人造金刚石气相沉积法
功能性人造金刚石材料生产装备技术开发方案(二)
功能性人造金刚石材料生产装备技术开发方案一、实施背景随着科技的快速发展和产业结构的转型,功能性人造金刚石材料在许多领域展现出巨大的应用潜力。
然而,目前功能性人造金刚石材料生产装备技术落后,生产效率低下,产品质量不稳定,严重制约了该领域的发展。
为了解决这些问题,我们提出以下开发方案。
二、工作原理功能性人造金刚石材料生产装备技术基于化学气相沉积(CVD)原理,通过高温高压环境,使石墨等碳源在催化剂的作用下转化为金刚石。
具体步骤如下:1.碳源供应:将石墨等碳源供应至反应室。
2.加热加压:通过加热系统和压力控制系统,将反应室内的温度和压力升高至适宜的反应条件。
3.催化反应:在适宜的温度和压力下,碳源与催化剂发生反应,转化为金刚石。
4.产品收集:将生成的金刚石收集并处理。
三、实施计划步骤1.设备设计:根据功能性人造金刚石材料生产的需求,设计生产装备的结构和功能。
2.设备制造:依据设计图纸和技术要求,制造生产装备。
3.设备调试:在设备制造完成后,进行调试和初步试验,确保设备性能符合设计要求。
4.批量试验:在设备调试完成后,进行批量试验,验证生产装备的稳定性和可靠性。
5.产品分析:对生成的金刚石材料进行性能分析,如硬度、导热性、光学特性等,确保产品性能满足设计要求。
6.优化改进:根据试验和产品分析结果,对生产装备进行优化改进,提高生产效率和产品质量。
7.工业化推广:在完成试验和产品分析后,进行工业化推广,实现功能性人造金刚石材料的批量生产。
四、适用范围本开发方案适用于功能性人造金刚石材料生产领域,可广泛应用于机械、电子、光学、热学等多个领域。
五、创新要点1.基于CVD原理,采用新型高温高压反应装置,提高了反应效率。
2.引入新型催化剂,优化了反应条件,提高了金刚石材料的品质。
3.实现了连续化生产,提高了生产效率。
4.开发了新型金刚石材料收集和处理技术,降低了生产成本。
六、预期效果1.提高功能性人造金刚石材料的生产效率,降低生产成本。
合成金刚石的主要机理
3〉氢原子同固相基片表面形成吸附层,降低气相碳 源-固相基片的界面能,有利于固相基片表面吸附气 相碳源,加速气相碳源脱氢和碳原子从气相—固相的 转变。 4〉氢原子实际上成了输送具有sp3型及其过渡型杂化 状态的碳原子到气相—固相碳原子的悬键或带氢原子 的松动键上脱氢、键合、成核、长大。 5〉氢原子同非金刚石结构的固相碳(如石墨)和气相碳 (如多碳烃)转化为甲烷,增大气相碳的浓度。
图.6
图.7
图.8
图.9
稀释气体的氢原子对CVD金刚石多晶膜的生长起重要 作用 : a〉氢原子与碳形成的甲烷中,使得碳原子在金刚石 亚稳区保持sp3型杂化状态,其驰豫时间足够达到固相 基片表面。 b〉氢原子同甲烷可以形成多种中间态的气相分子和 集团,促使碳-氢键松动,又使碳原子处于或趋于sp3 型及其过渡型的杂化状态,其驰豫时间足够达到固相 基片表面。
C金刚石 C*活化络合物 C石墨
ΔV*P Log速度 = 常数 –– RT 式中V* = V*活化络合物 V金刚石 从式中分析:压力P的增加,不利于反应速度 温度T的增加,有利于反应速度 动力学要求:T 有利于石墨转变为金刚石的速度 热力学要求:T 不利于金刚石的热力学稳定性,此时必须要增加 压力增高压力又不利于“转变”的反应速度。
石墨转化成金刚石所需压力为 13000大气压以上; 在1200K时,石墨转化成金刚石 所需压力为40,000大气压。
温度(K)
图中告诉我们:随着温度升高,石墨 金刚石,所需压力增大。
能否采用室温高压条件?速度异常慢 !
从动力学分析石墨转化为金刚石的速度
H.Eyring等根据绝对反应速度理论推导出金刚石石墨过程中,T,P对 转化速度的关系(也适合石墨金刚石)
1.2 CVD的化学反应 CVD是通过一个或多个化学反应得以实现的, 涉及到反应化学、热力学、动力学、输运现 象、 CVD及薄膜的生长等。其反应方式有 很多种,见下表。
化学气相沉积法制备石墨烯,金刚石,富勒烯
CVD 制备石墨烯:1、采用方法的原理:以甲烷作为碳源,以铂作为生长基底。
通入H2将有缺陷的核刻蚀掉,降低石墨烯的密度。
由于石墨烯的生长和刻蚀过程是可逆的,所以经过生长刻蚀,再生长再刻蚀再生长(反复生长刻蚀生长)的方法制备出高产量,无缺陷的单晶石墨烯。
2、典型过程:将180um厚,10mm*20mm的铂箔首先用丙酮和酒精分别冲洗1h,然后放入熔融石英管中。
适应管中通入体积流为700摩尔每分的H2。
退火十分钟后将残留的碳和有机物移除。
生长从通入甲烷并维持一段时间后开始,在CVD生长后将甲烷的流速降低,其他参量保持不变来促使刻蚀石墨烯的过程发生。
在刻蚀了一段时间后,增加甲烷的流速使石墨烯生长。
随着生长刻蚀次数的增加逐渐减少甲烷的流速。
经过三轮的刻蚀生长,大约3mm的单晶石墨烯就生成了。
反应停止后将铂箔迅速从高温环境中取出,关火,在温度降到800度以下后停止通甲烷。
3、设备示意图Scheme depicting the G_rE_RG process. (a) CVD growth of graphene domains on a substrate. (b) Hydrogen etching to reduce domain density. (c) Regrowth of the etched graphene domains. (d) New nuclei appear on the substrate during regrowth. (e) Hydrogen etching to remove the new nuclei generated during regrowth. (f) Large-size single-crystal graphene domains obtained by the G_rE_RG method. (g) Schematic of the G_rE_RG process used for fabricating ∼3 mm single-crystal graphene domains, with the flow rates of CH4 and H2 used. The reaction temperature was 1060℃ during the whole process. The error bars show the size range of the single-crystal graphene domains obtained under the same conditions, and the blue dots in the middle of the error bars represent the average size of graphene domains.4、产物的形貌或性能用这种方法在铂衬底上制备出了大约3mm的单晶石墨烯,在常温常压下载流子迁移率达到了大约13 000 cm2 V-1 s-1。
【精品文章】人造金刚石特性及其制造方法简介
人造金刚石特性及其制造方法简介
金刚石是自然界最坚硬的物质,摩氏硬度10,显微硬度
10000kg/mm2,显微硬度比石英高1000倍,比刚玉高150倍。
它的形成和发现极为不易,它是碳在地球深部高温高压的特殊条件下历经亿万年转化而成的,由于地壳的运动,它们从地球的深处来到地表,蕴藏在金伯利岩中,从而被人类发现和开采。
虽然人类可以生产出人造金刚石,但质量大小还不及天然金刚石。
人造金刚石在工业中应用十分广泛,可用于切削、磨削、钻探;由于导热率高、电绝缘性好,可作为半导体装置的散热板;它有优良的透光性和耐腐蚀性,在电子工业中也得到广泛应用。
人造金刚石制造方法有许多种,具有代表性的几种分类参考下图:
静压触媒法是国内外工业生产上应用最为广泛的方法,人造金刚石的绝大部分(约90%)都是用这种方法生产的。
爆炸法在某些国家被应用于金刚石微粉的生产,产量占很小。
CVD薄膜生长法近年来开始了工业应用。
其它一些方法,目前都还处于试验研究阶段。
静压法,又称静态超高压高温合成法。
静压触媒法是指在金刚石热力学稳定的条件下,在恒定的超高压高温和触媒参与的条件下合成金刚石的方法。
就是以石墨为原料,以过渡金属或合金作触媒,用液压机产生恒定高压,以直流或交流电通过石墨产生持续高温,使石墨转化成金刚石。
转化条件一般为5~7GPa,l300~1700℃。
这个方法就是传统的高压高温合成法,至今已有40多年的历史了。
现在它还在继续发展和完善中,国内外都在致力于高压设备和加热方法的改进以及碳素原料和合金触媒的研究。
静压触媒法合成金刚石的工艺程序大致分为以下三个阶段:。
人造金刚石的制备方法与超高压技术研究
人造金刚石的制备方法与超高压技术研究摘要:人造金刚石的制备是一项高度复杂和引人注目的科学技术领域。
随着科学技术不断进步,人造金刚石应用日益广泛,与此同时制备方法不断改进,如今超高压技术是我国制备人造金刚石的主要方法。
文章围绕天然金刚石的特点,按照静压法、动压法和低压法三种方法阐述人造金刚石制备技术,并从制备装置角度阐述人造金刚石的设计要点,旨在为人造金刚石技术发展优化提供更多参考。
关键词:人造金刚石;制备方法;超高压技术;高温高压;制备装置引言:金刚石作为一种具有卓越硬度、导热性和光学特性的材料,在工业、电子、医疗和科学研究等领域有广泛的应用。
然而,自然形成的金刚石非常稀有,开采困难,因此人造金刚石的制备一直是科学家和工程师们的重要研究领域之一。
超高压技术是制备人造金刚石的关键方法之一,通过模拟地下极端条件,将碳原子重新排列,形成金刚石晶体。
因此,本章研究人造金刚石的制备方法并阐述超高压技术,对推动人造金刚石发展有积极意义。
1人造金刚石的制备方法1.1高压法高压法是一种制备人造金刚石的可行方法,可以细化为两部分:其一是静压法,其二是动压法。
其中静压法适用于制备较大的金刚石晶体,而动压法适用于制备小型但高质量的金刚石晶体。
这两种方法都需要极高的压力和温度,以模拟地下地壳中自然形成天然金刚石的条件。
1.1.1静压法静压法是制备人造金刚石的一种传统方法,它通过在高压高温条件下将碳源压缩成金刚石晶体。
主要步骤如下:第一,将碳源(通常使用金属镁粉末)和种子金刚石晶体放置在高压装置中。
种子金刚石晶体通常是已有的金刚石小晶体,它们可以作为起始点来促使新的金刚石晶体生长。
第二,借助高压装置中产生的极高压力(通常在数兆帕到千兆帕之间)和高温度(通常在1500°C到2500°C之间)条件下,碳源被压缩成金刚石晶体的晶格结构。
第三,经过一定时间的高温高压操作,最终形成人造金刚石。
1.1.2动压法动压法是借助爆炸来产生极高的压力和温度,从而制备人造金刚石的方法。
影响人造钻石(CVD金刚石)合成的主要因素
这里所讲的制备方法是CVD法,也就是化学气相沉积法,是利用含碳气源(一般为甲烷+氢气)作为原料,通过一定的能量输入(微波、热丝、直流等),在一定的压强下产生出等离子体,在这个等离子体中使含碳气体分解,使碳氢键断裂形成金刚石结构中的碳碳键,并不断的结合,使其“长大”,这一合成金刚石的方法合成速率快(较高温高压法),质量高(杂质可以避免),容易控制(通过对工艺参数的调控可以做不同晶面、不同种类的金刚石)。
CVD的方法也根据提供能量的方式不同也进行了划分,通过微波形式的输入能量称为“微波等离子体化学气相沉积”其英文缩写为MPCVD;而通过对热丝(通常为Ta丝)两边进行加高压,通过加热热丝提供能量的方式称为“热丝化学气相沉积”简称HFCVD;还有一种是通过对阴极和阳极施加直流电压,气体受热后有阳极嘴高速喷射出来形成等离子射流,此以射流的形式加热方式为“直流电弧等离子体喷射化学气相沉积法”简称为DC-CVD。
三者之间最有前景的是微波CVD法,其制备的金刚石纯度高,质量好,国外的APOLLO公司已经利用其制备人造钻石,性能与天然金刚石媲美,甚至优于天然金刚石。
而CVD法制备的过程中有几个关键的参数影响着制备的金刚石的质量,以下一一分析:1. 衬底材料(或基底材料):金刚石薄膜的制备过程中通常需要在其他材料上进行沉积,最普遍的应用就是涂层刀具。
基底材料的选择会影响金刚石的附着力、密度以及沉积质量。
通常选择时需要考虑其基底元素能否与碳结合形成碳化物(比如TiC、ZrC、MoC、WC、SiC等)这些物质能够与碳首先很好的结合,这也为金刚石的沉积过程提供了更多的结合点,从而更容易形成金刚石。
其次就是要考虑基底材料的热膨胀系数,即受热膨胀率,CVD制备金刚石通常要在750-900摄氏度,而在如此高的温度下金刚石能够与基底之间有很好的结合,但是实验结束后降至室温时,由于材料“热胀冷缩”的性质,薄膜与基底材料之间的热膨胀性有所差异,将会导致龟裂,因此,必须保证基底材料与金刚石的热膨胀系数相同或接近,这样冷切的过程中不至于差异太大而使薄膜裂开或脱落。
人造金刚石的制备方法及其超高压技术
人造金刚石的制备方法及其超高压技术摘要:金刚石具有完整的晶型、强度高、良好的自锐性等特点,成为已知自然界硬度最高的物质。
同立方氮化硼、碳化钨、刚玉、石英等硬质材料相比,它的洛氏硬度、显微硬度、莫氏硬度都具第一位。
金刚石工具在磨削时,金刚石抵抗损坏的能力表示强度。
天然金刚石作为一种稀缺矿产资源,长期以来不能满足人们的生产需求,因此,将廉价的碳转化成金刚石的制备科学与超高压技术便成为广大科研工作者的研究热点。
基于此,本文主要对人造金刚石的制备方法及其超高压技术进行分析探讨。
关键词:人造金刚石;制备方法;超高压技术1、前言由于地心引力场的存在,导致地球内部处于高温高压状态,其最高压力约为370GPa。
地球内部的高温高压环境为矿物质的形成提供了条件,金刚石就是在高温高压环境下形成的。
一般认为天然金刚石是在地壳深部70km以下,在5~7GPa、1200~1800℃的自然条件下,由碳转变而成。
金刚石具有极其优良的力学、热学、光学、电学以及化学性能,广泛地应用在工业、科技、国防、医疗卫生等很多领域,需求量较大。
2、人造金刚石的制备方法2.1高压法2.1.1静压法静压法是指利用液压机产生压力,通过固态传压介质的变形产生腔体准静水压,通过电流加热产生腔体高温,从而进行金刚石人工制备的方法。
静压法可以随意调节保温和保压时间,可以根据需要控制晶体粒度、质量和晶形等,具有很强的操控性,是目前普遍使用的金刚石人工制备方法。
(1)工业金刚石的人工制备现今,大规模工业化生产工业金刚石最有效的方法是高温高压下的膜生长法。
在膜生长法中,作用在金属膜两侧的温度差可以忽略不计,金刚石的生长驱动力(过剩溶解度)与过剩压成正比,当石墨的浓度趋于过饱和状态时,金刚石成核生长。
在金刚石晶体外侧包有一层薄的金属膜,介于金属膜两侧的分别是石墨和金刚石。
在采用膜生长法、利用粉末触媒合成工业金刚石的过程中,关键技术主要有两方面:一是组装与合成工艺的合理匹配,二是原材料的合理选择。
金刚石人工合成
三.化学气相沉积法(CVD)
化学气相沉积法法是在真空高温(或放电)条件下,激活提供的碳 基气体(如甲烷),使之分解出碳原子和甲基原子等活性粒子,碳原 子在甲基和氢原子的作用下在选定的基片上沉积生长出金刚石薄膜
常用方法
高温高压法(HPHT)
动态高压法 静态高压法
化学气相沉积法(CVD)
一.动态高压法
科学家们从陨石高速坠落时冲击波作用于其中的石墨可产生金 刚石得到启发,利用动态高压法将石墨碳转变为碳在超高温超 高压下的稳定相——金刚石
即用爆轰法或冲击波法 , 在瞬间 (10-6s量级) 达到金刚石热力学稳定区 (3500K,20GPa) , 从而使部分碳实现了向金刚石的相变。
右图即为爆炸法制金刚石的简易 装置当然,此种方法得到的金刚 石往往含有较多的杂质,需要进 行复杂的分离与提纯操作
二.静态高压法(晶体触媒法)
与动态高压法相比,静态高压法指在相对较长的时间内, 合成温度、 压力都保持相对稳定, 进而实现金刚石的可控生长。
碳源,触媒和籽晶是此装置的基本组成部分。碳源处在 高温端,籽晶置于低温端,碳源和籽晶之间为触媒。在一 定的压力(5~6GPa)和温度(1300~1400℃)下,石墨转 化为金刚石并溶解于触媒中,由于触媒各部位温度不同而 导致金刚石在触媒中的溶解度不同,金刚石将由高温处的 高浓度区向低温处的低浓度区扩散,扩散下来的碳源直接 在籽晶表面上以金刚石的形态外延析出生长。
感谢聆听!
钻石恒久远,一颗永流传
金刚石的化学气相沉积
第一章 前言化学气相沉积法(CVD=Chemical Vapor Deposition )合成金刚石[1,2]是指在低压条件(≤100kPa )下,采用一定方法激活含碳气体,使其中的碳原子在基底(种晶)上过饱和沉积、生长成金刚石。
碳源气体被激活和碳原子的沉积过程伴随着一系列化学反应,因此这种合成金刚石的方法被称为化学气相沉积法。
要实现金刚石的化学气相沉积有几个必要条件:1) 有碳源气体和激活碳源气体的能量,将碳原子从碳源气体中“剥离”出来;2) 有供CVD 金刚石生长的物理空间,即基底,或称种晶,根据实验目的的不同可选用不同的基底,常用作基底的材料有硅、钨、钼、等,但目前CVD 法合成单晶金刚石必须采用金刚石作种晶,才能实现单晶CVD 金刚石的同质外延生长;3)有供化学气相沉积反应发生的生长室,且有配套设施提供生长所需的低压环境;4)有氢气,碳原子的激活和沉积,以及CVD 金刚石的生长必须要在高浓度的氢气中进行。
依照激活反应气体的能量和方法的不同,化学气相沉积法可分为热丝法和等离子体法两大类,其中等离子体法又根据激活等离子体的能量不同分为微波等离子体化学气相沉积法等四大类。
化学气相沉积法微波等离子体化学气相沉积(MPCVD )是目前最广泛使用的CVD 技术,与热丝法等其他几种技术相比,微波等离子体法反应条件稳定,生长晶体质量高,设备简单,成本合理。
目前国外已有数十家科研机构能够以极高的速率(200µm h -1以上)生长优质CVD 厚单晶金刚石,高温高压处理后的CVD 金刚石单晶具有极高的断裂韧性和硬度,不仅仅是作为宝石,其力学性能,化学,光学和电子特性可以在大量领域得到广泛应用。
在未来的十年内,高速生长合成出的化学气相沉积(CVD )单晶金刚石将引领一场超硬材料领域的革命。
热丝法 等离子体法 微波等离子体化学气相沉积 射频等离子体化学气相沉积 直流放电等离子体化学气相沉积 热等等离子体化学气相沉积 热丝法化学气相沉积 电子辅助热丝法化学气相沉积§1.1起源1952年美国联邦碳化硅公司的William Eversole[3]在低压条件下用含碳气体成功地同质外延生长出金刚石。
宝石级人造钻石(大颗粒单晶金刚石)的设备介绍----MPCVD新型的方法..
宝石级人造钻石(大颗粒单晶金刚石)的设备介绍----MPCVD新型的方法介绍CVD金刚石设备,主要为微波CVD设备,是被公认的能够制备高品级的大颗粒金刚石和大面积金刚石厚膜。
有需要CVD设备,主要提供1 kW 5 kW 8 kW 微波等离子体CVD 设备,也欢迎咨询!目前化学气相沉积(CVD)法制备金刚石主要有:热丝CVD,直流电弧CVD,微波等离子体CVD。
这些方法在本质上都是用某种形式的能量来激励和分解含碳化合物气体分子,并在一定条件下使金刚石在基片表面成核和生长。
用于刀具涂层的热丝设备能够工业化得直流设备能够制备高品级钻石的微波设备热丝CVD 直流CVD 微波CVD各自的内部结构图,可以发现三者就是激发等离子体的方式不一样,有各自的优缺点做出来的金刚石的质量也是不一样的哦,看对比就知道了热丝主要用于刀具涂层上直流法生长不够稳定微波法最好,但是耗资较大三者对比可是看的出来的哦,三种方法做出来的东西就是不一样的因此,只有微波法能做出高品级金刚石!直接看看微波CVD金刚石的应用就知道好了:光学级金刚石能够应用到各个领域更重要的是,可以做钻石的!apollo公司生产0.28-0.67克拉的粉红CVD钻石,目前无色钻石最大可达16克拉微波等离子体化学气相沉积法(MPCVD)是制备高品质金刚石膜的首选方法。
主要优点为:无内部电极,可避免电极放电污染;运行气压范围宽; 能量转换效率高;可以产生大范围的高密度等离子体;微波和等离子体参数均可方便地控制等. 所以,它是制备大面积均匀、无杂质污染的高质量金刚石膜的有开发前景的重要方法.MPCVD 装置通常分为微波系统、等离子体反应室、真空系统和供气系统等四大部分. 微波系统包括微波功率源、环行器、水负载、阻抗调配器,有时还包括测量微波入射和反射功率的定向耦合器及功率探头和显示仪表. 微波频率通常选用工业用加热频段的2. 45GHz. 真空和统由真空泵、真空阀门和真空测量仪器(包括真空规管和显示仪器) 组成. 供气系统由气源、管道和控制气体流量的阀和流量计等组成. 这三个部分各自都是通用型的,可以适用于各种类型的MPCVD 装置和其他用途的实验装置. 等离子体反应室包括微波与等离子体的耦合器、真空沉积室以及基片台等. 不同类型的PCVD 装置的区别在于等离子体反应室形式的不同. 从真空沉积室的形式来分,有石英管式、石英钟罩式和带有微波窗的金属腔体式. 从微波与等离子体的耦合方式分,有表面波耦合式、直接耦合式和天线耦合式.在过去的20年里,金刚石膜MPCVD装置经历了从早期的石英管、石英钟罩式,到后期的圆柱谐振腔式、椭球谐振腔式以及圆周天线式(CAP)谐振腔的发展。
功能性人造金刚石材料生产装备技术开发方案(一)
功能性人造金刚石材料生产装备技术开发方案一、实施背景随着科技的不断发展,功能性人造金刚石材料在电子、机械、化工、光学等领域的应用日益广泛。
然而,当前功能性人造金刚石材料生产装备技术落后,生产效率低下,无法满足市场需求。
因此,开发一种新型功能性人造金刚石材料生产装备技术已成为当务之急。
二、工作原理本技术方案采用先进的化学气相沉积(CVD)技术,通过控制反应气体组成、反应温度、压力等参数,在衬底上形成一层或多层功能性人造金刚石材料。
具体工作原理如下:1. 反应气体组成及比例控制:本技术方案采用甲烷、氢气等反应气体,通过控制各反应气体的流量比,以获得最佳的反应气体组成。
2. 反应温度及压力控制:通过加热元件将衬底加热至预设温度,同时通过真空泵控制反应室内的压力,以保证反应的顺利进行。
3. 衬底选择:根据功能性人造金刚石材料的性质及用途,选择合适的衬底材料,如硅、玻璃等。
4. 沉积工艺控制:通过控制沉积时间、沉积温度等工艺参数,以获得均匀、致密的功能性人造金刚石材料。
5. 后处理工艺:沉积完成后,对功能性人造金刚石材料进行必要的后处理,如抛光、刻蚀等,以去除表面缺陷、提高材料质量。
三、实施计划步骤1. 调研市场需求:了解功能性人造金刚石材料的应用领域及市场需求,为技术开发提供方向。
2. 设计技术方案:根据市场需求及现有技术水平,设计功能性人造金刚石材料生产装备技术方案。
3. 采购设备材料:根据技术方案,采购所需的设备、材料及零部件。
4. 开发控制系统:根据技术方案,开发控制系统及软件,实现自动化生产。
5. 制造样机:按照设计要求,制造出样机并进行试验验证。
6. 调试优化:对样机进行调试和优化,以提高生产效率和产品质量。
7. 试生产:在小批量试生产中进一步验证技术的可行性和可靠性。
8. 推广应用:在验证成功后,将技术推广应用到实际生产中。
四、适用范围本技术方案适用于各种功能性人造金刚石材料生产领域,如电子、机械、化工、光学等。
cvd人造金刚石生产工艺流程
cvd人造金刚石生产工艺流程英文回答:CVD (Chemical Vapor Deposition) is a widely used method for producing synthetic diamonds. The process involves the deposition of carbon atoms onto a substrate, creating a diamond film. This technique offers several advantages over other methods, such as high purity, control over diamond properties, and scalability.The CVD diamond production process begins with the selection of a suitable substrate, typically made ofsilicon or diamond. The substrate is prepared by cleaning and polishing to ensure a smooth surface. This step is crucial for the subsequent diamond growth.Next, a mixture of gases is introduced into a reaction chamber. The most commonly used gases are hydrogen and methane. Hydrogen acts as a carrier gas, while methane provides the carbon source. The gases are carefullycontrolled to achieve the desired diamond properties.The reaction chamber is then heated to a high temperature, typically around 800 to 1000 degrees Celsius. This temperature is necessary for the decomposition of methane and the release of carbon atoms. The carbon atoms are transported by the hydrogen gas to the substrate surface.Upon reaching the substrate surface, the carbon atoms undergo a series of chemical reactions, resulting in the formation of diamond. The process is facilitated by the high temperature and the presence of hydrogen, which acts as a reducing agent. The carbon atoms bond together in a crystal lattice structure, forming a diamond film.The diamond growth continues until the desired thickness is achieved. This can take several hours or even days, depending on the deposition rate and the desired film properties. During the growth process, the temperature, gas composition, and other parameters are carefully controlled to ensure the desired diamond quality.After the diamond growth is complete, the film iscooled down gradually to room temperature. This step is important to prevent thermal stress and ensure theintegrity of the diamond film. Once cooled, the diamondfilm is carefully removed from the substrate.The final step in the CVD diamond production process is the polishing and cutting of the diamond film. This step is necessary to remove any imperfections and shape the diamond into the desired form, such as a gemstone or a cutting tool. The polished diamond is then ready for various applications, such as jewelry, electronics, and industrial tools.中文回答:CVD(化学气相沉积)是一种广泛应用的人造金刚石生产方法。
人工合成金刚石的方法
人工合成金刚石的方法
人工合成金刚石的方法可以有以下几种:
1. 高温高压法(HPHT法):这是最常用的合成金刚石的方法之一。
该方法需要在高温(约1500-2000C)和高压(约5-7 GPa)环境下进行。
将碳源(如石墨)和金刚石种子置于高温高压容器中,通过施加高温高压,在碳源上产生足够的压力和温度,使其转化为金刚石。
2. 化学气相沉积法(CVD法):该方法通过在气相中加入碳源,如甲烷等有机气体和氢气,以及金属催化剂,将其加热并分解,形成碳原子,并在金属催化剂表面上沉积并排列形成金刚石晶体。
这种方法可以在较低的温度(约800-1200C)和较低的压力下实现金刚石的合成。
3. 纳米金刚石合成法:这是一种新兴的人工合成金刚石的方法。
通过使用纳米级的碳源,如纳米钻石颗粒或碳纳米管,加热并在高压环境下进行。
这种方法可以在相对较低的温度和压力下快速合成纳米金刚石。
以上是几种常见的人工合成金刚石的方法,每种方法都有其适用的特定条件和应用领域。
几种人造金刚石生产工艺介绍
几种人造金刚石生产工艺介绍来源:中国超硬材料网2012-08-03 字号:T | T1910 年布里奇曼设计出压强达2 万公斤/厘米2 的高压装置。
1953 年美国通用电气公司在他的装置基础上设计一种高压装置并利用它在1955 年首次合成了金刚石。
这种方法也就成为传统的人造金刚石的生产方法。
六面顶压机生产工艺:以六面顶压机及工艺技术生产人造金刚石和立方氮化硼,是我国具有完全知识产权、不同于其他各国的创新成果,是几代中国科学家和广大工程技术人员智慧的结晶,是我们国家超硬材料行业的骄傲!六面顶压机及其工艺方法以令两面顶方法为荣的发达国家科技人员刮目相看!物美价廉的六面顶压机及其生产超硬材料的独特方法已能经济地生产出世界先进水平的产品,逼着他们不得不引进中国的六面顶压机进行研究和生产。
经过半个世纪的发展,金刚石生产工艺又有了许多新的突破,现简要介绍如下:低压气相沉积(CVD)技术取得重大进展该方法包括热丝CVD和等离子放大CVD,是令CH4/H2,CH4/N2和CH4/Ar 等能提供碳原子的气体,在低压及高温的条件下,在合适的的底物(如Si, c-BN, SiC,Ni, Co, Pt, Ir and Pd等)上进行沉积,从而获得高性能,高纯度的金刚石薄膜。
下图为微波等离子放大CVD的设备示意图:用C60 生产金刚石薄膜据英国《新科学家》1994 年7 月30 日报道,美国伊利诺伊阿贡国家实验室的迪特尔·格伦(Dieter Gruen)发明了用C60 生产金刚石薄膜的技术,该方法可以说是对CVD 方法的改进。
CVD 法生产的金刚石薄膜生长速度往往较慢,并且会含有少量的氢,而氢会使金刚石的四方晶体变形,从而会损害金刚石薄膜的有用性能。
格伦的新方法是在氩气保护下,用两个碳电极之间的电弧高温产生含C60 分子的烟尘,然后对烟尘施加微波放电,通过放电使C60 中碳原子对破坏,然后碳原子再连接成双碳二聚物,这种双碳二聚物的特点是能快速的和工具或光学元件等表面结合,形成没有氢原子的接近于纯金刚石的膜。
宝石级人造钻石(大颗粒单晶金刚石)地设备介绍----MPCVD新型地方法
宝石级人造钻石(大颗粒单晶金刚石)的设备介绍----MPCVD新型的方法介绍CVD金刚石设备,主要为微波CVD设备,是被公认的能够制备高品级的大颗粒金刚石和大面积金刚石厚膜。
有需要CVD设备,主要提供1 kW 5 kW 8 kW 微波等离子体CVD 设备,也欢迎咨询!目前化学气相沉积(CVD)法制备金刚石主要有:热丝CVD,直流电弧CVD,微波等离子体CVD。
这些方法在本质上都是用某种形式的能量来激励和分解含碳化合物气体分子,并在一定条件下使金刚石在基片表面成核和生长。
用于刀具涂层的热丝设备能够工业化得直流设备能够制备高品级钻石的微波设备热丝CVD 直流CVD 微波CVD各自的内部结构图,可以发现三者就是激发等离子体的方式不一样,有各自的优缺点做出来的金刚石的质量也是不一样的哦,看对比就知道了热丝主要用于刀具涂层上直流法生长不够稳定微波法最好,但是耗资较大三者对比可是看的出来的哦,三种方法做出来的东西就是不一样的因此,只有微波法能做出高品级金刚石!直接看看微波CVD金刚石的应用就知道好了:光学级金刚石能够应用到各个领域更重要的是,可以做钻石的!apollo公司生产0.28-0.67克拉的粉红CVD钻石,目前无色钻石最大可达16克拉微波等离子体化学气相沉积法(MPCVD)是制备高品质金刚石膜的首选方法。
主要优点为:无内部电极,可避免电极放电污染;运行气压范围宽; 能量转换效率高;可以产生大范围的高密度等离子体;微波和等离子体参数均可方便地控制等. 所以,它是制备大面积均匀、无杂质污染的高质量金刚石膜的有开发前景的重要方法.MPCVD 装置通常分为微波系统、等离子体反应室、真空系统和供气系统等四大部分. 微波系统包括微波功率源、环行器、水负载、阻抗调配器,有时还包括测量微波入射和反射功率的定向耦合器及功率探头和显示仪表. 微波频率通常选用工业用加热频段的2. 45GHz. 真空和统由真空泵、真空阀门和真空测量仪器(包括真空规管和显示仪器) 组成. 供气系统由气源、管道和控制气体流量的阀和流量计等组成. 这三个部分各自都是通用型的,可以适用于各种类型的MPCVD 装置和其他用途的实验装置. 等离子体反应室包括微波与等离子体的耦合器、真空沉积室以及基片台等. 不同类型的PCVD 装置的区别在于等离子体反应室形式的不同. 从真空沉积室的形式来分,有石英管式、石英钟罩式和带有微波窗的金属腔体式. 从微波与等离子体的耦合方式分,有表面波耦合式、直接耦合式和天线耦合式.在过去的20年里,金刚石膜MPCVD装置经历了从早期的石英管、石英钟罩式,到后期的圆柱谐振腔式、椭球谐振腔式以及圆周天线式(CAP)谐振腔的发展。
人造金刚石的制备方法与超高压技术研究
人造金刚石的制备方法与超高压技术研究岳江浩(河南黄河旋风股份有限公司,河南长葛461500)摘要:随着科学技术的不断发展,人造金刚石的诞生促进了超高压技术的进步,文章从天然金刚石的生长机理和发展历史出发,用静压、低压和动压三种方法分析了人造金刚石制备的现状,还从金刚石的装置方法角度阐述了人造金刚石的设计和使用状况,对人造金刚石制备过程中存在的问题进行了分析。
关键词:人造金刚石;制备方法;超高压技术Metallurgy and materials作者简介:岳江浩(1979-),男,河南许昌人,主要研究方向:工程造价。
在科学技术不断发展的大背景下,市场对于宝石的需求不断增加,一般而言,1~3mm 的宝石级金刚石都比较适合用在单晶拉丝模和单晶刀具等相关的产品中,而4~5mm 的宝石级金刚石单晶更适合用于制作高档的宝石饰品。
而宝石级金刚石的人工制备是利用超高压法首次合成的,这种超高压技术对于人造金刚石的制备至关重要。
1人造金刚石的制备方法1.1高压法(1)静压法。
静压法就是指液压机产生压力,在通过固态的传压介质变形成准静水压,然后再将电流加热造成腔体的高温,进而再进行人工制备。
这种静压式的方法具有灵活的调节温度和压力时间,还可以根据晶体的质量性状等进行控制,具有一定的操控功能,是当前最方便的人工制备方法。
首先是工业金刚石的人工制备。
在当前的发展中,我国的工业化生产规模不断扩大,要想生产出高品质的工业金刚石最有效的方法就是利用高压下的膜生长法,这种方法可以在金属膜的两侧,且生长的动力和过剩压成正比,在石墨浓度快到达饱和状态时,就可以成长为金刚石核,然后在金刚石的外部就会有一层简易的金属膜,在膜的两侧就是石墨和金刚石。
当然在膜生长法的利用过程中,最重要的技术就是原材料的选择和组装与合成的工艺匹配,通常工业金刚石在5.0~5.5GPa 的压力和1300~1450的温度下,一般需要12min 的合成时间。
这期间要选择的地技术就是二阶段的升压工艺。
(完整)宝石级人造钻石(大颗粒单晶金刚石)的设备介绍----MPCVD新型的方法
宝石级人造钻石(大颗粒单晶金刚石)的设备介绍----MPCVD新型的方法介绍CVD金刚石设备,主要为微波CVD设备,是被公认的能够制备高品级的大颗粒金刚石和大面积金刚石厚膜。
有需要CVD设备,主要提供1 kW 5 kW 8 kW 微波等离子体CVD 设备,也欢迎咨询!目前化学气相沉积(CVD)法制备金刚石主要有:热丝CVD,直流电弧CVD,微波等离子体CVD。
这些方法在本质上都是用某种形式的能量来激励和分解含碳化合物气体分子,并在一定条件下使金刚石在基片表面成核和生长。
用于刀具涂层的热丝设备能够工业化得直流设备能够制备高品级钻石的微波设备热丝CVD 直流CVD 微波CVD各自的内部结构图,可以发现三者就是激发等离子体的方式不一样,有各自的优缺点做出来的金刚石的质量也是不一样的哦,看对比就知道了热丝主要用于刀具涂层上直流法生长不够稳定微波法最好,但是耗资较大三者对比可是看的出来的哦,三种方法做出来的东西就是不一样的因此,只有微波法能做出高品级金刚石!直接看看微波CVD金刚石的应用就知道好了:光学级金刚石能够应用到各个领域更重要的是,可以做钻石的!apollo公司生产0。
28-0。
67克拉的粉红CVD钻石,目前无色钻石最大可达16克拉微波等离子体化学气相沉积法(MPCVD)是制备高品质金刚石膜的首选方法。
主要优点为:无内部电极,可避免电极放电污染;运行气压范围宽;能量转换效率高;可以产生大范围的高密度等离子体;微波和等离子体参数均可方便地控制等. 所以,它是制备大面积均匀、无杂质污染的高质量金刚石膜的有开发前景的重要方法.MPCVD 装置通常分为微波系统、等离子体反应室、真空系统和供气系统等四大部分. 微波系统包括微波功率源、环行器、水负载、阻抗调配器,有时还包括测量微波入射和反射功率的定向耦合器及功率探头和显示仪表. 微波频率通常选用工业用加热频段的2. 45GHz。
真空和统由真空泵、真空阀门和真空测量仪器(包括真空规管和显示仪器) 组成。
材料高压合成与改性-超硬材料-2
金刚石的传统分类中国科技论文在线-武改朝人工合成金刚石的方法1.静高压法(本节课内容)通过液压机产生压力,使用固态传压介质维持样品腔体的准静水压环境,并输入电流加热产生高温的方法。
可以控制高温高压的时间,控制晶体粒度、质量和晶型,是目前人工合成宝石级和工业磨料级金刚石的主要方法。
2. 冲击高压法或爆破法利用烈性炸药TNT等爆炸时产生的平面波直接作用于石墨,产生足够高的温度和压力。
由于高压高温状态维持时间短,是瞬间产生和消失,形成超微粒金刚石。
3. 低压法(气相沉积法)在低压、高温条件下,由含碳气体沉积成金刚石。
最有效的是化学气相法沉积生长金刚石薄膜。
原理是低压下处于石墨的热力学稳定区,但两相的化学式相差不大。
有金刚石基底存在时,由于金刚石的析出不需要成核,而石墨需要成核,因此碳原子可以形成亚稳相的金刚石。
直接合成法静高压法溶媒法•直接合成法1. 原理在一定P,T条件下,设A相m (P,T), B相m (P,T)A B△m=m -mA B△m<0 则A相稳定△m>0 则B相稳定△m=0 则两相平衡•右图说明了金刚石和石墨的热力学稳定区,指出相变对哪一个更有利。
•6GPa 1000K条件下金刚石是碳的稳定相。
但是实际实验并非如此。
12GPa以下得不到金刚石。
具损耗,并不经济。
•溶媒法(文献)5-7 GPa,1300-1700℃溶剂说原理溶解饱和过饱和•成核过程晶粒形成时,自由能变化△G= △G ’+ △G ’’△G ’是石墨变金刚石后体积自由能的改变△G ’’是石墨变金刚石后表面自由能的改变析出成核过程晶体生长过剩压: d P=P-P e过剩压越大,r k 越小,成核率越高;过剩压越小,r k 越大,成核率越低;d P=0时,即在相平衡线上,r=∞k•(1)膜生长法溶解度差引起的驱动力,促使碳原子从石墨表面溶解出,在溶液中扩散到不远的距离析出金刚石。
成核初期维持较小的过剩压,减少成核;后期提高过剩压越大,利于晶体生长速度的提高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人造金刚石气相沉积法
人造金刚石气相沉积法是一种用于合成人造金刚石的方法。
金刚石是一种非常硬的材料,广泛应用于工业领域,如切割工具、磨具、磨料等。
传统的金刚石合成方法主要包括高温高压法和化学气相沉积法,而气相沉积法是一种相对较新的金刚石合成技术。
气相沉积法是通过在高温高压环境下,将一种含碳气体(如甲烷)分解为碳原子,并在金属衬底上沉积形成金刚石薄膜。
这种方法不仅可以用于合成金刚石薄膜,还可以用于合成立方晶系的金刚石单晶。
气相沉积法的基本原理是利用高温高压条件下气体分解生成碳原子,并通过金属催化剂的作用在金属衬底上沉积形成金刚石。
具体的合成过程包括以下几个步骤:
1. 催化剂制备:选择合适的金属作为催化剂,常用的有铁、镍、钴等。
催化剂的作用是降低碳原子的活化能,促进分解反应。
2. 衬底制备:选择合适的金属衬底,常用的有硅、钼、钢等。
衬底的选择应考虑到与金刚石的匹配性和附着性。
3. 反应气体制备:选择合适的反应气体,常用的有甲烷、乙烯等。
反应气体在高温高压环境下分解生成碳原子。
4. 反应条件控制:控制反应温度、压力和时间等参数,以控制金刚
石的生长速率和质量。
5. 沉积过程:将催化剂和衬底放入反应装置中,加热至合适的温度并施加合适的气压,使反应气体分解生成碳原子并在衬底上沉积。
6. 金刚石生长:碳原子在催化剂的作用下形成金刚石结构,并在衬底上逐渐生长。
生长速率和质量受反应条件和催化剂的选择影响。
7. 金刚石薄膜制备:通过控制反应条件和生长时间,可以在衬底上制备出金刚石薄膜。
薄膜的厚度可以通过调节反应时间和碳源浓度来控制。
人造金刚石气相沉积法具有以下优点:
1. 生长速率快:相比于其他金刚石合成方法,气相沉积法的生长速率较快,可以在相对较短的时间内合成金刚石薄膜。
2. 生长质量高:气相沉积法可以在金属衬底上合成高质量的金刚石薄膜,具有良好的晶体结构和机械性能。
3. 可控性强:通过调节反应条件和催化剂的选择,可以控制金刚石的生长速率和质量,满足不同应用需求。
4. 生产成本低:相对于传统的合成方法,气相沉积法的设备和原材料成本较低,可以实现规模化生产。
人造金刚石气相沉积法在工业领域具有广泛的应用前景。
金刚石薄
膜可以用于制备高性能的切割工具、磨具和磨料,提高工业加工效率和产品质量。
此外,金刚石薄膜还可以应用于光学、电子、传感器等领域,具有重要的科学研究和技术应用价值。
人造金刚石气相沉积法是一种合成金刚石的有效方法。
通过合理控制反应条件和催化剂选择,可以在金属衬底上合成高质量的金刚石薄膜。
这种方法具有生长速率快、生长质量高、可控性强和生产成本低等优点,具有广泛的应用前景。