中心对称教学案例
中心对称中班科学教案
![中心对称中班科学教案](https://img.taocdn.com/s3/m/0077f22526d3240c844769eae009581b6bd9bd13.png)
中心对称中班科学教案一、教学目标1. 理解中心对称的概念和特点;2. 发现和观察日常生活中的中心对称物体;3. 能够通过折纸实验来制作中心对称物体;4. 培养观察、思考和动手能力。
二、教学准备1. 准备一些有中心对称的物体,如蝴蝶、雪花等;2. 准备一些彩纸、剪刀和胶水。
三、教学过程1. 导入教师出示一些有中心对称的物体,如蝴蝶和雪花,引导学生观察并思考:你们看到的蝴蝶和雪花有什么特点?能否找到它们的中心对称线?为什么?2. 探究教师引导学生进行观察并提问:你们有没有见过其他中心对称的物体?请举例子。
学生可以发表自己的观察结果,教师帮助学生总结归纳,确保学生能正确理解中心对称的概念。
3. 实验教师进行折纸实验,要求学生按照教师的指导,使用彩纸和剪刀来制作中心对称的物体。
教师可以事先设计好一些折纸图案,如心形、星星等,确保学生能够成功完成实验,并且理解中心对称的原理。
4. 创作学生根据自己的兴趣和想象力,使用彩纸和剪刀来设计和制作中心对称的物体。
鼓励学生发挥创造力,在教师的引导下完成创作过程。
5. 展示学生将自己设计和制作的中心对称物体在课堂上进行展示,并向同学们介绍自己的创作过程和想法。
教师和同学们可以对每个作品进行评价和讨论,鼓励学生们互相学习和分享。
6. 总结教师引导学生回顾整个学习过程,通过学生的回答总结中心对称的特点,并强调中心对称在生活中的应用。
四、教学延伸1. 学生可以进一步观察和发现中心对称的物体,并记录下来;2. 学生可以尝试设计更复杂的中心对称图案;3. 教师可以设计一些游戏或者谜语来巩固学生对中心对称的理解。
五、教学评价教师可以通过观察学生在实验和创作过程中的表现来进行评价,包括学生对中心对称的理解、观察和思考能力,以及创造力和合作精神等方面。
同时,学生的展示和同学们的评价也是评价的重要标准之一。
六、教学反思本教案通过观察、实验和创作等方式来教授中心对称的概念和特点,旨在培养学生的观察、思考和动手能力。
《中心对称》教案
![《中心对称》教案](https://img.taocdn.com/s3/m/d75e488880eb6294dd886ca2.png)
《中心对称》教案1教学目标:知识与技能:(1)通过具体实例认识两个图形关于某一点或中心对称的本质:就是一个图形绕一点旋转180°而成.(2)掌握成中心对称的两个图形的性质,以及利用两种不同方式来作出中心对称的图形.过程与方法:利用中心对称的特征作出某一图形成中心对称的图形,确定对称中心的位置.情感、态度与价值观:经历对日常生活中与中心对称有关的图形进行观察、分析、欣赏、动手操作、画图等过程,发展审美能力,增强对图形的欣赏意识.教学重点难点:重点:中心对称的性质及初步应用.难点:中心对称与旋转之间的关系.教学方法:(一)创设情境导入新课:导语一在前一节中我们学习了图形的旋转,那么旋转后的图形有哪些性质?(旋转前后图形全等,对应点到旋转中心的距离相等,旋转角均相等.)导语二观察图中三个图形旋转的角度,发现哪个图形与其他二个不同?(二)合作交流解读探究:教师指出在生活中有许许多多的图形都具有以上特征,在各个领域中都有广泛的应用.它都能给人以一种美的享受.本节我们就来研究这些图形的形成——中心对称.探究:如图,旋转三角板,画关于点O对称的两个三角形;第一步,画出△ABC;第二步,以三角板的一个顶点O为中心,把三角板旋转180°,画出△A'B'C';第三步,移开三角板.这样画出的△ABC与△A'B'C',关于点O对称.分别连接对应点AA'、BB'、CC'.点O在线段AA'上吗?如果在,在什么位置?△ABC与△A'B'C'有什么关系?发现:我们可以发现:(1)点O是线段AA’的中点;(2)△ABC≌△A'B'C'.上述发现可以证明如下.(1)点A'是点A绕点O旋转180°后得到的,即线段OA绕点O旋转180°得到线段OA',所以点O在线段AA'上,且OA=OA',即点O是线段AA'的中点.(2)在△AOB与△A'OB'中,OA=OA',OB=OB',∠AOB=∠A'OB',∴△AOB≌△A'OB'.∴AB=A'B'.同理BC=B'C',AC=A'C'.∴△ABC≌△A'B'C'.探索:下图中△A'B'C'与△ABC关于点O是成中心对称的,你能从图中找到那些等量关系?(多媒体出示图形)结论:(1)关于中心对称的两个图形中,对称点所连线段都经过对称中心,而且被对称中心所平分.(2)关于中心对称的两个图形是全等图形.例1如图4-31,已知四边形ABCD和点O,画出四边形A′B′C′D′,使它与四边形AB CD关于点O成中心对称.解:(1)连接AO,BO,CO,DO;(2)分别延长AO到A′,BO到B′,CO到C′,DO到D′,使OA′=OA,OB′=OB,O C′=OC,OD′=OD;(3)顺次连接点A′,B′,C′,D′.(如图4-32)四边形A′B′C′D′就是所求的四边形.议一议:中心对称与轴对称有什么区别?又有什么联系?《中心对称》教案2教学目标:教学知识点:1.熟记中心对称图形的有关概念.2.叙述并应用中心对称图形的基本性质.过程与方法:1.经历观察、发现,探索中心对称图形的有关概念和基本性质的过程,积累一定的审美体验.2.掌握中心对称图形及其基本性质,掌握平行四边形是中心对称图形.情感、态度与价值观:通过师生的共同活动,使学生体会积累一定的审美体验.教学重、难点:教学重点:中心对称图形的定义及其性质.教学难点:中心对称图形的定义.教学过程:Ⅰ.巧设情景问题,引入课题[师]同学们,平行四边形纸板准备好了吗?好,我们现在来做一做如下图所示,在一个平行四边形纸板上,连结两条对角线,得到交点O,用图钉过点O 将纸板固定在一张纸上,并描下此时四边形ABCD的轮廓.绕点O旋转平行四边形纸板,使得点A移动到点C的位置.(1)此时的纸板与原来的位置是否重合?(2)指出旋转中心,求出旋转角的度数.(3)根据上面的过程,你能验证平行四边形的哪些性质?与同伴交流.(学生动手做、讨论、总结)[生1]把平行四边形纸板绕对角线的交点O旋转,使点A移动到点C的位置时,纸板与描下的轮廓重合.平行四边形旋转的中心是对角线的交点O,由于点A和点C在一条直线上,所以旋转的角度为180°.[师]这位同学分析得很正确:下面来看第(3)个问题,大家互相交流交流.[生2]从刚才旋转的过程中,验证了平行四边形的对边相等,对角相等,对角线互相平分等性质.[师]很好,我们来看(演示刚才学生旋转的过程),这个平行四边形绕它的对角线的交点O旋转180°,它与原图重合,我们把这样的图形,称为中心对称图形.这节课我们就来探讨中心对称图形.Ⅱ.讲授新课[师]我们再来看这根木条(出示教具),它绕着这一点(指出木条的中点)旋转180°时,也和原图重合.即与它本身重合,这样的图形叫中心对称图形.大家来总结归纳:什么是中心对称图形?[生]把一个图形绕它的某个点旋转180°,如果旋转后的图形与原来的图形重合,那么这个图形叫做中心对称图形.[师]很好,在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形(centralsymmetryfigure).这个点叫做它的对称中心.想一想,平行四边形的对称中心是什么?[生]平行四边形的对称中心是对角线的交点.[师]对,大家再想一想:我们学过的哪些图形是中心对称图形.[生]线段、平行四边形、矩形、菱形、正方形.[师]很好,它们的对称中心各是什么?[生]线段的对称中心是线段的中点.平行四边形的对称中心是对角线的交点,因为矩形、菱形、正方形是特殊的平行四边形,所以它们的对称中心都是对角线的交点.[师]这位同学回答得真棒.假设点A是某个中心对称图形上的一点,绕O点旋转180°后,它变成了点C,点A和点C 就是一对对应点,而且O是AC的中点.(如图)再看平行四边形是中心对称图形,点B绕O点旋转180°后,它与点D重合,点B和点D就是一对对应点,从平行四边形的性质也可知:O是BD的中点.由此大家能否总结出中心对称图形的性质吗?[生]中心对称图形上的每一对对应点所连成的线段的中点都是对称中心.[师]同学们总结得很好,这就是中心对称图形的性质.中心对称图形上的每一对对应点所连成的线段都被对称中心平分.中心对称图形在日常生活和生产中有广泛的应用,请你举出所看到的中心对称图形的实例.[生甲]家庭装饰中的各种图案、竹签做的玩具小飞机、纸做的小风车.[生乙]飞机的双叶螺丝桨、风车的风轮.[生丙]水泵叶轮……[师]很好,大家举出这么多中心对称图形的例子.你能说说中心对称图形在欣赏和实用方面的价值吗?(出示一些中心对称图形的图片).[生1]中心对称图形的形状匀称、美观,所以在很多建筑物和工艺品上常用这种图形作装饰图案.[生2]由于中心对称图形绕中心旋转180°,后与原来的图形重合.所以具有中心对称图形的物体,在平面内能绕对称中心平稳地旋转.这种特性在生活和生产中都有应用.[师]同学们回答得真棒.下面大家拿出扑克牌,看看这些牌的牌面哪些是中心对称图形?[生1]红桃2、方块2、黑桃2、黑桃10、方块J、梅花10、方块K、黑桃4.[生2]红桃4、红桃K、梅花Q.[生3]方块中除7不是,其余的都是中心对称图形.[师]很好,从大家回答中知道同学们基本掌握了中心对称图形的概念.下面大家来“想一想”.除了平行四边形,你还能找到哪些多边形是中心对称图形?[生1]正六边形、正八边形、正十边形.[生2]这样的多边形很多,在正多边形中,只要边数为偶数,那它就是中心对称图形.[师]很好,下面我们来做练习,以巩固中心对称图形的定义及性质.Ⅲ.练习1.正方形是中心对称图形吗?正方形绕两条对角线的交点旋转多少度能与原来的图形重合?能由此验证正方形的一些特殊性质吗?答案:正方形是中心对称图形,它绕两条对角线的交点旋转90°或其整数倍,都能与原来的图形重合.由此,可以验证正方形的四条边相等,四个角是直角,对角线互相垂直平分等性质.2.下图中,哪个“风车”是中心对称图形?(1) (2) (3)答案:(1)(3)是中心对称图形.3.如图,点O是正六边形ABCDEF的中心.(1)找出这个轴对称图形的对称轴.(2)这个正六边形绕点O旋转多少度后能和原来的图形重合.(3)如果换成其他的正多边形呢?能得到一般的结论吗?答案:(1)直线AD、CF、BE以及AB、BC、CD的垂直平分线都是这个正六边形的对称轴.(2)这个正六边形绕O点旋转60°或其整数倍的度数后能与原来的图形重合.(3)一般地,绕正n边形的中心旋转n360或其整数倍,都能与原来的图形重合.Ⅳ.课时小结本节课我们学习了中心对称图形的有关概念和它的基本性质.能判定一个图形是否是中心对称图形.。
中心对称教案范文
![中心对称教案范文](https://img.taocdn.com/s3/m/9562e3fa1b37f111f18583d049649b6648d70903.png)
中心对称教案范文教案名称:中心对称教学目标:1.理解中心对称的概念,能够辨别图形是否具有中心对称性。
2.能够画出具有中心对称的图形。
3.运用中心对称的概念解决问题。
教学重点:1.学生能够理解中心对称的概念。
2.学生能够辨别图形是否具有中心对称性。
3.学生能够画出具有中心对称的图形。
教学难点:学生能够独立思考运用中心对称的概念解决问题。
教学准备:1.板书:中心对称的定义。
2.几何工具:直尺、铅笔、图钉、线、片3.打印的图形示例。
教学过程:Step 1:导入新知1.引入中心对称的概念:小明站在镜子前,他的左手对应着镜子中的右手,他的右手对应着镜子中的左手。
请问,这是一种什么对称关系?(学生回答“左右对称”)那么,在一个点处,把一个物体的两部分同时翻转,并使这两部分重合,这种对称又叫什么?(学生回答“中心对称”)2.板书:中心对称的定义。
中心对称是指把一个物体的两部分同时翻转,并使这两部分重合的对称性。
3.出示中心对称的相关图形,让学生观察图形的特点,引导学生发现中心对称的规律。
Step 2:讨论和练习1.出示几个图形,让学生观察并判断图形是否具有中心对称性。
引导学生找出图形的中心对称轴。
2.学生分组进行讨论和练习,给出一些没有中心对称性的图形,让学生尝试添加中心对称轴使其具有中心对称性,并互相给予反馈和指导。
3.教师巡视指导,引导学生分享他们的思路和策略。
Step 3:拓展应用1.出示一些实际生活中具有中心对称性的图形,让学生观察并讨论它们的特点。
2.学生任选一个具有中心对称性的物体,尝试画出它的中心对称轴,并验证物体是否具有中心对称性。
3.提供一些具有中心对称性的图形,让学生设计并画出它们的中心对称轴。
Step 4:反思总结1.让学生回顾学习过程中的收获和体会。
2.教师进行总结,强调中心对称的概念以及应用。
3.布置课后作业:让学生找出自己身边具有中心对称性的物体,画出它们的中心对称轴,并简单描述图形的特点。
九年级数学人教版上册23.2.1中心对称优秀教学案例
![九年级数学人教版上册23.2.1中心对称优秀教学案例](https://img.taocdn.com/s3/m/26c54b8c32d4b14e852458fb770bf78a65293afd.png)
1.学生能够对数学产生兴趣和热情,培养积极的情感态度。
2.学生能够树立正确的数学观念,认识数学的重要性和价值。
3.学生能够培养坚持不懈、勇于探索的学习精神,提高他们的自主学习能力。
在教学过程中,我会注重激发学生的学习兴趣,引导他们认识数学的价值,培养他们的情感态度和价值观。同时,我会给予学生积极的评价和鼓励,帮助他们建立自信心,培养他们的自主学习能力。
九年级数学人教版上册23.2.1中心对称优秀教学案例
一、案例背景
本节内容为九年级数学人教版上册23.2.1中心对称,是在学生已经掌握了平面直角坐标系、图形的平移和旋转等知识的基础上进行学习的。中心对称是数学中的一个重要概念,它不仅可以帮助学生更好地理解图形的变换,还可以培养学生的空间想象能力和逻辑思维能力。
三、教学策略
(一)情景创设
1.利用多媒体展示中心对称的实例,如对称的花朵、建筑等,引导学生感受中心对称的美感。
2.通过实际操作,让学生体验中心对称的变换过程,如折纸、绘画等,激发学生的学习兴趣。
3.创设问题情境,如寻找生活中的中心对称图形,让学生在实践中发现和理解中心对称的概念。
在情景创设中,我会注重引导学生参与其中,让他们在实践中感受和理解中心对称的知识,从而激发他们的学习兴趣和动机。
导入新课的过程中,我会注重激发学生的学习兴趣和好奇心,引发他们的思考和探究欲望,为后续的新知识学习做好铺垫。
(二)讲授新知
1.给出中心对称的定义和性质,通过具体的例子和图示,让学生理解中心对称的概念。
2.讲解中心对称图形的变换规律,如对称中心的选取、图形的平移等,让学生掌握中心对称的变换方法。
3.结合实际问题,展示中心对称在实际中的应用,如设计图案、解决几何问题等,让学生体验中心对称的价值。
《中心对称》教学案例
![《中心对称》教学案例](https://img.taocdn.com/s3/m/8b202581a0116c175e0e4803.png)
《中心对称》教学案例肖照琴教学目标知识与能力目标1.了解中心对称、对称中心和对称点的概念.2.理解中心对称的性质.3.掌握运用中心对称的性质作图的方法.过程与方法能用中心对称的性质准确作出已知图形关于某点中心对称的图形.情感态度经历对日常生活中与中心对称有关的图形进行观察、析、欣赏,以及动手操作、画图等过程,发展审美能力,增强对图形欣赏的意识。
教学重点1.中心对称的概念.2.中心对称的性质,利用中心对称的性质进行作图.教学难点1.探索图形之间变换关系,发展图形的分析能力。
2.利用中心对称的性质准确作图.教学过程一.创设情境展示下面三个图形:(3)(1)(2)问:这三个图形有何异同的特征?教师评价学生的回答。
二. 探究新知这三个图形都是绕着中心点旋转一定的角度后能与自身图形重合,它们都是旋转图形,但它们旋转的角度不一样,其中(2)图的旋转度是180度,它就是我们今天要探究的图形——中心对称图形。
三、概念探究:(1) 从(2)图形的特征引导学生归纳出中心对称图形的定义:把一个图形绕着中心旋转180度后能与自身重合的图形称为中心对称图形,这个中心点叫做对称中心;(2) 指导学生作出一个三角形绕一点旋转180度后的三角形;图片展示:A,△ABC 绕着点O 旋转180度的运动过程;教师与学生一起归纳出中心对称的概念:把一个图形绕着中心旋转180度后能与另一个图形重合则这两个图形关于这个点中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点四.巩固练习1.判断正误:(1)关于中心对称的两个图形是全等图形.( )(2)两个全等的图形一定关于中心对称.( )五.课堂小结在课堂临近尾声时,教师组织学生对本节课进行小结,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价.在学生小结的基础上,教师再出示本节课的重要知识点和数学思想方法.教学反思学生有效的学习活动不能单纯的依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。
中心对称图形导教学教案
![中心对称图形导教学教案](https://img.taocdn.com/s3/m/60f7f48427fff705cc1755270722192e4436587b.png)
中心对称图形导教学教案第一章:中心对称图形的概念引入1.1 教学目标:让学生了解中心对称图形的定义。
培养学生识别中心对称图形的能力。
引导学生通过实际操作探索中心对称图形的性质。
1.2 教学重点:中心对称图形的定义。
中心对称图形的性质。
1.3 教学难点:理解并应用中心对称图形的性质。
1.4 教学准备:准备一些中心对称图形的实物或图片,如矩形、正方形、圆等。
准备一张大白纸和一些彩色笔,用于学生实际操作。
1.5 教学过程:1.5.1 导入:向学生介绍中心对称图形的概念,引导学生思考他们是否曾经见过类似的图形。
展示一些中心对称图形的实物或图片,让学生尝试识别它们。
1.5.2 新课导入:向学生解释中心对称图形的定义,即存在一个点作为中心,将图形上的任意一点关于这个中心进行对称,得到的图形与原图形完全重合。
举例说明一些常见的中心对称图形,如矩形、正方形、圆等。
1.5.3 实践操作:让学生分组,每组领取一张大白纸和一些彩色笔。
要求学生各自在白纸上画出一个自己设计的中心对称图形。
学生完成绘制后,让他们互相交换图形,并尝试找出中心对称点,将图形折叠或旋转,验证是否完全重合。
1.5.4 性质探索:引导学生小组合作,探索中心对称图形的性质。
学生可以通过实际操作,观察中心对称图形的特点,如对称轴的数量、对称点到图形的距离等。
教师进行点评和补充。
1.6 作业布置:让学生回家后,找一些生活中的中心对称图形,拍照或画出来,并在下一堂课上进行分享。
第二章:中心对称图形的基本性质2.1 教学目标:让学生掌握中心对称图形的基本性质。
培养学生通过实际操作验证中心对称图形性质的能力。
2.2 教学重点:中心对称图形的基本性质。
2.3 教学难点:理解和应用中心对称图形的基本性质。
2.4 教学准备:准备一些中心对称图形的实物或图片。
准备一张大白纸和一些彩色笔。
2.5 教学过程:2.5.1 复习导入:复习上节课学习的中心对称图形的定义。
让学生展示他们回家找到的中心对称图形,并进行分享。
九年级数学上册(人教版)23.2中心对称(第一课时)优秀教学案例
![九年级数学上册(人教版)23.2中心对称(第一课时)优秀教学案例](https://img.taocdn.com/s3/m/060f2c680a4c2e3f5727a5e9856a561252d3213e.png)
根据学生的实际情况,九年级的学生已经具备了一定的几何学习基础,对几何语言和图形变换有了一定的认识,但如何将已有的知识体系与中心对称的概念有效结合,如何在教学中兼顾知识的系统性和学生个体差异,是本节课教学设计中需要关注的问题。因此,一个优秀的教学案例应当充分调动学生的积极性,设计富有启发性和层次性的教学活动,让学生在轻松愉快的氛围中掌握中心对称的知识,发展他们的数学思维。
2.学生通过观察、操作、思考等活动,培养空间想象能力和逻辑推理能力。
3.学生能够在实际问题中运用中心对称的知识,提高解决实际问题的能力。
(三)情感态度与价值观
1.学生能够积极参与课堂活动,对中心对称的知识产生兴趣,树立自信心。
2.学生在探究中心对称的过程中,培养勇于探索、坚持不懈的精神,增强合作意识。
(四)总结归纳
1.教师可以引导学生进行总结归纳,让学生将所学到的中心对称的性质进行梳理和总结。例如,可以提出一个问题:“你们觉得中心对称图形具有哪些重要的性质?请进行总结归纳。”
2.教师可以对学生的总结归纳进行点评和补充,确保学生能够全面理解和掌握中心对称的性质。
(五)作业小结
1.教师可以布置一些与中心对称相关的作业,让学生巩固所学知识。例如,可以设计一些练习题,让学生运用中心对称的知识进行解答。
2.教师可以引导学生进行小组合作探究,让学生通过合作完成一些实际问题或者任务。例如,可以设计一个小组任务,要求每个小组设计一个中心对称的图形,并解释其中心对称的性质。
人教版数学九年级上册优秀教学案例:23.2.1中心对称
![人教版数学九年级上册优秀教学案例:23.2.1中心对称](https://img.taocdn.com/s3/m/7656b51d30b765ce0508763231126edb6f1a76fa.png)
3.操作情境:教师设计一系列操作活动,如剪贴、拼图等,让学生亲自动手实践,感受中心对称的过程,增强学生的直观感知能力。
(二)问题导向
1.教师提出问题,引导学生思考:中心对称是什么?它与轴对称有什么区别和联系?如何判断一个图形是否为中心对称图形?
2.学生能够认识到数学与生活的密切联系,培养运用数学知识解决实际问题的意识,增强数学应用能力。
3.学生在团队合作、交流分享的过程中,培养良好的团队合作精神和积极向上的学习态度。
4.学生能够通过解决感和价值观。
三、教学策略
(一)情景创设
1.生活情境:通过展示生活中的中心对称图形,如时钟、人民币等,引导学生关注中心对称在实际生活中的应用,激发学生的学习兴趣。
3.小组合作的学习方式:教师组织学生进行小组讨论,分享学习心得,培养团队协作能力和沟通表达能力。教师引导学生运用中心对称的知识,共同解决实际问题,提高问题解决能力和实践操作能力。
4.多元化的教学评价:教师运用评价工具,对学生在学习过程中的表现进行评价,关注学生的知识掌握和能力发展,充分发挥评价的诊断、反馈和激励作用,帮助学生在评价中不断成长。
1.教师通过讲解和示例,详细介绍中心对称的定义、性质和判定方法。
2.教师运用多媒体课件和实物模型,直观地展示中心对称图形的变换过程,帮助学生理解和掌握中心对称的概念。
3.教师通过讲解实例,阐述中心对称在实际问题中的应用,引导学生学会运用中心对称解决实际问题。
(三)学生小组讨论
1.教师设计具有挑战性的问题,引导学生进行小组讨论,如“你们能找出教室里的中心对称图形吗?它们是如何产生的?”
中心对称中班数学教案
![中心对称中班数学教案](https://img.taocdn.com/s3/m/82ba8b75ce84b9d528ea81c758f5f61fb73628b1.png)
中心对称中班数学教案中心对称是数学中一个基础且重要的概念。
对于小学中班学生来说,了解中心对称的概念对其认识几何图形和培养空间想象力都有很大帮助。
以下是一个中心对称中班数学教案的示例。
一、教学目标:1. 认识中心对称的概念,并能够理解和应用该概念;2. 能够通过折纸和绘制图形的方式找到图形的中心对称轴;3. 能够判断一个图形是否具有中心对称性,并找到图形的中心对称轴;二、教学准备:1. 教师准备一些常见的几何图形卡片,如正方形、长方形、圆形和三角形等;2. 准备折纸纸张和绘图纸;3. 准备一些有关中心对称的练习题。
三、教学过程:1. 导入新知识:教师出示一些常见的几何图形卡片,向学生展示各种图形,询问学生是否知道这些图形是否具有中心对称性,并帮助学生理解什么是中心对称。
2. 引入中心对称的概念:教师通过给学生提供一些例子和非例子的方式,帮助学生理解中心对称的概念。
通过与学生们一起讨论,明确中心对称的定义:如果一个图形绕着某个点旋转180度后,图形不变,那么这个图形就具有中心对称性。
3. 寻找中心对称轴:教师给每个学生发放折纸纸张,让他们按照教师的示范方法折出一个中心对称的图形,并引导学生找到图形的中心对称轴。
通过让学生自由绘制和折纸的方式,让他们亲自经历中心对称的过程,加深理解。
4. 探索中心对称性质:教师将学生分组,每个小组给一张绘图纸和一些图形卡片,让他们将图形按中心对称的方式贴在纸上,并找出图形的中心对称轴。
随后,教师让小组展示他们作品并讨论,帮助学生总结中心对称的性质,比如:中心对称的图形具有对称性,对称轴平分图形。
5. 练习巩固:教师发放一些有关中心对称的练习题,让学生在纸上尝试解答,然后互相交换答案并互相检查。
教师可以在黑板上出示一些练习题的答案,让学生对比和讨论。
6. 拓展探究:教师可以引导学生思考一些拓展问题,比如:一个图形是否只能有一个中心对称轴?如果一个图形的两条边互相垂直,它是否具有中心对称性?通过引导学生思考和讨论,提高他们的问题解决能力和思维能力。
人教版九年级数学上册优秀教学案例:23.2.1中心对称
![人教版九年级数学上册优秀教学案例:23.2.1中心对称](https://img.taocdn.com/s3/m/fe0f096aeffdc8d376eeaeaad1f34693daef10d8.png)
1.培养学生对数学的兴趣和好奇心,使他们能够主动学习和探索数学知识。
2.培养学生团队合作精神,使他们能够在小组讨论和合作中,共同解决问题,共同进步。
3.培养学生热爱生活、欣赏美的情感,使他们能够发现生活中的对称美,培养他们的审美能力。
在教学过程中,我将注重激发学生的学习兴趣,通过设计有趣的问题和实践活动,引导学生主动参与课堂。同时,我将鼓励学生进行团队合作,培养他们的团队合作精神。在教学过程中,我还将引导学生发现生活中的对称美,培养他们的审美能力。
二、教学目标
(一)知识与技能
1.理解中心对称的定义和性质,能ቤተ መጻሕፍቲ ባይዱ识别和判断一个图形是否为中心对称图形。
2.掌握中心对称图形的对称中心,以及对称中心到图形上任意一点的距离相等的性质。
3.能够运用中心对称的性质解决实际问题,如对称剪纸、设计对称图案等。
在教学过程中,我将通过引导学生观察、分析和操作,帮助他们深入理解中心对称的概念和性质。通过实际的例子和练习题,让学生学会如何应用中心对称的性质解决问题。
在实际教学中,我发现学生对于中心对称的理解存在一定的困难,他们往往不能很好地将中心对称与之前学过的平移、旋转等变换区分开来。因此,我需要在教学过程中注重引导学生通过实际操作和思考,理解中心对称的本质,提高他们的空间想象能力和逻辑思维能力。
为了提高教学效果,我采用了情境教学法,通过设计一系列与学生生活实际相关的问题,激发他们的学习兴趣,引导他们主动探索和发现中心对称的性质。同时,我还注重利用多媒体教学手段,以生动形象的动画和图形展示中心对称的变化过程,帮助学生更好地理解和掌握知识。
(五)作业小结
1.布置相关的作业题,让学生巩固中心对称的知识,提高解题能力。
八年级数学下册《中心对称》优秀教学案例
![八年级数学下册《中心对称》优秀教学案例](https://img.taocdn.com/s3/m/cce32b81cf2f0066f5335a8102d276a20129606b.png)
-教师关注学生的个体差异,给予个性化指导,提高学生的学习效果。
(三)情感态度与价值观
1.激发学生对数学的兴趣,培养他们的学习热情。
-通过展示中心对称在生活中的应用,使学生感受到数学的实用性和趣味性。
-鼓励学生积极参与课堂活动,激发他们学习数学的积极性。
-学生能够利用中心对称变换解决几何问题,如求对称点的坐标、计算线段长度等。
3.能够运用中心对称知识解决生活中的实际问题,提高数学应用能力。
-学生能够将中心对称知识应用于日常生活和艺术设计中,如设计美丽的对称图案、解决建筑布局问题等。
(二)过程与方法
1.通过观察、思考、动手操作等过程,培养学生的空间想象力和逻辑思维能力。
此外,我还将结合学生的实际生活,设计一些具有趣味性和挑战性的问题,激发他们对中心对称知识的好奇心和求知欲。通过这些情景的创设,使学生感受到数学与现实生活的紧密联系,增强他们学习数学的兴趣。
(二)问题导向
在教学过程中,我将采用问题导向的教学方法,引导学生主动探究和思考。针对中心对称的教学内容,我会设计一系列由浅入深的问题,帮助学生逐步深入理解中心对称的性质和判定方法。
2.培养学生的审美观念,提高他们的艺术素养。
-学生在观察和创作中心对称图案的过程中,培养对美的感知和鉴赏能力。
-学生将数学知识应用于艺术创作,提高自己的艺术素养。
3.引导学生认识到数学在生活中的重要作用,增强他们的社会责任感。
-学生通过解决生活中的实际问题,认识到数学在现实世界中的价值。
-学生在运用数学知识服务社会的过程中,增强自己的社会责任感。
此外,我还会对本节课的重点和难点进行梳理,强调中心对称在实际问题中的应用,帮助学生巩固所学知识。
九年级数学《中心对称》教案
![九年级数学《中心对称》教案](https://img.taocdn.com/s3/m/b3f13f3b53ea551810a6f524ccbff121dc36c575.png)
九年级数学《中心对称》教案第一篇:九年级数学《中心对称》教案《中心对称》教案情境感知两人轮流往一个圆形桌子上摆放硬币,规则是每人每次摆一个,硬币不能互相重叠,也不能有一部分在桌面边缘之外,摆好之后不许移动.这样经过多次摆放,直到谁最先摆不下硬币就认输.假如两个都不是内行,是先放着获胜,还是后放者获胜?假如是你和别人一起做这个游戏,你打算怎样放才能稳操胜券?基础准备一、中心对称1.把一个图形_______________________________________________,那么称这两个图形关于该点对称,也称这两个图形成_____________,这个点叫做____________,____________叫做对称点.2.关于中心对称的两个图形,对称点________________都经过对称中心,而且被对称中心所______________.关于中心对称的两个图形是___________图形.问题1.四边形ABCD中,对角线AC,BD相交于点O,如果OA=OC,BO=DO,那么与△AOB成中心对称的是()(A)△BOC.(B)△COD.(C)△DOA.(D)△ABC.二、中心对称图形3.把一个图形_______________________________________________,那么这个图形叫做中心对称图形.问题2.下列图形中,哪些是轴对称图形?哪些是中心对称图形?是中心对称图形,请指出对称中心.(1)角.(2)正三角形.(3)平行四边形.(4)等腰梯形.(5)矩形.(6)菱形.(7)正方形.(8)圆.三、关于原点对称的点的坐标4.两个点关于原点对称时,它们的_______________相反,即点P(x,y)关于原点的对称点为P'(__________,__________).问题3.与M(10,-6)关于原点对称的点的坐标为()(A)(10,6).(B)(-10,6).(C)(10,-6).(D)(-10,-6).要点探究探究1.识别轴对称图形与中心对称图形例1.下列图形中,不是轴对称图形而是中心对称图形的是()(A)等边三角形.(B)平行四边形.(C)矩形.(D)正方形.解析:A不是中心称图形,不符合要求.C、D既是轴对称图形,又是中心对称图形,也不符合要求.答案:B.智慧背囊:轴对称图形是沿某条直线翻折180︒后两部分图形完全重合,而中心对称图形是绕某一点旋转180︒后与原图形完全重合.解题时注意两者的区别.活学活用:下列各组图形中,既是轴对称图形,又是中心对称图形的是()(A)正方形、长方形、平行四边形.(B)等边三角形、正方形、长方形.(C)正方形、长方形、圆.(D)平行四边形、正方形、等腰三角形.探究2.利用中心对称探究数学问题例2.如图,在△ABC中,已知AD是BC边上的中线.若AB=5,AC=3,求AD的取值范围.解析:画出与已知图形成中心对称的图形,利用中心对称的特征解决问题.答案:延长AD到点E,使AD=DE,连BE.∵AD=ED,DC=DB,∠ADC=∠EDB,∴△ADC≌△EDB,∴BE=AC=3,而AB=5,∴2<2AD<8,∴1<AD<4.智慧背囊:利用中线倍长构造中心对称图形是解决中线问题常用方法之一.活学活用:在数轴上表示1和-1的两个点关于原点成中心对称,那么-4≤x≤-2的区域关于原点对称的区域是什么?在数轴上表示出来.探究3.中心对称的创新应用例3.请你在下图中沿虚线用四种不同的方法,把4⨯4正方形方格图形分割成两个完全一样的图形.解析:正方形是轴对称图形,共有对称轴共四条,有两条是沿着虚线的.正方形又是中心对称图形,通过对称中心沿着虚线画一条关于这一点中心对称的折线即可.答案:提供下面答案供参考,聪明的同学们,你还有其它分割方法吗?智慧背囊:本题利用轴对称和中心对称性质分割图形为全等形.实质上,都是通过正方形的对称中心沿虚线格作出对称分割.活学活用:一个每边长均为4m的荷花池如图所示,O是荷花池的中心,O到各顶点的距离相等.现计划在池中安装13盏灯,使其夜景变得更加漂亮.请你设计一个安装方案(要求相邻两盏灯间的距离d的取值范围为1m≤d≤2m,同时设计的图案要美观).随堂尝试A基础达标1.选择题(1)下列图形中,既是轴对称图形,又是中心对称图形的是()(A)角.(B)等边三角形.(C)矩形.(D)平行四边形.(2)在平面直角坐标系中,点P(2,-3)关于原点对称的坐标是()(A)(2,3).(B)(-2,3).(C)(-2,-3).(D)(-3,2).(3)如图①,小明将四张牌放在桌上,然后蒙上眼睛,请一位同学上前,将某一张旋转180o.小明解开蒙具,看到四张牌如图②所示,他很快就确定被旋转过的牌是()(A)方块4.(B)黑桃5.(C)梅花6.(D)红桃7.图①图②(4)如图,可由某个图案绕该图的中心旋转180而成的是()o(A)(B)(C)(D)(5)如图,在等边△ABC中,AB=9,点O在AB上,且AO=3,点P是AC上一动点,连接OP,将线段OP绕点O逆时针旋转60︒得到线段OD.要使点D恰好落在BC上,则AP的长是()(A)4.(B)5.(C)6.(D)8. 2.填空题(1)△ABC中,AB=7,AC=9,则中线AD的取值范围是_______________.(2)在下面的四个图形中,图形①与图形____________成轴对称,图①与图形_____________成中心对称(填写符合要求的图形所对应的序号).图①图②图③图④(3)如图,三个大小不等的圆的圆心相互重合,且最大圆的半径为5cm,那么,图中阴影部分的面积为____________cm2(结果中保留π).(第(3)题)(第(4)题)(第(5)题)(4)如图是两张全等的图案,它们完全重合地叠放在一起,按住下面的图案不动,将上面图案绕点O顺时针方向旋转,至少旋转____________度角后,两张图案构成的图形是中心对称图形.(5)如图,Rt△ACB中,∠C=90︒,AE=3,BE=5,正方形CDEF 的顶点都在△ABC的边上,△AED绕点E逆时针旋转90︒后与△GEF重合,那么阴影部分的面积为_________.3.在方格图中画出△ABC关于O的对称图形.(第3题)(第4题)4.如图,有一长方形土地,地内有一口井,现将这块地平分给甲、乙两个承包户种植蔬菜,要求两家合用这口井浇地.请问应如何分?在图中画出分界线.B能力升级5.有5 5的小正方形组成的图形如图所示,去掉中心的一个方格,余下24格,要求把它分成大小相等,形状相同的四块,请你在下面的三个图形中分别设计三个不同分法.6.由4个全等的正方形组成的“L”形图案如图所示,请按要求在网格中画图.(1)在图①中添加1个正方形,使它成为轴对称图形;(2)在图②中添加1个正方形,使它成为中心对称图形;(3)在图③中改变1个正方形的位置,使它既是中心对称图形,又是轴对称图形.C感受中考7.在如图的方格纸中,每个小正方形的边长都为1,△ABC与△ABC构成的图形是中心对称图形.(1)画出此中心对称图形的对称中心O;(2)画出将△A'B'C',沿直线DE方向向上平移5格得到的△ABC;(3)要使△ABC与△A1B1C1重合,则△ABC绕点C顺时针方向旋转,至少要旋转多少度?(直接写出答案)8.下列交通标志中既是中心对称图形,又是轴对称图形的是()(A)(B)(C)(D)课后实践乾隆和纪晓岚楹联中的对称传说乾隆下江南时,曾光顾了一个小酒店.当时,大雪飘飘,顾客寥寥,乾隆有兴而发,出了一个上联——“水冷酒一滴二滴三滴”,要随从纪晓岚对下联,纪晓岚是乾隆的宠臣,文学功底厚实.纪晓岚看后,觉得这副对联很难对上,因为水冷酒三个字很特殊,它们的偏旁正好是一滴二滴三滴,要找到这样的三个字,即要有意义,又要与数字有联系,还要保证对称,确实不容易.不过纪晓岚毕竟是纪晓岚,也稍加思索,写出了下联——“丁香花百头千头万头”.这真是太妙了!丁香花三个字出很特殊,丁字的头与百字头一样,香字的头是千,花字的头与万字头一样.水冷酒使人联想到寒冬腊月,而丁香花使人联想到春意融融.这副对联内在对称,不禁叫人拍案叫绝.第二篇:中心对称教案§15.3 中心对称任课教师:万先馥课程标准分析新课程标准要求学生通过具体的实例认识中心对称,探索它的基本性质,理解成中心对称的基本性质,并能做一个简单图形关于一个点成中心对称的图形,会判断中心对称图形.学情分析学生在此之前已经学习了图形的平移与旋转,还学了旋转对称图形,初步积累了一定的图形变换的数学活动经验,在此基础上,通过具体实例,探索中心对称性质可以促进学生对中心对称的理解与应用.教材分析教材通过现实生活中的大量实例的图片引入了中心对称图形这一概念;接着引导学生探索、发现成中心对称的两个图形的对应点、对应线段、对应角和对称中心之间的关系.教法分析在本节的教学中,该注意让学生通过丰富的具体图形认识中心对称与中对称图形,应引导学生根据成中心对称的两个图形的特点去发现其中的性质,并引导学生熟练的画出已知图形关于某一点成中心对称的图形.教学目标知识与技能1.知道中心对称与中心对称图形的意义;2.知道成中心对称两个图形的性质,会判断两个图形是否成中心对称图形,会画图形关于一个点成中心对称的图形.过程与方法经历观察、发现、探究中心对称图形的有关概念和基本性质的过程,积累一定的审美体念.情感、态度与价值观培养审美能力,增强对图形的审美意识.教学重、难点教学重点识别中心对称图形,和成中心对称的两个图形的的基本性质.教学难点探索图形之间的变化关系,发展图形的分析能力.教学用具形的区别.在此基础上让学生回答:∆ABC与∆ADE是成中心对称的两个三角形,点A是对称中心,点B关于中心对称A的对称点为__________,点C关于对称中心A的对称点是__________,点A关于对称中心A的对称点为__________,B,A,D在__________上,AD=__________,C,A,E在__________上,AC=__________,ED=__________.投影3,教材图15.3.3图15.3.3教师提问:1.∆A'B'C'与∆ABC关于点O是成中心对称的吗? 2.你能从图中找出那些等量关系?3.找出图中平行的线段.学生形成共识后让学生填空∆A'B'C'与∆ABC关于点O是成中心对称.在同一直线上的三点分别是__________,__________,__________.AO=__________,BO=__________,CO=__________,AB=__________,AC=__________,BC=__________.得到AB//__________,AC//__________,BC//__________.3 归纳总结,提高认识在成中心对称的两个图形中,连接对称点的线段都经过对称中心,并且被对称中心平分.反过来如果两个图形的对应点连成的线段都经过某一点并且被平分,那么,这两个图形一定关于这一点成中心对称.4 范例分析,加深理解例如图15.3.4,已知△ABC和点O,画出△DEF,使△DEF和△ABC 关于点O成中心对称.图15.3.4 解(1)连结AO并延长AO到D,使OD=OA,于是得到点A关于点O的对称点D;(2)同样画出点B和点C关于点O的对称点E和F;(3)顺次连结DE、EF、FD.如图15.3.5,△DEF即为所求的三角形.图15.3.5 5 课堂练习教材P81练习第1,2题思考题(备用)如图15.3.6所示的两个图形成中心对称,你能找到对称中心吗?图15.3.6 6 课堂小结1.通过本节课的学习,我们知道了中心对称图形和成中心对称的基本性质;2.利用中心对称的基本性质,我们可以进行一些简单的作图. 7 本课作业教材P84习题15.3第1,2,3题第三篇:23.2.1 中心对称(教案)23.2 中心对称23.2.1 中心对称【知识与技能】理解中心对称的有关定义,掌握中心对称的性质,能利用中心对称性质画出与已知图形成中心对称的图形.【过程与方法】经历在操作活动过程中探索出中心对称的性质,进一步增强学生的观察、分析、抽象概括的能力.【情感态度】在操作活动中积累数学活动的经验,培养学生的空间想象能力,增强审美意识,体验几何美,提高学习兴趣.【教学重点】利用中心对称的有关定义和性质解决具体问题.【教学难点】中心对称与图形旋转的关系.一、情境导入,初步认识问题1 如图,将△ABC绕点O旋转,使点A旋转到D处,你能画出旋转后的图形吗?说说你的理由.问题2 如图,将△ABC绕点O旋转180°,你能画出旋转后的图形吗?说说你的做法,并指出这两个图形之间有什么关系?从中你有何发现?【教学说明】设置上述问题的目的一方面对前面所学过知识进行回顾,另一方面又为新知的探索作好铺垫.教学时,应给出时间让学生自主画图,并进行思考,初步认识图形的旋转与中心对称之间的关系.二、思考探究,获取新知探究1(1)如图(1),把其中一个图案绕点O旋转180°,你有什么发现?(2)如图(2),线段AC、BD相交于点O,OA=OC,OB=OD,把△OCD绕点O旋转180°,你有什么发现?【教学说明】让学生通过在问题情境中画图的初步认识,并在观察图(1)、(2)所获得的感性认识基础上,认真分析图形特征,相互交流体会,感受图形之间的对称美,从而总结出中心对称的有关概念,必要时,教师可给予适当引导.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.这个点称为对称中心,这两个图形中的对应点叫做关于中心的对称点.【教学说明】师生共同总结出中心对称定义后,教师应强调定义的三个特征:(1)反映了两个图形之间的位置关系;(2)关于旋转中心旋转180°;(3)互相重合.加深学生对定义的理解.探究2旋转三角尺,画关于点O对称的两个三角形.第一步:画出△ABC如图(1);第二步:以三角尺的一个顶点O为中心,把三角尺旋转180°,画出△A′B′C′如图(2);第三步:移开三角尺如图(3).这样,画出的△ABC与△A′B′C′关于点O对称.试问:(1)在图(3)中,点O在线段AA′上吗?如果在,在什么位置?对于线段BB′、CC′呢?(2)△ABC与△A′B′C′有什么关系?【教学说明】让学生通过观察,可获得结论为:点O在线段AA′,BB′,CC′上,且OA=OA′,OB=OB′,OC=OC′;△ABC≌△A′B′C′.然后让学生相互交流,说说理由.教师边巡视,边听取学生间的交流,对于描述不准确的应给予提醒,帮助学生完善认知.【归纳结论】(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心平分.(2)关于中心对称的两个图形全等.三、典例精析,掌握新知例(1)选择点O为对称中心,画出点A关于点O的对称点A′,如图(1);(2)选择点O为对称中心,画出与△ABC关于点O对称的△A′B′C′,如图(2).分析:在(1)中,可利用“对称点所连线段都经过对称中心,并且被对称中心平分”这一性质,画出点A关于O点的对称点A′(即延长AO,并在AO延长线上截取OA′=AO,则A′点即是A关于点O的对称点);在(2)中,可仿(1)分别得到点A、B、C关于点O的对称点A′、B′、C′,连A′B′、A′C′、B′C′,则△A′B′C′是△ABC关于点O的对称三角形.解:略.【教学说明】让学生经历画图过程,进一步加深对中心对称的性质的理解和掌握.教学时,教师提出问题并师生共同分析后,可由学生自己画图,完成解答.四、运用新知,深化理解 1.下列说法正确的个数是()①旋转后能够重合的两个图形是中心对称的;②成中心对称的两个图形形状一样、大小相同;③全等的两个三角形一定是中心对称的;④关于中心对称的两个图形,对称点所连线段都经过对称中心.A.1个B.2个C.3个D.4个2.如图,已知四边形ABCD,请以点O为中心,画一个四边形,使之与四边形ABCD关于点O成中心对称.【教学说明】由学生自主探究,相互交流获得结论,教师巡视,关注学生的作图是否准确规范,对作图出现较大偏差的同学给予帮助,让每个学生都能得到发展.【答案】1.B2.略五、师生互动,课堂小结教师让学生围绕以下问题展开:(1)本节知识要点归纳回顾;(2)中心对称的性质及其应用;(3)中心对称和轴对称的区别和联系;(4)相互交流本节课的学习体会和收获,谈谈学习中有哪些困惑.【教学说明】教师提出问题,让学生进行回顾思考,相互交流.1.布置作业:从教材“习题23.2”中选取.2.完成练习册中本课时练习的“课时作业”部分.1.本课设计通过问题导入,遵循从感性到理性的渐进认识规律、发展学生直观想象能力,分析、归纳、抽象概括的思维能力.2.教师要以更为丰富的教学语言激励学生,以便更好地关注学生的情感、态度等方面的发展.第四篇:11.4中心对称(教案)11.4 中心对称教学目标:1.理解两个图形关于某一点中心对称的意义;掌握中心对称的概念;知道中心对称与中心对称图形的区别;2.知道中心对称的基本性质,并会用基本性质画已知图形关于某一点成中心对称的图形;3.能找到两个成中心对称图形的对称中心。
《中心对称图形》教案
![《中心对称图形》教案](https://img.taocdn.com/s3/m/15a66f2889eb172dec63b779.png)
《中心对称图形》教案《中心对称图形》教案《中心对称图形》教案1一、学习目标1、理解圆的描述定义,了解圆的集合定义.2、经历探索点与圆的位置关系的过程,以及如何确定点和圆的三种位置关系3、初步渗透数形结合和转化的数学思想,并逐步学会用数学的眼光和运动、集合的观点去认识世界、解决问题.学习重难点会确定点和圆的位置关系.二、知识准备:1、说出几个与圆有关的成语和生活中与圆有关的物体。
思考:车轮为什么做成圆形?2、爱好运动的小华、小强、小兵三人相邀搞一次掷飞镖比赛。
他们把靶子钉在一面土墙上,规则是谁掷出落点离红心越近,谁就胜。
如下图中A、B、C三点分别是他们三人某一轮掷镖的落点,你认为这一轮中谁的成绩好?三、知识梳理:本节你有何收获?四、达标检测1、⊙O的半径10cm,A、B、C三点到圆心的距离分别为8cm、10cm、12cm,则点A、B、C与⊙O的位置关系是:点A在;点B在;点C在2、⊙O的半径6cm,当OP=6时,点A在;当OP 时点P在圆内;当OP 时,点P不在圆外。
3、到点P的距离等于6厘米的点的集合是________________________________________4、已知AB为⊙O的直径P为⊙O 上任意一点,则点关于AB的对称点P′与⊙O的位置为( ) (A)在⊙O内 (B)在⊙O 外 (C)在⊙O 上 (D)不能确定5、如图已知矩形ABCD的边AB=3厘米,AD=4厘米(直接写出答案)(1)以点A为圆心,3厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?(2)以点A为圆心,4厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?(3)以点A为圆心,5厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?6如图,在直角三角形ABCD中,角C为直角,AC=4,BC=3,E,F分别为AB,AC的中点。
以B为圆心,BC为半径画圆,试判断点A,C,E,F与圆B的位置关系。
7已知:如图,BD、CE是△ABC的高,为BC的中点.试说明点B、C、D、E在以点为圆心的同一个圆上.《中心对称图形》教案2(一)教学内容分析1.教材:义务教育课程标准实验教科书《数学》九年级上册(人民教育出版社)2.本课教学内容的地位、作用,知识的前后联系《中心对称图形》是新人教版九年级数学上册第二十三章第二单元第二节课的内容。
中心对称(教案)-人教版数学九年级上册
![中心对称(教案)-人教版数学九年级上册](https://img.taocdn.com/s3/m/57edc72afe00bed5b9f3f90f76c66137ee064f37.png)
23.2 中心对称23.2.1 中心对称【知识与技能】理解中心对称的有关定义,掌握中心对称的性质,能利用中心对称性质画出与已知图形成中心对称的图形.【过程与方法】经历在操作活动过程中探索出中心对称的性质,进一步增强学生的观察、分析、抽象概括的能力.【情感态度】在操作活动中积累数学活动的经验,培养学生的空间想象能力,增强审美意识,体验几何美,提高学习兴趣.【教学重点】利用中心对称的有关定义和性质解决具体问题.【教学难点】中心对称与图形旋转的关系.一、情境导入,初步认识问题1 如图,将△ABC绕点O旋转,使点A旋转到D处,你能画出旋转后的图形吗?说说你的理由.问题2 如图,将△ABC绕点O旋转180°,你能画出旋转后的图形吗?说说你的做法,并指出这两个图形之间有什么关系?从中你有何发现?【教学说明】设置上述问题的目的一方面对前面所学过知识进行回顾,另一方面又为新知的探索作好铺垫.教学时,应给出时间让学生自主画图,并进行思考,初步认识图形的旋转与中心对称之间的关系.二、思考探究,获取新知探究1 (1)如图(1),把其中一个图案绕点O旋转180°,你有什么发现?(2)如图(2),线段AC、BD相交于点O,OA=OC,OB=OD,把△OCD 绕点O旋转180°,你有什么发现?【教学说明】让学生通过在问题情境中画图的初步认识,并在观察图(1)、(2)所获得的感性认识基础上,认真分析图形特征,相互交流体会,感受图形之间的对称美,从而总结出中心对称的有关概念,必要时,教师可给予适当引导.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.这个点称为对称中心,这两个图形中的对应点叫做关于中心的对称点.【教学说明】师生共同总结出中心对称定义后,教师应强调定义的三个特征:(1)反映了两个图形之间的位置关系;(2)关于旋转中心旋转180°;(3)互相重合.加深学生对定义的理解.探究2旋转三角尺,画关于点O对称的两个三角形.第一步:画出△ABC如图(1);第二步:以三角尺的一个顶点O为中心,把三角尺旋转180°,画出△A′B′C′如图(2);第三步:移开三角尺如图(3).这样,画出的△ABC与△A′B′C′关于点O对称.试问:(1)在图(3)中,点O在线段AA′上吗?如果在,在什么位置?对于线段BB′、CC′呢?(2)△ABC与△A′B′C′有什么关系?【教学说明】让学生通过观察,可获得结论为:点O在线段AA′,BB′,CC′上,且OA=OA′,OB=OB′,OC=OC′;△ABC≌△A′B′C′.然后让学生相互交流,说说理由.教师边巡视,边听取学生间的交流,对于描述不准确的应给予提醒,帮助学生完善认知.【归纳结论】(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心平分.(2)关于中心对称的两个图形全等.三、典例精析,掌握新知例(1)选择点O为对称中心,画出点A关于点O的对称点A′,如图(1);(2)选择点O为对称中心,画出与△ABC关于点O对称的△A′B′C′,如图(2).分析:在(1)中,可利用“对称点所连线段都经过对称中心,并且被对称中心平分”这一性质,画出点A关于O点的对称点A′(即延长AO,并在AO 延长线上截取OA′=AO,则A′点即是A关于点O的对称点);在(2)中,可仿(1)分别得到点A、B、C关于点O的对称点A′、B′、C′,连A′B′、A′C′、B′C′,则△A′B′C′是△ABC关于点O的对称三角形.解:略.【教学说明】让学生经历画图过程,进一步加深对中心对称的性质的理解和掌握.教学时,教师提出问题并师生共同分析后,可由学生自己画图,完成解答.四、运用新知,深化理解1.下列说法正确的个数是()①旋转后能够重合的两个图形是中心对称的;②成中心对称的两个图形形状一样、大小相同;③全等的两个三角形一定是中心对称的;④关于中心对称的两个图形,对称点所连线段都经过对称中心.A.1个B.2个C.3个D.4个2.如图,已知四边形ABCD,请以点O为中心,画一个四边形,使之与四边形ABCD关于点O成中心对称.【教学说明】由学生自主探究,相互交流获得结论,教师巡视,关注学生的作图是否准确规范,对作图出现较大偏差的同学给予帮助,让每个学生都能得到发展.【答案】1.B2.略五、师生互动,课堂小结教师让学生围绕以下问题展开:(1)本节知识要点归纳回顾;(2)中心对称的性质及其应用;(3)中心对称和轴对称的区别和联系;(4)相互交流本节课的学习体会和收获,谈谈学习中有哪些困惑.【教学说明】教师提出问题,让学生进行回顾思考,相互交流.1.布置作业:从教材“习题23.2”中选取.2.完成练习册中本课时练习的“课时作业”部分.1.本课设计通过问题导入,遵循从感性到理性的渐进认识规律、发展学生直观想象能力,分析、归纳、抽象概括的思维能力.2.教师要以更为丰富的教学语言激励学生,以便更好地关注学生的情感、态度等方面的发展.。
九年级数学上册高效课堂(人教版)23.2.1中心对称优秀教学案例
![九年级数学上册高效课堂(人教版)23.2.1中心对称优秀教学案例](https://img.taocdn.com/s3/m/ff4a83825122aaea998fcc22bcd126fff6055d09.png)
(一)知识与技能
1.让学生掌握中心对称的定义和性质,能够识别和判断生活中的中心对称图形。
2.培养学生运用中心对称知识解决实际问题的能力,提高他们的数学应用素养。
3.引导学生了解中心对称在数学和其他学科中的应用,拓宽他们的知识视野。
为实现这一目标,我将设计一系列教学活动,如通过观察生活中的对称现象,让学生感知中心对称的存在;通过讲解和示范,让学生理解中心对称的定义和性质;通过练习题和实际问题,让学生运用中心对称知识解决问题。
九年级数学上册高效课堂(人教版)23.2.1中心对称优秀教学案例
一、案例背景
本案例背景以人教版九年级数学上册第23.2.1节“中心对称”为主题,旨在探索在高效课堂环境中,如何通过创新教学策略和手段,提高学生的数学学习兴趣和成绩。本节内容主要介绍了中心对称的定义、性质和应用,对于学生来说,这部分知识较为抽象,需要通过具体实例和操作活动来加深理解。
三、教学策略
(一)情景创设
1.利用多媒体展示中心对称的实例,如剪纸、建筑、自然界中的对称现象等,让学生在真实情境中感受中心对称的美妙。
2.设计有趣的数学问题,如让学生解决实际生活中的对称问题,让学生在解决问题的过程中,自然地引入中心对称知识。
3.创设操作活动,如让学生动手剪出中心对称图形,观察其性质,让学生在操作中体验中心对称的概念。
为实现这一目标,我将采用问题驱动的教学方法,引导学生主动思考,积极探索,培养他们的问题解决能力。
(三)小组合作
1.组织学生进行小组讨论,让他们在合作中分享学习心得,提高他们的合作交流能力。
2.设置小组合作任务,让学生共同完成,培养他们的团队协作精神。
3.教师对小组合作过程进行指导,确保学生能够有效地完成任务,提高他们的学习能力。
中心对称教案市公开课一等奖教案省赛课金奖教案
![中心对称教案市公开课一等奖教案省赛课金奖教案](https://img.taocdn.com/s3/m/66eb8610326c1eb91a37f111f18583d049640fbb.png)
中心对称教案一、教学目标:1. 学生能够理解中心对称的概念,并能通过观察图形,判断是否具有中心对称性。
2. 学生能够通过折纸的方法,找到图形的对称中心,并将图形完成对称折叠。
3. 学生能够通过对称性的特点,解决一些几何问题。
二、教学重点和难点:1. 教学重点:中心对称的概念及其应用。
2. 教学难点:通过折纸方法找到图形的对称中心。
三、教学准备:1. 教学用具:锡纸、剪刀、彩色纸、图形卡片。
2. 教学资源:教材、教辅书、多媒体设备。
四、教学过程:1. 导入:引导学生观察周围的环境,寻找具有中心对称性的事物,比如花朵、手表等。
引发学生对中心对称的兴趣,并了解它的应用。
2. 学习中心对称的概念:通过多媒体展示中心对称的概念和定义,帮助学生理解中心对称是指图形可以通过一个点旋转180度而成的性质。
3. 观察图形并判断是否具有中心对称性:通过呈现一些具有中心对称性的图形,引导学生用眼观察,判断图形是否具有中心对称性。
分析具体的判定方法,并进行讨论。
4. 找出图形的对称中心并完成对称折叠:给学生发放彩色纸和剪刀,并以图形卡片的形式展示一些具有中心对称性的图形,要求学生通过折纸的方法,找到图形的对称中心,并将图形完成对称折叠。
让学生互相交流和比较,展示自己的成果。
5. 解决几何问题:通过提问和讨论,引导学生思考中心对称性在解决几何问题中的应用。
例如,如何通过中心对称性判断一个图形是否能够完全填充一个区域。
6. 拓展练习:给学生分发练习册,让学生通过完成练习题来巩固所学内容。
包括观察图形并判断是否具有中心对称性,找出图形的对称中心,并完成对称折叠等。
7. 总结与反思:通过讨论和回答问题,进行本节课知识的总结。
让学生思考中心对称对于几何问题的重要性,并反思自己学习中存在的问题和不足。
五、板书设计:中心对称定义:图形可以通过一个点旋转180度而成应用:判断图形是否具有中心对称性,找出图形的对称中心并完成对称折叠六、课后作业:要求学生完成练习册的相关题目,并预习下一节课的内容。
23.2.2中心对称图形教案
![23.2.2中心对称图形教案](https://img.taocdn.com/s3/m/9219c35fb84ae45c3b358c3b.png)
23.2.2中心对称图形教案篇一:23.2.2中心对称图形教案九年级数学23.2.2中心对称图形教案设计篇二:23.2.2中心对称图形教案23.2.2中心对称图形篇三:23.2中心对称图形公开课教案23.2中心对称图形教学内容1.中心对称图形的概念.2.对称中心的概念及其它们的运用.教学目标了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用.复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其它的运用.重难点、关键1.重点:中心对称图形的有关概念及其它们的运用.2.难点与关键:区别关于中心对称的两个图形和中心对称图形.教具、学具准备小黑板、三角形教学过程一、复习引入1.(老师口问)口答:关于中心对称的两个图形具有什么性质?(老师口述):关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.关于中心对称的两个图形是全等图形.2.(学生活动)作图题.(1)作出线段ao关于o点的对称图形,如图所示.o(2)作出三角形aoB关于o点的对称图形,如图所示.aoB(2)延长ao使oc=ao,延长Bo使od=Bo,连结cd则△cod为所求的,如图所示.adc.cn二、探索新知从另一个角度看,上面的(1)题就是将线段aB绕它的中点旋转180°,因为oa=?oB,所以,就是线段aB绕它的中点旋转180°后与它重合.上面的(2)题,连结ad、Bc,则刚才的两个关于中心对称的两个图形,就成平行四边形,如图所示.∵ao=oc,Bo=od,∠aoB=∠cod∴△aoB≌△cod∴aB=cdadoB也就是,aBcd绕它的两条对角线交点o旋转180°后与它本身重合.因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.(学生活动)例1:从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形.老师点评:老师边提问学生边解答.(学生活动)例2:请说出中心对称图形具有什么特点?老师点评:中心对称图形具有匀称美观、平稳.例3.求证:如图任何具有对称中心的四边形是平行四边形.aodB分析:中心对称图形的对称中心是对应点连线的交点,也是对应点间的线段中点,因此,直接可得到对角线互相平分.证明:如图,o是四边形aBcd的对称中心,根据中心对称性质,线段ac、?Bd必过点o,且ao=co,Bo=do,即四边形aBcd的对角线互相平分,因此,?四边形aBcd是平行四边形.三、巩固练习教材P72练习.四、应用拓展例4.如图,矩形aBcd中,aB=3,Bc=4,若将矩形折叠,使c点和a点重合,?求折痕EF的长.分析:将矩形折叠,使c点和a点重合,折痕为EF,就是a、c两点关于o点对称,这方面的知识在解决一些翻折问题中起关键作用,对称点连线被对称轴垂直平分,进而转化为中垂线性质和勾股定理的应用,求线段长度或面积.解:连接aF,∵点c与点a重合,折痕为EF,即EF垂直平分ac.∴aF=cF,ao=co,∠Foc=90°,又四边形aBcd为矩形,∠B=90°,aB=cd=3,ad=?Bc=4设cF=x,则aF=x,BF=4-x,由勾股定理,得ac=Bc+aB=5222215∴ac=5,oc=ac=22∵aB+BF=aF∴3+(4-x)=2=x∴x=22222aoBFEd258222∵∠Foc=90°∴oF=Fc-oc=(.cn2525215215)-()=()oF=28881515同理oE=,即EF=oE+oF=84五、归纳小结(学生归纳,老师点评)本节课应掌握:1.中心对称图形的有关概念;2.应用中心对称图形解决有关问题.六、布置作业1.教材P74综合运用5P75拓广探索8、9篇四:23.2.2中心对称图形教案23.2.2中心对称图形一、教学内容中心对称图形二、教材分析“中心对称图形”是初中数学教学中的重要内容之一,它既与“轴对称图形”有紧密的联系和区别,同时又是图形的三种基本运动方式(平移,翻折,旋转)中的“旋转”的特殊情况﹒通过对这一节课的学习, 丰富学生对“对称图形”的认识,同时又向学生渗透了“旋转变换”的思想,使学生学会用运动的观点研究问题,发展学生的空间智能﹒本节课在生活中有丰富的实际素材,学习本节课后学生能进一步感受到数学的应用价值,能用数学的观点观察生活,解决生活中的实际问题,为续内容的学习奠定良好的基础,学习中涉及的归纳、类比等思想方法,对激发学生探索精神和创新意识等方面都有重要意义﹒三、学情分析学生已学过《生活中的轴对称》和《图形的平移和旋转》,初步积累了一定的图形变换的数学活动经验,在此基础上,组织学生观察、分析、识图、简单图案欣赏和设计等实践操作活动,丰富学生对图形变换的认识﹒由于学生的操作能力相对比较差,呈现内容时,力图为学生提供生动有趣的现实情境,安排观察、实践、交流等活动,进一步深化学生对中心对称图形定义和性质的理解,以及对识图、画图等操作技能的掌握,丰富学生数学活动体验,有意识培养学生积极的情感、态度,促进良好的数学观的养成﹒(一)知识与技能1.了解中心对称图形及其基本性质.2.掌握平行四边形是中心对称图形.(二)过程与方法1.经历观察、发现,探索中心对称图形的有关概念和基本性质的过程,积累一定的审美体验.2.了解中心对称图形及其基本性质,掌握平行四边形是中心对称图形.(三)情感态度价值观通过观察发现、动手操作、大胆猜想、自主探索、合作交流体验到成功的喜悦,学习的乐趣并积累一定的审美体验。
中心对称初中教案
![中心对称初中教案](https://img.taocdn.com/s3/m/27975361b5daa58da0116c175f0e7cd185251853.png)
中心对称初中教案教学目标:1. 让学生理解中心对称图形的概念,掌握中心对称图形的性质。
2. 培养学生观察、分析、解决问题的能力。
3. 培养学生的空间想象能力和动手操作能力。
教学重点:1. 中心对称图形的概念及性质。
2. 中心对称图形在实际中的应用。
教学难点:1. 中心对称图形的性质的理解和应用。
2. 中心对称图形与轴对称图形的区别。
教学准备:1. 教师准备一些中心对称图形的实物或图片。
2. 学生准备课本、练习本、铅笔、直尺等学习用品。
教学过程:一、导入(5分钟)1. 教师展示一些中心对称图形的实物或图片,让学生观察并猜测它们的特点。
2. 学生分享观察到的特点,教师引导学生总结中心对称图形的定义。
二、新课(15分钟)1. 教师讲解中心对称图形的性质,引导学生通过观察和思考来理解性质。
2. 学生跟随教师的讲解,积极参与讨论,提出问题和解答问题。
3. 教师通过示例来展示中心对称图形的性质在实际中的应用,让学生体会学习中心对称图形的意义。
三、练习(10分钟)1. 教师给出一些中心对称图形的问题,学生独立解答。
2. 学生分享解答过程和结果,教师给予评价和指导。
四、小结(5分钟)1. 教师引导学生回顾本节课所学的内容,总结中心对称图形的概念和性质。
2. 学生分享自己的学习收获和感受。
五、作业(课后)1. 学生完成课后练习题,巩固所学知识。
2. 学生收集生活中的中心对称图形,下节课分享。
教学反思:本节课通过实物和图片的展示,引导学生观察和分析中心对称图形的性质,让学生通过思考和讨论来理解知识,培养了学生的观察能力、思维能力和解决问题的能力。
同时,通过练习和实际应用,让学生感受中心对称图形在生活中的重要性,提高了学生的学习兴趣和积极性。
但在教学过程中,要注意引导学生区分中心对称图形和轴对称图形,避免混淆。
初中数学中心对称图解教案
![初中数学中心对称图解教案](https://img.taocdn.com/s3/m/c70b1542854769eae009581b6bd97f192379bf76.png)
初中数学中心对称图解教案教学目标:1. 经历观察、发现、探究中心对称图形的有关概念和基本性质的过程,积累一定的审美体验。
2. 了解中心对称图形及其基本性质,掌握平行四边形也是中心对称图形。
教学重、难点:理解中心对称图形的概念及其基本性质。
教学过程:一、创设问题情境(5分钟)1. 以魔术创设问题情境:教师通过扑克牌魔术的演示引出研究课题,激发学生探索中心对称图形的兴趣。
【魔术设计】:教师取出若干张非中心对称的扑克牌和一张是中心对称的牌,按牌面的多数指向整理好,然后请一位同学上台任意抽出一张扑克,把这张牌旋转180度后再插入,再请这位同学洗几下,展开扑克牌,马上确定这位同学抽出的扑克。
课堂反应:学生非常安静,目不转睛地盯着老师做动作。
每完成一个动作之后,学生就进入沉思状态,接着就是小声议论。
二、探究中心对称图形的概念和性质(15分钟)1. 教师引导学生观察、讨论,探究中心对称图形的概念和性质。
【学生活动】:学生通过观察、讨论,发现中心对称图形的概念和性质。
【教师引导】:教师引导学生通过具体实例,总结中心对称图形的概念和性质。
三、巩固中心对称图形的基本性质(15分钟)1. 教师提出问题,引导学生运用中心对称图形的性质解决问题。
【学生活动】:学生运用中心对称图形的性质解决问题。
【教师引导】:教师引导学生通过实际操作,巩固中心对称图形的基本性质。
四、应用中心对称图形的基本性质(15分钟)1. 教师提出问题,引导学生运用中心对称图形的基本性质解决问题。
【学生活动】:学生运用中心对称图形的基本性质解决问题。
【教师引导】:教师引导学生通过实际操作,应用中心对称图形的基本性质。
五、总结与评价(5分钟)1. 教师引导学生总结中心对称图形的概念和性质。
2. 学生进行自我评价,教师进行点评。
教学反思:本节课通过魔术引入,激发了学生的兴趣,引导学生观察、讨论,探究中心对称图形的概念和性质。
在教学过程中,教师引导学生通过实际操作,巩固和应用中心对称图形的基本性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内容3:作图:
教学设计思路
备注
内容4:中心对称图形的概念
第四环节:练习与提高
随堂练习1题、2题
第五环节课堂小结
第六环节布置作业
1、习题3.6
2、预习下一节
板书设计3.3中心对称
中心对称的概念:中心对称与轴对称的联系与区别:
课题
3.3中心对称
教时
时间
教学
目的
1、了解中心对称、中心对称图形的概念,探索它的基本性质。
2、认识和欣赏自然界和现实生活中的中心对称图形。
3、经历有关中心对称的观察、操作、欣赏和设计的过程,进一步积累数学活动经验,增强动手实践能力,发展空间观念。
教学重点
中心对称、中心对称图形的有关概念和性质。
教学难点
如果把某个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说着两个图形关于这个点对称或中心对称,这个点叫做它们的对称中心。如图3-20,
效果:通过学生找到上图的对称关系,运用讨论交流等方式,让学生自己探索出图形变化的过程,为后面寻找组合图形所运用的几何变换的规律和特征奠定了基础。
教学设计思路
中心对称与轴对称、中心对称图形与轴对称图形的区别。利用中心对称图形和性质解决问题。
教学用具
课件
教学设计思路
备注
第一环节游戏及图片欣赏
活动内容:
观察图3-18,图(1)经过怎样的运动变化可以与图(2)重合?观察图3-19,再试一试。你还能举出一些类似的例子吗?与同伴交流。
第二环节复习旧知,引入新课
内容:通过以上观察,理解中心对称的概念
备注
第三环节:合作交流,解决问题
内容1:中心对称与轴对称的联系与区别
轴对称
中心对称
1
有一条对称轴
有一个对称中心-----点
2
图形沿轴对折
图形饶中心旋转180°
3
翻折后和另一个图形重合
旋转后和另一个图形重合
内容2:中心对称的性质:
做一做
自己画一个图形,选取一个旋转中心,把所画的图形绕旋转中心旋转180°。连接旋转前后一族对应点,你发现了什么?再选几组对应点试一试,并与同伴交流。
中心对称的性质:中心对称与中心对称图形的联系与区别:
中心对称图形的概念:
回顾与反思