洞外与洞内联系测量(主要为竖井联系测量)

合集下载

隧道两井定向联系测量

隧道两井定向联系测量

在隧道施工中,需要把地面上的已知点及方位角传到地下,即联系测量,联系测量的方法有多种,为了提高定向精度,可利用隧道的两个施工竖井(或在长隧道中部钻孔)进行两井定向。

两井定向是在两施工竖井(或钻孔)中分别悬挂一根钢丝,与一井定向相比,由于两钢丝间的距离大大增加了,因而减少了投点误差引起的方向误差,有利于提高地下导线的精度,这是两井定向的主要优点。

其次是外业测量简单,占用竖井的时间较短。

两井定向时,利用地面上布设的近井点或地面控制点采用导线测量或其他测量方法测定两钢丝的平面坐标值。

在地下隧道中,将已布设的地下导线与竖井中的钢丝联测,即可将地面坐标系中的坐标与方向传递到地下去,经计算求得地下导线各点的坐标与导线边的方位角。

在地面上采用导线测量测定两根钢丝的坐标,在地下使地下导线的两端点分别与两根钢丝联测,这样就组成一个附合图形。

在这个图形中,两根钢丝处缺少两个连接角,这样的地下导线是无起始方向角的,故称它为无定向导线。

按无定向附合导线计算步骤和方法计算出各点的坐标及方位角。

采用人工测量方法进行盾构管片安装测量时,应针对不同构造的盾构机的特点,制定相应的测量方案。

对管片安装测量使用全站仪、水准仪和带有水平气泡的板尺,分别采用极坐标法、水准测量方法和直接丈量方法。

在管片出车架,壁后注浆完成后,将板尺水平横放在衬砌环上,测量板尺中心和该处的顶、底板高程等直接或间接得到衬环中心坐标、底板高程、水平直径、垂直直径和前端面里程,测量误差在±3mm以内。

根据成环管片的内径,采用铝合金制作一铝合金标尺,铝合金标尺长接近内径。

在铝合金标尺正中央位置做标识,并在其侧面贴上反射片。

测量时,将铝合金标尺水平放置在某一环片上,首先用水平尺把铝合金标尺精确整平,使用全站仪采用极坐标法测量铝合金标尺中心坐标,即为环片中心坐标;使用水准仪测量铝合金标尺正中央位置的底板和顶板高程,从而得到环片直径及圆心。

由此,就可以推算出的成环管片中心轴线的实际三维坐标,以及与设计比较后的差值。

竖井联系测量

竖井联系测量

竖井联系测量人民交通一、竖井联系测量的任务在隧道施工中,常用竖井在隧道中间增加掘进工作面,从多面同时掘进,可以缩短贯通段的长度,提高施工进度。

这时,为了保证相向开挖面能正确贯通,就必须将地面控制网中的坐标、方向及高程,经由竖井传递到地下去,这些传递工作称为竖井联系测量。

其中坐标和方向的传递,称为竖井定向测量。

通过定向测量,使地下平面控制网与地面上有统一的坐标系统。

而通过高程传递则使地下高程系统获得与地面统一的起算数据。

按照地下控制网与地面上联系的形式不同,定向的测量方法可分为下列四种:1.经过一个竖井定向(简称一井定向);2.经过两个竖井定向(简称两井定向);3.经过横洞(平坑)与斜井的定向;4.应用陀螺经纬仪定向。

竖井的联系测量可通过一个井筒、也可同时通过两个井筒进行。

这种联系测量是利用地上、地下控制点之间的几何关系将坐标、方向和高程引入地下,故称几何定向。

平峒的联系测量可通过一个井筒、也可同时通过两个井筒进行。

这种联系测量是利用地上、地下控制点之间的几何关系将坐标、方向和高程引入地下。

由于平峒隧道有进口和出口,导线和水准线路可从隧道两端引进,大大缩短贯通长度。

其作业方法与地面控制测量相同。

斜井的联系测量方法与平峒基本相同。

不同处是隧道坡度较大,导线测量要注意坡度的影响。

另外,斜井大部分为单头掘进,从洞口引进的导线均为支导线,要加强检核,以防止联系测量出现错误。

由于陀螺仪技术的飞速发展,在导航和测量工作中已被广泛应用。

陀螺仪重量轻、体积小、精度高、使用方便,在隧道联系测量工作中,不失为一种经济、快速、影响小的现代化定向仪器。

高程联系测量是将地面高程引入地下,又称导入高程。

显而易见,为使地下隧道(巷道)贯通,地上、地下的控制点必须在同一个坐标系统和高程系统。

地下工程与地面工程的相对位置也必须正确无误;地下建(构)筑物的相对关系,也必须精确。

如此种种,说明联系测量是非常重要的。

几何定向几何定向分一井定向和两井定向。

隧道贯通段测量内容

隧道贯通段测量内容

隧道贯通段测量内容隧道贯通段测量的主要内容有:1.进行贯通测量设计:这是确保隧洞准确贯通的技术基础,相向或单向掘进均宜事先做好贯通测量技术设计,并按设计进行作业。

2.建立洞外平面和高程控制:这是隧道贯通测量中的重要环节,通过建立洞外控制网,可以对隧道内的施工进行准确的定位和测量。

3.进行施工放样:在隧道内进行施工放样,标出拱顶、边墙和起拱线位置,立模后检测。

4.测绘洞室开挖和衬砌断面:通过测绘洞室开挖和衬砌断面,可以计算开挖、填筑工程量及进行竣工验收。

5.计算开挖、填筑工程量及进行竣工验收:这是隧道贯通测量的最后环节,通过对开挖、填筑工程量的计算和竣工验收,可以确保隧道施工符合设计要求,达到预期的贯通效果。

隧道贯通段测量的主要内容是围绕确保隧洞准确贯通的目标进行的,通过建立洞外平面和高程控制、进行施工放样、测绘洞室开挖和衬砌断面、计算开挖、填筑工程量及进行竣工验收等一系列步骤,最终实现隧道的准确贯通。

隧道贯通段测量的意义在于:1.保证隧道施工的准确性和精度,确保隧道的质量和安全。

2.通过获取实际的贯通误差值,可以作为下一步调整施工中线的依据,以获得一条调整后的隧道中线,作为扩大断面、衬砌以及在铁路隧道中铺设铁轨的依据。

3.可加快施工进度,改善通风状况与劳动条件,有利于矿井开采与掘进的平衡接续,加快矿井建设。

隧道贯通段测量在确保隧道准确贯通、提高施工效率、保障施工安全等方面都具有重要的意义。

隧道贯通测量的原理主要是通过测量隧道两端的控制点坐标和方位角,计算出两端之间的距离和方位差。

具体步骤如下:1.在隧道两端各设置一个控制点,并准确测量控制点的初始坐标和方位角。

2.使用全站仪等测量仪器测量控制点,并记录测量数据。

3.在隧道贯通后,再次测量两端的控制点,并记录测量数据。

4.通过比较两次测量数据,可以得出贯通误差值,以此调整施工中的误差。

贯通测量的目的是保证隧道施工的准确性和精度,确保隧道的质量和安全。

测量学习题及其参考答案9-

测量学习题及其参考答案9-

习题91.如何根据建筑方格网进行建筑物的定位放线?为什么要没置轴线桩?1.建筑方格网一般是精心测量的矩形控制网,可根据建筑方格网点坐标和建筑物定位点的设计坐标,用直角坐标法测设建筑物轴线交点,详见第8章直角坐标法内容。

由于建筑物定位后,轴线交点位置在基础开挖时被挖掉,所以在基础开挖前,应把轴线交点桩位引测到施工范围以外适当地方,作为基础基槽开挖后各阶段施工中确定轴线位置的依据。

2.对柱子安装测量有何要求?如何进行校正?2.要求保证柱子平面和高程位置符合设计要求,柱身铅直。

预制钢筋混凝土柱子插人杯形基础的杯口后,柱子三面的中心线与杯口中心线对齐吻合,并固定。

使用严格检验校正的经纬仪在整平后,在柱轴线两个互为垂直方向上安置经纬仪进行校正,先用十字丝竖丝瞄准柱子根部的中心线,制动照准部,缓缓抬高望远镜,观察柱子中心线偏离纵丝的方向,指挥工作人员用钢丝绳拉直柱子,直至从两台经纬仪中观测到的柱子中心线从下而上都与十字丝纵丝重合为止。

3.如何控制吊车梁安装时的中心线位置和高程?3.吊车梁安装时根据柱子上所画±0.000标志的高程,用水准测量方法进行控制,以使修平或加垫牛腿面,保证吊车梁顶面的标高应符合设计要求。

吊车梁安装时的中心线应与牛腿面上的中心线对齐,一般按设计数据在地面上定出吊车梁中心线的两端点,打大木桩标志。

然后用经纬仪将吊车梁中心线投测到每个柱子的牛腿面的侧边上,并弹以墨线。

4.建筑施工测量中的主要问题是什么?目前常用哪些方法?4.建筑物施工测量中的主要问题是轴线投测,保证建筑物轴线正确,控制垂直度。

目前常用有外控法和内控法。

其次是高程控制,保证建筑物标高正确,目前常用有水准测量法,悬吊钢尺法和钢尺直接丈量法。

5.简述建筑物沉降观测的目的和方法。

5.沉降观测的目的是保证工程建筑物在施工、使用和运行中的安全,以及为建筑设计积累资料。

沉降观测的方法有:以水准测量方法为主,也可用光电测距三角高程方法。

隧道施工控制测量

隧道施工控制测量

隧道施工控制测量一、工艺概述隧道控制测量和施工测量是隧道施工过程中的重要工序。

施工测量过程中应执行测量复核制,使测量过程快速、结果精确无误;保证隧道按规定精度贯通,各种建筑物空间位置及尺寸符合设计要求,不得侵入隧道限界。

二、作业内容1、控制测量:洞外控制测量、竖井联系测量、洞内控制测量2、施工测量:洞口边仰坡开挖放线测量、洞口大管棚导向管的定位放线测量、隧道开挖轮廓线放线及超欠挖检测测量、拱架架立安装放线测量、隧底及仰拱开挖放线测量、仰拱填充及边基放线测量、二衬模板台车定位测量、沟槽施工放线测量、竖井井身开挖测量、隧道横断面净空检查测量、无碴轨道施工测量3、贯通测量4、竣工测量三、质量控制及检验技术要求1、隧道贯通误差的限差隧道相向两施工中线在贯通面上的贯通限差应符合表1的规定:3、各级控制测量布网要求3.1依据铁路工程测量指南时速200~250公里有砟轨道平面控制网参见表3。

表3时速200~250有砟轨道各级平面控制网布网要求表3.2依据高速铁路测量指南,高速铁路无碴轨道平面控制网参见表4。

表4客运专线无碴轨道各级平面控制网布网要求表4、GPS 测量的精度指标4.1依据时速200~250公里有砟轨道铁路工程测量指南,GPS 测量的精度见表5。

表5时速200~250公里有砟轨道GPS 测量的精度指标表4.2高速铁路无碴轨道铁路工程测量暂行规定GPS 测量的精度见表6。

±5n ±8nL 4L 4L ——L8L8L4LL12L12L8LL20L20L14L40D2009、隧道开挖、立拱架隧道的允许超挖值应符合表13的规定。

拱架安装值应符合表14的规定。

四、工艺流程图(略)五、工序步骤及质量控制说明1、施工准备1.1技术准备1.1.1已知成果。

1.1.2点位检查。

1.1.3测量方案。

1.1.4埋设桩点。

1.1.5外界条件。

1.1.6内业资料。

1.1.7资料复核。

1.1.8编制程序。

竖井联系测量方法比较探讨

竖井联系测量方法比较探讨

地下隧道竖井联系测量方法比较探讨姚顺福随着城市发展的需要,国内很多城市都陆续开展了轨道交通工程的建设,以保证城市交通的顺畅,确保人民群众出行的便利。

我市从上世纪八十年代末就开始首条轨道交通线的建设,目前已运营的轨道交通线达到4条。

06年12月19日,随着3号线北延伸段的正式通车试运营,我市轨道交通的运营里程达到了139公里,超越香港和北京成为全国第一。

为有效利用城市空间,我市轨道交通工程主要采用地下隧道的形式进行。

在进行地下隧道的施工建设时,主要是通过竖井(车站端头井或中间工作风井)提供工作面进行施工,因此如何保证地下车站以及区间隧道严格按设计施工就成为建设者们的首要问题。

竖井联系测量(平面)的目的就是将地面控制网的坐标和方位按要求精度准确地传递给地下隧道施工控制导线(或施工导线),为施工提供控制依据。

笔者根据近期参加轨道交通11号线第三方测量的工作经验,将地下隧道竖井联系测量的常用几种方法进行分析比较,提出一种适合我市情况的联系测量方法,为今后的地下隧道施工建设提供一些参考经验。

目前国内绝大多数城市在轨道交通建设中,竖井联系测量基本上采用以下四种方法进行:陀螺定向法、钻孔投点法、联系三角形法和导线定向法。

以下就这几种方法分别作个分析比较。

1 测量原理1.1 陀螺定向法陀螺定向法是综合利用全站仪、光学垂准仪(或重锤球)以及陀螺经纬仪等仪器进行导线联系测量的一种方法。

首先利用光学垂准仪(或重锤球)将地面车站端头井的点位沿同一铅锤线方向投影到端头井的井底,同时利用全站仪测量井上、井下各导线点的角度与距离、利用陀螺经纬仪测量井上、井下的相关导线边的陀螺方位角,从而求算出井上、井下投影点在空间的平面夹角,最终把地面趋近导线的平面坐标和方位传递到地下隧道施工控制导线上。

如下图1所示,K0、K1为地面趋近导线点,其中K0为近井点;T1、T2为地面车站端头井投影点;T1´、T2´分别为T1、T2投影到车站端头井底部的投影点;X1、X2、X3……Xn为地下隧道施工控制导线点;a1、a2、a5、a6、a7和d1、d2、d3、d4、d5、d6分别为全站仪实测的角度和距离。

竖井联系测量

竖井联系测量

竖井联系测量人民交通出版社一、竖井联系测量的任务在隧道施工中,常用竖井在隧道中间增加掘进工作面,从多面同时掘进,可以缩短贯通段的长度,提高施工进度。

这时,为了保证相向开挖面能正确贯通,就必须将地面控制网中的坐标、方向及高程,经由竖井传递到地下去,这些传递工作称为竖井联系测量。

其中坐标和方向的传递,称为竖井定向测量。

通过定向测量,使地下平面控制网与地面上有统一的坐标系统。

而通过高程传递则使地下高程系统获得与地面统一的起算数据。

按照地下控制网与地面上联系的形式不同,定向的测量方法可分为下列四种:1.经过一个竖井定向(简称一井定向);2.经过两个竖井定向(简称两井定向);3.经过横洞(平坑)与斜井的定向;4.应用陀螺经纬仪定向。

竖井的联系测量可通过一个井筒、也可同时通过两个井筒进行。

这种联系测量是利用地上、地下控制点之间的几何关系将坐标、方向和高程引入地下,故称几何定向。

平峒的联系测量可通过一个井筒、也可同时通过两个井筒进行。

这种联系测量是利用地上、地下控制点之间的几何关系将坐标、方向和高程引入地下。

由于平峒隧道有进口和出口,导线和水准线路可从隧道两端引进,大大缩短贯通长度。

其作业方法与地面控制测量相同。

斜井的联系测量方法与平峒基本相同。

不同处是隧道坡度较大,导线测量要注意坡度的影响。

另外,斜井大部分为单头掘进,从洞口引进的导线均为支导线,要加强检核,以防止联系测量出现错误。

由于陀螺仪技术的飞速发展,在导航和测量工作中已被广泛应用。

陀螺仪重量轻、体积小、精度高、使用方便,在隧道联系测量工作中,不失为一种经济、快速、影响小的现代化定向仪器。

高程联系测量是将地面高程引入地下,又称导入高程。

显而易见,为使地下隧道(巷道)贯通,地上、地下的控制点必须在同一个坐标系统和高程系统。

地下工程与地面工程的相对位置也必须正确无误;地下建(构)筑物的相对关系,也必须精确。

如此种种,说明联系测量是非常重要的。

几何定向几何定向分一井定向和两井定向。

隧道洞内外导线测量方法及注意事项

隧道洞内外导线测量方法及注意事项

精品文档隧道洞内外导线测量方法及注意事项一、隧道导线点布设1、洞外平面控制网一般采用GPS测量,每个洞口应沿洞口连线的方向布设4个控制点,形成大地四边形,点间尽量相互通视,点间的距离不小于300m为宜(规范中无明确规定),各点间的距离相差不宜过大,一般相邻点间边长之比不能超过1:3。

并且有不少于2个点与隧道洞口通视,作为与洞内传递方向的洞外联系边,且该联系边长度不宜小于300m。

洞外控制点连线以与隧道中心线方向平行或垂直为宜,以减小点位误差对贯通面横向误差影响。

点位的埋设应稳定,便于长期保存。

布点时还应注意进洞联系边的俯仰角不应过大,规范要求:GPS控制网进洞联系边最大俯仰角不宜大于5°,导线网、三角形网的最大俯仰角不宜大于15°。

2、洞外水准点一般每个洞口应埋设不少于2个以上的水准点。

水准点应尽可能与洞口等高,两水准点间的高差应以水准测量1~2站即可联测为宜。

水准点应埋设在洞口附近不受施工影响的地方,且便于与隧道洞内联测为宜。

3、洞内导线一般大于1.5km的隧道应布设双导线,形成多边形闭合环,每个闭合环一般由4~6条边构成。

导线点间距一般在200m 左右,不宜过长或过短。

相邻导线边长不宜相差太大,相邻边长之比不能超过1:3。

一般导线点离障碍物的距离不宜小于0.2m。

4、洞内水准点一般200m~500m设置一对,应选择在稳定便于长期保存。

精品文档.隧道洞内、外导线布设示意图洞外控制点洞外控制点洞外控制点洞外控制点洞口投点进洞方向线,距离不小于300m进洞方向线,距离不小于300m洞内导线,间距控制在200m左右二、隧道导线测量方法和注意事项1、隧道导线测量主要内容:洞外平面、高程测量,洞口投点测量,进洞联系测量,洞内导线、高程测量。

2、洞外平面、高程测量2.1洞外平面GPS测量:洞外平面测量目前一般均采用GPS测量,按要求布设好各洞口控制点,按照规范要求的测量等级、精度和方法组织测量即可,测量计算方法项目用的较小,不详细叙述。

隧道竖井联系测量

隧道竖井联系测量

隧道竖井联系测量1. 简介隧道竖井联系测量是指在隧道和竖井之间进行的一种测量方式,用于测量隧道和竖井的连通性和相对位置关系,对于隧道和竖井的建设、维护和管理具有重要的意义。

隧道竖井联系测量通常使用全站仪进行测量。

2. 测量原理隧道竖井联系测量主要采用全站仪,通过望远镜、水平仪、角度计等测量仪器来进行测量。

测量的基本原理是通过三角测量法来计算隧道和竖井之间的位置和相对距离。

在实际测量中,首先要在隧道和竖井之间设置控制点,控制点要选在隧道和竖井各自的中心线上,并且要在隧道和竖井的共同平面上。

在设立控制点后,再利用全站仪的水平仪进行水平方向的测量,然后用望远镜观测隧道和竖井之间的测站,并使用角度计测定测站与控制点之间的相对角度。

通过这些基本的测量数据,可以计算出隧道和竖井之间的相对距离和位置。

3. 测量方法隧道竖井联系测量的方法有两种:测量隧道竖井与地面的连接点高程和测量隧道竖井在水平方向的连通状态。

3.1 测量连接点高程测量连接点高程可以通过测量竖井与地面的高程以及隧道与地面的高程来进行计算。

在实际测量中,首先需要在竖井的顶部和底部、以及隧道两侧的地面上设置控制点,并进行测量。

然后,通过相应的计算公式就可以计算出连接点的高程。

3.2 测量连通状态测量连通状态主要是针对隧道竖井之间的连接状态进行测量。

在实际测量中,需要在隧道入口、出口和竖井的中央设置控制点,并进行测量。

然后,通过全站仪进行水平仪测量和角度测量,使用三角形计算公式计算出隧道和竖井之间的连通状态。

4. 应用范围隧道竖井联系测量在地下建设、维护和管理中具有重要的应用价值。

在建设过程中,可以使用隧道竖井联系测量来确定相邻隧道和竖井之间的位置和距离关系,以便更好地规划和安排工程。

在维护过程中,隧道竖井联系测量可以用于检测隧道和竖井之间的变形、位移和裂缝等情况,以及确定隧道和竖井之间的联通状态。

在管理过程中,隧道竖井联系测量可以用于维护和更新地下建筑的数据库和地图,以及为其它科学或应用领域提供参考数据。

地下工程与隧道工程技术-线桥隧施工测量-课程建设方案

地下工程与隧道工程技术-线桥隧施工测量-课程建设方案

地下工程与隧道工程技术专业线桥隧施工测量课程建设方案一、现有基础线桥隧施工测量课程是培养土建类专业学生测量能力的核心课程之一。

课程教学团队现有任课教师17人(含兼职教师5人)。

课程建设团队中教授、副教授、高级工程师6人,讲师(含工程师)9人,教学团队成员全部获得硕士学位,年龄结构、职称结构、学历结构合理。

2009年7月“测绘教研室教学团队"被教育厅认定为省级教学团队。

学院建有土建类专业测绘综合实训基地(包括土木工程实训场、控制测量实训场、测量数据处理与软件应用中心等6个专业实训场),可供本课程教学使用的教学仪器设备包括经纬仪、全站仪、水准仪、GPS接收机等200余台套。

线桥隧施工测量课程自开设以来,在课程资源建设、课程教学改革、课程师资建设等方面取得了一定建设成效(见下表1)和一系列标志性成果。

表1 现有资源清单部分标志性成果:1.2015年3月“高职交通土建类专业五大能力培养体系的研究与实践”成果获陕西省教学成果特等奖。

2。

2013年3月“高职铁道工程类专业测量课程教学改革与实践”成果获陕西省教学成果一等奖。

3.2007年12月“铁路工程类专业群测绘教学实训基地建设的研究与实践"获陕西省教学成果二等奖.4.2010年4月“线桥隧施工测量"精品课程被认定为省级精品课程。

5。

2008年12月“土建类专业测绘综合实训基地”被认定为陕西省高职实训基地。

6.2014年9月“线桥隧测量”课程获陕西省职业院校信息化教学大赛高职组网络课程一等奖.7。

2013年7月“线桥隧施工测量”被认定为院级精品资源共享课。

8.2014年2月《线桥隧施工测量》教材在2009年《线桥隧测量》教材的基础上经过修改和进一步完善,由西南交通大学出版社出版发行。

9.2011年12月“高职土建类专业五大基本核心能力的人才培养模式研究与实践”被确定为陕西省高等教育教学改革重点攻关项目。

10。

2010年5月“高职铁道工程类专业测量课程教学改革与实践"项目被确定为院级教学改革研究项目。

竖井联系测量

竖井联系测量

竖井联系测量人民交通出版社一、竖井联系测量的任务在隧道施工中,常用竖井在隧道中间增加掘进工作面,从多面同时掘进,可以缩短贯通段的长度,提高施工进度。

这时,为了保证相向开挖面能正确贯通,就必须将地面控制网中的坐标、方向及高程,经由竖井传递到地下去,这些传递工作称为竖井联系测量。

其中坐标和方向的传递,称为竖井定向测量。

通过定向测量,使地下平面控制网与地面上有统一的坐标系统。

而通过高程传递则使地下高程系统获得与地面统一的起算数据。

按照地下控制网与地面上联系的形式不同,定向的测量方法可分为下列四种:1.经过一个竖井定向(简称一井定向);2.经过两个竖井定向(简称两井定向);3.经过横洞(平坑)与斜井的定向;4.应用陀螺经纬仪定向。

竖井的联系测量可通过一个井筒、也可同时通过两个井筒进行。

这种联系测量是利用地上、地下控制点之间的几何关系将坐标、方向和高程引入地下,故称几何定向。

平峒的联系测量可通过一个井筒、也可同时通过两个井筒进行。

这种联系测量是利用地上、地下控制点之间的几何关系将坐标、方向和高程引入地下。

由于平峒隧道有进口和出口,导线和水准线路可从隧道两端引进,大大缩短贯通长度。

其作业方法与地面控制测量相同。

斜井的联系测量方法与平峒基本相同。

不同处是隧道坡度较大,导线测量要注意坡度的影响。

另外,斜井大部分为单头掘进,从洞口引进的导线均为支导线,要加强检核,以防止联系测量出现错误。

由于陀螺仪技术的飞速发展,在导航和测量工作中已被广泛应用。

陀螺仪重量轻、体积小、精度高、使用方便,在隧道联系测量工作中,不失为一种经济、快速、影响小的现代化定向仪器。

高程联系测量是将地面高程引入地下,又称导入高程。

显而易见,为使地下隧道(巷道)贯通,地上、地下的控制点必须在同一个坐标系统和高程系统。

地下工程与地面工程的相对位置也必须正确无误;地下建(构)筑物的相对关系,也必须精确。

如此种种,说明联系测量是非常重要的。

几何定向几何定向分一井定向和两井定向。

隧道施工测量技术要求

隧道施工测量技术要求

隧道施工测量技术要求1、总述隧道施工控制测量分为隧道洞外控制测量、隧道洞内控制测量、洞内、外联系测量、贯通测量等部分。

2、隧道洞外控制测量隧道洞外平面控制网的布网方案有三角形网、导线网、GNSS网等形式。

应在洞口处设点以给出精确的进洞方向,洞口点附近的短边尽量采用精密测距仪测边,并一起平差。

隧道洞外高程控制测量的任务是在各洞口(或井口)附近设立2-3个水准基点,以便于向洞内传递高程之用。

高程控制测量的方法可采用水准测量、光电测距三角高程测量。

一般在平坦地区采用等级水准测量,在丘陵及山区采用光电测距三角高程测量。

3、隧道洞内控制测量隧道洞内控制测量包括洞内平面控制测量和洞内高程控制测量。

洞内平面控制测量由于受地下工程条件的限制,只能布设导线。

洞内高程控制测量方法有水准测量、三角高程测量。

(1)洞内平面控制测量中洞内导线的特点与布设如下:洞内导线测量的作用是以必要的精度建立地下的控制系统,并与洞外平面控制网联测。

依据该控制系统可以放样出隧道(或坑道)中线及其衬砌的位置,从而指示隧道(或坑道)的掘井方向。

洞内导线的起始点通常位于平峒口、斜井口以及竖井的井底车场,而这些点的坐标是由地面控制测量或联系测量测定的。

地下导线等级的确定取决于地下工程的类型、范围及精度要求等。

洞内导线的类型有附合导线、闭合导线、方向附合导线、支导线及导线网等。

当坑道开始掘进时,首先敷设低等级导线给出坑道的中线,指示坑道掘进。

当巷道掘进300-500m时,再敷设高等级导线检查已敷设的低等级导线是否正确,所以应使其起始边(点)和最终边(点)与低等级导线边(点)相重合。

当巷道继续向前掘进时,以高等级导线所测设的最终边为基础,向前敷设低等级导线和放样中线。

(2)洞内高程控制测量:洞内高程控制测量的任务是,测定地下坑道中各高程点的高程,建立一个与洞外统一的地下高程控制系统,并与洞外高程控制网进行联测,作为地下工程在竖直面内施工放样的依据,解决各种地下工程在竖直面内的几何问题。

竖井联系测量

竖井联系测量

竖井联系测量人民交通出版社一、竖井联系测量的任务在隧道施工中,常用竖井在隧道中间增加掘进工作面,从多面同时掘进,可以缩短贯通段的长度,提高施工进度。

这时,为了保证相向开挖面能正确贯通,就必须将地面控制网中的坐标、方向及高程,经由竖井传递到地下去,这些传递工作称为竖井联系测量。

其中坐标和方向的传递,称为竖井定向测量。

通过定向测量,使地下平面控制网与地面上有统一的坐标系统。

而通过高程传递则使地下高程系统获得与地面统一的起算数据。

按照地下控制网与地面上联系的形式不同,定向的测量方法可分为下列四种:1.经过一个竖井定向(简称一井定向);2.经过两个竖井定向(简称两井定向);3.经过横洞(平坑)与斜井的定向;4.应用陀螺经纬仪定向。

竖井的联系测量可通过一个井筒、也可同时通过两个井筒进行。

这种联系测量是利用地上、地下控制点之间的几何关系将坐标、方向和高程引入地下,故称几何定向。

平峒的联系测量可通过一个井筒、也可同时通过两个井筒进行。

这种联系测量是利用地上、地下控制点之间的几何关系将坐标、方向和高程引入地下。

由于平峒隧道有进口和出口,导线和水准线路可从隧道两端引进,大大缩短贯通长度。

其作业方法与地面控制测量相同。

斜井的联系测量方法与平峒基本相同。

不同处是隧道坡度较大,导线测量要注意坡度的影响。

另外,斜井大部分为单头掘进,从洞口引进的导线均为支导线,要加强检核,以防止联系测量出现错误。

由于陀螺仪技术的飞速发展,在导航和测量工作中已被广泛应用。

陀螺仪重量轻、体积小、精度高、使用方便,在隧道联系测量工作中,不失为一种经济、快速、影响小的现代化定向仪器。

高程联系测量是将地面高程引入地下,又称导入高程。

显而易见,为使地下隧道(巷道)贯通,地上、地下的控制点必须在同一个坐标系统和高程系统。

地下工程与地面工程的相对位置也必须正确无误;地下建(构)筑物的相对关系,也必须精确。

如此种种,说明联系测量是非常重要的。

几何定向几何定向分一井定向和两井定向。

竖井联系测量

竖井联系测量

竖井联系测量00000000 002.1仪器设备东杨区间按钻孔投点法进行联系测量时,使用的仪器设备为TC1610全站仪和NL垂准仪,并聘请有钻机的单位予以配合。

2隧道工程联系测量方法与实例依据施工场地环境和测量条件,联系测量可选择联系三角形法、陀螺经纬仪与铅垂仪(钢丝)组合法、导线直接传递法、投点法。

一、住宅用户满意度测量的理论基础住宅用户满意度是一个很复杂的认知概念,尽管不同领域的学者们从不同的角度对这一概念进行了深入的研究,但理论基础是非常相似的。

2.2作业实施(1)导线布设根据现场情况,选择竖井井盖上一点为T1(利用竖井,不需钻孔);在已经开挖的竖井通道或中线导洞上方选择一点T2,并用钻机钻出约20cm的圆孔。

为解决这个问题,我们可以取消卫生间通风器,在排风竖井每层支管上加设一只定风量阀,竖井顶部设一只排风机。

地面投点T1、T2,从地面已知导线SGK24、SGK25、DY2、DY1引测。

(2)钻孔和竖井投点钻孔投点与竖井投点的方法及要求相同:利用垂准仪在竖井和钻孔分别投出井上点T1、T2和井下点T1′、T2′。

摘要:对深圳地铁2201标站后折返线施工竖井提升设备选择进行了探讨,指出龙门吊提升具有提升速度快、出渣量大、故障率较低等优点,通过介绍龙门吊的应用、操作等注意事项,以期达到生产安全和提高生产效率的目的。

井下辅助工:10~20元/工;。

地下投点T1′、T2′要预先埋设固定钢标,投点后刻好标记。

(3)地面投点坐标地面投点T1、T2边角测量:测b1、b2、b3、b4角度,量d1、d2、d3边长。

无论何种形式的可达性测量,都对住宅价格有一定的影响。

其中五要素论有一定的综合性,认为会计计量要素包括计量尺度、计量单位、计量模式、空间坐标和时间坐标。

根据以上测量成果,计算出T1、T2坐标。

二、住宅用户满意度的测量方法测量项目的确定是研究过程中最重要的环节之一。

会计计量的空间坐标是指会计实体。

施工测量技术方案

施工测量技术方案

施工测量技术方案一、施工控制网的布设与测量1、洞外控制测量接收监理人提供的测量基准点、基准线后,校核其测量精度,复核资料和数据的准确性,并将复测结果报送监理人。

以基准点线为施工控制网的起算点,按照测绘规程规范和工程施工精度要求,布设施工测量加密控制网,将各洞口的平面控制点与加密网连接成全网,平面控制网点采用Trimble4800GPS静态方式进行测量,并按二等GPS 网的技术要求施测,控制网边长投影到隧洞进、出口的平均高程面上,其点位中误差不超过±10mm,控制网的平均边长相对中误差不超过1/250000。

控制网点的高程按二等水准精度测量技术要求,采用Leica DNA03数字水准仪施测,每个洞口附近至少2个高程控制点,并布设成环线或附合路线,闭合差不超过±4L (L为高程导线线路总长)。

主要测量控制网点埋设钢筋砼标墩,顶部埋设不锈钢强制对中标盘,标盘对中误差<±0.1mm。

上述测量控制网点在工程完工后的规定期限内完好无损地移交给业主。

2、洞内控制测量洞内平面控制测量沿洞壁两侧布设光电测距多环基本导线和施工导线,主要拐角点埋设观测墩或插入洞壁的金属观测架。

基本导线根据洞内通视条件布设成边长近似相等的导线;施工导线点约50m埋设1点,并与基本导线附合。

洞内基本导线独立进行两组观测,两次观测值较差不大于中误差的2 2 倍,取其平均值为最后成果。

洞内平面控制测量仪器采用Leica TC1800全站仪施测。

洞内高程控制采用三等水准测量,高程控制点标石与基本导线点重合。

其环线或附合路线闭合差不超过±12L (L为高程导线线路总长)。

3、竖井联系测量在竖井开挖过程中,必须将地面控制网中的坐标、方向及高程经由竖井传递到地下,称之为竖井联系测量。

根据现场的施工及工作面情况,拟选择一井定向和竖直传高的方法进行竖井联系测量。

一井定向采用垂线法进行,首先由地面用吊线向竖井内投点,然后由地面和地下控制点与吊垂线进行连接测量;也可以使用激光投点仪或光学投点仪器进行,投点误差不超过±2mm当使用竖直传高进行高程传递时,必须对地面上的起始高程点进行校核;使用经严格检定过的钢尺,使用中对其加各项改正。

隧道测量

隧道测量

隧道测量的主要任务:在勘测设计阶段是提供选址地形图和地质填图所需的测绘资料,以及定测时将隧道线路测设在地面上,即在洞门前后标定线路中线控制桩及洞身顶部地面上的中线桩;在施工阶段是保证隧道相向开挖时,能按规定的精度正确贯通,并使建筑物的位置符合规定,不侵入建筑限界,以确保运营安全。

勘测设计阶段的测量工作比较简单,前面已作过介绍,本章主要介绍隧道施工测量。

1隧道洞外控制测量隧道的设计位置,一般在定测时已初步标定在地表面上。

在施工之前先进行复测,检查并确认各洞口的中线控制桩,当隧道位于直线上时,两端洞口应各确定一个中线控制桩,以两桩连线作为隧道洞内的中线;当隧道位于曲线上时,应在两端洞口的切线上各确认两个控制桩,两桩间距应大于200m。

以控制桩所形成的两条切线的交角和曲线要素为准,来测定洞内中线的位置。

由于定测时测定的转向角、曲线要素的精度及直线控制桩方向的精度较低,满足不了隧道贯通精度的要求,所以施工之前要进行洞外控制测量。

洞外控制测量的作用,是在隧道各开挖口之间建立一精密的控制网,以便根据它进行隧道的洞内控制测量或中线测量,保证隧道的准确贯通。

洞外控制测量包括平面控制测量和高程控制测量。

洞外平面控制测量常用的方法有:中线法、精密导线法、三角测量、三边测量、边角测量或综合使用,此外还可以采用GPS测量。

一、中线法所谓中线法,就是将隧道线路中线的平面位置,按定测的方法先测设在地表上,经反复核对无误后,才能把地表控制点确定下来,施工时就以这些控制点为准,将中线引入洞内。

一般在直线隧道短于1000m,曲线隧道短于500m时,可以采用中线作为控制。

如图14-1所示,A、C、D、B作为在A、B之间修建隧道定测时所定中线上的直线转点。

由于定测精度较低,在施工之前要进行复测,其方法为:以A、B作为隧道方向控制点,将经纬仪安置在C?0?7点上,后视A点,正倒镜分中定出D?0?7点;在置镜D?0?7点,正倒镜分中定出B?0?7点。

概述地铁盾构隧道工程测量技术相关内容

概述地铁盾构隧道工程测量技术相关内容

概述地铁盾构隧道工程测量技术相关内容1. 盾构隧道测量概述地下工程测量是指建设和运营地表下面工程建筑物需要进行的测量工作,包括地下工程勘察设计、施工和运营各个阶段的测量工作。

地下工程测量的任务是保证线状工程在规定误差范围内正确贯通,保证面状工程按设计要求竣工。

盾构方法以其独特的施工工艺特点和较高的技术经济优越性,在隧道施工中得到广泛应用,从18世纪末盾构机问世以来,与盾构施工相伴而生的盾构施工测量,一直在为盾构施工起着保驾护航的作用。

盾构法隧道工程施工,需要进行的测量工作主要包括以下几点。

(1)地面控制测量:在地面上建立平面和高程控制网;(2)联系测量:将地面上的坐标、方向和高程传到地下,建立地面地下统一坐标系统;(3)地下控制测量:包括地下平面和高程控制;(4)隧道施工测量:根据隧道设计进行放样,指导开挖及衬砌的中线和高程测量。

2. 隧道贯通误差介绍地下工程测量与地面工程测量相比,尽管测设方法有很多共同之处,但地下工程测量仍有其特殊性。

线状地下工程逐步开挖、施工面狭窄、不同工段之间不能通视,因此,测量工作不能互相照应,不便组织检核,出了差错很难及时发现,整个测量工作的正确性只有到开挖工段间贯通后才能得以证明。

可见侧量工作在地下工程建设中具有十分重要的作用,稍有疏忽必将造成无可挽回的损失。

盾构法隧道施工中,地面控制测量、联系测量、地下控制测量和细部放样的误差积累,将使开挖工作面的施工中线不能理想衔接,产生的错开现象称为贯通误差。

贯通误差在线路中线方向的投影长度称为纵向贯通误差(简称纵向误差),在垂直于中线方向的投影长度称为横向贯通误差(简称横向误差),在高程方向的投影长度称为高程贯通误差(简称高程误差)。

纵向误差只影响隧道中线的长度,与工程质量关系不大,对隧道贯通没有多大影响;高程误差仅影响接轨点的平顺(边掘进边铺轨的隧道尤为突出)或隧道的坡度,要求较高,实践表明,应用一定的测量方法,容易达到所需的精度要求。

竖井联系测量

竖井联系测量

竖井联系测量(QB/ZTYJGYGF-SD-0403-2011)第五工程有限公司谯生有1 前言1.1工艺工法概况在隧道工程施工中,为了加快施工进度,缩短隧道施工工期,除了设置横洞、斜井来增加工作面以外,还可以通过开挖竖井来增加工作面,尤其在长大隧道施工中,通常会设计竖井来增加开挖面。

为保证竖井开挖面与其它开挖面之间正确贯通,就必须将地面控制网中的坐标、坐标方位角及高程,经由竖井传递至井下开挖面,指导竖井井下施工中线的正确放样。

将坐标、坐标方位角及高程由地面控制网传递至井下的工作称为竖井联系测量。

竖井定向联系测量常用方法有联系三角形法、钻孔投点以及铅垂仪、陀螺经纬仪联合定法,高程传递测量有全站仪导高法和悬挂钢尺测量法。

可根据联系测量条件和精度要求进行优化选择。

1.2工艺原理1.2.1联系三角形法定向原理在井筒内悬挂两条吊垂线,在地面上根据控制点来测定两吊垂线的坐标以及其连线的方位角,在井下根据投影点的坐标及其连线的坐标方位角,确定井下导线的起算坐标及方位角。

1.2.2 铅垂仪、陀螺经纬仪联合定向原理陀螺经纬仪则是由陀螺仪和经纬仪结合而成的定向仪器。

它通过陀螺仪测定出子午线方向;用经纬仪测出定向边与子午线方向的夹角,就可以根据天文方位角和子午线收敛角求得地面或井下任意定向边的大地方位角,控制点坐标由铅垂仪从井上传递至井下。

1.2.3 钻孔投点定向测量原理当两竖井间的距离较长时,为控制隧道掘进的横向误差,对浅埋隧道可在地面钻一钻孔,也可以利用施工投料孔,用吊锤或铅垂仪将坐标直接投影至井下隧道内,在井下形成无定向导线,通过解算无定向导线获得井下导线的坐标方位角。

1.2.4 钢尺(丝)导高原理在井筒中部悬挂一钢丝(尺),在井上、井下同时用水准仪瞄准钢丝(尺)井上井下的位置并做标记,通过实量井上井下两标记之间的长度,将高程从井上传递至井下。

1.2.5全站仪三角高程法导高原理当竖井井深浅,俯仰角不大时,在井上安置全站仪可以直接观测到井下水准点,直接利用三角高程测量将井上高程导入井下水准点上。

铁路实务部分总结

铁路实务部分总结

一、铁路工程测量重点内容:在铁路工程施工阶段所进行的测量工作称为铁路施工测量。

铁路施工测量的目的是根据施工的需要,将设计的线路、桥涵、隧道、站场等建筑物的平面位置和高程,按设计要求以一定的精度敷设在地面上,并在施工过程中进行一系列的测量工作,以衔接和控制各工序的施工,达到设计要求。

施工单位对施工测量质量实行过程检查和最终检查,其中过程检查由测量队(或班)检查人员承担,最终检查由施工单位的质量管理机构负责实施。

线路施工测量的主要内容包括:线路复测、路基边坡的放样和线路竣工测量。

高程误差对坡度有影响;而横向误差对隧道质量有影响桥梁施工测量的内容概括起来主要有:桥梁控制测量、墩台定位及轴线测设、桥梁结构细部放样、变形观测和竣工测量等。

对于小型桥一般不进行控制测量。

隧道工程施工测量工作主要包括:洞外控制测量、洞外与洞内的联系测量、洞内控制测量、隧道洞内的施工测量、隧道施工中的位移观测和竣工测量。

营业线线路测量主要包括:施工复测、中线测设、高程放样和边桩测设、竣工测量。

改建营业线和增建第二线的施工测量,在单线绕行或双线绕行地段均与新线相同,只有在与营业线并行地段其方法不同于新线。

其主要区别是:新线施工时,一般都根据定测时所钉的中线位置和纵断面设计中所定的填挖高度进行;营业线改建或增建第二线一般不钉中线,而是根据设计的平面计算定出的拨正量和线间距,以营业线或外移桩为基础进行营业线的拨正和第二线的测设.二、工程材料重点内容:水泥按其质量可分为:合格水泥、不合格水泥和废品.(1)合格水泥:水泥各项技术指标均达到标准要求.(2)不合格水泥:凡细度、终凝时间任一项不符合标准规定,或强度低于该强度的等级指标时为不合格水泥;矿渣水泥、火山灰水泥、粉煤灰水泥的掺合料超过最大限度时为不合格水泥;水泥包装标志中品种、等级、生产者名称和出厂编号不全者为不合格水泥.(3)废品:凡氧化镁含量、三氧化硫含量、初凝时间、安定性任何一项不符合标准的水泥为废品.常用建筑钢材主要有:(1) 热轧圆盘条:常用的热轧圆盘条主要有Q215、Q235两种牌号.(2)热轧光圆钢筋:常用的热轧光圆钢筋级别为Ⅰ级,强度等级代号为Q215。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


1

进口


出口 2


Page: 3
2.1 直线隧道进洞关系计算
如图,在隧道进出洞口通常设置3个控制点其坐标 已测出,A、D为直线隧道投点,投点A、D与洞口设置 的2个控制点相距大于300米,且高差不易太大。
(1)以A点为坐标原点,以AD方向为X轴进行坐标变换
设A点坐标为 (DK A,1000 )



0

JK E
JKHY R
180 0

0

l0 2R
180

JK E

JK HY

R[K (E切
- AB )

0
)

1800
Page: 19
2.2 曲线隧道进洞关系计算
2.2.2 投点在缓和曲线隧道进洞关系计算
JD(E) J
B 1 2 C
ZH
A
E
E 投点
当水平读盘度数为 EE 时 ,在此方向上量dEE 定 E
第六步
确定 E 点的切线方向(即隧道进洞方向)
Page: 27
2.2 曲线隧道进洞关系计算 (1)由E、A点坐标求 E A
(2)求 E 点切线方位角 E切
E切 AB K l 2 180 l JKE JKZH
DKA=DK11+656.256 进洞关系计算 第一步
由A、B、C、D四点坐标重新计算曲线转向角 J
J 2803030
Page: 30
2.2 曲线隧道进洞关系计算
第二步 由A、B、C三点坐标计算交点坐标
JD(5000,5000)
第三步 推算隧道施工里程
T 583.2057 L 1145.1286 JKJD JK12 256 .2560
JKZH JK11 673 .0503
Page: 31
2.2 曲线隧道进洞关系计算
第四步 推算ZH点和圆心O坐标
X ZH 4453.7671 YZH 4795.6511
X 0 3823.0668 Y0 6695.5766
Page: 32
2.2 曲线隧道进洞关系计算
第五步 计算测设的 E数据
Page: 21
2.2 曲线隧道进洞关系计算
(2)在△BEC中,由正弦定理求 dBE
dBE
sin( j 1)

d BC
sin(180 J )

dBE

dBC sin( j 1) sin(180 J )
(3)求JD坐标
X JD X B dBE cos AB

YJD
YB
dBE
sin AB
Page: 22
2.2 曲线隧道进洞关系计算
第三步 推算隧道施工里程
(1)由 R, l0 , J 计算曲线要素T、L
p

l2 0
24R

l04 2688R3
m

l0 2

l03 240 R2
L

J
R

180

l0
T m (R P) tan( J / 2)

xi yi

xA yA
(Xi (Xi

X A) cos X A) sin
(Yi (Yi
YA) sin YA) cos
AD
Page: 4
2.1 直线隧道进洞关系计算
(2)求进洞关系数据 由A、B、C、D点坐标通过反算计算进洞关系数据
AD , AB , DE , DA , 1, 2
ZH
A
2.2 曲线隧道进洞关系计算
JD(E)
J
B 1 2 C
E

E 投点
进口
D
O
Page: 10
2.2 曲线隧道进洞关系计算
2.2.1 投点在圆曲线隧道进洞关系计算
第一步
由A、B、C、D四点坐标重新计算曲线转向角 J
J CD AB
第二步 由A、B、C三点坐标计算交点坐标 (1)由A、B、C三点坐标反算 1和dBC
(3)求 E A
(4)确定 E 点切线方向
置镜在E点后视A点安置水平读盘度数为 EA
当水平读盘度数为E切 时 ,即为隧道开挖方向。
Page: 18
2.2 曲线隧道进洞关系计算
第七步
求 E 的施工里程
E切 OE K 90 0 AB K
K ( E切 - AB )
当水平读盘度数为360 2 时即为隧道开挖方向。
Page: 6
2.1 直线隧道进洞关系计算
方法二
(1)置镜A后视B点在开挖
面上任测一点P的坐标
(2)求P点到线路中线距离d
Pd
d yp yA
x
d
P●
A△ A
B

Page: 7
2.1 直线隧道进洞关系计算
(3)隧道开挖方向在施工面上投影的确定 如d大于0说明P点在线路的右侧,则从P点向左移动 距离d即为隧道中线的投点,也是隧道开挖方向。 如d小于0说明P点在线路的左侧,则从P点向右移动 距离d即为隧道中线的投点,也是隧道开挖方向。
m

l0 2

l03 240 R2
L


J
R

180

l0
T m (R P) tan( J / 2)
Page: 13
2.2 曲线隧道进洞关系计算
(2)假定A点施工里程等于定测里程
JK A DK A
(3)由A点施工里程求JD施工里程
JK JD JK A d AJD
d AJD ( X A X JD)2 (YA YJD)2
Page: 24
2.2 曲线隧道进洞关系计算
第四步 推算ZH点坐标
X ZH X JD T cos( AB 180 )
YZH YJD T sin( AB 180 )
第五步
计算测设的 E 数据
在定测时E点在线路的中线上是有里程的为DKE, 由于重新计算转向角,曲线长度发生了变化,E点已不在 中线上。缓和曲线进洞关系计算通常根据E点定测里程选 择在洞口附近选择一个里程整桩号点 E
进口
D
Page: 20
2.2 曲线隧道进洞关系计算
第一步
由A、B、C、D四点坐标重新计算曲线转向角 J
J CD AB
第二步 由A、B、C三点坐标计算交点坐标 (1)由A、B、C三点坐标反算 1和dBC
1
BC
BC dBC ( X B XC )2 (YB YC )2
1 AD AB 2 DE DA
Page: 5
2.1 直线隧道进洞关系计算
(3)隧道进洞方向确定
方法一

B
1
] A
E

2
[ D
置镜在A点后视B点安置水平读盘度数为 000000
当水平读盘度数为时,1 即为隧道开挖方向。
置镜在D点后视E点安置水平读盘度数为 000000

YE YZH x sin kycos

360 AB
曲线右偏时:k=1,曲线左偏时:K=-1
Page: 26
2.2 曲线隧道进洞关系计算
(2)计算测设E 点数据 由A、E、E 点坐标求 EA , EE , dEE
(3)测设 E
置镜在E点后视A点安置水平读盘度数为 E A
2Rl0
(3)确定 E点切线方向
置镜在E点后视A点安置水平读盘度数为 EA
当水平读盘度数为E切 时 ,即为隧道开挖方向。
Page: 28
2.2 曲线隧道进洞关系计算
2.2.3 曲线隧道进洞关系计算案例
JD(E)
J
B 1 2 C
ZH
A
E

E 投点
进口
O
Page: 29
Page: 23
2.2 曲线隧道进洞关系计算
(2)假定A点施工里程等于定测里程
JK A DK A
(3)由A点施工里程求JD施工里程
JK JD JK A d AJD
d AJD ( X A X JD)2 (YA YJD)2
(4)由A点施工里程求ZH点施工里程
JKZH JK JD T
《线桥隧测量》
项目4:隧道施工测量 任务2:隧道进洞关系计算
Page: 1


如何将洞外方向及坐标引入隧道洞内?
Page: 2
2.1 直线隧道进洞关系计算
隧道进洞关系计算,是根据地面控制测量中所得到 的洞口控制点的坐标及与之相联系的控制点的坐标和方 向,以计算进洞关系数据,用来指导隧道开挖方向。
1 BC BC dBC (X B XC )2 (YB YC )2
Page: 11
2.2 曲线隧道进洞关系计算
(2)在△BEC中,由正弦定理求 dBE
dBE
sin( j 1)

d BC
sin(180 J )

dBE

dBC sin( j 1) sin(180 J )
m cos AB (R P) cos( AB K msin AB (R P) sin( AB K
900 900 )
)
曲线右偏时:k=1,曲线左偏时:K=-1
Page: 15
2.2 曲线隧道进洞关系计算
第五步
求测设E点数据
相关文档
最新文档