高中数学必修2第四章测试及答案

合集下载

(常考题)人教版高中数学必修第二册第四单元《统计》测试卷(包含答案解析)

(常考题)人教版高中数学必修第二册第四单元《统计》测试卷(包含答案解析)
附:线性回归方程 中系数计算公式分别为: , ,其中 、 为样本均值.
20.孝感市旅游局为了了解双峰山景点在大众中的熟知度,从年龄在15~65岁的人群中随机抽取n人进行问卷调查,把这n人按年龄分成5组:第一组[15,25),第二组[25,35),第三组[35,45),第四组[45,55),第五组[55,65],得到的样本的频率分布直方图如右:
调查问题是“双峰山国家森林公园是几A级旅游景点?”每组中回答正确的人数及回答正确的人数占本组的频率的统计结果如下表.
组号
分组
回答正确的人数
回答正确的人数占本组的频率
第1组
[15,25)
5
0.5
第2组
[25,35)
18
x
第3组
[35,45)
y
0.9
第4组
[45,55)
9
a
第5组
[55,65]
7
b
(1)分别求出n,x,y的值;
“梅实初黄暮雨深”.请用样本平均数估计 镇明年梅雨季节的降雨量;
“江南梅雨无限愁”. 镇的杨梅种植户老李也在犯愁,他过去种植的甲品种杨梅,他过去种植的甲品种杨梅,亩产量受降雨量的影响较大(把握超过八成).而乙品种杨梅2009~2018年的亩产量( /亩)与降雨量的发生频数(年)如 列联表所示(部分数据缺失).请你帮助老李排解忧愁,他来年应该种植哪个品种的杨梅受降雨量影响更小?
①一组数据的标准差越大,则说明这组数据越集中;
②曲线 与曲线 的焦距相等;
③在频率分布直方图中,估计的中位数左边和右边的直方图的面积相等;
④已知椭圆 ,过点 作直线,当直线斜率为 时,M刚好是直线被椭圆截得的弦AB的中点.
A.1B.2C.3D.4

人教A版高中数学必修2第四章《圆与方程》测试题(含答案)

人教A版高中数学必修2第四章《圆与方程》测试题(含答案)
(2)由(1)可知M的轨迹是以点 为圆心, 为半径的圆.
由于 ,故O在线段PM的垂直平分线上,又P在圆N上,从而 .
因为ON的斜率为3,所以 的斜率为 ,故 的方程为 .
又 ,O到 的距离为 , ,所以 的面积为 .
21.(1).由已知得过点 的圆的切线斜率的存在,
设切线方程为 ,即 .
则圆心 到直线的距离为 ,
A. B.
C. D.
5.一条光线从点 射出,经 轴反射后与圆 相切,则反射光线所在直线的斜率为()
A. 或 B. 或 C. 或 D. 或
6.已知圆 截直线 所得线段的长度是 ,则圆 与圆 的位置关系是( )
A.内切B.相交C.外切D.相离
7.已知方程 ,则 的最大值是( )
A.14- B.14+ C.9D.14
A.4B.6C. D.
12.已知直线 : 是圆 的对称轴.过点 作圆 的一条切线,切点为 ,则 ( )
A.2B. C.6D.
二、填空题
13.已知两点 ,以线段 为直径的圆的方程为________________.
14.方程x2+y2-x+y+m=0表示一个圆,则m的取值范围是_______
15.已知 为直线 上一点,过 作圆 的切线,则切线长最短时的切线方程为__________.
当 的斜率不存在, 的斜率等于0时, 与圆 不相交, 与圆 不相交.
当 、 的斜率存在且都不等于0,两条直线分别与两圆相交时,设 、 的方程分别为 ,即 .
因为 到 的距离 ,
到 的距离 ,所以 到 的距离与 到 的距离相等.
所以圆 与圆 的半径相等,所以 被圆 截得的弦长与 被圆 截得的弦长恒相等.
综上所述,过点 任作互相垂直的两条直线分别与两圆相交,所得弦长恒相等.

高中数学必修2第四章测试(含答案)

高中数学必修2第四章测试(含答案)

第四章测试(时间:120分钟总分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知两圆的方程是x2+y2=1和x2+y2-6x-8y+9=0,那么这两个圆的位置关系是() A.相离B.相交C.外切D.内切2.过点(2,1)的直线中,被圆x2+y2-2x+4y=0截得的最长弦所在的直线方程为()A.3x-y-5=0 B.3x+y-7=0C.x+3y-5=0 D.x-3y+1=03.若直线(1+a)x+y+1=0与圆x2+y2-2x=0相切,则a的值为()A.1,-1 B.2,-2C.1 D.-14.经过圆x2+y2=10上一点M(2,6)的切线方程是()A.x+6y-10=0 B.6x-2y+10=0C.x-6y+10=0 D.2x+6y-10=05.点M(3,-3,1)关于xOz平面的对称点是()A.(-3,3,-1) B.(-3,-3,-1)C.(3,-3,-1) D.(3,3,1)6.若点A是点B(1,2,3)关于x轴对称的点,点C是点D(2,-2,5)关于y轴对称的点,则|AC|=() A.5 B.13 C.10 D.107.若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为坐标原点),则k 的值为()A. 3B. 2C.3或- 3D.2和- 28.与圆O1:x2+y2+4x-4y+7=0和圆O2:x2+y2-4x-10y+13=0都相切的直线条数是() A.4 B.3 C.2 D.19.直线l将圆x2+y2-2x-4y=0平分,且与直线x+2y=0垂直,则直线l的方程是()A.2x-y=0 B.2x-y-2=0C.x+2y-3=0 D.x-2y+3=010.圆x2+y2-(4m+2)x-2my+4m2+4m+1=0的圆心在直线x+y-4=0上,那么圆的面积为()A.9πB.πC.2π D.由m的值而定11.当点P在圆x2+y2=1上变动时,它与定点Q(3,0)的连结线段PQ的中点的轨迹方程是()A .(x +3)2+y 2=4B .(x -3)2+y 2=1C .(2x -3)2+4y 2=1D .(2x +3)2+4y 2=112.曲线y =1+4-x 2与直线y =k (x -2)+4有两个交点,则实数k 的取值范围是( ) A .(0,512)B .(512,+∞)C .(13,34]D .(512,34]二、填空题(本大题共4小题,每小题5分,满分20分,把答案填在题中横线上) 13.圆x 2+y 2=1上的点到直线3x +4y -25=0的距离最小值为____________. 14.圆心为(1,1)且与直线x +y =4相切的圆的方程是________.15.方程x 2+y 2+2ax -2ay =0表示的圆,①关于直线y =x 对称;②关于直线x +y =0对称;③其圆心在x 轴上,且过原点;④其圆心在y 轴上,且过原点,其中叙述正确的是__________.16.直线x +2y =0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于__________.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(10分)自A (4,0)引圆x 2+y 2=4的割线ABC ,求弦BC 中点P 的轨迹方程.18.(12分)已知圆M :x 2+y 2-2mx +4y +m 2-1=0与圆N :x 2+y 2+2x +2y -2=0相交于A ,B 两点,且这两点平分圆N 的圆周,求圆M 的圆心坐标.19.(12分)已知圆C 1:x 2+y 2-3x -3y +3=0,圆C 2:x 2+y 2-2x -2y =0,求两圆的公共弦所在的直线方程及弦长.20.(12分)已知圆C :x 2+y 2+2x -4y +3=0,从圆C 外一点P 向圆引一条切线,切点为M ,O 为坐标原点,且有|PM |=|PO |,求|PM |的最小值.21.(12分)已知⊙C :(x -3)2+(y -4)2=1,点A (-1,0),B (1,0),点P 是圆上动点,求d =|P A |2+|PB |2的最大、最小值及对应的P 点坐标.22.(12分)已知曲线C :x 2+y 2+2kx +(4k +10)y +10k +20=0,其中k ≠-1. (1)求证:曲线C 表示圆,并且这些圆心都在同一条直线上; (2)证明曲线C 过定点;(3)若曲线C 与x 轴相切,求k 的值.1解析:将圆x 2+y 2-6x -8y +9=0,化为标准方程得(x -3)2+(y -4)2=16. ∴两圆的圆心距(0-3)2+(0-4)2=5,又r 1+r 2=5,∴两圆外切.答案:C2解析:依题意知,所求直线通过圆心(1,-2),由直线的两点式方程得y +21+2=x -12-1,即3x -y -5=0.答案:A3解析:圆x 2+y 2-2x =0的圆心C (1,0),半径为1,依题意得|1+a +0+1|(1+a )2+1=1,即|a +2|=(a +1)2+1,平方整理得a =-1.答案:D4解析:∵点M (2,6)在圆x 2+y 2=10上,k OM =62, ∴过点M 的切线的斜率为k =-63, 故切线方程为y -6=-63(x -2), 即2x +6y -10=0. 答案:D5解析:点M (3,-3,1)关于xOz 平面的对称点是(3,3,1).答案:D 6解析:依题意得点A (1,-2,-3),C (-2,-2,-5). ∴|AC |=(-2-1)2+(-2+2)2+(-5+3)2=13.答案:B7解析:由题意知,圆心O (0,0)到直线y =kx +1的距离为12,∴11+k 2=12,∴k =±3.答案:C 8解析:两圆的方程配方得,O 1:(x +2)2+(y -2)2=1, O 2:(x -2)2+(y -5)2=16,圆心O 1(-2,2),O 2(2,5),半径r 1=1,r 2=4, ∴|O 1O 2|=(2+2)2+(5-2)2=5,r 1+r 2=5.∴|O 1O 2|=r 1+r 2,∴两圆外切,故有3条公切线.答案:B 9解析:依题意知,直线l 过圆心(1,2),斜率k =2, ∴l 的方程为y -2=2(x -1),即2x -y =0.答案:A 10解析:∵x 2+y 2-(4m +2)x -2my +4m 2+4m +1=0, ∴[x -(2m +1)]2+(y -m )2=m 2. ∴圆心(2m +1,m ),半径r =|m |.依题意知2m +1+m -4=0,∴m =1. ∴圆的面积S =π×12=π.答案:B11解析:设P (x 1,y 1),Q (3,0),设线段PQ 中点M 的坐标为(x ,y ), 则x =x 1+32,y =y 12,∴x 1=2x -3,y 1=2y .又点P (x 1,y 1)在圆x 2+y 2=1上, ∴(2x -3)2+4y 2=1.故线段PQ 中点的轨迹方程为(2x -3)2+4y 2=1.答案:C 12解析:如图所示,曲线y =1+4-x 2变形为x 2+(y -1)2=4(y ≥1), 直线y =k (x -2)+4过定点(2,4), 当直线l 与半圆相切时,有 |-2k +4-1|k 2+1=2,解得k =512.当直线l 过点(-2,1)时,k =34.因此,k 的取值范围是512<k ≤34.答案:D13解析:圆心(0,0)到直线3x +4y -25=0的距离为5, ∴所求的最小值为4.14解析:r =|1+1-4|2=2,所以圆的方程为(x -1)2+(y -1)2=2.15解析:已知方程配方得,(x +a )2+(y -a )2=2a 2(a ≠0),圆心坐标为(-a ,a ),它在直线x +y =0上,∴已知圆关于直线x +y =0对称.故②正确.16解析:由x 2+y 2-6x -2y -15=0,得(x -3)2+(y -1)2=25.圆心(3,1)到直线x +2y =0的距离d =|3+2×1|5= 5.在弦心距、半径、半弦长组成的直角三角形中,由勾股定理得,弦长=2×25-5=4 5.17解:解法1:连接OP ,则OP ⊥BC ,设P (x ,y ),当x ≠0时,k OP ·k AP =-1,即y x ·yx -4=-1,即x 2+y 2-4x =0①当x =0时,P 点坐标为(0,0)是方程①的解,∴BC 中点P 的轨迹方程为x 2+y 2-4x =0(在已知圆内).解法2:由解法1知OP ⊥AP ,取OA 中点M ,则M (2,0),|PM |=12|OA |=2,由圆的定义知,P 点轨迹方程是以M (2,0)为圆心,2为半径的圆.故所求的轨迹方程为(x -2)2+y 2=4(在已知圆内).18解:由圆M 与圆N 的方程易知两圆的圆心分别为M (m ,-2),N (-1,-1). 两圆的方程相减得直线AB 的方程为 2(m +1)x -2y -m 2-1=0. ∵A ,B 两点平分圆N 的圆周,∴AB 为圆N 的直径,∴AB 过点N (-1,-1), ∴2(m +1)×(-1)-2×(-1)-m 2-1=0, 解得m =-1.故圆M 的圆心M (-1,-2).19解:设两圆的交点为A (x 1,y 1),B (x 2,y 2),则A 、B 两点的坐标是方程组⎩⎪⎨⎪⎧x 2+y 2-3x -3y +3=0x 2+y 2-2x -2y =0的解,两方程相减得:x +y -3=0,∵A 、B 两点的坐标都满足该方程, ∴x +y -3=0为所求. 将圆C 2的方程化为标准形式, (x -1)2+(y -1)2=2, ∴圆心C 2(1,1),半径r = 2.圆心C 2到直线AB 的距离d =|1+1-3|2=12,|AB |=2r 2-d 2=22-12= 6. 即两圆的公共弦长为 6.20解:如图:PM 为圆C 的切线,则CM ⊥PM ,∴△PMC 为直角三角形,∴|PM |2=|PC |2-|MC |2.设P (x ,y ),C (-1,2),|MC |= 2. ∵|PM |=|PO |,∴x 2+y 2=(x +1)2+(y -2)2-2,化简得点P 的轨迹方程为:2x -4y +3=0.求|PM |的最小值,即求|PO |的最小值,即求原点O 到直线2x -4y +3=0的距离,代入点到直线的距离公式可求得|PM |最小值为3510.21解:设点P 的坐标为(x 0,y 0),则d =(x 0+1)2+y 02+(x 0-1)2+y 02=2(x 02+y 02)+2.欲求d 的最大、最小值,只需求u =x 02+y 02的最大、最小值,即求⊙C 上的点到原点距离的平方的最大、最小值.作直线OC ,设其交⊙C 于P 1(x 1,y 1),P 2(x 2,y 2), 如图所示.则u 最小值=|OP 1|2=(|OC |-|P 1C |)2=(5-1)2=16. 此时,x 13=y 14=45,∴x 1=125,y 1=165.∴d 的最小值为34,对应点P 1的坐标为⎝⎛⎭⎫125,165. 同理可得d 的最大值为74,对应点P 2的坐标为⎝⎛⎭⎫185,245. 22解:(1)证明:原方程可化为(x +k )2+(y +2k +5)2=5(k +1)2 ∵k ≠-1,∴5(k +1)2>0.故方程表示圆心为(-k ,-2k -5),半径为5|k +1|的圆.设圆心的坐标为(x ,y ),则⎩⎪⎨⎪⎧x =-k ,y =-2k -5,消去k ,得2x -y -5=0.∴这些圆的圆心都在直线2x -y -5=0上. (2)证明:将原方程变形为(2x +4y +10)k +(x 2+y 2+10y +20)=0, ∵上式对于任意k ≠-1恒成立,∴⎩⎪⎨⎪⎧2x +4y +10=0,x 2+y 2+10y +20=0.解得⎩⎪⎨⎪⎧x =1,y =-3.∴曲线C 过定点(1,-3). (3)∵圆C 与x 轴相切,∴圆心(-k ,-2k -5)到x 轴的距离等于半径, 即|-2k -5|=5|k +1|.两边平方,得(2k +5)2=5(k +1)2, ∴k =5±3 5.。

高中数学第四章圆与方程检测试题含解析新人教A版必修2

高中数学第四章圆与方程检测试题含解析新人教A版必修2

第四章圆与方程检测试题(时间:120分钟满分:150分)一、选择题(本大题共10小题,每小题4分,共40分)1.经过圆x2+2x+y2=0的圆心C,且与直线x+y=0垂直的直线方程是( C )(A)x+y+1=0 (B)x+y-1=0(C)x-y+1=0 (D)x-y-1=0解析:易知点C为(-1,0),因为直线x+y=0的斜率是-1,所以与直线x+y=0垂直直线的斜率为1,所以要求直线方程是y=x+1,即x-y+1=0.2.空间直角坐标系Oxyz中的点P(1,2,3)在xOy平面内射影是Q,则点Q的坐标为( A )(A)(1,2,0) (B)(0,0,3)(C)(1,0,3) (D)(0,2,3)解析:因为空间直角坐标系Oxyz中,点P(1,2,3)在xOy平面内射影是Q,所以点Q的坐标为(1,2,0).3.若方程x2+y2-x+y+m=0表示圆,则实数m的取值范围是( A )(A)m< (B)m>(C)m<0 (D)m≤解析:由题意得1+1-4m>0,得m<.4.圆O1:x2+y2-4x-6y+12=0与圆O2:x2+y2-8x-6y+16=0的位置关系是( D )(A)相交 (B)相离 (C)内含 (D)内切解析:把圆O1:x2+y2-4x-6y+12=0与圆O2:x2+y2-8x-6y+16=0分别化为标准式为(x-2)2+(y-3)2=1和(x-4)2+(y-3)2=9,两圆心间的距离d==2=|r1-r2|,所以两圆的位置关系为内切,故选D.5.若圆x2+y2-2x-4y=0的圆心到直线x-y+a=0的距离为,则a的值为( C )(A)-2或2 (B)或(C)2或0 (D)-2或0解析:圆x2+y2-2x-4y=0的圆心是(1,2).点(1,2)到直线x-y+a=0的距离是=,所以|a-1|=1,所以a=2或a=0.选C.6.若直线y=kx与圆(x-2)2+y2=1的两个交点关于直线2x+y+b=0对称,则k,b的值分别为( D )(A)-,4 (B),4(C)-,-4 (D),-4解析:直线y=kx与圆(x-2)2+y2=1的两个交点关于直线2x+y+b=0对称,则直线2x+y+b=0一定过圆(x-2)2+y2=1的圆心(2,0),代入得b=-4,同时直线y=kx与直线2x+y+b=0垂直,可得-2×k=-1,解得k=,故选D.7.点P(4,-2)与圆x2+y2=4上任一点连线的中点轨迹方程是( A )(A)(x-2)2+(y+1)2=1 (B)(x-2)2+(y+1)2=4(C)(x+4)2+(y-2)2=1 (D)(x+2)2+(y-1)2=1解析:设圆上任意一点坐标为(x1,y1),其与点P所连线段的中点坐标为(x,y),则即代入x2+y2=4,得(2x-4)2+(2y+2)2=4,化简得(x-2)2+(y+1)2=1.故选A.8.在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是( A )(A) (B)1 (C) (D)解析:如图所示,当直线l上恰好只存在一个圆与圆C相切时,直线l的斜率最大,此时,点C(4,0)到直线l的距离是2.即=2.解得k=或k=0.所以k的最大值是.9.过点P(1,1)的直线,将圆形区域{(x,y)|x2+y2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( A )(A)x+y-2=0 (B)y-1=0(C)x-y=0 (D)x+3y-4=0解析:欲使两部分的面积之差最大,需直线与OP垂直,因为k OP=1,所以所求的直线方程为y-1=-(x-1),即x+y-2=0.10.过点P(-4,0)作直线l与圆x2+y2+2x-4y-20=0交于A,B两点,若|AB|=8,则直线l的方程为( C )(A)5x+12y+20=0(B)5x-12y+20=0(C)5x+12y+20=0或x+4=0(D)5x-12y+20=0或x+4=0解析:x2+y2+2x-4y-20=0可化为(x+1)2+(y-2)2=25,当直线l的斜率不存在时,符合题意;当直线l的斜率存在时,设l的方程为y=k(x+4),由题意得==3,得k=-.所以直线l的方程为y=-(x+4),即5x+12y+20=0,综上,符合条件的直线l的方程为5x+12y+20=0或x+4=0.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)11.圆x2+y2-4x+6y=0的圆心坐标是,半径是.解析:圆的方程可化为(x-2)2+(y+3)2=13,所以圆心坐标是(2,-3),半径为.答案:(2,-3)12.如图所示,在单位正方体ABCDA1B1C1D1中,以DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A1C和A1C1的长度分别为, .解析:易得A1(1,0,1),C(0,1,0),C1(0,1,1),所以|A1C|==,|A1C1|==.答案:13.圆x2+y2+Dx+Ey+F=0关于直线l1:x-y+4=0与直线l2:x+3y=0都对称,则D= ,E= .解析:由题设知直线l1,l2的交点为已知圆的圆心.由得所以-=-3,D=6,-=1,E=-2.答案:6 -214.若直线mx+2ny-4=0(m,n∈R)始终平分圆x2+y2-4x-2y-4=0的周长,则m+n的值等于,mn的取值范围是.解析:圆心(2,1),则m×2+2n×1-4=0,即m+n=2,m=2-n,于是mn=(2-n)n=-n2+2n=-(n-1)2+1≤1,故mn的取值范围是(-∞,1].答案:2 (-∞,1]15.若直线y=x+b与曲线x=恰有一个公共点,则实数b的取值范围是.解析:将曲线x=变为x2+y2=1(x≥0).如图所示,当直线y=x+b与曲线x2+y2=1相切时,则满足=1,|b|=,b=±.观察图象,可得当b=-,或-1<b≤1时,直线与曲线x=有且只有一个公共点.答案:(-1,1]∪{-}16.若集合A={(x,y)|x2+y2≤16},B={(x,y)|x2+(y-2)2≤a-1},且A∩B=B,则a的取值范围是.解析:A∩B=B等价于B⊆A.当a>1时,集合A和B中的点的集合分别代表圆x2+y2=16和圆x2+(y-2)2=a-1的内部,如图,容易看出当B对应的圆的半径小于2时符合题意.由0<a-1≤4,得1<a≤5;当a=1时,满足题意;当a<1时,集合B为空集,也满足B⊆A,所以当a≤5时符合题意.答案:(-∞,5]17.已知直线l1:x+y-=0,l2:x+y-4=0,☉C的圆心到l1,l2的距离依次为d1,d2且d2=2d1,☉C与直线l2相切,则直线l1被☉C所截得的弦长为.解析:当圆心C在直线l1:x+y-=0与l2:x+y-4=0之间时,d1+d2=3且d2=2d1,☉C与直线l2相切,此时r=d2=2,d1=1,则直线l1被☉C所截得的弦长为2=2=2;同理,当圆心C不在直线l1:x+y-=0与l2:x+y-4=0之间时,则d2-d1=3且d2=2d1,☉C与直线l2相切,此时r=d2=6,d1=3,则直线l1被☉C所截得的弦长为2=2=6.故直线l1被☉C所截得的弦长为2或6.答案:2或6三、解答题(本大题共5小题,共74分)18.(本小题满分14分)一直线 l 过直线 l1:2x-y=1 和直线 l2:x+2y=3 的交点 P,且与直线 l3:x-y+1=0 垂直.(1)求直线 l 的方程;(2)若直线 l 与圆 C:(x-a)2+y2=8 (a>0)相切,求 a.解:(1)由解得P(1,1),又直线l与直线l3:x-y+1=0垂直,故l的斜率为-1,所以l:y-1=-(x-1),即直线l的方程为x+y-2=0.(2)由题设知C(a,0),半径r=2,因为直线l与圆C:(x-a)2+y2=8(a>0)相切,所以C到直线l的距离为2,所以=2,又a>0,得a=6.19.(本小题满分15分)已知以点P为圆心的圆经过点A(-1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|=4.(1)求直线CD的方程;(2)求圆P的方程.解:(1)直线AB的斜率k=1,AB的中点坐标为(1,2),所以直线CD的方程为y-2=-(x-1),即x+y-3=0.(2)设圆心P(a,b),则由P在CD上得a+b-3=0.①又直径|CD|=4,所以|PA|=2,所以(a+1)2+b2=40,②由①②解得或所以圆心P(-3,6)或P(5,-2),所以圆P的方程为(x+3)2+(y-6)2=40或(x-5)2+(y+2)2=40.20.(本小题满分15分)已知圆C:x2+y2+4x-4ay+4a2+1=0,直线l:ax+y+2a=0.(1)当a=时,直线l与圆C相交于A,B两点,求弦AB的长;(2)若a>0且直线l与圆C相切,求圆C关于直线l的对称圆C′的方程.解:(1)因为圆C:(x+2)2+(y-2a)2=()2,又a=,所以圆心C为(-2,3),直线l:3x+2y+6=0,圆心C到直线l的距离d==,所以|AB|=2=.(2)将y=-ax-2a代入圆C的方程化简得(1+a2)x2+4(1+2a2)x+16a2+1=0,(*)所以Δ=[4(1+2a2)]2-4(1+a2)(16a2+1)=4(3-a2)=0,因为a>0,所以a=,所以方程(*)的解为x=-,所以切点坐标为(-,),根据圆关于切线对称的性质可知切点为CC′的中点,故圆心C′的坐标为(-5,),所以圆C′的方程为(x+5)2+(y-)2=3.21.(本小题满分15分)已知圆C:x2+y2+2x-4y+3=0.(1)若圆C的切线在x轴、y轴上的截距相等,求切线的方程;(2)从圆C外一点P(x1,y1)向圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使|PM|最小的点P的坐标.解:(1)由方程x2+y2+2x-4y+3=0知,圆心为(-1,2),半径为.当切线过原点时,设切线方程为y=kx,则=.所以k=2±,即切线方程为y=(2±)x.当切线不过原点时,设切线方程为x+y=a,则=.所以a=-1或a=3,即切线方程为x+y+1=0或x+y-3=0.所以切线方程为y=(2±)x或x+y+1=0或x+y-3=0.(2)设P(x1,y1).因为|PM|2+r2=|PC|2,即|PO|2+r2=|PC|2,所以++2=(x1+1)2+(y1-2)2,即2x1-4y1+3=0.要使|PM|最小,只要|PO|最小即可.当直线PO垂直于直线2x-4y+3=0时,即直线PO的方程为2x+y=0时,|PM|最小,此时P点即为两直线的交点,得P点坐标(-,).22.(本小题满分15分)圆C:x2+y2+2x-3=0内有一点P(-2,1),AB为过点P且倾斜角为α的弦.(1)当α=135°时,求AB的长;(2)当弦AB被点P平分时,写出直线AB的方程;(3)若圆C上的动点M与两个定点O(0,0),R(a,0)(a≠0)的距离之比恒为定值λ(λ≠1),求实数a的值.解:(1)由题意知,圆心C(-1,0),半径r=2,直线AB的方程为x+y+1=0,直线AB过圆心C,所以弦长AB=2r=4.(2)当弦AB被点P平分时,AB⊥PC,k AB·k PC=-1,又k PC=-1, 所以k AB=1,直线AB的方程为x-y+3=0.(3)设M(x0,y0),则满足++2x0-3=0, ①由题意得,=λ,即=λ.整理得+=λ2[-2ax0+a2+], ②由①②得,3-2x0=λ2[3-2x0-2ax0+a2]恒成立,所以又a≠0,λ>0,λ≠1,解之得a=3.。

高中数学人教A版必修二 第四章 圆与方程 学业分层测评24 Word版含答案

高中数学人教A版必修二 第四章 圆与方程 学业分层测评24 Word版含答案

学业分层测评一、选择题1.点P在圆C1:x2+y2-8x-4y+11=0上点Q在圆C2:x2+y2+4x+2y+1=0上则|PQ|的最小值是()A.5 B.1C.35-5 D.35+5【解析】圆C1:x2+y2-8x-4y+11=0即(x-4)2+(y-2)2=9圆心为C1(42);圆C2:x2+y2+4x+2y+1=0即(x+2)2+(y+1)2=4圆心为C2(-2-1)两圆相离|PQ|的最小值为|C1C2|-(r1+r2)=35-5【答案】 C2.设两圆C1、C2都和两坐标轴相切且都过点(41)则两圆心的距离|C1C2|=()A.4 B.4 2C.8 D.8 2【解析】∵两圆与两坐标轴都相切且都经过点(41)∴两圆圆心均在第一象限且横、纵坐标相等.设两圆的圆心分别为(aa)(bb)则有(4-a)2+(1-a)2=a2(4-b)2+(1-b)2=b2即ab为方程(4-x)2+(1-x)2=x2的两个根整理得x2-10x+17=0∴a+b=10ab=17∴(a-b)2=(a+b)2-4ab=100-4×17=32∴|C1C2|=2(a-b)2=32×2=8【答案】 C3.过点P(23)向圆C:x2+y2=1上作两条切线P APB则弦AB所在的直线方程为()A.2x-3y-1=0B.2x+3y-1=0C.3x+2y-1=0D.3x-2y-1=0【解析】 弦AB 可以看作是以PC 为直径的圆与圆x 2+y 2=1的交线而以PC为直径的圆的方程为(x -1)2+⎝ ⎛⎭⎪⎫y -322=134根据两圆的公共弦的求法可得弦AB 所在的直线方程为:(x -1)2+⎝ ⎛⎭⎪⎫y -322-134-(x 2+y 2-1)=0整理可得2x +3y -1=0故选B【答案】 B二、填空题6.过两圆x 2+y 2-x -y -2=0与x 2+y 2+4x -4y -8=0的交点和点(31)的圆的方程是________.【解析】 设所求圆的方程为 (x 2+y 2-x -y -2)+λ(x 2+y 2+4x -4y -8)=0(λ≠-1)将(31)代入得λ=-25故所求圆的方程为x 2+y 2-133x +y +2=0【答案】 x 2+y 2-133x +y +2=07.两圆相交于两点A (13)和B (m -1)两圆圆心都在直线x -y +c =0上则m +c 的值为________.【解析】 由题意知线段AB 的中点在直线x -y +c =0上且k AB =41-m=-1即m =5 又点⎝ ⎛⎭⎪⎫1+m 2,1在该直线上 所以1+m 2-1+c =0所以c =-2所以m +c =3【答案】 3三、解答题8.求圆心为(21)且与已知圆x 2+y 2-3x =0的公共弦所在直线经过点(5-2)的圆的方程.【解】 设所求圆的方程为(x -2)2+(y -1)2=r 2即x 2+y 2-4x -2y +5-r 2=0①已知圆的方程为x 2+y 2-3x =0②②-①得公共弦所在直线的方程为x +2y -5+r 2=0又此直线经过点(5-2)∴5-4-5+r 2=0∴r 2=4故所求圆的方程为(x -2)2+(y -1)2=49.有相距100 km 的AB 两个批发市场商品的价格相同但在某地区居民从两地运回商品时A 地的单位距离的运费是B 地的2倍.问怎样确定AB 两批发市场的售货区域对当地居民有利?【09960144】【解】 建立以AB 所在直线为x 轴AB 中点为原点的直角坐标系则A (-500)B (500).设P (xy )由2|P A |=|PB |得x 2+y 2+5003x +2 500=0 所以在圆x 2+y 2+5003x +2 500=0内到A 地购物合算;在圆x 2+y 2+5003x +2500=0外到B 地购物合算;在圆x 2+y 2+5003x +2 500=0上到AB 两地购物一样合算.[自我挑战]10.以圆C 1:x 2+y 2+4x +1=0与圆C 2:x 2+y 2+2x +2y +1=0相交的公共弦为直径的圆的方程为( )A .(x -1)2+(y -1)2=1B .(x +1)2+(y +1)2=1C ⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=45 D ⎝ ⎛⎭⎪⎫x -352+⎝ ⎛⎭⎪⎫y -652=45 【解析】 两圆方程相减得公共弦所在直线的方程为x -y =0因此所求圆的圆心的横、纵坐标相等排除CD 选项画图(图略)可知所求圆的圆心在第三象限排除A 故选B【答案】 B11.设半径为3 km 的圆形村落A 、B 两人同时从村落中心出发A 向东B 向北A 出村后不久改变前进方向斜着沿切于村落圆周的方向前进后来恰好与B 相遇设A 、B 两人的速度一定其比为3∶1问A 、B 两人在何处相遇?【解】由题意以村中心为原点正东方向为x轴的正方向正北为y轴的正方向建立直角坐标系设A、B两人的速度分别为3v km/h v km/h设A出发a h在P处改变方向又经过b h到达相遇点Q则|PQ|=3b v|OP|=3a v|OQ|=(a+b)v则P(3a v0)Q(0(a+b)v)在Rt△OPQ中由|PQ|2=|OP|2+|OQ|2得5a=4bk PQ=0-v(a+b)3a v-0∴k PQ=-34设直线PQ的方程为y=-34x+c(c>0)由PQ与圆x2+y2=9相切得|4c|42+32=3解得c=154故A、B两人相遇在正北方离村落中心154km。

(人教版B版)高中数学必修第二册 第四章综合测试试卷02及答案

(人教版B版)高中数学必修第二册 第四章综合测试试卷02及答案

第四章综合测试一、单项选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数()3x y f =的定义域为[1,1]-,则函数()3log y f x =的定义域为( )A .[1,1]-B .1,23éùêúëûC .[1,2]D.2.已知函数1()2)2f x x =+,则1(lg 2)lg 2f f æö+=ç÷èø( )A .1-B .0C .1D .23.设函数2()log f x x =,若(1)2f a +<,则实数a 的取值范围为( )A .(1,3)-B .(,3)-¥C .(,1)-¥D .(1,1)-4.已知函数2||()e x f x x =+,若()02a f =,121log 4b f æö=ç÷ç÷èø,2log c f æ=ççè,则,,a b c 的大小关系为( )A .a b c >>B .a c b >>C .b a >>cD .c a b>>5.已知(31)4,1,()log ,1aa x a x f x x x -+ì=íî<≥,是R 上的减函数,那么实数a 的取值范围是( )A .(0,1)B .11,73éö÷êëøC .10,3æöç÷èøD .11,93æöç÷èø6.已知,(1,)m n Î+¥,且m n >,若26log log 13m n n m +=,则函数2()m nf x x =的图像为( )AB C D7.给出下列命题:①函数e e 2x xy -+=为偶函数;②函数e 1e 1x x y -=+在x ÎR上单调递增;③函数lg y x =在区间(0,)+¥上单调递减;④函数13xy æö=ç÷èø与3log y x =-的图像关于直线y x =对称。

高中数学选择性必修二 第四章 数列(章末测试)(含答案)

高中数学选择性必修二 第四章 数列(章末测试)(含答案)

第四章 数 列 章末测试注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分)1.(2020·山东泗水·期中(文))已知数列{}n a 中,11a =,122nn n a a a +=+,则5a 等于( ) A .25B .13C .23D .12【答案】B【解析】在数列{}n a 中,11a =,122n n n a a a +=+,则12122122123a a a ⨯===++,2322221322223a a a ⨯===++, 3431222212522a a a ⨯===++,4542221522325a a a ⨯===++.故选:B. 2.(2020·四川阆中中学月考(理))等比数列{}n a 的各项均为正实数,其前n 项和为S n ,若a 3=4,a 2·a 6=64,则S 5=( ) A .32 B .31C .64D .63【答案】B【解析】依题意3264640n a a a a =⎧⎪⋅=⎨⎪>⎩,即2151114640,0a q a q a q a q ⎧⋅=⎪⋅=⎨⎪>>⎩,解得11,2a q ==,所以()551123112S ⨯-==-.故选:B3.(2020·湖南武陵·常德市一中月考)在等比数列{}n a 中,5113133,4a a a a =+=,则122a a =( ) A .3 B .13-C .3或13D .3-或13-【答案】C【解析】若{}n a 的公比为q ,∵3135113a a a a ==,又由3134a a +=,即有31313a a =⎧⎨=⎩或31331a a =⎧⎨=⎩, ∴1013q =或3,故有101223a q a ==或13故选:C 4.(2021·黑龙江哈尔滨市第六中学校月考(理))在递减等比数列{}n a 中,n S 是其前n 项和,若245a a +=,154a a ⋅=,则7S =( ).A .1278B .212C .638D .6332【答案】A【解析】则24152454a a a a a a +=⎧⎨==⎩,解得2414a a =⎧⎨=⎩或2441a a =⎧⎨=⎩,∵{}n a 是递减数列,则2441a a =⎧⎨=⎩,∴24214a q a ==,12q =(12q =-舍去).∴218a a q ==,7717181(1)21112a q S q ⎛⎫⨯- ⎪-⎝⎭==--1278=. 故选:A .5.(2020·重庆高一期末)《莱茵德纸草书》是世界上最古老的数学著作之一.书中有这样一道题目:把100个面包分给5个人,使每个人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为( )A .53B .103C .56D .116【答案】A【解析】设5人分到的面包数量从小到大记为{}n a ,设公差为d ,依题意可得,15535()51002a a S a +===, 33451220,7()a a a a a a ∴=++=+, 6037(403)d d ∴+=-,解得556d =, 1355522033a a d ∴=-=-=. 故选:A.6.(2020·贵州贵阳·为明国际学校其他(理))已知等比数列{}n a 的前n 项和为n S ,若公比6121,24q S =-=,则数列{}n a 的前n 项积n T 的最大值为( ) A .16 B .64C .128D .256【答案】B【解析】由12q =-,6214S =,得61112211412a ⎡⎤⎛⎫--⎢⎥⎪⎝⎭⎢⎥⎣⎦=⎛⎫-- ⎪⎝⎭,解得18a =, 所以数列{}n a 为8,4-,2,1-,12,14-,……,前4项乘积最大为64. 故选:B .7.(2020·吉林市第二中学月考)已知等差数列{}n a 的前n 项的和为n S ,且675S S S >>,有下面4个结论: ①0d <;②110S >;③120S <;④数列{}n S 中的最大项为11S , 其中正确结论的序号为( ) A .②③ B .①②C .①③D .①④【答案】B【解析】由675S S S >>得760S S -<,750S S ->,则70a <,670a a +>,所以60a >,所以0d <,①正确;111116111102a a S a +=⨯=>,故②正确; 1126712126()02a a S a a +=⨯=+>,故③错误; 因为60a >,70a <,故数列{}n S 中的最大项为6S ,故④错误. 故选:B.8.(2020·上海市市西中学月考)已知等差数列{}n a 的前n 项和为n S ,若2415a a a ++是一个确定的常数,则数列{}n S 中是常数的项是( )A .7S ;B .8S ;C .11S ;D .13S【解析】由于题目所给数列为等差数列,根据等差数列的性质, 有()2415117318363a a a a d a d a ++=+=+=, 故7a 为确定常数,由等差数列前n 项和公式可知()11313713132a a S a+⋅==也为确定的常数.故选:D二、多选题(每题有多个选项为正确答案,少选且正确得3分,每题5分,共20分)9.(2020·鱼台县第一中学月考)设{}n a 是等差数列,n S 为其前n 项和,且78S S <,8910S S S =>,则下列结论正确的是( ) A .0d < B .90a =C .117S S >D .8S 、9S 均为n S 的最大值【答案】ABD【解析】由78S S <得12377812a a a a a a a a +++⋯+<++⋯++,即80a >, 又∵89S S =,1229188a a a a a a a ∴++⋯+=++⋯++,90a ∴=,故B 正确;同理由910S S >,得100a <,1090d a a =-<,故A 正确;对C ,117S S >,即8910110a a a a +++>,可得(9102)0a a +>, 由结论9100,0a a =<,显然C 是错误的;7898810,,S S S S S S <=>∴与9S 均为n S 的最大值,故D 正确;10.(2020·河北邯郸·高三月考)已知数列{}n a 满足:13a =,当2n ≥时,)211n a =-,则关于数列{}n a 说法正确的是( ) A .28a =B .数列{}n a 为递增数列C .数列{}n a 为周期数列D .22n a n n =+【答案】ABD【解析】)211n a =-得)211n a +=,1=,即数列2=,公差为1的等差数列,2(1)11n n =+-⨯=+,∴22n a n n =+,得28a =,由二次函数的性质得数列{}n a 为递增数列,所以易知ABD 正确, 故选:ABD.11.(2020·湖南雁峰·衡阳市八中高二月考)在《增减算法统宗》中有这样一则故事:三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.则下列说法正确的是( ) A .此人第三天走了二十四里路B .此人第一天走的路程比后五天走的路程多六里C .此人第二天走的路程占全程的14D .此人走的前三天路程之和是后三天路程之和的8倍【解析】由题意,此人每天所走路程构成以12为公比的等比数列, 记该等比数列为{}n a ,公比为12q =,前n 项和为n S , 则16611163237813212a S a ⎛⎫- ⎪⎝⎭===-,解得1192a =,所以此人第三天走的路程为23148a a q =⋅=,故A 错;此人第一天走的路程比后五天走的路程多()1611623843786a S a a S --=-=-=里,故B 正确;此人第二天走的路程为213789694.54a a q =⋅=≠=,故C 错; 此人前三天走的路程为31231929648336S a a a =++=++=,后三天走的路程为6337833642S S -=-=,336428=⨯,即前三天路程之和是后三天路程之和的8倍,D 正确;故选:BD.12.(2019·山东省招远第一中学高二期中)已知两个等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,且3393n n S n T n +=+,则使得n na b 为整数的正整数n 的值为( ) A .2 B .3C .4D .14【答案】ACD【解析】由题意可得()()()()()()12121121212121221212n n n n n n n nn a a n a S a n b b T n b b -----+-===-+-,则()()21213213931815321311n n n n n a S n b T n n n ---++====+-+++,由于nna b 为整数,则1n +为15的正约数,则1n +的可能取值有3、5、15, 因此,正整数n 的可能取值有2、4、14. 故选:ACD.第II 卷(非选择题)三、填空题(每题5分,共20分)13.(2020·山东泗水·期中(文))已知{}n a 是等比数列,14a =,412a =,则12231n n a a a a a a +++⋅⋅⋅+=______. 【答案】321134n⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦【解析】由题意,等比数列{}n a 中,14a =,412a =,可得34218a q a ==,解得12q =,又由2111114n n n n n n a a a q a a a ++--===,且21218a a a q ==, 即数列{}1n n a a +表示首项为8,公比为14的等比数列, 所以1223118[1()]3214113414n n n n a a a a a a +⨯-⎡⎤⎛⎫++⋅⋅⋅+==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-. 故答案为:321134n⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.14.(2021·黑龙江哈尔滨市第六中学校月考(理))在各项都是正数的等比数列{}n a 中,2a ,312a ,1a 成等差数列,则7856a a a a ++的值是________.【答案】32+【解析】设等比数列{}n a 的公比为()0q q >, 由321a a a =+, 得210q q --=,解得12q +=(负值舍),则222278565656a a a q a q q a a a a ++====++⎝⎭.15.(2020·吉林市第二中学月考)各项均为正数的等比数列{a n }的前n 项和为S n ,已知S 6=30,S 9=70,则S 3=________. 【答案】10【解析】根据等比数列的前n 项和的性质,若S n 是等比数列的和,则S n ,S 2n -S n ,S 3n -S 2n ,…仍是等比数列,得到(S 6-S 3)2=S 3(S 9-S 6), 即()()233307030S S -=⋅-. 解得S 3=10或S 3=90(舍). 故答案为:1016.(2020·四川武侯·成都七中月考)已知等差数列{}n a 的公差2d =,前n 项之和为n S ,若对任意正整数n 恒有2n S S ≥,则1a 的取值范围是______.【答案】[]4,2--【解析】因为对任意正整数n 恒有2n S S ≥,所以2S 为n S 最小值,因此230,0a a ≤≥,即111+20,+4042a a a ≤≥∴-≤≤- 故答案为:[]4,2--四、解答题(17题10分,其余每题12分,共6题70分)17.(2020·安徽省舒城中学月考(文))已知在等差数列{}n a 中,35a =,1763a a =. (1)求数列{}n a 的通项公式:(2)设2(3)n n b n a =+,求数列{}n b 的前n 项和n S .【答案】(1)21n a n =-;(2)1n n +. 【解析】设等差数列{}n a 的公差为d ,由317653a a a =⎧⎨=⎩,可得()111251635a d a d a d +=⎧⎨+=+⎩ 解得1a 1,d 2,所以等差数列{}n a 的通项公式可得21n a n =-;(2) 由(1)可得211(3)22(1)1n n b n a n n n n ===-+++,所以111111 (22311)n n S n n n ⎛⎫⎛⎫⎛⎫=-+-++-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭. 18.(2020·湖南武陵·常德市一中月考)已知数列{}n a 的前n 项和为n S ,()()()111,11,2n n a n S nS n n n N n -+=-=+-∈≥.(1)求证:数列n S n ⎧⎫⎨⎬⎩⎭为等差数列; (2)记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求n T 【答案】(1)证明见解析;(2)21n n T n =+. 【解析】(1)当2n ≥时,因为()()111n n n S nS n n --=+-, 所以()1121n n S S n n n --=≥-, 即n S n ⎧⎫⎨⎬⎩⎭首项为1,公差为1的等差数列. (2)由(1)得n S n n=,2n S n =. 当2n ≥时,()22121n a n n n =--=-.当1n =时,11a =,符合题意,所以21n a n =-. 所以()()111111212122121n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭, 所以111111123352121n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-+⋯+- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦ 11122121n n T n n ⎛⎫=-= ⎪++⎝⎭. 19.(2021·黑龙江鹤岗一中月考(理))已知各项均为正数的等差数列{}n a 中,12315a a a ++=,且12a +,25a +,313a +构成等比数列{}n b 的前三项.(1)求数列{}n a ,{}n b 的通项公式;(2)求数列{}n n a b 的前n 项和n T .【答案】(1)21n a n =+,152n n b -=⋅;(2)5(21)21n n T n ⎡⎤=-+⎣⎦【解析】(1)设等差数列的公差为d ,则由已知得:1232315a a a a ++==,即25a =, 又(52)(513)100d d -+++=,解得2d =或13d =-(舍去),123a a d =-=,1(1)21n a a n d n ∴=+-⨯=+,又1125b a =+=,22510b a =+=,2q ∴=,152n n b -∴=⋅;(2)21535272(21)2n n T n -⎡⎤=+⨯+⨯+++⨯⎣⎦,2325325272(21)2n n T n ⎡⎤=⨯+⨯+⨯+++⨯⎣⎦,两式相减得2153222222(21)25(12)21n n n n T n n -⎡⎤⎡⎤-=+⨯+⨯++⨯-+⨯=--⎣⎦⎣⎦, 则5(21)21n n T n ⎡⎤=-+⎣⎦.20.(2020·四川省绵阳南山中学月考(理))已知数列{}n a 为等差数列,11a =,0n a >,其前n 项和为n S ,且数列也为等差数列. (1)求数列{}n a 的通项公式;(2)设11n n n n a b S S ++=⋅,求数列{}n b 的前n 项和.【答案】(1)21n a n =-;(2)222(1)n n n ++. 【解析】(1)设等差数列{}n a 的公差为(0)d d ≥, 11S ===1∴=+2d =,1(1)221n a n n ∴+-⨯=-=,n ==, 所以数列为等差数列,21na n ∴=-. (2)2(121)2n n n S n +-==,22222111(1)(1)n nb n n n n +∴==-⋅++, 设数列{}n b 的前n 项和为n T ,则2222222221111111211223(1)(1)(1)n n n T n n n n ⎛⎫+⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭. 21.(2020·浙江月考)已知等比数列{}n a 的公比1q >,且13542a a a ++=,39a +是1a ,5a 的等差中项. (1)求数列{}n a 的通项公式;(2)证明:3n n n n a b a =+,设{}n b 的前n 项的和为n S ,求证:2113n S <. 【答案】(1)2n n a =;(2)证明见解析.【解析】(1)由39a +是1a ,5a 的等差中项得153218a a a +=+,所以135a a a ++331842a =+=,解得38a =,由1534a a +=,得228834q q +=,解得24q =或214q =, 因为1q >,所以2q. 所以2n n a =.(2)112()333()1()22n n n nb =<=+, 3412324222()()()513333n n n S b b b b ∴=++++<++++24688221()6599313n -=+-⋅≤在3n ≥成立, 又有1222146215136513S S =<=<,, 2113n S ∴<. 22.(2020·黑龙江让胡路·铁人中学高二期中(理))已知数列{}n a 中,n S 是{}n a 的前n 项和且n S 是2a 与2n na -的等差中项,其中a 是不为0的常数.(1)求123,,a a a .(2)猜想n a 的表达式,并用数学归纳法进行证明.【答案】(1)12a a =;26a a =;312a a =(2)猜想:()()*1n a a n N n n =∈+;证明见解析 【解析】(1)由题意知:222n n S a na =-即n n S a na =-,当1n =时,111S a a a ==-,解得12a a =.当2n =时,21222S a a a a =+=-,解得26a a =. 当3n =时,312333S a a a a a =++=-,解得312a a =. (2)猜想:()()*1n a a n N n n =∈+ 证明:①当1n =时,由(1)知等式成立.②假设当()*1,n k k k N =≥∈时等式成立,即()1k a a k k =+, 则当1n k =+时,又n n S a na =-则k k S a ka =-,11k k S a ka ++=-, ∴()()1111k k k k k a S S a k a a ka +++=-=-+--, 即()()1211k k a a k a ka k k k k ++==⨯=++ 所以()()()()112111k aa a k k k k +==+++++⎡⎤⎣⎦, 即当1n k =+时,等式成立.结合①②得()1n a a n n =+对任意*n N ∈均成立.。

高中数学选择性必修二 第四章 数列单元测试(基础卷)(含答案)

高中数学选择性必修二 第四章 数列单元测试(基础卷)(含答案)

第四章 数列 单元过关检测 基础A 卷解析版学校:___________姓名:___________班级:___________考号:___________ 题型:8(单选)+4(多选)+4(填空)+6(解答),满分150分,时间:120分钟一、单选题1.已知数列{a n }的前4项为:l ,−12,13,−14,则数列{a n }的通项公式可能为( ) A .a n =1n B .a n =−1nC .a n =(−1)n nD .a n =(−1)n−1n【答案】D 【解析】 【分析】分母与项数一样,分子都是1,正负号相间出现,依此可得通项公式 【详解】正负相间用(−1)n−1表示,∴a n =(−1)n−1n.故选D . 【点睛】本题考查数列的通项公式,属于基础题,关键是寻找规律,寻找与项数有关的规律. 2.记n S 为等差数列{}n a 的前n 项和,若33a =,621S =,则数列{}n a 的公差为( ) A .1 B .-1C .2D .-2【答案】A【分析】利用等差数列{a n }的前n 项和与通项公式列方程组,求出首项和公差,由此能求出数列{a n }的公差. 【详解】∴S n 为等差数列{a n }的前n 项和,a 3∴3∴S 6∴21∴∴316123656212a a d S a d =+=⎧⎪⎨⨯=+=⎪⎩∴ 解得a 1∴1∴d ∴1∴ ∴数列{a n }的公差为1. 故选A ∴ 【点睛】本题考查数列的公差的求法,考查等差数列的前n 项和公式等基础知识,考查运算求解能力,是基础题.3.已知数列{}n a ,满足111n n a a +=-,若112a =,则2019a =( ) A .2 B .12C .1-D .12-【答案】C 【分析】利用递推公式计算出数列{}n a 的前几项,找出数列{}n a 的周期,然后利用周期性求出2019a 的值. 【详解】111n n a a +=-,且112a =,211121112a a ∴===--,32111112a a ===---, 111a ===,所以,()a a n N *=∈,则数列{}n a 是以3为周期的周期数列,20193672331a a a ⨯+===-∴. 故选C. 【点睛】本题考查利用数列递推公式求数列中的项,推导出数列的周期是解本题的关键,考查分析问题和解决问题的能力,属于中等题.4.在等比数列{}n a 中,6124146,5a a a a ⋅=+=,则255a a =( ) A .94或49B .32C .32或23 D .32或94【答案】A 【分析】根据等比数列的性质得6124146a a a a ⋅=⋅=,又由4145a a +=,联立方程组,解得414,a a 的值,分类讨论求解,即可得到答案. 【详解】由题意,根据等比数列的性质,可得6124146a a a a ⋅=⋅=,又由4145a a +=,联立方程组,解得41423a a =⎧⎨=⎩或41432a a =⎧⎨=⎩,当41423a a =⎧⎨=⎩时,则1014432a q a ==,此时201022559()4a q q a ===;当41432a a =⎧⎨=⎩时,则1014423a q a ==,此时201022554()9a q q a ===,故选A. 【点睛】值是解答的关键,着重考查了运算与求解能力,属于基础题. 5.等比数列{}n a 中( ) A .若12a a <,则45a a <B .若12a a <,则34a a <C .若32S S >,则12a a <D .若32S S >,则12a a >【答案】B 【分析】根据等比数列的通项公式及求和公式,等比数列的公比分析即可求出答案. 【详解】等比数列{}n a 中,20q >,∴当12a a <时,可得2212a q a q <,及34a a <,故B 正确;但341a a q =和352a a q =不能判断大小(3q 正负不确定),故A 错误;当32S S >时,则12312+++a a a a a >,可得30a >,即210a q >,可得10a >,由于q 不确定,不能确定12,a a 的大小,故CD 错误. 故选:B. 【点睛】本题考查等比数列通项公式和求和公式的应用,属于基础题.6.两等差数列{}n a 和{}n b ,前n 项和分别为n S ,n T ,且723n n S n T n +=+,则220715a ab b ++的值为( ) A .14924B .7914C .165D .5110【分析】在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以结合此性质可得:2202171521a a Sb b T +=+,再根据题意得到答案.【详解】解:在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以1212202171521121121()2121()2a a a a Sb b T b b ⨯+⨯+==+⨯+⨯,又因为723n n S n T n +=+, 所以22071514924a ab b +=+.故选:A . 【点睛】本题主要考查等差数列的下标和性质,属于中档题.7.函数()2cos 2f x x x =-的正数零点从小到大构成数列{}n a ,则3a =( )A .1312π B .54π C .1712πD .76π 【答案】B 【分析】先将函数化简为()2sin 26f x x π⎛⎫=- ⎪⎝⎭再解函数零点得4x k ππ=+或512x k ππ=+,k Z ∈,再求3a 即可. 【详解】解:∵()2cos 22sin 26f x x x x π⎛⎫=--=- ⎪⎝⎭∴ 令()0f x =得:2263x k πππ-=+或22263x k πππ-=+,k Z ∈, ∴4x k ππ=+或512x k ππ=+,k Z ∈,∴ 正数零点从小到大构成数列为:12355,,,4124a a a πππ===故选:B. 【点睛】本题考查三角函数的性质,数列的概念,考查数学运算求解能力,是中档题.8.已知函数3()13xxf x =+(x ∈R ),正项等比数列{}n a 满足501a =,则 1299(ln )(ln )(ln )f a f a f a +++=A .99B .101C .992D .1012【答案】C 【详解】因为函数31()()()11331x x xf x f x f x ---==∴+-=++(x ∈R ), 正项等比数列{}n a 满足2501995011a a a a =∴==,9921ln ln ln ln ...0a a a a +=+=则1299(ln )(ln )(ln )f a f a f a +++=992,选C二、多选题A .{}n a 可能为等差数列B .{}n a 可能为等比数列C .{}n a 中一定存在连续三项构成等差数列D .{}n a 中一定存在连续三项构成等比数列 【答案】AC 【分析】由2n S an bn c =++可求得n a 的表达式,利用定义判定得出答案.【详解】当1n =时,11a S a b c ==++.当2n ≥时,()()221112n n n a S S an bn c a n b n c an a b -=-=++-----=-+. 当1n =时,上式=+a b .所以若{}n a 是等差数列,则0.a b a b c c +=++∴=所以当0c 时,{}n a 是等差数列,不可能是等比数列;当0c ≠时,{}n a 从第二项开始是等差数列. 故选:AC 【点睛】本题只要考查等差数列前n 项和n S 与通项公式n a 的关系,利用n S 求通项公式,属于基础题. 10.已知数列{}n a 的首项为4,且满足()*12(1)0n n n a na n N++-=∈,则( )A .n a n ⎧⎫⎨⎬⎩⎭为等差数列B .{}n a 为递增数列C .{}n a 的前n 项和1(1)24n n S n +=-⋅+D .12n n a +⎧⎫⎨⎬⎩⎭的前n 项和22n n n T +=【答案】BD 【分析】由12(1)0n n n a na ++-=得121n n a a n n +=⨯+,所以可知数列n a n ⎧⎫⎨⎬⎩⎭是等比数列,从而可求出12n n a n +=⋅,可得数列{}n a 为递增数列,利用错位相减法可求得{}n a 的前n 项和,由于111222n nn n a n n +++⋅==,从而利用等差数列的求和公式可求出数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和.【详解】由12(1)0n n n a na ++-=得121n n a a n n +=⨯+,所以n a n ⎧⎫⎨⎬⎩⎭是以1141a a ==为首项,2为公比的 等比数列,故A 错误;因为11422n n na n-+=⨯=,所以12n n a n +=⋅,显然递增,故B 正确; 因为23112222n n S n +=⨯+⨯++⋅,342212222n n S n +=⨯+⨯++⋅,所以231212222n n n S n ++-=⨯+++-⋅()22212212nn n +-=-⋅-,故2(1)24n n S n +=-⨯+,故C 错误;因为111222n n n n a n n +++⋅==,所以12n n a +⎧⎫⎨⎬⎩⎭的前n 项和2(1)22n n n n n T ++==, 故D 正确. 故选:BD本题考查等差数列、等比数列的综合应用,涉及到递推公式求通项,错位相减法求数列的和,等差数列前n 项和等,考查学生的数学运算能力,是一道中档题.11.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =D .当8n ≥时,0n a <【答案】AD 【分析】由已知得到780,0a a ><,进而得到0d <,从而对ABD 作出判定.对于C,利用等差数列的和与项的关系可等价转化为160a d +=,可知不一定成立,从而判定C 错误. 【详解】由已知得:780,0a a ><,结合等差数列的性质可知,0d <,该等差数列是单调递减的数列, ∴A 正确,B 错误,D 正确,310S S =,等价于1030S S -=,即45100a a a ++⋯+=,等价于4100a a +=,即160a d +=,这在已知条件中是没有的,故C 错误. 故选:AD. 【点睛】本题考查等差数列的性质和前n 项和,属基础题,关键在于掌握和与项的关系.12.将2n 个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知112a =,1a a =+,记这2n 个数的和为S .下列结论正确的有( )1112131.n a a a a ⋯⋯ 2122232.n a a a a ⋯⋯ 3132333.n a a a a ⋯⋯……123.n n n nn a a a a ⋯⋯A .3m =B .767173a =⨯C .()1313j ij a i -=-⨯ D .()()131314n S n n =+- 【答案】ACD 【分析】根据等差数列和等比数列通项公式,结合13611a a =+可求得m ,同时确定67a 、ij a 的值、得到,,A B C 的正误;首先利用等比数列求和公式求得第i 行n 个数的和,再结合等差求和公式得到D 的正误. 【详解】对于A ,2213112a a m m =⋅=,6111525a a m m =+=+,2235m m ∴=+,又0m >,3m ∴=,A 正确;对于B ,612517a m =+=,666761173a a m ∴=⋅=⨯,B 错误;对于C ,()111131i a a i m i =+-=-,()111313j j ij i a a mi --∴=⋅=-⋅,C 正确;对于D ,第i 行n 个数的和()()()()()1131133131122n n n i a m i i S m-----'===--,()()()()()()3111131258313131312224n n nn n S n n n +∴=-⨯+++⋅⋅⋅+-=-⨯=+-⎡⎤⎣⎦,D 正确. 故选:ACD .本题考查数列中的新定义问题,解题关键是能够灵活应用等差和等比数列的通项公式和求和公式,将新定义的数阵转化为等差和等比数列的问题来进行求解.三、填空题13.已知{}n a 为等差数列,135246105,99a a a a a a ++=++=,{}n a 前n 项和n S 取得最大值时n 的值为___________. 【答案】20 【分析】先由条件求出1,a d ,算出n S ,然后利用二次函数的知识求出即可 【详解】设{}n a 的公差为d ,由题意得135********d a a a a d a a ++++==++即1235a d +=,①2461113599a a a a d a d a d ++=+++++=即1333a d +=,②由①②联立得139,2a d ==-所以()()22139(2)40204002n S n n n n n n -=+⨯-=-+=--+故当20n =时,n S 取得最大值400 故答案为:20等差数列的n S 是关于n 的二次函数,但要注意n 只能取正整数.14.《九章算术》中有一个“两鼠穿墙”的问题:“今有垣厚五尺,两鼠对穿.大鼠日一尺,小鼠亦日一尺.大鼠日自倍,小鼠日自半.问几何日相逢?各穿几何?”其大意为:“今有一堵墙厚五尺,两只老鼠从墙的两边沿一条直线相对打洞穿墙,大老鼠第一天打洞1尺,以后每天是前一天的2倍;小老鼠第一天也打洞1尺,以后每天是前一天的12.问大、小老鼠几天后相遇?各自打洞几尺?”如果墙足够厚,S n 为前n 天两只老鼠打洞长度之和,则S n =_____尺.【答案】2n +1﹣21﹣n【分析】写出两只老鼠打洞的通项公式,利用分组求和即可得解. 【详解】根据题意大老鼠第n 天打洞12n na 尺,小老鼠第n 天打洞112n n b -⎛⎫= ⎪⎝⎭尺,所以11111242122n n n S --⎛⎫=+++⋅⋅⋅++++⋅⋅⋅+ ⎪⎝⎭111221112nn ⎛⎫- ⎪-⎝⎭=+--112122n n -⎛⎫=-+- ⎪⎝⎭1212n n -=+-故答案为:1212n n -+- 【点睛】此题考查等比数列的辨析,写出通项公式,根据求和公式求和,关键在于熟练掌握相关公式,涉及分组求和.15.我国古代,9是数字之极,代表尊贵之意,所以中国古代皇家建筑中包含许多与9相关的设计.例如,北京天坛圆丘的底面由扇环形的石板铺成(如图),最高一层是一块天心石,围绕它的第一圈有9块石板,从第二圈开始,每一圈比前一圈多9块,共有9圈,则前9圈的石板总数是__________.【答案】405 【分析】前9圈的石板数依次组成一个首项为9,公差为9的等差数列,9989994052S ⨯=⨯+⨯= 16.如图,互不相同的点12,,,n A A A 和12,,,,n B B B 分别在角O 的两条边上,所有n n A B 相互平行,且所有梯形11n n n n A B B A ++的面积均相等.设n n OA a =.若11a =,22a =,则数列{}n a 的通项公式是________.【答案】n a =【分析】根据三角形相似和所有梯形11n n n n A B B A ++的面积均相等,找到与n a 相关的递推公式,再由递推公式求得通项公式. 【详解】由于11//,n n n n A B A B ++ 所以11,n n n n OA B OA B ++梯形11n n n n A B B A ++ 的面积为11n n OA B ++∆的面积減去n n OA B △的面积,2222i i j jOA B i i OA B j jS OA a SOA a == 则可得 222211,n n n n a a a a +--=- 即递推公式为222112,n n n a a a +-=+故2{}n a 为等差数列,且公差d =2221a a -3=,故21(1)332n a n n =+-⨯=-,得n a =故答案为: n a 【点睛】本题主要考查数列在平面几何中的应用,根据几何关系寻找递推有关系是解决问题的关键,属于中档题.四、解答题17.设等差数列{}n a 的前n 项的和为n S ,且462S =-,675S =-,求: (1)求{}n a 的通项公式n a ; (2)求数列{}n a 的前14项和.【答案】(1)323n a n =-;(2)147. 【分析】(1)由已知条件列出关于1,a d 的方程组,求出1,a d 可得到n a ;(2)由通项公式n a 先判断数列{}n a 中项的正负,然后再化简数列{}n a 中的项,即可求出结果. 【详解】解:(1)设等差数列{}n a 的公差为d ,依题意得11434622656752a d a d ⨯⎧+=-⎪⎪⎨⨯⎪+=-⎪⎩,解得120,3a d =-=,∴()2013323n a n n =-+-⨯=-; (2)∵323n a n =-,∴由0n a <得8n <,22(20323)3433432222n n n n n S n n -+--===-∴123141278141472a a a a a a a a a S S ++++=----+++=-223433431414772222⎛⎫=⨯-⨯-⨯-⨯ ⎪⎝⎭()()7424372143147=---=.【点睛】此题考查等差数列的基本量计算,考查计算能力,属于基础题. 18.数列{}n a 满足11a =,22a =,2122n n n a a a ++=-+ (1)设1n n n b a a +=-,证明数列{}n b 是等差数列(2)求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n S .【答案】(1)证明过程见详解;(2)21n nS n =+. 【分析】(1)先化简得到()()2112n n n n a a a a +++---=即12n n b b ,再求得1211b a a =-=,最后判断数列{}n b 是以1为首项,以2为公差的等差数列.(2)先求出数列{}n b 的通项公式21n b n =-,再运用“裂项相消法”求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和nS 即可. 【详解】解:(1)因为2122n n n a a a ++=-+,所以()()2112n n n n a a a a +++---= 因为1n n n b a a +=-,所以12nn b b ,且1211b a a =-=所以数列{}n b 是以1为首项,以2为公差的等差数列. (2)由(1)的()11221n b n n =+-⨯=-,所以()()111111212122121n n b b n n n n +⎛⎫==- ⎪-+-+⎝⎭所以12233411111n n n S b b b b b b b b +=++++11111111111121323525722121n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭111.22121n n n ⎛⎫=-= ⎪++⎝⎭ 【点睛】本题考查利用定义求等差数列的通项公式、根据递推关系判断数列是等差数列、根据“裂项相消法”求和,还考查了转化的数学思维方式,是基础题.19.在①112n n a a +=-,②116n n a a +-=-,③18n n a a n +=+-这三个条件中任选一个,补充在下面的问题中,若问题中的n S 存在最大值,则求出最大值;若问题中的n S 不存在最大值,请说明理由.问题:设n S 是数列{}n a 的前n 项和,且14a =,__________,求{}n a 的通项公式,并判断n S 是否存在最大值.注:如果选择多个条件分别解答,按第一个解答计分. 【答案】答案见解析 【分析】若选①,求出数列{}n a 是首项为4,公比为12-的等比数列,求出通项公式和前n 项和,通过讨论n 的奇偶性,求出其最大值即可;若选②,求出数列{}n a 是首项为4,公差为16-的等差数列,求出通项公式和前n 项和,求出其最大值即可;若选③,求出217242n n n a -+=,当16n ≥时,0n a >,故n S 不存在最大值.【详解】 解:选①因为112n n a a +=-,14a =,所以{}n a 是首项为4.公比为12-的等比数列, 所1211422n n n a --⎛⎫⎛⎫=⨯-=- ⎪⎪⎝⎭⎝⎭.当n 为奇数时,141281113212n n nS ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==+ ⎪⎝⎭+,因为81132n ⎛⎫+ ⎪⎝⎭随着n 的增加而减少,所以此时n S 的最大值为14S =. 当n 为偶数时,81132n nS ⎛⎫=-⎪⎝⎭, 且81814323n n S ⎛⎫=-<<⎪⎝⎭ 综上,n S 存在最大值,且最大值为4. 选②因为116n n a a +-=-,14a =.所以{}n a 是首项为4,公差为16-的等差数列, 所以11254(1)666n a n n ⎛⎫=+--=-+ ⎪⎝⎭. 由125066n -+≥得25n ≤, 所以n S 存在最大值.且最大值为25S (或24S ),因为25252412545026S ⨯⎛⎫=⨯+⨯-= ⎪⎝⎭,所以n S 的最大值为50. 选③因为18n n a a n +=+-,所以18n n a a n +-=-,所以217a a -=-,326a a -=-,…19n n a a n --=-,则2121321(79)(1)171622n n n n n n n a a a a a a a a --+---+=-+-+=-+-=, 又14a =,所以217242n n n a -+=. 当16n ≥时,0n a >,故n S 不存在最大值. 【点睛】此题考查数列的通项公式和求和公式,考查等差数列和等比数列的性质,属于基础题 20.已知数列{}n a 的前n 项和为n S ,满足22n n S a =-. (1)求数列{}n a 的通项公式;(2)设()21n n b n a =-,求数列{}n b 的前n 项和n T .【答案】(1)2nn a =;(2)()12326n n T n +=-⨯+【分析】(1)利用1(2)n n n a S S n -=-≥,11a S =,可得{}n a 为等比数列,利用等比数列的通项公式即可求得通项公式n a ;(2)利用错位相减法求和即可求n T . 【详解】(1)当1n =时,11122a S a ==-,解得12a =,当1n >时,由22n n S a =-可得1122n n S a --=-,1n >两式相减可得122n n n a a a -=-,即12nn a a -=, 所以{}n a 是以2为首项,以2为公比的等比数列,所以1222n nn a -=⋅=(2)由(1)(21)2nn b n =-⋅,23123252(21)2n n T n =⨯+⨯+⨯++-⋅,则23412123252(23)2(21)2n n n T n n +=⨯+⨯+⨯++-⨯+-⨯,两式相减得2312222222(21)2n n n T n +-=+⨯+⨯++⨯--⨯()112118(12)2(21)226(21)2232612n n n n n n n n -++++-=+--⨯=---⨯=--⋅--,所以()12326n n T n +=-⨯+.【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a S n --≥⎧=⎨=⎩求解,考查学生的计算能力.21.已知数列{}n a 的前n 项和为23122n S n n =-. (1)求数列{}n a 的通项公式;(2)数列[]lg n n b a =,[]x 表示不超过x 的最大整数,求{}n b 的前1000项和1000T . 【答案】(1)32n a n =-;(2)10002631T =. 【分析】(1)利用1n n n a S S -=-可求出; (2)根据数列特点采用分组求和法求解. 【详解】(1)当1n =时,111a S ==,当2n ≥时,()()221313111322222n n n a S S n n n n n -⎡⎤=-=-----=-⎢⎥⎣⎦,将1n =代入上式验证显然适合,所以32n a n =-. (2)因为410a =,34100a =,3341000a =,333410000a =,所以0,131,4332,343333,3341000n n n b n n ≤≤⎧⎪≤≤⎪=⎨≤≤⎪⎪≤≤⎩, 所以100003130230036672631T =⨯+⨯+⨯+⨯=.【点睛】本题考查n a 和n S 的关系,考查分组求和法,属于基础题. 22.在①535S =,②13310a a +=,③113n a n a +=+这三个条件中任选一个,补充在下面问题中并作答.已知{}n a 是各项均为正数的等差数列,其前n 项和为n S ,________,且1a ,412a ,9a 成等比数列. (1)求数列{}n a 的通项公式;(2)设()1n n n b a =-,求1ni i b =∑.【答案】(1)32n a n =-;(2)13,213,2n i i n n b n n =⎧⎪⎪=⎨-⎪⎪⎩∑是偶数是奇数 【分析】(1)利用1a ,412a ,9a 成等比数列∴可得221132690a a d d +-=, 若选①:由535S =得:127a d +=,即可解出1a 和d 的值,即可求出{}n a 的通项公式; 若选②:由13310a a +=可得152d a =-,即可解出1a 和d 的值,即可求出{}n a 的通项公式; 若选③:由113n a n a +=+,可表示出419a a =+,9124a a =+,结合1a ,412a ,9a 成等比数列∴即可解出1a 和d 的值,即可求出{}n a 的通项公式; (2)由(1)可得()()132n n b n =--,分n 为奇数和偶数,利用并项求和即可求解.【详解】 {}n a 是各项均为正数的等差数列,1a ,412a ,9a 成等比数列. 所以241914a a a =⋅,即()()2111348a d a a d +=⋅+, 整理可得221132690a a d d +-=,若选①:535S =,则1545352a d ⨯+=,即127a d +=, 由127a d +=可得172a d =-代入221132690a a d d +-=可得:2230d d --=,解得3d =或1d =-(舍) 所以11a =,所以()11332n a n n =+-⨯=-,若选②:13310a a +=,即152d a =-,代入221132690a a d d +-=得:2111762450a a -+=,即 ()()11117450a a --=解得:113a d =⎧⎨=⎩或145175017a d ⎧=⎪⎪⎨⎪=-<⎪⎩不符合题意; 若选③:113n a n a +=+,则419a a =+,9124a a =+, 代入241914a a a =⋅可得21126270a a +-= 解得:113a d =⎧⎨=⎩或1273a d =-⎧⎨=⎩不符合题意;综上所述:113a d =⎧⎨=⎩, 32n a n =-,(2)()()132n n b n =--, ()()()()()12311231111111n n n i n n i b a a a a a --==-+-+-+-+-∑ ()()()()114710135132n n n n -=-+-++--+-- 当n 为偶数时,13322n i i n n b ==⨯=∑, 当n 为奇数时,()11131322n i i n n b =--=-+-⨯=∑, 所以13,213,2n i i n n b n n =⎧⎪⎪=⎨-⎪⎪⎩∑是偶数是奇数. 【点睛】关键点点睛:本题得关键点是分别由条件①②③结合1a ,412a ,9a 成等比数列计算出1a 和d 的值,由{}n a 是各项均为正数的等差数列,所以10a >,0d >,第二问中()1n n n b a =-正负交错的数列求和,需要用奇偶并项求和,注意分n 为奇数和偶数讨论.。

高中数学必修二第四章 章末复习题圆的相关试题(含答案)

高中数学必修二第四章 章末复习题圆的相关试题(含答案)

章末复习一、知识导图二、要点归纳1.圆的方程(1)圆的标准方程:(x-a)2+(y-b)2=r2.(2)圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0).2.点和圆的位置关系设点P(x0,y0)及圆的方程(x-a)2+(y-b)2=r2.(1)(x0-a)2+(y0-b)2>r2⇔点P在圆外.(2)(x0-a)2+(y0-b)2<r2⇔点P在圆内.(3)(x0-a)2+(y0-b)2=r2⇔点P在圆上.3.直线与圆的位置关系设直线l与圆C的圆心之间的距离为d,圆的半径为r,则d>r⇒相离;d=r⇒相切;d<r⇒相交.4.圆与圆的位置关系设C1与C2的圆心距为d,半径分别为r1与r2,则位置关系外离外切相交内切内含图示d与r1,r2的d>r1+r2d=r1+r2|r1-r2|<d<r1+r2d=|r1-r2| d<|r1-r2|关系(1)求相交两圆的弦长时,可先求出两圆公共弦所在直线的方程,再利用相交两圆的几何性质和勾股定理来求弦长.(2)过圆C1:x2+y2+D1x+E1y+F1=0与圆C2:x2+y2+D2x+E2y+F2=0的交点的直线方程为(D1-D2)x+(E1-E2)y+F1-F2=0.5.空间直角坐标系(1)建立的空间直角坐标系要遵循右手法则,空间上的任意一点都与有序实数组(x,y,z)一一对应.(2)空间中P1(x1,y1,z1),P2(x2,y2,z2)之间的距离|P1P2|=(x1-x2)2+(y1-y2)2+(z1-z2)2.(3)可利用“关于谁对称,谁保持不变,其余坐标相反”的方法来求空间直角坐标系下的对称点.题型一圆的方程例1一个圆和已知圆x2+y2-2x=0相外切,并与直线l:x+3y=0相切于M(3,-3)点,求该圆的方程.考点题点解∵圆C与圆x2+y2-2x=0相外切,故两个圆心之间的距离等于半径的和,又∵圆C与直线l:x+3y=0相切于M(3,-3)点,可得圆心与点M(3,-3)的连线与直线x+3y=0垂直,其斜率为 3.设圆C的圆心为(a,b),则⎩⎪⎨⎪⎧ b +3a -3=3,(a -1)2+b 2=1+|a +3b |2.解得a =4,b =0,r =2或a =0,b =-43,r =6,∴圆C 的方程为(x -4)2+y 2=4或x 2+(y +43)2=36.反思感悟 求圆的方程主要是根据圆的标准方程和一般方程,利用待定系数法求解,采用待定系数法求圆的方程的一般步骤:第一步:选择圆的方程的某一形式.第二步:由题意得a ,b ,r (或D ,E ,F )的方程(组).第三步:解出a ,b ,r (或D ,E ,F ).第四步:代入圆的方程.注:解题时充分利用圆的几何性质可获得解题途径,减少运算量,例如:圆的切线垂直于经过切点的半径;圆心与弦的中点连线垂直于弦;当两圆相交时,连心线垂直平分两圆的公共弦;当两圆相切时,连心线过切点等.跟踪训练1 (1)如图所示,圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB |=2,则圆C 的标准方程为____________________.答案 (x -1)2+(y -2)2=2解析 取AB 的中点D ,连接CD ,AC ,则CD ⊥AB .由题意知,|AD |=|CD |=1,故|AC |=|CD |2+|AD |2=2,即圆C 的半径为 2.又因为圆C 与x 轴相切于点T (1,0),所以圆心C (1,2),故圆的标准方程为(x -1)2+(y -2)2=2.(2)求半径为10,圆心在直线y =2x 上,被直线x -y =0截得的弦长为42的圆的方程. 解 设圆的方程为(x -a )2+(y -b )2=r 2,则圆心坐标为(a ,b ),半径r =10,圆心(a ,b )到直线x -y =0的距离d =|a -b |2, 由半弦长,弦心距,半径组成的直角三角形得,d 2+⎝⎛⎭⎫4222=r 2, 即(a -b )22+8=10, ∴(a -b )2=4,又∵b =2a ,∴a =2,b =4或a =-2,b =-4,故所求圆的方程是(x -2)2+(y -4)2=10或(x +2)2+(y +4)2=10.题型二 直线与圆、圆与圆的位置关系例2 (1)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A.内切B.相交C.外切D.相离考点题点答案 B解析 由垂径定理得⎝⎛⎭⎫a 22+(2)2=a 2,解得a 2=4, ∴圆M :x 2+(y -2)2=4, ∴圆M 与圆N 的圆心距d =(0-1)2+(2-1)2= 2.∵2-1<2<2+1,∴两圆相交.(2)已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=________.考点题点答案 4解析 联立⎩⎨⎧ x -3y +6=0,x 2+y 2=12,消去x 得y 2-33y +6=0, 解得⎩⎨⎧ x =-3,y =3或⎩⎨⎧x =0,y =2 3. 不妨设A (-3,3),B (0,23),则过点A 且与直线l 垂直的直线方程为3x +y +23=0,令y =0得x C =-2.同理得过点B 且与l 垂直的直线与x 轴交点的横坐标x D =2,∴|CD |=4.反思感悟 直线与圆、圆与圆的主要题型为:①位置关系的判断,②弦长问题,③求圆的方程.解决问题的方法主要有两种,一种代数法,一种几何法.跟踪训练2 (1)圆(x +1)2+y 2=2的圆心到直线y =x +3的距离为( )A.1B.2C. 2D.2 2考点题点答案 C(2)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.考点题点答案 4π解析 x 2+y 2-2ay -2=0,即x 2+(y -a )2=a 2+2,则圆心为C (0,a ).又|AB |=23,C 到直线y =x +2a 的距离为|0-a +2a |2, 所以⎝⎛⎭⎫2322+⎝ ⎛⎭⎪⎫|0-a +2a |22=a 2+2, 得a 2=2,所以圆C 的面积为π(a 2+2)=4π.题型三 对称问题例3 从点B (-2,1)发出的光线经x 轴上的点A 反射,反射光线所在的直线与圆x 2+y 2=12相切,求点A 的坐标.考点题点解 点B (-2,1)关于x 轴对称的点为B ′(-2,-1),易知反射光线所在直线的斜率存在,设反射光线所在的直线方程为y +1=k (x +2),即kx -y +2k -1=0.由题意,得|0-0+2k -1|k 2+1=12, 化简得7k 2-8k +1=0,解得k =1或k =17, 故所求切线方程为x -y +1=0或x -7y -5=0.令y =0,则x =-1或x =5.所以A 点的坐标为(-1,0)或(5,0).反思感悟 (1)对称的两种类型即轴对称与中心对称.(2)准确把握对称的几何性质.(3)圆的对称图形关键是圆心的对称,其半径不变.跟踪训练3 若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为________________________________________________________________________. 答案 x 2+(y -1)2=1解析 由题意知圆C 的圆心为(0,1),半径为1,所以圆C 的标准方程为x 2+(y -1)2=1.题型四 圆中的最值问题例4 圆x 2+y 2+2ax +2ay +2a 2-1=0与x 2+y 2+2bx +2by +2b 2-2=0的公共弦长的最大值为( )A.2 2B.2C. 2D.1考点 与圆有关的最值问题题点 与圆的几何性质有关的最值答案 B解析 由题意得,两圆的标准方程分别为(x +a )2+(y +a )2=1和(x +b )2+(y +b )2=2,两圆的圆心坐标分别为(-a ,-a ),(-b ,-b ),半径分别为1,2,则当公共弦为圆(x +a )2+(y +a )2=1的直径时,公共弦长最大,最大值为2.反思感悟 与圆有关的最值问题包括(1)求圆O 上一点到圆外一点P 的最大距离、最小距离:d max =|OP |+r ,d min =||OP |-r |.(2)求圆上的点到某条直线的最大、最小距离:设圆心到直线的距离为m ,则d max =m +r ,d min=|m -r |.(3)已知点的运动轨迹是(x -a )2+(y -b )2=r 2,求①y x ;②y -m x -n;③x 2+y 2等式子的最值,一般是运用几何法求解.跟踪训练4 已知P 是直线3x +4y +8=0上的动点,P A ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A ,B 是切点,C 是圆心,那么四边形P ACB 的面积的最小值为________. 考点 与圆有关的最值问题题点 与面积有关的最值答案 2 2解析 圆x 2+y 2-2x -2y +1=0的圆心为C (1,1),半径为1,由题意知,当圆心C 到点P 的距离最小时(即为圆心到直线的距离),四边形的面积最小,又圆心到直线的距离d =|3+4+8|32+42=3, ∴|P A |=|PB |=d 2-r 2=22,∴S 四边形P ACB =2×12|P A |r =2 2.1.以点(-3,4)为圆心,且与x 轴相切的圆的方程是( )A.(x -3)2+(y +4)2=16B.(x +3)2+(y -4)2=16C.(x -3)2+(y +4)2=9D.(x +3)2+(y -4)2=9考点 圆的标准方程题点 求与某直线相切的圆的标准方程答案 B2.已知圆C 与直线x -y =0和x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为( )A.(x +1)2+(y -1)2=2B.(x -1)2+(y +1)2=2C.(x -1)2+(y -1)2=2D.(x +1)2+(y +1)2=2题点 求圆的标准方程答案 B3.两圆x 2+y 2-6x +16y -48=0与x 2+y 2+4x -8y -44=0的公切线的条数为( )A.4B.3C.2D.1考点 圆与圆的位置关系题点 两圆的位置关系与其公切线答案 C解析 两圆的标准方程分别为(x -3)2+(y +8)2=121;(x +2)2+(y -4)2=64,则两圆的圆心与半径分别为C 1(3,-8),r 1=11;C 2(-2,4),r 2=8.圆心距为|C 1C 2|=(3+2)2+(-8-4)2=13.∵r 1-r 2<|C 1C 2|<r 1+r 2,∴两圆相交,则公切线共2条.4.经过两个定点A (a,0),A 1(a ,a ),且圆心在直线y =13x 上的圆的方程为________________________.答案 ⎝⎛⎭⎫x -32a 2+⎝⎛⎭⎫y -a 22=a 22 解析 圆过点A (a,0),A 1(a ,a ),则圆心在直线y =a 2上. 又圆心在直线y =13x 上, 所以圆心坐标为⎝⎛⎭⎫32a ,a 2,则半径r =⎝⎛⎭⎫a -32a 2+⎝⎛⎭⎫-a 22=22|a |, 故圆的方程为⎝⎛⎭⎫x -32a 2+⎝⎛⎭⎫y -a 22=a 22. 5.已知直线x -my +3=0和圆x 2+y 2-6x +5=0.(1)当直线与圆相切时,求实数m 的值;(2)当直线与圆相交,且所得弦长为2105时,求实数m 的值. 考点 直线和圆的位置关系解 (1)因为圆x 2+y 2-6x +5=0可化为(x -3)2+y 2=4,所以圆心坐标为(3,0),r =2. 因为直线x -my +3=0与圆相切, 所以|3+3|1+(-m )2=2, 解得m =±2 2.(2)圆心(3,0)到直线x -my +3=0的距离为d =|3+3|1+(-m )2.由24-⎝ ⎛⎭⎪⎫|3+3|1+(-m )22=2105, 得2+2m 2=20m 2-160,即m 2=9.故m =±3.。

高中数学必修2第四章测试(含答案)

高中数学必修2第四章测试(含答案)

第四章测试(时间:120分钟总分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知两圆的方程是x2+y2=1和x2+y2-6x-8y+9=0,那么这两个圆的位置关系是()A.相离B.相交C.外切D.内切2.过点(2,1)的直线中,被圆x2+y2-2x+4y=0截得的最长弦所在的直线方程为()A.3x-y-5=0 B.3x+y-7=0C.x+3y-5=0 D.x-3y+1=03.若直线(1+a)x+y+1=0与圆x2+y2-2x=0相切,则a的值为()A.1,-1 B.2,-2C.1 D.-14.经过圆x2+y2=10上一点M(2,6)的切线方程是()A.x+6y-10=0 B.6x-2y+10=0C.x-6y+10=0 D.2x+6y-10=05.点M(3,-3,1)关于xOz平面的对称点是()A.(-3,3,-1) B.(-3,-3,-1)C.(3,-3,-1) D.(3,3,1)6.若点A是点B(1,2,3)关于x轴对称的点,点C是点D(2,-2,5)关于y轴对称的点,则|AC|=() A.5 B.13 C.10 D.107.若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为坐标原点),则k的值为()A. 3B. 2C.3或- 3D.2和- 28.与圆O1:x2+y2+4x-4y+7=0和圆O2:x2+y2-4x-10y+13=0都相切的直线条数是()A.4 B.3 C.2 D.19.直线l将圆x2+y2-2x-4y=0平分,且与直线x+2y=0垂直,则直线l的方程是()A.2x-y=0 B.2x-y-2=0C.x+2y-3=0 D.x-2y+3=010.圆x2+y2-(4m+2)x-2my+4m2+4m+1=0的圆心在直线x+y-4=0上,那么圆的面积为()A.9πB.πC.2π D.由m的值而定11.当点P在圆x2+y2=1上变动时,它与定点Q(3,0)的连结线段PQ的中点的轨迹方程是()A.(x+3)2+y2=4 B.(x-3)2+y2=1C.(2x-3)2+4y2=1 D.(2x+3)2+4y2=112.曲线y=1+4-x2与直线y=k(x-2)+4有两个交点,则实数k的取值范围是()A.(0,512) B.(512,+∞)C .(13,34]D .(512,34] 二、填空题(本大题共4小题,每小题5分,满分20分,把答案填在题中横线上)13.圆x 2+y 2=1上的点到直线3x +4y -25=0的距离最小值为____________.14.圆心为(1,1)且与直线x +y =4相切的圆的方程是________.15.方程x 2+y 2+2ax -2ay =0表示的圆,①关于直线y =x 对称;②关于直线x +y =0对称;③其圆心在x 轴上,且过原点;④其圆心在y 轴上,且过原点,其中叙述正确的是__________.16.直线x +2y =0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于__________.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)自A (4,0)引圆x 2+y 2=4的割线ABC ,求弦BC 中点P 的轨迹方程.18.(12分)已知圆M :x 2+y 2-2mx +4y +m 2-1=0与圆N :x 2+y 2+2x +2y -2=0相交于A ,B 两点,且这两点平分圆N 的圆周,求圆M 的圆心坐标.19.(12分)已知圆C 1:x 2+y 2-3x -3y +3=0,圆C 2:x 2+y 2-2x -2y =0,求两圆的公共弦所在的直线方程及弦长.20.(12分)已知圆C :x 2+y 2+2x -4y +3=0,从圆C 外一点P 向圆引一条切线,切点为M ,O 为坐标原点,且有|PM |=|PO |,求|PM |的最小值.21.(12分)已知⊙C :(x -3)2+(y -4)2=1,点A (-1,0),B (1,0),点P 是圆上动点,求d =|P A |2+|PB |2的最大、最小值及对应的P 点坐标.22.(12分)已知曲线C :x 2+y 2+2kx +(4k +10)y +10k +20=0,其中k ≠-1.(1)求证:曲线C 表示圆,并且这些圆心都在同一条直线上;(2)证明曲线C 过定点;(3)若曲线C 与x 轴相切,求k 的值.1解析:将圆x 2+y 2-6x -8y +9=0,化为标准方程得(x -3)2+(y -4)2=16.∴两圆的圆心距(0-3)2+(0-4)2=5,又r 1+r 2=5,∴两圆外切.答案:C2解析:依题意知,所求直线通过圆心(1,-2),由直线的两点式方程得y +21+2=x -12-1,即3x -y -5=0.答案:A 3解析:圆x 2+y 2-2x =0的圆心C (1,0),半径为1,依题意得|1+a +0+1|(1+a )2+1=1,即|a +2|=(a +1)2+1,平方整理得a =-1.答案:D4解析:∵点M (2,6)在圆x 2+y 2=10上,k OM =62,∴过点M 的切线的斜率为k =-63, 故切线方程为y -6=-63(x -2), 即2x +6y -10=0. 答案:D5解析:点M (3,-3,1)关于xOz 平面的对称点是(3,3,1).答案:D6解析:依题意得点A (1,-2,-3),C (-2,-2,-5).∴|AC |=(-2-1)2+(-2+2)2+(-5+3)2=13.答案:B7解析:由题意知,圆心O (0,0)到直线y =kx +1的距离为12, ∴11+k 2=12,∴k =±3.答案:C 8解析:两圆的方程配方得,O 1:(x +2)2+(y -2)2=1,O 2:(x -2)2+(y -5)2=16,圆心O 1(-2,2),O 2(2,5),半径r 1=1,r 2=4,∴|O 1O 2|=(2+2)2+(5-2)2=5,r 1+r 2=5.∴|O 1O 2|=r 1+r 2,∴两圆外切,故有3条公切线.答案:B9解析:依题意知,直线l 过圆心(1,2),斜率k =2,∴l 的方程为y -2=2(x -1),即2x -y =0.答案:A10解析:∵x 2+y 2-(4m +2)x -2my +4m 2+4m +1=0,∴[x -(2m +1)]2+(y -m )2=m 2.∴圆心(2m +1,m ),半径r =|m |.依题意知2m +1+m -4=0,∴m =1.∴圆的面积S =π×12=π.答案:B11解析:设P (x 1,y 1),Q (3,0),设线段PQ 中点M 的坐标为(x ,y ), 则x =x 1+32,y =y 12,∴x 1=2x -3,y 1=2y . 又点P (x 1,y 1)在圆x 2+y 2=1上,∴(2x -3)2+4y 2=1.故线段PQ 中点的轨迹方程为(2x -3)2+4y 2=1.答案:C12解析:如图所示,曲线y =1+4-x 2变形为x 2+(y -1)2=4(y ≥1),直线y =k (x -2)+4过定点(2,4),当直线l 与半圆相切时,有|-2k +4-1|k 2+1=2,解得k =512. 当直线l 过点(-2,1)时,k =34. 因此,k 的取值范围是512<k ≤34.答案:D 13解析:圆心(0,0)到直线3x +4y -25=0的距离为5,∴所求的最小值为4.14解析:r =|1+1-4|2=2,所以圆的方程为(x -1)2+(y -1)2=2. 15解析:已知方程配方得,(x +a )2+(y -a )2=2a 2(a ≠0),圆心坐标为(-a ,a ),它在直线x +y =0上,∴已知圆关于直线x +y =0对称.故②正确.16解析:由x 2+y 2-6x -2y -15=0,得(x -3)2+(y -1)2=25.圆心(3,1)到直线x +2y =0的距离d =|3+2×1|5= 5.在弦心距、半径、半弦长组成的直角三角形中,由勾股定理得,弦长=2×25-5=4 5.17解:解法1:连接OP ,则OP ⊥BC ,设P (x ,y ),当x ≠0时,k OP ·k AP =-1,即y x ·y x -4=-1, 即x 2+y 2-4x =0①当x =0时,P 点坐标为(0,0)是方程①的解,∴BC 中点P 的轨迹方程为x 2+y 2-4x =0(在已知圆内).解法2:由解法1知OP ⊥AP ,取OA 中点M ,则M (2,0),|PM |=12|OA |=2,由圆的定义知,P 点轨迹方程是以M (2,0)为圆心,2为半径的圆.故所求的轨迹方程为(x -2)2+y 2=4(在已知圆内).18解:由圆M 与圆N 的方程易知两圆的圆心分别为M (m ,-2),N (-1,-1).两圆的方程相减得直线AB 的方程为2(m +1)x -2y -m 2-1=0.∵A ,B 两点平分圆N 的圆周,∴AB 为圆N 的直径,∴AB 过点N (-1,-1),∴2(m +1)×(-1)-2×(-1)-m 2-1=0,解得m =-1.故圆M 的圆心M (-1,-2).19解:设两圆的交点为A (x 1,y 1),B (x 2,y 2),则A 、B 两点的坐标是方程组⎩⎪⎨⎪⎧x 2+y 2-3x -3y +3=0x 2+y 2-2x -2y =0的解,两方程相减得:x +y -3=0,∵A 、B 两点的坐标都满足该方程,∴x +y -3=0为所求.将圆C 2的方程化为标准形式,(x -1)2+(y -1)2=2,∴圆心C 2(1,1),半径r = 2.圆心C 2到直线AB 的距离d =|1+1-3|2=12, |AB |=2r 2-d 2=22-12= 6. 即两圆的公共弦长为 6.20解:如图:PM 为圆C 的切线,则CM ⊥PM ,∴△PMC 为直角三角形,∴|PM |2=|PC |2-|MC |2. 设P (x ,y ),C (-1,2),|MC |= 2.∵|PM |=|PO |,∴x 2+y 2=(x +1)2+(y -2)2-2,化简得点P 的轨迹方程为:2x -4y +3=0.求|PM |的最小值,即求|PO |的最小值,即求原点O 到直线2x -4y +3=0的距离,代入点到直线的距离公式可求得|PM |最小值为3510. 21解:设点P 的坐标为(x 0,y 0),则d =(x 0+1)2+y 02+(x 0-1)2+y 02=2(x 02+y 02)+2.欲求d 的最大、最小值,只需求u =x 02+y 02的最大、最小值,即求⊙C 上的点到原点距离的平方的最大、最小值.作直线OC ,设其交⊙C 于P 1(x 1,y 1),P 2(x 2,y 2), 如图所示.则u 最小值=|OP 1|2=(|OC |-|P 1C |)2=(5-1)2=16.此时,x 13=y 14=45, ∴x 1=125,y 1=165. ∴d 的最小值为34,对应点P 1的坐标为⎝⎛⎭⎫125,165.同理可得d 的最大值为74,对应点P 2的坐标为⎝⎛⎭⎫185,245.22解:(1)证明:原方程可化为(x +k )2+(y +2k +5)2=5(k +1)2 ∵k ≠-1,∴5(k +1)2>0.故方程表示圆心为(-k ,-2k -5),半径为5|k +1|的圆.设圆心的坐标为(x ,y ),则⎩⎪⎨⎪⎧x =-k ,y =-2k -5,消去k ,得2x -y -5=0.∴这些圆的圆心都在直线2x -y -5=0上.(2)证明:将原方程变形为(2x +4y +10)k +(x 2+y 2+10y +20)=0,∵上式对于任意k ≠-1恒成立, ∴⎩⎪⎨⎪⎧ 2x +4y +10=0,x 2+y 2+10y +20=0.解得⎩⎪⎨⎪⎧x =1,y =-3.∴曲线C 过定点(1,-3).(3)∵圆C 与x 轴相切,∴圆心(-k ,-2k -5)到x 轴的距离等于半径,即|-2k -5|=5|k +1|.两边平方,得(2k+5)2=5(k+1)2,∴k=5±3 5.。

新课标数学必修二第四章习题及答案

新课标数学必修二第四章习题及答案

必修二第四章1.若直线2=-y x 被圆4)(22=+-y a x 所截得的弦长为22,则实数a 的值为( ) A .1-或3 B .1或3 C .2-或6 D .0或42.直线032=--y x 与圆9)3()2(22=++-y x 交于,E F 两点,则∆EOF (O 是原点)的面积为( ) A.23 B.43 C.52 D.5563.直线l 过点),(02-,l 与圆x y x 222=+有两个交点时,斜率k 的取值范围是( )A .),(2222- B .),(22- C .),(4242- D .),(8181- 4.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为( )A .03222=--+x y xB .0422=++x y xC .03222=-++x y xD .0422=-+x y x 5.若过定点)0,1(-M 且斜率为k 的直线与圆05422=-++y x x 在第一象限内的部分有交点,则k 的取值范围是( ) A. 50<<k B. 05<<-k C. 130<<k D. 50<<k6.设直线l 过点)0,2(-,且与圆122=+y x相切,则l 的斜率是( ) A .1± B .21± C .33± D .3±7.已知圆C :22()(2)4(0)x a y a -+-=>及直线03:=+-y x l ,当直线l 被C 截得的弦长为32时,则a =( )A .2 B .22-C .12-D .12+8.若曲线21x y -=与直线b x y +=始终有交点,则b 的取值范围是___________;若有一个交点,则b 的取值范围是________;若有两个交点,则b 的取值范围是_______;9.把圆的参数方程⎩⎨⎧+-=+=θθsin 23cos 21y x 化成普通方程是______________________.10.如果实数,x y 满足等式22(2)3x y -+=,那么x y 的最大值是________。

(人教版B版)高中数学必修第二册第四章综合测试03(含答案)

(人教版B版)高中数学必修第二册第四章综合测试03(含答案)

第四章综合测试一、选择题(本大题共12小题,每小题5分,共60分)1.已知函数()()lg 4f x x =-的定义域为M ,函数()g x =的值域为N ,则M N 等于( ) A .MB .NC .[)0,4D .[)0,+∞2.函数||31x y =-的定义域为[]1,2-,则函数的值域为( ) A .[]2,8B .[]0,8C .[]1,8D .[]1,8-3.已知()23log f x =()1f 的值为( ) A .1B .2C .1-D .12 4.21+log 52等于( ) A .7B .10C .6D .925.若1005a =,102b =,则2a b +等于( ) A .0B .1C .2D .36.比较13.11.5、 3.12、13.12的大小关系是( ) A .113.13.13.122 1.5<< B .113.13.13.11.522<<C .11 3.13.13.11.522<<D .11 3.13.13.12 1.52<<7.()()4839log 3log 3log 2log 8++等于( ) A .56B .2512C .94D .以上都不对8.已知0ab >,下面四个等式:①()lg lg lg ab a b =+;②lg lg lg a a b b =-;③21lg lg 2a ab b ⎛⎫= ⎪⎝⎭;④()1lg log 10ab ab =其中正确的个数为( ) A .0B .1C .2D .39.函数x y a =(0a >且1a ≠)与函数()2121y a x x =---在同一个坐标系内的图像可能是( )ABCD10.抽气机每次可抽出容器内空气的60%,要使容器内的空气少于原来的0.1%,则至少要抽( ) (参考数据:120.3010g ≈) A .6次B .7次C .8次D .9次11.已知113log 2x =,1222x -=,3x 满足3331log 3x x ⎛⎫= ⎪⎝⎭,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .132x x x <<C .213x x x <<D .312x x x <<12.已知幂函数()()22421mm f x m x -+=-在()0,+∞上单调递增,函数()2x g x k =-,当[)1,2x ∈时,记()f x ,()g x 的值域分别为集合A ,B ,若A B A = ,则实数k 的取值范围是( )A .()0,1B .[)0,1C .(]0,1D .[]0,1二、填空题(本大题共4小题,每小题5分,共20分)13.若函数()f x 的反函数为()12f x x -=(0x >),则()4=f ________。

高中数学必修2第四章测试及答案

高中数学必修2第四章测试及答案

高二数学周测一、选择与填空题(每题6分,共60分)(请将选择和填空题答案写在以下答题卡内)1. 圆C 1 : x 2+y 2+2x +8y -8=0与圆C 2 : x 2+y 2-4x +4y -2=0的位置关系是( )A .相交B .外切C .内切D .相离2. 两圆x 2+y 2-4x +2y +1=0与x 2+y 2+4x -4y -1=0的公共切线有( ). A .1条B .2条C .3条D .4条3. 若圆C 与圆(x +2)2+(y -1)2=1关于原点对称,则圆C 的方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y -1)2=1 C .(x -1)2+(y +2)2=1D .(x +1)2+(y -2)2=14. 与直线l : y =2x +3平行,且与圆x 2+y 2-2x -4y +4=0相切的直线方程是( )A .x -y ±5=0B .2x -y +5=0C .2x -y -5=0D .2x -y ±5=05. 直线x -y +4=0被圆x 2+y 2+4x -4y +6=0截得的弦长等于( ) A .2B .2C .22D .426. 圆x2+y2-4x -4y -10=0上的点到直线x +y -14=0的最大距离与最小距离的差是( )A .30B .18C .62D .527. 若直线3x -y +c =0,向右平移1个单位长度再向下平移1个单位,平移后与圆x 2+y 2=10相切,则c 的值为( ) A .14或-6 B .12或-8 C .8或-12 D .6或-148. 若直线3x -4y +12=0与两坐标轴的交点为A ,B ,则以线段AB 为直径的圆的一般方程为____________________9. 圆心在直线2x+y=0上,且圆与直线x+y-1=0切于点M(2,-1)的圆的标准方程为__________10. 已知P是直线3x+4y+8=0上的动点,PA,PB是圆(x-1)2+(y-1)2=1的两条切线,A,B是切点,C是圆心,则四边形PACB面积的最小值为二、解答题(共40分)11.(15分)求与x轴相切,圆心C在直线3x-y=0上,且截直线x-y=0得的弦长为27的圆的方程.12.(25分)已知圆C :(x-1)2+(y-2)2=2,点P坐标为(2,-1),过点P作圆C的切线,切点为A,B.(1)求直线PA,PB的方程(8分);(2)求过P点的圆的切线长(8分);(3)求直线AB的方程(9分).高二数学周测答案一、选择题1.A2.C3.A4.D5.C6.C7.A二、填空题8.x 2+y 2+4x -3y =0; 9.(x -1)2+(y +2)2=2; 10.22.三、解答题11.解:因为圆心C 在直线3x -y =0上,设圆心坐标为(a ,3a ),圆心(a ,3a )到直线x -y =0的距离为d =22 - a .又圆与x 轴相切,所以半径r =3|a |, 设圆的方程为(x -a )2+(y -3a )2=9a 2, 设弦AB 的中点为M ,则|AM |=7. 在Rt △AMC 中,由勾股定理,得 22 2 - ⎪⎪⎭⎫⎝⎛a +(7)2=(3|a |)2. 解得a =±1,r 2=9.故所求的圆的方程是(x -1)2+(y -3)2=9,或(x +1)2+(y +3)2=9.12.解:(1)设过P 点圆的切线方程为y +1=k (x -2),即kx ―y ―2k ―1=0. 因为圆心(1,2)到直线的距离为2,1+ 3 - - 2k k =2, 解得k =7,或k =-1.故所求的切线方程为7x ―y ―15=0,或x +y -1=0.(第11题)(2)在Rt △PCA 中,因为|PC |=222 - 1 -+ 1 - 2)()(=10,|CA |=2, 所以|PA |2=|PC |2-|CA |2=8.所以过点P 的圆的切线长为22.(3)容易求出k PC =-3,所以k AB =31.如图,由CA 2=CD ·PC ,可求出CD =PC CA 2=102.设直线AB 的方程为y =31x +b ,即x -3y +3b =0.由102=23 + 1 3 + 6 - 1 b 解得b =1或b =37(舍).所以直线AB 的方程为x -3y +3=0.(3)也可以用联立圆方程与直线方程的方法求解.(第12题)。

高中数学(人教版必修2)练习及答案 第四章4

高中数学(人教版必修2)练习及答案 第四章4

第四章圆与方程§4.3空间直角坐标系4.3.1空间直角坐标系一、基础过关1.点P(5,0,-2)在空间直角坐标系中的位置是() A.y轴上B.xOy平面上C.xOz平面上D.x轴上2.设y∈R,则点P(1,y,2)的集合为() A.垂直于xOz平面的一条直线B.平行于xOz平面的一条直线C.垂直于y轴的一个平面D.平行于y轴的一个平面3.已知空间直角坐标系中有一点M(x,y,z)满足x>y>z,且x+y+z=0,则M点的位置是() A.一定在xOy平面上B.一定在yOz平面上C.一定在xOz平面上D.可能在xOz平面上4.在空间直角坐标系中,点P(3,4,5)关于yOz平面的对称点的坐标为() A.(-3,4,5) B.(-3,-4,5)C.(3,-4,-5) D.(-3,4,-5)5.在空间直角坐标系中,点A(1,2,-3)关于x轴的对称点为________.6.点P(-3,2,1)关于Q(1,2,-3)的对称点M的坐标是________.7.已知正方体ABCD-A1B1C1D1,E、F、G分别是DD1、BD、BB1的中点,且正方体棱长为1.请建立适当坐标系,写出正方体各顶点及E、F、G的坐标.8. 如图所示,长方体ABCD-A1B1C1D1的对称中心为坐标原点O,交于同一顶点的三个面分别平行于三个坐标平面,顶点A(-2,-3,-1),求其它7个顶点的坐标.二、能力提升9.在空间直角坐标系中,P(2,3,4)、Q(-2,-3,-4)两点的位置关系是() A.关于x轴对称B.关于yOz平面对称C.关于坐标原点对称D.以上都不对10.如图,在正方体ABCD —A ′B ′C ′D ′中,棱长为1,|BP |=13|BD ′|,则P 点的坐标为( )A.⎝⎛⎭⎫13,13,13B.⎝⎛⎭⎫23,23,23C.⎝⎛⎭⎫13,23,13D.⎝⎛⎭⎫23,23,13 11.连接平面上两点P 1(x 1,y 1)、P 2(x 2,y 2)的线段P 1P 2的中点M 的坐标为⎝⎛⎭⎫x 1+x 22,y 1+y 22,那么,已知空间中两点P 1(x 1,y 1,z 1)、P 2(x 2,y 2,z 2),线段P 1P 2的中点M 的坐标为_________. 12. 如图所示,AF 、DE 分别是⊙O 、⊙O 1的直径,AD 与两圆所在的平面均垂直,AD =8.BC 是⊙O 的直径,AB =AC =6,OE ∥AD ,试建立适当的空间直角坐标系,求出点A 、B 、C 、D 、E 、F 的坐标. 三、探究与拓展13. 如图所示,四棱锥P -ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°,E 是CD 的中点,P A ⊥底面ABCD ,P A =2.试建立适当的空间直角坐标系,求出A 、B 、C 、D 、P 、E 的坐标.答案1.C 2.A 3.D 4.A 5.(1,-2,3) 6.(5,2,-7)7.解 如图所示,建立空间直角坐标系,则A (1,0,0),B (1,1,0),C (0,1,0),D (0,0,0),A 1(1,0,1),B 1(1,1,1),C 1(0,1,1),D 1(0,0,1),E ⎝⎛⎭⎫0,0,12,F ⎝⎛⎭⎫12,12,0,G ⎝⎛⎭⎫1,1,12. 8.解 长方体的对称中心为坐标原点O ,因为顶点坐标A (-2,-3,-1),所以A 关于原点的对称点C 1的坐标为(2,3,1).又因为C 与C 1关于坐标平面xOy 对称, 所以C (2,3,-1).而A 1与C 关于原点对称,所以A 1(-2,-3,1).又因为C 与D 关于坐标平面xOz 对称,所以D (2,-3,-1). 因为B 与C 关于坐标平面yOz 对称,所以B (-2,3,-1). B 1与B 关于坐标平面xOy 对称,所以B 1(-2,3,1). 同理D 1(2,-3,1).综上可知长方体的其它7个顶点坐标分别为:C 1(2,3,1),C (2,3,-1),A 1(-2,-3,1),B (-2,3,-1),B 1(-2,3,1),D (2,-3,-1),D 1(2,-3,1). 9.C 10.D11.⎝⎛⎭⎫x 1+x 22,y 1+y 22,z 1+z 2212.解 因为AD 与两圆所在的平面均垂直,OE ∥AD ,所以OE 与两圆所在的平面也都垂直.又因为AB =AC =6,BC 是圆O 的直径,所以△BAC 为等腰直角三角形且AF ⊥BC ,BC =6 2.以O 为原点,OB 、OF 、OE 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则原点O 及A 、B 、C 、D 、E 、F 各个点的坐标分别为O (0,0,0)、A (0,-32,0)、B (32,0,0)、C (-32,0,0)、D (0,-32,8)、E (0,0,8)、F (0,32,0).13.解 如图所示,以A 为原点,以AB 所在直线为x 轴,AP 所在直线为z 轴,过点A 与xAz 平面垂直的直线为y 轴,建立空间直角坐标系.则相关各点的坐标分别是A (0,0,0),B (1,0,0), C (32,32,0),D (12,32,0),P (0,0,2), E (1,32,0).4.3.2 空间两点间的距离公式一、基础过关1.若A (1,3,-2)、B (-2,3,2),则A 、B 两点间的距离为( )A.61B .25C .5 D.57 2.在长方体ABCD -A 1B 1C 1D 1中,若D (0,0,0)、A (4,0,0)、B (4,2,0)、A 1(4,0,3),则对角线AC 1的长为( )A .9B.29C .5D .2 63.已知点A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到点C 的距离|CM |等于 ( )A.534B.532C.532D.1324.到点A (-1,-1,-1),B (1,1,1)的距离相等的点C (x ,y ,z )的坐标满足 ( )A .x +y +z =-1B .x +y +z =0C .x +y +z =1D .x +y +z =45.若点P (x ,y ,z )到平面xOz 与到y 轴距离相等,则P 点坐标满足的关系式为____________. 6.已知P ⎝⎛⎭⎫32,52,z 到直线AB 中点的距离为3,其中A (3,5,-7),B (-2,4,3),则z =________. 7.在yOz 平面上求与三个已知点A (3,1,2),B (4,-2,-2),C (0,5,1)等距离的点的坐标.8. 如图所示,BC =4,原点O 是BC 的中点,点A 的坐标为(32,12,0),点D 在平面yOz上,且∠BDC =90°,∠DCB =30°,求AD 的长度.二、能力提升9.已知A (2,1,1),B (1,1,2),C (2,0,1),则下列说法中正确的是( )A .A 、B 、C 三点可以构成直角三角形 B .A 、B 、C 三点可以构成锐角三角形 C .A 、B 、C 三点可以构成钝角三角形D .A 、B 、C 三点不能构成任何三角形10.已知A (x,5-x,2x -1),B (1,x +2,2-x ),当|AB |取最小值时,x 的值为( )A .19B .-87 C.87 D.191411.在空间直角坐标系中,已知点A (1,0,2),B (1,-3,1),点M 在y 轴上,且M 到A 与到B的距离相等,则M 的坐标是________.12. 在长方体ABCD —A 1B 1C 1D 1中,|AB |=|AD |=3,|AA 1|=2,点M 在A 1C 1上,|MC 1|=2|A 1M |,N 在D 1C 上且为D 1C 的中点,求M 、N 两点间的距离.三、探究与拓展13.在xOy平面内的直线x+y=1上确定一点M,使它到点N(6,5,1)的距离最小.答案1.C 2.B 3.B 4.B 5.x 2+z 2-y 2=0 6.0或-47.解 设P (0,y ,z ),由题意⎩⎪⎨⎪⎧|P A |=|PC ||PB |=|PC |所以⎩⎨⎧(0-3)2+(y -1)2+(z -2)2=(0-0)2+(y -5)2+(z -1)2(0-4)2+(y +2)2+(z +2)2=(0-0)2+(y -5)2+(z -1)2即⎩⎪⎨⎪⎧ 4y -z -6=07y +3z -1=0,所以⎩⎪⎨⎪⎧y =1z =-2, 所以点P 的坐标是(0,1,-2). 8.解 由题意得B (0,-2,0),C (0,2,0),设D (0,y ,z ),则在Rt △BDC 中,∠DCB =30°, ∴BD =2,CD =23,z =3,y =-1.∴D (0,-1,3).又∵A (32,12,0),∴|AD | =(32)2+(12+1)2+(-3)2= 6. 9.A 10.C 11.(0,-1,0)12.解 如图分别以AB 、AD 、AA 1所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系.由题意可知C (3,3,0), D (0,3,0),∵|DD 1|=|CC 1|=2, ∴C 1(3,3,2),D 1(0,3,2),∵N 为CD 1的中点,∴N ⎝⎛⎭⎫32,3,1. M 是A 1C 1的三等分点且靠近A 1点, ∴M (1,1,2).由两点间距离公式,得|MN | =⎝⎛⎭⎫32-12+(3-1)2+(1-2)2=212.13.解 ∵点M 在直线x +y =1(xOy 平面内)上,∴可设M (x,1-x,0).∴|MN |=(x -6)2+(1-x -5)2+(0-1)2 =2(x -1)2+51≥51, 当且仅当x =1时取等号,∴当点M的坐标为(1,0,0)时,|MN|min=51.。

人教版高中数学必修二第四章《圆与方程》单元试卷(2)

人教版高中数学必修二第四章《圆与方程》单元试卷(2)

第四章圆与方程单元检测(时间: 120 分钟,满分: 150 分)一、选择题 (此题共 12 小题,每题 5 分,共 60 分)1.直线 y = x + 10 与曲线 x 2+y 2= 1 的地点关系是 ().A .订交B .相离C .相切D .不可以确立2.圆心在 y 轴上,半径为 1,且过点 (1,2)的圆的方程为 ( ). A . x 2+ (y -2)2=1 B . x 2+ (y + 2)2= 1 C .( x - 1) 2+ (y -3) 2= 1D . x 2+ (y - 3)2= 13.点 P(x , y , z)知足x 1 2 y 1 2 z 1 22,则点 P 在().A .以点 (1,1,- 1)为圆心,2 为半径的圆上B .以点 (1,1,- 1) 为中心,2 为棱长的正方体内 C .以点 (1,1,- 1) 为球心, 2 为半径的球面上 D .没法确立4.圆 x 2 +y 2=4 与圆 x 2+ y 2+ 4x - 4y + 4= 0 对于直线 l 对称,则 l 的方程是 ().A . x + y = 0B . x + y -2= 0C .x - y - 2= 0D . x - y + 2= 05.圆 C 1:x 2+ y 2+2x + 2y - 2= 0 与 C 2:x 2+ y 2- 4x - 2y +1= 0 的公切线有且只有 ( ).A .1 条B .2 条C .3 条D .4 条 6.把圆 x 2 + y 2+2x - 4y - a 2-2= 0 的半径减小一个单位则正好与直线3x - 4y - 4= 0 相切,则实数 a 的值为 ( ).A .- 3B . 3C .-3或 3D .以上都不对7.过点 P(2,3)向圆 x 2+ y 2= 1 作两条切线 PA 、 PB ,则弦 AB 所在直线的方程为 ().A . 2x - 3y - 1= 0B . 2x + 3y - 1= 0C .3x + 2y - 1= 0D . 3x - 2y - 1= 08.与圆 x 2+ y 2- ax -2y + 1= 0 对于直线 x - y - 1=0 对称的圆的方程为=0,则 a 等于 ( ).A . 0B . 1C . 2D .3229.圆 x +(y +1) = 3 绕直线 kx -y - 1= 0 旋转一周所得的几何体的表面积为 x 2 +y 2- 4x + 3().A . 36πB . 12πC .4 3D . 4π10.动圆 x 2+ y 2- (4m +2)x - 2my + 4m 2+4m + 1= 0 的圆心的轨迹方程是 ( ) .A . 2x - y - 1= 0B . 2x - y - 1=0(x ≠ 1)C .x - 2y - 1=0(x ≠ 1)D .x - 2y - 1= 011.若过定点 M(- 1,0)且斜率为 k 的直线与圆 x 2+ 4x + y 2- 5=0 在第一象限内的部分有交点,则 k 的取值范围是 ( ).A . 0 k 5B .5 k 0C . 0 k13D . 0< k < 512.直线 y =kx + 3 与圆 (x - 3)2+ (y - 2)2= 4 订交于 M , N 两点,若 MN2 3 ,则 k的取值范围是 ().A . [3,0]B . (-∞,3 ]∪[0 ,+ ∞)44C . [3 , 3 ]D .[ 2,0]3 33二、填空题 (此题共 4 小题,,每题 4 分,共 16 分)13.过直线 l :y = 2x 上一点 P 作圆 C :(x - 8)2+ (y - 1)2= 2 的切线 l 1, l 2,若 l 1,l 2 对于直线 l 对称,则点 P 到圆心 C 的距离为 __________ .14.点 P 为圆 x2+ y2= 1 上的动点,则点P 到直线3x- 4y- 10= 0 的距离的最小值为__________.15.已知圆 C 经过 A(5,1) ,B(1,3)两点,圆心在 x 轴上,则 C 的方程为 ________.16.已知圆 C 过点 (1,0),且圆心在 x 轴的正半轴上,直线 l :y= x- 1 被圆 C 所截得的弦长为 2 2 ,则过圆心且与直线l 垂直的直线的方程为 ________.三、解答题 (此题共 6 小题,共74 分)17. (12 分)一圆和直线 l :x+ 2y- 3=0 切于点 P(1,1),且半径为 5,求这个圆的方程.18.(12 分 )求平行于直线 3x+223y+5= 0 且被圆 x + y= 20 截得长为6 2的弦所在的直线方程.22= 16 内的定点,B,C 是这个圆上的两个动点,若 BA⊥ CA,19.(12 分 )点 A(0,2)是圆 x + y求 BC 中点 M 的轨迹方程,并说明它的轨迹是什么曲线.222220. (12 分)圆 x + y -2x- 5= 0 与圆 x + y + 2x- 4y- 4= 0 的交点为 A、 B.(1)求线段 AB 的垂直均分线的方程;(2)求线段 AB 的长.21. (12 分 ) 已知圆C: (x- 1)2+ ( y- 2)2= 25,直线l: (2m+ 1)x+ (m+ 1)y- 7m- 4=0(m∈R).(1)证明:无论 m 为什么值时,直线和圆恒订交于两点;(2)求直线 l 被圆 C 截得的弦长最小时的方程.22.(14 分 )在平面直角坐标系xOy 中,曲线 y= x2- 6x+1 与坐标轴的交点都在圆 C 上.(1)求圆 C 的方程;(2)若圆 C 与直线 x-y+ a= 0 交于 A, B 两点,且 OA⊥OB ,求 a 的值.答案与分析1.答案: B分析:圆心到直线的距离|10 |2 1.522.答案: A分析:方法一 (直接法 ):设圆心坐标为 (0, b),则由题意知0 1 2 b 2 21,解得b=2,故圆的方程为x2+ (y- 2)2= 1.方法二 (数形联合法 ) :由作图依据点(1,2)到圆心的距离为 1 易知圆心为(0,2),故圆的方程为x2+ (y- 2)2= 1.方法三 (考证法 ):将点 (1,2)代入四个选择支,清除 B , D,又因为圆心在y 轴上,清除C.3.答案: C(x, y, z)知足到定点 (1,1,- 1)的距离恒分析:依据两点间距离公式的几何意义,动点等于 2.4.答案: D分析:∵两圆圆心分别为(0,0)和 (- 2,2),∴中点为 (- 1,1),两圆圆心连线斜率为- 1.∴l 的斜率为 1,且过点 (- 1,1).∴l 的方程为 y- 1= x+1,即 x- y+ 2= 0.5.答案: B解析:⊙C1: (x + 1)2+ (y + 1)2= 4 ,⊙ C2: (x - 2) 2+ (y - 1) 2= 4 ,C1C2= 2 12 1 1 213 4,∴只有 2 条公切线.∴应选 B.6.答案: C分析:圆的方程可变成 (x+ 1)2+ (y- 2)2= a2+ 7,圆心为 (- 1,2),半径为a27 ,由题意得| 13 42 4 |a27 1,3 242解得 a=±3.7.答案: B解析:圆x2+ y2= 1的圆心为坐标原点O ,以OP为直径的圆的方程为( x-1)2+( y-3) 2=13.24明显这两个圆是订交的,x2y 21由1 2y32 13x2 4得 2x+3y- 1= 0,这就是弦 AB 所在直线的方程.8.答案: C分析:两圆的圆心分别为(a,1),B(2,0),A2则 AB 的中点(a1,1) 在直线x-y-1=0上,即a11 1 0 ,解得a=2,应选4242择 C.9.答案: B分析:由题意,圆心为(0,- 1),又直线kx- y- 1= 0 恒过点 (0,- 1),所以旋转一周所得的几何体为球,球心即为圆心,球的半径即是圆的半径,所以 S= 4π(3 )2=12π.10.答案: C分析:圆心为 (2m+1, m), r = |m|(m≠0).不如设圆心坐标为(x, y),则 x= 2m+ 1, y= m,所以 x-2y- 1= 0.又因为 m≠0,所以 x≠1因.此选择 C.11.答案: A分析:圆 x2+ 4x+ y2- 5= 0 可变形为 (x+ 2)2+ y2= 9,如下图.当 x= 0 时,y= 5 ,联合图形可得A(0, 5) ,∵ k AM=55 ,1∴ k (0, 5) .12.答案: A分析:圆心 (3,2) 到直线 y=kx+ 3的距离 d=| 3k1| ,k21MN =23k 1 2,4 2 3k 21∴30 .k413.答案: 3 5 分析: 圆心 C 的坐标为 (8,1), 由题意,得 PC ⊥ l ,∴ PC 的长是圆心 C 到直线 l 的距离.|161|即 PC = 3 5 .514.答案: 1分析: ∵圆心到直线的距离为 d =102 ,5∴点 P 到直线 3x - 4y - 10= 0 的距离的最小值为 d -r = 2- 1= 1.15.答案: ( x - 2)2 +y 2=10分析: 由题意,线段 AB 中点 M(3,2) , k AB =-1k AB =- 1,2 2∴线段 AB 中垂线所在直线方程为y - 2=2(x - 3).y 2 2 x 3得圆心 (2,0) .由y则圆 C 的半径 r = 2 1 23 210故圆 C 的方程为 (x - 2)2+ y 2= 10.16.答案: x + y - 3= 0分析: 设圆心 (a,0),∴ (| a 1| )2( 2) 2= | a -1|2 ,∴ a = 3.2∴圆心 (3,0).∴所求直线方程为 x + y - 3=0. 17.解: 设圆心坐标为 C( a , b),圆的方程即为 (x - a)2+ (y - b)2= 25.∵点 P(1,1)在圆上,则 (1- a)2+ (1- b)2= 25.①又 l 为圆 C 的切线,则 CP ⊥ l ,∴b1 2.②a 1 联立①②解得a15a 15或b1 2 5b 125即所求圆的方程为 (x - 1-5 )2+ (y - 1- 2 5 )2 = 25 或 (x -1+ 5 )2+ (y - 1+ 2 5 )2=25.18.解: 设弦所在的直线方程为 x + y +c = 0.①则圆心 (0,0)到此直线的距离为d = | c || c | .112因为圆的半弦长、半径、弦心距恰巧组成直角三角形,所以 ( | c |) 2(3 2) 2=20 .2由此解得 c = ±2,代入①得弦的方程为 x + y +2= 0 或 x -y - 2= 0.19.解: 设点 M(x , y),因为 M 是弦 BC 的中点,故 OM ⊥ BC.又∵∠ BAC = 90°,∴ |MA |=1|BC|= |MB |.2∵ |MB |2= |OB|2- |OM |2,222,即 4 2222+ (y - 2) 222∴|OB| =|MO | +|MA| = (x + y ) + [(x - 0) ] ,化简为 x + y - 2y -6= 0,即 x 2 +(y - 1)2= 7.∴所求轨迹为以 (0,1)为圆心,以7 为半径的圆.20.解: (1) 两圆方程相减,得 4x - 4y + 1= 0,即为AB的方程.两圆圆心连线即为AB的垂直均分线,所以 AB 的垂直均分线的方程过两圆圆心,且与 AB 垂直. 则 AB 的垂直均分线的斜率为- 1.又圆 x 2+ y 2- 2x - 5= 0 的圆心为 (1,0),所以 AB 的垂直均分线的方程为 y =- (x - 1),即 x + y - 1=0.(2)圆 x 2+ y 2- 2x - 5= 0 的半径、圆 x 2+y 2- 2x - 5= 0 的圆心到 AB 的距离、 AB 长的一半三者组成一个直角三角形的三条边,圆x 2+ y 2- 2x - 5=0 可化为 (x - 1)2+ y 2= 6,所以圆心(1,0),半径 6,弦心距|4 1 40 1| 5 2,由勾股定理得42428(|AB |25 2 2 2)()( 6,)28解得 AB =346.221.解: (1) 由 (2m + 1)x + (m + 1)y - 7m - 4= 0,得 (2x + y - 7)m + x + y -4= 0.2x y 7 0 x 3则y4 0解得1x y∴直线 l 恒过定点 A(3,1) .又∵ (3- 1)2+ (1- 2)2= 5< 25,∴ (3,1)在圆 C 的内部,故 l 与 C 恒有两个公共点.(2)当直线 l 被圆 C 截得的弦长最小时,有l ⊥ AC ,由 k AC =-1 ,得 l 的方程为 y - 1=22(x - 3),即 2x - y -5= 0.22.解: (1) 曲线 y = x 2- 6x + 1 与 y 轴的交点为(0,1),与 x 轴的交点为 (32 2,0) ,(3 2 2,0) .故可设 C 的圆心为 (3, t),则有 32+(t -1)2=(2 2) 2 t 2,解得 t = 1.则圆 C 的半径为32+(t -1)2 3所以圆 C 的方程为 (x - 3)2+ (y - 1)2= 9.(2)设 A(x 1, y 1), B(x 2, y 2),其坐标知足方程组:x y a0 x 3 2y1 2 9.消去 y ,获得方程 2x 2+ (2a - 8)x + a 2- 2a + 1= 0.由已知可得,鉴别式 = 56-16a - 4a 2> 0.所以 x 1,2= (8 2a)56 16a 4a24 ,进而 x 1+ x 2= 4- a , x 1 x 2= a 22a 12.①因为 OA ⊥OB ,可得 x 1x 2+ y 1y 2= 0.又 y 1= x 1+ a , y 2= x 2+a ,所以 2x 1 x 2+ a(x 1+ x 2)+ a 2= 0.② 由①,②得 a =- 1,知足 > 0,故 a =- 1.。

(常考题)人教版高中数学必修第二册第四单元《统计》测试(含答案解析)(2)

(常考题)人教版高中数学必修第二册第四单元《统计》测试(含答案解析)(2)

一、选择题1.甲、乙、丙、丁四所学校分别有150、120、180、150名高二学生参加某次数学调研测试.为了解学生能力水平,需从这600名学生中抽取一个容量为100的样本作卷面分析,记这项调查为①;在丙校有50名数学培优生,需要从中抽取10名学生进行失分分析,记这项调查为.②完成这两项调查宜采用的抽样方法依次是( ) A .分层抽样法、系统抽样法 B .分层抽样法、简单随机抽样法 C .系统抽样法、分层抽样法D .简单随机抽样法、分层抽样法2.某校高一年级有男生400人,女生300人,为了调查高一学生对于高二时文理分科的意向,拟随机抽取35人的样本,则应抽取的男生人数为( ) A .25B .20C .15D .103.如果数据121x +、221x +、、21n x +的平均值为5,方差为16,则数据:153x -、253x -、、53n x -的平均值和方差分别为( )A .1-,36B .1-,41C .1,72D .10-,1444.一位学生在计算20个数据的平均数时,错把68输成86,那么由此求出的平均数与实际平均数的差为 A .B .C .D .5.如图所示的茎叶图记录了CBA 球员甲、乙两人在2018-2019赛季某月比赛过程中的的得分成绩,则下列结论正确的是( )A .甲的平均数大于乙的平均数B .甲的平均数小于乙的平均数C .甲的中位数大于乙的中位数D .甲的方差小于乙的方差6.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论错误的是( )注:90后指1990年及以后出生,80后指19801989-年之间出生,80前指1979年及以前出生.A .互联网行业从业人员中从事技术和运营岗位的人数占总人数的三成以上B .互联网行业中从事技术岗位的人数超过总人数的20%C .互联网行业中从事运营岗位的人数90后一定比80前多D .互联网行业中从事技术岗位的人数90后一定比80后多7.国务院发布《关于进一步调整优化结构、提高教育经费使用效益的意见》中提出,要优先落实教育投入.某研究机构统计了2010年至2018年国家财政性教育经费投入情况及其在GDP 中的占比数据,并将其绘制成下表,由下表可知下列叙述错误的是( )A .随着文化教育重视程度的不断提高,国在财政性教育经费的支出持续增长B .2012年以来,国家财政性教育经费的支出占GDP 比例持续7年保持在4%以上C .从2010年至2018年,中国GDP 的总值最少增加60万亿D .从2010年到2018年,国家财政性教育经费的支出增长最多的年份是2012年 8.已知一组数据:123,,,,n x x x x 的平均数为4,方差为10,则1232,32,32n x x x ---的平均数和方差分别是( )A .10,90B .4,12C .4,10D .10,109.某位教师2017年的家庭总收入为80000元,各种用途占比统计如下面的折线图.2018年家庭总收入的各种用途占比统计如下面的条形图,已知2018年的就医费用比2017年的就医费用增加了4750元,则该教师2018年的旅行费用为( )A .21250元B .28000元C .29750元D .85000元10.某企业开展职工技能比赛,并从参赛职工中选1人参加该行业全国技能大赛.经过6轮选拔,甲、乙两人成绩突出,得分情况如茎叶图所示.若甲乙两人的平均成绩分别是x 甲,x 乙,则下列说法正确的是( ). A .x x >甲乙,乙比甲成绩稳定,应该选乙参加比赛 B .x x >甲乙,甲比乙成绩稳定,应该选甲参加比赛 C .x x <甲乙,甲比乙成绩稳定,应该选甲参加比赛 D .x x <甲乙,乙比甲成绩稳定,应该选乙参加比赛11.某实验中学共有职工150人,其中高级职称的职工15人,中级职称的职工45人,一般职员90人,现采用分层抽样抽取容量为30的样本,则抽取的高级职称、中级职称、一般职员的人数分别为 A .5、10、15B .3、9、18C .3、10、17D .5、9、1612.某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下: 行业名称计算机机械营销物流贸易应聘人数2158302002501546767457065280行业名称计算机营销机械建筑化工招聘人数124620102935891157651670436若用同一行业中应聘人数和招聘人数的比值的大小来衡量该行业的就业情况,则根据表中数据,就业形势一定是( ) A .计算机行业好于化工行业 B .建筑行业好于物流行业 C .机械行业最紧张D .营销行业比贸易行业紧张13.在发生某公共卫生事件期间,我国有关机构规定:该事件在一段时间没有发生规模群体感染的标志为“连续10天每天新增加疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( )A.甲地总体均值为3,中位数为4B.乙地总体均值为2,总体方差大于0 C.丙地中位数为3,众数为3D.丁地总体均值为2,总体方差为3二、解答题14.某市有100万居民,政府为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),,[4,4.5)分成9组,制成了如下的频率分布直方图:(1)求直方图中a的值;(2)估计居民月均用水量的众数、中位数(精确到0.01).15.2019年春节期间,我国高速公路继续执行“节假日高速公路免费政策”某路桥公司为掌握春节期间车辆出行的高峰情况,在某高速公路收费点记录了大年初三上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费点,它们通过该收费点的时刻的频率分布直方图如下图所示,其中时间段9:20~9:40记作区间[20,40),9:40~10:00记作[40,60),10:00~10:20记作[60,80),10:20~10:40记作[80,100].例如:10点04分,记作时刻64.(1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值,同一组中的数据用该组区间的中点值代表;(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,设抽到的4辆车中,在9:20~10:00之间通过的车辆数为X ,求X 的分布列与数学期望;(3)由大数据分析可知,车辆在每天通过该收费点的时刻T 服从正态分布()2,N μσ,其中μ可用这600辆车在9:20~10:40之间通过该收费点的时刻的平均值近似代替,2σ可用样本的方差近似代替同一组中的数据用该组区间的中点值代表,已知大年初五全天共有1000辆车通过该收费点,估计在9:46~10:22之间通过的车辆数结果保留到整数. 参考数据:若()2~,T Nμσ,则①()0.6827P T μσμσ-<≤≤=;②(22)0.9545P T μσμσ-<≤+=;③(33)0.9973P T μσμσ-<≤+=. 16.随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30、42、41、36、44、40、37、37、25、45、29、43、31、36、49、34、33、43、38、42、32、34、46、39、36,根据上述数据得到样本的频率分布表如下:(1)确定样本频率分布表中1n 、2n 、1f 和2f 的值; (2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(]30,35的概率.17.辽宁省六校协作体(葫芦岛第一高中、东港二中、凤城一中、北镇高中、瓦房店高中、丹东四中)中的某校文科实验班的100名学生期中考试的语文、数学成绩都不低于100分,其中语文成绩的频率分布直方图如图所示,成绩分组区间是:[)100,110、[)110,120、[)120130,、[)130140,、[]140,150.(1)根据频率分布直方图,估计这100名学生语文成绩的中位数和平均数;(同一组数据用该区间的中点值作代表;中位数精确到0.01)(2)若这100名学生语文成绩某些分数段的人数x 与数学成绩相应分数段的人数y 之比如下表所示: 分组区间[)100,110[)110,120[)120130, [)130140, :x y 1:31:13:4 10:1从数学成绩在[]130,150的学生中随机选取2人,求选出的2人中恰好有1人数学成绩在[]140,150的概率.18.对某校高三年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率统计表和频率分布直方图如下:分组 频数 频率 [)10,15 15 0.30[)15,20 29n[)20,25mp[)25,302t合计M1(1)求出表中M,p及图中a的值;(2)若该校高三学生人数有500人,试估计该校高三学生参加社区服务的次数在区间[)10,15内的人数;(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[)25,30内的概率.19.某单位共有10名员工,他们某年的收入如下表:员工编号12345678910年薪(万元)4 4.565 6.57.588.5951(1)求该单位员工当年年薪的平均值和中位数;(2)已知员工年薪收入与工作年限成正相关关系,某员工工作第一年至第四年的年薪分别为4万元、5.5万元、6万元、8.5万元,预测该员工第六年的年薪为多少?附:线性回归方程ˆˆˆy bx a=+中系数计算公式分别为:()()()121ˆni iiniix x y ybx x==--=-∑∑,ˆˆa y bx=-,其中x、y为样本均值.20.为提高产品质量,某企业质量管理部门经常不定期地抽查产品进行检测,现在某条生产线上随机抽取100个产品进行相关数据的对比,并对每个产品进行综合评分(满分100分),将每个产品所得的综合评分制成如图所示的频率分布直方图.记综合评分为80分及以上的产品为一等品.(1)求图中a的值,并求综合评分的中位数;(2)用样本估计总体,以频率作为概率,按分层抽样的思想,先在该条生产线中随机抽取5个产品,再从这5个产品中随机抽取2个产品记录有关数据,求这2个产品中恰有一个一等品的概率.21.参加某高中十佳校园主持人比赛的甲、乙选手得分的茎叶统计图如图所示.(1)比较甲、乙两位选手的平均数;(2)分别计算甲、乙两位选手的方差,并判断成绩更稳定的是哪位.22.2019年2月13日《烟台市全民阅读促进条例》全文发布,旨在保障全民阅读权利,培养全民阅读习惯,提高全民阅读能力,推动文明城市和文化强市建设.某高校为了解条例发布以来全校学生的阅读情况,随机调查了200名学生每周阅读时间X (单位:小时)并绘制如图所示的频率分布直方图.(1)求这200名学生每周阅读时间的样本平均数x 和样本方差2s (同一组中的数据用该组区间的中间值代表);(2)由直方图可以认为,目前该校学生每周的阅读时间X 服从正态分布()2N μσ,,其中μ近似为样本平均数x ,2σ近似为样本方差2s .(i )一般正态分布的概率都可以转化为标准正态分布的概率进行计算:若()2~,,X N μσ令X Y μσ-=,则()~0,1Y N ,且()a P X a P Y μσ-⎛⎫≤=≤⎪⎝⎭.利用直方图得到的正态分布,求()10P X ≤.(ii)从该高校的学生中随机抽取20名,记Z 表示这20名学生中每周阅读时间超过10小时的人数,求()2PZ ≥(结果精确到0.0001)以及Z 的数学期望.1940178,0.77340.00763≈≈.若()~0,1Y N ,则()0.750.7734P Y ≤=. 23.随着电子商务的发展, 人们的购物习惯正在改变, 基本上所有的需求都可以通过网络购物解决. 小韩是位网购达人, 每次购买商品成功后都会对电商的商品和服务进行评价. 现对其近年的200次成功交易进行评价统计, 统计结果如下表所示.(1) 是否有99.9%的把握认为商品好评与服务好评有关? 请说明理由;(2) 若针对商品的好评率, 采用分层抽样的方式从这200次交易中取出5次交易, 并从中选择两次交易进行观察, 求只有一次好评的概率.(22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++)24.某中学从高三男生中随机抽取100名学生,将他们的身高数据进行整理,得到下侧的频率分布表.(Ⅰ)为了能对学生的体能做进一步了解,该校决定在第3,4,5组中用分层抽样的方法抽取6名学生进行体能测试,问第3,4,5组每组各应抽取多少名学生进行测试;(Ⅱ)在(Ⅰ)的前提下,学校决定在6名学生中随机抽取2名学生进行引体向上测试,求第3组中至少有一名学生被抽中的概率;(Ⅲ)试估计该中学高三年级男生身高的中位数位于第几组中,并说明理由.25.2018年2月925-日,第23届冬奥会在韩国平昌举行.4年后,第24届冬奥会将在中国北京和张家口举行.为了宣传冬奥会,某大学在平昌冬奥会开幕后的第二天,从全校学生中随机抽取了120名学生,对是否收看平昌冬奥会开幕式情况进行了问卷调查,统计数据如下:(1)根据上表说明,能否有99%的把握认为,收看开幕式与性别有关?(2)现从参与问卷调查且收看了开幕式的学生中,采用按性别分层抽样的方法选取8人,参加2022年北京冬奥会志愿者宣传活动.①问男、女学生各选取多少人?②若从这8人中随机选取2人到校广播站开展冬奥会及冰雪项目宣传介绍,求恰好选到一名男生一名女生的概率P.附:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.26.某研究院为了调查学生的身体发育情况,从某校随机抽频率组距测120名学生检测他们的身高(单位:米),按数据分成[1.2,1.3],(1.3,1.4],,(1.7,1.8]这6组,得到如图所示的频率分布直方图,其中身高大于或等于1.59米的学生有20人,其身高分别为1.59,1.59,1.61,1.61,1.62,1.63,1.63,1.64,1.65,1.65,1.65,1.65,1.66,1.67,,1.68,1.69,1.69,1.71,1.72,1.74,以这120名学生身高在各组的身高的频率估计整个学校的学生在各组身高的概率.(1)求该校学生身高大于1.60米的频率,并求频率分布直方图中m 、n 、t 的值; (2)若从该校中随机选取3名学生(学生数量足够大),记X 为抽取学生的身高在(1.4,1.6]的人数求X 的分布列和数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据分层抽样和简单随机抽样的定义进行判断即可. 【详解】①,四所学校,学生有差异,故①使用分层抽样, ②在同一所学校,且人数较少,使用的是简单随机抽样,故选B . 【点睛】本题主要考查简单抽样的应用,根据分层抽样的定义是解决本题的关键.2.B解析:B 【解析】分析:设应抽取的男生人数为x ,根据分层抽样的定义对应成比例可得35400300400x=+,解出方程即可.详解:设应抽取的男生人数为x ,∴35400300400x=+,解得20x,即应抽取的男生人数为20,故选B.点睛:本题考查应从高一年级学生中抽取学生人数的求法,考查分层抽样等基础知识,考查运算求解能力,是基础题.3.A解析:A 【分析】计算出数据1x 、2x 、、n x 的平均值x 和方差2s 的值,然后利用平均数和方差公式计算出数据153x -、253x -、、53n x -的平均值和方差.【详解】 设数据1x 、2x 、、n x 的平均值为x ,方差为2s ,由题意()()()()121221212121215n n x x x x x x x nn++++++++=+=+=,得2x =,由方差公式得()()()()()()22212212121212121n x x x x x x n⎡⎤⎡⎤⎡⎤+-+++-++++-+⎣⎦⎣⎦⎣⎦()()()2221224416n x x x x x x s n⎡⎤-+-++-⎢⎥⎣⎦===,24s ∴=. 所以,数据153x -、253x -、、53n x -的平均值为()()()12535353n x x x n-+-+-()1235535321n x x x x n+++=-=-=-⨯=-,方差为()()()()()()22212535353535353n x x x x x x n⎡⎤⎡⎤⎡⎤---+---++---⎣⎦⎣⎦⎣⎦()()()2221229936n x x x x x x s n⎡⎤-+-++-⎢⎥⎣⎦===. 故选:A. 【点睛】本题考查平均数与方差的计算,熟练利用平均数与方差的公式计算是解题的关键,考查计算能力,属于中等题.4.B解析:B 【解析】 【分析】应用平均数计算方法,设出两个平均数表达式,相减,即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学周测 2012-9-15
一、选择与填空题(每题6分,共60分)(请将选择和填空题答案写在以下答题卡内)
1. 圆C 1 : x 2+y 2+2x +8y -8=0与圆C 2 : x 2+y 2-4x +4y -2=0的位置关系是( ) A .相交 B .外切 C .内切 D .相离
2. 两圆x 2+y 2-4x +2y +1=0与x 2+y 2+4x -4y -1=0的公共切线有( ). A .1条 B .2条 C .3条 D .4条 >
3. 若圆C 与圆(x +2)2+(y -1)2=1关于原点对称,则圆C 的方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y -1)2=1 C .(x -1)2+(y +2)2=1
D .(x +1)2+(y -2)2=1
4. 与直线l : y =2x +3平行,且与圆x 2+y 2-2x -4y +4=0相切的直线方程是( ) A .x -y ±5=0
B .2x -y +5=0
C .2x -y -5=0
D .2x -y ±5=0
5. 直线x -y +4=0被圆x 2+y 2+4x -4y +6=0截得的弦长等于( ) A .2
B .2
C .22
D .42
6. 圆x2+y2-4x -4y -10=0上的点到直线x +y -14=0的最大距离与最小距离的差是( )
A .30
B .18
C .62
D .52

7. 若直线3x -y +c =0,向右平移1个单位长度再向下平移1个单位,平移后与圆x 2+y 2=10相切,则c 的值为( ) A .14或-6
B .12或-8
C .8或-12
D .6或-14
8. 若直线3x -4y +12=0与两坐标轴的交点为A ,B ,则以线段AB 为直径的圆的一般方程为____________________
9. 圆心在直线2x +y =0上,且圆与直线x +y -1=0切于点M (2,-1)的圆的标准方程为__________
10. 已知P
是直线3x +4y +8=0上的动点,PA ,PB 是圆(x -1)2+(y -1)2=1的两
条切线,A,B是切点,C是圆心,则四边形PACB面积的最小值为
二、解答题(共40分)
11.(15分)求与x轴相切,圆心C在直线3x-y=0上,且截直线x-y=0得的弦长为27的圆的方程.

12.(25分)已知圆C :(x-1)2+(y-2)2=2,点P坐标为(2,-1),过点P作圆C 的切线,切点为A,B.(1)求直线PA,PB的方程(8分);(2)求过P点的圆的切线长(8分);(3)求直线AB的方程(9分).

{
高二数学周测答案
一、选择题
)
二、填空题
8.x 2+y 2+4x -3y =0; 9. (x -1)2+(y +2)2=2; 10.22.
三、解答题
11.解:因为圆心C 在直线3x -y =0上,设圆心坐标为(a ,3a ),
圆心(a ,3a )到直线x -y =0的距离为d =2
2 - a .
又圆与x 轴相切,所以半径r =3|a |, <
设圆的方程为(x -a )2+(y -3a )2=9a 2, 设弦AB 的中点为M ,则|AM |=7. 在Rt △AMC 中,由勾股定理,得 2
2 2 - ⎪⎪⎭


⎛a +(7)2=(3|a |)2. 解得a =±1,r 2=9.
故所求的圆的方程是(x -1)2+(y -3)2=9,或(x +1)2+(y +3)2=9.
12.解:(1)设过P 点圆的切线方程为y +1=k (x -2),即kx ―y ―2k ―1=0. 因为圆心(1,2)到直线的距离为2,
1
+ 3 - - 2
k k =2, 解得k =7,或k =-1.
故所求的切线方程为7x ―y ―15=0,或x +y -1=0.
(2)在Rt △PCA 中,因为|PC |=222 - 1 -
+ 1 - 2)()(=10,|CA |=2, 所以|PA |2=|PC |2-|CA |2=8.所以过点P 的圆的切线长为22.
(3)容易求出k PC =-3,所以k AB =31

如图,由
CA 2=CD ·PC ,可求出
CD =PC CA 2
=10
2.
设直线AB 的方程为y =3
1
x +b ,即x -3y +3b =0.
(第12题)
(第11题)

102=2
3 + 1 3 + 6 - 1 b 解得b =1或b =37(舍).
所以直线AB 的方程为x -3y +3=0.
(3)也可以用联立圆方程与直线方程的方法求解.。

相关文档
最新文档