2y y '=代入224x y +=,得()2224x y ''+=,化简得2214x y ''+=.∴曲线C 的方程为2214x y +=;例4.已知ABC 中,角、、A B C 所对的边分别为,>>、、a b c a c b ,且2,2=+=c a b c ,求点C 的轨迹方程. 【详解】由题意,以AB 所在直线为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系, 如图所示,因为2c =,则(1,0),(1,0)A B -,设(,)C x y , 因为2a b c +=,即||||2||CB CA AB +=,4,整理得所以22143x y +=,因为a b >,即||||CB CA >,所以点C 只能在y 轴的左边,即0x <.又ABC 的三个顶点不能共线,所以点C 不能在x 轴上,即2x ≠-.所以所求点C 的轨迹方程为221(20)43x y x +=-<<.例5在圆228x y +=上任取一点P ,过P 作x 轴的垂线PD ,D 为垂足.当点P 在圆上运动时,求线段PD 的中点Q 的轨迹方程. 【详解】解:已知在圆228x y +=上任取一点P ,过P 作x 轴的垂线PD ,D 为垂足, 设0(P x ,0)y ,(,)M x y ,0(D x ,0),M 是PD 的中点,0x x ∴=,02y y =,又P 在圆228x y +=上,22008x y ∴+=,即2248x y +=,∴22182x y +=,∴线段PD 的中点M 的轨迹方程是22182x y +=.题型三:求参数的范围例6:已知椭圆2222:1(0)y x C a b a b+=>>的上下两个焦点分别为12,F F ,过点1F 与y 轴垂直的直线交椭圆C 于 ,M N 两点,2MNF ∆3C 3. (1)求椭圆C 的标准方程;(2)已知O 为坐标原点,直线:l y kx m =+与y 轴交于点P ,与椭圆C 交于,A B 两个不同的点,若存在实数λ,使得4OA OB OP λ+=,求m 的取值范围.由题意2MNF ∆的面积为21212||32b cF F MN c MN a===由已知得3c a =,∴21b =,∴24a =, ∴椭圆C 的标准方程为2214y x +=.(Ⅱ)若0m =,则()0,0P ,由椭圆的对称性得AP PB =,即0OA OB +=, ∴0m =能使4OA OB OP λ+=成立. 若0m ≠,由4OA OB OP λ+=,得144OP OA OB λ=+, 因为A ,B ,P 共线,所以14λ+=,解得3λ=. 设()11,A x kx m +,()22,B x kx m +,由22,{440,y kx m x y =++-=得()2224240k x mkx m +++-=,由已知得()()222244440m k k m∆=-+->,即2240k m -+>,且12224km x x k -+=+,212244m x x k -=+,由3AP PB =,得123x x -=,即123x x =-,∴()21212340x x x x ++=, ∴()()2222224412044m k m k k-+=++,即222240m k m k +--=.当21m =时,222240m k m k +--=不成立,∴22241m k m -=-,∵2240k m -+>,∴2224401m m m --+>-,即()222401m m m ->-, ∴214m <<,解得21m -<<-或12m <<.综上所述,m 的取值范围为{|21012}m m m m -<<-=<<或或.直线与圆锥曲线的位置关系2.直线与圆锥曲线的位置关系: ⑴.从几何角度看:(特别注意)要特别注意当直线与双曲线的渐进线平行时,直线与双曲线只有一个交点;当直线与抛物线的对称轴平行或重合时,直线与抛物线也只有一个交点。
《椭圆》方程典型例题20例(含实用标准问题详解)
《椭圆》方程典型例题20例典型例题一例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程.分析:题目没有指出焦点的位置,要考虑两种位置.解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.典型例题二例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.解:31222⨯⨯=c a c ∴223a c =, ∴3331-=e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可.典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112a a x x x M +=+=,2111a x y M M +=-=,4112===ax y k M M OM ,∴42=a , ∴1422=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.典型例题四例4椭圆192522=+y x 上不同三点()11y x A ,,⎪⎭⎫⎝⎛594,B ,()22y x C ,与焦点()04,F 的距离成等差数列.(1)求证821=+x x ;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知:ac x ca AF =-12, ∴ 11545x ex a AF -=-=.同理 2545x CF -=.∵ BF CF AF 2=+,且59=BF , ∴ 51854554521=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-x x ,即 821=+x x .(2)因为线段AC 的中点为⎪⎭⎫⎝⎛+2421y y ,,所以它的垂直平分线方程为()42212121---=+-x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得 ()212221024x x y y x --=-又∵点()11y x A ,,()22y x B ,都在椭圆上,∴ ()212125259x y -=()222225259x y -= ∴ ()()21212221259x x x x y y -+-=-.将此式代入①,并利用821=+x x 的结论得 253640-=-x ∴ 4540590=--=x k BT.典型例题五例5 已知椭圆13422=+yx ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.解:假设M 存在,设()11y x M ,,由已知条件得2=a ,3=b ,∴1=c ,21=e . ∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知:111212x ex a MF -=-=, 112212x ex a MF +=+=.∵212MF MF MN ⋅=,∴()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=+11212122124x x x .整理得048325121=++x x .解之得41-=x 或5121-=x . ① 另一方面221≤≤-x . ②则①与②矛盾,所以满足条件的点M 不存在. 说明:(1)利用焦半径公式解常可简化解题过程.(2)本例是存在性问题,解决存在性问题,一般用分析法,即假设存在,根据已知条件进行推理和运算.进而根据推理得到的结果,再作判断.(3)本例也可设()θθsin 3cos 2,M 存在,推出矛盾结论(读者自己完成).典型例题六例6 已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程.分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k . 解法一:设所求直线的斜率为k ,则直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122k kk x x +-=+.∵P 是弦中点,∴121=+x x .故得21-=k .所以所求直线方程为0342=-+y x .分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y --. 解法二:设过⎪⎭⎫⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x . ⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-. 所求直线方程为0342=-+y x .说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率.(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.典型例题七例7 求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点()62-,; (2)在x 轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6.分析:当方程有两种形式时,应分别求解,如(1)题中由12222=+b y a x 求出1482=a ,372=b ,在得方程13714822=+y x 后,不能依此写出另一方程13714822=+x y .解:(1)设椭圆的标准方程为12222=+b y a x 或12222=+bx a y .由已知b a 2=. ①又过点()62-,,因此有 ()1622222=-+b a 或()1262222=+-ba . ② 由①、②,得1482=a ,372=b 或522=a ,132=b .故所求的方程为13714822=+y x 或1135222=+x y .(2)设方程为12222=+b y a x .由已知,3=c ,3==c b ,所以182=a .故所求方程为191822=+y x . 说明:根据条件求椭圆的标准方程的思路是“选标准,定参数”.关键在于焦点的位置是否确定,若不能确定,应设方程12222=+b y a x 或12222=+bx a y .典型例题八例8 椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.分析:本题的关键是求出离心率21=e ,把MF 2转化为M 到右准线的距离,从而得最小值.一般地,求MF eAM 1+均可用此法. 解:由已知:4=a ,2=c .所以21=e ,右准线8=x l :.过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=M y ,且M 在椭圆上.故32=M x .所以()332,M .说明:本题关键在于未知式MF AM 2+中的“2”的处理.事实上,如图,21=e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.典型例题九 例9 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值.分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.解:椭圆的参数方程为⎩⎨⎧==.sin cos 3θθy x ,设椭圆上的点的坐标为()θθsin cos 3,,则点到直线的距离为263sin 226sin cos 3+⎪⎭⎫⎝⎛-=+-=θπθθd . 当13sin -=⎪⎭⎫⎝⎛-θπ时,22=最小值d .说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.典型例题十 例10设椭圆的中心是坐标原点,长轴在x 轴上,离心率23=e ,已知点⎪⎭⎫ ⎝⎛230,P 到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上的点P 的距离等于7的点的坐标.分析:本题考查椭圆的性质、距离公式、最大值以及分析问题的能力,在求d 的最大值时,要注意讨论b 的取值范围.此题可以用椭圆的标准方程,也可用椭圆的参数方程,要善于应用不等式、平面几何、三角等知识解决一些综合性问题,从而加强等价转换、形数结合的思想,提高逻辑推理能力.解法一:设所求椭圆的直角坐标方程是12222=+b y a x ,其中0>>b a 待定.由222222221ab a b a ac e -=-==可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点P 的距离是d ,则4931232222222+-+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+=y y b y a y x d 34213493342222++⎪⎭⎫ ⎝⎛+-=+--=b y y y b其中b y b ≤≤-. 如果21<b ,则当b y -=时,2d (从而d )有最大值. 由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾.因此必有21≥b 成立,于是当21-=y 时,2d (从而d )有最大值. 由题设得()34722+=b,可得1=b ,2=a .∴所求椭圆方程是11422=+y x . 由21-=y 及求得的椭圆方程可得,椭圆上的点⎪⎭⎫ ⎝⎛--213,,点⎪⎭⎫ ⎝⎛-213,到点⎪⎭⎫⎝⎛230,P 的距离是7.解法二:根据题设条件,可取椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x ,其中0>>b a ,待定,πθ20≤≤,θ为参数.由22222221⎪⎭⎫⎝⎛-=-==a b a b a a c e 可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点⎪⎭⎫⎝⎛230,P 的距离为d ,则22222223sin cos 23⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+=θθb a y x d49sin 3sin 34222+--=θθb b b 3421sin 3222++⎪⎭⎫ ⎝⎛+-=b b b θ如果121>b ,即21<b ,则当1sin -=θ时,2d (从而d )有最大值.由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾,因此必有121≤b成立. 于是当b21sin -=θ时2d (从而d )有最大值. 由题设知()34722+=b,∴1=b ,2=a .∴所求椭圆的参数方程是⎩⎨⎧==θθsin cos 2y x .由21sin -=θ,23cos ±=θ,可得椭圆上的是⎪⎭⎫ ⎝⎛--213,,⎪⎭⎫ ⎝⎛-213,.典型例题十一例11 设x ,R ∈y ,x y x 63222=+,求x y x 222++的最大值和最小值.分析:本题的关键是利用形数结合,观察方程x y x 63222=+与椭圆方程的结构一致.设m x y x =++222,显然它表示一个圆,由此可以画出图形,考虑椭圆及圆的位置关系求得最值.解:由x y x 63222=+,得123492322=+⎪⎪⎪⎪⎭⎫ ⎝⎛-y x 可见它表示一个椭圆,其中心在⎪⎭⎫⎝⎛023,点,焦点在x 轴上,且过(0,0)点和(3,0)点.设m x y x =++222,则 ()1122+=++m y x它表示一个圆,其圆心为(-1,0)半径为()11->+m m .在同一坐标系中作出椭圆及圆,如图所示.观察图形可知,当圆过(0,0)点时,半径最小,即11=+m ,此时0=m ;当圆过(3,0)点时,半径最大,即41=+m ,∴15=m .∴x y x 222++的最小值为0,最大值为15.典型例题十二例12 已知椭圆()012222>>=+b a by a x C :,A 、B 是其长轴的两个端点.(1)过一个焦点F 作垂直于长轴的弦P P ',求证:不论a 、b 如何变化,120≠∠APB .(2)如果椭圆上存在一个点Q ,使 120=∠A Q B ,求C 的离心率e 的取值范围.分析:本题从已知条件出发,两问都应从APB ∠和AQB ∠的正切值出发做出估计,因此要从点的坐标、斜率入手.本题的第(2)问中,其关键是根据什么去列出离心率e 满足的不等式,只能是椭圆的固有性质:a x ≤,b y ≤,根据120=∠AQB 得到32222-=-+a y x ay ,将22222y ba a x -=代入,消去x ,用a 、b 、c 表示y ,以便利用b y ≤列出不等式.这里要求思路清楚,计算准确,一气呵成.解:(1)设()0,c F ,()0,a A -,()0,a B . ⎪⎪⎭⎫⎝⎛⇒⎩⎨⎧=+=a b c P b a y a x b c x 2222222, 于是()a c a b k AP+=2,()a c ab k BP -=2.∵APB ∠是AP 到BP 的角.∴()()()2222242221tan ca a c ab ac a b a c a b APB -=-++--=∠ ∵22c a > ∴2tan -<∠APB故3tan -≠∠APB ∴ 120≠∠APB . (2)设()y x Q ,,则a x y k QA +=,ax y k QB -=. 由于对称性,不妨设0>y ,于是AQB ∠是QA 到QB 的角.∴22222221tan a y x ay a x y a x ya x y AQB -+=-++--=∠∵ 120=∠AQB , ∴32222-=-+ay x ay整理得()023222=+-+ay a y x∵22222y ba a x -=∴0213222=+⎪⎪⎭⎫ ⎝⎛-ay y b a∵0≠y , ∴2232c ab y = ∵b y ≤, ∴b c ab ≤2232 232c ab ≤,()222234c c a a ≤-∴04444224≥-+a c a c ,044324≥-+e e ∴232≥e 或22-≤e (舍),∴136<≤e .典型例题十三例13 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k .当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.典型例题十四例14 已知椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由142222=+by b x ,得b a 2=,b c 3=,23=e .由椭圆定义,b a PF PF 4221==+,得b b b PF b PF 34421=-=-=. 由椭圆第二定义,e d PF =11,1d 为P 到左准线的距离,∴b ePF d 3211==,即P 到左准线的距离为b 32. 解法二:∵e d PF =22,2d 为P 到右准线的距离,23==a c e , ∴b ePF d 33222==.又椭圆两准线的距离为b c a 33822=⋅. ∴P 到左准线的距离为b b b 32332338=-. 说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解.椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.典型例题十五例15 设椭圆⎩⎨⎧==.sin 32,cos 4ααy x (α为参数)上一点P 与x 轴正向所成角3π=∠POx ,求P 点坐标.分析:利用参数α与POx ∠之间的关系求解.解:设)sin 32,cos 4(ααP ,由P 与x 轴正向所成角为3π, ∴ααπcos 4sin 323tan=,即2tan =α.而0sin >α,0cos >α,由此得到55cos =α,552sin =α, ∴P 点坐标为)5154,554(.典型例题十六例16 设),(00y x P 是离心率为e 的椭圆12222=+by a x )0(>>b a 上的一点,P 到左焦点1F 和右焦点2F 的距离分别为1r 和2r ,求证:01ex a r +=,02ex a r -=. 分析:本题考查椭圆的两个定义,利用椭圆第二定义,可将椭圆上点到焦点的距离转化为点到相应准线距离.解:P 点到椭圆的左准线c a x l 2-=:的距离,ca x PQ 20+=,由椭圆第二定义,e PQPF =1,∴01ex a PQ e r +==,由椭圆第一定义,0122ex a r a r -=-=.说明:本题求证的是椭圆的焦半径公式,在解决与椭圆的焦半径(或焦点弦)的有关问题时,有着广泛的应用.请写出椭圆焦点在y 轴上的焦半径公式.典型例题十七例17 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标;(2) 求223PF PA +的最小值及对应的点P 的坐标. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:(1)如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线.建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点 )2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.(2)如下图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由3=a ,2=c ,∴32=e .由椭圆第二定义知322==e PQ PF ,∴223PF PQ =,∴PQ PA PF PA +=+223,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为29=x .∴A 到右准线距离为27.此时P 点纵坐标与A 点纵坐标相同为1,代入椭圆得满足条件的点P 坐标)1,556(. 说明:求21PF ePA +的最小值,就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.典型例题十八例18 (1)写出椭圆14922=+y x 的参数方程; (2)求椭圆内接矩形的最大面积.分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.解:(1) ⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y轴,设)sin 2,cos 3(θθ为矩形在第一象限的顶点,)20(π<θ<,则122sin 12sin 2cos 34≤=⨯⨯=θθθS 故椭圆内接矩形的最大面积为12.说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.典型例题十九 例19 已知1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,且︒=∠6021PF F .(1)求椭圆离心率的取值范围;(2)求证21F PF ∆的面积与椭圆短轴长有关. 分析:不失一般性,可以设椭圆方程为12222=+b y a x (0>>b a ),),(11y x P (01>y ). 思路一:根据题设容易想到两条直线的夹角公式,即3160tan 1212=+-=︒PF PF PF PF K K K K ,设),(11y x P ,)0,(1c F -,)0,(2c F ,化简可得03233212121=--+c cy y x .又1221221=+by a x ,两方程联立消去21x 得0323412212=-+b cy b y c ,由],0(1b y ∈,可以确定离心率的取值范围;解出1y 可以求出21F PF ∆的面积,但这一过程很繁.思路二:利用焦半径公式11ex a PF +=,12ex a PF -=,在21F PF ∆中运用余弦定理,求1x ,再利用],[1a a x -∈,可以确定离心率e 的取值范围,将1x 代入椭圆方程中求1y ,便可求出21F PF ∆的面积.思路三:利用正弦定理、余弦定理,结合a PF PF 221=+求解.解:(法1)设椭圆方程为12222=+by a x (0>>b a ),),(11y x P ,)0,(1c F -,)0,(2c F ,0>c ,则11ex a PF +=,12ex a PF -=. 在21F PF ∆中,由余弦定理得))((24)()(2160cos 1122121ex a ex a c ex a ex a -+--++==︒, 解得2222134ea c x -=. (1)∵],0(221a x ∈,∴2222340a ea c <-≤,即0422≥-a c . ∴21≥=a c e . 故椭圆离心率的取范围是)1,21[∈e .(2)将2222134ea c x -=代入12222=+b y a x 得 24213c b y =,即cb y 321=.∴22213332212121b cb c y F F S F PF =⋅⋅=⋅=∆. 即21F PF ∆的面积只与椭圆的短轴长有关.(法2)设m PF =1,n PF =2,α=∠12FPF ,β=∠21F PF , 则︒=+120βα.(1)在21F PF ∆中,由正弦定理得︒==60sin 2sin sin cn m βα. ∴︒=++60sin 2sin sin cn m βα∵a n m 2=+, ∴︒=+60sin 2sin sin 2ca βα,∴2cos 2sin 260sin sin sin 60sin βαβαβα-+︒=+︒==a c e 212cos21≥-=βα.当且仅当βα=时等号成立.故椭圆离心率的取值范围是)1,21[∈e .(2)在21F PF ∆中,由余弦定理得:︒-+=60cos 2)2(222mn n m cmn n m -+=22 mn n m 3)(2-+=∵a n m 2=+,∴mn a c 34422-=,即22234)(34b c a mn =-=.∴23360sin 2121b mn S F PF =︒=∆. 即21F PF ∆的面积与椭圆短轴长有关.说明:椭圆上的一点P 与两个焦点1F ,2F 构成的三角形为椭圆的焦点三角形,涉及有关焦点三角形问题,通常运用三角形的边角关系定理.解题中通过变形,使之出现21PF PF +的结构,这样就可以应用椭圆的定义,从而可得到有关a ,c 的关系式,使问题找到解决思路.典型例题二十例20 椭圆12222=+by a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x )0(>>b a ,则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴1cos sin cos sin -=-⋅aa b a b θθθθ,即0cos cos )(22222=+--b a b a θθ,解得1cos =θ或222cos b a b -=θ,∵1cos 1<<-θ ∴1cos =θ(舍去),11222<-<-b a b ,又222c a b -= ∴2022<<ca ,∴22>e ,又10<<e ,∴122<<e . 说明:若已知椭圆离心率范围)1,22(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明?。
高中数学选择性必修一精讲精炼 1 椭圆的简单几何性质(精讲)(教师含解析)
3.1.2 椭圆的简单几何性质(精讲)考点一离心率【例1】(1)(2021·四川高二期末(文))椭圆()222210x ya ba b+=>>的左右焦点分别是1F,2F,以2F为圆心的圆过椭圆的中心,且与椭圆交于点P,若直线1PF恰好与圆2F相切于点P,则椭圆的离心率为( ).A B C1D(2)(2021·黄冈天有高级中学高二月考)已知12,F F是椭圆的两个焦点,过1F且与椭圆长轴垂直的直线交椭圆于,A B两点,若2ABF是等腰直角三角形,则这个椭圆的离心率是( )A B.2C1D【答案】(1)C(2)C【解析】(1)由题意2PF c=,12PF PF⊥,所以1PF===,所以122PF PF c a++=,所以离心率为1cea=.故选:C.(2)不妨设椭圆方程为()222210x ya ba b+=>>,焦点()()12,0,,0F c F c-,离心率为e,将x c =代入22221c y a b +=可得2b y a =±,所以22bAB a =,又2ABF 是等腰直角三角形,所以212224bAB F F c a===,所以22b c a =即2220c a ac -+=,所以2210e e +-=,解得1e =(负值舍去).故选:C. 【一隅三反】1.(2021·河北石家庄二中高一期末)若焦点在x 轴上的椭圆 22116x y m +=+m = A .31 B .28 C .25 D .23【答案】D【解析】焦点在x 轴上,所以221,6a m b =+= 所以2165c m m =+-=-离心率e =,所以2225314c m e a m -===+解方程得m=23 所以选D2.(2021·江苏高二期末)设1F ,2F 为椭圆2222:1(0)x y C a b a b +=>>的两个焦点,点P 在C 上,且1122,,PF F F PF 成等比数列,则C 的离心率的最大值为( ) A .12 B .23C .34D .1【答案】A【解析】设()2120F F c c =>,122PF PF a +=, 因为1122,,PF F F PF 成等比数列, 所以2212124F F PF PF c =⨯=,由12PF PF +≥2a ≥ 即12c e a =≤,当且仅当12PF PF =等号成立, 所以椭圆C 的离心率最大值为12. 故选:A.3.(2021·全国高二课时练习)在Rt ABC 中,1AB AC ==,如果一个椭圆通过A 、B 两点,它的一个焦点为点C ,另一个焦点在AB 上,则这个椭圆的离心率e =( )A B 1C 1D -【答案】D【解析】设另一个焦点为F ,如图所示,∵||||1AB AC ==,||BC42AB AC BC a ++==a =,设FA x =,则12x a +=,12x a -=,∴x =2214c +=,c =c e a ==故选:D.考点二 点与椭圆的位置关系【例2】(1)(2021·广西平果二中(理))点(1,1)与椭圆22132x y +=的位置关系为( )A .在椭圆上B .在椭圆内C .在椭圆外D .不能确定(2)(【新教材精创】3.1.2 椭圆的简单几何性质(2) 导学案-人教A 版高中数学选择性必修第一册)若点(),1P a 在椭圆22123x y +=的外部,则a 的取值范围为( )A .⎛ ⎝⎭B .,⎫⎛+∞⋃-∞⎪ ⎪ ⎝⎭⎝⎭C .4,3⎛⎫+∞ ⎪⎝⎭D .4,3⎛⎫-∞- ⎪⎝⎭【答案】(1)B(2)B【解析】(1)1151326+=<,可知点(1,1)在椭圆内.故选:B.(2)因为点(),1P a 在椭圆22123x y +=的外部,所以221123a +>,即243a >,解得a >a <.故选:B. 【一隅三反】1.(2021·安徽定远二中)点()1,0.7P 与椭圆2212x y +=的位置关系为( )A .在椭圆内B .在椭圆上C .在椭圆外D .不能确定【答案】A【解析】2210.70.9912+=<,所以,点P 在椭圆2212x y +=内.故选:A.2.(2021·甘肃省民乐县第一中学高三二模(理))若直线9mx ny +=和圆229x y +=没有交点,则过点(,)m n 的直线与椭圆221916x y +=的交点个数为( )A .1个B .至多一个C .2个D .0个【答案】C【解析】因为直线9mx ny +=和圆229x y +=没有交点, 3>,即229m n +<,所以2222191699m n m n +≤+<,即点(,)m n 在椭圆221916x y +=内, 所以过点(,)m n 的直线与椭圆221916x y +=的交点个数为2个. 故选:C考点三 直线与椭圆的位置关系【例3】(2021·安徽省泗县第一中学)已知椭圆的长轴长是(,. (1)求这个椭圆的标准方程;(2)如果直线y x m =+与这个椭圆交于两不同的点,求m 的取值范围.【答案】(1)2213x y +=;(2)22m -<<.【解析】(1)由已知得2a =c = 解得a =2321b ∴=-=,∴椭圆的标准方程为2213x y +=. (2)由2213y x m x y =+⎧⎪⎨+=⎪⎩,解方程组并整理得2246330x mx m ++-=, 有两个不同的交点∴222(6)44(33)12(4)0m m m ∆=-⨯⨯-=-->.解不等式得22m -<<. m ∴的取值范围(2,2)-.【一隅三反】1.(2021·上海市长征中学)设直线与椭圆的方程分别为 2y x b =+与2217525x y +=,问b 为何值时,(1)直线与椭圆有一个公共点; (2)直线与椭圆有两个公共点; (3)直线与椭圆无公共点.【答案】(1)b =±(2)b -<(3)b <-b >【解析】设直线与椭圆的方程分别为 2y x b =+与2217525x y +=,问b 为何值时, 由22217525y x b x y =+⎧⎪⎨+=⎪⎩得2213172530x bx b ++=-.(1)当()()22124133075b b =--∆⨯⨯=,即b =±(2)当()()22124133075b b =--∆⨯⨯>,即b -<(3)()()22124133075b b =--∆⨯⨯<即b <-b >时直线与椭圆无公共点.2.(2021·广东高二期末)在平面直角坐标系xOy 中,已知点P到两点(M N 的距离之和等于4,设点P 的轨迹为曲线C .(1)求曲线C 的方程.(2)若直线2y kx =+与曲线C 有公共点,求实数k 的取值范围. 【答案】(1)2214x y +=;(2)|k k k ⎧⎪≤≥⎨⎪⎪⎩⎭.【解析】(1)由己知得4PM PN MN +=>=由椭圆定义可知,轨迹C 是以M ,N为焦点,焦距长2c =24a =的椭圆. 所以222431b a c =-=-=,所以曲线C 的方程是2214x y +=.(2)由22214y kx x y =+⎧⎪⎨+=⎪⎩得()221416120k x kx +++=. ()()22216412146448k k k ∆=-⨯⨯+=-,因为直线2y kx =+与曲线C 有公共点, 所以0∆≥,即264480k -≥,解得k ≤k ≥故实数k的取值范围是|k k k ⎧⎪≤≥⎨⎪⎪⎩⎭.3.(2021·莆田第十五中学高二期末)直线0x y m --=与椭圆2219xy +=有且仅有一个公共点,求m 的值.【答案】m =【解析】将直线方程0x y m --=代入椭圆方程2219x y +=, 消去x 得到:2210290y my m -++=,令0∆=,即()22441090m m -⨯-=解得m =考点四 弦长【例4-1】(2021·全国高二课时练习)直线x -y +1=0被椭圆23x +y 2=1所截得的弦长|AB |等于( )A.2BC.D.【答案】A【解析】由2210,1,3x y x y -+=⎧⎪⎨+=⎪⎩得交点为(0,1),31(,)22--,则|AB |故选:A.【例4-2】(2021·陕西高二期末(理))已知椭圆()2222:10y x E a b a b +=>>的焦距为⎫⎪⎪⎝⎭在椭圆E 上.(1)求椭圆E 的标准方程;(2)设直线1y kx =+与椭圆E 交于M 、N 两点,O 为坐标原点,求OMN 面积的取值范围. 【答案】(1)2214y x +=;(2)⎛ ⎝⎦. 【解析】(1)因为焦距为2c =c =因为点⎫⎪⎪⎝⎭在椭圆E 上,所以221314a b +=,联立222221314c a b a b c ⎧=⎪⎪+=⎨⎪=+⎪⎩,解得24a =,21b =,椭圆E 的标准方程为2214y x +=. (2)设()11,M x y ,()22,N x y ,联立22141y x y kx ⎧+=⎪⎨⎪=+⎩,整理得()224230k x kx ++-=,0∆>,则12224k x x k +=-+,12234x x k =-+,原点到直线1y kx =+,则MON △的面积12S ==令t =t ≥,22211t S t t t==++,令1y t t =+,则221t y t-'=,函数1yt t =+在)+∞上单调递增,故1t t +≥,201t t <≤+OMN 面积的取值范围为⎛ ⎝⎦. 【一隅三反】1.(2021·安徽省泗县第一中学高二开学考试(理))已知椭圆的长轴长是(),).(1)求这个椭圆的标准方程;(2)如果直线y x m =+与这个椭圆交于A 、B两不同的点,若2AB =,求m 的值. 【答案】(1)2213x y +=;(2)1m =±.【解析】(1)由已知得2a =a =c =2221b a c =-=所以椭圆的标准方程2213x y +=(2)由2213y x m x y =+⎧⎪⎨+=⎪⎩消除y 得2246330x mx m ++-= 因为有两个不同的交点,所以()222(6)44(33)1240m m m ∆=-⨯⨯-=-->得m 的取值范围为()2,2- 由韦达定理得:126342m m x x --+== ,212334m x x -=所以2AB ==解得1m =±2.(2021·四川高二期末(文))已知椭圆1C 以直线0x my +=所过的定点为一个焦点,且短轴长为4. (1)求椭圆1C 的标准方程;(2)过点()1,0C 的直线l 与椭圆1C 交于A ,B 两个不同的点,求OAB 面积的最大值. 【答案】(1)22194x y +=;【解析】(1)直线0x my +过定点),即椭圆的一个焦点为),依题意:椭圆1C 的半焦距c =2b =,长半轴长a 有2229a b c =+=, 所以椭圆1C 的标准方程为22194x y +=; (2)显然点()1,0C 在椭圆内部,即直线l 与椭圆必有两个不同的交点, 由题意得直线l 不垂直于y 轴,设直线l 的方程为1x ky =+,由2214936x ky x y =+⎧⎨+=⎩消去x 整理得()22498320k y ky ++-=, 设()11,A x y ,()22,B x y ,则122849k y y k -+=+,1223249y y k -=+, 从而有1212111||||222△△△OAB AOC BOC S S S OC y OC y y y =+=⋅⋅+⋅⋅=-421k =++121=,t 1()4f t t t=+在)+∞单调递增, 则t 0k=时,14t t =+≥=于是有129AOB S ≤△0k =时等号成立, 所以OAB 3.(2021·重庆字水中学高二期末)已知椭圆22:1y E x m +=的下焦点为1F 、上焦点为2F ,其离心率e =过焦点2F 且与x 轴不垂直的直线l 交椭圆于A 、B 两点 (1)求实数m 的值;(2)求ABO (O 为原点)面积的最大值. 【答案】(1)2m =;【解析】(1)由题意可得:21b =,2a m =,可得1b =,a =因为c e a ==c = 因为222a b c =+,所以12mm =+,可得2m =,(2)由(1)知:椭圆22:12y E x +=,上焦点()20,1F ,设()11,A x y ,()22,B x y ,直线:l 1y kx =+, 由22112y kx y x =+⎧⎪⎨+=⎪⎩可得:()222210k x kx ++-=,所以12222k x x k -+=+,12212-=+x x k ,所以()()()()222222121212222222442248842222k k k k x x x x x x k k k k ++-+⎛⎫-=+-=+== ⎪++⎝⎭++,可得:12x x -=所以12211122ABOSx x OF =⨯-⨯==≤即0k =时等号成立,所以ABO (O 为原点)面积的最大值为2. 考点五 中点弦与点差法【例5】(1)(2021·全国高二专题练习)已知椭圆2219x y +=,过点11,22P ⎛⎫ ⎪⎝⎭的直线与椭圆相交于A 、B 两点,且弦AB 被点P 平分,则直线AB 的方程为( ) A .950x y +-= B .940x y --= C .950x y +-=D .940x y -+=(2)(2021·南京市中华中学高二期中)已知椭圆C :22221x y a b +=(0a b >>)的左焦点为F ,过点F的直线0x y -与椭圆C 相交于不同的两点A ,B ,若P 为线段AB 的中点,O 为坐标原点,直线OP 的斜率为12-,则椭圆C 的方程为( )A .22132x y +=B .2214x y +=C .22142x y +=D .22163x y +=【答案】(1)C(2)D【解析】(1)设点()11,A x y 、()22,B x y ,由已知可得121211x x y y +=⎧⎨+=⎩, 因为点A 、B 都在椭圆上,则221122221919x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式作差可得()()()()1212121209x x x x y y y y -++-+=,即()121209x x y y -+-=, 所以,直线AB 的斜率为121219AB y y k x x -==--,因此,直线AB 的方程为111292y x ⎛⎫-=-- ⎪⎝⎭,即950x y +-=. 故选:C.(2)直线0x y -过点F ,令0y =则x =()F,即c =设()()1122,,,A x y B x y ,则2222112222221,1x y x y a b a b +=+=,两式相减并化简得2121221212y y y y b a x x x x +--=⋅+-,所以222222111222b b a b a a ⎛⎫-=-⋅⇒=⇒= ⎪⎝⎭,22223,c a b b b a =-====所以椭圆C 的方程为22163x y +=.故选:D 【一隅三反】1.(2021·浙江嘉兴·高二期中)已知点P Q M ,,是椭圆2222:1(0)x y C a b a b +=>>上的三点,坐标原点O 是PQM的重心,若点M ⎫⎪⎪⎝⎭,直线PQ 的斜率恒为12-,则椭圆C 的离心率为( ) ABCD【答案】D【解析】设()()1122,,,P x y Q x y,又,M ⎫⎪⎪⎝⎭由原点O 是PQM的重心,得1212220,033x x y y ++==,即1212,x x y y +=+=, 又P Q ,是椭圆2222:1(0)x y C a b a b+=>>上的点,2222112222221,1x y x y a b a b∴+=+=, 作差可得:()()()()1212121222x x x x y y y y a b -+-+=-,即()()2212122121212b b x x y y x x a y y ⎛⎫⋅ ⎪+-=-=-=-+⎝⎭,即12b a =,∴c e a===, 故选:D2.(2021·河南新乡·高二期末(理))已知椭圆()2222:10x y G a b a b+=>>的右焦点为()F ,过点F 的直线交椭圆于A 、B 两点.若AB的中点坐标为,则G 的方程为( )A .2213214+=x yB .2213820+=x yC .2214830+=x yD .2213618x y +=【答案】D【解析】设点()11,A x y 、()22,B x y ,则22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两个等式作差得22221212220x x y y a b --+=, 整理可得2221222212y y b x x a-=--, 设线段AB的中点为M,即2121221212AB OMy y y y b k k x x x x a-+⋅=⋅=--+,另一方面12AB MFk k ==,1OM k =-,所以,()2211122b a -=⨯-=-,所以,22222182c a b a b ⎧=-=⎨=⎩,解得223618a b ⎧=⎨=⎩, 因此,椭圆G 的方程为2213618x y +=.故选:D.3.(2021·江苏)已知椭圆C 的方程为2214x y +=,直线AB 与椭圆C 交于A ,B 点,且线段AB 的中点坐标为1(1,)2,则直线AB 的方程为( )A .3220x y --=B .4230--=x yC .2230x y +-=D .+220x y -=【答案】D【解析】设,A B 两点的坐标分别为1122(,),(,)x y x y ,则有221122221414x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得12121212()()()()04x x x x y y y y -++-+=, ∴121212124()y y x xx x y y -+=--+. 又12122,1x x y y +=+=, ∴121221412y y x x -=-=--⨯,即直线AB 的斜率为12-, ∴直线AB 的方程为11(1)22y x -=--,即+220x y -=. 故选:D.4.(2021·河北辛集中学高二期中)过椭圆216x +24y =1内一点M (2,1)引一条弦,使弦被M 点平分.(1)求此弦所在的直线方程; (2)求此弦长.【答案】(1)x +2y -4=0;【解析】(1)设所求直线方程为y -1=k (x -2).代入椭圆方程并整理,得 (4k 2+1)x 2-8(2k 2-k )x +4(2k -1)2-16=0,① 又设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2), 则x 1,x 2是方程的两个根,于是x 1+x 2=228(2)41k k k -+.又M 为AB 的中点,∴122x x +=224(2)41k k k -+=2,解得k =-12,直线方程为11(2)2y x -=--,即x +2y -4=0.(2)由(1)将k =-12代入①得,x 2-4x =0, ∴120,4x x ==, ∴|AB |12|x x -=考点六 最值【例6】(1)(2021·浙江高二期末)点P 、Q 分别在圆(222x y +=和椭圆2214x y +=上,则P 、Q 两点间的最大距离是( )A .B .C .D .(2)(2021·江苏高二开学考试)已知椭圆22:194x y C +=的右顶点为2A ,直线:l x m =与椭圆C 相交于A ,B 两点,当2∠AA B 为钝角时,m 的取值范围是( ). A .150,13⎛⎫⎪⎝⎭B .15,313⎛⎫ ⎪⎝⎭C .1515,00,1313⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭D .15153,,31313⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭【答案】(1)C(2)B【解析】(1)圆(222x y +=的圆心为(C ,半径为r =设点(),Q x y ,则2244x y =-且11y -≤≤,CQ ==,当且仅当3y =-时,等号成立,所以,max max PQ CQ r =+=故选:C.(2)易知33m -<<,x m=代入22194x y +=得y =±AB =由对称性知2AA B 是等腰三角形,AB 是底,设AB 与x 轴交点为M ,如图, 2∠AA B 为钝角,则24AA M π∠>,∴2AM MA >,即3m >-,解得15313m <<.故选:B .【一隅三反】1.(【新东方】高中数学20210429—004【2020】【高二上】)已知P 为椭圆22221x y a b+=上一点,12,F F 是焦点,12F PF ∠取最大值时的余弦值为13,则此椭圆的离心率为_______.【解析】依题意12122,2PF PF a F F c +==,222a b c =+,当12F PF ∠取最大值时,即12cos F PF ∠最小,即12cos F PF ∠的最小值为13.而()222221212121212121224cos 22PF PF PF PF c PF PF F F F PF PF PF PF PF +-⋅-+-∠==⋅⋅222121212424212a PF PF c b PF PF PF PF -⋅-==-⋅⋅, 而()2122124PF PF PF PF a +⋅≤=,当且仅当12PF PF a ==时等号成立,故21222cos 1b F PF a∠≥-,当且仅当12PF PF a ==时等号成立,所以12cos F PF ∠的最小值为222113b a -=,即2223ba =,故c e a ===2.(2021·重庆西南大学附中高二期末)已知椭圆()2222:10x y C a b a b+=>>的左、右焦点为1F 、2F ,离心率为12,过2F 的直线l 交C于A 、B 两点,若1AF B △的周长为8.(1)求椭圆C 的标准方程;(2)若椭圆上存在两点关于直线4y x m =+对称,求m 的取值范围.【答案】(1)22143x y +=;(2)m <<【解析】(1)1AF B △周长为8,即48a =,2a ∴=.又因为12e =,1c ∴=,b =椭圆方程22143x y C +=:,(2)设椭圆上两点11(,)A x y ,22(,)B x y 关于4y x m =+对称,则AB 的方程为14y x t =-+,由2214143y x t x y ⎧=-+⎪⎪⎨⎪+=⎪⎩消去y 有:2213816480x tx t -+-= 由22(8)413(1648)0.t t ∆=--⨯⨯->得213,4t <① 又1212128124,()213413t tx x y y x x t +=+=-++=因为AB 的中点在直线4y x m =+上,所以1212422y y x x m ++=+,即12441313t tm =⨯+ 所以1340m t +=②,由①②得:2413m <,即m <<。
椭圆经典编辑精讲例题详细规范标准答案
椭圆经典精讲1、基本概念、基本图形、基本性质 题1、题面:集合}12|),{(}4|),{(2222=+==+=y x y x B y x y x A 与的关系可表述为( ).A.A B A =IB.A B ⊆C.B A ⊆D.A ∩B = Ø 答案:D.变式一题面:设双曲线的左,右焦点为F 1,F 2,左,右顶点为M ,N ,若△PF 1F 2的一个顶点P 在双曲线上,则△PF 1F 2的内切圆与边F 1F 2的切点的位置是( )A .在线段MN 的内部B .在线段F 1M 的内部或NF 2内部C .点N 或点MD .以上三种情况都有可能 答案:C. 详解:若P 在右支上,并设内切圆与PF 1,PF 2的切点分别为A ,B ,则|NF 1|-|NF 2|=|PF 1|-|PF 2|=(|P A |+|AF 1|)-(|PB |+|BF 2|)=|AF 1|-|BF 2|. 所以N 为切点,同理P 在左支上时,M 为切点.变式二题面:若直线mx +ny =4和圆O :x 2+y 2=4没有交点,则过点(m ,n )的直线与椭圆x 29+y 24=1的交点个数为( )A .至多1个B .2个C .1个D .0个答案:B. 详解:由题意得4m 2+n 2>2,即m 2+n 2<4,则点(m ,n )在以原点为圆心,以2为半径的圆内,此圆在椭圆x 29+y 24=1的内部.题2、题面:如图,倾斜圆柱形容器,液面的边界近似一个椭圆。
若容器底面与桌面成角为60o,则这个椭圆的离心率是 。
答案:解题步骤: 由图,短轴就是内径2r ,长轴为4r ,即:2,,a r b r c ===,2e =.变式一题面:已知椭圆x 2a 2+y 2b 2=1(a >b >0)的两顶点为A (a,0),B (0,b ),且左焦点为F ,△F AB 是以角B 为直角的直角三角形,则椭圆的离心率e 为( )A.3-12B.5-12 C.1+54D.3+14答案:B. 详解:由题意得a 2+b 2+a 2=(a +c )2,即c 2+ac -a 2=0,即e 2+e -1=0,解得e =-1±52.又e >0,故所求的椭圆的离心率为5-12.变式二题面:60o4r2r(2012·新课标全国卷)设F 1,F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( )A.12B.23C.34D.45答案:C. 详解:由题意可得|PF 2|=|F 1F 2|,∴2⎝⎛⎭⎫32a -c =2c ,∴3a =4c ,∴e =34.题3、题面:椭圆22143x y +=与圆 22(1)1x y -+=的公共点个数是 。
(完整版)高中数学椭圆经典例题详解
椭圆标准方程典型例题例1 已知椭圆06322=-+m y mx 的一个焦点为(0,2)求m 的值.分析:把椭圆的方程化为标准方程,由2=c ,根据关系222c b a +=可求出m 的值.解:方程变形为12622=+my x .因为焦点在y 轴上,所以62>m ,解得3>m . 又2=c ,所以2262=-m ,5=m 适合.故5=m .例2 已知椭圆的中心在原点,且经过点()03,P ,b a 3=,求椭圆的标准方程. 分析:因椭圆的中心在原点,故其标准方程有两种情况.根据题设条件,运用待定系数法,求出参数a 和b (或2a 和2b )的值,即可求得椭圆的标准方程.解:当焦点在x 轴上时,设其方程为()012222>>=+b a by a x .由椭圆过点()03,P ,知10922=+b a .又b a 3=,代入得12=b ,92=a ,故椭圆的方程为1922=+y x . 当焦点在y 轴上时,设其方程为()012222>>=+b a bx a y .由椭圆过点()03,P ,知10922=+ba .又b a 3=,联立解得812=a ,92=b ,故椭圆的方程为198122=+x y .例3 ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三角形重心G 的轨迹和顶点A 的轨迹.分析:(1)由已知可得20=+GB GC ,再利用椭圆定义求解.(2)由G 的轨迹方程G 、A 坐标的关系,利用代入法求A 的轨迹方程.解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其方程为()013610022≠=+y y x . (2)设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ① 由题意有⎪⎪⎩⎪⎪⎨⎧='='33y y x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).例4 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为354和352,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程. 解:设两焦点为1F 、2F ,且3541=PF ,3522=PF .从椭圆定义知52221=+=PF PF a .即5=a . 从21PF PF >知2PF 垂直焦点所在的对称轴,所以在12FPF Rt ∆中,21sin 1221==∠PF PF F PF , 可求出621π=∠F PF ,3526cos21=⋅=πPF c ,从而310222=-=c a b .∴所求椭圆方程为1103522=+y x 或1510322=+y x .例5 已知椭圆方程()012222>>=+b a by a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点,θ=∠21PA A ,α=∠21PF F .求:21PF F ∆的面积(用a 、b 、α表示). 分析:求面积要结合余弦定理及定义求角α的两邻边,从而利用C ab S sin 21=∆求面积. 解:如图,设()y x P ,,由椭圆的对称性,不妨设P 在第一象限. 由余弦定理知: 221F F 2221PF PF +=12PF -·224cos c PF =α.①由椭圆定义知: a PF PF 221=+ ②,则-①②2得 αcos 12221+=⋅b PF PF . 故αsin 212121PF PF S PF F ⋅=∆ ααsin cos 12212+=b 2tan 2αb =.例6 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内切,求动圆圆心P 的轨迹方程.分析:关键是根据题意,列出点P 满足的关系式.解:如图所示,设动圆P 和定圆B 内切于点M .动点P 到两定点,即定点()03,-A 和定圆圆心()03,B 距离之和恰好等于定圆半径, 即8==+=+BM PB PM PB PA .∴点P 的轨迹是以A ,B 为两焦点,半长轴为4,半短轴长为73422=-=b 的椭圆的方程:171622=+y x . 说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程.这是求轨迹方程的一种重要思想方法.例7 已知椭圆1222=+y x , (1)求过点⎪⎭⎫ ⎝⎛2121,P 且被P 平分的弦所在直线的方程; (2)求斜率为2的平行弦的中点轨迹方程;(3)过()12,A 引椭圆的割线,求截得的弦的中点的轨迹方程; (4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=⋅OQ OP k k , 求线段PQ 中点M 的轨迹方程.分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法.解:设弦两端点分别为()11y x M ,,()22y x N ,,线段MN 的中点()y x R ,,则⎪⎪⎩⎪⎪⎨⎧=+=+=+=+④,③,②,①,y y y x x x y x y x 222222212122222121①-②得()()()()022*******=-++-+y y y y x x x x .由题意知21x x ≠,则上式两端同除以21x x -,有()()0221212121=-+++x x y y y y x x ,将③④代入得022121=--+x x y y yx .⑤(1)将21=x ,21=y 代入⑤,得212121-=--x x y y ,故所求直线方程为: 0342=-+y x . ⑥ 将⑥代入椭圆方程2222=+y x 得041662=--y y ,0416436>⨯⨯-=∆符合题意,0342=-+y x 为所求.(2)将22121=--x x y y 代入⑤得所求轨迹方程为: 04=+y x .(椭圆内部分)(3)将212121--=--x y x x y y 代入⑤得所求轨迹方程为: 022222=--+y x y x .(椭圆内部分)(4)由①+②得 :()2222212221=+++y y x x , ⑦, 将③④平方并整理得 212222124x x x x x -=+, ⑧, 212222124y y y y y -=+, ⑨将⑧⑨代入⑦得:()224424212212=-+-y y y x x x , ⑩ 再将212121x x y y -=代入⑩式得: 221242212212=⎪⎭⎫ ⎝⎛--+-x x y x x x , 即 12122=+y x .此即为所求轨迹方程.当然,此题除了设弦端坐标的方法,还可用其它方法解决.例8 已知椭圆1422=+y x 及直线m x y +=. (1)当m 为何值时,直线与椭圆有公共点? (2)若直线被椭圆截得的弦长为5102,求直线的方程. 解:(1)把直线方程m x y +=代入椭圆方程1422=+y x 得 ()1422=++m x x ,即012522=-++m mx x .()()020*********≥+-=-⨯⨯-=∆m m m ,解得2525≤≤-m . (2)设直线与椭圆的两个交点的横坐标为1x ,2x ,由(1)得5221mx x -=+,51221-=m x x .根据弦长公式得 :51025145211222=-⨯-⎪⎭⎫ ⎝⎛-⋅+m m .解得0=m .方程为x y =. 说明:处理有关直线与椭圆的位置关系问题及有关弦长问题,采用的方法与处理直线和圆的有所区别.这里解决直线与椭圆的交点问题,一般考虑判别式∆;解决弦长问题,一般应用弦长公式. 用弦长公式,若能合理运用韦达定理(即根与系数的关系),可大大简化运算过程.例9 以椭圆131222=+y x 的焦点为焦点,过直线09=+-y x l :上一点M 作椭圆,要使所作椭圆的长轴最短,点M 应在何处?并求出此时的椭圆方程.分析:椭圆的焦点容易求出,按照椭圆的定义,本题实际上就是要在已知直线上找一点,使该点到直线同侧的两已知点(即两焦点)的距离之和最小,只须利用对称就可解决.解:如图所示,椭圆131222=+y x 的焦点为()031,-F ,()032,F . 点1F 关于直线09=+-y x l :的对称点F 的坐标为(-9,6),直线2FF 的方程为032=-+y x . 解方程组⎩⎨⎧=+-=-+09032y x y x 得交点M 的坐标为(-5,4).此时21MF MF +最小.所求椭圆的长轴:562221==+=FF MF MF a ,∴53=a ,又3=c ,∴()3635322222=-=-=c a b .因此,所求椭圆的方程为1364522=+y x .例10 已知方程13522-=-+-ky k x 表示椭圆,求k 的取值范围. 解:由⎪⎩⎪⎨⎧-≠-<-<-,35,03,05k k k k 得53<<k ,且4≠k .∴满足条件的k 的取值范围是53<<k ,且4≠k . 说明:本题易出现如下错解:由⎩⎨⎧<-<-,03,05k k 得53<<k ,故k 的取值范围是53<<k .出错的原因是没有注意椭圆的标准方程中0>>b a 这个条件,当b a =时,并不表示椭圆.例11 已知1cos sin 22=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围. 分析:依据已知条件确定α的三角函数的大小关系.再根据三角函数的单调性,求出α的取值范围.解:方程可化为1cos 1sin 122=+ααy x .因为焦点在y 轴上,所以0sin 1cos 1>>-αα. 因此0sin >α且1tan -<α从而)43,2(ππα∈.说明:(1)由椭圆的标准方程知0sin 1>α,0cos 1>-α,这是容易忽视的地方. (2)由焦点在y 轴上,知αcos 12-=a ,αsin 12=b . (3)求α的取值范围时,应注意题目中的条件πα<≤0.例12 求中心在原点,对称轴为坐标轴,且经过)2,3(-A 和)1,32(-B 两点的椭圆方程. 分析:由题设条件焦点在哪个轴上不明确,椭圆标准方程有两种情形,为了计算简便起见,可设其方程为122=+ny mx (0>m ,0>n ),且不必去考虑焦点在哪个坐标轴上,直接可求出方程.解:设所求椭圆方程为122=+ny mx (0>m ,0>n ).由)2,3(-A 和)1,32(-B 两点在椭圆上可得⎪⎩⎪⎨⎧=⋅+-⋅=-⋅+⋅,11)32(,1)2()3(2222n m n m 即⎩⎨⎧=+=+,112,143n m n m 所以151=m ,51=n .故所求的椭圆方程为151522=+y x .例13 知圆122=+y x ,从这个圆上任意一点P 向y 轴作垂线段,求线段中点M 的轨迹.分析:本题是已知一些轨迹,求动点轨迹问题.这种题目一般利用中间变量(相关点)求轨迹方程或轨迹. 解:设点M 的坐标为),(y x ,点P 的坐标为),(00y x ,则2x x =,0y y =.因为),(00y x P 在圆122=+y x 上,所以12020=+y x .将x x 20=,y y =0代入方程12020=+y x 得1422=+y x .所以点M 的轨迹是一个椭圆1422=+y x .说明:此题是利用相关点法求轨迹方程的方法,这种方法具体做法如下:首先设动点的坐标为),(y x ,设已知轨迹上的点的坐标为),(00y x ,然后根据题目要求,使x ,y 与0x ,0y 建立等式关系, 从而由这些等式关系求出0x 和0y 代入已知的轨迹方程,就可以求出关于x ,y 的方程, 化简后即我们所求的方程.这种方法是求轨迹方程的最基本的方法,必须掌握.例14 已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3π的直线交椭圆于A ,B 两点,求弦AB 的长.分析:可以利用弦长公式]4))[(1(1212212212x x x x k x x k AB -++=-+=求得, 也可以利用椭圆定义及余弦定理,还可以利用焦点半径来求. 解:(法1)利用直线与椭圆相交的弦长公式求解.2121x x k AB -+=]4))[(1(212212x x x x k -++=.因为6=a ,3=b ,所以33=c .因为焦点在x 轴上,所以椭圆方程为193622=+y x ,左焦点)0,33(-F ,从而直线方程为93+=x y . 由直线方程与椭圆方程联立得:0836372132=⨯++x x .设1x ,2x 为方程两根,所以1337221-=+x x ,1383621⨯=x x ,3=k , 从而1348]4))[(1(1212212212=-++=-+=x x x x k x x k AB .(法2)利用椭圆的定义及余弦定理求解.由题意可知椭圆方程为193622=+y x ,设m AF =1,n BF =1,则m AF -=122,n BF -=122. 在21F AF ∆中,3cos22112212122πF F AF F F AF AF -+=,即21362336)12(22⋅⋅⋅-⋅+=-m m m ; 所以346-=m .同理在21F BF ∆中,用余弦定理得346+=n ,所以1348=+=n m AB .(法3)利用焦半径求解.先根据直线与椭圆联立的方程0836372132=⨯++x x 求出方程的两根1x ,2x ,它们分别是A ,B 的横坐标. 再根据焦半径11ex a AF +=,21ex a BF +=,从而求出11BF AF AB +=.例15 椭圆192522=+y x 上的点M 到焦点1F 的距离为2,N 为1MF 的中点,则ON (O 为坐标原点)的值为A .4 B .2 C .8 D .23解:如图所示,设椭圆的另一个焦点为2F ,由椭圆第一定义得10221==+a MF MF ,所以82101012=-=-=MF MF ,又因为ON 为21F MF ∆的中位线,所以4212==MF ON ,故答案为A .说明:(1)椭圆定义:平面内与两定点的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.(2)椭圆上的点必定适合椭圆的这一定义,即a MF MF 221=+,利用这个等式可以解决椭圆上的点与焦点的有关距离.例16 已知椭圆13422=+y x C :,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称.分析:若设椭圆上A ,B 两点关于直线l 对称,则已知条件等价于:(1)直线l AB ⊥;(2)弦AB 的中点M 在l 上.利用上述条件建立m 的不等式即可求得m 的取值范围. 解:(法1)设椭圆上),(11y x A ,),(22y x B 两点关于直线l 对称,直线AB 与l 交于),(00y x M 点. ∵l 的斜率4=l k ,∴设直线AB 的方程为n x y +-=41.由方程组⎪⎪⎩⎪⎪⎨⎧=++-=,134,4122yx n x y 消去y 得 0481681322=-+-n nx x ①。
(完整版)椭圆经典精讲例题详细答案
变式二
题面:
B.在线段F1M的内部或NF2内部
C.点N或点M
D.以上三种情况都有可能 答案:C.
详解:
若P在右支上,并设内切圆与PF1,PF2的切点分别为A,B,则|NF1|-|NF2|=|PF1|-|PF2|=(|PA|+|AF1|)-(|PB|+|BF2|)=|AF1|-|BF2|.
所以N为切点,同理P在左支上时,M为切点.
椭圆经典精讲
1、基本概念、基本图形、基本性质
题1、
题面:集合
().
A.AI B AB. A B C. B AD.AAB = ?
答案:D.
变式一
题面:
设双曲线的左,右焦点为Fi,F2,左,右顶点为M,N,若△PF1F2的一个顶点P
在双曲线上,则△PF1F2的内切圆与边F1F2的切点的位置是()
A.在线段MN的内部
题面:如图,倾斜圆柱形容器,液面的边界近似一个椭圆。
若容器底面与桌面成角为60°,则这个椭圆的离心率是
以角B为直角的直角三角形,则椭圆的离心率
答案:B.
详解:
—1±5由题意得a2+b2+a2=(a+c)2,即c2+ac—a2=0,即e2+e—1=0,解得e=—-—.
又e>0,故所求的椭圆的离心率为
.5— 1
变式二
题面:
若直线mx+ny=4和圆O:x2+y2=4没有交点,则过点(m,n)的直线与椭圆 彳+£ =1的交点个数为()
A.至多1个B.2个
C.1个D.0个
答案:B.
详Hale Waihona Puke :4由题意得,_4一>2,即m2+n2v4,则点(m,n)在以原点为圆心,以2为半径的Pm2+n2
(完整版)椭圆经典精讲例题详细答案
椭圆经典精讲1、基本概念、基本图形、基本性质 题1、题面:集合}12|),{(}4|),{(2222=+==+=y x y x B y x y x A 与的关系可表述为( ).A.A B A =IB.A B ⊆C.B A ⊆D.A ∩B = Ø 答案:D.变式一题面:设双曲线的左,右焦点为F 1,F 2,左,右顶点为M ,N ,若△PF 1F 2的一个顶点P 在双曲线上,则△PF 1F 2的内切圆与边F 1F 2的切点的位置是( )A .在线段MN 的内部B .在线段F 1M 的内部或NF 2内部C .点N 或点MD .以上三种情况都有可能 答案:C. 详解:若P 在右支上,并设内切圆与PF 1,PF 2的切点分别为A ,B ,则|NF 1|-|NF 2|=|PF 1|-|PF 2|=(|P A |+|AF 1|)-(|PB |+|BF 2|)=|AF 1|-|BF 2|. 所以N 为切点,同理P 在左支上时,M 为切点.变式二题面:若直线mx +ny =4和圆O :x 2+y 2=4没有交点,则过点(m ,n )的直线与椭圆x 29+y 24=1的交点个数为( )A .至多1个B .2个C .1个D .0个答案:B. 详解:由题意得4m 2+n 2>2,即m 2+n 2<4,则点(m ,n )在以原点为圆心,以2为半径的圆内,此圆在椭圆x 29+y 24=1的内部.题2、题面:如图,倾斜圆柱形容器,液面的边界近似一个椭圆。
若容器底面与桌面成角为60o,则这个椭圆的离心率是 。
答案:解题步骤: 由图,短轴就是内径2r ,长轴为4r ,即:2,,a r b r c ===,2e =.变式一题面:已知椭圆x 2a 2+y 2b 2=1(a >b >0)的两顶点为A (a,0),B (0,b ),且左焦点为F ,△F AB 是以角B 为直角的直角三角形,则椭圆的离心率e 为( )A.3-12B.5-12 C.1+54D.3+14答案:B. 详解:由题意得a 2+b 2+a 2=(a +c )2,即c 2+ac -a 2=0,即e 2+e -1=0,解得e =-1±52.又e >0,故所求的椭圆的离心率为5-12.变式二题面:60o4r2r(2012·新课标全国卷)设F 1,F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( )A.12B.23C.34D.45答案:C. 详解:由题意可得|PF 2|=|F 1F 2|,∴2⎝⎛⎭⎫32a -c =2c ,∴3a =4c ,∴e =34.题3、题面:椭圆22143x y +=与圆 22(1)1x y -+=的公共点个数是 。
椭圆练习题含解析
椭圆练习题含解析椭圆练习题含解析椭圆是数学中一个重要的几何形状,它在现实生活中也有着广泛的应用。
在本文中,我们将通过一些椭圆练习题来深入了解椭圆的性质,并提供详细的解析过程。
首先,让我们来看一个简单的椭圆练习题:练习题1:已知椭圆的长轴长度为10,短轴长度为6,求其离心率。
解析:椭圆的离心率定义为焦点与中心之间的距离与长轴长度之比。
我们知道,椭圆的离心率范围在0到1之间。
根据椭圆的性质,离心率可以通过以下公式计算:离心率= √(1 - (短轴长度^2 / 长轴长度^2))代入已知数据,我们可以得到:离心率= √(1 - (6^2 / 10^2))= √(1 - 36 / 100)= √(1 - 0.36)≈ √(0.64)≈ 0.8因此,该椭圆的离心率约为0.8。
接下来,我们来看一个稍微复杂一些的椭圆练习题:练习题2:已知椭圆的焦点为F1(-2, 0)和F2(2, 0),离心率为0.6,求其方程。
解析:根据椭圆的性质,离心率等于焦点与中心之间的距离与长轴长度之比。
我们可以通过这个性质来确定椭圆的长轴长度。
离心率 = 焦点与中心之间的距离 / 长轴长度0.6 = 4 / 长轴长度解得长轴长度 = 4 / 0.6 = 20 / 3我们还知道,椭圆的焦点到中心的距离等于长轴长度的一半。
因此,焦点到中心的距离为 20 / 6 = 10 / 3。
椭圆的中心坐标为焦点的中垂线的交点,即 (-2, 0) 和 (2, 0) 的中点,即 (0, 0)。
综上所述,该椭圆的方程为:(x^2 / (10/3)^2) + (y^2 / (20/3)^2) = 1化简得:9x^2 + 4y^2 = 100因此,该椭圆的方程为 9x^2 + 4y^2 = 100。
通过以上两个练习题的解析,我们可以看到椭圆的性质和计算方法。
椭圆不仅在数学中有着重要的地位,而且在现实生活中也有着广泛的应用,如天体轨道、电子轨道等。
对椭圆的深入理解和掌握,有助于我们更好地应用数学知识解决实际问题。
数学-椭圆大题专题及解析
椭圆 大题习题及答案解析1已知椭圆()2222:10x y C a b a b +=>>过点()2,0A,且离心率为2.(I)求椭圆C 的方程;(Ⅱ)设直线y kx =+与椭圆C 交于,M N 两点.若直线3x =上存在点P ,使得四边形PAMN 是平行四边形,求k 的值. (((由题意得 2a =(2c e a ==( 所以c = 因为 222a b c =+( 所以 1b =所以 椭圆C 的方程为 2214x y +=((((若四边形PAMN 是平行四边形,则 //PA MN ,且 PA MN =. 所以 直线PA 的方程为()2y k x =-,所以 ()3,P k,PA =(设()11,M x y ,()22,N x y (由2244,y kx x y ⎧=+⎪⎨+=⎪⎩ 得()224180k x +++=, 由0∆>,得 212k >(且12241x x k +=-+,122841x x k =+( 所以MN ==因为 PA MN =, 所以=整理得 421656330k k -+=, 解得k =±,或 k =±经检验均符合0∆>,但2k =-时不满足PAMN 是平行四边形,舍去(所以 k =k =± 2已知椭圆()2222:10x y C a b a b =>>+的左、右焦点分别为12,F F ,124F F =,过2F的直线l 与椭圆C 交于,P Q 两点,1PQF ∆的周长为(1)求椭圆C 的方程;(2)如图,点A ,1F 分别是椭圆C 的左顶点、左焦点,直线m 与椭圆C 交于不同的两点M 、N (M 、N 都在x 轴上方).且11AF M OF N ∠=∠.证明:直线m 过定点,并求出该定点的坐标.】(1)设椭圆C 的焦距为2c ,由题意,知1224F F c ==,可知2c =,由椭圆的定义知,1PQF ∆的周长为4a =,∴a =24b =∴椭圆C 的方程为22184x y += (2)由题意知,直线的斜率存在且不为0.设直线:l y kx m =+ 设()()1122,,,M x y N x y ,把直线l 代入椭圆方程,整理可得()222124280k x kmx m +++-=,()228840k m ∆=-+>,即22840k m -+>∴122412km x x k +=-+,21222812m x x k -=+,∵111212,22F M F N y y k k x x ==++, ∵M 、N 都x 轴上方.且11AF M OF N ∠=∠,∴11F M F N k k =-,∴121222y y x x =-++,即()()122122y x y x +=-+,代入1122,y kx m y kx m =+=+ 整理可得()()12122240kx x k m x x m ++++=,2121222284,1212m kmx x x x k k -=+=-++ 即222241684840km k k m km k m m ---++=,整理可得4m k =, ∴直线l ()44y kx m kx k k x =+=+=+,∴直线l 过定点()4,0-3已知椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,点P 、Q 、R分别是椭圆C 的上、右、左顶点,且3PQ PR ⋅=-,点S 是2PF 的中点,且1OS =. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)过点()1,0T -的直线与椭圆C 相交于点M 、N ,若QMN △的面积是125,求直线MN 的方程.解:(Ⅰ)由题意知(),PQ a b =-,(),PR a b =--,∴223PQ PR a b ⋅=-+=-, ∵点S 是2PF 的中点,且1OS =,∴211122OS PF a ===,∴2a =,1b =, 故所求椭圆方程为2214x y +=.(Ⅱ)设()11,M x y ,()22,N x y ,直线MN :1x ty =-,联立方程组22114x ty x y =-⎧⎪⎨+=⎪⎩,得()224230t y ty +--=, ∴12224t y y t +=+,12234y y t=-+,12y y -==24t =+,∴1211123225QMNS TQ y y =⋅⋅-=⨯=△, ∴1t =±.∴直线MN 的方程为1y x =+或1y x =--.(解法2:求出弦长12N M y =-=点Q 到直线MN 的距离d =11225QMNS MN d ===△, ∴1t =±.∴直线MN 的方程为1y x =+或1y x =--.4如图,椭圆E :22221(0)x y a b a b+=>>内切于矩形ABCD ,其中AB ,CD 与x 轴平行,直线AC ,BD 的斜率之积为12-,椭圆的焦距为2.(1)求椭圆E 的标准方程;(2)椭圆上的点P ,Q 满足直线OP ,OQ 的斜率之积为12-,其中O 为坐标原点.若M 为线段PQ 的中点,则22MO MQ +是否为定值?如果是,求出该定值;如果不是,说明理由. 【小问1详解】由题意,1c =,则()()()(),,,,,,,A a b B a b C a b D a b ----,所以22AC b bk a a==,22BDb b k a a ==--,所以B AC D k k ⋅=2212b a -=-,解得:a =1=,(椭圆的标准方程为2212x y +=.【小问2详解】(方法一)设()11,P x y ,()22,Q x y ,则1212,22x x y y M ++⎛⎫⎪⎝⎭. 设直线PQ :y kx t =+,由2212y kx tx y =+⎧⎪⎨+=⎪⎩,得:()222124220k x ktx t +++-=, 12221224122212kt x x k t x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩, 由12OP OQ k k ⋅=-,得()()2212121212212220x x y y k x x kt x x t +=++++=,代入化简得:22212t k =+.(22221212121211222222x x y y x x y y x MO M y Q ++++⎛⎫⎛⎫⎛⎫⎛⎫=++-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭+2222121222x x y y ++=+, 又点P ,Q 在椭圆上,(221112x y +=,222212x y +=,即22221212142x x y y +++=,(()222221212122242222222kt t x x x x x x t t --⎛⎫+=+-=-⋅= ⎪⎝⎭, (2212142x x +=.(2222222212121234242x x y y x x MO MQ ⎛⎫++++=++= ⎪⎝⎭.即2232MO MQ +=为定值. (方法二)由P ,Q 是椭圆C 上的点,可得221122222222x y x y ⎧+=⎨+=⎩, 把12122x x y y =-代入上式,化简22122x y =,得22121y y +=,22122x x +=, ()22221222121322x x y y MO MQ ++==++. 5已知椭圆()2222:10x y C a b a b+=>>的中心是坐标原点O ,左右焦点分别为12,F F ,设P 是椭圆C 上一点,满足2PF x ⊥轴,212PF =,椭圆C的离心率为2(1)求椭圆C 的标准方程;(2)过椭圆C 左焦点1F 且不与x 轴重合的直线l 与椭圆相交于,A B 两点,求2ABF 内切圆半径的最大值.【小问1详解】以2214x y +=.【小问2详解】解:由(1)可知()1F ,222112248ABF CAB AF BF AF BF AF BF a =++=+++==,设直线l为x my =-2214x my x y ⎧=-⎪⎨+=⎪⎩,消去x 得()22410m y +--=,设()11,A x y ,()22,B x y,则1224y y m +=+,12214y y m -=+ 所以1224y y m -===+所以2121212ABF SF F y y =⋅-=,令内切圆的半径为R ,则2182ABF SR =⨯⨯,即24R m =+,令t =,则12t R t==≤=+,当且仅当3t t=,t =,即m =时等号成立,所以当m =R 取得最大值12; 6已知直线220x y 经过椭圆2222:1(0)x y C a b a b+=>>的左顶点A 和上顶点D ,椭圆C 的右顶点为B ,点S 是椭圆C 上位于x 轴上方的动点,直线,AS BS 与直线10:3l x =分别交于,M N 两点.(1)求椭圆C 的方程;(2)求线段MN 的长度的最小值;(3)当线段MN 的长度最小时,在椭圆C 上是否存在这样的点T ,使得TSB △的面积为15,若存在,确定点T 的个数,若不存在,说明理由.【小问1详解】220x y ,令0x =得:1y =,令0y =得:2x =-,所以椭圆C 的左顶点为()2,0A -,上顶点为()0,1D ,所以2,1a b ==,故椭圆方程为2214x y +=.【小问2详解】直线AS 的斜率k 显然存在,且k >0,故可设直线AS 的方程为()2y k x =+,从而1016,33k M ⎛⎫ ⎪⎝⎭,由()22214y k x x y ⎧=+⎪⎨+=⎪⎩,联立得:()222214161640k x k x k +++-=,设()11,S x y ,则212164214k x k --=+,解得:2122814k x k -=+,从而12414k y k =+,即222284,1414k k S k k ⎛⎫- ⎪++⎝⎭,又()2,0B ,由()124103y x k x ⎧=--⎪⎪⎨⎪=⎪⎩,解得:13103y kx ⎧=-⎪⎪⎨⎪=⎪⎩,所以101,33N k ⎛⎫- ⎪⎝⎭,故16133k MN k =+,又0k >,所以1618333k MN k =+≥=,当且仅当16133k k =即14k =时等号成立,故线段MN 的长度的最小值为83.【小问3详解】由第二问得:14k =,此时64,55S ⎛⎫ ⎪⎝⎭,故5SB ==, 要使椭圆C 上存在点T ,使得TSB △的面积等于15,只须T 到直线BS的距离等于24S SB =.其中直线SB :4056225y x -=--,即20x y +-=,设平行于AB 的直线为0x y t ++=4=解得:32t =-或52t =-,当32t =-时,302x y +-=,联立椭圆方程2214x y +=得:275304y y --=,由9350∆=+>得:302x y +-=与椭圆方程有两个交点;当52t =-时,502x y +-=,联立椭圆方程2214x y +=得:295504y y -+=,由25450∆=-<,此时直线与椭圆方程无交点,综上:点T 的个数为2.满足题意. 所以原题得证,即直线2l 过定点10,03⎛⎫- ⎪⎝⎭7己知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为,A B ,点31,2⎛⎫ ⎪⎝⎭该椭圆上,且该椭圆的右焦点F 与抛物线24y x =的焦点重合. (1)求椭圆C 的标准方程;(2)如图,过点F 且斜率为k 的直线l 与椭圆交于,M N 两点,记直线AM 的斜率为k ,直线BN 的斜率为2k ,直线AN 的斜率3k ,求证:_____________.在以下三个结论中选择一个填在横线处进行证明. (直线AM 与BN 的交点在定直线4x =上;(1213k k =; (1314k k =-..解(因为抛物线24y x =的焦点为(1,0).所以椭圆的右焦点用(1,0)又点31,2⎛⎫ ⎪⎝⎭在该椭圆上,所以221914a b += 又22221a b c b =+=+,所以224,3a b ==椭圆C 的标准方程为22143x y +=(2)选(设()()1122,,,M x y N x y 22(1)143y k x x y =-⎧⎪⎨+=⎪⎩ 联立得:()22223484120k x k x k +-+-=法一:直线11(2),(2)y k x y k x =+=+的交点的横坐标为()12212k k x k k +=-()2121212122212112162442233422481234234k x k k x x x x k x k k k x x x k --+-++==⋅=⋅=--+--+所以直线AM 与BN 的交点在定直线4x =上法二:要证直线AM 与BN 的交点在定直线4x =上,即()122124k k k k +=-,即证1213k k =即证12121232y y x x =+-,即证2212121292y y x x ⎛⎫⎛⎫= ⎪ ⎪+-⎝⎭⎝⎭,即证1212221292x x x x -+=+- 即证()12122580x x x x -++=因为()2212122282482585803434k k x x x x k k ⎛⎫--++=-+= ⎪++⎝⎭所以直线AM 与BN 的交点在定直线4x =上.选(设()()1122,,,M x y N x y ,22(1)143y k x x y =-⎧⎪⎨+=⎪⎩联立得:()22223484120k x k x k +-+-=所以221212228412,3434k k x x x x k k -+==++ 法一:()()()()()()1212112122121212122122222122y x x x k x x x x k x y x x x x x x -----+===++--+- 222112212222221122412846223434134121834128322343434k k k x x x k k k k k k x x x k k k ⎛⎫-----+ ⎪-++⎝⎭+===-⎛⎫---+-- ⎪+++⎝⎭法二:()()12121222y x k k x y -=+ 所以()()()()()()()()222121212121222121212122222422242y x x x x x x x k k x x x x x x x y ----++⎛⎫=== ⎪++++++⎝⎭22222222224121644134344121636943434k k k k k k k k k k--+++===-++++因为12,k k 也同号,所以1213k k =法三:要证1213k k =,即证12121232y y x x =+-,即证2212121292y y x x ⎛⎫⎛⎫= ⎪ ⎪+-⎝⎭⎝⎭即证1212221292x x x x -+=+-,即证()12122580x x x x -++= 因为()2212122282482585803434k k x x x x k k ⎛⎫--++=-+= ⎪++⎝⎭ 所以1213k k =法四:由122(2)143y k x x y =+⎧⎪⎨+=⎪⎩得()2222111341616120k x k x k +++-=得21122116812,3434k k M k k ⎛⎫- ⎪++⎝⎭ 同理22222228612,3434k k N k k ⎛⎫-- ⎪++⎝⎭ 因为,,M N F 为三点共线,所以12221222122212121234346886113434k k k k k k k k -++=----++即()()12214330k k k k +-= 因为12,k k 同号,所以1213k k = 选(设()()1122,,,M x y N x y ,22(1)143y k x x y =-⎧⎪⎨+=⎪⎩联立得:()22223484120k x k x k +-+-=所以221212228412,3434k k x x x x k k -+==++.()()21212121312121212224k x x x x y y k k x x x x x x ⎡⎤-++⎣⎦=⋅=+++++ ()2222222222222222412814128343434141241216121641634434k k k k k k k k k k k k k k k k ⎛⎫--+ ⎪--++++⎝⎭===---+++++++.所以1314k k =-8设椭圆()222210x y a b a b +=>>的离心率为A ,B ,AB 4=.过点(0,1)E ,且斜率为k 的直线l 与x 轴相交于点F ,与椭圆相交于C ,D 两点.(1)求椭圆的方程; (2)若FC DE =,求k 的值;(3)是否存在实数k ,使直线AC 平行于直线BD ?证明你的结论. 【小问1详解】由题意22224b c e a a b c =⎧⎪⎪==⎨⎪-=⎪⎩,解得2a b ⎧=⎪⎨=⎪⎩22164x y +=; 【小问2详解】由题意知,0k ≠,直线l 的方程为1y kx =+,则1(,0)F k -,联立221641x y y kx ⎧+=⎪⎨⎪=+⎩,可得()2223690k x kx ++-=,()223636230k k ∆=++>,设1122(,),(,)C x y D x y ,有12122269,2323k x x x x k k --+==++,则CD 中点横坐标为1223223x x kk+-=+, 又,(0,1),1(0)F k E -,则EF 中点横坐标为12k-,又因为FC DE =,且,,,C E F D 四点共线,取EF 中点H ,则FH HE =,所以H F HE C DE F =--,即HC DH =,所以H 是CD 的中点,即,CD EF 的中点重合,即231232k k k -=-+,解得k = 【小问3详解】不存在实数k ,使直线AC 平行于直线BD ,证明如下:由题意,(0,2),(0,2)A B -,则()()1122,2,,2AC x y BD x y =-=+,若AC BD ,则AC BD ∥,所以()()122122x y x y +=-,即()12211220x y x y x x -++=,即()()()1221121120x kx x kx x x +-+++=, 化简得()121220x x x x -++=,213x x =-,由(2)得,12112266,32323k k x x x x k k --+=-=++,解得12323kx k=+, ()12112299,32323x x x x k k --=⋅-=++解得212323x k =+,所以222332323k k k ⎛⎫= ⎪++⎝⎭,整理得22233k k +=,无解,所以不存实数k ,使直线AC 平行于直线BD .9已知12,F F 分别是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,过2F 且不与x 轴垂直的动直线l 与椭圆交于,M N 两点,点P 是椭圆C 右准线上一点,连结,PM PN ,当点P 为右准线与x 轴交点时,有2122PF F F =.(1)求椭圆C 的离心率;(2)当点P 的坐标为(2,1)时,求直线PM 与直线PN 的斜率之和. 【详解】解(1)由已知当P 为右准线与x 轴交点时,有2122PF F F =∴222a c c c ⎛⎫-= ⎪⎝⎭∴222c a =∴212e =又(0,1)e ∈,∴2e =. (2)∵(2,1)P ,∴22a c =又222a c =,∴2221a c ⎧=⎨=⎩,∴21b =∴椭圆22:12x C y +=.设直线l :(1)y k x =-,()()1122,,,M x y N x y联立22(1)22y k x x y =-⎧⎨+=⎩,得()2222124220k x k x k +-+-= 则22121222422,1212k k x x x x k k-+==++, ∴()()121212121111112222PM PN k x k x y y k k x x x x ------++=+----=()()1212212122k x k k x k x x --+--+=+--121211112(1)2222k k k k k k x x x x ⎛⎫--=+++=+-+ ⎪----⎝⎭()()121242(1)22x x k k x x ⎛⎫+-=+- ⎪ ⎪--⎝⎭()12121242(1)24x x k k x x x x ⎛⎫+-=+- ⎪ ⎪-++⎝⎭将22121222422,1212k k x x x x k k-+==++代入得 ()12121242(1)2(1)(2)224PM PN x x k k k k k k x x x x ⎛⎫+-+=+-=+-⨯-= ⎪ ⎪-++⎝⎭.∴直线PM 与直线PN 的斜率之和为2.10已知椭圆22143x y +=,动直线l 与椭圆交于B ,C 两点(B 在第一象限). (1)若点B 的坐标为31,2⎛⎫ ⎪⎝⎭,求△OBC 面积的最大值;(2)设B (x 1,y 1),C (x 2,y 2),且3y 1+y 2=0,求当△OBC 面积最大时,直线l 的方程. 【小问1详解】 直线OB 的方程为32y x =,即3x -2y =0,设过点C 且平行于OB 的直线l '的方程为32y x b =+, 则当l '与椭圆只有一个公共点时,△OBC 的面积最大.联立221,433,2x y y x b ⎧+=⎪⎪⎨⎪=+⎪⎩消去y 并整理,得3x 2+3bx +b 2-3=0,此时Δ=9b 2-12(b 2-3),令Δ=0,解得b =±当b =C ⎛ ⎝⎭;当b =-时,C ⎭,∴ △OBC=. 【小问2详解】显然可知直线l 与y 轴不垂直,设直线l 的方程为x =my +n ,联立221,43,x y x my n ⎧+=⎪⎨⎪=+⎩消去x 并整理,得(3m 2+4)y 2+6mnx +3n 2-12=0, ∴12221226,34312,34nm y y m n y y m ⎧+=-⎪⎪+⎨-⎪=⎪+⎩∵ 3y 1+y 2=0,∴ 1222123,344,34nm y m n y m ⎧=⎪⎪+⎨-⎪=⎪+⎩ 从而()222222943434n m n m m -=++,即2223431m n m +=+, ∴21212216||6||||2||23431OBCm n m Sn y y n y m m =⋅-=⋅==++. ∵ B 在第一象限,∴ 21123034m nx my n n m =+=+>+,∴ n >0.∵ y 1>0,∴ m >0,∴2661313OBCm Sm m m==≤=++当且仅当31m m =,即m =时取等号),此时2n =,∴ 直线l的方程为x y =+,即20y -=.11椭圆2222:1(0)x y C a b a b+=>>的左右焦点为1F ,2F ,过椭圆右焦点2F 的直线l和椭圆C 相交于E 、F 两点,1EFF △的周长为8,若P 是椭圆上一个动点,且12PF PF ⋅的最大值为3. (1)求椭圆C 的方程;(2)四边形MNAB 的四个顶点均在椭圆C 上,且//MB NA ,MB x ⊥轴,若直线MN 和直线AB 交于点()4,0S ,问:四边形MNAB 的对角线交点D 是否是定点?若是,求出定点坐标;若不是,请说明理由. 【详解】(1)解:1EFF △的周长为48a =∴2a =,令222c a b =-设()00,p x y ,1(,0)F c -,2(,0)F c()()20000,,PF PF c x y c x y ⋅=---⋅--2220x c y =-+2222021b x b c a ⎛⎫=-+- ⎪⎝⎭当220x a =时,()22212max3PF PF a c b ⋅=-==∴21c =,∴23b =∴方程为22143x y += (2)解:设 :AM y kx b =+(k 一定存在) 与椭圆联知:()2223484120kxkbx b +++-=设()11,A x y ,()22,M x y ,()11,N x y -,()22,B x y -,122834kb x x k +=-+,212241234b x x k -=+ ,∵M 、N 、S 共线∴2121044y y x x +=-- 得()12122(4)80kx x b k x x b +-+-=,即()222412824803434b kb k b k b k k--⋅+-⋅-=++, 整理可得0k b +=∴:(1)AM y k x =-过点()1,0Q 下证:BN 也过()1,0Q 212111BQ NQ y y k k x x -=---()()()()()()2112211111011k x x k x x x x ----=--=-∴BN 和AM 相交于()1,0()1,0即为定点D .。
高中数学-椭圆-超经典-知识点+典型例题讲解精选全文完整版
可编辑修改精选全文完整版学生姓名 性别 男 年级 高二 学科 数学 授课教师 上课时间2014年12月13日 第( )次课 共( )次课课时: 课时教学课题椭圆教学目标教学重点与难点选修2-1椭圆知识点一:椭圆的定义ﻫ 平面内一个动点到两个定点、的距离之和等于常数(),这个动点的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.ﻫ 注意:若,则动点的轨迹为线段;若,则动点的轨迹无图形.讲练结合一.椭圆的定义 1.方程()()10222222=++++-y x y x 化简的结果是2.若ABC ∆的两个顶点()()4,0,4,0A B -,ABC ∆的周长为18,则顶点C 的轨迹方程是3.已知椭圆22169x y +=1上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为知识点二:椭圆的标准方程ﻫ 1.当焦点在轴上时,椭圆的标准方程:,其中;2.当焦点在轴上时,椭圆的标准方程:,其中;注意:ﻫ 1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;ﻫ 2.在椭圆的两种标准方程中,都有和;ﻫ 3.椭圆的焦点总在长轴上.当焦点在轴上时,椭圆的焦点坐标为,;当焦点在轴上时,椭圆的焦点坐标为,。
讲练结合二.利用标准方程确定参数1.若方程25x k -+23y k -=1(1)表示圆,则实数k的取值是 .(2)表示焦点在x 轴上的椭圆,则实数k 的取值范围是 . (3)表示焦点在y 型上的椭圆,则实数k 的取值范围是 . (4)表示椭圆,则实数k的取值范围是 .2.椭圆22425100x y +=的长轴长等于 ,短轴长等于 , 顶点坐标是 ,焦点的坐标是 ,焦距是 ,离心率等于 ,3.椭圆2214x y m+=的焦距为2,则m = 。
4.椭圆5522=+ky x 的一个焦点是)2,0(,那么=k 。
讲练结合三.待定系数法求椭圆标准方程1.若椭圆经过点(4,0)-,(0,3)-,则该椭圆的标准方程为 。
3.1.2 椭圆的简单几何性质(精讲)高二数学上学期同步讲与练(人教A版选择性必修第一册)(解析版)
3.1.2椭圆的简单几何性质一、椭圆的简单几何性质二、点001、直线y kx m =+与椭圆22221(0)x ya b a b+=>>的位置关系:联立2222,1,y kx m x y ab =+⎧⎪⎨+=⎪⎩消去y 得一个关于x 的一元二次方程.位置关系解的个数∆的取值相交两解∆>0相切一解∆=0相离无解∆<02、解决直线与圆锥曲线相交问题的常用步骤:(1)得出直线方程,设交点为()11,A x y ,()22,B x y ;(2)联立直线与曲线方程,得到关于x (或y )的一元二次方程;(3)写出根与系数的关系;(4)将所求问题或题中关系转化为关于12x x +,12x x 的形式;(5)代入求解.四、直线与椭圆相交的弦长公式1、定义:连接椭圆上两个点的线段称为椭圆的弦.2、求弦长的方法(1)交点法:将直线的方程与椭圆的方程联立,求出两交点的坐标,然后运用两点间的距离公式来求.(2)根与系数的关系法:如果直线的斜率为k ,被椭圆截得弦AB 两端点坐标分别为(x 1,y 1),(x 2,y 2),则弦长公式为:=AB 五、解决椭圆中点弦问题的两种方法:1、根与系数关系法:联立直线方程和椭圆方程构成方程组,消去一个未知数,利用一元二次方程根与系数的关系以及中点坐标公式解决;2、点差法:利用交点在曲线上,坐标满足方程,将交点坐标分别代入椭圆方程,然后作差,构造出中点坐标和斜率的关系,具体如下:直线l (不平行于y 轴)过椭圆12222=+b y a x (0>>b a )上两点A 、B ,其中AB 中点为)(00y x P ,,则有22a b k k OP AB -=⋅。
证明:设)(11y x A ,、)(22y x B ,,则有⎪⎪⎩⎪⎪⎨⎧=+=+11222222221221b y a x by a x ,上式减下式得02222122221=-+-by y a x x ,∴2222212221a b x x y y -=--,∴220021210021212121212122a b x y x x y y x y x x y y x x y y x x y y -=⋅--=⋅--=++⋅--,∴22a b k k OP AB -=⋅。
2021选择性必修1题型精讲精练讲义3.1.1 椭圆(第一课时)(精讲)(含答案)
3.1.1 椭圆【题型精讲】 考点一 椭圆的定义【例1】(1)(2020·上海徐汇.高二期末)已知1F 、2F 是定点,12||6F F =.若动点M 满足12||||6M F M F +=,则动点M 的轨迹是( ) A .直线B .线段C .圆D .椭圆(2)(2019·宁波市第四中学高二期中)设p 是椭圆2212516x y +=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( )A .4B .5C .8D .10【一隅三反】1.(2020·河南省鲁山县第一高级中学高二月考)若椭圆上一点P到左焦点的距离为5,则其到右焦点的距离为( ) A .5 B .3C .2D .12.(2020·东城.北京五十五中高二月考)若椭圆22110036x y +=上一点P 到其焦点1F 的距离为6,则P 到另一焦点2F 的距离为( ) A .4 B .194 C .94 D .143.下列命题是真命题的是________.(将所有真命题的序号都填上)①已知定点F 1(-1,0),F 2(1,0),则满足|PF 1|+|PF 2|=2的点P 的轨迹为椭圆; ②已知定点F 1(-2,0),F 2(2,0),则满足|PF 1|+|PF 2|=4的点P 的轨迹为线段; ③到定点F 1(-3,0),F 2(3,0)的距离相等的点的轨迹为椭圆.考点二 椭圆定义的运用【例2-1】(1)(2019·福建高二期末)如果222x ky +=表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .(0,1)B .(0,2)C .(1,)+∞D .(0,)+∞(2)(2019·江苏省苏州实验中学高二期中)方程2214x y m+=表示椭圆,则实数m 的取值范围( )A .0m >B .4m >C .04m <<D .0m >且4m ≠【一隅三反】1.(2020·广东高三月考(文))“35m -<<”是“方程22153x y m m +=-+表示椭圆”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件2.(2017·浙江东阳.高二期中)如果方程表示焦点在x 轴上的椭圆,则实数a 的取值范围是( ) A .3a > B .2a <-C .3a >或2a <-D .3a >或62a -<<-3.(2019·北京北师大实验中学高二期中)若方程2212y x m +=-表示焦点在y 轴上的椭圆,则m 的取值范围是( )A .()3-∞,B .()23,C .()2+∞,D .()3+∞,【例2-2】(1)(2018·黑龙江哈尔滨三中高二期中(文))已知ABC ∆的顶点B ,C 在椭圆221169x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另一个焦点在BC 上,则ABC ∆的周长是( ) A .8 B .C .16D .24(2)(2019·广西田阳高中))已知P 是椭圆221259x y +=上一点,12,F F 为椭圆的两焦点,且01260F PF ∠=,则12F PF ∆面积为( )A .B .CD .3【一隅三反】1.(2019·黑龙江哈尔滨市第六中学校高二月考(文))已知点12,F F 分别是椭圆221259x y +=的左、右焦点,点P 在此椭圆上,则12PF F ∆的周长等于( ) A .20 B .16 C .18 D .142.(2018·湖南高二期中(理))已知E 、F 分别为椭圆x 225+y 29=1的左、右焦点,倾斜角为60∘的直线l 过点E ,且与椭圆交于A ,B 两点,则△FAB 的周长为( ) A .10 B .12C .16D .203.已知P 是椭圆2214x y +=上的一点,F 1,F 2是椭圆的两个焦点,且∠F 1PF 2=60°,则△F 1PF 2的面积是______.考点三椭圆的标准方程【例3】(2020·四川内江,高二期末)分别求适合下列条件的方程: (1)焦点在x 轴上,长轴长为10,焦距为4的椭圆标准方程;(2)与椭圆22143x y +=具有相同的离心率且过点(2,的椭圆的标准方程(3)已知椭圆的两个焦点的坐标分别是()2,0-,()2,0,并且经过点53,22⎛⎫- ⎪⎝⎭,则此椭圆的标准方程【一隅三反】1.(2019·全国高二课时练习)求满足下列条件的椭圆的标准方程: (1)焦点在y 轴上,焦距是4,且经过点M (3,2);(2)c ∶a =5∶13,且椭圆上一点到两焦点的距离的和为26.(3)已知椭圆C 的中心在原点,焦点在坐标轴上,且经过两点()0,2A 和12B ⎛⎝考点四离心率【例4】(1)(2020·武威第八中学高二期末(理))已知椭圆C:2221(0)4x yaa+=>的一个焦点为(20),,则C的离心率为。
高中数学选修一3.1.2 椭圆(第二课时)(精讲)(解析版)
3.1.2 椭圆考点一 点与椭圆的位置关系【例1】已知点P (k,1),椭圆x29+y24=1,点P 在椭圆外,则实数k 的取值范围为____________.【答案】 ⎝⎛⎭⎫-∞,-332∪⎝⎛⎭⎫332,+∞ 【解析】 依题意得,k29+14>1,解得k <-332或k >332.【一隅三反】1.已知点(1,2)在椭圆y2n +x2m =1(n >m >0)上,则m +n 的最小值为________.【答案】 9【解析】 依题意得,1m +4n =1,而m +n =(m +n )⎝⎛⎭⎫1m +4n =1+4m n +n m +4=5+4m n +n m ≥5+24m n ·nm=9,当且仅当n =2m 时等号成立,故m +n 的最小值为9.考点二 直线与椭圆的位置关系【例2-1】(2020·上海高二课时练习)k 为何值时,直线2y kx =+和曲线22236x y +=有两个公共点?有一个公共点?没有公共点? 【答案】见解析【解析】由222{236y kx x y =++=,得2223(2)6x kx ++=,即22(23)1260k x kx +++= 22214424(23)7248k k k ∆=-+=-当272480k ∆=->,即k k ><或时,直线和曲线有两个公共点;当272480k ∆=-=,即33k k ==-或时,直线和曲线有一个公共点;当272480k ∆=-<,即k <<时,直线和曲线没有公共点. 【例2-2】(2020·吉林长春.高二月考)直线1y kx k =-+与椭圆22=194x y +的位置关系为( )A .相切B .相交C .相离D .不确定【答案】B【解析】由题意,直线1(1)1y kx k k x =-+=-+,可得直线恒过点(1,1)P ,又由2211194+<,所以点(1,1)P 在椭圆22194x y +=的内部,所以直线1y kx k =-+与椭圆22194x y +=相交于不同的两点,故选B .【一隅三反】 1.(2019·全国高二课时练习)直线()1y kx k R =+∈与椭圆2215x y m+=恒有两个公共点,则m的取值范围为( )A .1+,B .[)1,+∞ C .()()1,55,+∞D .)()[1,55,⋃+∞【答案】C【解析】已知直线y =kx +1与椭圆2215x y m +=联立方程组可化为(m+5k 2)x 2+10kx+5-5m=0,要使得直线()1y kx k R =+∈与椭圆2215x y m+=恒有两个公共点,则△=100k 2-4(m+5k 2)(5-5m )=20[m 2-(1-5k 2)m]>0,m >0,m≠5. ∴m >1-5k 2,m >0,m≠5,又k ∈R ,∴m >1,且m≠5. ∴m 的取值范围为(1,5)∪(5,+∞)故选C2.(2020·全国高三课时练习(理))(2018·兰州一模)已知直线y =kx -k -1与曲线C :x 2+2y 2=m(m>0)恒有公共点,则m 的取值范围是( ) A .[3,+∞) B .(-∞,3] C .(3,+∞) D .(-∞,3)【答案】A【解析】∵直线方程为1y kx k =--∴直线恒过定点(1,1)-对于含有一个参数的直线方程,往往是过定点的,找到这个定点后,只需要这个定点在椭圆内或是椭圆上即可,也即是2200221x y a b +≤.∵曲线C 的方程为222(0)x y m m +=>∴曲线C 表示椭圆∵直线1y kx k =--与曲线C :222(0)x y m m +=>恒有公共点∴点(1,1)-在椭圆内或椭圆上,即2212(1)m +⨯-≤.∴3m ≥ 故选A.3.直线y =x +m 与椭圆2214x y +=有两个不同的交点,则m 的范围是( )A .-5<m <5B .m,或mC .mDm【答案】D【解析】由2214y x m x y =+⎧⎪⎨+=⎪⎩,得5x 2+8mx+4m 2﹣4=0, 结合题意△=64m 2﹣20(4m 2﹣4)>0,mD .考点三 弦长【例3】(2020·云南省泸西县第一中学高二期中(文))已知椭圆x 24+y 29=1及直线l :y =32x +m(1)当直线l 与该椭圆有公共点时,求实数m 的取值范围;(2)当m =3时,求直线l 被椭圆截得的弦长 【答案】(1)[−3√2,3√2];(2)√13.【解析】(1)由{y =32x +mx 24+y 29=1 消去y ,并整理得9x 2+6mx +2m 2−18=0……① Δ=36m 2−36(2m 2−18)=−36(m 2−18)∵直线l 与椭圆有公共点∴Δ≥0,可解得:−3√2≤m ≤3√2 故所求实数m 的取值范围为[−3√2,3√2](2)设直线l 与椭圆的交点为A (x 1,y 1),B (x 2,y 2) 由①得: x 1+x 2=−2m 3,x 1x 2=2m 2−189∴|AB |=√1+k 2⋅√(x 1+x 2)2−4x 1x 2=√1+(32)2⋅√(−6m 9)2−4×2m 2−189=√133⋅√−m 2+18当m =3时,直线l 被椭圆截得的弦长为√13 【一隅三反】1.(2020·全国高二课时练习)已知椭圆C :22221x y a b+=()0a b >>的焦距为为2,过点P (-2,1)且斜率为1的直线l 与椭圆C 交于A ,B 两点. (1)求椭圆C 的方程; (2)求弦AB 的长.【答案】(1)221124x y +=;(2)2AB =.【解析】(1)已知椭圆焦距为2,即,b=2,结合a 2=b 2+c 2,解得a=,b=2,故C :221124x y +=.(2)已知直线l 过点P (-2,1)且斜率为1,故直线方程为y-1=x+2,整理得y=x+3,直线方程与椭圆方程联立2231124y x x y =+⎧⎪⎨+=⎪⎩ 得2418150x x ++=. 设()11,A x y ,()22,B x y .∴12120,9,215,4x x x x ⎧⎪∆>⎪⎪+=-⎨⎪⎪=⎪⎩∴AB =2=2.(2020·全国高二课时练习)斜率为1的直线与椭圆2212x y +=相交于,A B 两点,则AB的最大值为__________.【答案】3【解析】斜率是1的直线L :y =x +b 代入2212x y +=,化简得2234420x bx b ++-=,设()()1122,,A x y B x y ,则21212442,33b b x x x x -+=-=,且()221612420b b =-->,解得234b <.3AB ===,∴b =0时,|AB |,故答案为:. 考点四 点差法【例4】(1)(2020·上海高二课时练习)直线l 与圆22240(3)x y x y a a ++-+=<相交于两点A ,B ,弦AB 的中点为(0,1),则直线l 的方程为__________.(2)(2020·全国高二课时练习)已知椭圆E :22221x y a b+=,0a b >>的右焦点为()3,0F ,过点F 的直线交椭圆E 于A 、B 两点.若AB 的中点坐标为()1,1-,则E 的方程为__________. (3)直线y =x +1与椭圆mx 2+ny 2=1(m>n>0)相交于A ,B 两点,若弦AB 的中点的横坐标等于13-,则椭圆的离心率等于_________.【答案】(1)10x y -+=.(2)221189x y +=(3)2【解析】(1)设圆心O ,直线l 的斜率为k ,弦AB 的中点为P ,PO 的斜率为op k ,2110op k -=--则l PO ⊥,所以k (1)11op k k k ⋅=⋅-=-∴=由点斜式得1y x =+. (2)已知3c =,设()11,A x y ,()22,B x y ,则2211221x y a b +=①,2222221x y a b+=②,已知AB 的中点坐标为()121,1?2x x -+=,则,122y y +=-, ①-②得()()()()12121212220x x x x y y y y a b +-+-+=,∴()222121222212121y y x x b b b x x a y y a a-+=-⋅=-⨯-=-+, ∵1212011312y y x x -+==--,∴2212b a =,即222a b =, 又22229a bc b =+=+,∴29b =,218a =,即E 的方程为221189x y +=.(3)设A (x 1,y 1),B (x 2,y 2),AB 的中点为M (x 0,y 0),x 0=-13,代入y =x +1得y 0=23. 所以m x 12+n y 12=1,(1)m x 22+n y 22=1,(2)由(1)-(2)得:()()()()121212120m x x x x n y y y y +-++-=,131223ABm m k n n -=-⋅==,∴2212b n a m ==,∴e 2222111122c b a a ⎛⎫==-=-= ⎪⎝⎭,∴e=2.故答案为:2. 【一隅三反】1.(2020·上海高二课时练习)如果椭圆221369x y +=的弦被点(4,2)平分,则这条弦所在的直线方程是________ 【答案】 y=-0.5x+4【解析】设弦为AB ,且()()1122,,,A x y B x y ,代入椭圆方程得222211221,1369369x y x y +=+=,两式作差并化简得2112211212y y x x x x y y -+=-=--+,即弦的斜率为12-,由点斜式得()1242y x -=--,化简得0.54y x =-+.2.(2020·海林市朝鲜族中学高二课时练习)已知椭圆方程为22x +y 2=1,则过点11,22P ⎛⎫ ⎪⎝⎭且被P 平分的弦所在直线的方程为________. 【答案】2430x y +-=【解析】设这条弦与椭圆2212x y +=交于点()()1122A x y B x y ,由中点坐标公式知12121,1x x y y +=+=,把()()1122A x y B x y 代入2212x y +=,作差整理得()()12121212120,2AB y y x x y y k x x --+-=∴==--,∴这条弦所在的直线方程为111222y x ⎛⎫-=-- ⎪⎝⎭, 即2430x y +-=,故答案为2430x y +-=.3.过点M (-2,0)的直线l 与椭圆x 2+2y 2=2交于P 1,P 2两点,线段P 1P 2中点为P ,设直线l 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2(O 为原点),则k 1·k 2的值为________. 【答案】-12【解析】设直线l 的方程为:1(2)y k x =+,由122(2)21y k x x y =+⎧⎨+=⎩,整理得:2222111(12)8810k x k x k +++-=,所以211221812k x x k -+=+,2112218112k x x k -=+,所以1121112112214(2)(2)(4)12k y y k x k x k x x k +=+++=++=+,所以211221142(,)1212k k P k k -++,12122112121214212k k k k k k -+==--+,所以1212k k =- 4.(2019·内蒙古一机一中高二期中(文))斜率为13-的直线l 被椭圆:C 22221(0)x y a b a b+=>>截得的弦恰被点(1,1)M 平分,则C 的离心率是______.【答案】3. 【解析】设直线l 与椭圆的交点为1122(,),(,)A x y B x y因为弦恰被点(1,1)M 平分,所以12122,2x x y y +=+=由2222112222221,1x y x y a b a b+=+=,两式相减可得:1212121222()()()()0x x x x y y y y a b +-+-+= 化简可得:212212y y b x x a -=--,因为直线l 的斜率为13-,所以21221213y y b x x a -=-=-- 即2213b a =所以离心率3e ==5.(2018·河南高二月考(文))已知椭圆C :22221x y a b+=(0a b >>)的右焦点为F ,过点F的直线交椭圆交于A,B两点,若AB的中点11,2P⎛⎫-⎪⎝⎭,且直线AB的倾斜角为4π,则此椭圆的方程为()A.2224199x y+=B.22194x y+=C.22195x y+=D.222199x y+=【答案】A【解析】∵1211c=-,∴32c=,令()11,A x y,()22,B x y,则22221x ya b+=,∴()()()()1212121222x x x x y y y ya b+⋅-+⋅-+=,2221a b-+=,∴292a=,294b=.故选A.。
专题13.1 椭圆(精讲精析篇)(解析版)
专题13.1 椭圆(精讲精析篇)提纲挈领点点突破热门考点01 椭圆的定义1.椭圆的概念(1)文字形式:在平面内到两定点F 1、F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点 ,两焦点间的距离叫做焦距. (2)代数式形式:集合1212P={M||MF |+|MF |=2a |FF |=2c.} ①若a c >,则集合P 为椭圆; ②若a c =,则集合P 为线段; ③若a c <,则集合P 为空集.2.椭圆的标准方程:焦点在x 轴时,2222=1(a>b>0)x y a b +;焦点在y 轴时,2222=1(a>b>0)y x a b+【典例1】(上海高考真题(文))设p 是椭圆2212516x y +=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( ) A.4 B.5C.8D.10【答案】D【解析】因为椭圆的方程为2251162x y +=,所以225a =,由椭圆的的定义知12=210PF PF a +=,故选D . A .54a B .43a C .23a D .a【答案】D 【解析】设1F B x =,则∵|AF 1|=3|F 1B |,∴13AF x =,又4|BF 2|=5|AB |,∴25BF x =, ∴1262BF BF x a +==,3a x =,∴212AF a AF a =-=. 故选:D . 【总结提升】1.对椭圆定义的三点说明(1)椭圆是在平面内定义的,所以“平面内”这一条件不能忽视. (2)定义中到两定点的距离之和是常数,而不能是变量.(3)常数(2a)必须大于两定点间的距离,否则轨迹不是椭圆,这是判断一曲线是否为椭圆的限制条件. 2.椭圆定义的两个应用(1)若|MF 1|+|MF 2|=2a (2a >|F 1F 2|),则动点M 的轨迹是椭圆. (2)若点M 在椭圆上,则|MF 1|+|MF 2|=2a .热门考点02 椭圆的焦点三角形A .14B .13C.2 D.2【答案】D 【解析】由1212=AF AF AF AF +-两边平方得12=0AF AF ⋅,所以12AF AF ⊥, 由椭圆的对称性知四边形12AF BF 为矩形,又因为1212==4AF AF AF AF +-,所以12==4AB F F , 又因为124AF BF S =,由矩形的面积公式与椭圆的定义得12122221212=24AF AF aAF AF AF AF F F ⎧+⎪⎪=⎨⎪+=⎪⎩,解得:a =所以12124AF AF AF AF ⎧+⎪⎨=⎪⎩,即12,AF AF 是方程240x -+= 的实数根, 又因为22AF BF >,所以21AF AF >所以1AF =2AF = 所以212tan 2B A AF AF F ∠====故选:D.A.2212x y += B.22132x y += C.22143x y += D.22154x y += 【答案】B 【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得n =22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B . 【规律提升】1.应用椭圆的定义,可以得到结论:(1)椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成的△PF 1F 2称为焦点三角形,其周长为2(a +c ).(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a 2=b 2+c 2. 2.对焦点三角形12F PF △的处理方法,通常是运用⎧⎪⎨⎪⎩定义式的平方余弦定理面积公式2212222121212(2a)212S θθ∆⎧⎪=⎪=-⋅⎨⎪⎪=⋅⎩⇔(|PF|+|PF|)(2c)|PF|+|PF||PF||PF|cos |PF||PF|sin . 热门考点03 椭圆的标准方程1. 椭圆的标准方程:(1)焦点在x 轴,2222+=1(a>b>0)x ya b ;(2)焦点在y 轴,2222y +=1(a>b>0)xa b.2.满足条件:22222000a c a b c a b c >,=+,>,>,> 【典例5】(山西省大同市与阳泉市2018届二测)已知椭圆的左焦点为,过点作倾斜角为的直线与圆相交的弦长为,则椭圆的标准方程为( ) A . B .C .D .【答案】B 【解析】 由左焦点为,可得,即,过点作倾斜角为的直线的方程为,圆心到直线的距离,由直线与圆相交的弦长为, 可得,解得,则椭圆方程为,故选B.【答案】22196x y +=【解析】设椭圆C 的焦距为()20c c >,如下图所示:由于2F AB ∆是面积为432213sin 3234AB π⨯== 得AB 4=,即2F AB ∆是边长为4的等边三角形,该三角形的周长为1212124AF AF BF BF a =+++=,可得3a =, 由椭圆的对称性可知,点A 、B 关于x 轴对称,则216AF F π∠=且AB x ⊥轴,所以,2124AF AF ==,12AF ∴=,122c F F ∴===c ∴=b ==C 的标准方程为22196x y +=. 故答案为:22196x y +=.【总结提升】1.用待定系数法求椭圆标准方程的一般步骤是: (1)作判断:根据条件判断焦点的位置.(2)设方程:焦点不确定时,要注意分类讨论,或设方程为221mx ny += (0)0m n m n ≠>,>且. (3)找关系:根据已知条件,建立关于a b c m n 、、或、的方程组. (4)求解,得方程.2.(1)方程2222y +=1x a b 与2222y +=(>0)x a bλλ有相同的离心率.(2)与椭圆2222+=1(a>b>0)x y a b 共焦点的椭圆系方程为22222+=1(a>b>0,0)x y b k a k b k+>++,恰当运用椭圆系方程,可使运算简便. 3.椭圆的其他方程形式(1)椭圆的两种标准方程可以写成统一形式:Ax 2+By 2=1(其中A >0,B >0,A ≠B ).方程Ax 2+By 2=1(其中A >0,B >0,A ≠B )包含椭圆的焦点在x 轴上和焦点在y 轴上两种情况,方程可变形为x 21A +y 21B =1.①当1A >1B ,即B >A 时,表示焦点在x 轴上的椭圆;②当1A <1B ,即B <A 时,表示焦点在y 轴上的椭圆.(2)椭圆的一般方程.当ABC ≠0时,方程Ax 2+By 2=C 可以变形为x 2C A +y 2C B =1,由此可看出方程Ax 2+By 2=C表示椭圆的充要条件是ABC ≠0,且A ,B ,C 同号,A ≠B .此时称方程Ax 2+By 2=C 为椭圆的一般方程.(3)共焦点的椭圆系方程.与椭圆x 2a 2+y 2b 2=1(a >b >0)有公共焦点的椭圆方程为x 2a 2+λ+y 2b 2+λ=1(a >b >0,λ>-b 2);与椭圆y 2a 2+x 2b 2=1(a >b >0)有公共焦点的椭圆方程为y 2a 2+λ+x 2b 2+λ=1(a >b >0,λ>-b 2).热门考点04 椭圆的几何性质椭圆的标准方程及其几何性质条件22222000a c a b c a b c >,=+,>,>,>图形标准方程2222+=1(a>b>0)x y a b 2222y +=1(a>b>0)x a b范围 x a y b ≤≤,x b y a ≤≤,对称性曲线关于,x y 轴、原点对称 曲线关于,x y 轴、原点对称 顶点 长轴顶点(),0a ± ,短轴顶点()0,b ±长轴顶点()0,a ± ,轴顶点(),0b ±焦点 (),0c ±()0,c ±焦距 222122()F F c c a b -==离心率() 0,1ce a∈=,其中c =22a b -通径 过焦点垂直于长轴的弦叫通径,其长为22b aA .椭圆C 的焦距为2B .椭圆C 3C .PQ PF +的最小值为25D .过点F 的圆E 的切线斜率为47-± 【答案】AD 【解析】圆E 的圆心为()3,4E -,半径长为2,由于椭圆C 的长轴长恰与圆E 的直径长相等,则24a =,可得2a =,设椭圆的左焦点为点1F ,由椭圆的定义可得124PF PF a +==,14PF PF ∴=-,所以,()111144246256PQ PF PQ PF PF PQ PF PE EF -=--=+-≥+--≥-=, 当且仅当P 、Q 、E 、1F 四点共线,且当P 、Q 分别为线段1EF 与椭圆C 、圆E 的交点时,等号成立, 则()()()222134031625EF c c =-++-=-+=02c a <<=,解得1c =,所以,椭圆C 的焦距为22c =,A 选项正确;椭圆C 的短轴长为222223b a c =-=B 选项错误;()()222231402422PQ PF PE PF EF +≥+-≥-=--+-=,当且仅当P 、Q 、E 、F 四点共线,且当P 、Q 分别为线段EF 与椭圆C 、圆E 的交点时,等号成立,C 选项错误;若所求切线的斜率不存在,则直线方程为1x =,圆心E 到该直线的距离为3142--=>,则直线1x =与圆E 相离,不合乎题意;若所求切线的斜率存在,可设切线的方程为()1y k x =-,即kx y k 0--=,2==,整理得23830k k ++=,解得43k -±=.D 选项正确. 故选:AD.A.12-B.2C.121【答案】D 【解析】在12F PF ∆中,122190,60F PF PF F ∠=∠=︒ 设2PF m =,则12122,c F F m PF ===,又由椭圆定义可知1221)a PF PF m =+=则离心率212c c e a a ====, 故选D. A .23B .12C .13D .14【答案】D 【解析】因为12PF F △为等腰三角形,12120F F P ∠=︒,所以PF 2=F 1F 2=2c,由AP斜率为6得,222tan sin cos PAF PAF PAF ∠=∴∠=∠=, 由正弦定理得2222sin sin PF PAF AF APF ∠=∠,所以22214,54sin()3c a c e a c PAF =∴==+-∠,故选D. 【总结提升】1.利用椭圆几何性质的注意点及技巧 (1)注意椭圆几何性质中的不等关系在求与椭圆有关的一些范围问题时,经常用到x ,y 的范围,离心率的范围等不等关系. (2)利用椭圆几何性质的技巧求解与椭圆几何性质有关的问题时,理清顶点、焦点、长轴、短轴等基本量的内在联系.2.求解有关离心率的问题时,一般并不是直接求出c 和a 的值,而是根据题目给出的椭圆的几何特征,建立关于参数c 、a 、b的方程或不等式,通过解方程或不等式求得离心率的值或范围.较多时候利用,c e e a ==.热门考点05 椭圆的主要几何量A .有相同的离心率B .有共同的焦点C .有等长的短轴、长轴D .有相同的顶点【答案】A 【解析】对于椭圆22221x y ka kb +=(0a b >>,0k >且1k ≠),a '=,b '==,c '==,则椭圆22221x y ka kb +=的离心率为c e a ''===',焦点坐标为(),短轴长为,长轴长为,顶点坐标为(),0和()0,;对于椭圆()222210x y a b ab +=>>,离心率为ce a ==,焦点坐标为(),短轴长为2b ,长轴长为2a ,顶点坐标为(),0a ±和()0,b ±. 因此,两椭圆有相同的离心率. 故选:A. 【答案】463【解析】 如图所示:因为0AC BC ⋅=,所以AC BC ⊥.又因为||2||OC OB BC BA -=-,所以||2||BC AC =. 即AOC △为等腰直角三角形. 因为()2,0A ,所以()1,1C .又因为()1,1C 在椭圆22221x y a b+=上,所以22111a b +=.因为2a =,解得243b =. 所以426433c =-=463463【总结提升】1.由椭圆方程讨论其几何性质的步骤:(1)化椭圆方程为标准形式,确定焦点在哪个轴上. (2)由标准形式求a 、b 、c ,写出其几何性质.2.椭圆的几何性质与椭圆的形状、大小和位置的关系 (1)椭圆的焦点决定椭圆的位置; (2)椭圆的范围决定椭圆的大小; (3)椭圆的离心率刻画椭圆的扁平程度;(4)对称性是圆锥曲线的重要性质,椭圆的顶点是椭圆与对称轴的交点,是椭圆上的重要的特殊点,在画图时应先确定这些点.3.求椭圆离心率的值或取值范围问题,先将已知条件转化为a 、b 、c 的方程或不等式,再求解. (1)若已知a 、c 可直接代入e =ca 求得; (2)若已知a 、b 则使用e =1-b 2a 2求解;(3)若已知b 、c ,则求a ,再利用(1)求解;(4)若已知a 、b 、c 的关系,可转化为关于离心率e 的方程(不等式)求值(范围). (5)给出图形的问题,先由图形和条件找到a 、b 、c 的关系,再列方程(不等式)求解. 由于a 、b 、c 之间是平方关系,所以在求e 时,常常先平方再求解.热门考点06 椭圆几何性质的应用【答案】220x y --= 22154x y +=【解析】①当过点1(1,)2-的直线l 斜率不存在时,直线方程为1x =,切点的坐标(1,0)A ; ②当直线l 斜率存在时,设l 方程为1(1)2y k x =--,即102kx y k ---=, 根据直线与圆相切,圆心(0,0)到切线的距离等于半径11=可以得到切线斜率34k =,即35:44l y x =-, 直线l 方程与圆方程的联立2213544x y y x ⎧+=⎪⎨=-⎪⎩可以得切点的坐标34(,)55B -,根据A 、B 两点坐标可以得到直线AB 方程为220x y --=,(或利用过圆222x y r +=上一点00(,)x y 作圆的两条切线,则过两切点的直线方程为200x x y y r +=)依题意,AB 与x 轴的交点(1,0)即为椭圆右焦点,得1c =, 与y 轴的交点(0,2)-即为椭圆下顶点坐标,所以2b =, 根据公式得2225a b c ,因此,椭圆方程为22154x y +=.【答案】在椭圆形溜冰场的两侧分别画一条与短轴平行且短轴相距25 2 m 的直线,这两条直线与椭圆的交点就是所划定的矩形区域的顶点;这个矩形区域的周长为160 2 m . 【解析】分别以椭圆的长轴、短轴所在的直线为x 轴和y 轴,建立如图所示的平面直角坐标系xOy ,设矩形ABCD 的各顶点都在椭圆上.因为矩形的各顶点都在椭圆上,而矩形是中心对称图形,又是以过对称中心且垂直于其一边的直线为对称轴的轴对称图形,所以矩形ABCD 关于原点O 及x 轴,y 轴都对称. 已知椭圆的长轴长2a =100,短轴长2b =60, 则椭圆的方程为x 2502+y 2302=1.设顶点A 的坐标为(x 0,y 0),x 0>0,y 0>0,则x 20502+y 20302=1,得y 20=302502(502-x 20).根据矩形ABCD 的对称性,可知它的面积S =4x 0y 0.=(3050)2[-(x 20-5022)2+5044],因此当x 20=5022时,x 20y 20取得最大值,此时S 也取得最大值. 这时x 0=252,y 0=152.矩形ABCD 的周长为4(x 0+y 0)=4(252+152) =1602(m).因此,在椭圆形溜冰场的两侧分别画一条与短轴平行且短轴相距25 2 m 的直线,这两条直线与椭圆的交点就是所划定的矩形区域的顶点;这个矩形区域的周长为160 2 m . 【规律总结】1.已知椭圆的几何性质,求其标准方程主要采用待定系数法,解题步骤为:(1)确定焦点所在的位置,以确定椭圆标准方程的形式;(2)确立关于a 、b 、c 的方程(组),求出参数a 、b 、c ;(3)写出标准方程.2.注意事项:当椭圆的焦点位置不确定时,通常要分类讨论,分别设出标准方程求解,可确定类型的量有焦点、顶点;而不能确定类型的量有长轴长、短轴长、离心率、焦距. 3.解决与椭圆相关的应用题的基本策略:①通过求解椭圆的方程来研究它们的性质.②应用椭圆的定义、方程及性质把有关几何知识转化为数量关系,再结合代数知识来求解. 4.利用椭圆解决实际问题的基本步骤: ①建立适当的坐标系;②求出椭圆的标准方程(待定系数法); ③根据椭圆的方程及性质解决实际问题.热门考点07 椭圆中的最值(范围)问题A .9(0,]5B .(0,2C .(0,3D .1(,]32【答案】C 【解析】设椭圆的左焦点为F ',P 为短轴的上端点,连接,AF BF '',如下图所示:由椭圆的对称性可知,,A B 关于原点对称,则OA OB = 又OF OF '= ∴四边形AFBF '为平行四边形AF BF '∴=又26AF BF BF BF a '+=+==,解得:3a =点P 到直线l 距离:3655b d -=≥,解得:2b ≥,即22292a c c -=-≥ 05c ∴<≤ 50,c e a ⎛⎤∴=∈ ⎥ ⎝⎦本题正确选项:C【典例15】(2018年浙江卷)已知点P (0,1),椭圆+y 2=m (m >1)上两点A ,B 满足=2,则当m =___________时,点B 横坐标的绝对值最大. 【答案】5【解析】分析:先根据条件得到A ,B 坐标间的关系,代入椭圆方程解得B 的纵坐标,即得B 的横坐标关于m 的函数关系,最后根据二次函数性质确定最值取法. 详解:设,由得因为A ,B 在椭圆上,所以,与对应相减得,当且仅当时取最大值.【典例16】设P 为椭圆x 2a 2+y 2b 2=1上任意一点,F 1为它的一个焦点,求|PF 1|的最大值和最小值. 【答案】【解析】设F 2为椭圆的另一焦点,则由椭圆定义得:|PF 1|+|PF 2|=2a ,∵||PF 1|-|PF 2||≤2c ,∴-2c ≤|PF 1|-|PF 2|≤2c , ∴2a -2c ≤2|PF 1|≤2a +2c ,即a -c ≤|PF 1|≤a +c , ∴|PF 1|的最大值为a +c ,最小值为a -c . 【规律提升】 椭圆几何性质的拓展:(1)设椭圆x 2a 2+y 2b 2=1(a >b >0)上的任意一点P (x ,y ),则当x =0时,|PO |有最小值,这时P 在短轴端点处;当x =a 时,|PO |有最大值,这时P 在长轴端点处.(2)椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成的△PF 1F 2称为焦点三角形,其周长为2(a +c ).(3)椭圆的一个焦点、中心和短轴的一个端点构成一个直角三角形,其三边长满足等式a 2=b 2+c 2. (4)椭圆上到某一焦点的最远点与最近点分别是长轴的两个端点.巩固提升A.(1,0)B.0)C.D.(2,0)【答案】A 【解析】由题意:22a =,21b = 1c ⇒=∴椭圆右焦点坐标为()1,0本题正确选项:A2.(2017浙江,2)椭圆22194x y +=的离心率是( )A B C .23D .59【答案】B【解析】e ==B .A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b【答案】B 【解析】 椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =, 故选B.4.(2018年上海卷)设是椭圆上的动点,则到该椭圆的两个焦点的距离之和为( ) A .B .C .D .【答案】C 【解析】 椭圆=1的焦点坐标在x 轴,a=,P 是椭圆=1上的动点,由椭圆的定义可知:则P 到该椭圆的两个焦点的距离之和为2a=2.故选:C .5.(2018年新课标I 卷文)已知椭圆:的一个焦点为,则的离心率为( )A. B. C. D.【答案】C 根据题意,可知,因为,所以,即,所以椭圆的离心率为,故选C.A .[]1,3B .[]2,4C .[]2,6D .[]3,6【答案】C 【解析】因为M 是以PF 为直径的圆1C 上的动点,N 是半径为2的圆2C 上的动点,圆1C 与圆2C 相离且圆心距1292C C =,又MN 的最小值为1,所以1292122PF C C =++=,解得3PF =, 又因P 在椭圆E 上,所以a c a c PF -≤≤+,因为离心率为12,所以a 2c =,所以c 33c ≤≤,故1c 3≤≤,所以22c 6≤≤. 故选CA .a c m R -=+B .a c n R +=+C .2a m n =+D .()()b m R n R ++【答案】ABD 【解析】因为地球的中心是椭圆的一个焦点,并且根据图象可得m a c Rn a c R =--⎧⎨=+-⎩,(*)a c m R ∴-=+ ,故A 正确; a c n R +=+,故B 正确;(*)两式相加22m n a R +=-,可得22a m n R =++,故C 不正确; 由(*)可得m R a c n R a c+=-⎧⎨+=+⎩ ,两式相乘可得()()22m R n R a c ++=-222a c b -= ,()()()()2b m R n R b m R n R ∴=++⇒=++ ,故D 正确.故选:ABDA .C 5B .C 30 C .圆D 在C 的内部 D .PQ 25【答案】BC 【解析】依题意可得c ==C 的焦距为e ==.设(,)(P x y x ≤≤,则22222256441||(1)(1)1665555x PD x y x x ⎛⎫=++=++-=++≥> ⎪⎝⎭,所以圆D 在C 的内部,且||PQ =. 故选:BC.【答案】22193x y +=或221279y x +=【解析】当椭圆的焦点在x 轴时,设椭圆方程为:22221(0)x y a b a b +=>>,则3,3c a e a ===,所以23c b ==,所以椭圆方程为:22193x y +=;当椭圆的焦点在y 轴时,设椭圆方程为:22221(0)y x a b a b +=>>,则3,3c b e a ===22222222221,273c a b b e a a a a -===-==,所以椭圆方程为:221279y x +=, 故答案为:22193x y +=或221279y x +=.【解析】90,90,BAO BFO BAO BFO ∠+∠=︒∴∠=︒-∠sin cos ,c BAO BFO a∴∠=∠=22242,310b c a e e +=∴-+=()()223550,1,,0,1,e e e e --∈∴=∈∴=【答案】5. 【解析】根据椭圆方程可知3,2a c ==,设12,PF m PF n ==,依题意有()22226216m n a m n c +==⎧⎪⎨+==⎪⎩,所以()22216,6216,10m n mn mn mn +-=-==,所以三角形12F PF 的面积为152mn =. 故答案为:5 【答案】21 【解析】由于点2F 关于直线y x =对称的点Q 在椭圆上,由于y x=的倾斜角为π4,画出图像如下图所示,由于O 是坐标原点,根据对称性和中位线的知识可知12QF F ∆为等腰直角三角形,且Q为短轴的端点,故离心率πcos 42c a ==.不妨设,a b c t ===,则椭圆方程化为222220x y t +-=,设直线AB 的方程为10x my t m k ⎛⎫=-=> ⎪⎝⎭,代入椭圆方程并化简得()222220m y mty t +--=.设()()1122,,,A x y B x y ,则12222mt y y m +=+①,21222t y y m -⋅=+②.由于113AF F B =,故123y y =-③.解由①②③组成的方程组得1m =,即11,1k k==. 故填:(1)2;(2)1.【答案】(15【解析】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=, 11228MF F F c ∴===.∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△, 又12220148241544152MF F S y =⨯-=∴=△015y , 2201513620x ∴+=,解得03x =(03x =-舍去), M 的坐标为(15.14.已知1F 、2F 是椭圆C :22221(0)x y a b a b+=>>的两个焦点,P 为椭圆C 上一点,且12PF PF ⊥.若12PF F ∆的面积为9,则b =____________.【答案】3 【解析】由12PF PF ⊥知01290F PF ∠=,则由题意,得12122221221924PF PF a PF PF PF PF c ⎧=⎪⎪⋅=⎨⎪⎪=⎩++,可得224364c a +=,即229a c -=,所以3b =,应填3.(1)求b ;(2)若12PF F △的周长为18,求该椭圆的方程.【答案】(1)3b =(2)221259x y += 【解析】 (1)设1122||||PF r PF r =,=,则122r r a +=, 又因为12PF PF ⊥,即有2221212PF PF FF +=,也即222124r r c +=, 所以()()2222221212122444rr r r r r a c b =+-+=-=,又因为12212192PF F S r r b ===, ∴3b =.(2)2229b a c =-=,又2218a c +=,所以1a c -=,解得5a =,故椭圆方程为221259x y +=. 16.设椭圆C :22221(0)x y a b a b+=>>,的左、右焦点分别为F 1,F 2,上顶点为A ,过点A 与AF 2垂直的直线交x 轴负半轴于点Q ,且1222F F F Q +=0, (1)求椭圆C 的离心率(2)若过A 、Q 、F 2三点的圆恰好与直线:330l x y --=相切,求椭圆C 的方程【答案】(1)12e =(2)22143x y += 【解析】(1)设Q (x 0,0),由(c ,0),A (0,b ) 知,由于即1F为2F Q中点.故,故椭圆的离心率……6分(2)由⑴知得于是(,0)Q,△AQF的外接圆圆心为F1(-,0),半径r=|FQ|=所以,解得=2,∴c =1,b=,所求椭圆方程为22143x y+=……12分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线的定义既是推导圆锥曲线标准方程的依据,又是用来解决一些 问题的重要方法,一般情况下,当问题涉及焦点或准线,且用其它方法 不易求解时,可考虑运用定义求解,下面以椭圆为例归纳四类最值问 题。 一、
的最值 若A为椭圆内一定点(异于焦点),P是C上的一个动点,F是C的一个焦 点,e是C的离心率,求
图3 则 当且仅当AB过焦点F时等号成立。 故M到椭圆右准线的最短距离为 。 评注: 是椭圆的通径长,是椭圆焦点弦长的最小值, 是AB能过焦点的充要条件。
椭圆中减少运算量的主要方法 椭圆中减少运算量提高计算速度有多种方法,以下的四种主要方法比较 常用,能够有效地减少运算量,希望同学们切实掌握。 一、追根溯源,回归定义 椭圆中许多性质都是由定义派生出来的,如果能够从其定义出发,挖掘 它的性质,把定量的计算和定性的分析有机地结合起来,则可以大大地 减少运算量。 例1. (全国高中数学联赛)给定A(-2,2),已知B是椭圆 上的动点,F是左焦点,当 取得最小值时,求B点坐标。 分析:如果设点B的坐标
减少解析计算的又一个重要手段,是在解题中充分运用平面几何
知识.
【例6】(07.湖南文科.9题)设分别是椭圆()的左、右焦点,是
其右准线上纵坐标为(为半焦距)的点,且,则椭圆的离心率是( )
A.
B.
C.
D.
【解析】如图有,设右准线交x轴于H,
∵
,选D.
【例7】已知椭圆和圆
总有公共点,则实数的取值范围是
椭圆 (1)第一定义——把椭圆从圆中分离 椭圆从圆(压缩)变形而来,从而使得椭圆与圆相关而又相异. 它从 圆中带来了中心和定长,但又产生了2个新的定点——焦点. 准确、完整 地掌握椭圆的定义,是学好椭圆、并进而学好圆锥曲线理论的基础. 【例1】 若点M到两定点F1(0,-1),F2(0,1)的距离之和为2, 则点M的轨迹是 ( ) .椭圆 .直线 .线段 .线段的中垂线.
椭圆方程的标准式有明显的几何特征,这个几何特征就反映在这个 勾股数组上. 所谓解椭圆说到底是解这个勾股数组.
【例2】已知圆,圆内一定点(3,0),圆过点且与圆内切,求圆 心的轨迹方程.
【解析】如图,设两圆内切于C,动点P(x,y), 则A、P、C共线. 连AC、PB,∵ 为定长,而A(-3,0),B(3,0)为定点,∴圆心的 轨迹是椭圆.且.所求轨迹方程为: .
(3)第二定义——椭圆的个性向圆锥曲线共性加盟 如果说椭圆第一定义的主要功能是导出了椭圆的方程,那么椭圆的 第二定义则给椭圆及其方程给出了深刻的解释.根据这个解释,我们可 以方便地解决许多关于椭圆的疑难问题. 【例3】已知椭圆,能否在此椭圆位于y轴左侧部分上找一点P,使 它到左准线的距离是它到两焦点F1,F2距离的比例中项. 【解析】由椭圆方程知:. 椭圆的左准线为:.设存在椭圆上一点P(x,y)
. 故方程(2)亦有相等二实根,且其根为:
.则切线方程为: .再化简即得:. 【证明二】(导数法)对方程两边取导数:
.则切线方程为: .再化简即得:. 【评注】(1)两种证法的繁简相差多大,一看便知 (2)这个切线方程的实际意义很大.在有关运算中直接引用这个
公式是十分省事的.
(3)几何法——应有相等二实根.由 .∵k>0,∴取,选D.
【评注】直线与曲线相切的解析意义是相应的一元二次方程有相 等二实根,因而可转化为其判别式为零处理;同理,直线与曲线相交要 求相应的判别式大于零,相离则要求这个判别式小于零.
(2)导数法——把方程与函数链接 由于解析法往往牵涉到比较繁杂的运算,所以人们在解题中研究
的最小值。 例1. 已知椭圆
内有一点A(2,1),F是椭圆C的左焦点,P为椭圆C上的动点,求
的最小值。 分析:注意到式中的数值“ ”恰为 ,则可由椭圆的第二定义知 等于椭圆上的点P到左准线的距离。这种方法在本期《椭圆中减少运算 量的主要方法》一文中已经介绍过,这里不再重复,答案为 。 二、 的最值 若A为椭圆C内一定点(异于焦点),P为C上的一个动点,F是C的一个焦 点,求 的最值。 例2. 已知椭圆 内有一点A(2,1),F为椭圆的左焦点,P是椭圆上动点,求 的最大值与最小值。 解:如图1,设椭圆的右焦点为 ,可知其坐标为(3,0)
,再求 则计算量相当大,而如果利用椭圆的第二定义,把 转化为B点到左准线的距离就简单的多。 解:由已知椭圆方程得: ,左准线为 。如图1,过B点作左准线的垂线,垂足为N。过A点作此准线的垂线,垂 足为M。根据椭圆的第二定义得:
则 ( 为定值) 当且仅当B点是线段AM与椭圆的交点时等号成立。 可解得B点的坐标是 二、充分运用平面几何性质 结合平面几何的知识解决椭圆中的有关问题,也是避免繁杂运算的有效 途径之一。 例2. 椭圆 的焦点为 ,点P为其上的动点。当
【解析】注意到且故点M只能在线段上运动,即点M的轨迹就是线 段,选C.
【评注】椭圆的定义中有一个隐含条件,那就是动点到两定点的距 离之和必须大于两定点间的距离.忽视这一点,就会错误地选A.
(2)勾股数组——椭圆方程的几何特征 椭圆的长、短半轴a、b和半焦距c,满足
.在a、b、c三个参数中,只要已知或求出其中的任意两个,便可以 求出第3个,继而写出椭圆方程和它的一切特征数值.
为钝角时,点P的横坐标的取值范围是____________。 分析:用 为钝角的充要条件 和焦半径公式 以及余弦定理解题,最后因计算量过大均可能造成繁解或错解。而充分 运用平面几何性质则会得以简解。 解:依题意 以原点为圆心, 为半径作圆,则 是圆的直径。 若P点在圆外,则 为锐角;若P点在圆上,则 为直角;若P点在圆内,则 为钝角。 联立
()
【解析】如右图椭圆的中心在原点,
且长、短半轴分别为a=2,b=1;圆
的圆心为C(a,0)且半径R=1.
显然,当圆C从椭圆左边与之相切右移到椭圆
右边与之相切时都有公共点.此时圆心的横坐标由-3增加到3,故a∈,选
C.
在解析几何解体中引入平面几何知识包含两个重要方面,一是恰
当地运用平面几何知识及其推理功能,二是利用图形变换去进行数量
的最小值。 解:如图2,设F为椭圆的左焦点,可知其坐标为
图2 根据椭圆的第二定义有:
,即
可知当P、F、A三点共线且P在线段AF上时, 最小,最小值 。 故 的最小值为10。 四、椭圆上定长动弦中点到准线距离的最值 例4. 定长为
的线段AB的两个端点分别在椭圆
上移动,求AB的中点M到椭圆右准线 的最短距离。 解:设F为椭圆的右焦点,如图3,作 于A”,BB”⊥ 于B”,MM”⊥ 于M”
(5)三角法——与解析法珠联璧合 三角学的资源丰富,方法灵活.在解析几何解题中适当引入三角知 识,优点多多.例如椭圆方程的三角形式是:,既将点的坐标中的两个 变量减少为一个,又可以利用三角的优势去解决解析几何中的疑难. 【例9】若P是椭圆上的点,F1和F2是焦点,则的最大值和最小值分 别是 【解析】椭圆的长、短半轴分别为a=2,b=,∴半焦距c=1.焦点坐 标分别为:F1(-1,0),F2(1,0).设椭圆上一点为,那么 . 同理;.于是 故所求最大值为4,最小值是3. 【例10】如图1,中心在原点O的椭圆的右焦点为F(3,0),右
【分析】点P在已知轨迹(椭圆在第一象限的部分)上, 是主动点;点M在未知轨迹上,且随着点P的运动而运动,是 被动点.故本例是典型的国际已知轨迹求未知轨迹,适合用坐标 转移法解之.此外,过椭圆上一点P的切线方程,可以直接运用 例5的结论.
【解析】椭圆的半焦距,离心率 .又椭圆的焦点在y轴上,故其 方程为:.
(x<0)符合所设条件.作PH⊥l于H.令 ,则有: .但是 . ∴.又. 这与矛盾.故在椭圆左侧上不存在符合题设条件的点.
● 通法 特法 妙法
(1)解析法——解析几何存在的理由
解析法的实质是用代数的方法学习和研究几何.在解析几何的模式
下,平面上任意一条曲线都唯一对应着一个二元方程.反之,根据任意
,则
由<1>-<2>得: 则直线AB的斜率为:
故弦AB所在直线的方程为:
即 利用韦达定理、曲线系方程、建立恰当的坐标系、整体代换、三角换元 等方法也能起到减少运算量、提高计算速度的作用,在此就不再赘述 了。 椭圆 1已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1与椭圆交 于P和Q,且OP⊥OQ,|PQ|=,求椭圆方程
【解析】椭圆的半焦距c=3,右准线x = 12 .
图2
故椭圆方程为:,其离心率. 如图2设为椭圆上符合条件的三点,令.作P1H1⊥于H1,令, 设∠P1Fx=θ则∠P2Fx=θ+120°∠P3Fx= 120°-θ.于是,而. 同理:.于是
,故为定值. 如果读者有极坐标的有关知识,则本题的解法将更为简洁 圆锥曲线的极坐标方程是:.其中e是椭圆的离心率,p是相应焦点
的分析与计算.
(4)转移法——将生疏向熟知化归 做数学题如果题题都从最原始的地方起步,显然是劳神费力且违 反数学原则的.不失时机地运用前此运算成果就成为数学思想的本质特
点.而转移法正是这一思想的具体体现. 【例8】(06.全国一卷.20题)在平面直角坐标系中,有一个以和为
焦点,离心率为的椭圆.设椭圆在第一象限的部分为曲线C,动点P在C 上,C在点P处的切线与x,y轴的交点分别为A,B且向量OM=OA+OB.试求 点M的轨迹方程
设点P的坐标为那么 过点P的椭圆切线方程为: 在方程(2)中,令y=0,得. 设点M的坐标为.由OM=OA+OB ,代入(1):. ∵,∴所求点M的轨迹方程是:. 转移法求轨迹方程的基本步骤是:(1)在已知轨迹上任取一点
M(x0,y0),并写出其满足的已知关系式;(2)设P(x,y)为待 求轨迹上一点,并根据题设条件求出两个坐标的关系式;(3)用x,y 的代数式分别表示x0,y0,代入(1)中的关系式化简即得.