数学课时作业本九年级下册答案

合集下载

湘教版 九年级数学下册 全一册 课时同步练习 习题合集(二)(含答案解析)

湘教版 九年级数学下册 全一册 课时同步练习 习题合集(二)(含答案解析)

2.1 圆的对称性一、选择题1.下列语句中,不正确的有( )①过圆上一点可以作无数条圆中最长的弦;②长度相等的弧是等弧;③圆上的点到圆心的距离都相等;④同圆或等圆中,优弧一定比劣弧长.A.1个 B.2个 C.3个 D.4个2.如图K-10-1所示,在⊙O中,点A,O,D以及点B,O,C分别在同一条直线上,图中弦的条数为( )图K-10-1A.2 B.3 C.4 D.53.若⊙O的半径为4 cm,点A到圆心O的距离为3 cm,则点A与⊙O的位置关系是 ( ) A.点A在⊙O内 B.点A在⊙O上C.点A在⊙O外 D.不能确定4.半径为5的圆的弦长不可能是( )A.3 B.5 C.10 D.125.已知MN是⊙O的一条非直径的弦,则下列说法中错误的是( )A.M,N两点到圆心O的距离相等B.MN是圆的一条对称轴C.在圆中可画无数条与MN相等的弦D.圆上有两条弧,一条是优弧,一条是劣弧6.如图K-10-2所示,方格纸上一圆经过(2,6),(-2,2),(2,-2),(6,2)四点,则该圆圆心的坐标为( )图K-10-2A.(2,-1) B.(2,2) C.(2,1) D.(3,1)7.形如半圆型的量角器直径为4 cm,放在如图K-10-3所示的平面直角坐标系中(量角器的中心与坐标原点O重合,零刻度线在x轴上),连接60°和120°刻度线的一个端点P,Q,线段PQ交y轴于点A,则点A的坐标为( )图K-10-3A.(-1,3) B.(0,3) C.(3,0) D.(1,3)二、填空题8.战国时的《墨经》就有“圆,一中同长也”的记载.它的意思是圆上各点到圆心的距离都等于________.9.已知⊙O的半径为10 cm,点P到圆心的距离为d cm.(1)当d=8 cm时,点P在⊙O______;(2)当d=10 cm时,点P在⊙O______;(3)当d=12 cm时,点P在⊙O______.10.如图K-10-4所示,三圆同心于点O,AB=4 cm,CD⊥AB于点O,则图中阴影部分的面积为________cm2.图K-10-411.如图K-10-5所示,在矩形ABCD的顶点A处拴了一只小羊,在B,C,D处各有一筐青草,要使小羊至少能吃到一个筐子里的草,且至少有一个筐子里的草吃不到.如果AB=5,BC=12,那么拴羊的绳长l的取值范围是________.图K-10-5三、解答题12.如图K-10-6所示,AB,AC为⊙O的弦,连接CO,BO,并延长CO,BO分别交弦AB,AC于点E,F,∠B=∠C.求证:CE=BF.图K-10-613.如图K-10-7,点O是同心圆的圆心,大圆半径OA,OB分别交小圆于点C,D.求证:AB∥CD.图K-10-714.如图K-10-8,在△ABC中,AB=AC=6 cm,∠BAC=120°,M,N分别是AB,AC的中点,AD⊥BC,垂足为D,以D为圆心,3 cm为半径画圆,判断A,B,C,M,N各点和⊙D的位置关系.链接听课例3归纳总结图K-10-815.图K-10-9,D是△ABC的边BC的中点,过AD延长线上的点E作AD的垂线EF,垂足为E,EF与AB的延长线相交于点F,点O在AD上,AO=CO,BC∥EF.求证:(1)AB=AC;(2)A,B,C三点在以点O为圆心的圆上.1.[解析] B ①②不正确. 2.A3.[解析] A d =3 cm <4 cm =r ,所以点A 在⊙O 内. 4.[解析] D 圆中弦的长度小于或等于圆的直径. 5.B 6.B 7.[解析] B 连接OQ ,PO ,则∠POQ =120°-60°=60°.∵PO =OQ ,∴△POQ 是等边三角形,∴PQ =PO =OQ =12×4=2(cm ),∠OPQ =∠OQP =60°.∵∠AOQ =90°-60°=30°,∴∠QAO =180°-60°-30°=90°,∴AQ =12OQ =1 cm .∵在Rt △AOQ 中,由勾股定理,得OA =22-12=3,∴点A 的坐标是(0,3).故选B . 8.半径9.(1)内 (2)上 (3)外 10.[答案] π[解析] 根据圆是轴对称图形,得阴影部分的面积=14大圆的面积=14π(4÷2)2=π(cm 2).11.[答案] 5≤l<13[解析] 根据题意画出图形如图所示:AB =CD =5,AD =BC =12,根据矩形的性质和勾股定理得到:AC =52+122=13.∵AB =5,BC =12,AC =13,而B ,C ,D 中至少有一个点在⊙A 内或上,且至少有一个点在⊙A 外,∴点B 在⊙A 内或上,点C 在⊙A 外,∴要使小羊至少能吃到一个筐子里的草,且至少有一个筐子里的草吃不到,拴羊的绳长l 的取值范围是5≤l<13. 12.证明:∵OB ,OC 是⊙O 的半径,∴OB =OC.又∵∠B =∠C ,∠BOE =∠COF , ∴△EOB ≌△FOC , ∴OE =OF , ∴CE =BF.13.证明:∵OC =OD ,∴∠OCD =∠ODC , ∴∠OCD =12(180°-∠O).∵OA =OB ,∴∠OAB =∠OBA , ∴∠OAB =12(180°-∠O),∴∠OCD =∠OAB , ∴AB ∥CD.14.解:连接DM ,DN.∵在△ABC 中,AB =AC =6 cm ,∠BAC =120°, ∴∠B =∠C =30°. ∵AD ⊥BC , ∴AD =12AB =3 cm ,BD =CD =3 3 cm .∵M ,N 分别是AB ,AC 的中点, ∴DM =DN =12AB =3 cm ,∴点A ,M ,N 在⊙D 上,点B ,C 在⊙D 外. 15.证明:(1)∵AE ⊥EF, EF ∥BC , ∴AD ⊥BC. ∵BD =CD ,∴AD 是BC 的垂直平分线, ∴AB =AC.(2)如图,连接BO ,∵AD 是BC 的垂直平分线, ∴BO =CO. 又∵AO =CO , ∴AO =BO =CO ,∴A ,B ,C 三点在以点O 为圆心的圆上.2.2.1 圆心角知识点 1 圆心角的定义1.下面四个图中的角,表示圆心角的是( )图2-2-12.在直径为8的圆中,90°的圆心角所对的弦长为( )A .4 2B .4C .4 3D .83.在半径为2 cm 的⊙O 中,弦长为2 cm 的弦所对的圆心角为( ) A .30° B .60° C .90° D .120°知识点 2 圆心角、弧、弦之间的关系4.如图2-2-2所示,在⊙O 中,已知AB ︵=CD ︵,则弦AC 与BD 的关系是( )图2-2-2A .AC =BDB .AC <BD C .AC >BD D .不确定5.如图2-2-3,已知∠AOB =∠COD ,下列结论不一定成立的是( )图2-2-3A .AB =CD B .AB ︵=CD ︵C .△AOB ≌△COD D .△AOB ,△COD 都是等边三角形6.如图2-2-4,已知在⊙O 中,BC 是直径,AB ︵=DC ︵,∠AOD =80°,则∠ABC 的度数为( )图2-2-4A .40°B .65°C .100°D .105°7.如图2-2-5,在⊙O 中,AC ︵=BD ︵,∠1=50°,则∠2的度数为________.图2-2-58.如图2-2-6,AB 是⊙O 的直径,BC ︵=CD ︵=DE ︵,∠BOC =40°,则∠AOE 的度数是________.图2-2-69.如图2-2-7,已知AB =CD. 求证:AD =BC.图2-2-710.如图2-2-8,A ,B ,C 是⊙O 上的三点,且有AB ︵=BC ︵=CA ︵. (1)求∠AOB ,∠BOC ,∠AOC 的度数;(2)连接AB ,BC ,CA ,试确定△ABC 的形状.图2-2-811.教材习题2.2A 组第2题变式如图2-2-9所示,OA ,OB ,OC 是⊙O 的三条半径,M ,N 分别是OA ,OB 的中点,且MC =NC.求证:AC ︵=BC ︵.图2-2-912.如图2-2-10,在⊙O 中,AB ︵=2AC ︵,那么( )图2-2-10A .AB =AC B .AB =2AC C .AB<2ACD .AB>2AC13. 如图2-2-11,AB 是⊙O 的直径,四边形ABCD 内接于⊙O ,若BC =CD =DA =4 cm ,则⊙O 的周长为( )图2-2-11A .5π cmB .6π cmC .9π cmD .8π cm14.如图2-2-12所示,AB 是⊙O 的直径,BC ︵=CD ︵=DE ︵,∠COD =34°,则∠AEO 的度数是________.图2-2-1215.如图2-2-13,已知AB 是⊙O 的直径,弦AC ∥OD.求证:BD ︵=CD ︵.图2-2-1316.如图2-2-14,AB 是⊙O 的直径,AC ︵=CD ︵,∠COD =60°. (1)△AOC 是等边三角形吗?请说明理由; (2)求证:OC ∥BD.图2-2-1417.如图2-2-15,∠AOB =90°,C ,D 是AB ︵的三等分点,AB 分别交OC ,OD 于点E ,F.求证:AE =CD.图2-2-1518.如图2-2-16,A ,B 是圆O 上的两点,∠AOB =120°,C 是AB ︵的中点. (1)试判断四边形OACB 的形状,并说明理由;(2)延长OA 至点P ,使得AP =OA ,连接PC ,若圆O 的半径R =2,求PC 的长.图2-2-16教师详解详析1.D 2.A 3.B 4.A 5.D 6.B 7.50° 8.60°9.[解析] 要证AD =BC ,可证AD ︵=BC ︵. 证明:∵AB =CD ,∴AB ︵=DC ︵, ∴AB ︵-DB ︵=DC ︵-DB ︵,即AD ︵=BC ︵, ∴AD =BC .10.解:(1)∵AB ︵=BC ︵=CA ︵, ∴∠AOB =∠BOC =∠AOC .又∵∠AOB +∠BOC +∠AOC =360°, ∴∠AOB =∠BOC =∠AOC =120°. (2)∵AB ︵=BC ︵=CA ︵,∴AB =BC =CA ,∴△ABC 是等边三角形.11.证明:∵M ,N 分别是OA ,OB 的中点, ∴OM =12OA ,ON =12OB .又OA =OB ,∴OM =ON . 在△OMC 和△ONC 中,OM =ON ,MC =NC ,OC =OC ,∴△OMC ≌△ONC ,∴∠COM =∠CON , ∴AC ︵=BC ︵.12.C [解析] 取AB ︵的中点M ,连接AM ,BM ,则AC ︵=AM ︵=BM ︵,∴AC =AM =BM .在△ABM 中,AB <AM +BM ,∴AB <2AC .13.D [解析] 连接OD ,OC .根据圆心角、弧、弦的关系证得△AOD 是等边三角形,则⊙O 的半径为4 cm ,然后由圆的周长公式进行计算.14.51° [解析] ∵BC ︵=CD ︵=DE ︵,∠COD =34°,∴∠BOC =∠EOD =∠COD =34°,∴∠AOE =180°-∠EOD -∠COD -∠BOC =78°.又∵OA =OE ,∴∠AEO =∠OAE ,∴∠AEO =12×(180°-78°)=51°.15.证明:连接OC .∵OA =OC ,∴∠OAC =∠ACO . ∵AC ∥OD ,∴∠OAC =∠BOD ,∠DOC =∠ACO ,∴∠BOD =∠COD ,∴BD ︵=CD ︵.16.解:(1)△AOC 是等边三角形.理由如下: ∵AC ︵=CD ︵,∴∠AOC =∠COD =60°. 又∵OA =OC ,∴△AOC 是等边三角形. (2)证明:∵∠AOC =∠COD =60°, ∴∠BOD =60°.又∵OB =OD ,∴△OBD 是等边三角形, ∴∠B =60°,∴∠AOC =∠B ,∴OC ∥BD .17.证明:连接AC ,∵∠AOB =90°,C ,D 是AB ︵的三等分点,∴∠AOC =∠COD =30°,AC =CD .又∵OA =OC ,∴∠ACE =75°.∵∠AOB =90°,OA =OB ,∴∠OAB =45°,∴∠AEC =∠AOC +∠OAB =75°,∴∠ACE =∠AEC ,∴AE =AC ,∴AE =CD .18.解:(1)四边形OACB 是菱形.理由:连接OC ,∵∠AOB =120°,C 是AB ︵的中点,∴∠AOC =∠BOC =12∠AOB =60°.∵OA =OC =OB ,∴△AOC 与△BOC 都是等边三角形,∴AC =OA=OC =OB =BC ,∴四边形OACB 是菱形.(2)∵AP =OA ,AC =OA ,∴AP =AC ,∴∠P =∠ACP =12∠OAC =30°,∴∠OCP =90°.∵R =2,∴OC =2,OP =4,∴PC =OP 2-OC 2=2 3.2.2.2 第1课时 圆周角定理及其推论1知识点 1 圆周角的定义1.下列四个图中,∠α是圆周角的是( )图2-2-17知识点 2 圆周角定理2.2017·衡阳如图2-2-18,点A ,B ,C 都在⊙O 上,且点C 在弦AB 所对的优弧上,如果∠AOB =64°,那么∠ACB 的度数是( )图2-2-18A.26°B.30°C.32°D.64°3.2018·聊城如图2-2-19,⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ADC=85°,则∠C的度数是( )图2-2-19A.25°B.27.5°C.30°D.35°4.2018·广东同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是________°.5.如图2-2-20,点A,B,C都在⊙O上,如果∠AOB+∠ACB=84°,那么∠ACB的度数是________.图2-2-206.2017·白银如图2-2-21,△ABC 内接于⊙O ,若∠OAB =32°,则∠C =________°.图2-2-217.教材练习第3题变式如图2-2-22,点A ,B ,C 在⊙O 上,AC ∥OB ,若∠BOC =50°,求∠OBA 的度数.图2-2-22知识点 3 圆周角定理的推论18.如图2-2-23,在⊙O 中,AB ︵=AC ︵,∠AOB =40°,则∠ADC 的度数是( )图2-2-23A .40°B .30°C .20°D .15°9.如图2-2-24,经过原点O 的⊙P 与x 轴、y 轴分别交于点A ,B ,C 是OB ︵上一点,则∠ACB 的度数为( )图2-2-24A .80°B .90°C .100°D .无法确定10.如图2-2-25,已知点A,B,C,D在⊙O上.(1)若∠ABC=∠ADB,求证:AB=AC;(2)若∠CAD=∠ACD,求证:BD平分∠ABC.图2-2-2511.如图2-2-26,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠APB的度数为( )图2-2-26A.140°B.70°C.60°D.40°12.将量角器按图2-2-27所示的方式放置在三角形纸板上,使点C在半圆上.若点A,B的读数分别为86°,30°,则∠ACB的度数为( )图2-2-27A.15°B.28°C.29°D.34°13.如图2-2-28,△ABC的三个顶点都在⊙O上,直径AD=6 cm,∠DAC=2∠B,求AC的长.图2-2-2814.如图2-2-29,点A,B,C在圆O上,弦AE平分∠BAC交BC于点D,连接BE.求证:BE2=ED·EA.图2-2-2915.如图2-2-30,△ABC的两个顶点B,C在圆O上,顶点A在圆O外,AB,AC分别交圆O于点E,D,连接EC,BD.(1)求证:△ABD∽△ACE;(2)若△BEC与△BDC的面积相等,试判断△ABC的形状.图2-2-3016.如图2-2-31,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)判断△ABC的形状,并说明理由;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论.图2-2-31教师详解详析1.C 2.C [解析] 根据圆周角定理,同一条弧所对的圆周角的度数等于圆心角度数的一半,所以∠ACB =12∠AOB =32°.故选C.3.D [解析] ∵∠A =60°,∠ADC =85°,∴∠B =∠ADC -∠A =85°-60°=25°.∵∠O =2∠B =50°,∴∠C =∠ADC -∠O =85°-50°=35°.故选D.4.50 [解析] ∵弧AB 所对的圆心角是100°,∴弧AB 所对的圆周角为12×100°=50°.5.28°6.58 [解析] 连接OB ,∵OA =OB ,∴△AOB 是等腰三角形,∴∠OAB =∠OBA ,∵∠OAB =32°,∴∠OAB =∠OBA =32°,∴∠AOB =116°,∴∠C =58°.7.解:∵AC ∥OB ,∴∠OBA =∠BAC .又∠BOC =50°,∴∠BAC =25°,∴∠OBA =25°.8.C [解析] 连接OC .∵AB ︵=AC ︵,∴∠AOC =∠AOB =40°,∴∠ADC =12∠AOC =20°.9.B [解析] ∵∠AOB 与∠ACB 都是AB ︵所对的圆周角,∴∠AOB =∠ACB . ∵∠AOB =90°,∴∠ACB =90°.故选B. 10.证明:(1)∵∠ABC =∠ADB , ∴AB ︵=AC ︵,∴AB =AC .(2)∵∠CAD =∠CBD ,∠ACD =∠ABD ,∠CAD =∠ACD ,∴∠ABD =∠CBD ,∴BD 平分∠ABC . 11.B [解析] 由题知∠DCE =40°,在四边形CDOE 中,∠CDO =∠CEO =90°,∴∠AOB =360°-90°-90°-40°=140°,根据圆周角定理,得∠APB =12∠AOB =12×140°=70°.故选B.12.B13.解:如图,连接OC ,∵∠AOC =2∠B ,∠DAC =2∠B , ∴∠AOC =∠DAC , ∴OC =AC .又∵OA =OC ,∴△AOC 是等边三角形, ∴AC =AO =12AD =3 cm.14.[解析] 欲证BE 2=ED ·EA ,只需证BE ED =EA BE,则只需证△BAE ∽△DBE .由于AE 平分∠BAC ,则∠BAE =∠CAE .又因为∠EBD =∠CAE ,则∠BAE =∠DBE .再由∠E 为公共角,题目可证.证明:∵AE 平分∠BAC ,∴∠BAE =∠CAE . 又∵∠CAE =∠DBE ,∴∠BAE =∠DBE . 又∵∠E =∠E ,∴△BAE ∽△DBE , ∴BE ED =EA BE,即BE 2=ED ·EA .15.解:(1)证明:∵∠EBD 与∠ECD 都是DE ︵所对的圆周角,∴∠EBD =∠ECD . 又∵∠A =∠A ,∴△ABD ∽△ACE .(2)∵S △BEC =S △BDC ,S △ACE =S △ABC -S △BEC ,S △ABD =S △ABC -S △BDC ,∴S △ACE =S △ABD .由(1)知△ABD ∽△ACE ,∴对应边之比等于1,∴AB =AC ,即△ABC 为等腰三角形. 16.解:(1)△ABC 是等边三角形.理由如下:在⊙O 中,∵∠BAC 与∠CPB 是BC ︵所对的圆周角,∠ABC 与∠APC 是AC ︵所对的圆周角,∴∠BAC =∠CPB ,∠ABC =∠APC .又∵∠APC =∠CPB =60°,∴∠ABC =∠BAC =60°,∴△ABC 为等边三角形.(2)PC =PB +PA .证明:在PC 上截取PD =PA ,连接AD ,如图.∵∠APC =60°,∴△APD 是等边三角形,∴AD =AP =PD ,∠ADP =60°,∴∠ADC =120°.又∵∠APB =∠APC +∠BPC =120°,∴∠ADC =∠APB .在△APB 和△ADC 中,⎩⎪⎨⎪⎧∠APB =∠ADC ,∠ABP =∠ACD ,AP =AD ,∴△APB ≌△ADC (AAS),∴PB =DC .又∵PD =PA ,∴PC =PB +PA .第2课时 圆周角定理的推论2及圆内接四边形的性质知识点 1 圆周角定理的推论2 1.如图2-2-32,AB 为⊙O 的直径,点C 在⊙O 上,∠A =30°,则∠B 的度数为 ( )图2-2-32 A .15° B .30° C .45° D .60°2.如图2-2-33,小华同学设计了一个测圆的直径的测量器,将标有刻度的尺子OA ,OB 在点O 处钉在一起,并使它们保持垂直,在测圆的直径时,把点O 靠在圆周上,读得刻度OE=8 cm,OF=6 cm,则圆的直径为( )图2-2-33A.12 cm B.10 cm C.14 cm D.15 cm3.2017·福建如图2-2-34,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的是( )图2-2-34A.∠ADC B.∠ABDC.∠BAC D.∠BAD4.如图2-2-35,AB为⊙O的直径,CD为⊙O的弦,∠ACD=25°,∠BAD的度数为________.图2-2-355.如图2-2-36,⊙O的直径AB=10 m,C为直径AB下方半圆上一点,∠ACB的平分线交⊙O于点D,连接AD,BD.判断△ABD的形状,并说明理由.图2-2-36知识点 2 圆内接四边形的概念及其性质6.在圆内接四边形ABCD中,若∠A∶∠B∶∠C=1∶2∶5,则∠D的度数为( ) A.60°B.120°C.140°D.150°7.2018·济宁如图2-2-37,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是( )图2-2-37A.50°B.60°C.80°D.100°8.教材练习第3题变式如图2-2-38,四边形ABCD内接于⊙O,E为CD延长线上一点,若∠B=96°,则∠ADE的度数为________.图2-2-389.2017·西宁如图2-2-39,四边形ABCD内接于⊙O,点E在BC的延长线上,若∠BOD=120°,则∠DCE=________°.图2-2-3910.如图2-2-40,A,B,C,D是⊙O上的四点,延长DC,AB相交于点E,且BC=BE.求证:△ADE是等腰三角形.图2-2-4011.2018·武威如图2-2-41,⊙A过点O(0,0),C(3,0),D(0,1),B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是( )图2-2-41A.15°B.30°C.45°D.60°12.2017·株洲如图2-2-42,已知AM为⊙O的直径,直线BC经过点M,且AB=AC,∠BAM=∠CAM,线段AB和AC分别交⊙O于点D,E,∠BMD=40°,则∠EOM=________°.图2-2-4213.2016·西宁⊙O的半径为1,弦AB=2,弦AC=3,则∠BAC的度数为________.14.如图2-2-43,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O交于点E,连接AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC-AC=2,求CE的长.图2-2-4315.如图2-2-44,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.图2-2-4416.如图2-2-45,已知⊙O中,弦AB⊥AC,且AB=AC=6,点D在⊙O上,连接AD,BD,CD.(1)如图①,若AD经过圆心O,求BD,CD的长;(2)如图②,若∠BAD=2∠DAC,求BD,CD的长.图2-2-45教师详解详析1.D 2.B3.D [解析] ∵AB 是⊙O 的直径,∴∠BAD +∠ABD =90°.∵∠ACD =∠ABD ,∴∠BAD +∠ACD =90°,故选D.4.65° [解析] ∵AB 为⊙O 的直径,∴∠ADB =90°.∵相同的弧所对应的圆周角相等,且∠ACD =25°,∴∠B =25°.∴∠BAD =90°-∠B =65°.5.解:△ABD 是等腰直角三角形.理由:∵AB 为⊙O 的直径,∴∠ADB =90°.∵CD 是∠ACB 的平分线,∴AD ︵=BD ︵,∴AD =BD ,∴△ABD 是等腰直角三角形.6.B7.D [解析] 如图所示.在优弧BD 上任取一点A (不与点B ,D 重合),连接AB ,AD .因为四边形ABCD 是⊙O 的内接四边形,所以∠A +∠BCD =180°.因为∠BCD =130°,所以∠A =50°.因为∠A 与∠BOD 都对着劣弧BD ,所以∠BOD =2∠A =2×50°=100°.8.96°9.60 [解析] ∵∠BOD =120°,∴∠A =12∠BOD =60°.∵四边形ABCD 是圆内接四边形,∴∠DCE =∠A =60°.10.证明:∵BC =BE ,∴∠E =∠BCE . ∵四边形ABCD 是圆内接四边形, ∴∠A +∠DCB =180°.又∵∠BCE +∠DCB =180°, ∴∠A =∠BCE ,∴∠A =∠E ,∴AD =DE , ∴△ADE 是等腰三角形.11.B [解析] 连接CD ,则CD 为⊙A 的直径,可得∠OBD =∠OCD ,根据点D (0,1),C (3,0),得OD =1,OC =3,由勾股定理得出CD =2,∵OD =12CD ,∴∠OCD =30°,∴∠OBD =30°.故选B.12.80 [解析] 连接EM ,∵AB =AC ,∠BAM =∠CAM ,∴AM ⊥BC .∵AM 为⊙O 的直径,∴∠ADM =∠AEM =90°,∴∠AME =∠AMD =90°-∠BMD =50°,∴∠EAM =40°,∴∠EOM =2∠EAM =80°.13.15°或75° [解析] 作直径AD ,AD =2.如图①,若两条弦在AD 的同侧,分别连接BD ,CD ,则∠B =∠C =90°.∵AB =2,AC =3,∴cos ∠BAD =AB AD =22,cos ∠CAD =AC AD=32,∴∠BAD =45°,∠CAD =30°,∴∠BAC =45°-30°=15°.如图②,若两条弦在AD的两侧,分别连接BD,CD,则∠B=∠C=90°.∵AB=2,AC=3,∴cos∠BAD=22,cos∠CAD=32,∴∠BAD=45°,∠CAD=30°,∴∠BAC=45°+30°=75°.故答案为15°或75°.14.解:(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∴AC⊥BC.又∵DC=BC,∴AD=AB,∴∠B=∠D. (2)设BC=x,则AC=x-2.在Rt△ABC中,AC2+BC2=AB2,即(x-2)2+x2=42,解得x1=1+7,x2=1-7(舍去).∵∠B=∠E,∠B=∠D,∴∠D=∠E,∴DC=CE.又∵DC=BC,∴CE=BC=1+7.15.解:(1)证明:如图,连接AE.∵AC为⊙O的直径,∴∠AEC=90°,∴AE⊥BC.又∵AB=AC,∴BE=CE.(2)如图,连接DE,∵BE=CE=3,∴BC=6.易知∠BED=∠BAC,而∠DBE=∠CBA,∴△BED∽△BAC,∴BEBA=BDBC,即3BA=26,∴AB=9,∴AC=AB=9.16.解:(1)∵AD经过圆心O,∴∠ACD=∠ABD=90°. ∵AB⊥AC,且AB=AC=6,∴四边形ABDC为正方形,∴BD=CD=AB=AC=6.(2)连接BC,OD,过点O作OE⊥BD.∵AB⊥AC,AB=AC=6,∴BC 为⊙O 的直径,∴BC =6 2,∴BO =CO =DO =12BC =3 2.∵∠BAD =2∠DAC ,∴∠DAC =30°,∠BAD =60°, ∴∠COD =60°,∠BOD =120°,∴△COD 为等边三角形,∠BOE =60°, ∴CD =CO =DO =BO =3 2,则BE =3 62,∵OE ⊥BD ,∴BD =2BE =3 6.2.3 垂径定理一、选择题1.下列命题错误的是链接听课例1归纳总结( ) A .平分弧的直径平分这条弧所对的弦 B .平分弦的直径平分这条弦所对的弧 C .垂直于弦的直径平分这条弦 D .弦的垂直平分线经过圆心2.2018·菏泽如图K -14-1,在⊙O 中,OC ⊥AB ,∠ADC =32°,则∠OBA 的度数是( )图K -14-1A .64°B .58°C .32°D .26°3.过⊙O 内一点M 的最长弦长为10 cm ,最短弦长为8 cm ,则OM 的长为( )A .9 cmB .6 cmC .3 cm D.41 cm4.2017·泸州如图K -14-2所示,AB 是⊙O 的直径,弦CD ⊥AB 于点E.若AB =8,AE =1,则弦CD 的长是 ( )图K -14-2A.7 B .27 C .6 D .8 5.2017·金华如图K -14-3,在半径为13 cm 的圆形铁片上切下一块高为8 cm 的弓形铁片,则弓形弦AB 的长为( )图K-14-3A.10 cm B.16 cmC.24 cm D.26 cm6.如图K-14-4,⊙O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=8,则CD的长为( )图K-14-4A.4 2B.8 2C.8D.167.如图K-14-5,在等边三角形ABC中,AB,AC都是⊙O的弦,OM⊥AB,ON⊥AC,垂足分别为M,N,如果MN=1,那么△ABC的面积为( )图K-14-5A.3 B. 3 C.4 D.3 38.2017·襄阳模拟⊙O的半径为5 cm,弦AB∥CD,AB=6 cm,CD=8 cm,则AB和CD间的距离是( )图K-14-6A.7 cm B.8 cmC.7 cm或1 cm D.1 cm二、填空题9.如图K-14-6,OD是⊙O的半径,弦AB⊥OD于点E,若∠O=70°,则∠A+∠C=________°.10.如图K-14-7,在⊙O中,弦AB的长为8,圆心O到AB的距离为3.若P是AB上的一动点,则OP的取值范围是________.图K-14-711.2017·孝感已知半径为2的⊙O中,弦AC=2,弦AD=2 2,则∠COD的度数为________.三、解答题12.已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图K-14-8所示).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆心O到直线AB的距离为6,求AC的长.链接听课例2归纳总结图K-14-813.如图K-14-9所示,在正方形网格图中建立平面直角坐标系,一条圆弧经过网格点A(0,2),B(4,2),C(6,0),解答下列问题:(1)请在图中确定该圆弧所在圆圆心D的位置,并写出点D的坐标为________;(2)连接AD,CD,求⊙D的半径(结果保留根号).图K-14-914.如图K-14-10,已知AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,∠M=∠D.(1)判断BC,MD的位置关系,并说明理由;(2)若AE=16,BE=4,求线段CD的长;(3)若MD恰好经过圆心O,求∠D的度数.图K-14-1015.如图K-14-11,有一拱形公路桥,圆弧形桥拱的水面跨度AB=80米,桥拱到水面的最大高度为20米.(1)求桥拱的半径;(2)现有一艘宽60米,船舱顶部为长方形并高出水面9米的轮船要经过这里,这艘轮船能顺利通过吗?并说明理由.图K-14-11素养提升探究性问题如图K-14-12,在半径为5的扇形AOB中,∠AOB=90°,C是弧AB上的一个动点(不与点A,B重合),OD⊥BC,OE⊥AC,垂足分别为D,E.(1)当BC=6时,求线段OD的长.(2)探究:在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不存在,请说明理由.图K-14-121.B2.[解析] D ∵OC ⊥AB ,∴AC ︵=BC ︵.∠ADC 是AC ︵所对的圆周角,∠BOC 是BC ︵所对的圆心角,∴∠BOC =2∠ADC =64°,∴∠OBA =90°-∠BOC =90°-64°=26°.故选D.3.[解析] C 由题意知,最长的弦为直径,最短的弦为垂直于直径的弦,如图所示.直径ED ⊥AB 于点M ,则ED =10 cm ,AB =8 cm ,由垂径定理知M 为AB 的中点, ∴AM =4 cm.∵半径OA =5 cm ,∴OM 2=OA 2-AM 2=25-16=9, ∴OM =3(cm). 4.B5.[解析] C 如图,过点O 作OD ⊥AB 于点C ,交⊙O 于点D.∵CD =8 cm ,OD =13 cm ,∴OC =5 cm. 又∵OB =13 cm ,∴在Rt △BCO 中,BC =OB 2-OC 2=12 cm ,∴AB =2BC =24 cm.6.[解析] B ∵∠A =22.5°,∴∠BOC =2∠A =45°.∵⊙O 的直径AB 垂直于弦CD ,∴CE =DE ,△OCE 为等腰直角三角形,∴CE =22OC =4 2,∴CD =2CE =8 2.故选B. 7.[解析] B ∵OM ⊥AB ,ON ⊥AC ,垂足分别为M ,N , ∴M ,N 分别是AB ,AC 的中点, ∴MN 是等边三角形ABC 的中位线. ∵MN =1,∴AB =AC =BC =2MN =2, ∴S △ABC =12×2×2×sin60°=2×32= 3.8.C9.[答案] 55[解析] 连接OB.∵OA =OB ,∴∠A =∠ABO.又∵OD 是⊙O 的半径,弦AB ⊥OD 于点E ,∠AOD =70°, ∴AD ︵=BD ︵,∠AOB =140°,∴∠C =12∠AOD =35°,∠A =∠ABO =20°,∴∠A +∠C =55°.故答案是55.10.[答案] 3≤OP≤5[解析] 连接OA ,作OC ⊥AB 于点C ,则AC =12AB =4.由勾股定理,得OA =AC 2+OC 2=5,则OP 的取值范围是3≤OP≤5.11.[答案] 150°或30°[解析] 如图所示,连接OC ,过点O 作OE ⊥AD 于点E.∵OA =OC =AC ,∴∠OAC =60°.∵AD =2 2,OE ⊥AD ,∴AE =2,OE =OA 2-AE 2=2,∴∠OAD =45°,∴∠CAD =∠OAC +∠OAD =105°或∠CAD =∠OAC -∠OAD =15°,∴∠COD =360°-2×105°=150°或∠COD =2×15°=30°.故答案为150°或30°.12.解:(1)证明:过点O 作OE ⊥AB 于点E ,则CE =DE ,AE =BE ,∴AE -CE =BE -DE ,即AC =BD.(2)连接OA ,OC ,由(1)可知OE ⊥AB 且OE ⊥CD ,∴CE =OC 2-OE 2=82-62=2 7,AE =OA 2-OE 2=102-62=8,∴AC =AE -CE =8-2 7.13.(1)确定点D 的位置略 (2,-2)(2)⊙D 的半径为2 514.解:(1)BC ∥MD.理由:∵∠M =∠D ,∠M =∠C ,∴∠D =∠C ,∴BC ∥MD.(2)∵AE =16,BE =4,∴OB =16+42=10,∴OE =10-4=6. 连接OC ,如图①.∵CD ⊥AB ,∴CE =12CD. 在Rt △OCE 中,∵OE 2+CE 2=OC 2,即62+CE 2=102,∴CE =8,∴CD =2CE =16.(3)如图②,∵∠M =12∠BOD ,∠M =∠D , ∴∠D =12∠BOD. 又∵AB ⊥CD ,∴∠D =13×90°=30°. 15.解:(1)如图①,设E 是桥拱所在圆的圆心,过点E 作EF ⊥AB 于点F ,延长EF 交⊙E于点D ,则F 是AB 的中点,AF =FB =12AB =40米, EF =ED -FD =AE -DF.由勾股定理知AE 2=AF 2+EF 2=AF 2+(AE -DF)2.设⊙E 的半径是r ,则r 2=402+(r -20)2,解得r =50.即桥拱的半径为50米.①②(2)这艘轮船能顺利通过这座拱桥.理由:如图②,设MN 与DE 交于点G ,GM =30米.在Rt △GEM 中,GE =EM 2-GM 2=502-302=40(米).∵EF =50-20=30(米),∴GF =GE -EF =40-30=10(米).∵10米>9米,∴这艘轮船能顺利通过这座拱桥.[素养提升]解:(1)∵OD ⊥BC ,∴BD =12BC =12×6=3. ∵∠BDO =90°,OB =5,BD =3,∴OD =OB 2-BD 2=4,即线段OD 的长为4.(2)存在,DE 的长度保持不变.理由:连接AB ,如图. ∵∠AOB =90°,OA =OB =5,∴AB =OB 2+OA 2=5 2.∵OD ⊥BC ,OE ⊥AC ,∴D 和E 分别是线段BC 和AC 的中点,∴DE =12AB =5 22,其长度保持不变.。

华东师大版九年级数学下册全册课时练习(一课一练)

华东师大版九年级数学下册全册课时练习(一课一练)

华东师大版九年级数学下册全册课时练习26.1 二次函数1.下列函数,属于二次函数的是( )A.y=2x+1 B.y=(x-1)2-x2 C.y=2x2-7 D.y=-1x22.函数y=(m-5)x2+x是二次函数的条件为( )A.m为常数,且m≠0 B.m为常数,且m≠5C.m为常数,且m=0 D.m可以为任何数3.已知圆柱的高为14 cm,则圆柱的体积V(cm3)与底面半径r(cm)之间的函数表达式为( )A.V=14r2 B.r=14πV C.V=14πr2 D.r=V14π4.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数表达式为( ) A.y=1+x2 B.y=a (1+x) C.y=a (1+x2) D.y=a (1+x)25.用一根长为10 m的木条,做一个长方形的窗框,若长为x m,则该窗户的面积y(m2)与x (m)之间的函数表达式为.6.某商店从厂家以每件21元的价格购进一批商品,经过调查发现,若每件商品的售价为x 元,可卖出(350-10x)件商品,则所获得的利润y(元)与售价x(元)之间的函数表达式为.7.如图,在△ABC中,∠BAC=90°,AB=AC=1,点D是BC上一个动点(不与点B,C重合),在AC上取一点E,使∠ADE=45°.设BD=x,AE=y,则y关于x的函数表达式为.(不要求写出自变量x的取值范围)8.已知二次函数y=x2-bx-2,当x=2时,y=-2,求当函数值y=1时,x的值.9.如图,某矩形相框长26 cm,宽20 cm,其四周相框边(图中阴影部分)的宽度相同,都是x cm,相框内部的面积(指图中较小矩形的面积)为y cm2.(1)写出y与x的函数表达式;(2)若相框内部的面积为280 cm2,求相框边的宽度.10.某商人如果将进货单价为8元的商品按每件10元出售,每天可销售100件.现在他采用提高售价,减少进货量的办法增加利润,已知这种商品每提高1元,其销售量就要减少10件.若他将售价定为x元,每天所赚利润为y元.(1)请你写出y与x之间的函数表达式;(2)当利润等于360元时,求每件商品的售价.参考答案1-4 CBCD5. y=-x2+5x6. y=-10x2+560x-73507. y=x2-2x+1 8.3或-19.(1)y=4x2-92x+520(0<x<10) (2)3 cm10.(1)y=-10x2+280x-1600(10≤x≤20)(2)14元26.2.1 二次函数y=2ax的图象与性质一.选择题1.已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是()A.B.C. D.2.函数y=ax2+1与y=a(a≠0)在同一平面直角坐标系中的图象可能是()xA. B.C. D.3.已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是()A.B.C. D.4.已知函数y=﹣(x﹣m)(x﹣n)(其中m<n)的图象如图,则一次函数y=mx+n与反比例的图象可能是()函数y=m nxA. B.C. D.二.填空题5.下列函数,当x>0时,y随x的增大而减小的是.(填序号)(1)y=﹣x+1,(2)y=2x,(3)2yx=-,(4)y=﹣x2.6.如图,抛物线与两坐标轴的交点坐标分别为(﹣1,0),(2,0),(0,2),则抛物线的对称轴是;若y>2,则自变量x的取值范围是.7.如图,边长为2的正方形ABCD的中心在直角坐标系的原点O,AD∥x轴,以O为顶点且过A、D两点的抛物线与以O为顶点且过B、C两点的抛物线将正方形分割成几部分,则图中阴影部分的面积是.三.解答题8.抛物线y=﹣x2+(m﹣1)x+m与y轴交于点(0,3).(1)求出m的值并画出这条抛物线.(2)求它与x轴的交点和抛物线顶点的坐标.(3)x取什么值时,抛物线在x轴上方?(4)x取什么值时,y的值随x值的增大而减小?9.分别在同一直角坐标系内,描点画出y=x2+3与y=x2的二次函数的图象,并写出它们的对称轴与顶点坐标.参考答案一. 1.C 2.B 3.D 4.C二.5.(1)(4) 6.x=120<x<1 7.2三. 8.解:(1)由抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3),得m=3.∴抛物线为y=﹣x2+2x+3=﹣(x﹣1)2+4.列表得:图象如右图.(2)由﹣x2+2x+3=0,得x1=﹣1,x2=3.∴抛物线与x轴的交点为(﹣1,0),(3,0).∵y=﹣x2+2x+3=﹣(x﹣1)2+4∴抛物线的顶点坐标为(1,4).(3)由图象可知:当﹣1<x<3时,抛物线在x轴上方.(4)由图象可知:当x>1时,y的值随x值的增大而减小.9.解:抛物线y=x2+3的开口方向向上,顶点坐标是(0,3),对称轴是y轴,且经过点(3,6)和(﹣3,6).抛物线y=x2的开口方向向上,顶点坐标是(0,0),对称轴是y轴,且经过点(3,3)和(﹣3,3),则它们的图象如图.26.2.2 二次函数y=ax2+k的图象与性质1.如图,将抛物线y=13x2向________平移________个单位得到抛物线y=13x2+2;将抛物线y=13x2向________平移________个单位得到抛物线y=13x2-2.2.将二次函数y=x2的图象向下平移1个单位,则平移后的二次函数的关系式为( )A.y=x2-1 B.y=x2+1C .y =(x -1)2D .y =(x +1)2 3.不画出图象,回答下列问题:(1)函数y =4x 2+2的图象可以看成是由函数y =4x 2的图象通过怎样的平移得到的?(2)说出函数y =4x 2+2的图象的开口方向、对称轴和顶点坐标;(3)如果要将函数y =4x 2的图象经过适当的平移,得到函数y =4x 2-5的图象,应怎样平移?4.抛物线y =-12x 2-6的开口向________,顶点坐标是________,对称轴是________;当x ________时,y 有最________值,其值为________;当x ________0时,y 随x 的增大而增大,当x ________0时,y 随x 的增大而减小.5.下列函数中,当x >0时,y 随x 的增大而减小的有________.(填序号) ①y =-x +1,②y =2x ,③y =-2x,④y =-x 2.6.已知点(-1,y 1),⎝ ⎛⎭⎪⎫-12,y 2都在函数y =12x 2-2的图象上,则y 1______y 2.(填“>”“<”或“=”)7.二次函数y =2x 2+1,y =-2x 2-1,y =12x 2-2的图象的共同特征是( )A .对称轴都为y 轴B .顶点坐标相同C .开口方向相同D .都有最高点8.二次函数y =-x 2+1的图象大致是( )9.二次函数y =2x 2-3的图象是一条抛物线,下列关于该抛物线的说法,正确的是( )A .抛物线开口向下B .抛物线经过点(2,3)C .抛物线的对称轴是直线x =1D .抛物线的顶点坐标是(0,-3)10.已知二次函数y =ax 2+c 有最大值,其中a 和c 分别是方程x 2-2x -24=0的两个根,试求该二次函数的关系式.11.在同一坐标系中,一次函数y =-mx +n 2与二次函数y =x 2+m 的图象可能是( )12.从y =2x 2-3的图象上可以看出,当-1≤x ≤2时,y 的取值范围是( ) A .-1≤y ≤5 B .-5≤y ≤5 C .-3≤y ≤5 D .-2≤y ≤113.已知函数y =⎩⎨⎧x 2+1(x ≥-1),2x (x <-1),则下列函数图象正确的是( )14.已知二次函数y =ax 2+k 的图象上有A (-3,y 1),B (1,y 2)两点,且y 2<y 1,则a 的取值范围是( )A .a >0B .a <0C .a ≥0D .a ≤015.小华同学想用“描点法”画二次函数y =ax 2+c 的图象,取自变量x 的5个值,分别计算出对应的y 值,如下表:由于粗心,小华算错了其中的一个y 值,请你指出这个算错的y 值所对应的x =________.16.如图,在平面直角坐标系中,抛物线y =ax 2+4与y 轴交于点A ,过点A 且与x 轴平行的直线交抛物线y =14x 2于点B ,C ,则BC 的长为________.17.能否适当地上下平移函数y =12x 2的图象,使得到的新图象过点(4,-2)?若能,说出平移的方向和距离;若不能,请说明理由.18.已知抛物线y=12x2,把它向下平移,得到的抛物线与x轴交于A,B两点,与y轴交于点C.若△ABC是直角三角形,则原抛物线应向下平移几个单位?19.已知直线y=kx+b与抛物线y=ax2-4的一个交点坐标为(3,5).(1)求抛物线所对应的函数关系式;(2)求抛物线与x轴的交点坐标;(3)如果直线y=kx+b经过抛物线y=ax2-4与x轴的交点,试求该直线所对应的函数关系式.参考答案1.上 2 下 22.A3.解:(1)函数y=4x2+2的图象可以看成是由函数y=4x2的图象向上平移2个单位得到的.(2)函数y=4x2+2的图象开口向上,对称轴为y轴,顶点坐标为(0,2).(3)将函数y=4x2的图象向下平移5个单位得到函数y=4x2-5的图象.4.下(0,-6) y轴(或直线x=0) =0 大-6 < >5.①④6.>7.A 8.B 9.D10.解:解方程x2-2x-24=0,得x1=-4,x2=6.因为函数y=ax2+c有最大值,所以a<0.而a和c分别是方程x2-2x-24=0的两个根,所以a=-4,c=6,所以该二次函数的关系式是y=-4x2+6.11.D .12. C13.C14.A15.2 16.817.解:能.设将函数y=12x2的图象向上平移c个单位后,所得新图象过点(4,-2),所得新图象为抛物线y=12x2+c.将(4,-2)代入y=12x2+c,得-2=12×16+c,c=-10,∴将函数y=12x2的图象向下平移10个单位后,所得新图象过点(4,-2).18.解:设将抛物线y=12x2向下平移b(b>0)个单位,得到的抛物线的关系式为y=12x2-b.不妨设点A在点B的左侧,由题意可得A(-2b,0),B(2b,0),C(0,-b).∵△ABC是直角三角形,∴OB=OC=OA,即2b=b,解得b=0(舍去)或b=2,∴若△ABC是直角三角形,则原抛物线应向下平移2个单位.19.解:(1)将交点坐标(3,5)代入y=ax2-4,得9a-4=5,解得a=1.故抛物线所对应的函数关系式为y =x 2-4.(2)在y =x 2-4中,令y =0可得x 2-4=0,解得x 1=-2,x 2=2. 故抛物线与x 轴的交点坐标为(-2,0)和(2,0). (3)需分两种情况进行讨论:①当直线y =kx +b 经过点(-2,0)时,由题意可知 ⎩⎨⎧-2k +b =0,3k +b =5,解得⎩⎨⎧k =1,b =2,故该直线所对应的函数关系式为y =x +2;②当直线y =kx +b 经过点(2,0)时,由题意可知⎩⎨⎧2k +b =0,3k +b =5,解得⎩⎨⎧k =5,b =-10,故该直线所对应的函数关系式为y =5x -10.综上所述,该直线所对应的函数关系式为y =x +2或y =5x -10.26.2.3二次函数y =a(x -h)2的图象与性质1.将抛物线y =x 2向________平移________个单位得到抛物线y =(x +5)2;将抛物线y =x 2向________平移________个单位得到抛物线y =(x -5)2.2.下列方法可以得到抛物线y =25(x -2)2的是( )A .把抛物线y =25x 2向右平移2个单位B .把抛物线y =25x 2向左平移2个单位C.把抛物线y=25x2向上平移2个单位D.把抛物线y=25x2向下平移2个单位3.顶点是(-2,0),开口方向、形状与抛物线y=12x2相同的抛物线是( )A.y=12(x-2)2 B.y=12(x+2)2C.y=-12(x-2)2 D.y=-12(x+2)24.抛物线y=12(x+3)2的开口向______;对称轴是直线________;当x=______时,y有最______值,这个值为________;当x________时,y随x的增大而减小.5.对于任意实数h,抛物线y=(x-h)2与抛物线y=x2( )A.开口方向相同 B.对称轴相同C.顶点相同 D.都有最高点6.关于二次函数y=-2(x+3)2,下列说法中正确的是( )A.其图象开口向上B.其图象的对称轴是直线x=3C.其图象的顶点坐标是(0,3)D.当x>-3时,y随x的增大而减小7.在平面直角坐标系中,函数y=-x+1与y=-32(x-1)2的图象大致是( )8.已知函数y=-(x-1)2的图象上的两点A(2,y1),B(a,y2),其中a>2,则y1与y2的大小关系是y1______y2.(填“<”“>”或“=”)9.在平面直角坐标系中画出函数y=-12(x-3)2的图象.(1)指出该函数图象的开口方向、对称轴和顶点坐标;(2)说明该函数图象与二次函数y=-12x2的图象的关系;(3)根据图象说明,何时y随x的增大而减小.10.如图是二次函数y=a(x-h)2的图象,则直线y=ax+h不经过的象限是( )A.第一象限 B.第二象限C.第三象限 D.第四象限11.已知二次函数y=-(x-h)2,当x<-3时,y随x的增大而增大;当x >-3时,y随x的增大而减小.当x=0时,y的值为( )A.-1 B.-9 C.1 D.912.将抛物线y=ax2-1平移后与抛物线y=a(x-1)2重合,抛物线y=ax2-1上的点A(2,3)同时平移到点A′的位置,那么点A′的坐标为( )A .(3,4)B .(1,2)C .(3,2)D .(1,4)13.已知抛物线y =a (x -h )2的形状及开口方向与抛物线y =-2x 2相同,且顶点坐标为(-2,0),则a +h =________.14.二次函数y =a (x -h )2的图象如图所示,若点A (-2,y 1),B (-4,y 2)是该图象上的两点,则y 1________y 2.(填“>”“<”或“=”)15.若点A ⎝ ⎛⎭⎪⎫-134,y 1,B ⎝ ⎛⎭⎪⎫-54,y 2,C ⎝ ⎛⎭⎪⎫14,y 3为二次函数y =(x -2)2图象上的三点,则y 1,y 2,y 3的大小关系为____________.16.已知直线y =kx +b 经过抛物线y =-12x 2+3的顶点A 和抛物线y =3(x-2)2的顶点B ,求该直线的函数关系式.17.已知二次函数y =(x -3)2.(1)写出该二次函数图象的开口方向、对称轴、顶点坐标和该函数的最值. (2)若点A (x 1,y 1),B (x 2,y 2)位于对称轴右侧的抛物线上,且x 1<x 2,试比较y 1与y 2的大小关系.(3)抛物线y =(x +7)2可以由抛物线y =(x -3)2平移得到吗?如果可以,请写出平移的方法;如果不可以,请说明理由.18.一条抛物线的形状与抛物线y=2x2的形状相同,对称轴与抛物线y=1 2 (x+2)2的对称轴相同,且顶点在x轴上,求这条抛物线所对应的函数关系式.19.已知抛物线y=13x2如图所示.(1)抛物线向右平移m(m>0)个单位后,经过点A(0,3),试求m的值;(2)画出(1)中平移后的图象;(3)设两条抛物线相交于点B,点A关于新抛物线对称轴的对称点为C,试在新抛物线的对称轴上找出一点P,使BP+CP的值最小,并求出点P的坐标.参考答案1.左 5 右 5 2.A 3.B4.上x=-3 -3 小0 <-35.A 6.D 7.D 8.>9.解:图略.(1)该函数图象的开口向下,对称轴为直线x=3,顶点坐标为(3,0).(2)二次函数y=-12(x-3)2的图象是由二次函数y=-12x2的图象向右平移3个单位得到的.(3)当x >3时,y 随x 的增大而减小. 10.B 11.B 12.A 13.-4 14.= 15.y 1>y 2>y 316.解:抛物线y =-12x 2+3的顶点A 的坐标为(0,3),抛物线y =3(x -2)2的顶点B 的坐标为(2,0).∵直线y =kx +b 经过点A ,B , ∴⎩⎨⎧b =3,2k +b =0,解得⎩⎨⎧k =-32,b =3,∴该直线的函数关系式为y =-32x +3.17.解:(1)因为a =1>0,所以该二次函数的图象开口向上,对称轴为直线x =3,顶点坐标为(3,0);当x =3时,y 最小值=0,没有最大值.(2)因为当x >3时,y 随x 的增大而增大.又因为3<x 1<x 2,所以y 1<y 2. (3)可以.将抛物线y =(x -3)2向左平移10个单位可以得到抛物线y =(x +7)2.18.解:根据题意设这条抛物线所对应的函数关系式为y =a (x -k )2. ∵这条抛物线的形状与抛物线y =2x 2的形状相同,∴|a |=2,即a =±2. 又∵这条抛物线的对称轴与抛物线y =12(x +2)2的对称轴相同,∴k =-2,∴这条抛物线所对应的函数关系式为y =2(x +2)2或y =-2(x +2)2.19.解:(1)平移后得到的抛物线对应的函数关系式为y =13(x -m )2,把(0,3)代入,得3=13(0-m )2,解得m 1=3,m 2=-3.因为m >0,所以m =3.(2)如图所示.(3)如图,由题意可知平移后抛物线的函数关系式为y =13(x -3)2,点B 的坐标为⎝⎛⎭⎪⎫32,34,点C 的坐标为(6,3),点P 为直线BC 与抛物线y =13(x -3)2的对称轴(直线x =3)的交点.设直线BC 所对应的函数关系式为y =kx +b ,则⎩⎨⎧32k +b =34,6k +b =3,解得⎩⎨⎧k =12,b =0,即直线BC 所对应的函数关系式为y =12x ,当x =3时,y =32,因此点P 的坐标为⎝⎛⎭⎪⎫3,32.26.2.4二次函数y =a (x -h )2+k 的图象与性质1.二次函数y =-3()x -42+2的图象是由抛物线y =-3x 2先向________(填“左”或“右”)平移________个单位,再向________(填“上”或“下”)平移________个单位得到的.2.将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为( )A.y=2(x-3)2-5 B.y=2(x+3)2+5C.y=2(x-3)2+5 D.y=2(x+3)2-53.抛物线y=(x+2)2-3可以由抛物线y=x2平移得到,则下列平移过程正确的是( )A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向上平移3个单位D.先向右平移2个单位,再向下平移3个单位4.在同一平面直角坐标系内,将抛物线y=(x-2)2+5先向左平移2个单位,再向下平移1个单位后,所得抛物线的顶点坐标为( )A.(4,4) B.(4,6)C.(0,6) D.(0,4)5.抛物线y=3(x-2)2+3的开口________,顶点坐标为________,对称轴是________;当x>2时,y随x的增大而________,当x<2时,y随x的增大而________;当x=________时,y有最________值是________.6.如图所示为二次函数y=a(x-h)2+k的图象,则a________0,h________0,k________0.(填“>”“<”或“=”)7.二次函数y=(x-2)2-1的图象不经过的象限为( )A.第一象限 B.第二象限C.第三象限 D.第四象限8.设二次函数y=(x-3)2-4的图象的对称轴为直线l,若点M在直线l上,则点M的坐标可能是( )A.(1,0) B.(3,0)C.(-3,0) D.(0,-4)9.已知二次函数y=-(x+1)2+2,则下列说法正确的是( )A.其图象开口向上B.其图象与y轴的交点坐标为(-1,2)C.当x<1时,y随x的增大而减小D.其图象的顶点坐标是(-1,2)10.二次函数y=-(x-b)2+k的图象如图所示.(1)求b,k的值;(2)二次函数y=-(x-b)2+k的图象经过怎样的平移可以得到二次函数y=-x2的图象?11.已知二次函数y=34(x-1)2-3.(1)画出该函数的图象,并写出图象的开口方向、对称轴、顶点坐标及y随x 的变化情况;(2)函数y有最大值还是最小值?并写出这个最大(小)值;(3)设函数图象与y轴的交点为P,求点P的坐标.12.若抛物线y =(x -1)2+2不动,将平面直角坐标系xOy 先沿水平方向向右平移1个单位,再沿铅直方向向上平移3个单位,则原抛物线的关系式变为( )A .y =(x -2)2+3B .y =(x -2)2+5C .y =x 2-1D .y =x 2+413.如图,将函数y =12(x -2)2+1的图象沿y 轴向上平移得到一条新函数的图象,其中点A (1,m ),B (4,n )平移后的对应点分别为点A ′,B ′.若曲线段AB 扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )A .y =12(x -2)2-2B .y =12(x -2)2+7C .y =12(x -2)2-5D .y =12(x -2)2+414.已知二次函数y =a (x -1)2-c 的图象如图所示,则一次函数y =ax +c的大致图象可能是图26-2-21中的( )15.已知二次函数y =-(x -h )2(h 为常数),当自变量x 的值满足2≤x ≤5时,与其对应的函数y 的最大值为-1,则h 的值为( )A .3或6B .1或6C .1或3D .4或616.已知二次函数y =-(x +k )2+h ,当x >-2时,y 随x 的增大而减小,则k 的取值范围是________.17.已知抛物线y =()x +m -12+m +2的顶点在第二象限,试求m 的取值范围.18.如图,抛物线y =-(x -1)2+4与y 轴交于点C ,顶点为D . (1)求顶点D 的坐标; (2)求△OCD 的面积.19.已知抛物线y =3()x +12-12如图所示. (1)求出该抛物线与y 轴的交点C 的坐标; (2)求出该抛物线与x 轴的交点A ,B 的坐标; (3)如果抛物线的顶点为D ,试求四边形ABCD 的面积.参考答案1.右 4 上22.A 3.B 4.D5.向上(2,3) 直线x=2 增大减小 2 小 36.< > >7.C 8.B 9.D10.解:(1)由图象可得二次函数y=-(x-b)2+k的图象的顶点坐标为(1,3).因为二次函数y=-(x-b)2+k的图象的顶点坐标为(b,k),所以b=1,k =3.(2)把二次函数y=-(x-b)2+k的图象向左平移1个单位,再向下平移3个单位可得到二次函数y=-x2的图象(其他平移方法合理也可).11.解:(1)画函数图象略.∵a=34>0,∴图象的开口向上,对称轴为直线x=1,顶点坐标为(1,-3).当x<1时,y随x的增大而减小,当x>1时,y随x的增大而增大.(2)∵a=34>0,∴函数y有最小值,最小值为-3.(3)令x=0,则y=34×(0-1)2-3=-94,所以点P的坐标为⎝⎛⎭⎪⎫0,-94.12.C 13.D 14.A 15.B16.k≥2 [解析] 抛物线的对称轴为直线x=-k,因为a=-1<0,所以抛物线开口向下,所以当x>-k时,y随x的增大而减小.又因为当x>-2时,y随x的增大而减小,所以-k≤-2,所以k≥2.17.解:因为y =()x +m -12+m +2=[x -(-m +1)]2+(m +2),所以抛物线的顶点坐标为(-m +1,m +2).因为抛物线的顶点在第二象限,所以⎩⎨⎧-m +1<0,m +2>0,即⎩⎨⎧m >1,m >-2,所以m >1. 18.解:(1)顶点D 的坐标为(1,4). (2)把x =0代入y =-(x -1)2+4,得y =3, 即OC =3,所以△OCD 的面积为12×3×1=32.19.解:(1)当x =0时,y =-9,所以点C 的坐标为(0,-9).(2)当y =0时,3()x +12-12=0,解得x 1=-3,x 2=1,所以点A 的坐标为(-3,0),点B 的坐标为(1,0).(3)由抛物线所对应的函数关系式可知点D 的坐标为(-1,-12),设对称轴与x 轴交于点E ,则点E 的坐标为(-1,0),所以S 四边形ABCD =S △ADE +S 梯形OCDE +S △BOC =12×2×12+12×1×(9+12)+12×1×9=27.26.2.5二次函数y =a 2x +bx +c 的图象与性质一.选择题1.已知二次函数y =ax 2﹣2x +2(a >0),那么它的图象一定不经过( ) A .第一象限B .第二象限C .第三象限 D.第四象限2.抛物线y =2x 2,y =﹣2x 2,y =12x 2共有的性质是( ) A .开口向下B .对称轴是y 轴 C.都有最低点 D.y 的值随x 的增大而减小3.抛物线y =2x 2+1的顶点坐标是( ) A.(2,1)B .(0,1)C .(1,0)D .(1,2)4.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1 C.顶点坐标是(1,2) D.与x轴有两个交点5.二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值 B.对称轴是直线x=12C.当x<12,y随x的增大而减小 D.当﹣1<x<2时,y>0二.填空题6.抛物线y=2x2﹣1在y轴右侧的部分是(填“上升”或“下降”).7.二次函数y=x2﹣4x﹣5图象的对称轴是直线.8.如果抛物线y=(a+3)x2﹣5不经过第一象限,那么a的取值范围是.三.解答题9.在同一平面内画出函数y=2x2与y=2x2+1的图象.10.如图,已知二次函数y=a(x﹣h)2O(0,0),A(2,0).(1)写出该函数图象的对称轴.(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?11.已知抛物线y=x2﹣x﹣1.(1)求抛物线y=x2﹣x﹣1的顶点坐标、对称轴;(2)抛物线y =x 2﹣x ﹣1与x 轴的交点为(m ,0),求代数式m 2+21m的值.参考答案1.C2. B3. B4. C5. D6.上升7.x =28. a <﹣3 9. 解:列表,得10.解:(1)∵二次函数y =a (x ﹣h )2O (0,0),A (2,0).解得h =1,a =, ∴抛物线的对称轴为直线x =1.(2)点A ′是该函数图象的顶点.理由如下: 如图,过点A ′作A ′B ⊥x 轴于点B , ∵线段OA 绕点O 逆时针旋转60°到OA ′, ∴OA ′=OA =2,∠A ′OA =60°. 在Rt△A ′OB 中,∠OA ′B =30°, ∴OB =12OA ′=1,∴A ′B∴点A ′的坐标为(1),∴点A ′为抛物线y =x ﹣1)2的顶点.11.解:(1) y =x 2﹣x ﹣1=x 2﹣x +14﹣1﹣14=(x ﹣12)2﹣54, 所以顶点坐标是(12,﹣54),对称轴是直线x =12. (2)当y =0时,x 2﹣x ﹣1=0,解得x 或x当m时,m 2+21m =)2+2=;当mm 2+21m =22+=64-(),故m 2+21m=3.26.2.6 二次函数最值的应用1.二次函数y =x 2-2x +6有最________值(填“大”或“小”),把函数关系式配方得____________,其图象的顶点坐标为________,故其最值为________.2.某二次函数的图象如图所示,根据图象可知,当x=________时,该函数有最______值,这个值是________.3.若抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,-3),则二次函数y=ax2+bx+c有( )A.最小值-3 B.最大值-3C.最小值2 D.最大值24.已知二次函数y=ax2+bx+c(a<0)的图象如图所示,当-5≤x≤0时,下列说法正确的是( )A.函数有最小值-5,最大值0 B.函数有最小值-3,最大值6 C.函数有最小值0,最大值6 D.函数有最小值2,最大值6 5.若二次函数y=ax2+bx+1同时满足下列条件:①图象的对称轴是直线x =1;②最值是15.则a的值为( )A.14 B.-14 C.28 D.-286.一小球被抛出后,它距离地面的高度h(米)和飞行时间t(秒)满足函数关系式h=-5(t-1)2+6,则小球距离地面的最大高度是( )A.1米 B.5米 C.6米 D.7米7.某公园一喷水管喷水时水流的路线呈抛物线形(如图26-2-32).若喷水时水流的高度y(m)与水平距离x(m)之间的函数关系式是y=-x2+2x+1.25,则在喷水过程中水流的最大高度为( )图26-2-32A.1.25 m B.2.25 mC.2.5 m D.3 m8.如图26-2-33,假设篱笆(虚线部分)的长度为16 m,则所围成矩形ABCD 的最大面积是( )A.60 m2 B.63 m2C.64 m2 D.66 m29.飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数关系式是s=60t-32t2,则飞机着陆后滑行的最长时间为________秒.10.手工课上,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60 cm,菱形的面积S(cm2)随其中一条对角线的长x(cm)的变化而变化.(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)当x的值是多少时,菱形风筝的面积S最大?最大面积是多少?11.用长8 m的铝合金条制成矩形窗框(如图所示),使窗户的透光面积最大(铝合金条的宽度忽略不计),那么这个窗户的最大透光面积是( )A.6425m2 B.43m2 C.83m2 D.4 m212.如图,在矩形ABCD中,AB=4,BC=6,当三角尺MPN的直角顶点P在BC边上移动时,直角边MP始终经过点A,设三角尺的另一直角边PN与边CD相交于点Q,则CQ的最大值为( )A.4 B.94C.92D.17413.已知M,N两点关于y轴对称,且点M在双曲线y=12x上,点N在直线y=x+3上,设点M的坐标为(a,b),则二次函数y=-abx2+(a+b)x( )A.有最大值,最大值为-92B.有最大值,最大值为92C.有最小值,最小值为92D.有最小值,最小值为-9214.如图26-2-36,在边长为6 cm的正方形ABCD中,点E,F,G,H分别从点A,B,C,D同时出发,均以1 cm/s的速度向点B,C,D,A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为________s 时,四边形EFGH的面积最小,其最小面积是________cm2.15.如图,矩形ABCD 的周长为20,求: (1)矩形ABCD 的面积的最大值; (2)矩形ABCD 的对角线的最小值.16.如图,在平面直角坐标系中,已知抛物线y =12x 2+x -4与x 轴交于点A ,B ,与y 轴交于点C .(1)求点A ,B ,C 的坐标;(2)若M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMC 的面积为S ,求S 关于m 的函数关系式,并求出S 的最大值.17.某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完,该公司的年产量为6千件,若在国内市场销售,则平均每件产品的利润y 1(元)与国内的销售数量x (千件)之间的关系为y 1=⎩⎨⎧15x +90(0<x ≤2),-5x +130(2<x <6).若在国外市场销售,则平均每件产品的利润y 2(元)与国外的销售数量t (千件)之间的关系为y 2=⎩⎨⎧100(0<t ≤2),-5t +110(2<t <6).(1)用含x 的代数式表示t 为t =________;当0<x ≤4时,y 2与x 的函数关系式为y 2=________;当4≤x <________时,y 2=100;(2)求该公司每年销售这种健身产品的总利润w (千元)与国内的销售数量x (千件)的函数关系式,并指出x 的取值范围;(3)该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润最大?最大利润为多少?参考答案1.小 y =(x -1)2+5 (1,5) 5 2.2 小 -13.B 4.B 5.B 6.C 7.B 8.C 9.2010.解:(1)S =12x (60-x )=-12x 2+30x .(2)在S =-12x 2+30x 中,a =-12<0,∴S 有最大值.当x =-b2a=-302×⎝ ⎛⎭⎪⎫-12=30时, S 取得最大值,最大值为4ac -b 24a =4×⎝ ⎛⎭⎪⎫-12×0-3024×⎝ ⎛⎭⎪⎫-12=450. ∴当x 的值为30时,菱形风筝的面积S 最大,最大面积是450 cm 2. 11.C .12.B 13.B14.3 18 [解析] 设运动时间为t s(0≤t ≤6),则AE =t cm ,AH =(6-t )cm.根据题意,得S 四边形EFGH =S 正方形ABCD -4S △AEH =6×6-4×12t (6-t )=2t 2-12t+36=2(t -3)2+18,∴当t =3时,四边形EFGH 的面积取最小值,最小值为18.故答案为:3,18.15.解:(1)∵设矩形的一边长为x ,则其邻边长为10-x , ∴矩形ABCD 的面积S =x (10-x )=-x 2+10x =-(x -5)2+25, ∴当x =5时,S 最大=25.即矩形ABCD 的面积的最大值为25.(2)设矩形的一边长为x ,则其邻边长为10-x ,对角线长为y , ∴y 2=x 2+(10-x )2=2x 2-20x +100=2(x -5)2+50, ∴当x =5时,y 最小2=50,∴矩形ABCD 的对角线的最小值为5 2.16.解:(1)当x =0时,y =-4,∴点C 的坐标为(0,-4).当y =0时,12x 2+x -4=0,解得x 1=-4,x 2=2,∴点A 的坐标为(-4,0),点B 的坐标为(2,0).(2)过点M 作MD ⊥x 轴于点D ,设点M 的坐标为(m ,n ),则AD =m +4,MD =-n ,n =12m 2+m -4,∴S =S △AMD +S 梯形DMCO -S △ACO=12(m +4)(-n )+12(-n +4)(-m )-12×4×4=-2n -2m -8 =-2⎝ ⎛⎭⎪⎫12m 2+m -4-2m -8=-m 2-4m (-4<m <0). ∵S =-m 2-4m =-(m +2)2+4, ∴当m =-2时,S 最大值=4. 17.解:(1)6-x 5x +80 6(2)当0<x ≤2时,w =(15x +90)x +(5x +80)(6-x )=10x 2+40x +480; 当2<x ≤4时,w =(-5x +130)x +(5x +80)(6-x )=-10x 2+80x +480; 当4<x <6时,w =(-5x +130)x +100(6-x )=-5x 2+30x +600.所以w =⎩⎨⎧10x 2+40x +480(0<x ≤2),-10x 2+80x +480(2<x ≤4),-5x 2+30x +600(4<x <6).(3)当0<x ≤2时,w =10x 2+40x +480=10(x +2)2+440,此时,当x =2时,w 最大值=600;当2<x ≤4时,w =-10x 2+80x +480=-10(x -4)2+640,此时当x =4时,w 最大值=640;当4<x <6时,w =-5x 2+30x +600=-5(x -3)2+645,此时当4<x <6时,w <640.所以当x =4时,w 最大值=640.所以该公司每年国内销售4千件、国外销售2千件时,可使公司每年的总利润最大,最大利润为64万元(或640千元).26.2.7 求二次函数的表达式一.选择题1.如果二次函数y =ax 2+bx +c (a ≠0)的图象如图,那么( )A.a<0,b>0,c>0 B.a>0,b<0,c>0C.a>0,b<0,c<0 D.a>0,b>0,c<02.二次函数y=(a﹣1)x2(a为常数)的图象如图,则a的取值范围为()A.a>1 B.a<1 C.a>0 D.a<03.已知抛物线y=(m﹣1)x2﹣mx﹣m2+1过原点,则m的值为()A.±1B.0 C.1 D.﹣14.将二次函数y=x2的图象向下平移1个单位,再向右平移1个单位后所得图象的函数表达式为()A.y=(x+1)2+1 B.y=(x+1)2﹣1 C.y=(x﹣1)2+1 D. y=(x﹣1)2﹣1 二.填空题5.已知抛物线经过点(5,﹣3),其对称轴为直线x=4,则抛物线一定经过另一点的坐标是.6.若点(﹣2,a),(﹣3,b)都在二次函数y=x2+2x+m的图象上,比较a、b的大小:a b.(填“>”“<”或“=”).7.如果将抛物线y=3x2平移,使平移后的抛物线的顶点坐标为(2,2),那么平移后的抛物线的表达式为.三.解答题8.在平面直角坐标系内,抛物线y=ax2+bx+c经过原点O、A(﹣2,﹣2)与B(1,﹣5)三点.(1)求抛物线的表达式;(2)写出该抛物线的顶点坐标.9.如图,已知二次函数的图象过A、C、B三点,点A的坐标为(﹣1,0),点B的坐标为(4,0),点C在y轴的正半轴上,且AB=OC.(1)求点C的坐标;(2)求二次函数的解析式,并化成一般形式.10.已知在平面直角坐标系内,抛物线y=x2+bx+6经过x轴上两点A,B,点B的坐标为(3,0),与y轴相交于点C.(1)求抛物线的表达式;(2)求△ABC的面积.参考答案1.C2.B3.D4. D5. (3,﹣3)6. <7. y=3(x﹣2)2+2.8.解:(1)∵抛物线y=ax2+bx+c经过原点O、A(﹣2,﹣2)与B(1,﹣5)三点,∴0, 422,5, ca ba b=⎧⎪-=-⎨⎪+=-⎩解得2,3,0, abc=-⎧⎪=-⎨⎪=⎩∴抛物线的表达式为y=﹣2x2﹣3x.(2)∵y=﹣2x2﹣3x=﹣2(x+34)2+98,∴抛物线的顶点坐标为(﹣34,98).9.解:(1)∵点A的坐标为(﹣1,0),点B的坐标为(4,0),∴OC=AB=5,∴点C的坐标为(0,5).(2)设二次函数的解析式为y=ax2+bx+5,把点A(﹣1,0)、B(4,0)的坐标分别代入原函数解析式,得a=﹣54,b=154.∴二次函数的解析式为y=﹣54x2+154x+5.10.解:(1)把点B的坐标(3,0)代入抛物线y=x2+bx+6得0=9+3b+6,解得b=﹣5,∴抛物线的表达式为y=x2﹣5x+6.(2)∵抛物线的表达式y=x2﹣5x+6,∴A(2,0),B(3,0),C(0,6),∴S△ABC=12×(3﹣2)×6=3.26.3 实践与探索一.选择题1.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a ﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是()A.③④B.②③C.①④D.①②③2已知反比例函数y=的图象如图,则二次函数y=2kx2﹣4x+k2的图象大致为()A.B.C.D.3.若二次函数y=ax2﹣2x+a2﹣4(a为常数)的图象如图,则该图象的对称轴是()A.直线x=﹣1 B.直线x=1 C.直线x=﹣D.直线x=4.抛物线y=ax2+bx+c如图,考查下述结论:①b<0;②a﹣b+c>0;③b2>4ac;④2a+b<0.正确的有()A.①②B.①②③C.②③④D.①②③④5.将抛物线y=x2﹣2平移到抛物线y=x2+2x﹣2的位置,以下描述正确的是()A.向左平移1单位,向上平移1个单位B.向右平移1单位,向上平移1个单位C.向左平移1单位,向下平移1个单位D.向右平移1单位,向下平移1个单位6.如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△O AB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为()A.(,)B.(2,2)C.(,2)D.(2,)7.关于x的二次函数y=x2+(1﹣m)x﹣m,其图象的对称轴在y轴的右侧,则实数m的取值范围是()A.m<﹣1 B.﹣1<m<0 C.0<m<1 D.m>18.已知二次函数y=ax2﹣1的图象开口向下,则直线y=ax﹣1经过的象限是()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限二.填空题9.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB的长为_________ .10如图,二次函数y=ax2+bx+3的图象经过点A(﹣1,0),B(3,0),那么一元二次方程ax2+bx=0的根是_________ .11.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为_________ 米.12.已知二次函数y=ax2+bx+c的图象如图所示,则下列7个代数式ab,ac,bc,b2﹣4ac,a+b+c,a﹣b+c,2a+b中,其值为正的式子的个数为_________ 个.13.已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如下表所示:x …0 1 2 3 …y … 5 2 1 2 …点A(x1,y1)、B(x2,y2)在函数的图象上,则当0<x1<1,2<x2<3时,y1与y2的大小关系是_________ .14.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w(元)与降价x(元)的函数关系如图.这种工艺品的销售量为_________ 件(用含x的代数式表示).。

九年级下册数学课本答案北师大版

九年级下册数学课本答案北师大版

九年级下册数学课本答案北师大版【篇一:北师大版数学九年级下册教材目录】书)第一章直角三角形的边角关系1.从梯子的倾斜程度谈起2.30o,45o,60o角的三角函数值3.三角函数的有关计算4.船有触礁的危险吗回顾与思考复习题第二章二次函数1.二次函数所描述的关系2.结识抛物线3.刹车距离与二次函数4.二次函数的图象5.用三种方式表示二次函数6.何时获得最大利润7.最大面积是多少8.二次函数与一元二次方程回顾与思考复习题课题学习拱桥设计第三章圆1.车轮为什么做成圆形2.圆的对称性3.圆周角和圆心角的关系4.确定圆的条件5.直线和圆的位置关系6.圆和圆的位置关系7.弧长及扇形的面积8.圆锥的侧面积回顾与思考复习题课题学习设计庶阳棚第四章统计与概率1.50年的变化2.哪种方式更合算3.游戏公平吗回顾与思考复习题课题学习媒体中的数学总复习【篇二:最新北师大版九年级数学下册单元测试题全套及答案】p class=txt>本文档含本书3章的单元测试题,同时含期中,期末试题,共5套试题第一章检测题(时间:100分钟满分:120分)一、精心选一选(每小题3分,共30分)1.把△abc三边的长度都扩大为原来的3倍,则锐角a的正弦函数值( a ) 11 222318131213a.4 b.2513134433a.- b. c. d.-5554,第5题图) ,第6题图),第7题图)5.小强和小明去测量一座古塔的高度(如图),他们在离古塔60 m的a处,用测角仪器6.如图,bd是菱形abcd的对角线,ce⊥ab于点e,交bd于点f,且点e是ab中点,则tan∠bfe的值是( d )13b.2 c. d.3 233 b.2 c.3 3+28.如图,要在宽为22米的九洲大道ab两边安装路灯,路灯的灯臂cd长为2米,且a.(11-22)米 b.(113-22)米 c.(11-23)米 d.3-4)米,第8题图),第9题图),第10题图)a.2-3 b.2+3 c.+1 d.-13a.(2,23) b.(,2-3)23c.(2,4-3) d.(4-3)2二、细心填一填(每小题3分,共24分)?sina-12.在△abc中,∠a,∠b的度数满足:?__.22214.如果方程x2-4x+3=0的两个根分别是rt△abc的两条边,△abc最小角是∠a,那么tana的值为.15.如图,cd是rt△abc斜边上的高,ac=4,bc=3,则cos∠bcd的值是,第15题图),第16题图),第17题图)=9,bc=12,则cosc=____.,第18题图)16.如图,△abc中,de是bc的垂直平分线,de交ac于点e,连接be,若be.(结果保留根号)418.如图,点d在△abc的边bc上,∠c+∠bad=∠dac,tan∠badad=765,cd=13,则线段ac的长为.三、用心做一做(共66分)-14=5 2(2)如果tan∠bcd=求cd的长.3cd3由勾股定理得k2+(3k)2=12,解得k1=10103,k2=-(不合题意,舍去),∴cd 101010ef.解:连接ae,在rt△abe中,已知ab=3,be=3,∴aeab+be=3.又be333(m) 23≈1.732)3≈1.732)23203,∴ce=cf+fd+de=15+3+2=17+3≈51.64≈51.6 cm 2结果可保留根号)(1)求两渔船m,n之间的距离;(结果精确到1米)解:(1)在rt△pen中,en=pe=30米.在rt△pem中,me==【篇三:北师大版九年级下数学课本目录(最新版)】txt>2011 2012年印刷内容一样 2007年5月第4版 206页。

2021九年级下册数学作业本答案浙教版

2021九年级下册数学作业本答案浙教版

2021九年级下册数学作业本答案浙教版篇一:九年级下册数学作业本答案人教版九年级第二卷数学作业回答人民教育版篇二:浙教版九下数学作业本答案第三部分:浙江教育版科学作业答疑九遍浙教版科学作业本答案【九年级下】参考答案第一章第一节1.a2.c3.d4.不断地膨胀大爆炸宇宙论150亿粒子的大爆炸5.(1)它可以永远扩展。

(2)它将崩溃,并在大挤压结束6.(1)图略(2)星系离我们越远,移动得越快。

(3)太棒了。

7.(1)b(2)宇宙大爆炸(3)星系光谱分析。

宇宙微波背景辐射等。

(4)大爆炸之前的宇宙是什么样子的。

第2节1.a2。

c3。

b4。

太阳公转围绕太阳公转太阳系形成5.康德拉普拉斯“康德―拉普拉斯星云说”一块星云收缩太阳地球等行星6.气态和尘埃物质地球将离开原来的轨道,以匀速直线运动。

第3节1.d2。

a3。

b4。

d5。

a6。

b7。

氢氦8星云9红巨星>太阳>白矮星>中子星 10.(1)c(2)c(3)c11.短7-92.5-3第四节1.星云2.岩浆地球温度水蒸38亿3.b4.d5.c6.abfecd7.(1)米勒的原始生命诞生于原始海洋(2)甲烷、氨和氢(3)高温、辐射和闪电(4)原始海洋(5)氨基酸有机酸尿素(6)没有生命的自然环境(或无机环境)8.(1)米勒实验利用CH4、NH3等组分模拟原始地球大气,合成氨基酸等小分子有机物;证明了在生命起源过程中,在原始地球条件下,原始大气中的无机小分子有可能生成有机小分子物质;数据显示,早期地球表面温度很高,原始大气中不可能存在CH4、NH3等物质,因此米勒实验不受支持。

(2)资料还显示星际分子大多是有机化合物,所以地球上最早出现的有机物可能来自星际分子,而不是来自地球,这对米勒实验的结论也提出了挑战。

……第五节(一)1.d2。

b3。

b4。

b5。

a6。

b7。

B8.苔藓蕨类裸子植物9.简单复杂简单复杂低等高等生物演化10.(1)爬行动物(2)多骨鱼类爬行动物鸟类哺乳动物(3)侏罗纪(或侏罗纪和白垩纪之间)11.(1)各种生物之间存在着亲缘关系(2)近远黑猩猩(二)1.a2.c3.b4.ad5.c6.其他物种亲缘关系可变7.物种起源自然选择自然选择共同祖先人类可能起源于原始海洋10.遗传变异环境其他生物适应环境遗传和变异生存斗争适者生存11.(1)观察化石生物的形态和结构特征,推断生物之间的遗传关系。

九年级数学练习册答案

九年级数学练习册答案

九年级数学练习册答案局部答案习题26.11. 作图略.第一个三角形的外心在三角形的内部,第二个三角形的外心是斜边上的中点,第三个三角形的外心在三角形的外部.2. 所作的圆有两个.3. 外部,内部.4. 2.5.5. 点P 在⊙O 上.习题26.2(1)1. 弦EF,弦AB,弧ABF(弧CDB,弧EFB 等),弧EAC(弧AF,弧CB 等).2. 不一定,一定.3. 提示: 联结OC,只要推出∠COD=∠DOB 即可.4. 提示:联结OD,推得∠AOC=∠BOD=∠EOB,证出AC=BD=BE.习题26.2(2)1. ∠AOD,∠COB,∠DOC;∠DOB,∠DOE,∠EOB.2. 40°.3. (1)真; (2)假; (3)真; (4)假.4. 弧CD=弧EB,∠DAC=∠EAB, 弧DE=弧CB,∠DAE=∠CAB, S△ADC= S△ABE.习题26.2(3)1. 提示:过点O 分别作OM⊥AB,ON⊥CB,垂足分别为点M,N,证得OM=ON,再由圆的性质定理推得AD=CE.2. 提示:过点O 作OM⊥CD,ON⊥AB,垂足分别为M,N.3. 提示:先推出弧AB=弧AC.4. 提示:过点O 1 ,O 2 分别作O 1 H⊥AB, O 2 I⊥CD,垂足分别为H,I.由△O 1 HM≌△O 2 IM,推得O 1 H= O 2 I,得弧AB=弧CD.习题26.3(1)1. 24, 2, 10.2. 50°.3. 5.5 米.4. 略.5. 2.6 尺.6. 8.5 米. 2习题26.3(2)1. 40.2. 30, 6-3 3 .3. 提示:联结OM,ON,证出OM=ON 即可.4. 证明: (1)由AB⊥MN,AB 为直径,得PM=PN,且AB=MN, OE=OF,得PE=PF,再推得ME=MF;(2)由AB⊥MN,OE=OF,推得弧AM= 弧AN,∠AOC=∠AOD,所以弧AC=弧AD,因此弧MC=弧ND.习题26.3(3)1. 提示:联结OM,ON,OP,证出OM=ON,得△PMO≌△PNO,因此△PMN 是等腰三角形(其他证明方法也可以).2. 6 25 厘米.3. 8cm 2 或32cm 2 .4. 8.5. 提示:过点O 1 ,O 2 分别作O 1 M⊥AB, O 2 N⊥AB,垂足分别为M,N;证明MP=NP,由垂径定理,得AP=2MP,BP=2NP,所以AP=BP. 习题26.41. 两, 相交.2. 0 5 R ? ? .3. 相交或相切.4. 相交.5. 相切.6. (1) 3 3 2 8. 4. 17; (8)9; (9) 2 1 ;(10)24(由于 AB 是△ABC 的最长边,因此点 C 位于劣弧 AB 上;由∠AOB=60°,∠BOC=45°,可得∠AOC=15°). 43. 略.4. 7.2 厘米.5. 提示:联结OB,推出OB=10 即可.6. 提示:过点O 作OH⊥CD,垂足为H.可证CH=DH,于是得EO=FO,所以AE=BF。

人教版 九年级下册数学 26.1 反比例函数 课时训练(含答案)

人教版 九年级下册数学 26.1 反比例函数 课时训练(含答案)

人教版 九年级下册数学 26.1 反比例函数 课时训练一、选择题1. 函数y =kx的图象经过点A(1,-2),则k 的值为( )A. 12B. -12 C. 2 D. -22. (2019·湖北鄂州)在同一平面直角坐标系中,函数y =﹣x +k 与y =(k 为常数,且k ≠0)的图象大致是A .B .C .D .3. (2020·营口)反比例函数y =1x(x <0)的图象位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4. 如图,在平面直角坐标系中,Rt △ABC 的顶点A ,C 的坐标分别是(0,3),(3,0),∠ACB=90°,AC=2BC ,函数y=(k>0,x>0)的图象经过点B ,则k 的值为( )A .B .9C .D .5.(2019·江苏扬州)若反比例函数xy 2-=的图象上有两个不同的点关于y 轴对称点都在一次函数y=–x+m的图象上,则m的取值范围是A.22m>B.22m<-C.2222m m><-或D.2222m-<<6. 反比例函数y=-1x的图象上有两点P1(x1,y1),P2(x2,y2),若x1<0<x2,则下列结论正确的是()A. y1<y2<0B. y1<0<y2C. y1>y2>0D. y1>0>y27. (2019•江西)已知正比例函数y1的图象与反比例函数y2的图象相交于点A(2,4),下列说法正确的是A.反比例函数y2的解析式是y2=–8 xB.两个函数图象的另一交点坐标为(2,–4)C.当x<–2或0<x<2时,y1<y2D.正比例函数y1与反比例函数y2都随x的增大而增大8. 如图,在同一直角坐标系中,函数y=kx与y=kx+k2的大致图象是()二、填空题9. 已知函数y=-1x,当自变量的取值为-1<x<0或x≥2,函数值y的取值____________.10. 如图,过原点O的直线与反比例函数y1、y2的图象在第一象限内分别交于点A、B,且A为OB的中点.若函数y1=1x,则y2与x的函数表达式是________.11. (2019•山西)如图,在平面直角坐标中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 坐标为(–4,0),点D 的坐标为(–1,4),反比例函数y =kx(x >0)的图象恰好经过点C ,则k 的值为__________.12. 如图,直线y =-2x +4与双曲线y =kx 交于A 、B 两点,与x 轴交于点C ,若AB =2BC ,则k =________.13. 如图,点A ,B 是双曲线y =6x 上的点,分别过点A ,B 作x 轴和y 轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和.为________.14. (2019·浙江宁波)如图,过原点的直线与反比例函数y kx(k >0)的图象交于A ,B 两点,点A 在第一象限.点C 在x 轴正半轴上,连结AC 交反比例函数图象于点D .AE 为∠BAC 的平分线,过点B 作AE 的垂线,垂足为E ,连结DE .若AC =3DC ,△ADE 的面积为8,则k 的值为__________.三、解答题15. 如图,在平面直角坐标系中,点O为坐标原点,菱形OABC的顶点A在x轴的正半轴上,顶点C的坐标为(1,3).(1)求图象过点B的反比例函数的解析式;(2)求图象过点A、B的一次函数的解析式;(3)在第一象限内,当以上所求一次函数的图象在所求反比例函数的图象下方时,请直接写出自变量x的取值范围.16. 如图,一次函数y=kx+b的图象与反比例函数y=mx(x>0)的图象交于A(2,-1),B(12,n)两点,直线y=2与y轴交于点C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积.17. (2019•甘肃)如图,一次函数y=kx+b的图象与反比例函数y=mx的图象相交于A(–1,n)、B(2,–1)两点,与y轴相交于点C.(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求△ABD的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=mx上的两点,当x1<x2<0时,比较y2与y1的大小关系.18. 如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,-4),连接AO,AO=5,sin∠AOC=3 5.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.人教版九年级下册数学26.1 反比例函数课时训练-答案一、选择题1. 【答案】D【解析】本题考查学生求反比例函数解析式的方法.解题思路:利用图象上的点满足函数解析式,将A(1,-2)代入y=kx可求得:k=-2.2. 【答案】C【解析】∵函数y=﹣x+k与y=kx(k为常数,且k≠0),∴当k>0时,y=﹣x+k经过第一、二、四象限,y=kx经过第一、三象限,故选项D错误,当k<0时,y=﹣x+k经过第二、三、四象限,y=kx经过第二、四象限,故选项C正确,选项A、B错误,故选C.3. 【答案】【答案】C【解析】结合反比例函数图象的性质,∵k=1>0,所以反比例函数y=1x的图象分布在第一、三象限,又∵x<0,所以它的图象位于第三象限.4. 【答案】D[解析]过B作BD⊥x轴,垂足为D.∵A,C的坐标分别为(0,3),(3,0),∴OA=OC=3,∠ACO=45°,∴AC=3.∵AC=2BC,∴BC=.∵∠ACB=90°,∴∠BCD=45°,∴BD=CD=,∴点B的坐标为.∵函数y=(k>0,x>0)的图象经过点B,∴k==,故选D.5. 【答案】C【解析】∵反比例函数2yx=-上两个不同的点关于y轴对称的点,在一次函数y=–x+m图象上,∴反比例函数2yx=-与一次函数y=–x+m有两个不同的交点,联立两个函数解方程22220y x m x mx x x y x m ⎧=⎪⇒=-+⇒-+=⎨⎪=-+⎩,∵有两个不同的交点,∴022=+-mx x 有两个不等的根,∴Δ=m 2–8>0,∴m >22或m <–22,故选C .6. 【答案】D 【解析】根据反比例函数的性质或者利用特殊值法即可作出选择.方法一:∵反比例函数y =-1x 中k =-1<0,∴当x <0时,y >0;当x >0时,y <0.又∵x 1<0<x 2,∴y 1>0>y 2.故选D.方法二:令x 1=-1,则y 1=1,令x 2=1,则y 2=-1,∴y 1>0>y 2.7. 【答案】C 【解析】∵正比例函数y 1的图象与反比例函数y 2的图象相交于点A (2,4), ∴正比例函数y 1=2x ,反比例函数y 2=8x, ∴两个函数图象的另一个交点为(–2,–4), ∴A ,B 选项错误,∵正比例函数y 1=2x 中,y 随x 的增大而增大,反比例函数y 2=8x中,在每个象限内y 随x 的增大而减小,∴D 选项错误, ∵当x <–2或0<x <2时,y 1<y 2,∴选项C 正确, 故选C .8. 【答案】C【解析】当k >0时,反比例函数y =kx 图象的两个分支分别位于第一、三象限,直线y =kx +k 2经过第一、二、三象限,没有符合题意的选项;当k <0时,反比例函数y =kx 图象的两个分支分别位于第二、四象限,直线y =kx +k 2经过第一、二、四象限,只有C 符合题意.二、填空题9. 【答案】y >1或-12≤y <0 【解析】∵函数y =-1x ,∴该反比例函数图象在二、四象限,且在二、四象限都随x 的增大而增大,画出草图如解图,当-1<x<0时,y >1;当x≥2时,-12≤y <0,∴函数值y 的取值为y >1或-12≤y <0.10. 【答案】y 2=4x 【解析】设y 2与x 的函数关系式为y 2=k x,A 点坐标为(a ,b),则ab =1.又A 点为OB 的中点,因此,点B 的坐标为(2a ,2b),则k =2a·2b =4ab=4,所以y 2与x 的函数关系式为y 2=4x .11. 【答案】16【解析】过点C 、D 作CE ⊥x 轴,DF ⊥x 轴,垂足为E 、F ,∵四边形ABCD 是菱形,∴AB =BC =CD =DA , 易证△ADF ≌△BCE ,∵点A (–4,0),D (–1,4), ∴DF =CE =4,OF =1,AF =OA –OF =3, 在Rt △ADF 中,AD 2234 5,∴OE =EF –OF =5–1=4,∴C (4,4),∴k =4×4=16, 故答案为:16.12. 【答案】32 【解析】设A(x 1,k x 1),B(x 2,k x 2),∵直线y =-2x +4与y =k x交于A ,B 两点,∴-2x +4=k x ,即-2x 2+4x -k =0,∴x 1+ x 2=2,x 1x 2=k2,如解图,过点A 作AQ ⊥x 轴于点Q ,BP ⊥AQ 于点P ,则PB ∥QC ,∴AP PQ =ABBC =2,即k x 1-k x 2k x 2=2,∴x 2=3x 1,∴x 1= 12,x 2 = 32,∴k = 2x 1x 2=32.13. 【答案】8【解析】设两个空白矩形面积为S1、S2,则根据反比例函数的几何意义得:S1+2=S2+2=6,∴S1=S2=4,∴两个空白矩形的面积和为:S1+S2=8.14. 【答案】6【解析】如图,连接OE,CE,过点A作AF⊥x轴,过点D作DH⊥x轴,过点D作DG⊥AF,∵过原点的直线与反比例函数ykx(k>0)的图象交于A,B两点,∴A与B关于原点对称,∴O是AB的中点,∵BE⊥AE,∴OE=OA,∴∠OAE=∠AEO,∵AE为∠BAC的平分线,∴∠BAE=∠DAE,∴∠DAE=∠AEO,∴AD∥OE,∴S△ACE=S△AOC,∵AC=3DC,△ADE的面积为8,∴S△ACE =S△AOC=12,设点A (m ,km), ∵AC =3DC ,DH ∥AF , ∴3DH =AF , ∴D (3m ,3km), ∵CH ∥GD ,AG ∥DH , ∴△DHC ∽△AGD , ∴S △HDC 14=S △ADG , ∵S △AOC =S △AOF +S 梯形AFHD +S △HDC 1122k =+⨯(DH +AF )×FH +S △HDC 114223k k m =+⨯⨯2m 112142243236k k km k m +⨯⨯⨯=++=12, ∴2k =12,∴k =6; 故答案为6.三、解答题15. 【答案】(1)如解图,过点C 作CD ⊥OA 于点D ,则OD =1,CD =3,在Rt △OCD 中,由勾股定理得OC =OD 2+CD 2=2, ∵四边形OABC 为菱形, ∴BC =AB =OA =OC =2, 则点B 的坐标为(3,3),设反比例函数的解析式为y =kx (k ≠0), ∵其图象经过点B ,∴将B (3,3)代入,得3=k3, 解得k =33,∴该反比例函数的解析式为y=33 x;(2)∵OA=2,∴点A的坐标为(2,0),由(1)得B(3,3),设图象经过点A、B的一次函数的解析式为y=k′x+b(k′≠0),将A(2,0),B(3,3)分别代入,得⎩⎨⎧2k′+b=03k′+b=3,解得⎩⎨⎧k′=3b=-23,∴该一次函数的解析式为y=3x-23;(3)由图象可得,满足条件的自变量x的取值范围是2<x<3.16. 【答案】解:(1)∵点A(2,-1)在反比例函数y=mx的图象上,∴-1=m2,即m=-2.(1分)∴反比例函数的解析式为y=-2x.(2分)∵点B(12,n)在反比例函数y=-2x的图象上,∴n=-212=-4,即点B的坐标为(12,-4).将点A(2,-1)和点B(12,-4)分别代入y=kx+b,得⎩⎪⎨⎪⎧2k+b=-112k+b=-4,解得⎩⎨⎧k=2b=-5,∴一次函数的解析式为y=2x-5.(5分)(2)如解图,设直线AB交y轴于点D.令y=2x-5中x=0,得y=-5,即点D的坐标是(0,-5),∴OD=5.(7分)∵直线y=2与y轴交于点C,∴C点的坐标是(0,2),(8分)∴CD =OC +OD =7.∴S △ABC =S △ACD -S △BCD =12×7×2-12×7×12=7-74=214.(10分)17. 【答案】 (1)一次函数的解析式为y =–x +1,反比例函数的解析式为y =–2x . (2)S △ABD =3.(3)y 1<y 2.【解析】(1)∵反比例函数y =m x 经过点B (2,–1),∴m =–2, ∵点A (–1,n )在y =2x-上,∴n =2,∴A (–1,2), 把A ,B 坐标代入y =kx +b ,则有221k b k b -+=+=-⎧⎨⎩,解得11k b =-=⎧⎨⎩, ∴一次函数的解析式为y =–x +1,反比例函数的解析式为y =–2x . (2)∵直线y =–x +1交y 轴于C ,∴C (0,1),∵D ,C 关于x 轴对称,∴D (0,–1),∵B (2,–1),∴BD ∥x 轴,∴S △ABD =12×2×3=3. (3)∵M (x 1,y 1)、N (x 2,y 2)是反比例函数y =–2x 上的两点,且x 1<x 2<0,s ∴y 1<y 2.18. 【答案】(1)【思路分析】如解图,过点A 作AE ⊥x 轴于点E ,由三角函数求出点A 坐标,再用待定系数法求出反比例函数的解析式便可.解:如解图过点A 作AE ⊥x 轴于点E ,∵OA =5,sin ∠AOC =35,∴AE =OA·sin ∠AOC =5×35=3,OE =OA 2-AE 2=4,∴A(-4,3),(3分)设反比例函数的解析式为y =k x (k≠0),把A(-4,3)代入解析式,得k =-12,∴反比例函数的解析式为y =-12x .(5分)(2)【思路分析】先把B 点坐标代入所求出的反比例函数解析式,求出m 的值,进而求出直线AB 的解析式,再求出点D 的坐标,便可求△AOD 与△BOD 的面积之和,即△AOB 的面积.解:把B(m ,-4)代入y =-12x 中,得m =3,∴B(3,-4).设直线AB 的解析式为y =kx +b ,把A(-4,3)和B(3,-4)代入得, ⎩⎨⎧-4k +b =33k +b =-4, 解得⎩⎨⎧k =-1b =-1,(7分) ∴直线AB 的解析式为y =-x -1,(8分)则AB 与y 轴的交点D(0,-1),∴S △AOB =S △AOD +S △BOD =12×1×4+12×1×3=3.5.(10分)。

2023九年级数学课时作业本北师大版

2023九年级数学课时作业本北师大版

2023九年级数学课时作业本北师大版全文共5篇示例,供读者参考九年级数学课时作业本北师大版篇1本学期,我继续担任五年级的数学教学工作。

我将努力根据学生的实际情况,采取有效的措施:激发学生的学习兴趣,培养学生的学习习惯,引导学生参与学习的全过程。

下面将我这学期的工作做如下计划:一、以课堂教学为核心(一)备课:学期初,我们钻研了《数学课程标准》,教材、教参、对学期教学内容做到心中有数。

学期中,着重进行团队备课。

掌握每一部分知识在单元中,在整册书中的地位、作用。

思考学生怎样学、学生将会产生什么疑难该怎样解决。

在备课本中体现教师的引导,学生的主动学习过程。

充分理解课后习题的作用,设计好练习。

(二)上课:1、创设各种情境,激发学生思考。

然后,放手让学生探究,动手、动口、动眼、动脑。

针对教学重、难点,选择学生的探究结果。

学生进行比较、交流、讨论,从中掌握知识,培养能力。

接着,学生练习不同坡度,不同层次的题目,巩固知识,形成能力,发展思维。

最后,尽量让学生自己小结学到的知识以及方法。

现在学生普遍对数学课感兴趣,参与性高,为学好数学迈出坚实的一步。

2、及时复习。

根据爱宾浩斯遗忘规律,新知识的遗忘随时间的延长而减慢。

因此,我的做法是:新授知识基本是当天复习或第二天复习,以后再逐渐延长复习时间。

3、努力构建知识网络。

一般做到一小节一整理,形成每节知识串;每单元整理复习形成知识链,一学期对整册书进行整理复习。

学生经历了教材由薄变厚,再变薄的过程,既形成了知识网,又学到了方法,容易产生学习迁移,给学生的创新,实践提供了可能。

(三)批改作业:针对不同的练习错误,教师面批,指出个性问题,集体订正共性问题。

批改作业时,教师点出错题,不指明错处。

让学生自己查找错误,增强学生的分析能力。

学生订正之后,仍给满分。

鼓励学生独立作业的习惯,对激发学习的兴趣取得了较好效果。

分析练习产生错误的原因,改进教学,提高教师教学的针对性。

(四)注重对后进生的辅导:对学困生分层次要求。

2020春冀教版九年级数学下册 第29章 全章课后作业

2020春冀教版九年级数学下册 第29章 全章课后作业
∠ABE,∴∠DBE=∠DEB. ∴DB=DE. 由(1)知BD=CD,∴DB=DE=DC. ∴B,E,C三点在以D为圆心,DB为半径的圆上.
13.如图①,若∠ACB=∠ADB=90°,则点D在经过 A,B,C三点的圆上.如图②,如果∠ACB= ∠ADB=α(α<90°),点C,D在AB的同侧.求证: 点D在经过A,B,C三点的圆上.
,即 12 BC
93

∴BC=4.
第二十九章 直线与圆的位置关系
29.3 切线的性质和判定
第1课时 切线的性质
1 切线的性质在求边、角问题中的应用 2 切线的性质在判断图形形状中的应用 3 利用切线的性质解与特殊四边形综合问题 4 利用圆的切线性质求角的大小
12.【中考·常德】如图,已知AB是⊙O的直径,CD与⊙O相切 于C,BE∥CO. (1)求证:BC是∠ABE的平分线; (2)若DC=8,⊙O的半径OA=6,求CE的长.
又∵BC=CM+BM=2GM+GM=3,∴GM=1.
∴BG= 2 GM= 2 .
14.【中考·昆明】如图,AB是⊙O的直径,∠BAC= 90°,四边形EBOC是平行四边形,EB交⊙O于 点D,连接CD并延长交AB的延长线于点F. (1)求证:CF是⊙O的切线; (2)若∠F=30°,EB=4,求图中阴影部分的面 积(结果保留根号和π).
(1)证明:如图,连接CE. ∵在△ABC中,AC=BC, ∠ACB=90°, ∴∠B=45°. ∴∠COE=90°. ∴∠CEO=∠ECO=45°. ∵EF是⊙O的切线, ∴∠FEO=90°.∴∠FEC=45°. ∴∠FEC=∠ECO.∴EF∥CG. 又∵ED∥AC,∴四边形CDEF是平行四边形.
12.【中考·怀化】如图,在Rt△ABC中,∠BAC=90°. (1)先作∠ACB的平分线交AB边于点P,再以点P为圆 心,PA长为半径作⊙P;(要求:尺规作图,保留 作图痕迹,不写作法) (2)请你判断BC与(1)中⊙P的位置 关系,并证明你的结论.

九年级下3.4简单几何体的表面展开图(3)课时练习含答案

九年级下3.4简单几何体的表面展开图(3)课时练习含答案

3.4 简单几何体的外表展开图(3)1. 假设圆锥的侧面积为12π cm 2,它的底面半径为3 cm ,那么圆锥的母线长为(B ) A. 4π cm B. 4 cm C. 2π cm D. 2 cm2.假设一个圆锥的底面周长是4πcm ,母线长是6cm ,那么该圆锥的侧面展开图的圆心角的度数是(C ) A .40° B .80° C .120° D .150°(第3题)3.小军将一个直角三角尺(如图)绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是(D )4.圆锥的侧面积是50π cm 2,圆锥的底面半径为r (cm),母线长为l (cm),那么l 关于r 的函数的图象大致是(B )5. 一个圆锥的底面直径为8 cm ,母线长为5 cm ,它的外表积为__36π__cm 2.6.圆锥的轴截面是直角三角形,母线长为4cm ,那么圆锥的高线长为__2_2__cm. 7.母线长为2的圆锥的侧面展开图是一个圆心角为90°的扇形,那么此圆锥的底面半径为__12__.(第8题)8. 小明制作的一个圆锥形纸帽的示意图如图,围成这个纸帽的纸的面积为多少(单位:cm ,π取3.14)?【解】∵d=20,∴r=10.∴S侧=πrl=3.14×10×30=942 (cm2).9. 将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不计接缝处的材料损耗),那个每个圆锥容器的底面半径为(A)A.10cm B.30cmC.40cm D.300cm【解】∵要做成三个相同的圆锥容器的侧面,∴每个侧面展开图扇形的圆心角为120°.∵l=30,·360,∴120=r30∴r=10.(第10题)10.如图,圆锥形烛台的侧面积是底面积的2倍,那么两条母线所夹的∠AOB为__60°__.(第10题解)【解】如解图,设圆锥的母线长为l,底面半径为r.∵2πr2=πrl,∴2r=l,∴r=l2.∴∠POB=30°,∴∠AOB=60°.11. 如图①,在等腰梯形ABCD中,AB∥CD,CD=50 cm,AB=90 cm,高h=DE=30 cm.以直线AB为轴旋转一周,得到一个上、下是圆锥,中间是圆柱的组合体(如图②),求这个组合体的全面积.(第11题)【解】在等腰梯形ABCD中,∵CD=50,AB=90,且DE⊥AB,∴AE=12×(90-50)=20.∴AD=202+302=10 13 ,∴S锥侧=πrl=π×30×10 13=300 13π,S柱侧=2πrh=2π×30×50=3000π.∴S全=2S锥侧+S柱侧=600 13π+3000π=600(13+5)π (cm2).12. 工人师傅要在如图的一边长为40 cm的正方形铁皮上裁剪下一块完整的圆形和一块完整的扇形铁皮,使之可以做成一个圆锥模型.请你帮助工人师傅设计三种不同的裁剪方案(画出示意图).(第12题)【解】设计方案示意图如解图所示.(第12题解)13.如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)根据图中标注的数据,请计算这个几何体的外表积;(3)假设一只蚂蚁要从这个几何体的点B 出发,沿外表爬到AC 的中点D ,请你求出这条路线的最短距离.(第13题)【解】 (1)圆锥.(2)S 外表积=S 底+S 侧=π×⎝⎛⎭⎫422+π×42×6=16π(cm 2).(第13题解)(3)如解图,把圆锥侧面展开,得到扇形ABB′,圆心角为∠BAB′=360°×26=120°,AC 平分∠BAB ′.蚂蚁爬行的最短距离相当于BD 的长. ∵∠BAC =12∠BAB ′=60°,AC =AB =6,∴△ABC 是正三角形. ∵D 是AC 的中点, ∴BD 为正△ABC 的高. ∴BD =3 3.。

九年级下册数学课时作业本05

九年级下册数学课时作业本05

九年级下册数学课时作业本05第一、人教S版九年级下册数学课时作业本05预习部分今天我们将学习数学课时作业本第05部分。

我们要做好预习。

1. 预习目标:了解本课时的内容和重点,为课堂学习做好准备。

2. 预习内容:本次预习内容包括关于平行线性质的学习。

3. 预习方法:可以通过阅读教材,复习相关知识点,查阅参考资料,做一些简单的练习题来进行预习。

4. 预习效果:预习的目的是为了在课堂上更好地理解和掌握知识,提高课堂学习的效率。

所以要确保预习效果良好。

第二、数学课时作业本05课堂学习部分接下来是课堂学习部分。

在课堂上,老师将为我们讲解相关知识点,进行示范演练,并布置相关练习。

1. 认真听讲:课堂学习时,要认真听讲,做好笔记,及时向老师提问。

2. 积极参与:积极参与课堂练习和讨论,与同学们一起交流、讨论问题。

3. 动手操作:课堂上老师可能会让我们进行一些实际的运算、绘图等操作,要积极参与,动手进行练习。

第三、课后作业部分学习完课堂内容后,我们需要认真完成课后作业。

1. 作业要求:按时、按量完成,并做到字迹工整,规范书写。

2. 书写规范:在本数学课时作业本05中,要求书写规范,注重对题目的理解和解答过程的详细展示。

3. 练习巩固:课后作业是对课堂学习内容的巩固和复习,要花时间认真完成。

4. 独立思考:在完成课后作业时,要多思考,独立思考问题,积极解决遇到的困难。

第四、巩固复习和自测在完成课时作业本05后,我们要进行巩固复习和自测。

1. 复习内容:巩固复习应该包括本次课时作业本中所学的全部知识点。

2. 自测效果:可以通过做相关的试题、练习题或者进行一次小测验来检验自己的学习效果。

3. 总结归纳:对于自测中出现的错误或不懂的知识点进行总结和归纳。

第五、课外拓展和对学习的思考还要进行课外拓展和对学习的思考。

1. 拓展阅读:可以通过阅读相关的数学书籍和资料,了解更多拓展知识。

2. 学习思考:要对自己的学习进行思考,在学习中发现问题和不足,并进行反思和改进。

人教版九年级下册数学作业本答案完整版

人教版九年级下册数学作业本答案完整版

参考答案第二十六章 反比例函数26.1反比例函数26.1.1反比例函数的意义1.(1)不是(2)不是(3)是,k=3(4)不是(5)是,k=-22.(1)y=1200x,是反比例函数(2)y=60x,是反比例函数(3)a=60h,是反比例函数3.(1)y=-12x(2)-44.(1)t=100v(2)1.255.(1)y=2x+1(2)-1*6.(1)y=15x(2)方案一:A D=3m,D C=5m 方案二:A D=5m,D C=3m 26.1.2反比例函数的图象和性质(1)1.双曲线2.D3.①③,②④4.略5.(1)正数(2)减小(3)略6.(1)y=18x(x>0)(2)略26.1.2反比例函数的图象和性质(2)1.二㊁四2.D3.D4.(1)在第二㊁四象限.在图象的每一支上,y随x的增大而增大(2)点B在函数的图象上,点C不在函数的图象上5.(1)在第四象限(2)m<2(3)e>f6.(1)(3,-6)(2)2,18(3)2<y<18*7.(1)略(2)对应的x,y的乘积是定值,都是8,矩形O A P B的面积恒等于8(3)(2)的结论仍然成立26.2实际问题与反比例函数(1)1.C2.(1)y=20x(2)103.(1)l=12h(2)2.4m (3)4m4.(1)y=500x(2)1003m5.(1)y=128S(2)80m6.(1)y =400x (2)填表略.设花坛的长为x ,则花坛的宽为y .ȵ 20m<x ɤ40m ʑ 10mɤy <20m .26.2 实际问题与反比例函数(2)1.略 2.(1)y =40000x ,1600名 3.(1)24000个 (2)v =24000t 4.(1)y =360x ,图略 (2)3.6h (3)至少为72k m /h 5.(1)v =48000t (2)6h (3)3000m 36.(1)y =2x (0ɤx ɤ5),50x(x >5)(2)5:25前26.2 实际问题与反比例函数(3)1.B 2.(1)1.98k g /m 3 (2)0<ρ<1.98k g /m 33.(1)y =100x (2)0.5m 4.(1)y =600l .当l 越长时,动力y 越小 (2)2m 5.(1)p =100S (2)200P a 6.(1)p =50S (2)5000P a (3)当压力一定时,接触面积越小,压强越大,故刀刃越锋利,刀具就越好用26.2 实际问题与反比例函数(4)1.反比例,减小 2.D 3.C 4.1210Ω5.(1)36V ,I =36R (2)I ɤ10A 6.(1)p =96V (2)120k P a (3)0.67m 3复习题1.②③④2.答案不唯一,满足k <1即可3.94.y =-6x5.A6.C7.点B 和点C 都在这个函数的图象上.理由:点B 和点C 的坐标都满足函数解析式y =-6x8.(1)y=240x(x>0),图略(2)10个9.(1)I=36R(2)Rȡ3Ω10.(1)y=6x(2)0<xɤ2(3)矩形的周长不可能为6.理由:若矩形的周长为6,则x+y=3.ȵ x y=6, ʑ x+6x=3,整理得x2-3x+6=0.ȵ 此方程无实数解, ʑ 矩形的周长不可能为6第二十七章 相似27.1图形的相似(1)1.C2.①与④相似,②与③相似3.①,④4.①与⑧,②与④,⑤与⑦相似5.略6.略27.1图形的相似(2)1.6002.135ʎ,5c m3.100c m,70c m4.α=60ʎ,E F=7,G H=55.相似的图形有②③,理由略6.(1)A D A B=13,A E A C=13,D E B C=13(2)ȵ D EʊB C, ʑ øA D E=øB,øA E D=øC.又ȵ øA=øA, ʑ әA D E与әA B C相似27.2相似三角形27.2.1相似三角形的判定(1)1.152.43.2ʒ1,34.1.55.10c m6.(1)әA B EʐәA C F,әA C FʐәA D G,әA B EʐәA D G,相似比分别为1ʒ3,1ʒ2,1ʒ6(2)427.2.1相似三角形的判定(2)1.C2.相似.理由略3.(1)相似.理由:三边成比例(2)不相似.理由:三边不成比例(3)相似.理由:两边成比例且夹角相等4.(1)ȵ A C B C=C D A C=23,øB C A=øA C D, ʑ әA C DʐәB C A(2)7.55.(1)相似.理由:ȵ A C=2,A C G C=C F C A=22,øG C A=øA C F, ʑ әA C FʐәG C A(2)由әA C FʐәG C A,得ø1=øC A F.ʑ ø1+ø2=øC A F+ø2=øB C A=45ʎ*6.①把70c m长的钢筋截成两根长分别为49c m和21c m的钢筋.②从70c m长的钢筋中截取两根长分别为15c m和25c m的钢筋.理由略27.2.1相似三角形的判定(3)1.C2.A BʊD E(答案不唯一)3.相似.理由略4.(1)ȵ ø1=ø2, ʑ ø1+øC A D=ø2+øC A D,即øB A C=øD A E.又ȵ øB=øD, ʑ әA B CʐәA D E(2)2545.56.(1)相似.理由:ȵ A DʊB C, ʑ øA D B=øD B C, ʑ R tәA B DʐR tәD C B(2)627.2.2相似三角形的性质1.1ʒ2,1ʒ42.D3.9ʒ44.(1)1ʒ2(2)32c m25.(1)ȵ әA B C是等边三角形, ʑ øB=øC=60ʎ.ʑ øB A D+øA D B=120ʎ.ȵ øA D E=60ʎ, ʑ øA D B+øC D E=120ʎ,ʑ øB A D=øC D E. ʑ әA B DʐәD C E(2)96.(1)4,23x(2)y=-23x2+4x(3)627.2.3相似三角形应用举例(1)1.122.533.8c m4.13.5m5.(1)相似,理由略(2)12c m6.(1)7m (2)70m m27.2.3相似三角形应用举例(2)1.402.60m3.20m4.由әA D EʐәA C B,求得C D=24m5.9m6.7.3m27.2.3相似三角形应用举例(3)1.82.2033.由әD E FʐәD C B,求得B C=4m,A B=B C+1.5=5.5m4.由әB D CʐәA E C,求得B C=4m5.0.375m6.12.3m27.3位似(1)1.D2.473.①②③④都是位似图形,位似中心分别是点D,E,F,G4.略5.如图所示(第5题)6.(1)1ʒ3 (2)8c m ,4c m227.3 位似(2)1.A '(4,6),B '(4,2),C '(12,4)或A '(-4,-6),B '(-4,-2),C '(-12,-4)2.(3,2) 3.A4.(1)A '(4,0),B '(6,4),C '(0,6)或A '(-4,0),B '(-6,-4),C '(0,-6) (2)略5.(1)略 (2)略 (3)相似6.(1)图略.提示:连接A A '和B B '交于点O ,点O 即为位似中心(2)12 (3)略27.3 位似(3)1.D 2.50c m 3.(2,2)4.①旋转或位似变换 ②平移变换 ③轴对称变换 ④位似变换 5.略复习题1.D2.øA =øD 或B C E F=2 3.2 4.1ʒ2 5.103,1ʒ3,1ʒ96.ȵ A B A D =B C D E =A C A E , ʑ әA B C ʐәA D E . ʑ øB A C =øD A E .ʑ øB A C -øD A C =øD A E -øD A C . ʑ øB A D =øC A E 7.12.8m 8.әA C E ʐәA D B ,әA C E ʐәB D E ,әA D B ʐәB D E .证明略9.甲:设正方形的边长为x .由题意得C D ʒC B =D E ʒB A ,则(15-x )ʒ15=x ʒ20,解得x =607.乙:设正方形的边长为y .过点B 作B H ʅA C 于点H ,交D E 于点M ,则B H =12.由题意得B M B H =D E A C,则12-y 12=y 25,解得y =30037.ȵ x >y ,ʑ 甲同学截取的正方形面积较大第二十八章 锐角三角函数28.1 锐角三角函数(1)1.45,35 2.D 3.①③④ 4.(1)1.5c m ,2.5c m ,0.6 (2)0.65.(1)A O =2a ,A B =3a (2)32 6.(1)55 (2)5528.1 锐角三角函数(2)1.35,45 2.13,513 3.D 4.23 5.136.528.1 锐角三角函数(3)1.35,45,34 2.B 3.s i n A =35,c o s A =45,t a n A =344.2 5.(1)A B =10,A C =8 (2)s i n B =45,t a n B =436.(1)øB A C 的余弦值随着øB A C 度数的增大而减小(2)c o s 18ʎ>c o s 34ʎ>c o s 50ʎ>c o s 62ʎ>c o s 88ʎ28.1 锐角三角函数(4)1.2,22,22,1 2.2,3,12,32,33 3.A 4.(1)-12 (2)2 (3)0 (4)-13 5.50m 6.(1)s i n 2A +c o s 2A =a 2c 2+b 2c 2=a 2+b 2c 2=c 2c2=1(2)c o s A =73 (3)t a n A =s i n A c o s A 28.1 锐角三角函数(5)1.60 2.75 3.øA =30ʎ,øB =60ʎ 4.øA =øB =45ʎ 5.326.(1)øA =60ʎ,øB =120ʎ (2)B D =2,A C =2328.1 锐角三角函数(6)1.D 2.37 3.(1)1.86 (2)1.454.(1)26ʎ48'51ᵡ (2)38ʎ12'52ᵡ (3)54ʎ31'55ᵡ 5.38ʎ41'6.a ʈ6.1m ,αʈ35ʎ28.2 解直角三角形及其应用28.2.1 解直角三角形1.(1)35 (2)22.C3.(1)a =23,b =2 (2)33 (3)5 (4)24.øA =60ʎ,øB =30ʎ,A B =235.øA =37ʎ,b ʈ20,c ʈ256.3.8m 28.2.2 应用举例(1)1.43 2.A 3.1033,2033 4.2.2k m 5.40c m 6.5.4m 28.2.2 应用举例(2)1.A 2.15.6 3.53-5 4.105.2m 5.B C =45m ,A C ʈ26m 6.(15+153)m 28.2.2 应用举例(3)1.332.C3.过点A 作A B 与正东方向水平线垂直,垂足为B ,则可求得A B ʈ1158m>1000m ,所以轮船没有触礁的危险4.27.1m5.222c m6.8.2m复习题1.B 2.12 3.B 4.C 5.øB =30ʎ,b =33,c =636.22ʎ2' 7.433-23π 8.(1)22 (2)29.c o søE A G =A E A G =23,øE A G ʈ48ʎ,øB A H ʈ24ʎ,E G =A G 2-A E 2=45(c m )10.(1)ȵ øB A C =øA C B =30ʎ, ʑ B C =A B =10海里(2)过点C 作C D ʅA B 于点D ,则C D =B C ㊃s i n (90ʎ-30ʎ)=53海里<9海里, ʑ 轮船有触礁的危险(3)过点C 作C E ʅB F 于点E ,则C E =B C ㊃s i n (180ʎ-30ʎ-75ʎ)ʈ9.659海里>9海里, ʑ 轮船没有触礁的危险第二十九章 投影与视图29.1投影(1)1.①,②2.A3.③④①②4.(第4题)(2)10m 5.(1)如图所示(第5题)6.如图所示(第6题)29.1投影(2)1.A2.(1)D(2)D3.25πc m24.(1)(2)(第4题)5.(1)8c m (2)43c m6.体积为14πa3,表面积为32πa2 29.2三视图(1)1.A2.B3.D4.(第4题)5.D6.如图所示(第6题)7.(1)主视图:左视图:(2)3429.2三视图(2)1.A2.C3.B4.④,①,②,③5.(1)(2)6.(第5题)(第6题)*7.三视图如图所示,表面积为152(第7题)29.2 三视图(3)1.(1)正方体 (2)圆柱 2.B 3.D 4.圆台,如图所示(第4题) 5.如图所示(第5题)6.(1)n 的最小值为12,最大值为18(2)如图所示 (第6题)29.2 三视图(4)1.6 2.10 3.12 4.π 5.正三棱柱,45c m 2 6.1626.3c m 229.3 课题学习 制作立体模型1.如图所示(第1题) 2.(第2题)3.②,模型略 4.略复习题1.中心2.1.843.D4.A5.B6.这个物体的下部是正方体,上部是一个球,如图所示7.如图所示(第6题) (第7题)8.(360+753)c m 29.最多需要20个小正方体,最少需要6个小正方体,如图①②所示2112211211111111 2000000201000010① ②(第9题)总复习题1.C2.A3.B4.C5.D6.øE A F =øC A B ,øA F E =øB 或øA E F =øC 或A E A F =A C A B (填其中之一即可)7.6 8.y 1<y 3<y 29.1ʒ9 10.略11.证明略,提示:证明әB E F ʐәD C F12.(1)1 (2)12,2 13.(1003-100)m 14.4c m 15.(1)加热时,y =128x +32(0ɤx ɤ6);锻造时,y =4800x (x >6) (2)4m i n16.9.6m 1117.(1)y=1x,1(2)与x轴交于点(-1,0),与y轴没有交点(3)y=-2x+1(答案不唯一)期末综合练习1.C2.D3.C4.B5.C6.D7.A8.A9.D 10.A11.8π12.øA D E=øC(答案不唯一)13.8014.43 15.616.27 17.7218.33c m319.(1)略(2)(-2a,-2b)(3)1020.2.提示:先证明әA E DʐәA D C,再利用相似三角形的性质求得A D=2,可得A B=A D=221.(1)y=2x(2)(-3,0)或(9,0)22.21.8m23.(1)提示:连接B D,先证明әC B D是等边三角形,再证明әB C FɸәB D E,得C F=D E,又ȵ C F+D F=C D, ʑ D E+D F=B C(2)①2 ②B C=2D E+2D F提示:证明әB C FʐәB D E24.(1)①8,4,图略②图象关于直线x=1对称;当x>1时,y随x的增大而增大;当x<1时,y随x的增大而减小(答案不唯一)(2)①若k>0,当x>1时,y随x的增大而增大;当x<1时,y随x的增大而减小.②若k<0,当x>1时,y随x的增大而减小;当x<1时,y随x的增大而增大(3)-3<k<3212。

2020年九年级数学 课时作业本《相似—图形的相似》(含答案)

2020年九年级数学 课时作业本《相似—图形的相似》(含答案)

C.两个等边三角形相似 D.两个锐角三角形相似
D.5.5
11.已知
,则
的值为(

A.
B.
C.
D.
12.如图,在长为 8cm、宽为 4cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分) 与原矩形相似,则留下矩形的面积是( )
A.2cm2
B.4cm2
C.8cm2
D.16cm2
二、填空题 13.如果两地相距 250km,那么在 1:10000000 的地图上它们相距
因为(a-b)2=a2-2ab+b2=13-12=1,所以小正方形的面积为 1,边长为 1.
又因为大正方形的面积为 13,则其边长为 ,所以大正方形与小正方形的相似比为 ∶ 1.
14.如图,AB∥CD∥EF,如果 AC=2,AE=5.5,DF=3,那么 BD=
cm. .
15.若 a:b:c=5:3:2,则
=

16.已知
,则
的值为

17.一个矩形的长为 a,宽为 b(a>b),如果把这个矩形截去一个正方形后所余下的矩形与原矩
形相似,那么 =

18.如图,已知AD∥EF∥BC,AE=3BE,AD=2,EF=5,那么BC= .
(2)矩形DMNC与矩形ABCD的相似比为
.
21.
22.解:(1)因为正方形的四条边都相等,四个角都是直角,所以大正方形和小正方形相似. (2)设直角三角形的较长直角边长为a,较短的直角边长为b,则小正方形的边长为a-b.
所以 即ab=6.
把②平方,得(a+b)2=25,即a2+2ab+b2=25③.所以③-①,得 2ab=12,
1.D 2.C 3.C; 4.A 5.A 6.D 7.D 8.B 9.B 10.C 11.B 12.C 13.答案为:2.5;

九年级下册数学课本练习题答案

九年级下册数学课本练习题答案

九年级下册数学课本练习题答案导读:本文九年级下册数学课本练习题答案,仅供参考,如果觉得很不错,欢迎点评和分享。

第一课俄国向何处去【想一想】十月革命在世界历史发展进程中有什么影响?十月革命是人类历一个划时代的事件。

它建立了世界上第一个社会主义国家。

它的胜利开辟了人类由资本主义向社会主义、共产主义过渡的新时代。

十月革命的胜利不仅激励着各国无产阶级的斗争,而且鼓舞着被压迫人民、被压迫民族的民族解放斗争。

十月革命使人类进入探索社会主义发展的新时期。

【议一议】举出列宁在探索社会主义道路方面坚持实事求是原则的例子。

提出依靠科学技术和专家建设社会主义,苏维埃国家要充分利用西欧资本主义国家的科学技术成就和大生产管理经验等主张,以及“战时共产主义”政策向新经济政策的转变等等。

【材料阅读】议一议,粮食税代替余粮收集制为什么能调动农民的积极性?粮食税的税额比余粮收集制大为减少。

农民缴纳粮食税后,剩余的粮食等农产品可以到市场交换物品,明显改善了生活水平。

【自我测评】人们认为十月革命是“震撼世界”的历史事件,请谈谈你的看法。

十月革命使俄国无产阶级战胜了资产阶级,建立了代表广大人民利益的无产阶级专政的政府——人民委员会,诞生了世界上第一个社会主义国家,使俄国从此走上了社会主义现代化的建设道路。

同时,十月革命的胜利不仅是俄国无产阶级的胜利,还鼓舞了国际无产阶级的斗争和殖民地半殖民地人民的革命斗争,为他们树立了榜样,比如说在十月革命的影响下,半殖民地的中国爆发了五四运动。

总而言之,它开辟了人类历史的新纪元,对20世纪的历史进程产生深远影响,是世界现代史的开端。

第二课苏联的崛起【议一议】斯大林模式有何利弊?斯大林模式创立是和当时苏联社会生产力的发展水平相适应的,在苏联迅速赶上和超过了西方发达国家的过程中起过积极作用,为后来取得世界反法西斯战争的胜利奠定了物质基础。

但从长远看,这种模式阻碍了苏联的民主与法制建设和经济持续发展,妨碍了社会主义制度优越性的充分发挥。

九年级下册数学课时提优作业本

九年级下册数学课时提优作业本

九年级下册数学课时提优作业本
随着科技发展带来的教育革新和学习素养的提高,中国九年级数学课程也正在加强质量,强调主动学习和能力提升。

考虑到这一点,出版社推出了一本“九年级下册数学课时提优作业本”。

本书的主要内容包括一般数学概念、空间数学概念和应用数学概念,并配有有趣的实验,以及针对不同数学知识点的习题。

本书以概念阐释为主,梳理、深入浅出、图文并茂的形式,帮助学生快速掌握、推广和拓展知识。

例如,有关中心角的概念讲解:它的展开图、极坐标、顶点的位置、结构特征等等,都可以以图文并茂的形式介绍出来,使学生介绍或理解的比较快速。

此外,本书附有典型的学习和评估内容,根据不同知识点,提供了丰富的习题实践,要求学生积极参与,解决实际问题,培养学生的探究能力、思维能力和创新能力。

此外,本书还根据学生的实际情况,设计了全面的评估,以测试学生解决实际问题的能力,从而掌握知识的综合性和深入性。

本书的出版,为九年级学生提供了一个强有力的学习资源,使他们掌握和推广数学知识,也为家长和老师提供了一个全面的评估参考,有助于提高学生的数学成绩,提高教学质量。

因此,“九年级下册数学课时提优作业本”不仅是学习数学的指
导方法,更是青少年学习数学基础知识和能力发展的宝贵资源。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学课时作业本九年级下册答案
【九年级下册数学课时作业本答案】
一、几何:
1、计算矩形ABCD的周长。

答:矩形ABCD的周长=2(a+b),其中 a 为AB边长,b 为BC边长。

2、求圆锥表面积。

答:圆锥表面积=πrs(r+s),其中 r 为圆锥圆口(底)半径,s 为圆锥高度(侧面)半径。

3、求正方体外接球表面积。

答:正方体外接球表面积=4πa^2,其中 a 为正方体边长。

4、若球体的表面积为256π,求球体的半径。

答:球体的半径=√32。

二、代数:
1、已知 a+b+c=360°,求 ab+bc+ca的值。

答:ab+bc+ca=a^2+b^2+c^2。

2、已知 a+b+c=30,求 a2+b2+c2的值。

答:a2+b2+c2=900。

3、已知等差数列5,8,11,……,求第 8 项的值。

答:第 8 项的值= 34。

4、求 y=(2-x)(2+x)(x+1)的根。

答:y=(2-x)(2+x)(x+1)的根为 x=-2、-1、1。

三、概率统计:
1、从一个含有20个水果的盒子中抽出一个,求出抽出桃子的概率。

答:抽出桃子的概率=4/20=0.2;
2、从已知的六个色子中任意抛出两个,求出方块面出现的概率。

答:方块面出现的概率=1/6;
3、六个色子中有一个为白色,其他为红色,求抛出两个都为红色的概率。

答:抛出两个都为红色的概率=5/6^2=25/36;
4、如果一只包含六面的色子投掷18次,求出6面出现次数最多概率。

答:6面出现次数最多概率=302/1296=0.233。

相关文档
最新文档