2020年江西省抚州市中考数学模拟试题及答案解析

合集下载

【附5套中考模拟试卷】江西省抚州市2019-2020学年第四次中考模拟考试数学试卷含解析

【附5套中考模拟试卷】江西省抚州市2019-2020学年第四次中考模拟考试数学试卷含解析
16.竖直上抛的小球离地面的高度h(米)与时间t(秒)的函数关系式为h=﹣2t2+mt+ ,若小球经过 秒落地,则小球在上抛的过程中,第____秒时离地面最高.
17.分解因式:x3y﹣2x2y+xy=______.
18.一个正方形AOBC各顶点的坐标分别为A(0,3),O(0,0),B(3,0),C(3,3).若以原点为位似中心,将这个正方形的边长缩小为原来的 ,则新正方形的中心的坐标为_____.
(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.
22.(8分)如图,大楼AB的高为16m,远处有一塔CD,小李在楼底A处测得塔顶D处的仰角为60°,在楼顶B处测得塔顶D处的仰角为45°,其中A、C两点分别位于B、D两点正下方,且A、C两点在同一水平线上,求塔CD的高.( =1.73,结果保留一位小数.)
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,已知抛物线 的对称轴为直线 ,且抛物线与 轴交于 、 两点,与 轴交于 点,其中 , .
(1)若直线 经过 、 两点,求直线 和抛物线的解析式;
(2)在抛物线的对称轴 上找一点 ,使点 到点 的距离与到点 的距离之和最小,求出点 的坐标;
A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2
7.甲、乙两人分别以4m/s和5m/s的速度,同时从100m直线型跑道的起点向同一方向起跑,设乙的奔跑时间为t(s),甲乙两人的距离为S(m),则S关于t的函数图象为( )
A. B. C. D.
8.甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.1.其中说法正确的有( )

江西省抚州市2019-2020学年中考数学最后模拟卷含解析

江西省抚州市2019-2020学年中考数学最后模拟卷含解析

江西省抚州市2019-2020学年中考数学最后模拟卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.3月22日,美国宣布将对约600亿美元进口自中国的商品加征关税,中国商务部随即公布拟对约30亿美元自美进口商品加征关税,并表示,中国不希望打贸易战,但绝不惧怕贸易战,有信心,有能力应对任何挑战.将数据30亿用科学记数法表示为( )A .3×109B .3×108C .30×108D .0.3×10102.如图,已知AB ∥CD ,DE ⊥AF ,垂足为E ,若∠CAB=50°,则∠D 的度数为( )A .30°B .40°C .50°D .60°3.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字的一面相对面上的字是( )A .国B .厉C .害D .了4.如图所示的几何体的主视图是( )A .B .C .D .5.如图,在ABCD Y 中,E 为边CD 上一点,将ADE V 沿AE 折叠至AD'E △处,'AD 与CE 交于点F ,若52B ∠=︒,20DAE ∠=︒,则'FED ∠的大小为( )A .20°B .30°C .36°D .40°6.如图,已知在△ABC ,AB =AC .若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是( )A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE7.如图,Rt △ABC 中,∠C=90°,∠A=35°,点D 在边BC 上,BD=2CD .把△ABC 绕着点D 逆时针旋转m (0<m <180)度后,如果点B 恰好落在初始Rt △ABC 的边上,那么m=( )A .35°B .60°C .70°D .70°或120°8.如图1,点E 为矩形ABCD 的边AD 上一点,点P 从点B 出发沿BE→ED→DC 运动到点C 停止,点Q 从点B 出发沿BC 运动到点C 停止,它们运动的速度都是1cm/s .若点P 、Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2),已知y 与t 之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ 是等腰三角形;②S △ABE =48cm 2;③14<t <22时,y=110﹣1t ;④在运动过程中,使得△ABP 是等腰三角形的P 点一共有3个;⑤当△BPQ 与△BEA 相似时,t=14.1.其中正确结论的序号是( )A .①④⑤B .①②④C .①③④D .①③⑤9.已知点()P m,n ,为是反比例函数3y=-x 上一点,当-3n<-1≤时,m 的取值范围是( ) A .1m<3≤ B .-3m<-1≤ C .1<m 3≤ D .-3<m -1≤10.下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是( )A .B .C .D .11.在国家“一带一路”倡议下,我国与欧洲开通了互利互惠的中欧专列.行程最长,途经城市和国家最多的一趟专列全程长13000 km ,将13000用科学记数法表示应为( )A .0.13×105B .1.3×104C .1.3×105D .13×10312.某共享单车前a 公里1元,超过a 公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a 应该要取什么数( )A .平均数B .中位数C .众数D .方差二、填空题:(本大题共6个小题,每小题4分,共24分.)13.因式分解2242x x -+=______.14.函数y=12x -的定义域是________. 15.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB =8,CD =2,则EC 的长为_______.16.如图,等腰△ABC 的周长为21,底边BC=5,AB 的垂直平分线DE 交AB 于点D ,交AC 于点E ,则△BEC 的周长为____.17.如图,直线123y x =+与x 轴交于点A ,与y 轴交于点B ,点D 在x 轴的正半轴上,OD OA =,过点D 作CD x ⊥轴交直线AB 于点C ,若反比例函数(0)k y k x =≠的图象经过点C ,则k 的值为_________________.18.因式分解:32a ab -=_______________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在等腰Rt △ABC 中,∠ACB=90°,AC=BC ,点D 是边BC 上任意一点,连接AD ,过点C 作CE ⊥AD 于点E .(1)如图1,若∠BAD=15°,且CE=1,求线段BD 的长;(2)如图2,过点C 作CF ⊥CE ,且CF=CE ,连接FE 并延长交AB 于点M ,连接BF ,求证:AM=BM .20.(6分)如图,已知AB 是O e 的直径,点C 、D 在O e 上,60D ∠=o 且6AB =,过O 点作OE AC ⊥,垂足为E .()1求OE 的长;()2若OE 的延长线交O e 于点F ,求弦AF 、AC 和弧CF 围成的图形(阴影部分)的面积S . 21.(6分)从甲地到乙地有两条公路,一条是全长600km 的普通公路,另一条是全长480km 的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h ,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.22.(8分)已知四边形ABCD 为正方形,E 是BC 的中点,连接AE ,过点A 作∠AFD ,使∠AFD=2∠EAB ,AF 交CD 于点F ,如图①,易证:AF=CD+CF .(1)如图②,当四边形ABCD 为矩形时,其他条件不变,线段AF ,CD ,CF 之间有怎样的数量关系?请写出你的猜想,并给予证明;(2)如图③,当四边形ABCD 为平行四边形时,其他条件不变,线段AF ,CD ,CF 之间又有怎样的数量关系?请直接写出你的猜想.图① 图② 图③23.(8分)一个不透明的口袋里装有分别标有汉字“美”、“丽”、“光”、“明”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;(2)甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.24.(10分)某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x的取值范围.垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值.25.(10分)如图,在四边形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,AB=3,点E,F同时从B点出发,沿射线BC向右匀速移动,已知点F的移动速度是点E移动速度的2倍,以EF为一边在CB 的上方作等边△EFG,设E点移动距离为x(0<x<6).(1)∠DCB=度,当点G在四边形ABCD的边上时,x=;(2)在点E,F的移动过程中,点G始终在BD或BD的延长线上运动,求点G在线段BD的中点时x 的值;(3)当2<x<6时,求△EFG与四边形ABCD重叠部分面积y与x之间的函数关系式,当x取何值时,y有最大值?并求出y的最大值.26.(12分)将一个等边三角形纸片AOB放置在平面直角坐标系中,点O(0,0),点B(6,0).点C、D分别在OB、AB边上,DC∥OA,CB=23.(I)如图①,将△DCB沿射线CB方向平移,得到△D′C′B′.当点C平移到OB的中点时,求点D′的坐标;(II)如图②,若边D′C′与AB的交点为M,边D′B′与∠ABB′的角平分线交于点N,当BB′多大时,四边形MBND′为菱形?并说明理由.(III)若将△DCB绕点B顺时针旋转,得到△D′C′B,连接AD′,边D′C′的中点为P,连接AP,当AP最大时,求点P的坐标及AD′的值.(直接写出结果即可).27.(12分)如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】将数据30亿用科学记数法表示为9310⨯,故选A .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.B【解析】试题解析:∵AB ∥CD ,且50CAB ∠=︒,50ECD ∴∠=︒,ED AE Q ,⊥ 90CED ∴∠=︒,∴在Rt CED V 中,905040D .∠=︒-︒=︒ 故选B .3.A【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】∴有“我”字一面的相对面上的字是国.故答案选A.【点睛】本题考查的知识点是专题:正方体相对两个面上的文字,解题的关键是熟练的掌握正方体相对两个面上的文字.4.A【解析】【分析】找到从正面看所得到的图形即可.【详解】解:从正面可看到从左往右2列一个长方形和一个小正方形,故选A .【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.C【解析】【分析】由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,由三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小.【详解】∵四边形ABCD 是平行四边形,∴D B 52∠∠==︒,由折叠的性质得:D'D 52∠∠==︒,EAD'DAE 20∠∠==︒,∴AEF D DAE 522072∠∠∠=+=︒+︒=︒,AED'180EAD'D'108∠∠∠=︒--=︒,∴FED'1087236∠=︒-︒=︒;故选C .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AEF 和∠AED′是解决问题的关键.6.C【解析】解:∵AB=AC ,∴∠ABC=∠ACB .∵以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,∴BE=BC ,∴∠ACB=∠BEC ,∴∠BEC=∠ABC=∠ACB ,∴∠BAC=∠EBC .故选C .点睛:本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大. 7.D【解析】【分析】①当点B 落在AB 边上时,根据DB=DB 1,即可解决问题,②当点B 落在AC 上时,在RT △DCB 2中,根据∠C=90°,DB 2=DB=2CD 可以判定∠CB 2D=30°,由此即可解决问题.【详解】①当点B 落在AB 边上时, ∵, ∴, ∴,②当点B 落在AC 上时,在中, ∵∠C=90°,, ∴, ∴,故选D.【点睛】 本题考查的知识点是旋转的性质,解题关键是考虑多种情况,进行分类讨论.8.D【解析】【分析】根据题意,得到P 、Q 分别同时到达D 、C 可判断①②,分段讨论PQ 位置后可以判断③,再由等腰三角形的分类讨论方法确定④,根据两个点的相对位置判断点P 在DC 上时,存在△BPQ 与△BEA 相似的可能性,分类讨论计算即可.【详解】解:由图象可知,点Q 到达C 时,点P 到E 则BE=BC=10,ED=4故①正确则AE=10﹣4=6t=10时,△BPQ 的面积等于111040,22BC DC DC ⋅=⨯⋅= ∴AB=DC=8 故124,2ABE S AB AE =⋅=V 故②错误当14<t <22时,()1110221105,22y BC PC x t =⋅=⨯⨯-=- 故③正确;分别以A 、B 为圆心,AB 为半径画圆,将两圆交点连接即为AB 垂直平分线则⊙A 、⊙B 及AB 垂直平分线与点P 运行路径的交点是P ,满足△ABP 是等腰三角形此时,满足条件的点有4个,故④错误.∵△BEA 为直角三角形∴只有点P 在DC 边上时,有△BPQ 与△BEA 相似由已知,PQ=22﹣t ∴当AB PQ AE BC=或AB BC AE PQ =时,△BPQ 与△BEA 相似分别将数值代入822 610t-=或810 622t =-,解得t=13214(舍去)或t=14.1故⑤正确故选:D.【点睛】本题是动点问题的函数图象探究题,考查了三角形相似判定、等腰三角形判定,应用了分类讨论和数形结合的数学思想.9.A【解析】【分析】直接把n的值代入求出m的取值范围.【详解】解:∵点P(m,n),为是反比例函数y=-3x图象上一点,∴当-1≤n<-1时,∴n=-1时,m=1,n=-1时,m=1,则m的取值范围是:1≤m<1.故选A.【点睛】此题主要考查了反比例函数图象上点的坐标性质,正确把n的值代入是解题关键.10.C【解析】A、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;B、剪去阴影部分后,无法组成长方体,故此选项不合题意;C、剪去阴影部分后,能组成长方体,故此选项正确;D、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;故选C.11.B【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.将13000用科学记数法表示为:1.3×1.故选B.考点:科学记数法—表示较大的数12.B【解析】解:根据中位数的意义,故只要知道中位数就可以了.故选B . 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.22(1)x -. 【解析】解:2242x x -+=22(21)x x -+=22(1)x -,故答案为:22(1)x -.14.2x ≠ 【解析】分析:根据分式有意义的条件是分母不为0,即可求解. 详解:由题意得:x-2≠0,即x 2≠. 故答案为x 2≠点睛:本题考查了使函数有意义的自变量的取值范围的确定.函数是整式型,自变量去全体实数;函数是分式型,自变量是使分母不为0 的实数;根式型的函数的自变量去根号下的式子大于或等于0的实数;当函数关系式表示实际问题时,自变量不仅要使函数关系式有意义,还要使实际问题有意义. 15.213 【解析】 【分析】设⊙O 半径为r ,根据勾股定理列方程求出半径r ,由勾股定理依次求BE 和EC 的长. 【详解】 连接BE ,设⊙O 半径为r ,则OA=OD=r ,OC=r-2, ∵OD ⊥AB , ∴∠ACO=90°, AC=BC=12AB=4, 在Rt △ACO 中,由勾股定理得:r 2=42+(r-2)2, r=5, ∴AE=2r=10, ∵AE 为⊙O 的直径,∴∠ABE=90°,由勾股定理得:BE=6,在Rt△ECB中,EC==.故答案是:【点睛】考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.16.3【解析】试题分析:因为等腰△ABC的周长为33,底边BC=5,所以AB=AC=8,又DE垂直平分AB,所以AE=BE,所以△BEC的周长为=BE+CE+BC=AE+CE+BC=AC+BC=8+5=3.考点:3.等腰三角形的性质;3.垂直平分线的性质.17.1【解析】【分析】先求出直线y=13x+2与坐标轴的交点坐标,再由三角形的中位线定理求出CD,得到C点坐标.【详解】解:令x=0,得y=13x+2=0+2=2,∴B(0,2),∴OB=2,令y=0,得0=13x+2,解得,x=-6,∴A(-6,0),∴OA=OD=6,∵OB∥CD,∴CD=2OB=4,∴C(6,4),把c(6,4)代入y=kx(k≠0)中,得k=1,故答案为:1.【点睛】本题考查了一次函数与反比例函数的综合,需要掌握求函数图象与坐标轴的交点坐标方法,三角形的中位线定理,待定系数法.本题的关键是求出C点坐标.18.a(a+b)(a-b).【解析】分析:本题考查的是提公因式法和利用平方差公式分解因式.解析:原式= a(a+b)(a-b).故答案为a(a+b)(a-b).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.;(2)见解析19.(1) 2﹣3【解析】分析:(1)先求得:∠CAE=45°-15°=30°,根据直角三角形30°角的性质可得AC=2CE=2,再得∠ECD=90°-60°=30°,设ED=x,则CD=2x x=1,求得x的值,可得BD的长;(2)如图2,连接CM,先证明△ACE≌△BCF,则∠BFC=∠AEC=90°,证明C、M、B、F四点共圆,则∠BCM=∠MFB=45°,由等腰三角形三线合一的性质可得AM=BM.详解:(1)∵∠ACB=90°,AC=BC,∴∠CAB=45°,∵∠BAD=15°,∴∠CAE=45°﹣15°=30°,Rt△ACE中,CE=1,∴AC=2CE=2,Rt△CED中,∠ECD=90°﹣60°=30°,∴CD=2ED,设ED=x,则CD=2x,∴,,x=,3∴CD=2x=,3∴BD=BC﹣CD=AC﹣CD=2;(2)如图2,连接CM,∵∠ACB=∠ECF=90°,∴∠ACE=∠BCF,∵AC=BC,CE=CF,∴△ACE≌△BCF,∴∠BFC=∠AEC=90°,∵∠CFE=45°,∴∠MFB=45°,∵∠CFM=∠CBA=45°,∴C、M、B、F四点共圆,∴∠BCM=∠MFB=45°,∴∠ACM=∠BCM=45°,∵AC=BC,∴AM=BM.点睛:本题考查了三角形全等的性质和判定、等腰直角三角形的性质和判定、等腰三角形三线合一的性质、直角三角形30°角的性质和勾股定理,第二问有难度,构建辅助线,证明△ACE≌△BCF是关键.20.(1)OE=32;(2)阴影部分的面积为32【解析】【分析】(1)由题意不难证明OE为△ABC的中位线,要求OE的长度即要求BC的长度,根据特殊角的三角函数即可求得;(2)由题意不难证明△COE≌△AFE,进而将要求的阴影部分面积转化为扇形FOC的面积,利用扇形面积公式求解即可.【详解】解:(1) ∵AB是⊙O的直径,∴∠ACB=90°,∵OE⊥AC,∴OE // BC,又∵点O是AB中点,∴OE是△ABC的中位线,∵∠D=60°,∴∠B=60°,又∵AB=6, ∴BC=AB·cos60°=3, ∴OE=12 BC=32; (2)连接OC , ∵∠D=60°, ∴∠AOC=120°, ∵OF ⊥AC ,∴AE=CE ,¶AF =¶CF, ∴∠AOF=∠COF=60°, ∴△AOF 为等边三角形, ∴AF=AO=CO ,∵在Rt △COE 与Rt △AFE 中,AF COAE CE=⎧⎨=⎩, ∴△COE ≌△AFE ,∴阴影部分的面积=扇形FOC 的面积,∵S 扇形FOC =2603360π⨯=32π.∴阴影部分的面积为32π.【点睛】本题主要考查圆的性质、全等三角形的判定与性质、中位线的证明以及扇形面积的计算,较为综合. 21.4小时. 【解析】 【分析】本题依据题意先得出等量关系即客车由高速公路从A 地道B 的速度=客车由普通公路的速度+45,列出方程,解出检验并作答. 【详解】解:设客车由高速公路从甲地到乙地需x 小时,则走普通公路需2x 小时,根据题意得: 60048045,2x x+= 解得x =4经检验,x =4原方程的根,答:客车由高速公路从甲地到乙地需4时. 【点睛】本题主要考查分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.根据速度=路程÷时间列出相关的等式,解答即可.22.(1)图②结论:AF=CD+CF. (2)图③结论:AF=CD+CF. 【解析】试题分析:(1)作DC ,AE 的延长线交于点G .证三角形全等,进而通过全等三角形的对应边相等验证AF CF CD ,,之间的关系;(2)延长FE 交AB 的延长线于点,H 由全等三角形的对应边相等验证AF CF CD ,,关系. 试题解析:(1)图②结论:.AF CD CF =+ 证明:作DC ,AE 的延长线交于点G .∵四边形ABCD 是矩形,.G EAB ∴∠=∠22AFD EAB G FAG G ∠=∠=∠=∠+∠Q ,.G FAG ∴∠=∠ .AF FG CF CG ∴==+由E 是BC 中点,可证CGE V ≌BAE V ,.CG AB CD ∴== .AF CF CD ∴=+(2)图③结论:.AF CD CF =+ 延长FE 交AB 的延长线于点,H 如图所示因为四边形ABCD 是平行四边形 所以AB //CD 且AB CD =,因为E 为BC 的中点,所以E 也是FH 的中点, 所以FE HF BH CF ==,, 又因为2,AFD EAB ∠=∠,BAF EAB FAE ∠=∠+∠所以,EAB EAF ∠=∠ 又因为,AE AE = 所以EAH △≌,EAF V 所以,AF AH =因为,AH AB BH CD CF =+=+.AF CF CD ∴=+23. (1)14;(2)13. 【解析】 【分析】(1)一共4个小球,则任取一个球,共有4种不同结果,摸出球上的汉字刚好是“美”的概率为14; (2)列表或画出树状图,根据一共出现的等可能的情况及恰能组成“美丽”或“光明”的情况进行解答即可. 【详解】(1) ∵“美”、“丽”、“光”、“明”的四个小球,任取一球,共有4种不同结果, ∴任取一个球,摸出球上的汉字刚好是“美”的概率P=14(2)列表如下:美丽光明根据表格可得:共有12中等可能的结果,其中恰能组成“美丽”或“光明”共有4种,故 取出的两个球上的汉字恰能组成“美丽”或“光明”的概率13P =. 【点睛】此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比. 24.112.1 【解析】试题分析:(1)根据题意即可求得y 与x 的函数关系式为y=30﹣2x 与自变量x 的取值范围为6≤x <11; (2)设矩形苗圃园的面积为S ,由S=xy ,即可求得S 与x 的函数关系式,根据二次函数的最值问题,即可求得这个苗圃园的面积最大值.试题解析:解:(1)y=30﹣2x (6≤x <11).(2)设矩形苗圃园的面积为S ,则S=xy=x (30﹣2x )=﹣2x 2+30x ,∴S=﹣2(x ﹣7.1)2+112.1,由(1)知,6≤x <11,∴当x=7.1时,S 最大值=112.1,即当矩形苗圃园垂直于墙的一边的长为7.1米时,这个苗圃园的面积最大,这个最大值为112.1.点睛:此题考查了二次函数的实际应用问题.解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.25. (1) 30;2;(2)x=1;(3)当x=187时,y 最大; 【解析】 【分析】(1)如图1中,作DH ⊥BC 于H ,则四边形ABHD 是矩形.AD=BH=3,BC=6,CH=BC ﹣BH=3,当等边三角形△EGF 的高 时,点G 在AD 上,此时x=2;(2)根据勾股定理求出BD 的长度,根据三角函数,求出∠ADB=30°,根据中点的定义得出1122BG BD ==⨯=根据等边三角形的性质得到BF ,即可求出x 的值; (3)图2,图3三种情形解决问题.①当2<x<3时,如图2中,点E 、F 在线段BC 上,△EFG 与四边形ABCD 重叠部分为四边形EFNM ;②当3≤x<6时,如图3中,点E 在线段BC 上,点F 在射线BC 上,重叠部分是△ECP ; 【详解】(1)作DH ⊥BC 于H ,则四边形ABHD 是矩形.∵AD=BH=3,BC=6, ∴CH=BC ﹣BH=3,在Rt △DHC 中,CH=3,3,DH AB ==∴3tan 3DH DCB CH ∠== 当等边三角形△EGF 3G 在AD 上,此时x=2,∠DCB=30°, 故答案为30,2, (2)如图 ∵AD ∥BC∴∠A=180°﹣∠ABC=180°﹣90°=90° 在Rt △ABD 中,()22223323,BD AB BD =+=+=31sin ,223AB ADB BD ∠===Q ∴∠ADB=30°∵G 是BD 的中点 ∴11233,22BG BD ==⨯= ∵AD ∥BC∴∠ADB=∠DBC=30° ∵△GEF 是等边三角形, ∴∠GFE=60° ∴∠BGF=90°在Rt△BGF中,32, cos cos30BGBFGBF===∠o∴2x=2即x=1;(3)分两种情况:当2<x<3,如图2点E、点F在线段BC上△GEF与四边形ABCD重叠部分为四边形EFNM ∵∠FNC=∠GFE﹣∠DCB=60°﹣30°=30°∴∠FNC=∠DCB∴FN=FC=6﹣2x∴GN=x﹣(6﹣2x)=3x﹣6∵∠FNC=∠GNM=30°,∠G=60°∴∠GMN=90°在Rt△GNM中,133333tan603333, 222MG GN x NM MG x x⎛⎫==-=⋅=-⨯=-⎪⎝⎭o∴131333333,22222EFG GMNxy S S x x x⎛⎫⎛⎫=-=⨯⋅---⎪⎪ ⎪⎝⎭⎝V V22739393731893.7x x x⎛⎫=-+-=--+⎪⎝⎭∴当187x=时,y最大93.7=当3≤x<6时,如图3,点E在线段BC上,点F在线段BC的延长线上,△GEF与四边形ABCD重叠部分为△ECP∵∠PCE=30°,∠PEC=60°∴∠EPC=90°在Rt △EPC 中EC=6﹣x , 113,22EP EC x ==-1tan 3tan 60,22PC EP PEC x x ⎛⎫=⋅∠=-⋅= ⎪⎝⎭o211322y x x x x ⎛⎫⎛⎫∴=⨯-=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭对称轴为6,x == 当x <6时,y 随x 的增大而减小∴当x=3时,y最大= 综上所述:当187x =时,y最大7= 【点睛】 属于四边形的综合题,考查动点问题,等边三角形的性质,三角函数,二次函数的最值等,综合性比较强,难度较大.26.(Ⅰ)D′(3);(Ⅱ)当MBND'是菱形,理由见解析;(Ⅲ)P(15,22-). 【解析】【分析】(Ⅰ)如图①中,作DH ⊥BC 于H .首先求出点D 坐标,再求出CC′的长即可解决问题;(Ⅱ)当MBND'是菱形.首先证明四边形MBND′是平行四边形,再证明BB′=BC′即可解决问题;(Ⅲ)在△ABP 中,由三角形三边关系得,AP <AB+BP ,推出当点A ,B ,P 三点共线时,AP 最大.【详解】(Ⅰ)如图①中,作DH ⊥BC 于H ,∵△AOB是等边三角形,DC∥OA,∴∠DCB=∠AOB=60°,∠CDB=∠A=60°,∴△CDB是等边三角形,∵CB=23,DH⊥CB,∴CH=HB=3,DH=3,∴D(6﹣3,3),∵C′B=3,∴CC′=23﹣3,∴DD′=CC′=23﹣3,∴D′(3+3,3).(Ⅱ)当BB'=3时,四边形MBND'是菱形,理由:如图②中,∵△ABC是等边三角形,∴∠ABO=60°,∴∠ABB'=180°﹣∠ABO=120°,∵BN是∠ACC'的角平分线,∴∠NBB′'=12∠ABB'=60°=∠D′C′B,∴D'C'∥BN,∵AB∥B′D′∴四边形MBND'是平行四边形,∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,∴△MC′B'和△NBB'是等边三角形,∴MC=CE',NC=CC',∵B'C'=23,∵四边形MBND'是菱形,∴BN=BM ,∴BB'=12B'C'=3; (Ⅲ)如图连接BP ,在△ABP 中,由三角形三边关系得,AP <AB+BP ,∴当点A ,B ,P 三点共线时,AP 最大,如图③中,在△D'BE'中,由P 为D'E 的中点,得AP ⊥D'E',3, ∴CP=3,∴AP=6+3=9,在Rt △APD'中,由勾股定理得,22AP PD +'21此时P (15233. 【点睛】此题是四边形综合题,主要考查了平行四边形的判定和性质,菱形的性质,平移和旋转的性质,等边三角形的判定和性质,勾股定理,解(2)的关键是四边形MCND'是平行四边形,解(3)的关键是判断出点A ,C ,P 三点共线时,AP 最大.27.(1)点B 的坐标为(1,0).(2)①点P 的坐标为(4,21)或(-4,5).②线段QD 长度的最大值为94. 【解析】【分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解.【详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0),∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0), ∴2a 1b 12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩.∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=,∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3).又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭. ∵a 10<=-,-3302<<-∴线段QD 长度的最大值为94.。

2020年数学中考模拟题(江西专用)

2020年数学中考模拟题(江西专用)

2020年中等学校招生考试数学模拟试题卷(江西专用)全卷满分120分,考试时间120分钟。

一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)11.的倒数是()2020A.﹣2020 B.2020C.11D.202020202.下列计算正确的是()A.a2a3a5B.(3a3b2)29a6b4C.2(a 3)2a 3D.(3a 2b)29a24b23.小明从左面观察如图所示的两个物体,看到的是()A.B.C.D.4.随着生活水平的日益提高,人们的购买力也随之逐年提高,2019 年天猫双11 的最终成交额锁定在2684亿元。

数2684亿用科学记数法表示为()A. 2.684×1010B. 26.84×1010C. 2.684×1011 A. 2.684×10125.已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155°D.165°6.如图,垂直于 x 轴的直线 AB 分别与抛物线 C :y=x 2(x≥0)和抛物线 C :y=x 24(x≥0)交于 A ,B 两点,过点 A 作 CD ∥x 轴分别与 y 轴和抛物线 C 交于点C ,D ,过点 B 作 EF ∥x 轴分别与 y 轴和抛物线 C 1 交于点E ,F ,则 V OFB 的值为SV EAD( )A .26B .2 1 1C .D .4 6 4二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)7.使得代数式 1 3 x 1有意义的 x 的取值范围是.2x 1 08.不等式组 的解集为.3x 5 109. 已知一组数据: 6 , 3 , 8 , x , 2 ,它们的众数是 6 ,则这组数据的平均数 是 .10.关于 x 的一元二次方程 x 2kx k k 0 的两个实数根分别是 x 、x ,且12x x =2,则 x 2 x 的值是 .1 21211.如图,在正方形 ABCD 中,对角线 AC 与 BD 相交于点 O ,E 为 BC 上一点, CE=5,F 为 DE 的中点.若△CEF 的周长为 18,则 OF 的长为.1 2 2 S2 2 212.在Rt△ABC 中,A 90o,B 60o,AB 3,点M,N分别是AB,BC上的动点,将△BMN沿直线MN翻折,点B的对应点B'恰好落在AC上,若△B'CN是等腰三角形,那么AM 的值是.三、(本大题共5小题,每小题6分,共30分)13.(1)解方程组:x y4①3x 2y7②(2)如图,在矩形ABCD 中,点E 是边BC 的三等分点(靠近B 点),AE⊥BD,垂足为F,AD=3,求AB 的长.14.先化简再求值:(a ab b2a22a bb )a b a b2,其中a 12,b 12.15.用无刻度的直尺绘图(1)如图,在Y ABCD中,AC为对角线,AC=BC,AE 是∥ABC的中线.画出∥ABC的高CHD 90o,AC为对角线,AC=BC,画出(2)如图,在直角梯形ABCD中,AB∥CD,∥ABC的高CH.16.如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形的圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止).(1)转动转盘一次,转出的数字为-2的概率是,转出的数字不是1的概率是;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之和为正数的概率.17.如图,直线 y=kx +b (k ≠0)与双曲线 y=mx1 (m ≠0)交于点 A (﹣ ,3),B3(n ,﹣1).(1)求直线与双曲线的解析式.(2)点 P 在 x 轴上,如果 S =4,求点 P 的坐标.四、(本大题共 3 小题,每小题 8 分,共 24 分)18.文化是一个国家、一个民族的灵魂,近年来,央视推出《中国诗词大会》、《中 国成语大会》、《朗读者》、《经典咏流传》等一系列文化栏目.为了解学生对这些 栏目的喜爱情况,某学校组织学生会成员随机抽取了部分学生进行调查,被调查 的学生必须从《经典咏流传》(记为 A )、《中国诗词大会》(记为 B )、《中国成语 大会》(记为 C )、《朗读者》(记为 D )中选择自己最喜爱的一个栏目,也可以写 出一个自己喜爱的其他文化栏目(记为 E ).根据调查结果绘制成如图所示的两 幅不完整的统计图.请根据图中信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)将条形统计图补充完整,并求出扇形统计图中 “B”所在扇形圆心角的度数;ABP△(3)若该校共有1800 名学生,试估算喜欢《中国诗词大会》的学生人数。

2020年江西中考数学模拟试卷10套附答案

2020年江西中考数学模拟试卷10套附答案

kx题号中考数学模拟试卷 一 二 三 四 总分得分一、选择题(本大题共 6 小题,共 18.0 分)1.下列几何体中,俯视图为三角形的是( )A.B. C. D.2.下列各式中,与 是同类二次根式的是( ) A. B. C. D. 3. 实数 a ,b 在数轴上的位置如图所示,以下说法正确的是()A. a+b=0B. b <aC. |b|<|a|D. ab >0 4. 如图,四边形 ABCD 内接于⊙O ,它的一个外角∠EBC =65°,分别连接 AC ,BD ,若AC =AD ,则∠DBC 的度数为()A. 50°B. 55°C. 65°D. 70°5. 如图,将 6 张长为 a ,宽为 b 的矩形纸板无重叠地放置在一个矩形纸盒内,盒底未被覆盖的两个矩形面积分别记为S 、S ,当 S =2S 时,则 a 与 b 的关系为( ) 12 2 1A. a=0.5bB. a=bC. a=1.5bD. a=2b 6. 如图,直线 y =kx +b 与 y =mx +n 分别交 x 轴于点 A(-1,0),B (4,0),则不等式( +b )(mx +n )> 0 的解集为( )A. x >2B. 0<x <4C. -1<x <4D. x <-1 或 x >4二、填空题(本大题共 6 小题,共 18.0 分)7.函数 y = 中,自变量 x 的取值范围是______.8.如果 x +y =5,那么代数式的值是______.x∠ 9. 如图,量角器的 0 度刻度线为 AB ,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C ,直尺另一边交量角器于点 A ,D ,量得 AD =10cm ,点 D 在量角器上的读数为 60°,则该直尺的宽度为______cm .10. 我国古代数学名著《孙子算经》中记载了一道题,大意是:100 匹马恰好拉了 100 片瓦,已知3 匹小马能拉 1 片瓦,1 匹大马能拉 3 片瓦,求小马、大马各有多少匹.若设小马有 匹,大马有 y 匹 ,依题意,可列方程组为______.11. 如图,四边形ABCD 中,BC >AB , BCD =60°,AD =CD =6,对角线 BD 恰好平分∠ABC ,则 BC -AB =______.12. 如图,在矩形 ABCD 中,AB =4,AD =2,点 E 在 CD上,DE =1,点 F 是边 AB 上一动点,以 EF 为斜边作△Rt EFP .若点 P 在矩形 ABCD 的边上,且这样的直角三角形恰好有两个,则 AF 的值是______.三、计算题(本大题共 2 小题,共 6.0 分)13. 计算:|-3|+(π-2019)0-2sin30°.14. 解方程:= .四、解答题(本大题共 10 小题,共 78.0 分)15. 如图,在 △Rt ABC 中,∠A =90°,若 AB =10,AC =3,以 A 为一个顶点作正方形 ADEF,使得点 E 落在 BC 边上,请在下图中画好图形,求出正方形 ADEF 的边长.1 1 1 ”116. 如图,在正方形 ABCD 中,点 M 是 BC 边上任意一点,请你仅用无刻度直尺、用连线的方法,分别在图(1)、图(2)中按要求作图(保留作图痕迹,不写作法) . (1)在图(1)中,在 AB 边上求作一点 N ,连接 CN ,使 CN =AM ;(2)在图(2)中,在 AD 边上求作一点 Q ,连接 CQ ,使 CQ ∥AM .17. 如图,三根同样的绳子 AA 、BB 、CC 穿过一块木板, 姐妹两人分别站在木板的左、右两侧,每次各自选取本侧的一根绳子,每根绳子被选中的机会相等.(1)问:“姐妹两人同时选中同一根绳子 这一事件是 ______事件,概率是______;(2)在互相看不见的条件下,姐姐先将左侧 A 、C 两个绳端打成一个连结,则妹 妹从右侧 A 1、B 1 、C 三个绳端中随机选两个打一个结(打结后仍能自由地通过木 孔);请求出“姐姐抽动绳端 B ,能抽出由三根绳子连结成一根长绳”的概率是多 少?18. 小红帮弟弟荡秋千(如图 1),秋千离地面的高度 h (m )与摆动时间 t (s )之间的 关系如图 2 所示.(1)根据函数的定义,请判断变量 h 是否为关于 t 的函数?(2)结合图象回答:①当 t =0.7s 时,h 的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?19. 某软件科技公司 20 人负责研发与维护游戏、网购、视频和送餐共 4 款软件.投入市场后,游戏软件的利润占这4 款软件总利润的 40%.如图是这4 款软件研发与维 护人数的扇形统计图和利润的条形统计图.根据以上信息,回答下列问题(1)直接写出图中 a ,m 的值;(2)分别求网购与视频软件的人均利润;(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频 软件的研发与维护人数,使总利润增加 60 万元?如果能,写出调整方案;如果不 能,请说明理由.20. 如图,四边形 ABCD 是平行四边形,点 A (1, ),B(3,1),C (3,3),反比例函数的图象经过点 D ,点 P 是一次函数 y =kx +3-3k (k ≠0)的图象F∠与该反比例函数图象的一个公共点.①求反比例函数解析式;②通过计算,说明一次函数y=kx+3-3k(k≠0)的图象一定过点C;③对于一次函数y=kx+3-k(k≠0)当y随x的增大而增大时,确定点P的横坐标的取值范围(不必写过程)21.如图1,滑动调节式遮阳伞的立柱AC垂直于地面AB,P为立柱上的滑动调节点,伞体的截面示意图为△PDE,为PD的中点,AC=2.8m,PD=2m,CF=1m,DPE=20°,当点P位于初始位置P0时,点D与C重合(图2).根据生活经验,当太阳光线与PE垂直时,遮阳效果最佳.(1)上午10:00时,太阳光线与地面的夹角为65°(图3),为使遮阳效果最佳,点P需从P0上调多少距离?(结果精确到0.1m)(2)中午12:00时,太阳光线与地面垂直(图4),为使遮阳效果最佳,点P在(1)的基础上还需上调多少距离?(结果精确到0.1m)(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.41,≈1.73)22.如图1,以边长为8的正方形纸片ABCD的边AB为直径做⊙O,交对角线A C于点E.(1)线段AE=______.(2)如图2,以点A为端点作∠DAM=30°,交CD于点M,沿AM将四边形ABCM 剪掉,使△Rt ADM绕点A逆时针旋转(如图3),设旋转角为α(0°<α<150°),旋转过程中AD与⊙O交于点F,①当α=30°时,请求出线段AF的长;②当α=60°时,求出线段AF的长;判断此时DM与⊙O的位置关系,并说明理由;③当α=______时,DM与⊙O相切.23.如图,已知抛物线y=-x2+bx+c与一直线相交于A(1,0)、C(-2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M△,使ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.24.定义:经过三角形一边中点,且平分三角形周长的直线叫做这个三角形在该边上的中分线,其中落在三角形内部的部分叫做中分线段.如图1△,ABC中,D为BC=中点,且 DE △平分 ABC 的周长,则称直线DE △是 ABC 在 BC 边上的中分线,线段DE 是△ABC 在 BC 边上的中分线段.(1)如图 2△, ABC 中,AB =AC =10,BC =12,∠ABC =α.①△ABC 在 BC 边上的中分线段长为______;②△ABC 在 AC 边上的中分线段长为______,它与底边 BC 所夹的锐角的度数为______(用 α 表示);(2)如图 3△, ABC 中,AC >AB ,DE 是△ABC 在 BC 边上的中分线段,F 为 AC 中点,过点 B 作 DE 的垂线交 AC 于点 G ,垂足为 H ,设 AC =b ,AB =c .①AE =______(用 b ,c 表示);②求证:DF =EF ;③若 b =6,c =4,求 CG 的长度;(3)若题(2)中,△S BDH △S EGH ,请直接写出 b :c 的值.答案和解析1.【答案】D【解析】解:A、的俯视图是圆,故A不符合题意;B、俯视图是矩形,故B不符合题意;C、俯视图是圆,故C不符合题意;D、俯视图是三角形,故D符合题意;故选:D.根据从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.2.【答案】B【解析】解:A、=2,故A不符合题意;B、,故B符合题意;C、,故C不符合题意;D、,故D不符合题意;故选:B.化简二次根式,可得最简二次根式,根据最简二次根式的被开方数相同,可得同类二次根式.本题考查了同类二次根式,先化简成最简二次根式,再比较被开方数得出答案.3.【答案】C【解析】解:由数轴,得a<-1,0<b<1,|a|>|b|,A、a+b<0,故A不符合题意;B、a<b,故B不符合题意;C、|b|<|a|,故C符合题意;D、ab<0,故D不符合题意;故选:C.根据数轴上点表示的数右边的总比左边的大,绝对值的意义,有理的数的运算,可得答案.本题考查了实数与数轴,利用数轴上点表示的数右边的总比左边的大,绝对值的意义得出a<-1,0<b<1,|a|>|b|是解题关键.4.【答案】A【解析】解:∵四边形ABCD内接于⊙O,∴∠ADC=∠EBC=65°.∵AC=AD,∴∠ACD=∠ADC=65°,∴∠CAD=180°-∠ACD-∠ADC=50°,∴∠DBC=∠CAD=50°,故选:A.先根据圆内接四边形的性质得出∠ADC=∠EBC=65°,再根据AC=AD得出∠ACD=∠ADC=65°,故可根据三角形内角和定理求出∠CAD=50°,再由圆周角定理得出∠DBC=∠CAD=50°.本题考查了圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.也1 22 1 2 12考查了等腰三角形的性质以及三角形内角和定理.5.【答案】D【解析】解:设矩形纸盒的宽为 x ,则 S =a (x -2b ),S =4b (x -a ), 根据题意得:4b (x -a )=2a (x -2b ),整理得:a =2b ,故选:D .设矩形的宽为 x ,表示出 S 与 S ,代入 S =2S 即可得到结果. 此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.6.【答案】C【解析】解:∵直线 y 1=kx +b 与直线 y =mx +n 分别交 x 轴于点 A (-1,0),B (4,0), ∴不等式(kx +b )(mx +n )>0 的解集为-1<x <4,故选:C .看两函数交点坐标之间的图象所对应的自变量的取值即可.本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等 式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值 的大小发生了改变.7.【答案】x >-3【解析】解:根据题意得到:x +3>0,解得 x >-3,故答案为 x >-3.从两个角度考虑:分式的分母不为 0;偶次根式被开方数大于或等于 0;当一个式子中 同时出现这两点时,应该是取让两个条件都满足的公共部分.本题考查了函数自变量的取值范围问题,判断一个式子是否有意义,应考虑分母上若有 字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易 错易混点:学生易对二次根式的非负性和分母不等于 0 混淆.8.【答案】5【解析】解:当 x +y =5 时,原式=(+ )÷=•=x +y=5,故答案为:5.先将括号内通分化为同分母分式加法、将除式分母因式分解,再计算括号内分式的加法 、把除法转化为乘法,继而约分即可化简原式,最后将 x +y =5 代入可得.本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则 .9.【答案】【解析】解:连接OC,∵直尺一边与量角器相切于点C,∴OC⊥AD,∵AD=10,∠DOB=60°,∴∠DAO=30°,∴OE=,OA=,∴CE=OC-OE=OA-OE=,故答案为:连接OC,利用垂径定理解答即可.此题考查垂径定理,关键是利用垂径定理解答.10.【答案】【解析】解:设小马有x匹,大马有y匹,依题意,可列方程组为.故答案是:.设小马有x匹,大马有y匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可.此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.11.【答案】6【解析】解:在BC上截取BE=BA,连接DE.∵BA=BE,∠ABD=∠EBD,BD=BD,∴△DBA≌△DBE(SAS),∴AD=DE=6,∵AD=CD=6,∴DE=DC,∵∠C=60°,∴△DEC是等边三角形,∴EC=DE=6,∴BC-AB=BC-BE=EC=6,11故答案为6.在BC上截取BE=BA,连接DE.只要证明△DBA≌△DBE(SAS△),DEC是等边三角形,即可解决问题;本题考查全等三角形的判定和性质、角平分线的定义、等边三角形的判定等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.【答案】0或1<AF或4【解析】△解:∵EFP是直角三角形,且点P在矩形ABCD的边上,∴P是以EF为直径的圆O与矩形ABCD的交点,①当AF=0时,如图1,此时点P有两个,一个与D重合,一个交在边AB上;②当⊙O与AD相切时,设与AD边的切点为P,如图2,△此时EFP是直角三角形,点P只有一个,当⊙O与BC相切时,如图4,连接OP,此时构成三个直角三角形,则OP⊥BC,设AF=x,则BF=P C=4-x,EP=x-1,∵OP∥EC,OE=OF,∴OG=EP1=,∴⊙O的半径为:OF=OP=,在△Rt OGF中,由勾股定理得:OF2=OG2+GF2,∴,解得:x=,∴当1<AF<时,这样的直角三角形恰好有两个,如图3,③当AF=4,即F与B重合时,这样的直角三角形恰好有两个,如图5,综上所述,则AF的值是:0或1<AF或4.故答案为:0或1<AF或4.先根据圆周角定理确定点P在以EF为直径的圆O上,且是与矩形ABCD的交点,先确定特殊点时AF的长,当F与A和B重合时,都有两个直角三角形.符合条件,即AF=0或4,再找⊙O与AD和BC相切时AF的长,此时⊙O与矩形边各有一个交点或三个交点,在之间运动过程中符合条件,确定AF的取值.本题考查了矩形的性质的运用,勾股定理的运用,三角形中位线定理的运用,圆的性质的思想解决问题..13.【答案】解:|-3|+(π-2018)0-2sin30°=3+1-1=3.【解析】原式利用绝对值的代数意义,零指数幂法则,以及特殊角的三角函数值计算即可求出值.此题考查了实数的运算,零指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.14.【答案】解:去分母,得:2x+7=3(x+3),解得:x=-2,经检验,x=-2是原方程的解.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用转化的思想,解分式方程注意要检验.15.【答案】解:如图所示,四边形ADEF即为所求;设正方形ADEF的边长为x,∵FE∥AB,∴△CFE∽△CAB,∴=,∴=,∴x=.∴正方形ADEF的边长为.【解析】作∠BAC的平分线AE,交BC于E,过E作AB,AC的垂线,垂足分别为D,F,则四边形ADEF是正方形;根据已知条件可以推出△CFE∽△CAB,根据相似三角形的性质,即可推出正方形ADEF的边长.本题主要考查相似三角形的判定定理及性质,正方形的有关性质.本题关键在于相似三角形的判定定理及性质及正方形的有关性质的综合应用.16.【答案】解:(1)连接BD,BD与AM交于点O,连接CO并延长交于AB,则CO 与AB的交点为点N,如图1,(2)延长MO交ADE于Q,连结CQ,则CQ为所作,如图2.1 1 1 1 1 1 1 1 1 1 1 1 11 1 11 1 1 1 1 1 1 1 1= 【解析】(1)连接 BD ,BD 与 AM 交于点 O ,连接 CO 并延长交于 AB ,则 CO 与 AB的交点为点 N .可先证明△AOD ≌△COD ,再证明△MOB ≌NOB ,从而可得 NB =MB ;(2)连接 MO 并延长与 AE 交于点 Q ,连接 QC ,则 CQ ∥AM .理由如下:由正方形的 性质以及对顶角相等可证△BMO ≌DQO ,所以 QO =MO ,由于∠QOC =∠MOA ,CO =AO , △所以 COQ ≌AOM ,则∠QCO =∠MAO ,从而可得 CQ ∥AM .本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结 合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质 ,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.17.【答案】随机【解析】解:(1)∵共有三根同样的绳子 AA 、BB 、CC 穿过一块木板,∴姐妹两人同时选中同一根绳子的概率是: ,这一事件是随机事件;故答案为:随机, ;(2)列举得:ACA B ,ACA C ,ACB C ; ∴共有 3 种等可能的结果,其中符合题意的有 2 种(ACA B 、ACB C ),∴能抽出由三根绳子连结成一根长绳”的概率是: .(1)由三根同样的绳子 AA 、BB 、CC 穿过一块木板,直接利用概率公式求解即可求 得答案;(2)利用列举法可得:ACA B ,ACA C ,ACB C ,其中符合题意的有 2 种(ACA 1B 、 ACB C ),然后直接利用概率公式求解即可求得答案. 此题考查了列举法求概率的知识.用到的知识点为:概率 所求情况数与总情况数之比. 18.【答案】解:(1)由图象可知,对于每一个摆动时间 t ,h 都有唯一确定的值与其对应,∴变量 h 是关于 t 的函数;(2)①由函数图象可知,当 t =0.7s 时,h =0.5m ,它的实际意义是秋千摆动 0.7s 时,离地面的高度是 0.5m ; ②由图象可知,秋千摆动第一个来回需 2.8s .【解析】(1)根据图象和函数的定义可以解答本题;(2)①根据函数图象可以解答本题;②根据函数图象中的数据可以解答本题.本题考查函数图象和函数概念,解答本题的关键是明确题意,利用数形结合的思想解答 .19.【答案】解:(1)a=100-(10+40+30)=20,∵软件总利润为 1200÷40%=3000,∴m =3000-(1200+560+280)=960;(2)网购软件的人均利润为=160(万元/人),视频软件的人均利润 =140(万元/人);(3)设调整后网购的人数为x、视频的人数为(10-x)人,根据题意,得:1200+280+160x+140(10-x)=3000+60,解得:x=9,即安排9人负责网购、安排1人负责视频可以使总利润增加60万元.【解析】本题考查条形统计图、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件.(1)根据各类别百分比之和为1可得a的值,由游戏的利润及其所占百分比可得总利润;(2)用网购与视频软件的利润除以其对应人数即可得;(3)设调整后网购的人数为x、视频的人数为(10-x)人,根据“调整后四个类别的利润相加=原总利润+60”列出方程,解之即可作出判断.20.【答案】解:(1)∵四边形ABCD是平行四边形,∴AD=BC,∵B(3,1),C(3,3),∴BC⊥x轴,AD=BC=2,而A点坐标为(1,0),∴点D的坐标为(1,2).∵反比例函数y=(x>0)的函数图象经过点D(1,2),∴2=,∴m=2,∴反比例函数的解析式为y=;(2)当x=3时,y=kx+3-3k=3k+3-3k=3,∴一次函数y=kx+3-3k(k≠0)的图象一定过点C;(3)设点P的横坐标为a,∵一次函数y=kx+3-3k(k≠0)过C点,并且y随x的增大而增大时,∴k>0,P点的纵坐标要小于3,横坐标要小于3,当纵坐标小于3时,∵y=,∴<3,解得:a>,则a的范围为<a<3.【解析】(1)由B(3,1),C(3,3)得到BC⊥x轴,BC=2,根据平行四边形的性质得AD=BC=2,而A点坐标为(1,0),可得到点D的坐标为(1,2),然后把D(1,2)代入y=即可得到m=2,从而可确定反比例函数的解析式;(2)把x=3代入y=kx+3-3k(k≠0)得到y=3,即可说明一次函数y=kx+3-3k(k≠0)的图象一定过点C;(3)设点P的横坐标为a,由于一次函数y=kx+3-3k(k≠0)过C点,并且y随x的增大而增大时,则P点的纵坐标要小于3,横坐标要小于3,当纵坐标小于3时,由y=得到a>,于是得到a的取值范围.0 1 0 12 1 2本题考查了反比例函数综合题:点在函数图象上,则点的横纵坐标满足图象的解析式;利用平行四边形的性质确定点的坐标;掌握一次函数的增减性.21.【答案】解:(1)如图 2 中,当 P 位于初始位置时,CP 0=2m ,如图 3 中,上午 10:00 时,太阳光线与地面的夹角为 65°,上调的距离为 P P . ∵∠BEP 1=90°,∠CAB =90°,∠ABE =65°,∴∠AP 1E =115°,∴∠CP 1E =65°,∵∠DP 1E =20°,∴∠CP 1F =45°,∵CF =P 1F =1m ,∴∠C =∠CP 1F =45°,∴ △CP 1F 是等腰直角三角形,∴P 1C = m ,∴P 0P 1 =CP -P C =2- ≈0.6m , 即为使遮阳效果最佳,点 P 需从 P 0 上调 0.6m .(2)如图 4 中,中午 12:00 时,太阳光线与地面垂直(图 4),为使遮阳效果最佳, 点 P 调到 P 2 处.∵P 2E ∥AB ,∴∠CP 2E =∠CAB =90°,∵∠DP 2E =20°,∴∠CP 2F =70°,作 FG ⊥AC 于 G ,则 CP =2CG =2×1×cos70°≈0.68m , ∴P 1P 2 =CP -CP = -0.68≈0.7m , 即点 P 在(1)的基础上还需上调 0.7m .【解析】(1)只要证明△CFP 1 是等腰直角三角形,即可解决问题;(2)解直角三角形求出 CP 2 的长即可解决问题;本题考查了解直角三角形的应用-方向角问题,本题要求学生借助俯角构造直角三角形, 并结合图形利用三角函数解直角三角形.22.【答案】(1)4(2)①连接OA、OF,由题意得,∠NAD=30°,∠DAM=30°,故可得∠OAM=30°,∠DAM=30°,则∠OAF=60°,又∵OA=OF,∴△OAF是等边三角形,∵OA=4,∴AF=OA=4;②连接B'F,此时∠NAD=60°,∵AB'=8,∠DAM=30°,∴AF=AB'cos∠DAM=8×=4;此时DM与⊙O的位置关系是相离;③90°【解析】解:(1)连接BE,∵AC是正方形ABCD的对角线,∴∠BAC=45°,∴△AEB是等腰直角三角形,=又∵AB =8,∴AE =4 ;(2)①见答案;②见答案;③∵AD =8,直径的长度相等,∴当 DM 与⊙O 相切时,点 D 在⊙O 上,故此时可得 α=∠NAD =90°.【分析】(1)连接 BE ,则可得出△AEB 是等腰直角三角形,再由 AB =8,可得出 AE 的长.(2)①连接 OA 、OF ,可判断出△OAF 是等边三角形,从而可求出 AF 的长;②此时可 得 DAM =30°,根据 A D =8 可求出 AF 的长,也可判断DM 与⊙O 的位置关系;③根据 AD 等于⊙O 的直径,可得出当 DM 与⊙O 相切时,点 D 在⊙O 上,从而可得出 α 的度数. 此题属于圆的综合题,主要是仔细观察每一次旋转后的图形,根据含 30°角的直角三角 形进行计算,另外在解答最后一问时,关键是判断出点 D 的位置,有一定难度. 23. 【答案】解:(1)将 A (1,0),C (-2,3)代入 y =-x 2+bx +c ,得:,解得:,∴抛物线的函数关系式为 y =-x 2-2x +3;设直线 AC 的函数关系式为 y =mx +n (m ≠0),将 A (1,0),C (-2,3)代入 y =mx +n ,得:,解得:,∴直线 AC 的函数关系式为 y =-x +1.(2)过点 P 作 PE ∥y 轴交 x 轴于点 E ,交直线 AC 于点 F ,过点 C 作 CQ ∥y 轴交 x 轴于 点 Q ,如图 1 所示.设点 P 的坐标为(x ,-x 2-2x +3)(-2<x <1),则点E的坐标为(x ,0),点 F 的坐标为(x ,-x +1),∴PE =-x 2-2x +3,EF =-x +1,EF =PE -EF =-x 2-2x +3-(-x +1)=-x 2-x +2.∵点 C 的坐标为(-2,3),∴点 Q 的坐标为(-2,0),∴AQ =1-(-2)=3,∴△S APCAQ •PF =- x 2- x +3=- (x + )2+ .∵- <0,∴当 x =- △时, APC 的面积取最大值,最大值为 ,此时点 P 的坐标为(- , ).=(3)当 x =0 时,y =-x 2-2x +3=3,∴点 N 的坐标为(0,3).∵y =-x 2-2x +3=-(x +1)2+4,∴抛物线的对称轴为直线 x =-1.∵点 C 的坐标为(-2,3),∴点 C ,N 关于抛物线的对称轴对称.令直线 AC 与抛物线的对称轴的交点为点 M ,如图2 所示.∵点 C ,N 关于抛物线的对称轴对称,∴MN =CM ,∴AM +MN =AM +MC =AC ,∴△此时 ANM 周长取最小值.当 x =-1 时,y =-x +1=2,∴此时点 M 的坐标为(-1,2).∵点 A 的坐标为(1,0),点 C 的坐标为(-2,3),点 N 的坐标为(0,3),∴AC ==3 ,AN = = ,∴△C ANMAM +MN +AN =AC +AN =3 + . ∴在对称轴上存在一点 M (-1,2),使△ANM 的周长最小,△ANM 周长的最小值为 3 + .【解析】(1)根据点 A ,C 的坐标,利用待定系数法即可求出抛物线及直线 AC 的函数 关系式;(2)过点 P 作 PE ∥y 轴交 x 轴于点 E ,交直线 AC 于点 F ,过点 C 作 CQ ∥y 轴交 x 轴于 点 Q ,设点 P 的坐标为(x ,-x 2-2x +3)(-2<x <1),则点 E 的坐标为(x ,0),点 F 的坐标为(x ,-x +1),进而可得出 PF 的值,由点 C 的坐标可得出点 Q 的坐标,进而可得出 AQ 的值,利用三角形的面积公式可得出 △S APC =- x 2- x +3,再利用二次函数的性质,即可解决最值问题;(3)利用二次函数图象上点的坐标特征可得出点 N 的坐标,利用配方法可找出抛物线 的对称轴,由点 C ,N 的坐标可得出点 C ,N 关于抛物线的对称轴对称,令直线 AC 与 抛物线的对称轴的交点为点 M ,则此时△ANM 周长取最小值,再利用一次函数图象上点 的坐标特征求出点 M 的坐标,以及利用两点间的距离公式结合三角形的周长公式求出 △ANM 周长的最小值即可得出结论.本题考查了待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图 象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以 及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线 AC的函数关系式;(2)利用三角形的面积公式找出 △S APC =- x 2- x +3;(3)利用二次函数图象的对称性结合两点之间线段最短找出点 M 的位置.24. 【答案】(1)①8 ②4; α( 2)① (b -c )= ,= ,②如图 4,∵F 是 AC 的中点,D 是 BC 的中点,∴DF = AB = c ,AF = AC = b ,∴EF =AF -AE = b -∴DF =EF ;= c ,③如图 5,过 A 作 AP ⊥BG 于 G ,∵DF ∥AB ,∴∠DFC =∠BAC ,∵∠DFC =∠3+∠EDF ,∵EF =DF ,∴∠3=∠EDF ,∴∠1+∠2=2∠3,∵DE ∥AP ,∴∠2=∠3,∴∠1=∠3=∠2,∵AP ⊥BG ,∴AB =AG =4,∴CG =AC -CG =6-4=2;(3)如图 6,连接 BE 、DG ,∵△S BDH △S EGH ∴△S BDG △S EDG ∴BE ∥DG , ∵DF ∥AB ,∴△ABE ∽△FDG ,∴= ,∴FG = (b -c ),∵AB =AG =c ,∴CG=b-c,∴CF=b=FG+CG=(b-c)+(b-c),∴3b=5c,∴b:c=5:3.【解析】解:(1)①如图1,取BC的中点D,作直线AD,则BD=6,此时AD△平分ABC的周长,则直线AD是△ABC在BC边上的中分线,线段AD△是ABC在BC边上的中分线段,∵AB=AC=10,∴AD⊥BC,由勾股定理得:AD=8,故答案为:8;②如图2,DE△平分ABC的周长,则直线ED是△ABC在AC边上的中分线,线段ED是△ABC在AC边上的中分线段,则AB+BE=EC,作中线AF,过D作DG⊥AF于F,交AF于P,则EF=11-6=5,∴DG∥CF,∵AD=DC,∴AG=GF=4,∵DG∥EF,∴△DGP∽△EFP,∴∴,,∴PG=,∴PF=4-=,由勾股定理得:PD==,PE==,∴ED=+=4;如图3,过B作BN∥ED,交AF于N,过N作MN⊥AB于M ,∴∴,,PN=,∴FN=+=3,AN=8-3=5,同理得:BN=3,设AM=x,则BM=10-x,由勾股定理得:AN2-AM2=BN2-BM2,52-x2=,x=4,∴AM=4,∴MN=3,∴MN=FN,∴BN平分∠ABC,∵PE∥BN,∴∠CEP=∠CBN=α,即DE与底边BC所夹的锐角的度数为:;故答案为:,(2)①如图4,DE是△ABC在BC边上的中分线段,∴AE+AB=EC,∵AC=b,AB=c,∴AE+c=(b+c),∴AE=(b-c),故答案为:;②见答案;③见答案;(3)见答案;【分析】(1)①根据定义画出中分线段,并根据等腰三角形三线合一的性质得A D的长;②如图2△,作ABC在AC边上的中分线ED,线段ED△是ABC在AC边上的中分线段,根据定义可得EF=11-6=5△,由DGP∽△EFP,列比例式,可得PG=,PF=,由勾股定理得PD和PE的长,相加可得D E的长,根据图3,由平行线分线段成比例定理可得PN的长,及BN的长,设AM=x,则BM=10-x,根据勾股定理可得结论;(2)①如图4,根据中分线段平分三角形周长的性质可得:AE=(b-c);②如图4,根据三角形中位线定理得:DF=AB=c,AF=AC=b,由线段的差可得结论;③如图5,证明∠1=∠2,得AB=AG,可得结论;(3)如图6,连接BE、DG,根据面积相等可得BE∥DG,证明△ABE∽△FDG,得FG=(b-c),利用等式CF=b=FG+CG=(b-c)+(b-c),列式可得结论.本题是三角形的综合题,也是阅读理解问题,理解新定义:中分线和中分线段是关键,并能根据所学知识进行运用,考查了三角形的面积、相似三角形的判定与性质以及勾股定理等知识,难度较大.2 题号 中考数学模拟试卷一 二 三 总分得分一、选择题(本大题共 6 小题,共 30.0 分)1. 已知关于 x 的不等式 3x -m +1>0 的最小整数解为 2,则实数m 的取值范围是()A. 4≤m <7B. 4<m <7C. 4≤m≤7D. 4<m≤72.如图,点 A ,B 在反比例函数 y = (x >0)的图象上,点C ,D在反比例函数 y = (k >0)的图象上,AC ∥BD ∥y 轴,已知点 A ,B 的横坐标分别为 1,△, OAC △与 ABD 的面积之和为 ,则 k的值为( )A. 4B. 3C. 2D.3.坐标平面上有一个轴对称图形,、 两点在此图形上且互为对称点.若此图形上有一点 C (-2,-9),则 C 的对称点坐标为何()A. (-2,1)4.若函数B. C. D. (8,-9),则当自变量 x 取 1,2,3,…,100 这 100 个自然数时,函数值的和是( ) A. 540 B. 390 C. 194 D. 1975.现有 7 张如图 1 的长为 a ,宽为 b (a >b )的小长方形纸片,按图 2 的方式不重叠 地放在矩形 ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下 角的阴影部分的面积的差为 S ,当 BC 的长度变化时,按照同样的放置方式,S 始 终保持不变,则 a ,b 满足( )A. a=2bB. a=3bC. a=3.5bD. a=4b6.如图 1,在矩形 ABCD 中,动点 E 从 A 出发,沿 AB →BC 方向运动,当点 E 到达 点 C 时停止运动,过点 E 做 FE ⊥AE ,交 CD 于 F 点,设点 E 运动路程为 x ,FC =y ,如图 2 所表示的是 y 与 x 的函数关系的大致图象,当点 E 在 BC 上运动时,FC2 3 1 21 n的最大长度是 ,则矩形 ABCD 的面积是()A.B. 5C. 6D.二、填空题(本大题共 6 小题,共 30.0 分)7.a 、b 为实数,且 ab =1,设 P =,Q = ,则 P ______Q (填“>”、“<”或“=”).8.如图,在菱形 ABCD 和菱形 BEFG 中,点 A 、B 、E 在同一直线上,P 是线段 DF的中点,连接 PG ,PC .若∠ABC =∠BEF =60°,则 =______.9.设 a 1 ,a ,a ……是一列正整数,其中 a 表示第一个数,a 表示第二个数,依此类 推,a n 表示第 n 个数(n 是正整数).已知 a =1,4a =(a n+1-1)2-(a n -1)2,则 a 2018=______.10. 高斯函数[x ],也称为取整函数,即[x ]表示不超过 x 的最大整数.例如:[2.3]=2,[-1.5]=-2. 则下列结论:①[-2.1]+[1]=-2; ②[x ]+[-x ]=0;③若[x +1]=3,则 x 的取值范围是 2≤x <3;④当-1≤x <1 时,[x +1]+[-x +1]的值为 0、1、2.其中正确的结论有______(写出所有正确结论的序号).11. 关于 x 的一元二次方程 ax 2-3x -1=0 的两个不相等的实数根都在-1 和 0 之间(不包括-1 和 0),则 a 的取值范围是______.12. 矩形 ABCD 中,对角线 AC 、BD 交于点 O ,AE ⊥BD 于 E ,若 OE :ED =1:3,AE =,则 BD =______.三、解答题(本大题共 6 小题,共 60.0 分)13. 已知抛物线 y =x 2+bx -3(b 是常数)经过点 A (-1,0).(1)求该抛物线的解析式和顶点坐标;(2)P (m ,t )为抛物线上的一个动点,P 关于原点的对称点为 P '. ①当点 P '落在该抛物线上时,求 m 的值;。

抚州市2020年中考数学模拟试题及答案

抚州市2020年中考数学模拟试题及答案

抚州市2020年中考数学模拟试题及答案注意事项:1.考生务必将自己的姓名、准考证号填涂在试卷和答题卡的规定位置。

2.考生必须把答案写在答题卡上,在试卷上答题一律无效。

考试结束后,本试卷和答题卡一并交回。

3.本试卷满分120分,考试时间120分钟。

一、选择题(本题共12小题。

每小题3分,共36分。

在每小题给出的四个选项中,只有一项是正确的。

)1.下列计算正确的是()A.x2﹣3x2=﹣2x4B.(﹣3x2)2=6x2C.x2y•2x3=2x6y D.6x3y2÷(3x)=2x2y22.据统计,截止2019年2月,我市实际居住人口约4210000人,4210000这个数用科学记数法表示为()A.42.1×105B.4.21×105C.4.21×106D.4.21×1073.如右图是某个几何体的侧面展开图,则该几何体是()A.三棱锥B.四棱锥C.三棱柱D.四棱柱4.一元二次方程2x2﹣2x﹣1=0的较大实数根在下列哪两个相邻的整数之间()A.4,3 B.3,2 C.2,1 D.1,05.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A.20 B.300 C.500 D.8006.下列图形中既是轴对称图形,又是中心对称图形的是()A. B.C. D.7.关于一次函数y=5x﹣3的描述,下列说法正确的是()A.图象经过第一、二、三象限B.向下平移3个单位长度,可得到y=5xC.函数的图象与x轴的交点坐标是(0,﹣3)D.图象经过点(1,2)8.如右图,AB∥CD,直线MN与AB、CD分别交于点E、F,FG平分∠EFD,EG⊥FG于点G,若∠CFN=110°,则∠BEG=()A.20°B.25°C.35°D.40°9.下列计算正确的有()个。

①(﹣2a2)3=﹣6a6②(x﹣2)(x+3)=x2﹣6 ③(x﹣2)2=x2﹣4④﹣2m3+m3=﹣m3⑤﹣16=﹣1.A.0 B.1 C.2 D.310.小李双休日爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用的时间为t分钟,所走的路程为s米,s与t之间的函数关系式如图所示,下列说法错误的是()A.小李中途休息了20分钟B.小李休息前爬山的速度为每分钟70米C.小李在上述过程中所走的路程为6600米D.小李休息前爬山的平均速度大于休息后爬山的平均速度11. 如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A. 110°B. 90°C. 70°D. 50°12.图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2.现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线OX上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束.在整个运动过程中,点C运动的路程是()A.4 B.6 C.4﹣2 D.10﹣4二、填空题(本题共6小题,满分18分。

【附5套中考模拟试卷】江西省抚州市2019-2020学年第二次中考模拟考试数学试卷含解析

【附5套中考模拟试卷】江西省抚州市2019-2020学年第二次中考模拟考试数学试卷含解析
江西省抚州市2019-2020学年第二次中考模拟考试数学试卷
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①△AED≌△DFB;②S四边形BCDG= ;③若AF=2DF,则BG=6GF;④CG与BD一定不垂直;⑤∠BGE的大小为定值.
A. B. C. D.
6.如图所示的四边形,与选项中的一个四边形相似,这个四边形是( )
A. B. C. D.
7.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为( )
A.y=(x+2)2﹣5 B.y=(x+2)2+5 C.y=(x﹣2)2﹣5 D.y=(x﹣2)2+5
8
第3组
70≤x<80
14
第4组
80≤x<90
a
第5组
90≤x<100
10
26.(12分)如图,抛物线 (a≠0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.
求抛物线的解析式;抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM的形状;若不存在,请说明理由.

2020年江西省中考数学模拟试卷及答案解析

2020年江西省中考数学模拟试卷及答案解析

2020年江西省中考数学模拟试卷
一.选择题(共6小题,满分18分,每小题3分)
1.﹣2的相反数是()
A.2B.﹣2C .D .﹣
2.计算(﹣a)2•的结果为()
A.b B.﹣b C.ab D .
3.由五个相同的立方体搭成的几何体如图所示,则它的左视图是()
A .
B .
C .
D .
4.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如图统计图:
则下面结论中不正确的是()
A.新农村建设后,养殖收入增加了一倍
B.新农村建设后,种植收入减少
C.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
第1 页共30 页。

2020年江西省中考数学模拟考试试卷及答案解析

2020年江西省中考数学模拟考试试卷及答案解析

2020年江西省中考数学模拟考试试卷
一.选择题(共6小题,满分18分,每小题3分)
1.在﹣1,0,2,四个数中,最大的数是()
A.﹣1B.0C.2D .
2.在数轴上表示不等式x+2>0的解集正确的是()
A .
B .
C .
D .
3.下列各式中运算正确的是()
A.x2+x3=x5B.2x2•x3=2x5
C.(x﹣2)2=x2﹣4D.(x3)4=x7
4.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()
A .
B .
C .
D .
5.一元二次方程x2﹣3x+1=0的两个根为x1,x2,则x12+3x2+x1x2﹣2的值是()A.10B.9C.8D.7
6.如图,在△ABC中,点D是AB边的中点,DE∥BC,M是DE的中点,CM的延长线交AB于点N,则S△DMN:S四边形ANME等于()
A.1:2B.1:3C.1:4D.1:5
二.填空题(共6小题,满分18分,每小题3分)
7.计算:﹣=.
8.分解因式:3x2﹣6x2y+3xy2=.
9.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,
第1 页共27 页。

江西省抚州市2020年数学中考一模试卷D卷

江西省抚州市2020年数学中考一模试卷D卷

江西省抚州市2020年数学中考一模试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共18分)1. (2分) 15的负的平方根介于()A . ﹣4与﹣3之间B . ﹣5与﹣4之间C . ﹣3与﹣2之间D . ﹣2与﹣1之间2. (2分)(2020·五莲模拟) 如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC 在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是()A . (-2,3)B . (2,-3)C . (3,-2)或(-2,3)D . (-2,3)或(2,-3)3. (2分)(2019·上饶模拟) 如图,已知圆心角,则圆周角()A . 110°B . 120°C . 125°D . 135゜4. (2分)某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A . 168(1+x)2=108B . 168(1﹣x)2=108C . 168(1﹣2x)=108D . 168(1﹣x2)=1085. (2分)(2017·兰州) 如图,正方形ABCD内接于半径为2的⊙O,则图中阴影部分的面积为()A . π+1B . π+2C . π﹣1D . π﹣26. (2分) (2019八下·余姚期末) 设a= ,b= ,c= ,则a,b,c的大小关系是()A . b>c>aB . b>a>cC . c>a>bD . a>c>b7. (2分) (2020九上·北京月考) 点在第一象限,且,点A的坐标为,设的面积为S,则下列图像中,能反映S与x之间的函数关系式的是()A .B .C .D .8. (2分) (2017九上·新乡期中) 设A(﹣2,y1),B(﹣1,y2),C(2,y3)是抛物线y=﹣(x+1)2+1上的三点,则y1 , y2 , y3的大小关系为()A . y2>y1>y3B . y1>y3>y2C . y3>y2>y1D . y3>y1>y29. (2分)(2019·沈阳) 某青少年篮球队有12名队员,队员的年龄情况统计如下:年龄(岁)1213141516人数31251则这12名队员年龄的众数和中位数分别是()A . 15岁和14岁B . 15岁和15岁C . 15岁和14.5岁D . 14岁和15岁二、填空题 (共6题;共6分)10. (1分)若二次函数y=ax2+3x﹣1与x轴有两个交点,则a的取值范围是________.11. (1分)(+)×=________ .12. (1分)(2020·红桥模拟) 不透明袋子中装有个球,其中有个红球、个绿球和个蓝球,这些球除颜色外无其他差别.从袋子中随机取出个球,则它是红球的概率是________.13. (1分)(2017·罗山模拟) 将△ABC绕点B逆时针旋转到△A′BC′,使A、B、C′在同一直线上,若∠BCA=90°,∠BAC=30°,AB=4cm,则图中阴影部分面积为________ cm2 .14. (1分) (2019九上·台安期中) 抛物线的部分图象如图所示,与轴的一个交点坐标为,抛物线的对称轴是直线。

江西省抚州市2020年中考数学模拟试卷C卷

江西省抚州市2020年中考数学模拟试卷C卷

江西省抚州市2020年中考数学模拟试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七上·宁波期中) 下列说法正确的是()① 的相反数是;②0的倒数是0 ;③最大的负整数-1;④绝对值等于本身的数只有0A . ③④B . ①②③C . ①③D . ①②④2. (2分) (2019七上·盘龙镇月考) 点A在数轴上表示3,从点A沿数轴向左平移5个单位长度得到点B,则点B表示的数是()A . 2B . -2C . -8D . -2或-83. (2分) (2020八下·下城期末) 下列图形是中心对称图形的是()A . 等腰三角形B . 直角三角形C . 四边形D . 平行四边形4. (2分)第二届山西文博会刚刚落下帷幕,本届文博会共推出招商项目356个,涉及金额688亿元.数据688亿元用科学记数法表示正确的是()A . 6.88×108元B . 68.8×108元C . 6.88×1010元D . 0.688×1011元5. (2分)(2019·锦州) 如图,AC与BD交于点O,AB∥CD,∠AOB=105°,∠B=30°,则∠C的度数为()A . 45°B . 55°C . 60°D . 75°6. (2分)临近中招,老师将小华同学“考前五套卷”数学分数统计如下:101,98,103,101,99.老师判断小华成绩还算比较稳定.老师判断的依据是()A . 众数B . 平均数C . 中位数D . 方差7. (2分)(2019·平江模拟) 不等式组的解集在数轴上表示正确的是A .B .C .D .8. (2分)Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC于D,作直径DE,连接BE,若sin∠ACB=,BC=6,则BE=()A . 6B .C .D . 89. (2分) (2018九上·通州期末) 二次函数的图象如图所示,,则下列四个选项正确的是()A . ,,B . ,,C . ,,D . ,,10. (2分) (2019八上·天台期中) 如图,在△ABC中,∠ABC和∠ACB的平分线相交于点G,过点 G作EF ∥ BC 交AB于E,交AC 于F,过点G作GD⊥AC 于D,下列四个结论:① EF=BE+CF;②∠BGC=90°+ ∠A ;③点G 到△ABC 各边的距离相等;④设GD=m,AE+AF=n,则 =mn. 其中正确的结论有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共6分)11. (1分)(2017·遵义) 计算: =________.12. (1分) (2017八上·平邑期末) 将x3-xy2分解因式的结果为________.13. (1分)(2012·盘锦) 分式方程的解是x=________.14. (1分)如图,⊙O的直径为10,弦AB长为8,点P在AB上运动,则OP的最小值是________15. (1分) (2016八上·余杭期中) 已知一个直角三角形的两边长分别为3和4,则第三边长是________16. (1分) (2019八下·澧县期中) 如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于________三、解答题 (共6题;共62分)17. (10分)(2020·晋中模拟)(1)解方程(2)计算18. (5分)(2017·香坊模拟) 先化简,再求代数式的值,其中x=4sin45°﹣2cos60°.19. (10分) (2020八下·无锡期中)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB= AC时,判断四边形EGCF是什么形状?请说明理由.20. (12分)(2012·玉林) 如图,在平面直角坐标系xOy中,梯形AOBC的边OB在x轴的正半轴上,AC∥OB,BC⊥OB,过点A的双曲线y= 的一支在第一象限交梯形对角线OC于点D,交边BC于点E.(1)填空:双曲线的另一支在第________象限,k的取值范围是________;(2)若点C的坐标为(2,2),当点E在什么位置时,阴影部分的面积S最小?(3)若 = ,S△OAC=2,求双曲线的解析式.21. (10分)(2019·荆门) 已知锐角的外接圆圆心为 ,半径为 .(1)求证:;(2)若中 ,求的长及的值.22. (15分) (2018九上·镇海期末) 如图(1)如图1,的内切圆与边,,分别相切于点,若,,,求的面积;(2)观察(1)中所得结论中与,之间的数量关系,猜测:若(1)中,,其余条件不变,则的面积为多少?并证明你的结论;(3)如图2,锐角的内切圆与边分别相切于点,若,,,求的面积.(结果用含的式子表示)四、解答题(二) (共3题;共30分)23. (10分)(2017·南岸模拟) 重庆某油脂公司生产销售菜籽油、花生油两种食用植物油.(1)已知花生的出油率为56%,是菜籽的1.4倍,现有菜籽、花生共100吨,若想得到至少52吨植物油,则其中的菜籽至多有多少吨?(2)在去年的销售中,菜籽油、花生油的售价分别为20元/升,30元/升,且销量相同,今年由于花生原材料价格上涨,花生油的售价比去年提高了a%,菜籽油的售价不变,总销量比去年降低a%,且菜籽油、花生油的销量均占今年总销量的,这样,预计今年的销售总额比去年下降 a%,求a的值.24. (5分)(2020·吕梁模拟) 如图1,一辆汽车从地出发去往地,,两地相距 .由于,之间某路段正在修路.驾驶员临时改变路线,先由地开往地,再由地开往地,如图2是从该场景中抽象出来的示意图,已知,,则这样的行驶路程比原来路程远了多少?(结果精确到,参考数据:, )25. (15分)(2018·余姚模拟) 为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共6题;共62分)17-1、17-2、18-1、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、四、解答题(二) (共3题;共30分)23-1、23-2、24-1、25-1、25-2、25-3、。

江西省抚州市2019-2020学年中考数学模拟试题(5)含解析

江西省抚州市2019-2020学年中考数学模拟试题(5)含解析

江西省抚州市2019-2020学年中考数学模拟试题(5)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.cos30°=( ) A .12B .22C .32D .32.如图,点C 是直线AB ,DE 之间的一点,∠ACD=90°,下列条件能使得AB ∥DE 的是( )A .∠α+∠β=180°B .∠β﹣∠α=90°C .∠β=3∠αD .∠α+∠β=90°3.如图1,在△ABC 中,D 、E 分别是AB 、AC 的中点,将△ADE 沿线段DE 向下折叠,得到图1.下列关于图1的四个结论中,不一定成立的是( )A .点A 落在BC 边的中点B .∠B+∠1+∠C=180°C .△DBA 是等腰三角形D .DE ∥BC4.下列运算中,正确的是( )A .(ab 2)2=a 2b 4B .a 2+a 2=2a 4C .a 2•a 3=a 6D .a 6÷a 3=a 2 5.已知直线2y kx =-与直线32y x =+的交点在第一象限,则k 的取值范围是( ) A .3k =B .3k <-C .3k >D .33k -<<6.不等式组29611x x x k +>+⎧⎨-<⎩的解集为2x <.则k 的取值范围为( )A .1k <B .1k ³C .1k >D .1k <7.据国土资源部数据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为( ) A .3.9×1010 B .3.9×109C .0.39×1011D .39×1098.解分式方程2236111x x x +=+-- ,分以下四步,其中,错误的一步是( ) A .方程两边分式的最简公分母是(x ﹣1)(x+1)B .方程两边都乘以(x ﹣1)(x+1),得整式方程2(x ﹣1)+3(x+1)=6C .解这个整式方程,得x =1D .原方程的解为x =19.将某不等式组的解集13x ≤<-表示在数轴上,下列表示正确的是( ) A . B . C .D .10.下列图形中,是中心对称图形但不是轴对称图形的是( )A .B .C .D .11.统计学校排球队员的年龄,发现有12、13、14、15等四种年龄,统计结果如下表: 年龄(岁) 12 13 14 15 人数(个)2468根据表中信息可以判断该排球队员年龄的平均数、众数、中位数分别为( ) A .13、15、14B .14、15、14C .13.5、15、14D .15、15、1512.如图,△ABC 为等腰直角三角形,∠C=90°,点P 为△ABC 外一点,CP=2,BP=3,AP 的最大值是( )A .2+3B .4C .5D .32二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知a ,b ,c ,d 是成比例的线段,其中3cm a =,2cm b =,6cm c =,则d =_______cm . 14.一个圆锥的高为33,侧面展开图是半圆,则圆锥的侧面积是_________ 15.已知点P (2,3)在一次函数y =2x -m 的图象上,则m =_______. 16.将一副三角板如图放置,若20AOD ∠=o ,则BOC ∠的大小为______.17.如图,某数学兴趣小组为了测量河对岸l 1的两棵古树A 、B 之间的距离,他们在河这边沿着与AB 平行的直线l 2上取C 、D 两点,测得∠ACB=15°,∠ACD=45°,若l 1、l 2之间的距离为50m ,则古树A 、B 之间的距离为_____m .18.在直径为的圆柱形油槽内装入一些油后,截面如图所示如果油面宽,那么油的最大深度是_________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,一次函数1(0)y ax b a =+≠的图象与y 轴相交于点A ,与反比例函数2(0)ky k x=≠的图象相交于点(3,2)B ,(1,)C n -.(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出12y y >时,x 的取值范围;(3)在y 轴上是否存在点P ,使PAB △为等腰三角形,如果存在,请求点P 的坐标,若不存在,请说明理由.20.(6分)如图,在平面直角坐标系xOy 中,抛物线y=ax 2+bx+c 经过A 、B 、C 三点,已知点A (﹣3,0),B (0,3),C (1,0). (1)求此抛物线的解析式.(2)点P 是直线AB 上方的抛物线上一动点,(不与点A 、B 重合),过点P 作x 轴的垂线,垂足为F ,交直线AB 于点E ,作PD ⊥AB 于点D .动点P 在什么位置时,△PDE 的周长最大,求出此时P 点的坐标.21.(6分)列方程解应用题:为宣传社会主义核心价值观,某社区居委会计划制作1200个大小相同的宣传栏.现有甲、乙两个广告公司都具备制作能力,居委会派出相关人员分别到这两个广告公司了解情况,获得如下信息:信息一:甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天;信息二:乙公司每天制作的数量是甲公司每天制作数量的1.2倍.根据以上信息,求甲、乙两个广告公司每天分别能制作多少个宣传栏?22.(8分)在数学课上,老师提出如下问题:小楠同学的作法如下:老师说:“小楠的作法正确.”请回答:小楠的作图依据是______________________________________________.23.(8分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.求七年级已“建档立卡”的贫困家庭的学生总人数;将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.24.(10分)如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C,•景区管委会又开发了风景优美的景点D,经测量,景点D位于景点A的北偏东30′方向8km处,•位于景点B的正北方向,还位于景点C的北偏西75°方向上,已知AB=5km.景区管委会准备由景点D向公路a修建一条距离最短的公路,不考试其他因素,求出这条公路的长.(结果精确到0.1km).求景点C与景点D之间的距离.(结果精确到1km).25.(10分)如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.求二次函数y=ax2+2x+c的表达式;连接PO,PC,并把△POC 沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.26.(12分)如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△EFC,连接AF、BE.(1)求证:四边形ABEF是平行四边形;(2)当∠ABC为多少度时,四边形ABEF为矩形?请说明理由.27.(12分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中男生、女生的人数相同,利用所得数据绘制如下统计图表:组别身高A x<160B 160≤x<165C 165≤x<170D 170≤x<175E x≥175根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在组,中位数在组;(2)样本中,女生身高在E组的有人,E组所在扇形的圆心角度数为;(3)已知该校共有男生600人,女生480人,请估让身高在165≤x<175之间的学生约有多少人?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】直接根据特殊角的锐角三角函数值求解即可.【详解】cos30︒=故选C.【点睛】考点:特殊角的锐角三角函数点评:本题属于基础应用题,只需学生熟练掌握特殊角的锐角三角函数值,即可完成.2.B【解析】【分析】延长AC交DE于点F,根据所给条件如果能推出∠α=∠1,则能使得AB∥DE,否则不能使得AB∥DE;【详解】延长AC交DE于点F.A. ∵∠α+∠β=180°,∠β=∠1+90°,∴∠α=90°-∠1,即∠α≠∠1,∴不能使得AB∥DE;B. ∵∠β﹣∠α=90°,∠β=∠1+90°,∴∠α=∠1,∴能使得AB∥DE;C.∵∠β=3∠α,∠β=∠1+90°,∴3∠α=90°+∠1,即∠α≠∠1,∴不能使得AB∥DE;D.∵∠α+∠β=90°,∠β=∠1+90°,∴∠α=-∠1,即∠α≠∠1,∴不能使得AB∥DE;故选B.【点睛】本题考查了平行线的判定方法:①两同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行于同一直线的两条直线互相平行;同一平面内,垂直于同一直线的两条直线互相平行.3.A【解析】【分析】根据折叠的性质明确对应关系,易得∠A=∠1,DE是△ABC的中位线,所以易得B、D答案正确,D是AB中点,所以DB=DA,故C正确.【详解】根据题意可知DE是三角形ABC的中位线,所以DE∥BC;∠B+∠1+∠C=180°;∵BD=AD,∴△DBA 是等腰三角形.故只有A错,BA≠CA.故选A.【点睛】主要考查了三角形的内角和外角之间的关系以及等腰三角形的性质.还涉及到翻折变换以及中位线定理的运用.(1)三角形的外角等于与它不相邻的两个内角和.(1)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.通过折叠变换考查正多边形的有关知识,及学生的逻辑思维能力.解答此类题最好动手操作.4.A【解析】【分析】直接利用积的乘方运算法则以及合并同类项法则和同底数幂的乘除运算法则分别分析得出答案.【详解】解:A、(ab2)2=a2b4,故此选项正确;B、a2+a2=2a2,故此选项错误;C、a2•a3=a5,故此选项错误;D、a6÷a3=a3,故此选项错误;故选:A.【点睛】此题主要考查了积的乘方运算以及合并同类项和同底数幂的乘除运算,正确掌握运算法则是解题关键.5.C【解析】【分析】根据题意画出图形,利用数形结合,即可得出答案.【详解】根据题意,画出图形,如图:当3k=时,两条直线无交点;当3k>时,两条直线的交点在第一象限.故选:C.【点睛】本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键.6.B【解析】【分析】求出不等式组的解集,根据已知得出关于k的不等式,求出不等式的解集即可.【详解】解:解不等式组29611x xx k+>+⎧⎨-<⎩,得21xx k<⎧⎨<+⎩.∵不等式组29611x xx k+>+⎧⎨-<⎩的解集为x<2,∴k+1≥2,解得k≥1.故选:B.【点睛】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式组的解集和已知得出关于k 的不等式,难度适中. 7.A 【解析】 【分析】用科学记数法表示较大的数时,一般形式为a×10n ,其中1≤|a|<10,n 为整数,据此判断即可. 【详解】39000000000=3.9×1. 故选A . 【点睛】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数. 8.D 【解析】 【分析】先去分母解方程,再检验即可得出. 【详解】方程无解,虽然化简求得1x =,但是将1x =代入原方程中,可发现31x -和261x -的分母都为零,即无意义,所以1x ≠,即方程无解 【点睛】本题考查了分式方程的求解与检验,在分式方程中,一般求得的x 值都需要进行检验 9.B 【解析】分析:本题可根据数轴的性质画出数轴:实心圆点包括该点用“≥”,“≤”表示,空心圆点不包括该点用“<”,“>”表示,大于向右小于向左.点睛:不等式组的解集为−1⩽x<3在数轴表示−1和3以及两者之间的部分:故选B.点睛:本题考查在数轴上表示不等式解集:把每个不等式的解集在数轴上表示出来(>,≥向右画;< ,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.10.B【解析】【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】解:A 、是轴对称图形,也是中心对称图形,故错误;B 、是中心对称图形,不是轴对称图形,故正确;C 、是轴对称图形,也是中心对称图形,故错误;D 、是轴对称图形,也是中心对称图形,故错误.故选B .【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.11.B【解析】【分析】根据加权平均数、众数、中位数的计算方法求解即可.【详解】122134146158=142468x ⨯+⨯+⨯+⨯=+++, 15出现了8次,出现的次数最多,故众数是15,从小到大排列后,排在10、11两个位置的数是14,14,故中位数是14.故选B.【点睛】本题考查了平均数、众数与中位数的意义.数据x 1、x 2、……、x n 的加权平均数:112212............n n nw x w x w x x w w w +++=+++(其中w 1、w 2、……、w n 分别为x 1、x 2、……、x n 的权数).一组数据中出现次数最多的数据叫做众数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.12.C【解析】【分析】过点C 作CQ CP ⊥,且CQ=CP,连接AQ,PQ,证明ACQ V ≌,BCP V 根据全等三角形的性质,得到3,AQ BP ==2,CQ CP ==根据等腰直角三角形的性质求出PQ 的长度,进而根据AP AQ PQ ≤+,即可解决问题.【详解】过点C 作CQ CP ⊥,且CQ=CP,连接AQ,PQ,90,ACQ BCQ BCP BCQ ∠+∠=∠+∠=o,ACQ BCP ∠=∠在ACQ V 和BCP V 中,AC BC ACQ BCP CQ CP =⎧⎪∠=∠⎨⎪=⎩ACQ V ≌,BCP V3,AQ BP ∴== 2,CQ CP ==222,PQ CQ CP =+=325,AP AQ P ≤++=AP 的最大值是5.故选:C.【点睛】考查全等三角形的判定与性质,三角形的三边关系,作出辅助线是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.4【解析】【分析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.根据定义ad =cb ,将a ,b 及c 的值代入即可求得d .【详解】已知a ,b ,c ,d 是成比例线段,根据比例线段的定义得:ad =cb ,代入a =3,b =2,c =6,解得:d =4,则d =4cm .故答案为:4【点睛】本题主要考查比例线段的定义.要注意考虑问题要全面.14.18π【解析】解:设圆锥的半径为r ,母线长为l .则222{27r l l r ππ=-= 解得3{6r l == =3618S rl πππ∴=⨯⨯=侧15.1【解析】【分析】根据待定系数法求得一次函数的解析式,解答即可.【详解】解:∵一次函数y=2x-m 的图象经过点P (2,3),∴3=4-m ,解得m=1,故答案为:1.【点睛】此题主要考查了一次函数图象上点的坐标特征,关键是根据待定系数法求得一次函数的解析式. 16.160°【解析】试题分析:先求出∠COA 和∠BOD 的度数,代入∠BOC=∠COA+∠AOD+∠BOD 求出即可. 解:∵∠AOD=20°,∠COD=∠AOB=90°,∴∠COA=∠BOD=90°﹣20°=70°,∴∠BOC=∠COA+∠AOD+∠BOD=70°+20°+70°=160°,故答案为160°.考点:余角和补角.17.(50﹣5033). 【解析】【分析】 过点A 作AM ⊥DC 于点M ,过点B 作BN ⊥DC 于点N .则AM =BN .通过解直角△ACM 和△BCN 分别求得CM 、CN 的长度,则易得MN =AB .【详解】解:如图,过点A 作AM ⊥DC 于点M ,过点B 作BN ⊥DC 于点N ,则AB =MN ,AM =BN .在直角△ACM ,∵∠ACM =45°,AM =50m ,∴CM =AM =50m .∵在直角△BCN 中,∠BCN =∠ACB +∠ACD =60°,BN =50m ,∴CN =60BN tan 3503(m ), ∴MN =CM−CN =50−33(m ). 则AB =MN =(50−33)m . 故答案是:(503). 【点睛】 本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.18.2m【解析】【分析】本题是已知圆的直径,弦长求油的最大深度其实就是弧AB 的中点到弦AB 的距离,可以转化为求弦心距的问题,利用垂径定理来解决.【详解】解:过点O 作OM ⊥AB 交AB 与M ,交弧AB 于点E .连接OA .在Rt △OAM 中:OA=5m ,AM=AB=4m .根据勾股定理可得OM=3m ,则油的最大深度ME 为5-3=2m .【点睛】圆中的有关半径,弦长,弦心距之间的计算一般是通过垂径定理转化为解直角三角形的问题.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)24y x =-; 6y x=;(2)10x -<<或3x >;(3)存在,(0,435)P -+或(0,435)P --或(0,8)P 或10,4P ⎛⎫- ⎪⎝⎭. 【解析】【分析】(1)利用待定系数法求出反比例函数解析式,进而求出点C 坐标,最后用再用待定系数法求出一次函数解析式;(2)利用图象直接得出结论;(3)分BP BA =、BP BA =、PA PB =三种情况讨论,即可得出结论.【详解】(1)Q 一次函数1y ax b =+与反比例函数k y x=,相交于点(3,2)B ,(1,)C n -, ∴把(3,2)B 代入k y x=得:23k =, ∴6k =, ∴反比例函数解析式为6y x =, 把(1,)C n -代入6y x =得:61n =-, ∴6n =-,∴点C 的坐标为(1,6)--, 把(3,2)B ,(1,6)C --代入y ax b =+得:23k b b k b=+⎧⎨-=-+⎩,解得:24k b =⎧⎨=-⎩, ∴一次函数解析式为24y x =-;(2)根据函数图像可知:当10x -<<或3x >时,一次函数的图象在反比例函数图象的上方,∴当10x -<<或3x >时,12y y >;(3)存在(0,435)P -+或(0,435)P --或(0,8)P 或10,4P ⎛⎫- ⎪⎝⎭时,PAB △为等腰三角形,理由如下: 过B 作BD y ⊥轴,交y 轴于D ,∵直线124y x =-与y 轴交于点A ,∴令0x =得,4y =-,∴点A 的坐标为(0,4)-,∵点B 的坐标为(3,2)B ,∴点D 的坐标为(0,2)D ,∴22(30)(24)AB =-++2236=+35=①当AP AB =时,则35AP =(0,4)A -Q ,∴点P 的坐标为:1(0,435)P -+、2(0,435)P --;②当BP BA =时,BAP Q △是等腰三角形,BD AP ⊥,BD ∴平分AP ,2(4)6DA DP ∴==--=,∵点D 的坐标为(0,2)D ,∴点P 的坐标为(0,26)+,即3(0,8)P ;③当PA PB =时,如图:设PA PB x ==,则6DP DA PA x =-=-,Q 在Rt BDO △中,3DB =,6DP x =-,PB x =,∴由勾股定理得:222PB DB DP =+,2223(6)x x =+-, 解得:154x =, (0,4)A -Q ,∴点P 的坐标为150,44⎛⎫-+ ⎪⎝⎭,即410,4P ⎛⎫- ⎪⎝⎭, 综上所述,当(0,435)P -+或(0,435)P --或(0,8)P 或10,4P ⎛⎫-⎪⎝⎭时,PAB △为等腰三角形. 【点睛】 本题是反比例函数综合题,主要考查了待定系数法,利用图象确定函数值满足条件的自变量的范围,等腰三角形的性质,勾股定理,解(1)的关键是待定系数法的应用,解(2)的关键是利用函数图象确定x 的范围,解(3)的关键是分类讨论.20.(1)y=﹣x 2﹣2x+1;(2)(﹣32,154) 【解析】【分析】(1)将A(-1,0),B(0,1),C(1,0)三点的坐标代入y=ax2+bx+c,运用待定系数法即可求出此抛物线的解析式;(2)先证明△AOB是等腰直角三角形,得出∠BAO=45°,再证明△PDE是等腰直角三角形,则PE越大,△PDE的周长越大,再运用待定系数法求出直线AB的解析式为y=x+1,则可设P点的坐标为(x,-x2-2x+1),E点的坐标为(x,x+1),那么PE=(-x2-2x+1)-(x+1)=-(x+32)2+94,根据二次函数的性质可知当x=-32时,PE最大,△PDE的周长也最大.将x=-32代入-x2-2x+1,进而得到P点的坐标.【详解】解:(1)∵抛物线y=ax2+bx+c经过点A(﹣1,0),B(0,1),C(1,0),∴9a-3b+c=0 {c=3a+b+c=0,解得a=-1 {b=-2 c=3,∴抛物线的解析式为y=﹣x2﹣2x+1;(2)∵A(﹣1,0),B(0,1),∴OA=OB=1,∴△AOB是等腰直角三角形,∴∠BAO=45°.∵PF⊥x轴,∴∠AEF=90°﹣45°=45°,又∵PD⊥AB,∴△PDE是等腰直角三角形,∴PE越大,△PDE的周长越大.设直线AB的解析式为y=kx+b,则-3k+b=0 {b=3,解得k=1{b=3,即直线AB的解析式为y=x+1.设P点的坐标为(x,﹣x2﹣2x+1),E点的坐标为(x,x+1),则PE=(﹣x2﹣2x+1)﹣(x+1)=﹣x2﹣1x=﹣(x+32)2+94,所以当x=﹣32时,PE最大,△PDE的周长也最大.当x=﹣32时,﹣x2﹣2x+1=﹣(﹣32)2﹣2×(﹣32)+1=154,即点P坐标为(﹣32,154)时,△PDE的周长最大.【点睛】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数、一次函数的解析式,等腰直角三角形的判定与性质,二次函数的性质,三角形的周长,综合性较强,难度适中.21.甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏.【解析】【分析】设甲广告公司每天能制作x个宣传栏,则乙广告公司每天能制作1.2x个宣传栏,然后根据“甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天”列出方程求解即可.【详解】解:设甲广告公司每天能制作x个宣传栏,则乙广告公司每天能制作1.2x个宣传栏.根据题意得:解得:x=1.经检验:x=1是原方程的解且符合实际问题的意义.∴1.2x=1.2×1=2.答:甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏.【点睛】此题考查了分式方程的应用,找出等量关系为两广告公司的工作时间的差为10天是解题的关键.22.两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;两点确定一条直线.【解析】【分析】根据对角线互相平分的四边形是平行四边形可判断四边形ABCP为平行四边形,再根据平行四边形的性质:对角线互相平分即可得到BD=CD,由此可得到小楠的作图依据.【详解】解:由作图的步骤可知平行四边形可判断四边形ABCP为平行四边形,再根据平行四边形的性质:对角线互相平分即可得到BD=CD,所以小楠的作图依据是:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;两点确定一条直线.故答案为:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;两点确定一条直线.【点睛】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的判定和性质.23.(1)15人;(2)补图见解析.(3)1 2 .【解析】【分析】(1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;(2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360°即可得A1所在扇形的圆心角的度数;(3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率.【详解】解:(1)七年级已“建档立卡”的贫困家庭的学生总人数:6÷40%=15人;(2)A2的人数为15﹣2﹣6﹣4=3(人)补全图形,如图所示,A1所在圆心角度数为:215×360°=48°;(3)画出树状图如下:共6种等可能结果,符合题意的有3种∴选出一名男生一名女生的概率为:P=31 62 .【点睛】本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键.24.(1)景点D向公路a修建的这条公路的长约是3.1km;(2)景点C与景点D之间的距离约为4km.【解析】【详解】解:(1)如图,过点D作DE⊥AC于点E,过点A作AF⊥DB,交DB的延长线于点F,在Rt△DAF中,∠ADF=30°,∴AF=12AD=12×8=4,∴DF=22228443AD AF-=-=,在Rt△ABF中BF=2222AB AF54-=-=3,∴BD=DF﹣BF=43﹣3,sin∠ABF=45 AFAB=,在Rt△DBE中,sin∠DBE=DBBD,∵∠ABF=∠DBE,∴sin∠DBE=45,∴DE=BD•sin∠DBE=45×(43﹣3)=16312-≈3.1(km),∴景点D向公路a修建的这条公路的长约是3.1km;(2)由题意可知∠CDB=75°,由(1)可知sin∠DBE=45=0.8,所以∠DBE=53°,∴∠DCB=180°﹣75°﹣53°=52°,在Rt△DCE中,sin∠DCE=DBDC,∴DC=3.1sin520.79DE︒=≈4(km),∴景点C与景点D之间的距离约为4km.25.(1)y=﹣x2+2x+3(2)(2+102,32)(3)当点P的坐标为(32,154)时,四边形ACPB的最大面积值为75 8【解析】【分析】(1)根据待定系数法,可得函数解析式;(2)根据菱形的对角线互相垂直且平分,可得P点的纵坐标,根据自变量与函数值的对应关系,可得P 点坐标;(3)根据平行于y轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PQ的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案.【详解】(1)将点B 和点C 的坐标代入函数解析式,得9603,a c c ++=⎧⎨=⎩解得13,a b =-⎧⎨=⎩ 二次函数的解析式为y=﹣x 2+2x+3;(2)若四边形POP′C 为菱形,则点P 在线段CO 的垂直平分线上,如图1,连接PP′,则PE ⊥CO ,垂足为E ,∵C (0,3), ∴30,2E ,⎛⎫ ⎪⎝⎭∴点P 的纵坐标32, 当32y =时,即23232x x -++=, 解得12210210.22x x +-==,(不合题意,舍), ∴点P 的坐标为2103,2;⎛⎫+ ⎪ ⎪⎝⎭(3)如图2,P 在抛物线上,设P (m ,﹣m 2+2m+3),设直线BC 的解析式为y=kx+b ,将点B 和点C 的坐标代入函数解析式,得3303,k b +=⎧⎨=⎩解得13.k b =-⎧⎨=⎩直线BC 的解析为y=﹣x+3,设点Q 的坐标为(m ,﹣m+3),PQ=﹣m 2+2m+3﹣(﹣m+3)=﹣m 2+3m .当y=0时,﹣x 2+2x+3=0,解得x 1=﹣1,x 2=3,OA=1,()314AB =--=,S 四边形ABPC =S △ABC +S △PCQ +S △PBQ111,222AB OC PQ OF PQ FB =⋅+⋅+⋅ ()2114333,22m m =⨯⨯+-+⨯ 23375228m ⎛⎫=--+ ⎪⎝⎭, 当m=32时,四边形ABPC 的面积最大. 当m=32时,215234m m -++=,即P 点的坐标为315,24⎛⎫ ⎪⎝⎭. 当点P 的坐标为315,24⎛⎫⎪⎝⎭时,四边形ACPB 的最大面积值为758. 【点睛】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用菱形的性质得出P 点的纵坐标,又利用了自变量与函数值的对应关系;解(3)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质.26.(1)证明见解析(2)当∠ABC=60°时,四边形ABEF 为矩形【解析】【分析】(1)根据旋转得出CA=CE ,CB=CF ,根据平行四边形的判定得出即可;(2)根据等边三角形的判定得出△ABC 是等边三角形,求出AE=BF ,根据矩形的判定得出即可.【详解】(1)∵将△ABC 绕点C 顺时针旋转180°得到△EFC ,∴△ABC ≌△EFC ,∴CA=CE ,CB=CF ,∴四边形ABEF 是平行四边形;(2)当∠ABC=60°时,四边形ABEF 为矩形,理由是:∵∠ABC=60°,AB=AC ,∴△ABC 是等边三角形,∴AB=AC=BC .∵CA=CE ,CB=CF ,∴AE=BF .∵四边形ABEF 是平行四边形,∴四边形ABEF 是矩形.【点睛】本题考查了旋转的性质和矩形的判定、平行四边形的判定、等边三角形的性质和判定等知识点,能综合运用知识点进行推理是解答此题的关键.27.(1)B ,C ;(2)2;(3)该校身高在165≤x <175之间的学生约有462人.【解析】【分析】根据直方图即可求得男生的众数和中位数,求得男生的总人数,就是女生的总人数,然后乘以对应的百分比即可求解.【详解】解:(1)∵直方图中,B 组的人数为12,最多,∴男生的身高的众数在B 组,男生总人数为:4+12+10+8+6=40,按照从低到高的顺序,第20、21两人都在C 组,∴男生的身高的中位数在C 组,故答案为B ,C ;(2)女生身高在E 组的百分比为:1﹣17.5%﹣37.5%﹣25%﹣15%=5%,∵抽取的样本中,男生、女生的人数相同,∴样本中,女生身高在E 组的人数有:40×5%=2(人),故答案为2;(3)600×10840+480×(25%+15%)=270+192=462(人). 答:该校身高在165≤x <175之间的学生约有462人.【点睛】考查频数(率)分布直方图, 频数(率)分布表, 扇形统计图, 中位数, 众数,比较基础,掌握计算方法是解题的关键.。

江西省抚州市2019-2020学年中考数学模拟试题(3)含解析

江西省抚州市2019-2020学年中考数学模拟试题(3)含解析

江西省抚州市2019-2020学年中考数学模拟试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,小颖为测量学校旗杆AB 的高度,她在E 处放置一块镜子,然后退到C 处站立,刚好从镜子中看到旗杆的顶部B .已知小颖的眼睛D 离地面的高度CD =1.5m ,她离镜子的水平距离CE =0.5m ,镜子E 离旗杆的底部A 处的距离AE =2m ,且A 、C 、E 三点在同一水平直线上,则旗杆AB 的高度为( )A .4.5mB .4.8mC .5.5mD .6 m2.以x 为自变量的二次函数y=x 2﹣2(b ﹣2)x+b 2﹣1的图象不经过第三象限,则实数b 的取值范围是( ) A .b≥1.25B .b≥1或b≤﹣1C .b≥2D .1≤b≤23.下列运算正确的是( ) A .(a 2)3=a 5B .(a-b)2=a 2-b 2C .355-=3D .3-27=-34.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-5.下列运算中,正确的是 ( ) A .x 2+5x 2=6x 4B .x 326·x x =C .236()x x =D .33()xy xy =6.下列各式计算正确的是( ) A 633=B .1236=C .3535+=D 1025=7.下列运算正确的是( ) A .a 3•a 2=a 6B .(a 2)3=a 5C 9=3D .558.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130000000kg 的煤所产生的能量.把130000000kg 用科学记数法可表示为( ) A .13×710kgB .0.13×810kgC .1.3×710kgD .1.3×810kg9.如图,小明从A 处出发沿北偏西30°方向行走至B 处,又沿南偏西50°方向行走至C 处,此时再沿与出发时一致的方向行走至D 处,则∠BCD 的度数为( )A .100°B .80°C .50°D .20°10.一次函数y=kx+k (k≠0)和反比例函数()0ky k x=≠在同一直角坐标系中的图象大致是( ) A . B . C . D .11.若3x =是关于x 的方程2430x x m -+=的一个根,则方程的另一个根是( ) A .9B .4C .43D .3312.如图,⊙O 中,弦BC 与半径OA 相交于点D ,连接AB ,OC ,若∠A=60°,∠ADC=85°,则∠C 的度数是( )A .25°B .27.5°C .30°D .35°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如果两个相似三角形对应边上的高的比为1:4,那么这两个三角形的周长比是___.14.如图,在平行四边ABCD 中,AD=2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中一定成立的是 (把所有正确结论的序号都填在横线上)∠DCF=∠BCD ,(2)EF=CF ;(3)S ΔBEC =2S ΔCEF ;(4)∠DFE=3∠AEF15.尺规作图:过直线外一点作已知直线的平行线.已知:如图,直线l与直线l外一点P.求作:过点P与直线l平行的直线.作法如下:(1)在直线l上任取两点A、B,连接AP、BP;(2)以点B为圆心,AP长为半径作弧,以点P为圆心,AB长为半径作弧,如图所示,两弧相交于点M;(3)过点P、M作直线;(4)直线PM即为所求.请回答:PM平行于l的依据是_____.16.如图,菱形ABCD和菱形CEFG中,∠ABC=60°,点B,C,E在同一条直线上,点D在CG上,BC=1,CE=3,H是AF的中点,则CH的长为________.17.方程3x(x-1)=2(x-1)的根是18.图1、图2的位置如图所示,如果将两图进行拼接(无覆盖),可以得到一个矩形,请利用学过的变换(翻折、旋转、轴对称)知识,将图2进行移动,写出一种拼接成矩形的过程______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某公司10名销售员,去年完成的销售额情况如表:销售额(单位:万元) 3 4 5 6 7 8 10销售员人数(单位:人) 1 3 2 1 1 1 1 (1)求销售额的平均数、众数、中位数;(2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元?20.(6分)如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长.21.(6分)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.22.(8分)解分式方程:2322xx x+--=123.(8分)如图,矩形ABCD为台球桌面,AD=260cm,AB=130cm,球目前在E点位置,AE=60cm.如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置.求BF的长.24.(10分)如图,在平面直角坐标系中,A 为y 轴正半轴上一点,过点A 作x 轴的平行线,交函数2(0)y x x =<的图象于B 点,交函数6(0)y x x=>的图象于C ,过C 作y 轴和平行线交BO 的延长线于D .(1)如果点A 的坐标为(0,2),求线段AB 与线段CA 的长度之比; (2)如果点A 的坐标为(0,a ),求线段AB 与线段CA 的长度之比; (3)在(1)条件下,四边形AODC 的面积为多少?25.(10分)如图,已知点D 、E 为△ABC 的边BC 上两点.AD=AE ,BD=CE ,为了判断∠B 与∠C 的大小关系,请你填空完成下面的推理过程,并在空白括号内注明推理的依据. 解:过点A 作AH ⊥BC ,垂足为H . ∵在△ADE 中,AD=AE (已知) AH ⊥BC (所作)∴DH=EH (等腰三角形底边上的高也是底边上的中线) 又∵BD=CE (已知)∴BD+DH=CE+EH (等式的性质) 即:BH= 又∵ (所作)∴AH 为线段 的垂直平分线∴AB=AC (线段垂直平分线上的点到线段两个端点的距离相等) ∴ (等边对等角)26.(12分)如图,抛物线与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0).(1)求直线AB的函数关系式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB 于点M,交抛物线于点N. 设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由27.(12分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.【详解】解:由题意可得:AE=2m,CE=0.5m,DC=1.5m,∵△ABC∽△EDC,∴,即,解得:AB=6,故选:D.【点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.2.A【解析】∵二次函数y=x2-2(b-2)x+b2-1的图象不经过第三象限,a=1>0,∴Δ≤0或抛物线与x轴的交点的横坐标均大于等于0.当Δ≤0时,[-2(b-2)]2-4(b2-1)≤0,解得b≥.当抛物线与x轴的交点的横坐标均大于等于0时,设抛物线与x轴的交点的横坐标分别为x1,x2,则x1+x2=2(b-2)>0,Δ=[-2(b-2)]2-4(b2-1)>0,无解,∴此种情况不存在.∴b≥.3.D【解析】试题分析:A、原式=a6,错误;B、原式=a2﹣2ab+b2,错误;C、原式不能合并,错误;D 、原式=﹣3,正确,故选D考点:完全平方公式;合并同类项;同底数幂的乘法;平方差公式. 4.D 【解析】 分析: 详解:如图,∵AB ⊥CD,CE ⊥AD, ∴∠1=∠2, 又∵∠3=∠4,∴180°-∠1-∠4=180°-∠2-∠3, 即∠A=∠C. ∵BF ⊥AD,∴∠CED=∠BFD=90°, ∵AB=CD, ∴△ABF ≌△CDE, ∴AF=CE=a,ED=BF=b, 又∵EF=c, ∴AD=a+b-c. 故选:D.点睛:本题主要考查全等三角形的判定与性质,证明△ABF ≌△CDE 是关键. 5.C 【解析】分析:直接利用积的乘方运算法则及合并同类项和同底数幂的乘除运算法则分别分析得出结果.详解:A. x 2+5x 2=2466x x ≠ ,本项错误;B.3256x x x x ⋅=≠ ,本项错误;C.236()x x = ,正确;D.3333()xy x y xy =≠,本项错误.故选C.点睛:本题主要考查了积的乘方运算及合并同类项和同底数幂的乘除运算,解答本题的关键是正确掌握运算法则. 6.BA 选项中,∵63、不是同类二次根式,不能合并,∴本选项错误;B 选项中,∵123=36=6⨯,∴本选项正确;C 选项中,∵35=35⨯,而不是等于3+5,∴本选项错误;D 选项中,∵10102=5÷≠,∴本选项错误; 故选B. 7.C 【解析】 【分析】结合选项分别进行幂的乘方和积的乘方、同底数幂的乘法、实数的运算等运算,然后选择正确选项. 【详解】解:A. a 3⋅a 2=a 5,原式计算错误,故本选项错误; B. (a 2)3=a 6,原式计算错误,故本选项错误; C.9=3,原式计算正确,故本选项正确;D. 2和5不是同类项,不能合并,故本选项错误. 故选C. 【点睛】本题考查了幂的乘方与积的乘方, 实数的运算, 同底数幂的乘法,解题的关键是幂的运算法则. 8.D 【解析】试题分析:科学计数法是指:a×10n ,且110a ≤<,n 为原数的整数位数减一. 9.B 【解析】解:如图所示:由题意可得:∠1=30°,∠3=50°,则∠2=30°,故由DC ∥AB ,则∠4=30°+50°=80°.故选B .点睛:此题主要考查了方向角的定义,正确把握定义得出∠3的度数是解题关键.【解析】A、由反比例函数的图象在一、三象限可知k>0,由一次函数的图象过二、四象限可知k<0,两结论相矛盾,故选项错误;B、由反比例函数的图象在二、四象限可知k<0,由一次函数的图象与y轴交点在y 轴的正半轴可知k>0,两结论相矛盾,故选项错误;C、由反比例函数的图象在二、四象限可知k<0,由一次函数的图象过二、三、四象限可知k<0,两结论一致,故选项正确;D、由反比例函数的图象在一、三象限可知k>0,由一次函数的图象与y轴交点在y轴的负半轴可知k<0,两结论相矛盾,故选项错误,故选C.11.D【解析】【分析】【详解】解:设方程的另一个根为a a=解得a=故选D.12.D【解析】分析:直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.详解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故选D.点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1:4【解析】∵两个相似三角形对应边上的高的比为1∶4,∴这两个相似三角形的相似比是1:4∵相似三角形的周长比等于相似比,∴它们的周长比1:4,故答案为:1:4.【点睛】本题考查了相似三角形的性质,相似三角形对应边上的高、相似三角形的周长比都等于相似比. 14.①②④【解析】试题解析:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=12∠BCD,故此选项正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,{A FDM AF DFAFE DFM∠=∠=∠=∠,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°-x,∴∠EFC=180°-2x,∴∠EFD=90°-x+180°-2x=270°-3x,∵∠AEF=90°-x,∴∠DFE=3∠AEF,故此选项正确.考点:1.平行四边形的性质;2.全等三角形的判定与性质;3.直角三角形斜边上的中线.15.两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.【解析】【分析】利用画法得到PM=AB,BM=PA,则利用平行四边形的判定方法判断四边形ABMP为平行四边形,然后根据2平行四边形的性质得到PM∥AB.【详解】解:由作法得PM=AB,BM=PA,∴四边形ABMP为平行四边形,∴PM∥AB.故答案为:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.【点睛】本题考查基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行四边形的判定与性质.16【解析】【分析】连接AC、CF,GE,根据菱形性质求出AC、CF,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】解:如图,连接AC、CF、GE,CF和GE相交于O点o,BC=1,∵在菱形ABCD中,ABC=60∴ACD=60∠o ,AC=1,AB//CD ∴GCE=60∠o∵在菱形CEFG 中,CF GE 和是它的对角线, ∴GCF=FCE=30∠∠o ,CF GE ⊥ ∴CO=cos30CE o ⨯3=3⨯33=, ∴CF=2CO=33∵ACF=ACD+GCF ∠∠∠=6030+o o =90o , ∴在Rt ACF V 中,22AF=AC CF +()22=133+=27又∵H 是AF 的中点 ∴1CH=AF 21=272⨯=7.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,菱形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键. 17.x 1=1,x 2=-.【解析】试题解析:3x(x-1)=2(x-1) 3x(x-1)-2 (x-1) =0 (3x-2)(x-1)=0 3x-2=0,x-1=0 解得:x 1=1,x 2=-. 考点:解一元二次方程---因式分解法.18.先将图2以点A 为旋转中心逆时针旋转90︒,再将旋转后的图形向左平移5个单位. 【解析】 【分析】变换图形2,可先旋转,然后平移与图2拼成一个矩形.【详解】先将图2以点A为旋转中心逆时针旋转90°,再将旋转后的图形向左平移5个单位可以与图1拼成一个矩形.故答案为:先将图2以点A为旋转中心逆时针旋转90°,再将旋转后的图形向左平移5个单位.【点睛】本题考查了平移和旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)平均数5.6(万元);众数是4(万元);中位数是5(万元);(2)今年每个销售人员统一的销售标准应是5万元.【解析】【分析】(1)根据平均数公式求得平均数,根据次数出现最多的数确定众数,按从小到大顺序排列好后求得中位数.(2)根据平均数,中位数,众数的意义回答.【详解】解:(1)平均数=(3×1+4×3+5×2+6×1+7×1+8×1+10×1)=5.6(万元);出现次数最多的是4万元,所以众数是4(万元);因为第五,第六个数均是5万元,所以中位数是5(万元).(2)今年每个销售人员统一的销售标准应是5万元.理由如下:若规定平均数5.6万元为标准,则多数人无法或不可能超额完成,会挫伤员工的积极性;若规定众数4万元为标准,则大多数人不必努力就可以超额完成,不利于提高年销售额;若规定中位数5万元为标准,则大多数人能完成或超额完成,少数人经过努力也能完成.因此把5万元定为标准比较合理.【点睛】本题考查的知识点是众数、平均数以及中位数,解题的关键是熟练的掌握众数、平均数以及中位数. 20.【小题1】见解析【小题2】见解析【小题3】【解析】证明:(1)连接OF∴FH切·O于点F∴OF⊥FH ………………………… 1分∵BC | | FH∴OF⊥BC ………………………… 2分∴BF="CF" ………………………… 3分∴∠BAF=∠CAF即AF平分∠BAC…………………4分(2)∵∠CAF=∠CBF又∠CAF=∠BAF∴∠CBF=∠BAF ………………………… 6分∵BD平分∠ABC∴∠ABD=∠CBD∴∠BAF+∠ABD=∠CBF+∠CBD即∠FBD=∠FDB………………………… 7分∴BF="DF" ………………………… 8分(3)∵∠BFE=∠AFB ∠FBE=∠FAB∴ΔBEF∽ΔABF………………………… 9分∴即BF2=EF·AF …………………… 10分∵EF=4 DE=3 ∴BF="DF" =4+3=7AF=AD+7即4(AD+7)=49 解得AD=21.(1)平均数(分)中位数(分)众数(分)初中部85 85 85高中部85 80 100(2)初中部成绩好些(3)初中代表队选手成绩较为稳定【解析】解:(1)填表如下:平均数(分) 中位数(分) 众数(分) 初中部 85 85 85 高中部8580100(2)初中部成绩好些.∵两个队的平均数都相同,初中部的中位数高, ∴在平均数相同的情况下中位数高的初中部成绩好些. (3)∵,222222S 7085100851008575858085160=-+-+-+-+-=高中队()()()()(),∴2S 初中队<2S 高中队,因此,初中代表队选手成绩较为稳定.(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答. (2)根据平均数和中位数的统计意义分析得出即可. (3)分别求出初中、高中部的方差比较即可. 22.x=1 【解析】 【分析】分式方程变形后去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【详解】化为整式方程得:2﹣3x=x ﹣2, 解得:x=1,经检验x=1是原方程的解, 所以原方程的解是x=1. 【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为 整式方程求解.解分式方程一定注意要验根. 23.BF 的长度是1cm . 【解析】 【分析】利用“两角法”证得△BEF ∽△CDF ,利用相似三角形的对应边成比例来求线段CF 的长度.【详解】解:如图,在矩形ABCD中:∠DFC=∠EFB,∠EBF=∠FCD=90°,∴△BEF∽△CDF;∴BECD=BFCF,又∵AD=BC=260cm ,AB=CD=130cm ,AE=60cm∴BE=70cm,CD=130cm,BC=260cm ,CF=(260-BF)cm∴70130=260BFBF-,解得:BF=1.即:BF的长度是1cm.【点睛】本题主要考查相似三角形的判定和性质,关键要掌握:有两角对应相等的两三角形相似;两三角形相似,对应边的比相等.24.(1)线段AB与线段CA的长度之比为13;(2)线段AB与线段CA的长度之比为13;(3)1.【解析】试题分析:(1)由题意把y=2代入两个反比例函数的解析式即可求得点B、C的横坐标,从而得到AB、AC的长,即可得到线段AB与AC的比值;(2)由题意把y=a代入两个反比例函数的解析式即可求得用“a”表示的点B、C的横坐标,从而可得到AB、AC的长,即可得到线段AB与AC的比值;(3)由(1)可知,AB:AC=1:3,由此可得AB:BC=1:4,利用OA=2和平行线分线段成比例定理即可求得CD的长,从而可由梯形的面积公式求出四边形AODC的面积.试题解析:(1)∵A(0,2),BC∥x轴,∴B(﹣1,2),C(3,2),∴AB=1,CA=3,∴线段AB与线段CA的长度之比为13;(2)∵B是函数y=﹣2x(x<0)的一点,C是函数y=6x(x>0)的一点,∴B(﹣2a,a),C(6a,a),∴AB=2a,CA=6a,∴线段AB与线段CA的长度之比为13;(3)∵ABAC=13,∴ABBC=14,又∵OA=a,CD∥y轴,∴14 OA ABCD BC==,∴CD=4a,∴四边形AODC的面积为=12(a+4a)×6a=1.25.见解析【解析】【分析】根据等腰三角形的性质与判定及线段垂直平分线的性质解答即可.【详解】过点A作AH⊥BC,垂足为H.∵在△ADE中,AD=AE(已知),AH⊥BC(所作),∴DH=EH(等腰三角形底边上的高也是底边上的中线).又∵BD=CE(已知),∴BD+DH=CE+EH(等式的性质),即:BH=CH.∵AH⊥BC(所作),∴AH为线段BC的垂直平分线.∴AB=AC(线段垂直平分线上的点到线段两个端点的距离相等).∴∠B=∠C(等边对等角).【点睛】本题考查等腰三角形的性质及线段垂直平分线的性质,等腰三角形的底边中线、底边上的高、顶角的角平分线三线合一;线段垂直平分线上的点到线段两端的距离相等;26.(1)112y x=+;(2)251544s t t=-+(0≤t≤3);(3)t=1或2时;四边形BCMN为平行四边形;t=1时,平行四边形BCMN是菱形,t=2时,平行四边形BCMN不是菱形,理由见解析.【解析】【分析】(1)由A、B在抛物线上,可求出A、B点的坐标,从而用待定系数法求出直线AB的函数关系式.(2)用t表示P、M、N 的坐标,由等式MN NP MP=-得到函数关系式.(3)由平行四边形对边相等的性质得到等式,求出t.再讨论邻边是否相等.【详解】解:(1)x=0时,y=1, ∴点A 的坐标为:(0,1), ∵BC ⊥x 轴,垂足为点C (3,0), ∴点B 的横坐标为3, 当x=3时,y=52, ∴点B 的坐标为(3,52), 设直线AB 的函数关系式为y=kx+b ,1532b k b =⎧⎪⎨+=⎪⎩,解得,121k b ⎧=⎪⎨⎪=⎩,则直线AB 的函数关系式112y x =+ (2)当x=t 时,y=12t+1, ∴点M 的坐标为(t ,12t+1),当x=t 时,2517144y t t =-++ ∴点N 的坐标为2517(,1)44t t t -++ 2251715151(1)44244s t t t t t =-++-+=-+ (0≤t≤3);(3)若四边形BCMN 为平行四边形,则有MN=BC , ∴25155=442t t -+, 解得t 1=1,t 2=2,∴当t=1或2时,四边形BCMN 为平行四边形, ①当t=1时,MP=32,PC=2, ∴MC=52=MN ,此时四边形BCMN 为菱形, ②当t=2时,MP=2,PC=1,∴,此时四边形BCMN 不是菱形. 【点睛】本题考查的是二次函数的性质、待定系数法求函数解析式、菱形的判定,正确求出二次函数的解析式、利用配方法把一般式化为顶点式、求出函数的最值是解题的关键,注意菱形的判定定理的灵活运用.27.(1)100;(2)补图见解析;(3)570人.【解析】【分析】(1)由读书1本的人数及其所占百分比可得总人数;(2)总人数乘以读4本的百分比求得其人数,减去男生人数即可得出女生人数,用读2本的人数除以总人数可得对应百分比;(3)总人数乘以样本中读2本人数所占比例.【详解】(1)参与问卷调查的学生人数为(8+2)÷10%=100人,故答案为:100;(2)读4本的女生人数为100×15%﹣10=5人,读2本人数所占百分比为×100%=38%,补全图形如下:(3)估计该校学生一个月阅读2本课外书的人数约为1500×38%=570人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.。

江西省抚州市2019-2020学年中考数学仿真第一次备考试题含解析

江西省抚州市2019-2020学年中考数学仿真第一次备考试题含解析

江西省抚州市2019-2020学年中考数学仿真第一次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形中,可以看作中心对称图形的是( )A.B.C.D.2.如图,正方形ABCD的顶点C在正方形AEFG的边AE上,AB=2,AE=42,则点G 到BE的距离是()A.165B.362C.322D.1853.将抛物线y=x2先向左平移2个单位,再向下平移3个单位后所得抛物线的解析式为()A.y=(x﹣2)2+3 B.y=(x﹣2)2﹣3 C.y=(x+2)2+3 D.y=(x+2)2﹣34.已知方程x2﹣x﹣2=0的两个实数根为x1、x2,则代数式x1+x2+x1x2的值为()A.﹣3 B.1 C.3 D.﹣15.将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF 的大小为()A.10°B.15°C.20°D.25°6.下列图形中,不是中心对称图形的是()A.平行四边形B.圆C.等边三角形D.正六边形7.如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A .50°B .60°C .70°D .80°8.如图所示,点E 是正方形ABCD 内一点,把△BEC 绕点C 旋转至△DFC 位置,则∠EFC 的度数是( )A .90°B .30°C .45°D .60°9.如图,△ABC 中,AB=5,BC=3,AC=4,以点C 为圆心的圆与AB 相切,则⊙C 的半径为( )A .2.3B .2.4C .2.5D .2.610.小带和小路两个人开车从A 城出发匀速行驶至B 城.在整个行驶过程中,小带和小路两人车离开A 城的距离y(km)与行驶的时间t(h)之间的函数关系如图所示.有下列结论;①A ,B 两城相距300 km ;②小路的车比小带的车晚出发1 h ,却早到1 h ;③小路的车出发后2.5 h 追上小带的车;④当小带和小路的车相距50 km 时,t =54或t =154.其中正确的结论有( )A .①②③④B .①②④C .①②D .②③④ 11.方程x 2﹣3x =0的根是( )A .x =0B .x =3C .10x =,23x =-D .10x =,23x =12.下列计算结果正确的是( )A .329()a a -=B .236a a a ⋅=C .3332a a a +=D .0(cos 600.5)1︒-=二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图为二次函数2y ax bx c =++图象的一部分,其对称轴为直线1x =.若其与x 轴一交点为A(3,0)则由图象可知,不等式20ax bx c ++<的解集是_______.14.观察下列一组数13,25,37,49,511,…探究规律,第n 个数是_____. 15.正六边形的每个内角等于______________°.16.如图,已知l 1∥l 2∥l 3,相邻两条平行直线间的距离相等,若等腰直角三角形ABC 的直角顶点C 在l 1上,另两个顶点A ,B 分别在l 3,l 2上,则sinα的值是_____.17.如图,直线y=3x 与双曲线y=k x交于A ,B 两点,OA=2,点C 在x 轴的正半轴上,若∠ACB=90°,则点C 的坐标为______.18.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD 的面积为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在传箴言活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行统计,并绘制成了如图所示的两幅统计图(1)将条形统计图补充完整;(2)该班团员在这一个月内所发箴言的平均条数是________;(3)如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学,现要从发了3条箴言和4条箴言的同学中分别选出一位参加总结会,请你用列表或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.20.(6分)如图,∠BCD=90°,且BC=DC,直线PQ经过点D.设∠PDC=α(45°<α<135°),BA⊥PQ 于点A,将射线CA绕点C按逆时针方向旋转90°,与直线PQ交于点E.当α=125°时,∠ABC=°;求证:AC=CE;若△ABC的外心在其内部,直接写出α的取值范围.21.(6分)如图,AB是⊙O的直径,点C为⊙O上一点,经过C作CD⊥AB于点D,CF是⊙O的切线,过点A作AE⊥CF于E,连接AC.(1)求证:AE=AD.(2)若AE=3,CD=4,求AB的长.22.(8分)如图,已知点A,B的坐标分别为(0,0)、(2,0),将△ABC绕C点按顺时针方向旋转90°得到△A1B1C.(1)画出△A1B1C;(2)A的对应点为A1,写出点A1的坐标;(3)求出B旋转到B1的路线长.23.(8分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:20 21 19 16 27 18 31 29 21 2225 20 19 22 35 33 19 17 18 2918 35 22 15 18 18 31 31 19 22整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:统计量平均数众数中位数数值23 m 21根据以上信息,解答下列问题:上表中众数m的值为;为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.24.(10分)如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D求证:AC∥DE;若BF=13,EC=5,求BC的长.25.(10分)据某省商务厅最新消息,2018年第一季度该省企业对“一带一路”沿线国家的投资额为10亿美元,第三季度的投资额增加到了14.4亿美元.求该省第二、三季度投资额的平均增长率.26.(12分)在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.求证:△ABP≌△CAQ;请判断△APQ是什么形状的三角形?试说明你的结论.27.(12分)如图,AC是⊙O的直径,点P在线段AC的延长线上,且PC=CO,点B在⊙O上,且∠CAB=30°.(1)求证:PB是⊙O的切线;(2)若D为圆O上任一动点,⊙O的半径为5cm时,当弧CD长为时,四边形ADPB为菱形,当弧CD长为时,四边形ADCB为矩形.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据中心对称图形的概念求解.【详解】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选:B.【点睛】此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.A【解析】【分析】根据平行线的判定,可得AB与GE的关系,根据平行线间的距离相等,可得△BEG与△AEG的关系,根据根据勾股定理,可得AH与BE的关系,再根据勾股定理,可得BE的长,根据三角形的面积公式,可得G到BE的距离.【详解】连接GB、GE,由已知可知∠BAE=45°.又∵GE为正方形AEFG的对角线,∴∠AEG=45°.∴AB∥GE.∵2,AB与GE间的距离相等,∴GE=8,S△BEG=S△AEG=12S AEFG=1.过点B作BH⊥AE于点H,∵AB=2,∴BH=AH2∴HE=2.∴BE=5设点G 到BE 的距离为h .∴S △BEG =12•BE•h =12×h =1.∴h =5.即点G 到BE 故选A .【点睛】本题主要考查了几何变换综合题.涉及正方形的性质,全等三角形的判定及性质,等积式及四点共圆周的知识,综合性强.解题的关键是运用等积式及四点共圆的判定及性质求解.3.D【解析】【分析】先得到抛物线y=x 2的顶点坐标(0,0),再根据点平移的规律得到点(0,0)平移后的对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.【详解】解:抛物线y=x 2的顶点坐标为(0,0),把点(0,0)先向左平移2个单位,再向下平移1个单位得到对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.故选:D .【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.4.D【解析】分析:根据一元二次方程根与系数的关系求出x 1+x 2和x 1x 2的值,然后代入x 1+x 2+x 1x 2计算即可. 详解:由题意得,a=1,b=-1,c=-2, ∴121==11b x x a -+=--,122==21c x x a -⋅=-, ∴x 1+x 2+x 1x 2=1+(-2)=-1.故选D.点睛:本题考查了一元二次方程ax 2+bx+c=0(a≠0)根与系数的关系,若x 1,x 2为方程的两个根,则x 1,x 2与系数的关系式:12b x x a +=-,12c x x a⋅= .先根据∠CDE=40°,得出∠CED=50°,再根据DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.【详解】由图可得,∠CDE=40°,∠C=90°,∴∠CED=50°,又∵DE∥AF,∴∠CAF=50°,∵∠BAC=60°,∴∠BAF=60°−50°=10°,故选A.【点睛】本题考查了平行线的性质,熟练掌握这一点是解题的关键.6.C【解析】【分析】根据中心对称图形的定义依次判断各项即可解答.【详解】选项A、平行四边形是中心对称图形;选项B、圆是中心对称图形;选项C、等边三角形不是中心对称图形;选项D、正六边形是中心对称图形;故选C.【点睛】本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.7.B【解析】试题分析:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.由旋转的性质可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠AC B′=60°.故选B.考点:旋转的性质.根据正方形的每一个角都是直角可得∠BCD=90°,再根据旋转的性质求出∠ECF=∠BCD=90°,CE=CF,然后求出△CEF是等腰直角三角形,然后根据等腰直角三角形的性质解答.【详解】∵四边形ABCD是正方形,∴∠BCD=90°,∵△BEC绕点C旋转至△DFC的位置,∴∠ECF=∠BCD=90°,CE=CF,∴△CEF是等腰直角三角形,∴∠EFC=45°.故选:C.【点睛】本题目是一道考查旋转的性质问题——每对对应点到旋转中心的连线的夹角都等于旋转角度,每对对应边相等,故CEF∆为等腰直角三角形.9.B【解析】试题分析:在△ABC中,∵AB=5,BC=3,AC=4,∴AC2+BC2=32+42=52=AB2,∴∠C=90°,如图:设切点为D,连接CD,∵AB是⊙C的切线,∴CD⊥AB,∵S△ABC=12AC×BC=12AB×CD,∴AC×BC=AB×CD,即CD=AC BCAB⋅=345⨯=125,∴⊙C的半径为125,故选B.考点:圆的切线的性质;勾股定理.10.C【解析】【分析】观察图象可判断①②,由图象所给数据可求得小带、小路两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.由图象可知A,B两城市之间的距离为300 km,小带行驶的时间为5 h,而小路是在小带出发1 h后出发的,且用时3 h,即比小带早到1 h,∴①②都正确;设小带车离开A城的距离y与t的关系式为y小带=kt,把(5,300)代入可求得k=60,∴y小带=60t,设小路车离开A城的距离y与t的关系式为y小路=mt+n,把(1,0)和(4,300)代入可得0 4300 m nm n+=⎧⎨+=⎩解得100100 mn=⎧⎨=-⎩∴y小路=100t-100,令y小带=y小路,可得60t=100t-100,解得t=2.5,即小带和小路两直线的交点横坐标为t=2.5,此时小路出发时间为1.5 h,即小路车出发1.5 h后追上甲车,∴③不正确;令|y小带-y小路|=50,可得|60t-100t+100|=50,即|100-40t|=50,当100-40t=50时,可解得t=54,当100-40t=-50时,可解得t=154,又当t=56时,y小带=50,此时小路还没出发,当t=256时,小路到达B城,y小带=250.综上可知当t的值为54或154或56或256时,两车相距50 km,∴④不正确.故选C.【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.11.D【分析】先将方程左边提公因式x ,解方程即可得答案.【详解】x 2﹣3x =0,x (x ﹣3)=0,x 1=0,x 2=3,故选:D .【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.12.C【解析】【分析】利用幂的乘方、同底数幂的乘法、合并同类项及零指数幂的定义分别计算后即可确定正确的选项.【详解】A 、原式6a =,故错误;B 、原式5a =,故错误;C 、利用合并同类项的知识可知该选项正确;D 、cos600.5︒=,cos600.50︒-=,所以原式无意义,错误,故选C .【点睛】本题考查了幂的运算性质及特殊角的三角函数值的知识,解题的关键是能够利用有关法则进行正确的运算,难度不大.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.﹣1<x <1【解析】试题分析:由图象得:对称轴是x=1,其中一个点的坐标为(1,0)∴图象与x 轴的另一个交点坐标为(-1,0)利用图象可知:ax 2+bx+c <0的解集即是y <0的解集,∴-1<x <1.考点:二次函数与不等式(组).14.21n n + 【解析】【分析】根据已知得出数字分母与分子的变化规律,分子是连续的正整数,分母是连续的奇数,进而得出第n 个数分子的规律是n ,分母的规律是2n+1,进而得出这一组数的第n 个数的值.【详解】解:因为分子的规律是连续的正整数,分母的规律是2n+1,所以第n 个数就应该是:21n n +, 故答案为21n n +. 【点睛】此题主要考查了数字变化规律,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.解题的关键是把数据的分子分母分别用组数n 表示出来.15.120【解析】试题解析:六边形的内角和为:(6-2)×180°=720°,∴正六边形的每个内角为:=120°. 考点:多边形的内角与外角.16.1010【解析】【分析】过点A 作AD ⊥l 1于D ,过点B 作BE ⊥l 1于E ,根据同角的余角相等求出∠CAD=∠BCE ,然后利用“角角边”证明△ACD 和△CBE 全等,根据全等三角形对应边相等可得CD=BE ,然后利用勾股定理列式求出AC ,然后利用锐角的正弦等于对边比斜边列式计算即可得解.【详解】如图,过点A 作AD ⊥l 1于D ,过点B 作BE ⊥l 1于E ,设l 1,l 2,l 3间的距离为1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE ,在等腰直角△ABC 中,AC=BC ,在△ACD 和△CBE 中,90CAD BCE ADC BEC AC BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△ACD ≌△CBE (AAS ),∴CD=BE=1,∴AD=2,∴AC=225CD AD +=,∴AB=2AC=10,∴sinα=1101010=, 故答案为1010.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数的定义,正确添加辅助线构造出全等三角形是解题的关键.17.(2,0)【解析】【分析】根据直线y=3x 与双曲线y=k x 交于A ,B 两点,OA=2,可得AB=2AO=4,再根据Rt △ABC 中,OC=12AB=2,即可得到点C 的坐标 【详解】如图所示,∵直线x 与双曲线y=k x 交于A ,B 两点,OA=2, ∴AB=2AO=4,又∵∠ACB=90°,∴Rt △ABC 中,OC=12AB=2, 又∵点C 在x 轴的正半轴上,∴C (2,0),故答案为(2,0).【点睛】本题主要考查了反比例函数与一次函数交点问题,解决问题的关键是利用直角三角形斜边上中线的性质得到OC 的长.18.25【解析】试题解析:由题意»10DBCD BC =+= »11·1052522ABD S BD AB =⨯=⨯⨯=扇形 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)作图见解析;(2)3;(3)712【解析】【分析】(1)根据发了3条箴言的人数与所占的百分比列式计算即可求出该班全体团员的总人数为12,再求出发了4条箴言的人数,然后补全统计图即可;(2)利用该班团员在这一个月内所发箴言的总条数除以总人数即可求得结果;(3)列举出所有情况,看恰好是一位男同学和一位女同学占总情况的多少即可.【详解】解:(1)该班团员人数为:3÷25%=12(人),发了4条赠言的人数为:12−2−2−3−1=4(人),将条形统计图补充完整如下:(2)该班团员所发赠言的平均条数为:(2×1+2×2+3×3+4×4+1×5)÷12=3,故答案为:3;(3)∵发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学,∴发了3条箴言的同学中有一位女同学,发了4条箴言的同学中有一位男同学,方法一:列表得:共有12种结果,且每种结果的可能性相同,所选两位同学中恰好是一位男同学和一位女同学的情况有7种,所选两位同学中恰好是一位男同学和一位女同学的概率为:7 12;方法二:画树状图如下:共有12种结果,且每种结果的可能性相同,所选两位同学中恰好是一位男同学和一位女同学的情况有7种,所选两位同学中恰好是一位男同学和一位女同学的概率为:7 12;【点睛】此题考查了树状图法与列表法求概率,以及条形统计图与扇形统计图的知识.注意平均条数=总条数÷总人数;如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率()mP An.20.(1)125;(2)详见解析;(3)45°<α<90°.【解析】【分析】(1)利用四边形内角和等于360度得:∠B+∠ADC=180°,而∠ADC+∠EDC=180°,即可求解;(2)证明△ABC≌△EDC(AAS)即可求解;(3)当∠ABC=α=90°时,△ABC的外心在其直角边上,∠ABC=α>90°时,△ABC的外心在其外部,即可求解.【详解】(1)在四边形BADC中,∠B+∠ADC=360°﹣∠BAD﹣∠DCB=180°,而∠ADC+∠EDC=180°,∴∠ABC=∠PDC=α=125°,故答案为125;(2)∠ECD+∠DCA=90°,∠DCA+∠ACB=90°,∴∠ACB=∠ECD,又BC=DC,由(1)知:∠ABC=∠PDC,∴△ABC≌△EDC(AAS),∴AC=CE;(3)当∠ABC=α=90°时,△ABC的外心在其斜边上;∠ABC=α>90°时,△ABC的外心在其外部,而45°<α<135°,故:45°<α<90°.【点睛】本题考查圆的综合运用,解题的关键是掌握三角形全等的判定和性质(AAS)、三角形外心.21.(1)证明见解析(2)25 3【解析】【分析】(1)连接OC,根据垂直定义和切线性质定理证出△CAE≌△CAD(AAS),得AE=AD;(2)连接CB,由(1)得AD=AE=3,根据勾股定理得:AC=5,由cos∠EAC=,cos∠CAB==,∠EAC=∠CAB,得=.【详解】(1)证明:连接OC,如图所示,∵CD⊥AB,AE⊥CF,∴∠AEC=∠ADC=90°,∵CF是圆O的切线,∴CO⊥CF,即∠ECO=90°,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠EAC=∠CAO,在△CAE和△CAD中,,∴△CAE≌△CAD(AAS),∴AE=AD;(2)解:连接CB,如图所示,∵△CAE≌△CAD,AE=3,∴AD=AE=3,∴在Rt△ACD中,AD=3,CD=4,根据勾股定理得:AC=5,在Rt△AEC中,cos∠EAC==,∵AB为直径,∴∠ACB=90°,∴cos∠CAB==,∵∠EAC=∠CAB,∴=,即AB=.【点睛】本题考核知识点:切线性质,锐角三角函数的应用. 解题关键点:由全等三角形性质得到线段相等,根据直角三角形性质得到相应等式.22.(1)画图见解析;(2)A1(0,6);(3)弧BB1=102.【解析】【分析】(1)根据旋转图形的性质首先得出各点旋转后的点的位置,然后顺次连接各点得出图形;(2)根据图形得出点的坐标;(3)根据弧长的计算公式求出答案.【详解】解:(1)△A 1B 1C 如图所示.(2)A 1(0,6). (3) 221310,BC =+=¼1901010.180n r BB ππ⨯∴===. 【点睛】本题考查了旋转作图和弧长的计算.23. (1)18;(2)中位数;(3)100名.【解析】【分析】(1)根据条形统计图中的数据可以得到m 的值;(2)根据题意可知应选择中位数比较合适;(3)根据统计图中的数据可以计该部门生产能手的人数.【详解】(1)由图可得,众数m 的值为18,故答案为:18;(2)由题意可得,如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为:中位数;(3)300×11231230+++++=100(名), 答:该部门生产能手有100名工人.【点睛】本题考查了条形统计图、用样本估计总体、加权平均数、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.24.(1)证明见解析;(2)4.【解析】【分析】(1)首先证明△ABC ≌△DFE 可得∠ACE=∠DEF ,进而可得AC ∥DE ;(2)根据△ABC ≌△DFE 可得BC=EF ,利用等式的性质可得EB=CF ,再由BF=13,EC=5进而可得EB 的长,然后可得答案.【详解】解:(1)在△ABC 和△DFE 中AB DF A D AC DE =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DFE (SAS ),∴∠ACE=∠DEF ,∴AC ∥DE ;(2)∵△ABC ≌△DFE ,∴BC=EF ,∴CB ﹣EC=EF ﹣EC ,∴EB=CF ,∵BF=13,EC=5,∴EB=4,∴CB=4+5=1.【点睛】考点:全等三角形的判定与性质.25.第二、三季度的平均增长率为20%.【解析】【分析】设增长率为x ,则第二季度的投资额为10(1+x )万元,第三季度的投资额为10(1+x )2万元,由第三季度投资额为10(1+x )2=14.4万元建立方程求出其解即可.【详解】设该省第二、三季度投资额的平均增长率为x ,由题意,得:10(1+x )2=14.4,解得:x 1=0.2=20%,x 2=﹣2.2(舍去).答:第二、三季度的平均增长率为20%.【点睛】本题考查了增长率问题的数量关系的运用,一元二次方程的解法的运用,解答时根据第三季度投资额为10(1+x)2=14.4建立方程是关键.26.(1)证明见解析;(2) △APQ是等边三角形.【解析】【分析】(1)根据等边三角形的性质可得AB=AC,再根据SAS证明△ABP≌△ACQ;(2)根据全等三角形的性质得到AP=AQ ,再证∠PAQ =60°,从而得出△APQ是等边三角形.【详解】证明:(1)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,AB ACABP ACQBP CQ=⎧⎪∠=∠⎨⎪=⎩∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠PAQ=∠CAQ+∠CAP=60°,∴△APQ是等边三角形.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了正三角形的判定,本题中求证,△ABP≌△ACQ是解题的关键.27.(1)证明见解析(2)53πcm,103πcm【解析】【分析】(1)连接OB,要证明PB是切线,只需证明OB⊥PB即可;(2)利用菱形、矩形的性质,求出圆心角∠COD即可解决问题. 【详解】(1)如图连接OB、BC,∵OA=OB,∴∠OAB=∠OBA=30°,∴∠COB=∠OAB=∠OBA=60°,∵OB=OC,∴△OBC是等边三角形,∴BC=OC,∵PC=OA=OC,∴BC=CO=CP,∴∠PBO=90°,∴OB⊥PB,∴PB是⊙O的切线;(2)①»CD的长为53πcm时,四边形ADPB是菱形,∵四边形ADPB是菱形,∠ADB=△ACB=60°,∴∠COD=2∠CAD=60°,∴»CD的长=60?·551803ππ=cm;②当四边形ADCB是矩形时,易知∠COD=120°,∴»CD的长=120?·5101803ππ=cm,故答案为:53πcm,103πcm.【点睛】本题考查了圆的综合题,涉及到切线的判定、矩形的性质、菱形的性质、弧长公式等知识,准确添加辅助线、灵活应用相关知识解决问题是关键.。

江西省抚州市2019-2020学年中考数学模拟试题(4)含解析

江西省抚州市2019-2020学年中考数学模拟试题(4)含解析

江西省抚州市2019-2020学年中考数学模拟试题(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是( )A.4个B.3个C.2个D.1个2.三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的一个根,则这个三角形的周长是()A.9 B.11 C.13 D.11或133.计算3a2-a2的结果是()A.4a2B.3a2C.2a2D.34.如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,DE=23cm,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系的大致图象是()A.B.C.D.5.若一组数据1、a、2、3、4的平均数与中位数相同,则a不可能...是下列选项中的()A.0 B.2.5 C.3 D.56.下列计算正确的是()A.﹣a4b÷a2b=﹣a2b B.(a﹣b)2=a2﹣b2C.a2•a3=a6D.﹣3a2+2a2=﹣a27.已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O的位置关系是()A.相交B.相切C.相离D.不能确定8.下列实数中是无理数的是()A.227B.πC.9D.13-9.如图,l1、l2、l3两两相交于A、B、C三点,它们与y轴正半轴分别交于点D、E、F,若A、B、C三点的横坐标分别为1、2、3,且OD=DE=1,则下列结论正确的个数是()①13EAEC=,②S△ABC=1,③OF=5,④点B的坐标为(2,2.5)A.1个B.2个C.3个D.4个10.从①②③④中选择一块拼图板可与左边图形拼成一个正方形,正确的选择为()A.①B.②C.③D.④11.下列图形中为正方体的平面展开图的是()A.B.C.D.12.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.九(5)班有男生27人,女生23人,班主任发放准考证时,任意抽取一张准考证,恰好是女生的准考证的概率是________________.14.若一条直线经过点(1,1),则这条直线的解析式可以是(写出一个即可)______.15.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,若∠P=40°,则∠ADC=____°.16.请写出一个比2大且比4小的无理数:________.17.若正多边形的一个内角等于140°,则这个正多边形的边数是_______.18.甲、乙两个搬运工搬运某种货物.已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等.设甲每小时搬运xkg货物,则可列方程为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC中,∠C = 90°,E是BC上一点,ED⊥AB,垂足为D.求证:△ABC∽△EBD.20.(6分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.求证:△ADE≌△CBF;若∠ADB是直角,则四边形BEDF是什么四边形?证明你的结论.21.(6分)如图,将平行四边形ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处.(1)连接CF,求证:四边形AECF是菱形;(2)若E为BC中点,BC=26,tan∠B=125,求EF的长.22.(8分)在正方形ABCD中,AB=4cm,AC为对角线,AC上有一动点P,M是AB边的中点,连接PM、PB,设A、P两点间的距离为xcm,PM+PB长度为ycm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如表:x/cm 0 1 2 3 4 5y/cm 6.0 4.8 4.5 6.0 7.4(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:PM+PB的长度最小值约为______cm.23.(8分)2018年湖南省进入高中学习的学生三年后将面对新高考,高考方案与高校招生政策都将有重大变化.某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为A,B,C,D四个等级,并对调查结果分析后绘制了如下两幅图不完整的统计图.请你根据图中提供的信息完成下列问题:(1)求被调查学生的人数,并将条形统计图补充完整;(2)求扇形统计图中的A等对应的扇形圆心角的度数;(3)已知该校有1500名学生,估计该校学生对政策内容了解程度达到A等的学生有多少人?24.(10分)兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.第一批该款式T恤衫每件进价是多少元?老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出45时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价﹣进价)25.(10分)已知抛物线y=x2+bx+c经过点A(0,6),点B(1,3),直线l1:y=kx(k≠0),直线l2:y=-x-2,直线l1经过抛物线y=x2+bx+c的顶点P,且l1与l2相交于点C,直线l2与x轴、y轴分别交于点D、E.若把抛物线上下平移,使抛物线的顶点在直线l2上(此时抛物线的顶点记为M),再把抛物线左右平移,使抛物线的顶点在直线l1上(此时抛物线的顶点记为N).(1)求抛物y=x2+bx+c线的解析式.(2)判断以点N为圆心,半径长为4的圆与直线l2的位置关系,并说明理由.(3)设点F、H在直线l1上(点H在点F的下方),当△MHF与△OAB相似时,求点F、H的坐标(直接写出结果).26.(12分)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?27.(12分)已知:如图,E,F是▱ABCD的对角线AC上的两点,BE∥DF.求证:AF =CE .参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】 【详解】解:∵抛物线与x 轴有2个交点,∴b 2﹣4ac >0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax 2+bx+c=0的两个根是x 1=﹣1,x 2=3,所以②正确; ∵x=﹣2ba=1,即b=﹣2a ,而x=﹣1时,y=0,即a ﹣b+c=0,∴a+2a+c=0,所以③错误; ∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误; ∵抛物线的对称轴为直线x=1,∴当x <1时,y 随x 增大而增大,所以⑤正确. 故选:B . 【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac=0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点. 2.C 【解析】试题分析:先求出方程x 2-6x +8=0的解,再根据三角形的三边关系求解即可. 解方程x 2-6x +8=0得x=2或x=4当x=2时,三边长为2、3、6,而2+3<6,此时无法构成三角形 当x=4时,三边长为4、3、6,此时可以构成三角形,周长=4+3+6=13故选C.考点:解一元二次方程,三角形的三边关系点评:解题的关键是熟记三角形的三边关系:任两边之和大于第三边,任两边之差小于第三边.3.C【解析】【分析】根据合并同类项法则进行计算即可得.【详解】3a2-a2=(3-1)a2=2a2,故选C.【点睛】本题考查了合并同类项,熟记合并同类项的法则是解题的关键.合并同类项就是把同类项的系数相加减,字母和字母的指数不变.4.A【解析】∵∠C=90°,BC=2cm,∠A=30°,∴AB=4,由勾股定理得:AC=23,∵四边形DEFG为矩形,∠C=90,∴DE=GF=23,∠C=∠DEF=90°,∴AC∥DE,此题有三种情况:(1)当0<x<2时,AB交DE于H,如图∵DE∥AC,∴EH BE AC BC=,223x=,解得:3x,所以y=12•332,∵x 、y之间是二次函数,所以所选答案C错误,答案D错误,∵a=32>0,开口向上;(2)当2≤x≤6时,如图,此时y=12×2×23=23,(3)当6<x≤8时,如图,设△ABC的面积是s1,△FNB的面积是s2,BF=x﹣6,与(1)类同,同法可求3﹣3∴y=s1﹣s2,=12×2×312×(x﹣6)×3﹣3,=323﹣3,30,∴开口向下,所以答案A正确,答案B错误,故选A.点睛:本题考查函数的图象.在运动的过程中正确区分函数图象是解题的关键.5.C【解析】【详解】解:这组数据1、a、2、1、4的平均数为:(1+a+2+1+4)÷5=(a+10)÷5=0.2a+2,(1)将这组数据从小到大的顺序排列后为a,1,2,1,4,中位数是2,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,符合排列顺序.(2)将这组数据从小到大的顺序排列后为1,a,2,1,4,中位数是2,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,不符合排列顺序.(1)将这组数据从小到大的顺序排列后1,2,a,1,4,中位数是a,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=a,解得a=2.5,符合排列顺序.(4)将这组数据从小到大的顺序排列后为1,2,1,a,4,中位数是1,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5,不符合排列顺序.(5)将这组数据从小到大的顺序排列为1,2,1,4,a,中位数是1,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5;符合排列顺序;综上,可得:a=0、2.5或5,∴a不可能是1.故选C.【点睛】本题考查中位数;算术平均数.6.D【解析】【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】故选项A错误,故选项B错误,故选项C错误,故选项D正确,故选:D.【点睛】考查整式的除法,完全平方公式,同底数幂相乘以及合并同类项,比较基础,难度不大.7.A【解析】试题分析:根据圆O的半径和,圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.解:∵⊙O的半径为3,圆心O到直线L的距离为2,∵3>2,即:d<r,∴直线L与⊙O的位置关系是相交.故选A.考点:直线与圆的位置关系.8.B【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A、227是分数,属于有理数;B、π是无理数;C,是整数,属于有理数;D、-13是分数,属于有理数;故选B.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9.C【解析】【分析】①如图,由平行线等分线段定理(或分线段成比例定理)易得:13 EA OAEC OC'='=;②设过点B且与y轴平行的直线交AC于点G,则S△ABC=S△AGB+S△BCG,易得:S△AED=12,△AED∽△AGB且相似比=1,所以,△AED≌△AGB,所以,S△AGB=12,又易得G为AC中点,所以,S△AGB=S△BGC=12,从而得结论;③易知,BG=DE=1,又△BGC∽△FEC,列比例式可得结论;④易知,点B的位置会随着点A在直线x=1上的位置变化而相应的发生变化,所以④错误.【详解】解:①如图,∵OE∥AA'∥CC',且OA'=1,OC'=1,∴13 EA OAEC OC'='=,故①正确;②设过点B且与y轴平行的直线交AC于点G(如图),则S△ABC=S△AGB+S△BCG,∵DE=1,OA'=1,∴S△AED=12×1×1=12,∵OE∥AA'∥GB',OA'=A'B',∴AE=AG,∴△AED∽△AGB且相似比=1,∴△AED≌△AGB,∴S△ABG=12,同理得:G为AC中点,∴S△ABG=S△BCG=12,∴S△ABC=1,故②正确;③由②知:△AED≌△AGB,∴BG=DE=1,∵BG∥EF,∴△BGC∽△FEC,∴13 BG CGEF CE==,∴EF=1.即OF=5,故③正确;④易知,点B的位置会随着点A在直线x=1上的位置变化而相应的发生变化,故④错误;故选C.【点睛】本题考查了图形与坐标的性质、三角形的面积求法、相似三角形的性质和判定、平行线等分线段定理、函数图象交点等知识及综合应用知识、解决问题的能力.考查学生数形结合的数学思想方法.10.C【解析】【分析】根据正方形的判定定理即可得到结论.【详解】与左边图形拼成一个正方形,正确的选择为③,故选C.【点睛】本题考查了正方形的判定,是一道几何结论开放题,认真观察,熟练掌握和应用正方形的判定方法是解题的关键.11.C【解析】【分析】利用正方体及其表面展开图的特点依次判断解题.【详解】由四棱柱四个侧面和上下两个底面的特征可知A,B,D上底面不可能有两个,故不是正方体的展开图,选项C可以拼成一个正方体,故选C.【点睛】本题是对正方形表面展开图的考查,熟练掌握正方体的表面展开图是解题的关键.12.C【解析】看到的棱用实线体现.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.【解析】【分析】用女生人数除以总人数即可.【详解】由题意得,恰好是女生的准考证的概率是.故答案为:.【点睛】此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.y=x.(答案不唯一)【解析】【分析】首先设一次函数解析式为:y=kx+b(k≠0),b取任意值后,把(1,1)代入所设的解析式里,即可得到k 的值,进而得到答案.【详解】解:设直线的解析式y=kx+b,令b=0,将(1,1)代入,得k=1,此时解析式为:y=x.由于b可为任意值,故答案不唯一.故答案为:y=x.(答案不唯一)【点睛】本题考查了待定系数法求一次函数解析式.15.115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连接OC,如右图所示,由题意可得,∠OCP=90°,∠P=40°,∴∠COB=50°,∵OC=OB,∴∠OCB=∠OBC=65°,∵四边形ABCD是圆内接四边形,∴∠D+∠ABC=180°,∴∠D=115°,故答案为:115°.【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.16.π【解析】【分析】利用完全平方数和算术平方根对无理数的大小进行估算,然后找出无理数即可【详解】<<x的取值在4~16【点睛】本题考查估算无理数的大小,能够判断出中间数的取值范围是解题关键17.1【解析】试题分析:此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.首先根据求出外角度数,再利用外角和定理求出边数.∵正多边形的一个内角是140°,∴它的外角是:180°-140°=40°,360°÷40°=1.故答案为1.考点:多边形内角与外角.18.5000x=8000600+x【解析】【分析】设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,根据甲搬运5000kg所用时间与乙搬运8000kg 所用时间相等建立方程求出其解就可以得出结论.【详解】解:设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,由题意得:5000x=8000600+x.故答案是:5000x=8000600+x.【点睛】本题考查了由实际问题抽象出分式方程,根据题意找到等量关系是关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.证明见解析【解析】试题分析:先根据垂直的定义得出∠EDB=90°,故可得出∠EDB=∠C.再由∠B=∠B,根据有两个角相等的两三角形相似即可得出结论.试题解析:解:∵ED ⊥AB ,∴∠EDB =90°.∵∠C =90°,∴∠EDB =∠C .∵∠B =∠B ,∴ABC V ∽EBD V .点睛:本题考查的是相似三角形的判定,熟知有两组角对应相等的两个三角形相似是解答此题的关键. 20.(1)证明见解析;(2)若∠ADB 是直角,则四边形BEDF 是菱形,理由见解析.【解析】【分析】(1)由四边形ABCD 是平行四边形,即可得AD=BC ,AB=CD ,∠A=∠C ,又由E 、F 分别为边AB 、CD 的中点,可证得AE=CF ,然后由SAS ,即可判定△ADE ≌△CBF ;(2)先证明BE 与DF 平行且相等,然后根据一组对边平行且相等的四边形是平行四边形证明四边形BEDF 是平行四边形,再连接EF ,可以证明四边形AEFD 是平行四边形,所以AD ∥EF ,又AD ⊥BD ,所以BD ⊥EF ,根据菱形的判定可以得到四边形是菱形.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AD=BC ,AB=CD ,∠A=∠C ,∵E 、F 分别为边AB 、CD 的中点,∴AE=12AB ,CF=12CD , ∴AE=CF ,在△ADE 和△CBF 中,{AD BCA C AE CF=∠=∠=,∴△ADE ≌△CBF (SAS );(2)若∠ADB 是直角,则四边形BEDF 是菱形,理由如下:解:由(1)可得BE=DF ,又∵AB ∥CD ,∴BE ∥DF ,BE=DF ,∴四边形BEDF 是平行四边形,连接EF,在▱ABCD中,E、F分别为边AB、CD的中点,∴DF∥AE,DF=AE,∴四边形AEFD是平行四边形,∴EF∥AD,∵∠ADB是直角,∴AD⊥BD,∴EF⊥BD,又∵四边形BFDE是平行四边形,∴四边形BFDE是菱形.【点睛】1、平行四边形的性质;2、全等三角形的判定与性质;3、菱形的判定21.(1)证明见解析;(2)EF=1.【解析】【分析】(1)如图1,利用折叠性质得EA=EC,∠1=∠2,再证明∠1=∠3得到AE=AF,则可判断四边形AECF 为平行四边形,从而得到四边形AECF为菱形;(2)作EH⊥AB于H,如图,利用四边形AECF为菱形得到AE=AF=CE=13,则判断四边形ABEF为平行四边形得到EF=AB,根据等腰三角形的性质得AH=BH,再在Rt△BEH中利用tanB=EHBH=125可计算出BH=5,从而得到EF=AB=2BH=1.【详解】(1)证明:如图1,∵平行四边形ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处,∴EA=EC,∠1=∠2,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠2=∠3,∴∠1=∠3,∴AE=AF,∴AF=CE,而AF∥CE,∴四边形AECF为平行四边形,∵EA=EC,∴四边形AECF为菱形;(2)解:作EH⊥AB于H,如图,∵E为BC中点,BC=26,∴BE=EC=13,∵四边形AECF为菱形,∴AE=AF=CE=13,∴AF=BE,∴四边形ABEF为平行四边形,∴EF=AB,∵EA=EB,EH⊥AB,∴AH=BH,在Rt△BEH中,tanB=EHBH=125,设EH=12x,BH=5x,则BE=13x,∴13x=13,解得x=1,∴BH=5,∴AB=2BH=1,∴EF=1.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了平行四边形的性质、菱形的判定与性质.22.(1)2.1;(2)见解析;(3)x=2时,函数有最小值y=4.2【解析】【分析】(1)通过作辅助线,应用三角函数可求得HM+HN的值即为x=2时,y的值;(2)可在网格图中直接画出函数图象;(3)由函数图象可知函数的最小值.【详解】(1)当点P 运动到点H 时,AH=3,作HN ⊥AB 于点N .∵在正方形ABCD 中,AB=4cm ,AC 为对角线,AC 上有一动点P ,M 是AB 边的中点,∴∠HAN=42°,∴AN=HN=AH•sin42°=323222⨯=,∴HM 22()HN AN AM =+-,HB 22()HN AB AN =+-,∴HM+HN=222232323232()(2)()(4)2222+-++-=136225122-+-≈4.5168.032+≈2.122+2.834≈2.1.故答案为:2.1;(2)(3)根据函数图象可知,当x=2时,函数有最小值y=4.2.故答案为:4.2.【点睛】本题考查了二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23.(1)图见解析;(2)126°;(3)1.【解析】【分析】(1)利用被调查学生的人数=了解程度达到B 等的学生数÷所占比例,即可得出被调查学生的人数,由了解程度达到C等占到的比例可求出了解程度达到C等的学生数,再利用了解程度达到A等的学生数=被调查学生的人数-了解程度达到B等的学生数-了解程度达到C等的学生数-了解程度达到D等的学生数可求出了解程度达到A等的学生数,依此数据即可将条形统计图补充完整;(2)根据A等对应的扇形圆心角的度数=了解程度达到A等的学生数÷被调查学生的人数×360°,即可求出结论;(3)利用该校现有学生数×了解程度达到A等的学生所占比例,即可得出结论.【详解】(1)48÷40%=120(人),120×15%=18(人),120-48-18-12=42(人).将条形统计图补充完整,如图所示.(2)42÷120×100%×360°=126°.答:扇形统计图中的A等对应的扇形圆心角为126°.(3)1500×42120=1(人).答:该校学生对政策内容了解程度达到A等的学生有1人.【点睛】本题考查了条形统计图、扇形统计图以及用样本估计总体,观察条形统计图及扇形统计图,找出各数据,再利用各数量间的关系列式计算是解题的关键.24.(1)第一批T恤衫每件的进价是90元;(2)剩余的T恤衫每件售价至少要80元.【解析】【分析】(1)设第一批T恤衫每件进价是x元,则第二批每件进价是(x+9)元,再根据等量关系:第二批进的件数=第一批进的件数可得方程;(2)设剩余的T恤衫每件售价y元,由利润=售价﹣进价,根据第二批的销售利润不低于650元,可列不等式求解.【详解】解:(1)设第一批T恤衫每件进价是x元,由题意,得45004950x x 9=+, 解得x=90经检验x=90是分式方程的解,符合题意.答:第一批T 恤衫每件的进价是90元.(2)设剩余的T 恤衫每件售价y 元.由(1)知,第二批购进495099=50件. 由题意,得120×50×45+y×50×15﹣4950≥650, 解得y≥80.答:剩余的T 恤衫每件售价至少要80元.25.(1)246y x x =-+;(2)以点N 为圆心,半径长为4的圆与直线2l 相离;理由见解析;(3)点H 、F 的坐标分别为()8,8F 、()10,10H --或()8,8F 、()3,3H 或()5,5F --、()10,10H --.【解析】【分析】(1)分别把A ,B 点坐标带入函数解析式可求得b ,c 即可得到二次函数解析式 (2)先求出顶点P 的坐标,得到直线1l 解析式,再分别求得MN 的坐标,再求出NC 比较其与4的大小可得圆与直线2l 的位置关系.(3)由题得出tan ∠BAO=13,分情况讨论求得F,H 坐标. 【详解】 (1)把点()0,6A 、()1,3B 代入2y x bx c =++得631c b c =⎧⎨=++⎩, 解得,46b c =-⎧⎨=⎩, ∴抛物线的解析式为246y x x =-+.(2)由246y x x =-+得()222y x =-+,∴顶点P 的坐标为()2,2P , 把()2,2P 代入1l 得22k =解得1k =,∴直线1l 解析式为y x =,设点()2,M m ,代入2l 得4m =-,∴得()24M -,, 设点(),4N n -,代入1l 得4n =-,∴得()44N --,, 由于直线2l 与x 轴、y 轴分别交于点D 、E∴易得()2,0D -、()0.2E -,∴OC ==CE ==∴OC CE =,∵点C 在直线y x =上,∴45COE ∠=o ,∴45OEC ∠=o ,180454590OCE ∠=--=o o o o 即2NC l ⊥,∵4NC ==>,∴以点N 为圆心,半径长为4的圆与直线2l 相离.(3)点H 、F 的坐标分别为()8,8F 、()10,10H --或()8,8F 、()3,3H 或()5,5F --、()10,10H --. C(-1,-1),A(0,6),B(1,3)可得tan ∠BAO=13, 情况1:tan ∠CF 1M=1CM CF = 13, ∴CF 1M F 1∴H 1F 1,∴ F 1(8,8),H 1(3,3);情况2:F 2(-5,-5), H 2(-10,-10)(与情况1关于L 2对称);情况3:F 3(8,8), H 3(-10,-10)(此时F 3与F 1重合,H 3与H 2重合).【点睛】本题考查的知识点是二次函数综合题,解题的关键是熟练的掌握二次函数综合题.26.(1)捐款增长率为10%.(2)第四天该单位能收到13310元捐款.【解析】【分析】(1)根据“第一天收到捐款钱数×(1+每次降价的百分率)2=第三天收到捐款钱数”,设出未知数,列方程解答即可.(2)第三天收到捐款钱数×(1+每次降价的百分率)=第四天收到捐款钱数,依此列式子解答即可.【详解】(1)设捐款增长率为x ,根据题意列方程得:()2100001x 12100⨯-=,解得x 1=0.1,x 2=-1.9(不合题意,舍去).答:捐款增长率为10%.(2)12100×(1+10%)=13310元.答:第四天该单位能收到13310元捐款.27.参见解析.【解析】分析:先证∠ACB=∠CAD ,再证出△BEC ≌△DFA ,从而得出CE=AF . 详解:证明:平行四边形ABCD 中,AD BC P ,AD BC =,ACB CAD ∴∠=∠.又BE DF P ,BEC DFA ∴∠=∠,BEC DFA ∴V V ≌,∴ CE AF =点睛:本题利用了平行四边形的性质,全等三角形的判定和性质.。

江西省抚州市2020年中考数学模拟试卷(II)卷

江西省抚州市2020年中考数学模拟试卷(II)卷

江西省抚州市 2020 年中考数学模拟试卷(II)卷姓名:________班级:________成绩:________一、 选择题 (共 10 题;共 38 分)1. (4 分) (2018·阳信模拟) 下列各数中,负数是( )A . ﹣(﹣5)B . ﹣|﹣5|C . (﹣5)2D . ﹣(﹣5)32. (4 分) 下列等式成立的是( )A . a2+a3=a5B . a3-a2=aC . a2•a3=a6D . (a2)3=a63. (2 分) 桌上放着一个茶壶,4 个同学从各自的方向观察,则小明看到的图形是( )A.B.C.D. 4. (4 分) 据统计,上海世博会累计入园人数为 73080000.这个数字用科学记数法表示为( ) A . 73.08×106 B . 7.308×106 C . 7.308×107 D . 7.308×108 5. (4 分) 如图,已知直线 a、b 被直线 c 所截,那么∠1 的同位角是( )第 1 页 共 14 页A . ∠2 B . ∠3 C . ∠4 D . ∠56. (4 分) 如图,在平面直角坐标系中,⊙A 与 x 轴相切于点 B,BC 为⊙A 的直径,点 C 在函数 y= 0,x>0)的图象上,若△OAB 的面积为 3,则 k 的值为( )(k>A.3 B.6 C.9 D . 12 7. (4 分) (2018·灌南模拟) 某篮球兴趣小组 7 名学生参加投篮比赛,每人投 10 个,投中的个数分别为:8, 5,7,5,8,6,8,则这组数据的众数和中位数分别为( ) A . 5,7 B . 6,7 C . 8,5 D . 8,7 8. (4 分) c 由于国家出台对房屋的限购令,我省某地的房屋价格原价为 2400 元/米 2 , 通过连续两次降价 a%后,售价变为 2000 元/米 2 , 下列方程中正确的是( ) A . 2400(1-a%2)=2000 B . 2000(1-a%2)=2400 C . 2400(1+a%)2=2000 D . 2400(1-a%)2=2000 9. (4 分) (2017·承德模拟) 如图,△ABC 的顶点都在正方形网格的格点上,则 cosC 的值为( )第 2 页 共 14 页A. B. C. D. 10. (4 分) (2017·顺德模拟) 在同一坐标系中一次函数 y=ax+b 和二次函数 y=ax2+bx 的图象可能为( )A.B.C.D.二、 填空题 (共 4 题;共 16 分)11. (4 分) (2017·长春模拟) 计算:=________.12. (4 分) (2017·桂林模拟) 因式分解:x2﹣2x+1=________.13. (4 分) 已知△ABC∽△DEF , 且相似比为 4:3,若△ABC 中 BC 边上的中线 AM=8,则△DEF 中 EF 边上的第 3 页 共 14 页中线 DN=________。

江西省抚州市名校2020届数学中考模拟试卷

江西省抚州市名校2020届数学中考模拟试卷

江西省抚州市名校2020届数学中考模拟试卷一、选择题1.如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为( )A.2B.3C.4D.52.立定跳远是体育中考选考项目之一,体育课上老师记录了某同学的一组立定跳远成绩如表:A.众数是2.3 B.平均数是2.4C.中位数是2.5 D.方差是0.013.用一个平面去截下列立体图形,截面可以得到三角形的立体图形有()A.1个B.2个C.3个D.4个4.如图,AC是平行四边形ABCD的对角线,当它满足以下:①∠1=∠2;②∠2=∠3;③∠B=∠3;④∠1=∠3中某一条件时,平行四边形ABCD是菱形,这个条件是A.①或②B.②或③C.③或④D.①或④5.如图,⊙O是正六边形ABCDEF的外接圆,P是弧EF上一点,则∠BPD的度数是( )A.30°B.60°C.55°D.75°6.A、B两地相距900km,一列快车以200km/h的速度从A地匀速驶往B地,到达B地后立刻原路返回A 地,一列慢车以75km/h的速度从B地匀速驶往A地.两车同时出发,截止到它们都到达终点时,两车恰好相距200km的次数是()A.5B.4C.3D.27.方程的两个根为( )A.,B.,C.,D.,8.下列各因式分解正确的是( ) A .x 2+2x ﹣1=(x ﹣1)2B .﹣x 2+(﹣2)2=(x ﹣2)(x+2) C .x 3﹣4x =x (x+2)(x ﹣2)D .(x+1)2=x 2+2x+19.某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是( )A .2,1B .1,1.5C .1,2D .1,110.下列运算正确的是( )A .325()a a =B .325a a a +=C .32()a a a a -÷= D .331a a ÷=11.如图,在扇形OAB 中,点C 是弧AB 上任意一点(不与点A ,B 重合),CD ∥OA 交OB 于点D ,点I 是△OCD 的内心,连结OI ,BI .若∠AOB=β,则∠OIB 等于( )A .180°12-β B .180°-β C .90°+12β D .90°+β12.下列式子中,计算正确的是( ) A .224x x x += B .()222a b a b -=- C .()326a a -=-D .3412x x x ⋅=二、填空题13.如图,四边形ABCD 是矩形,AD =5,AB =163,点E 在CD 边上,DE =2,连接BE ,F 是BE 边上的一点,过点F 作FG ⊥AB 于G ,连接DG ,将△ADG 沿DG 翻折的△PDG ,设EF =x ,当P 落在△EBC 内部时(包括边界),x 的取值范围是__.14.如图是本地区一种产品30天的销售图象,图①是产品日销售量y (单位:件)与时间t (单位:天)的函数关系,图②是一件产品的销售利润z (单位:元)与时间t (单位:天)的函数关系,第27天的日销售利润是__________元.15=__.16.已知正n 边形的一个外角是45°,则n =____________17.已知a ,b 是一元二次方程x 2+x ﹣4=0的两个不相等的实数根,则a 2﹣b =_____. 18.已知关于x 的方程212mx x -=有两个不相等的实数根,则m 的取值范围是_______. 三、解答题19.一服装经销商计划购进某品牌的A 型、B 型、C 型三款服装共60套,每款服装至少要购进8套,且恰好用完购服装款61000元.设购进A 型服装x 套,B 型服装y 套,三款服装的进价和预售价如下表:34000元,那么购进三款服装各多少套?(2)假设所购进服装全部售出,综合考虑各种因素,该服装经销商在购进这批服装过程中需另外支出各种费用共1500元.①求出预估利润P (元)与x (套)的函数关系式;(注:预估利润P =预售总额﹣购服装款﹣各种费用)②求出预估利润的最大值,并写出此时购进三款服装各多少套.20.在箱子中有10张卡片,分别写有1到10的十个整数,从箱子中任取一张卡片,记下它的读数x ,然后再放回箱子中,第二次再从箱子中任取一张卡片,记下它的读数y ,试求x+y 是10的倍数的概率.21.在一块直角三角形的废料上,要裁下一个半圆形的材料,并且要半圆的直径在斜边AB 上,且充分利用原三角形废料.(1)试画出你的设计(用圆规、直尺作图,不写作法,但要保留作图痕迹.) (2)若AC=4,BC=3,试计算出该半圆形材料的半径.22.如图:一次函数y =kx+b (k≠0)的图象与反比例函数(0)ay a x=≠的图象分别交于点A 、C ,点A 的横坐标为﹣3,与x 轴交于点E (﹣1,0).过点A 作AB ⊥x 轴于点B ,过点C 作CD ⊥x 轴于点D ,△ABE 的面积是2.(1)求一次函数和反比例函数的表达式; (2)求四边形ABCD 的面积.23.已知抛物线y =ax 2+bx+c 的对称轴为x =﹣1,且过点(﹣3,0),(0,﹣3). (1)求抛物线的表达式.(2)已知点(m ,k )和点(n ,k )在此抛物线上,其中m≠n,请判断关于t 的方程t 2+mt+n =0是否有实数根,并说明理由.24.如图,在△ABC 中,E 为BC 边上一点,以BE 为直径的AR 半圆D 与AC 相切于点F ,且EF ∥AD ,AD 交半圆D 于点G .(1)求证:AB 是半圆D 的切线; (2)若EF =2,AD =5,求切线长AB .25.如图,在平面直角坐标系中,点A 在y 轴正半轴上,AC //x 轴,点B 、C 的横坐标都是3,且BC 2=,点D 在AC 上,若反比例函数k y (x 0)x =>的图象经过点B 、D ,且AO 3BC 2=.(1)求k 的值及点D 的坐标;(2)将ΔAOD 沿着OD 折叠,设顶点A 的对称点'A 的坐标是()'A m,n ,求代数式m 3n +的值.【参考答案】*** 一、选择题132.14.8751516.817.518.m >-1且m≠0; 三、解答题19.(1)购进A 型服装30套,B 型服装10套,则C 型服装为20套;(2)①P =500x+500;②最大值为17500元,此时购进A 型服装34套,B 型服装18套,C 型服装8套. 【解析】 【分析】(1)首先设购进A 型服装x 套,B 型服装y 套,则C 型服装为(60-x-y )套;根据题意可得()()900120039000120011006034000900120011006061000x y y x y x y x y ⎧+≤⎪+--≤⎨⎪++--⎩①②=③,求解不等式组即可求得答案; (2)①根据由预估利润P=预售总额-购机款-各种费用,即可求得利润P (元)与x (套)的函数关系式为:P=1200x+1600y+1300(60-x-y )-61000-1500,整理即可求得答案;②根据题意列出不等式组:8250811038x x x ≥⎧⎪-≥⎨⎪-≥⎩,解此不等式组求得x 的取值范围,然后根据①中一次函数的增减性,即可答案. 【详解】解:(1)设购进A 型服装x 套,B 型服装y 套,则C 型服装为(60﹣x ﹣y )套;由题意,得()()900120039000120011006034000900120011006061000x y y x y x y x y ⎧+≤⎪+--≤⎨⎪++--⎩①②=③,整理得:3413011320250x y y x y x +≤⎧⎪-≤-⎨⎪-⎩=,∴可得不等式组:()()3425013025011320x x x x ⎧+-≤⎪⎨--≤-⎪⎩,解得:x =30,y =10,∴购进A 型服装30套,B 型服装10套,则C 型服装为20套;(2)①由题意,得P =1200x+1600y+1300(60﹣x ﹣y )﹣61000﹣1500, 整理得:P =500x+500,∴利润P (元)与x (套)的函数关系式为:P =500x+500; ②由(1)得:y =2x ﹣50,∴购进C 型服装套数为:60﹣x ﹣y =110﹣3x ,根据题意列不等式组,得:8250811038x x x ≥⎧⎪-≥⎨⎪-≥⎩,解得29≤x≤34,∴x 范围为29≤x≤34,且x 为整数. ∵P 是x 的一次函数,k =500>0, ∴P 随x 的增大而增大.∴当x取最大值34时,P有最大值,最大值为17500元.此时购进A型服装34套,B型服装18套,C型服装8套.【点睛】此题考查了一次函数与不等式组的实际应用问题.此题难度较大,解题的关键是结合图表,理解题意,求得不等式组与一次函数,然后根据函数的性质求解,注意函数思想的应用.20.1【解析】【分析】本题是一个等可能事件的概率,试验发生包含的事件是先后取两次卡片,每次都有1~10这10个结果,满足条件的事件x+y是10的倍数的数对可以列举出结果数,根据等可能事件的概率公式得到结果.【详解】解:由题意知本题是一个等可能事件的概率,试验发生包含的事件是先后取两次卡片,每次都有1~10这10个结果,故形成的数对(x,y)共有100个.满足条件的事件x+y是10的倍数的数对包括以下10个:(1,9),(9,1),(2,8),(8,2),(3,7),(7,3),(4,6),(6,4),(5,5),(10,10).故“x+y是10的倍数”的概率为1100.1 100P==.【点睛】本题考查等可能事件的概率,是一个关于数字的题目,数字问题是概率中经常出现的题目,一般可以列举出要求的事件,然后根据概率公式计算.21.(1)答案见解析;(2)127.【解析】【分析】(1)作∠ACB的角平分线交AB于O,过O作OE⊥AC于E,以O为圆心,OE为半径作圆交AB于D、F.图中半圆即为所求.(2)作OH⊥BC于H.首先证明OE=OH,设OE=OH=r,利用面积法构建方程求出r即可.【详解】解:(1)作∠ACB的角平分线交AB于O,过O作OE⊥AC于E,以O为圆心,OE为半径作圆交AB于D、F.(2)∵OC平分∠ACB,OE⊥AC,OH⊥BC,∴OE=OH,设OE=OH=r,∵S△ABC=12•AC•BC=12•AC•r+12•BC•r,∴r=127.【点睛】本题考查作图-应用与设计,角平分线的性质等知识,解题的关键是熟练掌握五种基本作图,学会利用面积法构建方程解决问题. 22.(1)y =﹣6x ,y =﹣x ﹣1;(2)252. 【解析】 【分析】(1)由△ABE 的面积是2可得出点A 的坐标,由点A 、E 的坐标利用反比例函数图象上点的坐标特征以及待定系数法,即可求出一次函数和反比例函数的解析式;(2)联立方程出点C 的坐标,进而可得出BD 、CD 的长度,再利用S 四边形ABCD =S △ABD +S △BCD 即可求出四边形ABCD 的面积. 【详解】解:(1)∵AB ⊥x 轴于点B ,点A 的横坐标为﹣3, ∴OB =3.∵点E (﹣1,0), ∴BE =2, ∵S △ABE =12AB•BE=2, ∴AB =2, ∴A (﹣3,2), ∵点A 在反比例函数(0)ay a x=≠的图象上, ∴a =﹣3×2=﹣6,∴反比例函数的解析式为y =6x-. 将A (﹣3,2)、E (﹣1,0)代入y =kx+b ,得:320k b k b -+=⎧⎨-+=⎩,解得:11k b =-⎧⎨=-⎩,∴一次函数的解析式为y =﹣x ﹣1.(2)解16y x y x =--⎧⎪⎨=⎪⎩得3{2x y =-=或2{3x y ==-, ∴C (2,﹣3), ∵CD ⊥x 轴于点D , ∴OD =2,CD =3, ∴BD =5,∴S 四边形ABCD =S △ABD +S △BCD =12BD•AB+12BD•CD=12×5×2+12×5×3=252.【点睛】本题考查了反比例函数与一次函数的交点问题、反比例(一次)函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是求出点A 、C 点的坐标. 23.(1)y =x 2+2x ﹣3;(2)方程有两个不相等的实数根. 【解析】 【分析】(1)将已知点的坐标代入二次函数列出方程组,解之即可; (2)因为(m ,k ),(n ,k )是关于直线x =﹣1的对称点,所以+2m n =﹣1 即m =﹣n ﹣2,于是 b 2﹣4ac =m 2﹣4n =(﹣n ﹣2)2﹣4n =n 2+4>0,所以此方程有两个不相等的实数根. 【详解】(1)抛物线y =ax 2+bx+c 的对称轴为x =﹣1,且过点(﹣3,0),(0,3) 9a ﹣3b+c =0930312a b c c b a⎧⎪-+=⎪=-⎨⎪⎪-=-⎩ 解得a =1,b =2,c =﹣3 ∴抛物线y =x 2+2x ﹣3;(2)∵点(m ,k ),(n ,k )在此抛物线上, ∴(m ,k ),(n ,k )是关于直线x =﹣1的对称点, ∴+2m n=﹣1 即m =﹣n ﹣2 b 2﹣4ac =m 2﹣4n =(﹣n ﹣2)2﹣4n =n 2+4>0 ∴此方程有两个不相等的实数根. 【点睛】本题考查了二次函数,熟练掌握二次函数的性质与二次函数上点的坐标特征是解题的关键. 24.(1)详见解析;(2)【解析】 【分析】(1)连接DF ,根据切线的性质得到DF ⊥AC ,根据平行线的性质得到∠EFD =∠ADF ,∠FED =∠ADB ,由等腰三角形的性质得到∠EFD =∠FED ,求得∠ADF =∠ADB ,根据全等三角形的性质得到∠ABD =∠AFD =90°,于是得到结论;(2)根据相似三角形的判定和性质定理得到25CE CF EF CD CA AD ===,设CE =2x ,于是得到CD =5x ,DF=DE=3x,根据勾股定理得到CF=4x,于是得到AF=6x,在Rt△ADF中根据勾股定理即可得到结论.【详解】(1)证明:连接DF,∵AC与半圆D相切于点F,∴DF⊥AC,∴∠AFD=90°,∵EF∥AD,∴∠EFD=∠ADF,∠FED=∠ADB,又∵DF=DE,∴∠EFD=∠FED,∴∠ADF=∠ADB,在△ABD与△AFD中DB DFADB ADF AD AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△AFD (SAS),∴∠ABD=∠AFD=90°,∴AB是半圆D的切线;(2)解:∵EF∥AD,∴△CFE∽△CAD,∴25 CE CF EFCD CA AD===,设CE=2x,∴CD=5x,DF=DE=3x,∴在Rt△DFC中,由勾股定理得CF=4x,∴AF=6x,在Rt△ADF中,(6x)2+(3x)2=52,解得x∴AB=AF=6x=【点睛】本题考查了切线的判定和性质,相似三角形的判定和性质,全等三角形的判定和性质,勾股定理,平行线的性质,熟练正确切线的判定定理是解题的关键.25.(1)k=3;D(1,3);(2)m+3n=9【解析】【分析】(1)先根据AO3BC2=,BC=2得出OA的长,再根据点B、C的横坐标都是3可知BC∥AO,故可得出B点坐标,再根据点B在反比例函数ky(x0)x=>的图象上可求出k的值,由AC∥x轴可设点D(t,3)代入反比例函数的解析式即可得出t 的值,进而得出D 点坐标;(2)过点A′作EF ∥OA 交AC 于E ,交x 轴于F ,连接OA′,根据AC ∥x 轴可知∠A′ED=∠A′FO=90°,由相似三角形的判定定理得出△DEA′∽△A′FO,设A′(m ,n ),可得出31m n n m -=-,再根据勾股定理可得出m 2+n 2=9,两式联立可得出m 3n +的值. 【详解】 解:(1)∵AO 3BC 2=,BC =2, ∴OA =3,∵点B 、C 的横坐标都是3, ∴BC ∥AO , ∴B (3,1), ∵点B 在反比例函数ky (x 0)x=>的图象上, ∴13k=,解得k =3, ∵AC ∥x 轴, ∴设点D (t ,3), ∴3t =3,解得t =1, ∴D (1,3);(2)过点A′作EF ∥OA 交AC 于E ,交x 轴于F ,连接OA′(如图所示), ∵AC ∥x 轴,∴∠A′ED=∠A′FO=90°, ∵∠OA′D=90°, ∴∠A′DE=∠OA′F, ∴△DEA′∽△A′FO, 设A′(m ,n ), ∴31m n n m -=-, 又∵在Rt △A′FO 中,m 2+n 2=9, ∴m+3n=9.【点睛】本题考查的是反比例函数综合题,涉及到勾股定理、相似三角形的判定与性质、反比例函数图象上点的坐标特点等知识,难度适中.。

抚州市2020年数学中考一模试卷(II)卷

抚州市2020年数学中考一模试卷(II)卷

抚州市2020年数学中考一模试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题(共10小题) (共10题;共20分)1. (2分)(2017·祁阳模拟) 下列实数中,无理数是()A . 2B . 3.333C . ﹣πD .2. (2分)(2019·永州) 某同学家买了一个外形非常接近球的西瓜,该同学将西瓜均匀切成了8块,并将其中一块(经抽象后)按如图所示的方式放在自已正前方的水果盘中,则这块西瓜的三视图是()A .B .C .D .3. (2分) (2020七下·衢州期末) 如图,直线,折线交于M,交于N,点F在与之间,设,,则的度数是A .B .C .D .4. (2分) (2019八上·固镇月考) 如图,过点A的一次函数的图象与正比例函数y=2x的图象相交于点B,能表示这个一次函数图象的方程是()A .B .C .D .5. (2分)下列各式计算正确的是()A . 3x-2x=1B . a2+a2=a4C . a3•a2=a5D . a5÷a5=a6. (2分)(2020·温州模拟) 已知菱形的两条对角线长分别为10和24,则该菱形的周长是()A . 108B . 52C . 48D . 207. (2分)(2019·梧州) 直线y=3x+1向下平移2个单位,所得直线的解析式是()A . y=3x+3B . y=3x﹣2C . y=3x+2D . y=3x﹣18. (2分) (2019九下·梁子湖期中) 如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD于点F,则的值为()A .B .C .D .9. (2分)(2018·金华模拟) 如图,AB是半圆O的直径,点C在半圆O上,把半圆沿弦AC折叠,恰好经过点O,则与的关系是()A .B .C .D . 不能确定10. (2分)(2019·绥化) 如图,在正方形ABCD中,E、F是对角线AC上的两个动点,P是正方形四边上的任意一点,且AB=4,EF=2,设AE=x.当△PEF是等腰三角形时,下列关于P点个数的说法中,一定正确的是()①当x=0(即E、A两点重合)时,P点有6个②当0<x<4 -2时,P点最多有9个③当P点有8个时,x=2 -2④当△PEF是等边三角形时,P点有4个A . ①③B . ①④C . ②④D . ②③二、填空题(共4小题) (共4题;共4分)11. (1分)(2017·德州模拟) 已知:不等式2x﹣m≤0只有三个正整数解,则化简 +|m﹣9|=________.12. (1分) (2019八上·河池期末) 各角都相等的十五边形的每个内角的度数是________度.13. (1分)如图,Rt△ABC的直角边BC在x轴负半轴上,斜边AC上的中线BD的反向延长线交y轴正半轴于点E,双曲线y= (x<0)的图象经过点A,S△BEC=8,则k=________.14. (1分)在△ABC和△ADC中,下列三个论断:①AB=AD;②∠BAC=∠DAC;③BC=DC.将两个论断作为条件,另一个论断作为结论构成一个命题,写出一个真命题:________.三、解答题(共11小题) (共11题;共93分)15. (5分)(2019·陕西模拟) 计算:(π﹣2)0+|﹣1|﹣÷ +(﹣1)﹣2 .16. (5分) (2017八上·阜阳期末) 解方程:﹣ =﹣2.17. (5分)已知:∠AOB,求作:∠COD,使∠COD=2∠AOB.18. (10分) (2020八上·北仑期末) 已知,点P是等边△ABC中一点,以线段AP为边向右边作等边△APQ,连接PQ、QC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年江西省抚州市中考数学模拟试题
一.选择题(共6小题,满分18分,每小题3分)
1.下列各对数中,互为相反数的是()
A.﹣2与3B.﹣(+3)与+(﹣3)
C.4与﹣4D.5与
2.下列图形中,既是中心对称图形,又是轴对称图形的是()
A..B..C.D..
3.下列各式正确的是()
A.2a2+3a2=5a4B.a2•a=a3
C.(a2)3=a5D.=a
4.如图是某兴趣社制作的模型,则它的俯视图是()
A.B.C.D.
5.如图是某单元楼居民六月份的用电(单位:度)情况,则关于用电量描述不正确的是()
A.众数为30B.中位数为25C.平均数为24D.方差为83
6.如图,直线y1=x+1与双曲线y2=交于A(2,m)、B(﹣6,n)两点.则当y1<y2时,x的取值范围是()
A.x>﹣6或0<x<2B.﹣6<x<0或x>2
C.x<﹣6或0<x<2D.﹣6<x<2
二.填空题(共6小题,满分18分,每小题3分)
7.把多项式x2y﹣6xy+9y分解因式的结果是.
8.我国古代数学著作《九章算术》中记载了一个问题:“今有邑方不知大小,各开中门,出北门三十步有木,出西门七百五十步见木,问:邑方几何?”.其大意是:如图,一座正方形城池,A为北门中点,从点A往正北方向走30步到B处有一树木,C为西门中点,从点C往正西方向走750步到D处正好看到B处的树木,则正方形城池的边长为步.
9.若m2+m﹣1=0,n2+n﹣1=0,且m≠n,则mn=.
10.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为.
11.如图,在△ABC中,AB=4,AC=3,BC=5,△ABD、△ACE、△BCF都是等边三角形,则四边形AEFD的面积为.。

相关文档
最新文档