直线电机选型计算实例
直线电机选型方法实例
![直线电机选型方法实例](https://img.taocdn.com/s3/m/074e8e34f111f18583d05aff.png)
有效行程 350[mm] > 300[mm] 因此,运动位移满足要求。 ② 时间要求 稳定运行时推力计算 F = 0.01 × (10+0.5) × 9.8+1.0 = 2.03[N] 加速时间(启动到设定速的加速时间)
L
Ta =
0.1
0.5 0.7 1.0
0.1
时时
=0.095[s] 要求加速时间 0.1s > 加速时间 0.095s 因目标速度可以在要求的 0.1 秒内达到,因此时 间要求满足。 ③ 推力要求 加速推力计算 使用上面计算得到的 F 代入公式计算加速 时需要的推力:
3 参数验算
2 预选定
= 107[N] 减速推力计算
Fd =
1.0 × (10 + 0.5) + 2.03 0.1
=103[N] 实际推力计算
1.0 × (10 + 0.5) − 2.03 0.1
= 46.37[N] 连续推力 62[N] > 实际推力 58[N](选取安全 系数为 1.25,则 1.25*46.37 = 58[N]) 经过验算,电机连续推力大于实际推力的 125%, 因此该款电机满足应用要求。 如果验算后选定电机不能满足要求,应重新进行 步骤 2、3 直到满足。
直线伺服 直线伺服电机选型 伺服电机选型计算方法 电机选型计算方法
名称 负载质量 行程 最大运动速度 加速时间 匀速运动时间 减速时间 周期时间
1
符号
ML S Vm Ta Tb Tc T
单位 千克[kg] 毫米[mm] 米/秒[m/s] 秒[sec] 秒[sec] 秒[sec] 秒[sec] 单位 牛顿[N] 牛顿[N] 千克[kg]
L
(10 + 0.5) ×1.0 ×1.3 146 − 2.03
直线电机选型方法实例
![直线电机选型方法实例](https://img.taocdn.com/s3/m/913e0d34ba68a98271fe910ef12d2af90342a850.png)
直线电机选型方法实例
假设我们需要选用一台直线电机,用于驱动一台重量为100kg 的运动平台,需要满足以下要求:
-最大速度:2m/s
-最大加速度:5m/s²
-持续工作时间:8小时
-工作环境温度:20℃
根据以上要求,我们需要进行选型计算:
1.计算载荷
载荷=运动平台质量×重力加速度
载荷=100kg×9.8m/s²
载荷=980N
2.计算最大力
最大力=载荷×最大加速度
最大力=980N×5m/s²
最大力=4900N
3.计算最大功率
最大功率=最大力×最大速度
最大功率=4900N×2m/s
最大功率=9800W
4.计算额定功率
额定功率=最大功率×1.5
额定功率=9800W×1.5
额定功率=14700W
5.选择适合的直线电机
根据以上计算,我们需要选择额定功率为14700W的直线电机。
同时,我们还需要考虑工作环境温度,应该选择能够在20℃下正常工作的直线电机。
还需要考虑其他因素,如包括电机的体积、重量、噪音、维护成本等因素。
最终选型应该综合考虑以上因素,选择最为适合的直线电机。
直线电机选型计算实例
![直线电机选型计算实例](https://img.taocdn.com/s3/m/dca6018c88eb172ded630b1c59eef8c75fbf9589.png)
直线电机选型计算实例以直线电机选型计算实例为例,本文将详细介绍直线电机选型的过程和计算方法,帮助读者了解直线电机选型的基本原理和步骤。
直线电机是一种将电能直接转换为机械能的装置,广泛应用于工业自动化、半导体生产设备、医疗器械等领域。
选型是指根据实际需求和工作条件,选择合适的直线电机型号和规格参数,以满足工作要求和性能指标。
直线电机选型的基本步骤如下:1. 确定工作负载:首先需要明确直线电机所需承载的负载类型和重量,包括静负载和动负载。
静负载是指直线电机在停止工作时所要承受的重量,动负载是指直线电机在运行时所要承受的重量。
根据工作负载的大小和特点,选择适合的直线电机类型。
2. 确定工作速度:根据实际工作需求,确定直线电机的运行速度。
速度是直线电机选型的重要参数,直线电机的速度范围通常在几毫米/秒到几米/秒之间。
根据工作速度要求,选择合适的直线电机型号和规格。
3. 确定工作行程:直线电机的行程是指直线电机能够移动的距离范围。
根据实际工作需求,确定直线电机的工作行程,以确定直线电机的尺寸和结构形式。
4. 确定工作精度:根据实际工作需求,确定直线电机的工作精度要求,包括位置精度、重复定位精度和运动平稳性等指标。
根据工作精度要求,选择合适的直线电机型号和控制系统。
5. 计算所需力矩:根据工作负载和工作速度,计算出直线电机所需的力矩。
力矩是直线电机选型的重要参数,直线电机的力矩范围通常在几牛米到几十牛米之间。
根据所需力矩,选择合适的直线电机型号和规格。
6. 选择合适的控制系统:根据工作要求和性能指标,选择合适的直线电机控制系统。
直线电机控制系统通常包括驱动器、编码器和控制器等组成部分。
根据实际需求和预算限制,选择合适的控制系统。
以上是直线电机选型的基本步骤和计算方法。
在实际应用中,还需要考虑其他因素,如环境条件、电源要求、可靠性和维护性等。
选型过程中,可以借助厂商提供的选型软件或咨询厂商的工程师,以获得更准确和可靠的选型结果。
直线电机推力计算(RMS均方根值)
![直线电机推力计算(RMS均方根值)](https://img.taocdn.com/s3/m/5f5399d9aa00b52acfc7cabf.png)
9 10 11 12 13 14 15 16 17 18 19 20
S(m)-移动距离 0.1 S(m)-移动距离 0.05 S(m)-移动距离 S(m)-移动距离 S(m)-移动距离 S(m)-移动距离 S(m)-移动距离 S(m)-移动距离 S(m)-移动距离 S(m)-移动距离 S(m)-移动距离 S(m)-移动距离
运动模型
序 号 1 2 3 4 5 6 7 8 0.5 S(m)-移动距离 0.05 S(m)-移动距离 0.1 S(m)-移动距离 0.2 S(m)-移动距离 0.1 S(m)-移动距离 0.1 S(m)-移动距离 0.2 S(m)-移动距离 0.05 运动模型 S(m)-移动距离 t1(s)-停留时间 0.2 t1(s)-停留时间 0.2 t1(s)-停留时间 0.5 t1(s)-停留时间 0.2 t1(s)-停留时间 0.2 t1(s)-停留时间 0.5 t1(s)-停留时间 0.2 t1(s)-停留时间 0.2 电机运动时 节拍时间 有效推力 间(s) (s) (N) 0.433333 0.11547 0.163299 0.233333 0.163299 0.163299 0.233333 0.11547 0.63333 0.31547 0.6633 0.43333 0.3633 0.6633 0.43333 0.31547 126.23 135.79 111.64 152.32 150.34 111.64 152.32 135.79
水平安装直线电机选型(输入黄色单元格数值)
序 号 1 2 3 4 5 6 a(m/s*s) V(m/s) Mt(kg) Mf(kg) μ K
输入参数
15 加速度要求 1.5 平台移动速度 1 移动平台质量 13 负载质量 0.1 导轨摩擦系数 1.2 推力安全系数 t(s) Fa=Fd(N) Fc=Fw(N) Fp(N) F(N) Ke
电机选型案例
![电机选型案例](https://img.taocdn.com/s3/m/8958e3225e0e7cd184254b35eefdc8d376ee142f.png)
电机选型案例本篇文章介绍了两个电机选型案例,第一个是皮带输送线电机选型,第二个是直线导轨电机选型。
第一个案例中,设计要求是传送20Kg物料X 2,传送速度1m/s,加速时间0.15s,已知条件为摩擦系数=0.2,机械效率=90%,滚子直径=200mm。
首先计算负载,然后计算皮带拉力和辊筒转矩,最后计算功率和电机转矩,得出选用1.9N·m的电机,并进行校验。
第二个案例中,设计要求是传送50Kg的负载,运行速度1m/s,加速时间0.25s,已知条件为直线导轨摩擦系数0.1,带轮直径100mm。
首先计算负载,然后计算同步轮转矩和电机功率,得出两种方案,一种是选择18NM的步进电机,另一种是加减速器,取i=2.5.在改写方面,可以将一些公式和计算过程进行简化,让文章更易读懂。
同时,可以将每个案例的设计要求和已知条件进行分段,以便读者更好地理解。
根据题目要求,我们需要设计一个托盘加速到一定速度的系统,以下是设计过程:1.确定托盘的惯量托盘的惯量可以通过托盘质量和直径来计算,即 $J_{托盘}=\frac{1}{2}M(\frac{D}{2})^2$。
代入数据得到 $J_{托盘}=kg·mm^2$。
2.确定加速度根据题目要求,托盘需要在 0.5 秒内加速到 0.5 m/s 的速度,因此加速度为 $a=\frac{V}{t}=1m/s^2$。
3.确定所需扭矩根据丝杠的导程和直径,可以计算出每秒钟丝杠转动的圈数为 $n=\frac{v}{P}=\frac{0.5}{0.01}=50$,因此所需扭矩为$T_{总}=J_{托盘}·\frac{a}{n}=·\frac{1}{50}=1764N·mm$。
4.确定电机输出扭矩和功率根据传动比和所需扭矩,可以计算出电机输出扭矩为$T_{电机}=T_{总}/i=1764/5=352.8N·mm$。
根据机械效率为0.9,可以计算出电机输出功率为 $P_{电机}=T_{电机}·\omega_{电机}/0.9=352.8·2π·40/60/0.9=148.7W$。
德康威尔直线电机选型指南
![德康威尔直线电机选型指南](https://img.taocdn.com/s3/m/dd13ac70e518964bce847c2a.png)
选型软件 DKW motor Sizer选型软件操作指南为了方便客户的选型计算,德康威尔为客户提供简便的选型软件DKW motor Sizer用户只用输入负载和运动要求就可以一键计算出推力需求,并推荐出电机型号。
DKW选型软件,支持中英文切换,并且加入了DDR选型计算。
推力选型实例例1:客户要求负载15kg,运动距离1m,运动时间0.5s,到位停顿时间0.2s,根据客户要求选择合适的平板电机。
计算结果:加速度1.8g最大速度3m/s持续推力186N峰值推力270N选型推荐DKM02-W120电机例2:客户要求负载10kg,加速度2g,最大速度2m/s,到位停顿时间0.2s,根据客户要求选择合适的平板电机。
计算结果:运动时间0.6s持续推力100N峰值推力200N选型推荐DKM02-W120电机例2:DDR带动圆形铝转盘,转盘直径1m,转盘厚度15mm,转盘上每90度均匀分布四个工位,夹具离旋转中心距离300mm,每个夹具质量8Kg(夹具尺寸忽略不计)。
要求每次旋转90度,旋转时间800ms,停顿1s,请根据客户需求选型。
STEP1:计算负载惯量转盘惯量—3.923治具惯量— 2.875 kg.m2负载惯量— 6.803 kg.m2计算结果:最大速度225 deg/s持续转矩44 Nm峰值推力66 Nm选型推荐EDDR270其他选型注意事项●机械精度要求较高时,需要考虑用更好的导轨,强度更高的材料。
●噪音有要求时,需要使用静音导轨,低齿槽力电机,光栅尺。
●高精度插补时,需要使用0.1um光栅尺。
●长行程时,需要考虑模组的变形量。
●摩擦力较大时,选型需要考虑摩擦力。
●整定时间要求高时,使用光栅,配备高创驱动器。
●速度波动有要求时,选用光栅+无铁芯电机配置。
●重负载,高速度时,需要考虑反电动势对速度的影响。
如何进行直线电机选型资料
![如何进行直线电机选型资料](https://img.taocdn.com/s3/m/637c0ae1be1e650e53ea991a.png)
如何进行直线电机选型直线电机选型——最大推力和持续推力计算目录直线电机选型 (2)——最大推力和持续推力计算 (2)概述 (4)三角模式 (4)梯形模式 (5)持续推力 (5)计算公式 (5)例子 (6)概述直线电机的选型包括最大推力和持续推力需求的计算。
最大推力由移动负载质量和最大加速度大小决定。
推力 = 总质量 x 加速度 + 摩擦力 + 外界应力例子:当移动负载是2.5千克(包含动子),所需加速度为30m/s²时,那么,电机将产生75N的力(假设,摩擦力和外界应力忽略不计)。
通常,我们不知道实际加速度需求,但是,我们有电机运行实际要求。
给定的运行行程距离和所需要的行程时间,由此可以计算出所需要的加速度。
一般来说,对于短行程,推荐使用三角形速度模式,即无匀速运动,长行程的话,梯形速度模式更有效率。
在三角形速度模式中,电机的运动是没有匀速段的。
三角模式加速度为Acceleration = 4 x Distance / Travel_Time²梯形模式需要提前设置匀速的速度值,由此可以推算出加速度。
加速度 = 匀速 / (运动时间–位移 / 匀速)同理,减速度的计算与加速度的计算是类似的,特殊情况是存在一个不平衡的力(例如重力)作用在电机上。
通常情况下,为了维持匀速过程和停滞阶段,摩擦力和外界应力也要考虑进来,为了维持匀速,电机会对抗摩擦力和外界应力,电机停止时则会对抗外界应力。
持续推力计算公式持续推力的计算公式如下:RMSForce = 持续推力Fa = 加速度力Fc = 匀速段力Fd = 减速度力Fw = 停滞力Ta = 加速时间Tc = 匀速时间Td = 减速时间Tw = 停滞时间又最大推力和持续推力进行电机的选择。
一般情况下,应该将安全系数设置为20~30%,从而抵消外界应力和摩擦力。
例子电机需要在三角模式下,在0.2秒内,把4kg的负载移动0.3米。
电机在同行程中,返程之前停滞时间为0.15秒。
电机的选型计算实例
![电机的选型计算实例](https://img.taocdn.com/s3/m/38f964114a73f242336c1eb91a37f111f1850dec.png)
电机的选型计算实例1. 首先,我们需要明确电机的应用场景以及所需的工作参数。
例如,如果我们要选择用于驱动一个机械装置的电机,我们需要知道所需的输出功率、转速范围和额定电压等。
2. 接下来,我们需要了解电机的工作原理和基本参数。
电机通常由定子和转子组成,定子上有绕组,转子上则有磁铁。
当电流通过定子绕组时,会产生一个旋转磁场,与转子上的磁铁相互作用,从而使转子旋转。
3. 在选择电机时,我们需要考虑所需的输出功率。
输出功率可以通过以下公式计算:输出功率= 转矩×角速度。
转矩可以通过所需的工作负载以及机械装置的传动比来确定。
角速度通常以转每分钟(RPM)或弧度每秒(rad/s)来表示。
4. 额定电压是选择电机时另一个重要的参数。
额定电压是电机设计时所考虑的电压范围,电机应在此范围内正常工作。
我们应选择与我们所使用的电源电压相匹配的电机。
5. 转速范围是另一个需要考虑的因素。
不同类型的电机具有不同的转速范围。
如果我们需要一个具有较大转速范围的电机,我们可以选择步进电机或直流无刷电机。
如果我们需要一个转速较低但具有较大转矩的电机,我们可以选择直流有刷电机或交流异步电机。
6. 在选型时,还需要考虑电机的效率。
电机的效率是指其将输入电能转换为有用输出功率的能力。
高效率的电机可以提供更少的能源损耗,从而减少能源消耗和运行成本。
7. 此外,我们还需要考虑电机的尺寸和重量。
不同的电机类型和规格具有不同的尺寸和重量。
根据应用需求和安装空间的限制,我们应选择适合的尺寸和重量的电机。
8. 最后,我们还需要考虑电机的可靠性和寿命。
电机的可靠性是指其在长期运行过程中的稳定性和可靠性。
寿命是指电机预计的使用寿命。
我们应选择质量可靠、寿命长且易于维护的电机。
通过以上步骤,我们可以选择到适合特定应用的电机。
在选择之前,我们应该充分了解电机的工作原理、基本参数以及应用需求,以确保选择合适的电机。
【电气知识】电机选型计算方法之机械设计中常见典型案例
![【电气知识】电机选型计算方法之机械设计中常见典型案例](https://img.taocdn.com/s3/m/7aa7295d1fb91a37f111f18583d049649a660e47.png)
【电气知识】电机选型计算方法之机械设计中常见典型案例1.选型计算通用公式P功率(W) T转矩 (N.M) N转速(R/min) P=T.N/9550 T=P.9550/N P=F.V(直线运动)P=T.ω(圆周运动)速度 V线速度 m/s N转速n/min ω角速度rad/s (360度=2πrad) N=V*1000*60/(2πR)物体速度和滚轮转速的关系ω=2πN/60 圆周运动常用转速转化为角速度来计算N=V*60*1000/Pb 丝杆线速度与转速关系N转速三相异步电机(1500/3000/1000)步进电机(600R以下)伺服电机(3000R左右)减速机的核心减速增矩电机转速除以算出来的转速,等于整个系统的传动比i负载的受力情况水平直线运动:F=μmg F力(N)m质量(kg) g重力加速度g=10n/kg竖直运动:F=mg圆周运动:T=j*β T扭矩(n.m)j惯量(kg.m^2)β角加速度(rad/s^2)同步带、齿条、各类带传动情况下:扭矩T=F.R R(与力相连的轮子的半径)《液压课件》点这里丝杆传动:扭矩T = F*Pb/(2π*η)惯量直线运动F=ma a=v/t a加速度(m/s^2)圆周运动T=j*β j=mr^2 β=ω/t ω=2πNT扭矩(n.m) j惯量(kg.m^2)ω角速度rad/s (360度=2πrad)β角加速度(rad/s^2) t加速时间(s)2.常见产品案例例题1:皮带输送机负载重量400KG 速度30M/min 滚子直径200MM 总效率η=百分之75 摩擦系数0.2 安全系数k=1.8求:电机功率转速扭矩减速比(12345678910)求大小链轮齿数解法1:F=μmg =0.2*400*10=800NP=F.V*k/η=800*0.5*1.8/0.75=960W=0.96kw(取1kw)N=V*1000*60/(2πR)=30*1000/3.14/2/100=48r/min设电机转速为1500 则电机转矩T=P*9.55/1500=6.1n.m则减速比为 1500/48=31.25(取31)选择10设小链轮齿数为17 则大链轮齿为17*3.1=53解法2:F=μmg =0.2*400*10=800NT=F.D/2=800*0.2/2=80n.m(滚子转矩)N=V*1000*60/(2πR)=30*1000/3.14/2/100=48r/min设电机转速为1500 减速比为 1500/48=31.25(取31)选择10 设小链轮齿数为17 则大链轮齿为17*3.1=53电机的扭矩等于T(负载)/i=t(电机)=80/31=2.58nm电机需要的理论功率为P=TN/9550=2.58*1500/9550=0.4KW 电机实际功率等于p*k/η=0.4*1.8/0.75=0.96kw(取1kw)例题2:已知惯量47.48kg.mm 转速12R/min 重量395KG 设电机转速为1500 加速时间0.5s 小齿轮齿数为20 大齿轮齿数120 设安全系数为k=1.5 效率η=0.7求:减速比电机功率ω=2πN/60=2*3.14*12/60=1.256rad/sβ=ω/t=1.256rad/s/0.5s=2.512rad/s^2T=j*β=47.4847.48kg.m^2*2.512rad/s^2=119.2nmi=n电机/n负载=125 已知齿轮间的减速比为6 则减速机的减速比为125/6=20.8(取20)电机需要扭矩为119.2/125=0.95nm电机理论功率为P=T.N/9550 =0.95*1550/9550=0.15kw电机的实际功率为P*K/η=0.15*1.5/0.7=0.32KW(取0.4kw)例题3:丝杆模型(负载上下运动)已知:负载500kg 速度0.2m/s n电机转速为1500r/min Pb丝杆导程20mm总效率η=0.8 安全系数k=1.5 (减速机最大传动比为10)求电机功率P 减速比i 大小链轮齿数F=MG=500KG*10N/KG=5000NT=F*Pb/2π=5000N*0.02M/2/3.14=16NMN=V*60*1000/Pb=0.2m/s*60*1000/20mm=600r/mini=n(电机)/n(丝杆)=1500/600=2.5T(电机)=T(负载)/i=16NM/2.5=6.4NM电机理论功率P=T*N/9550=6.4NM*1500r/min/9550=1kw电机实际功率P=P*K/η=1kw*1.5/0.8=1.875(取2.2kw)设减速机减速比为2 则链轮之间的传动比为2.5/2=1.25设小链轮齿数为17 则大链轮齿数为17*1.25=21(注意:减速机的减速比根据实际情况而定,可以直接设为2.5 或是不带减速机,或是其他参数)已知总负载为100KG 速度V=0.2/s 导轨摩擦系数为μ=0.1 总效率η=0.96*0.97*0.97*0.9=0.8 安全系数k=2 同步带轮半径r=23.4mm 电机加速时间为t=0.2s解法1F=f+ma f=μmg=0.1*100*10=100Na=V/t =0.2m/s/0.2s=1m/s^2F=f+ma=100N+100kg*1m/s^2=200NT=F*r=200N*0.0234M=4.68NMN=v*60*1000/(2πr)=0.2m/s*60*1000/2/3.14/23.4mm=81.6r/min (步进电机转速在300-600之间)假设步进电机转速为400r/min i=400/81.6=4.90 (取整数5)因为加了减速机所以电机扭矩为T/i=4.68/5=0.94NM(理论数值)则实际需要电机转矩为T*K/η=0.94NM*2/0.8=2.35NM解法2f=μmg=0.1*100kg*10N/kg=100NT=f*r=100N*23.4mm/1000=2.34NMJ=MR^2=100kg*0.0234m*0.0234m=0.054756kgm^2ω=2πN/60=2*3.14*81.6r/min/60=8.5408rad/sβ=ω/t=8.5408rad/s/0.2s=42.704rad/s^2T=j*β=0.05475kgm^2 *42.704rad/s^2 =2.338044NMT=T1+T2=2.34+2.338=4.68NM (与之前按加速度得出的扭矩一致)电机惯量需大于负载惯量/3/减速比的平方=0.00073kgm^2已知总负载为100KG 速度V=0.2m/s 导轨摩擦系数为μ=0.1 总效率η=0.96*0.97*0.97*0.9=0.8 安全系数k=2 同步带轮半径r=23.4mm 电机加速时间为t=0.2s解法2f=μmg=0.1*100kg*10N/kg=100NT=f*r=100N*23.4mm/1000=2.34NM (伺服电机额定扭矩需大于2.34)J=MR^2=100kg*0.0234m*0.0234m=0.054756kgm^2ω=2πN/60=2*3.14*81.6r/min/60=8.5408rad/sβ=ω/t=8.5408rad/s/0.2s=42.704rad/s^2T=j*β=0.05475kgm^2 *42.704rad/s^2 =2.338044NMT=T1+T2=2.34+2.338=4.68NMN=v*60*1000/(2πr)=0.2m/s*60*1000/2/3.14/23.4mm=81.6 r/min (伺服电机转速在3000左右)假设步进电机转速为3000r/min i=3000/81.6=36.76 (取整数35)因为加了减速机所以电机加速扭矩为T/i=4.68/35=0.134NM (理论数值)则实际需要电机转矩为T*K/η=0.134NM*2/0.8=0.335NM电机需要理论匀速扭矩T/i=2.34/35=0.067NM则实际需要电机匀速转矩为T*K/η=0.067NM*2/0.8=0.168NM 惯量匹配j=J/(i^2*3)=0.054756kgm^2/35/35/3=0.00001491. 额定扭矩大于0.168nm2. 电机最大扭矩大于0.335NM3. 电机惯量大于0.0000.149kgm^2已知:总负载m=20kg 速度V=0.3m/s 导程Pb=10mm 导轨摩擦系数为μ=0.1 总效率η=0.8 安全系数k=1.5f=μm g=0.1*20kg*10N/kg=20NT=F*Pb/2π=20N*0.01M/2/3.14=0.032NM电机额定扭矩T=T*K/η=0.032*1.5/0.8=0.06NMN=V*60*1000/Pb=0.3m/s*60*1000/10mm=1800r/minJ=M(Pb/2π)^2=20kg*0.00000254=0.0000507kgm^2ω=2πN/60=6.28*1800/60=188.4rad/sβ=ω/t=188.4rad/s/0.2s=942rad/s^2T=j*β=0.0000507kgm^2*942rad/s^2 =0.048NMT(总)T(匀速)+T(加速)=0.032NM+0.048NM=0.08NM 电机最大扭矩T=T*K/η=0.08*1.5/0.8=0.15电机惯量J=0.0000507kgm^2/3=0.0000.169kgm^2w idth:100% !important;}。
直线模组选型计算实例
![直线模组选型计算实例](https://img.taocdn.com/s3/m/b747e6f7ab00b52acfc789eb172ded630b1c98e8.png)
直线模组选型计算实例本文将为您介绍直线模组选型计算的实例。
直线模组是机械传动系统中常用的传动部件,它可以实现高效、精准的直线运动。
在进行直线模组选型时,需要考虑多个因素,如负载、速度、精度等。
下面,我们将以一个具体的实例为例,介绍直线模组的选型计算方法。
假设我们需要设计一个负载为1000N、速度为0.5m/s的直线传动系统。
根据负载大小,我们可以初步选择模组型号。
在这里,我们选择一个额定载荷为1200N,传动效率为95%的模组。
根据模组手册,该模组的模数为2,齿数为25。
接下来,我们需要计算模组的传动比和转速。
传动比是指输入轴和输出轴的转速比值,它可以通过模数和齿数计算得到。
在本例中,传动比为25/2=12.5。
转速是指输出轴的转速,它可以通过传动比和输入轴的转速计算得到。
在本例中,转速为0.5*12.5=6.25m/s。
然后,我们需要计算模组的功率和扭矩。
功率是指输入轴输出的能量,它可以通过转矩和转速计算得到。
在本例中,功率为1000*0.5=500W。
扭矩是指输入轴输出的力矩,它可以通过负载和传动比计算得到。
在本例中,扭矩为1000/12.5=80N.m。
最后,我们需要检查所选模组是否能够满足精度要求。
精度是指模组输出轴的运动精度,它可以通过模组手册中的公差数据得到。
在本例中,模组的公差为0.03mm,可以满足精度要求。
通过以上计算,我们成功地选定了一个适合本例的直线模组。
在实际应用中,我们还需要考虑其他因素,如环境温度、维护成本等。
希望本文能够为您提供一些有用的参考。
德康威尔直线电机选型指南
![德康威尔直线电机选型指南](https://img.taocdn.com/s3/m/dd13ac70e518964bce847c2a.png)
选型软件 DKW motor Sizer选型软件操作指南为了方便客户的选型计算,德康威尔为客户提供简便的选型软件DKW motor Sizer用户只用输入负载和运动要求就可以一键计算出推力需求,并推荐出电机型号。
DKW选型软件,支持中英文切换,并且加入了DDR选型计算。
推力选型实例例1:客户要求负载15kg,运动距离1m,运动时间0.5s,到位停顿时间0.2s,根据客户要求选择合适的平板电机。
计算结果:加速度1.8g最大速度3m/s持续推力186N峰值推力270N选型推荐DKM02-W120电机例2:客户要求负载10kg,加速度2g,最大速度2m/s,到位停顿时间0.2s,根据客户要求选择合适的平板电机。
计算结果:运动时间0.6s持续推力100N峰值推力200N选型推荐DKM02-W120电机例2:DDR带动圆形铝转盘,转盘直径1m,转盘厚度15mm,转盘上每90度均匀分布四个工位,夹具离旋转中心距离300mm,每个夹具质量8Kg(夹具尺寸忽略不计)。
要求每次旋转90度,旋转时间800ms,停顿1s,请根据客户需求选型。
STEP1:计算负载惯量转盘惯量—3.923治具惯量— 2.875 kg.m2负载惯量— 6.803 kg.m2计算结果:最大速度225 deg/s持续转矩44 Nm峰值推力66 Nm选型推荐EDDR270其他选型注意事项●机械精度要求较高时,需要考虑用更好的导轨,强度更高的材料。
●噪音有要求时,需要使用静音导轨,低齿槽力电机,光栅尺。
●高精度插补时,需要使用0.1um光栅尺。
●长行程时,需要考虑模组的变形量。
●摩擦力较大时,选型需要考虑摩擦力。
●整定时间要求高时,使用光栅,配备高创驱动器。
●速度波动有要求时,选用光栅+无铁芯电机配置。
●重负载,高速度时,需要考虑反电动势对速度的影响。
XY平台直线电机选型
![XY平台直线电机选型](https://img.taocdn.com/s3/m/778ef6ecc0c708a1284ac850ad02de80d5d80675.png)
一、X方向直线电机选型:X行程:300mmZ轴负载(喷头):3KgX最大速度:1m/sX最大加速度:1g我们选择直线电机水平布局。
直线电机受力模型如下:有如下方程:F f=(G+F r)μG=mgN=F r+Gma=F−F fm——移动部件的总质量(kg);g——重力加速度(m/ s2 );F r——定子与动子间的垂直吸引力(N);F f——摩擦阻力F ——牵引力μ——导轨的摩檫系数。
a——进给运动的加速度(m/ s2)。
因为打印时,行程通常较短,所以直线电机运动速度——时间曲线为三角形。
按有铁心的直线电机估算。
一些参数的估计:移动部件总质量:喷嘴模块(3KG)+电机动子及导轨相应负载(7KG).摩擦系数取0.004F f=(G+F r)μ=(10×9.8+800)×0.004=3.6N启动时,所需最大推力值F max1=F f+ma max=3.6+10∗9.8=101.6N制动时,所需最大推力值F max2=ma max −F f =10∗9.8−3.6=94.4N匀速时,额定推力值(匀速时间为0)F c =F f =3.6N则系统均方根有效推力值为:F =√F max12×t 1+F max22∗t 2t 1+t 2=98N● 按无铁心的直线电机估算F r =0G 会小些取G=75NF f =(G +F r )μ=(75+0)×0.004=0.3N启动时,所需最大推力值F max1=F f +ma max =0.4+7.5∗10=75.4N制动时,所需最大推力值F max2=ma max −F f =75∗10−0.4=74.6N则系统均方根有效推力值为:F =√F max12×t 1+F max22∗t 2t 1+t 2=75N 二、Y 轴电机计算:Y 行程:200mm总负载:12kgY 最大速度:1m/sY 最大加速度:1g同上● 按有铁心的直线电机估算。
直线电机的选型参数计算
![直线电机的选型参数计算](https://img.taocdn.com/s3/m/8d7eb4c1f242336c1fb95e0c.png)
直线电机的选型参数计算1.直线电机的选型包括最大推力和持续推力需求的计算。
2.最大推力由移动负载质量和最大加速度大小决定。
推力=总质量*加速度+摩擦力+外界应力例子:(假定摩擦力和外界应力忽略不计)当移动负载是2.5千克(包括动子),所需加速度为30m/s2时,那么电机将产生75N的力。
3.通常,我们不知道实际加速度需求。
但是,我们有直线电机运行时间要求。
给定运动行程距离和所需行程时间,便可以此计算出所需的加速度。
一般,对于短行程来说,我们推荐使用三角型速度模式(无匀速),长行程的话,梯形速度模式会更有效率。
在三角型速度模式中,电机的运动无匀速段。
4.三角模式,加速度为Acceleration = 4 * Distance / Travel_Time²5.梯形模式,预设匀速度可以帮助决定加速度。
加速度=匀速/(运动时间--位移/匀速)6.相类似的,计算减速度大小与计算加速度相类似。
除非存在一个不平衡的力(重力)作用在直线电机上。
7.通常为了要维持匀速过程 (cruising)和停滞阶段 (dwelling),摩擦力和外界应力的施力也需要计算。
注:为了维持匀速,直线电机会对抗摩擦力和外界应力。
直线电机上伺服停滞时则会对抗外界应力。
8.计算持续推力公式如下:RMSForce=持续推力Fa = 加速度力Fc = 匀速段力Fd = 减速度力Fw =停滞力Ta = 加速时间Tc = 匀速时间Td = 减速时间Tw = 停滞时间9.根据最大推力和持续推力选择一个电机。
客户应该将安全系数设为20-30%以便将摩擦力和外界应力抵消为0。
10.举个例子,一个应用中,直线电机需要在三角模式下让电机在0.2秒内,让4KG的负载移动0.3米。
直线电机在同行程中返程前停滞时间为0.15秒。
假设摩擦力和其他不平衡力不存在。
加速度=减速度=4*0.3、(0.2)^2=30m/s2最大推力=加速度力=减速度力=负载*加速度=4*30=120N持续推力=假如安全缓冲系数设为30%,通过选型,合适的直线电机电机就可以选出来了11.电机选型软件自动计算处理过程。
电机选型计算-个人总结版
![电机选型计算-个人总结版](https://img.taocdn.com/s3/m/fe41e869c850ad02df804101.png)
电机选型-总结版电机选型需要计算工作扭矩、启动扭矩、负载转动惯量,其中工作扭矩和启动扭矩最为重要。
1工作扭矩T b计算:首先核算负载重量W,对于一般线形导轨摩擦系数μ=0.01,计算得到工作力F b。
水平行走:F b=μW垂直升降:F b=W1.1齿轮齿条机构一般齿轮齿条机构整体构造为电机+减速机+齿轮齿条,电机工作扭矩T b的计算公式为:其中D为齿轮直径。
1.2丝杠螺母机构一般丝杠螺母机构整体构造为电机+丝杠螺母,电机工作扭矩T b 的计算公式为:其中BP为丝杠导程;η为丝杠机械效率(一般取0.9~0.95,参考下式计算)。
其中α为丝杠导程角;μ’为丝杠摩擦系数(一般取0.003~0.01,参考下式计算)。
其中β丝杠摩擦角(一般取0.17°~0.57°)。
2启动扭矩T计算:启动扭矩T为惯性扭矩T a和工作扭矩T b之和。
其中工作扭矩T b 通过上一部分求得,惯性扭矩T a由惯性力F a大小决定:其中a为启动加速度(一般取0.1g~g,依设备要求而定,参考下式计算)。
其中v为负载工作速度;t为启动加速时间。
T a计算方法与T b计算方法相同。
3 负载转动惯量J计算:系统转动惯量J总等于电机转动惯量J M、齿轮转动惯量J G、丝杠转动惯量J S和负载转动惯量J之和。
其中电机转动惯量J M、齿轮转动惯量J G和丝杠转动惯量J S数值较小,可根据具体情况忽略不计,如需计算请参考HIWIN丝杠选型样本。
下面详述负载转动惯量J的计算过程。
将负载重量换算到电机输出轴上转动惯量,常见传动机构与公式如下:J:电机输出轴转动惯量(kg·m2)W:可动部分总重量(kg)BP:丝杠螺距(mm)GL:减速比(≥1,无单位)J:电机输出轴转动惯量(kg·m2)W:可动部分总重量(kg)D:小齿轮直径(mm)链轮直径(mm)GL:减速比(≥1,无单位)J:电机输出轴转动惯量(kg·m2)J1:转盘的转动惯量(kg·m2)W:转盘上物体的重量(kg)L:物体与旋转轴的距离(mm)GL:减速比(≥1,无单位)4 电机选型总结电机选型中需引入安全系数,一般应用场合选取安全系数S=2。
直线电机选型计算(自动计算版)
![直线电机选型计算(自动计算版)](https://img.taocdn.com/s3/m/fb9bcd0e650e52ea551898e9.png)
①运行条件运行条件代号参数单位最大速度Vmax2m/s移动重量m5kg加速度a20m/s2加速时间Ta2s匀速时间Tc3s减速时间Td2s停止时间Tw2s摩擦力f10N外界应力σ0N安全系数μ 1.3②运行模式的选择㈡推力的计算①加速时推力Fa[N]的计算计算 数值 Fa单位结果110N②匀速时推力Fc[N]的计算计算 数值 Fc单位结果10N③减速时推力Fd[N]的计算计算 数值 Fd单位结果90N④停滞时推力Fw[N]的计算计算 数值 Fw单位结果0N⑤持续推力Frms[N]的计算计算 数值 F`max 单位结果143.0N②马达所需连续推力需大于F`rms计算 数值 F`rms 单位结果87.4N综上选择电机型号为㈣若选择串联①连续电流Irms[A]的计算计算 数值 Irms 单位结果1.1A计算 数值 Irms单位结果 1.8A③外部提供电压U[V]的计算计算 数值 U单位结果176.2V 综上所选驱动器要求如下驱动器数值关系计算数值单位最大输出电压卍大于176.2V连续输出电流卍大于 1.1A最大输出电流卍大于 1.8A㈤若选择并联①连续电流Irms[A]的计算计算 数值 Irms单位结果 2.1A计算 数值 Irms单位结果 3.5A ③外部提供电压U[V]的计算计算 数值 U单位结果87.96V 综上所选驱动器要求如下驱动器数值关系计算数值单位最大输出电压卍大于88.0V连续输出电流卍大于 2.1A最大输出电流卍大于 3.5A。
直线电机选型方法实例
![直线电机选型方法实例](https://img.taocdn.com/s3/m/074e8e34f111f18583d05aff.png)
实际推力[N]
Frms = Fa 2 × Ta + FL2 × Τb + Fd 2 × Τc T
选型流程
选型开始 确定使用条件 预选定
位移 运动时间 负载质量
确定电机参数
名称 连续推力 峰值推力 动子质量
计算实际推力
符号
F Fm Mp
计算最大加速时间
加速时间> 最大加速时间
运动时推力计算[N] F = u (M + M ) g + F μ:摩擦系数 0.01 9.8[m/s²] g :重力加速度 F : 电缆拖链所耗推力 1.0[N]
3 参数验算
2 预选定
= 107[N] 减速推力计算
Fd =
1.0 × (10 + 0.5) + 2.03 0.1
=103[N] 实际推力计算
1.0 × (10 + 0.5) − 2.03 0.1
= 46.37[N] 连续推力 62[N] > 实际推力 58[N](选取安全 系数为 1.25,则 1.25*46.37 = 58[N]) 经过验算,电机连续推力大于实际推力的 125%, 因此该款电机满足应用要求。 如果验算后选定电机不能满足要求,应重新进行 步骤 2、3 直到满足。
L
(10 + 0.5) ×1.0 ×1.3 146 − 2.03
Fa =
例如:选定动子 WXU11-050A1,定子选定 UM050B-480 规格,现按照以下步骤评估是否满足应用要 求: ① 运动位移要求 ② 时间要求 ③ 推力要求 WXU11-050A1 的参数为: 名称 符号 数值和单位 连续推力 F 62 牛顿[N] 峰值推力 Fm 146 牛顿[N] 动子质量 Mp 0.5 千克[kg]
电机选型案例
![电机选型案例](https://img.taocdn.com/s3/m/80c62e1ea0116c175f0e48aa.png)
小白进阶篇—电机选型案例集主讲:小丸子教育—泽雨老师目的:掌握不同电机在不同工况下的选型问题 课程内容:1,皮带输送线电机选型设计要求: 20Kg 物料X 2 传送速度1m/s 加速时间0.15s已知条件: 摩擦系数=0.2 机械效率=90% 滚子直径=200mm1. 计算功率s rad mm s mm mm s m D V T P MN R F T NF F NN N ssm Kg s m K a m f F /102002/10002002/14.282843112131338015.0/120/102.0g 402=••=••=•=•=•=⨯==⨯+==+=⨯+⨯⨯=•+=πππππ)(辊筒辊筒辊筒负载负载辊筒皮带拉力负载负载皮带拉力负载ωωWWW P K P KW r T P MN M N T mm smm r n n i i T T W s rad M N T P 3823829.02862.1286.09550min/14409.1154.2815200/1000min/1440284/104.28==⨯=•==•=•=•==•====⨯•=•=ηω电机实际电机电机电机负载电机传动比负载电机辊筒负载负载校验:π设计要求; M=50Kg运行速度1m/s 加速时间0.25s直线导轨摩擦系数0.1 带轮直径100mm[]Ns m Kg ssm Kg s m Kg am g m F 250/)25.015010501.0(25.0/150/10501.022=•⨯+⨯⨯=⨯+⨯⨯=•+••=μ负载srad s rad mm smm s r mmsmm D V T P m N m N mm N R F T /20/2100/1000/100/10005.1205.025050250=••=•=•=•=•=⨯=⨯=•=ππππ同步轮负载负载负载负载负载同步轮负载负载ωω方案一:选择18NM 的步进电机Ws r M N P W mmsmm M N P T P 4.11302min/60min/600183602100/100018=⨯⨯•==⨯•⨯•==•=πππ无减速器最大转速电机负载电机电机电机电机ωωω方案二:加减速器MN i T T NM i s s r r i •=•===⨯=2085.214.3min /60/220min/600电机输出的步进电机力矩为考虑到频矩特性,取静为调试留出余量,取π已知条件:丝杠质量m=2Kg 负载+滑台质量M=20Kg 进给速度V=0.2m/s 丝杠导程5mm丝杠公称16mm加速时间0.2s直线导轨摩擦系数0.1传动机械效率0.9步骤:1.确定丝杠惯量222g 64m 2181mm K R D m J •=•=•=丝杠2. 负载直线运动质量等价转动惯量22)π(导程负载P M J •=上式二级公式推导过程ππ2221212222Pw v R PR w v w v m J w J v m =•=••=•=•2213)25(20mm kg kg J •=••=π负载22000077.076mkg mm kg J J J •=•=+=负载丝杠总3.确定惯性矩)π(加速时间导程总惯性矩t P v J T •••=2公式推导:加速时间角加速度角速度加速时间角速度角加速度角加速度总惯性矩ππt P v Pvw t w J T ••=•==•=22βββmN sm s m m kg T •=••••=096.0)2.0005.02/2.0(000076.02π惯性矩单位换算;[][]mN m N m s m Kg s m Kg s m m m Kg T •=•=••=⎥⎦⎤⎢⎣⎡•=⎥⎦⎤⎢⎣⎡••••••=096.0096.0/096.0096.02.0005.022.0000077.022222π惯性矩4. 直线摩擦里等价旋转扭矩π导程摩擦力2P mg T ••=μ公式推导;πππ导程摩擦力导程摩擦力导程摩擦力222P mg T RP mg R T R P mg R T •==•=μμμ[][][]mN mm N mm N mm N mmKg s m s mm m Kg mm s m Kg P mg T •=•=•=•***=••***=⎥⎦⎤⎢⎣⎡••***=***=•=016.09.159.152510201.0/2510201.02510201.025/10201.02222πππππ导程摩擦力μ5.计算功率、 、Ws rad m N P s rad s rad s r s r r mm P v w m N m N m N T T T wT P 9.309.0/251111.0/2.251/240/402/40/5200mm/s 112.0016.0096.0=*•==•=*===•=•+•=+=•=ππ导程惯性矩摩擦力总总η6.结论总结22000076.0403mkg mm kg J J J •=•=+=负载丝杠总m N m N m N T T T •=•+•=+=112.0016.0096.0惯性矩摩擦力总Ws rad m N w T P 9.309.0/2.251112.09.0=*•=•=总m in/2400m in /60/40r s s r n =*=转速转盘质量M=100Kg 转盘直径D=840mm 要求转速0.2r/s 机械效率0.9电机启动时间0.5s1. 确定转盘惯量221R M J •=转盘角加速度转盘惯性矩β•=J T22882000042010021mm Kg mm Kg J •=**=)(惯性矩2/8.05.02*/2.0s rad ss r t w ππ启动角加速度===β [][]mN m N m N m s m Kg s m Kg s m Kg s rad m Kg J T •=•=•=⎥⎦⎤⎢⎣⎡••=⎥⎦⎤⎢⎣⎡•=⎥⎦⎤⎢⎣⎡•*=*•=•=2.222.2215584.22155840.22155840.228.0820000.8/8.0820000.82222222ππ角加速度转盘惯量惯性矩β2. 确定功率[][]WW s m N s m N rad m N s r m N wT P 9.348.022.02.22/8.022.02.228.022.02.228.022.02.228.02/2.02.22=**=•**=⎥⎦⎤⎢⎣⎡•**=**•=**•=•=πππππ惯性矩负载功率η3. 确定传动比2501min /3000min /12min /300060/2.0==*=r r r s s r n n 电机转盘4. 传动比分配:锥齿轮5,减速器505. 确定电机输出扭矩 mN T i T T •====088.0250/2.222501电机负载电机6.确定电机输出功率负载功率电机P K P •>5.1=KWW P 4.529.345.1=*>实际设计要求托盘+发动机质量:M=200Kg 加速时间:t=0.5S 升速:V=0.5m/s 丝杠导程:P=10mm 丝杠直径:D=45mm质心距离导轨:L=300mm 直线导轨间距:b=150mm 直线导轨摩擦系数=0.1 丝杠质量:m=8.5Kg1. 确定丝杠的顶升力 μ•++=N a F a g M F 2)(2/1/s m t v a ==NF Nm m N F L F mm N F F F LF L F d a g m N N N NN N N N 88002440015.0660********2)(2121==•=•=•==•+•=•+N F f N 8802=•=μNN N f a g M F a 30808802200=+=++•=)(2.轴向力等价扭矩πππ导程轴向力导程轴向力导程轴向力222P F T RP F R T R P F R T a a a •==•=[][]mN m N mm N mmN T •=•**=•*=*=9.42100010308021030802103080πππ轴向力3.确定丝杠转速sr r mm s mm r mm s m r mm s m P v n /50//1010005.0//105.0/10/5.0=⎥⎦⎤⎢⎣⎡*=⎥⎦⎤⎢⎣⎡===导程s rad s rad s r /100/250/50ππ*=*=5. 确定功率 1)确定外载功率Ws m N s rad m N w T P 15013149.4/1009.4=⎥⎦⎤⎢⎣⎡•*=*•=•=π外载功率2)确定丝杠加速扭矩222215245g 5.88181mm Kg mm K D m J •=•*=•=丝杠[][][]mN m s m Kg s m Kg s mm Kg ss rad mm Kg t w J J T •=••=•=•*=**•=•=•=43.0/43.0/1000000430400/5.010021525.0/1002152222222ππ丝杠丝杠丝杠惯性βWs m N s rad m N w T P 135135/10043.0=⎥⎦⎤⎢⎣⎡•=*•=•=π丝杠惯性矩丝杠惯量W PK P KW s r M N n T P m N m N T T T W W W P P P 21809.0/16352.1/635.19550/300021.5955021.543.078.416351351500=⨯=•==⨯•=•==•+•=+==+=+=η总实际总总丝杠惯性矩等价轴向力总丝杠惯性矩等价轴向力总验算:工装板数量:6个工装板质量:15Kg/个倍速链型号:BS30停留工装板数量:4传送工装板数量:2工装板长度:480mm/个倍速链质量:0.4Kg/m 线体长:10m线体速度:10m/min摩擦系数如下倍速链重量如下选型步骤:1. 确定倍速链受摩擦产生的拉力gf L L C f L C A f L A f L C H F c W r W W a W c W W ••++••++••+••+=1000)(1.1)(21221)(2.008.01.0/4.0/5.74215/g 1064156421=====•==•===r c a W WW f f f mKg C m Kg m Kg H m K m Kg A mL mLNs m m m Kg m m Kg m Kg m m Kg m m Kg m Kg F 213/1008.010/4.01.12.06)/4.0/10(1.06/1008.04/4.0/5.72=•⎥⎦⎤⎢⎣⎡•••+••++••+••+=)(确定扭矩m N mm N D F T p •=*=•=6282132链条确定转速及传动比srad s r w s r smm mm D v n p /62/95.0/95.06056min /10000=•==••=•=πππ 25min/60min /1500==r r i 确定功率W s rad NM wT P 36/66=•=•=链条。
直线感应电动机的选用计算_邮政及物流设备设计_[共3页]
![直线感应电动机的选用计算_邮政及物流设备设计_[共3页]](https://img.taocdn.com/s3/m/7b1c329ae518964bce847cd0.png)
第八章 分拣拣选设备、连续输送设备的牵引与驱动
– 343 –
图8-56 推力—负载持续率特性曲线 图8-57 单一材料次级的推力(F )—转差率(S )曲线
三、直线感应电动机的选用计算
1.选用计算内容
图8-58所示为使用直线感应电动机(以下简称直线电机)作动力的包件分拣机的示意图。
图中,多台直线电机按照负载大小均衡地分布在主机的环形圈上。
图8-58 包件分拣机使用直线电机作动力的示意图
为了选用合理数量的直线电机,需要根据交叉带(或托盘)小车沿环形圈运动的负载阻力和直线电机的推力(牵引力)进行综合考虑。
用于包件分拣机的直线电机的选用计算包括下列内容:
y 负载阻力计算;
y 直线电机选型;
y 确定在额定负载、额定工作速度下,直线电机的数量。
2.负载阻力计算
(1)负载阻力计算公式
交叉带分拣机的负载阻力包括因小车及包件荷重引起的沿程阻力以及因小车起动的惯性负载引起的附加阻力。
其中,对于有缓慢起动功能的交叉带分拣机,启动时间在40s 左右,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线电机选型计算实例
直线电机是一种直线运动的电动机,它的工作原理与旋转电机类似,但是它的转子是直线型的,而且它的运动方向也是直线的。
直线电机具有结构简单、精度高、响应快等优点,因此在自动化生产线、半导体设备、医疗器械等领域得到广泛应用。
下面我们将通过一个选型计算实例来介绍直线电机的选型方法。
1. 确定负载参数
在选型之前,首先需要确定直线电机所要驱动的负载参数,包括负载的质量、惯性、运动方式等。
例如,假设我们需要驱动一个质量为100kg的物体在水平方向上做往返直线运动,运动速度为1m/s,加速度为2m/s^2,运动距离为500mm。
2. 计算所需力矩
根据负载参数,我们可以计算出所需的力矩。
在这个例子中,所需的力矩可以通过以下公式计算:
T = m * a * L / 2
其中,m为负载质量,a为加速度,L为运动距离。
代入参数可得:
T = 100 * 2 * 0.5 = 100N·m
3. 选择合适的直线电机型号
在确定所需力矩后,我们需要选择合适的直线电机型号。
在选择时,需要考虑直线电机的最大力矩、最大速度、最大加速度等参数。
一般来说,直线电机的最大力矩应该大于所需的力矩,最大速度应该大于所需的运动速度,最大加速度应该大于所需的加速度。
假设我们选择了一款最大力矩为200N·m,最大速度为2m/s,最大加速度为4m/s^2的直线电机。
4. 计算所需电流和功率
在确定直线电机型号后,我们需要计算所需的电流和功率。
电流可以通过以下公式计算:
I = T / k
其中,T为所需力矩,k为直线电机的力矩常数。
功率可以通过以下公式计算:
P = F * v
其中,F为所需的力,v为运动速度。
代入参数可得:
I = 100 / 0.1 = 1000A
P = 100 * 1 = 100W
5. 确定驱动器和控制器
在确定所需电流和功率后,我们需要选择合适的驱动器和控制器。
驱动器需要能够提供足够的电流和电压,控制器需要能够控制直线电机的运动速度和加速度。
6. 验证选型结果
最后,我们需要验证选型结果是否符合要求。
可以通过模拟仿真或实际测试来验证直线电机的性能是否满足要求。
以上是直线电机选型的基本方法和步骤,当然在实际应用中还需要考虑其他因素,如环境温度、使用寿命、维护成本等。