人教版高中数学A版必修三第二章 统计优秀教案

合集下载

人教版高中数学必修3课件第二章众数、中位数、平均数

人教版高中数学必修3课件第二章众数、中位数、平均数

∵0.004×10+0.006×10+0.02×10=0.04+0.06+0.2 =0.3,
∴前三个小矩形面积的和为 0.3,而第四个小矩形面积 为 0.03×10=0.3,0.3+0.3>0.5,
∴中位数应位于第四个小矩形内. 设其底边为 x,高为 0.03,令 0.03x=0.2 得 x≈6.7,故 中位数约为 70+6.7=76.7.
2.下列说法中,不正确的是( ) A.数据 2,4,6,8 的中位数是 4,6 B.数据 1,2,2,3,4,4 的众数是 2,4 C.一组数据的平均数、众数、中位数有可能是同一个 数据 D.8 个数据的平均数为 5,另 3 个数据的平均数为 7, 则这 11 个数据的平均数是8×5+117×3
解 在 17 个数据中,1.75 出现了 4 次,出现的次数最
多,即这组数据的众数是 1.75.上面表里的 17 个数据可看成
是按从小到大的顺序排列的,其中第 9 个数据 1.70 是最中
间的一个数据,即这组数据的中位数是 1.70;这组数据的平
均数是-x
=117×(1.50×2+
1.60×3
+…+
(1)这 50 名学生成绩的众数与中位数; (2)这 50 名学生的平均成绩.(答案精确到 0.1)
解 (1)由众数的概念可知,众数是出现次数最多的 数.在直方图中高度最高的小长方形框的中间值的横坐标即 为所求,所以由频率分布直方图得众数应为 75.
由于中位数是所有数据中的中间值, 故在频率分布直方图中体现的是中位数的左右两边频 数应相等,即频率也相等,从而就是小矩形的面积和相等. 因此在频率分布直方图中将频率分布直方图中所有小 矩形的面积一分为二的直线所对应的成绩即为所求.
(3) 一 个 样 本 按 从 小 到 大 的 顺 序 排 列 为 10,12,13 , x,17,19,21,24,其中中位数为 16,则 x=____1_5___.

2019-2020学年度最新高中数学新人教版必修3教案:第2章 2-2-2 用样本的数字特征估计总体的数字特征-含答案

2019-2020学年度最新高中数学新人教版必修3教案:第2章 2-2-2 用样本的数字特征估计总体的数字特征-含答案

2019-2020学年度最新高中数学新人教版必修3教案:第2章2-2-2 用样本的数字特征估计总体的数字特征-含答案1.会求样本的众数、中位数、平均数、标准差、方差.(重点)2.理解用样本的数字特征来估计总体数字特征的方法.(重点)3.会应用相关知识解决实际统计问题.(难点)[基础·初探]教材整理1众数、中位数、平均数阅读教材P72~P73的内容,完成下列问题.1.众数:在一组数据中,出现次数最多的数叫做众数.如果有两个或两个以上数据出现的最多且出现的次数相等,那么这些数据都是这组数据的众数;如果一组数据中,所有数据出现的次数都相等,那么认为这组数据没有众数.2.中位数:将一组数据按从小到大的顺序依次排列,当数据有奇数个时,处在最中间的那个数是这组数据的中位数;当数据有偶数个时,处在最中间的两个数的平均数是这组数据的中位数.3.平均数:一组数据的总和除以这组数据的个数取得的商叫做这组数据的平均数,一般记为x=1n(x1+x2+…+x n).4.三种数字特征的比较1.判断(正确的打“√”,错误的打“×”)(1)中位数一定是样本数据中的某个数.()(2)在一组样本数据中,众数一定是唯一的.()【答案】(1)×(2)×2.已知一组数据为20,30,40,50,50,60,70,80.其中平均数、中位数和众数的大小关系是()A.平均数>中位数>众数B.平均数<中位数<众数C.中位数<众数<平均数D.众数=中位数=平均数【解析】众数为50,平均数x=18(20+30+40+50+50+60+70+80)=50,中位数为12(50+50)=50,故选D.【答案】 D3.一组观察值4,3,5,6出现的次数分别为3,2,4,2,则样本平均值为( ) A .4.55 B .4.5 C .12.5 D .1.64【解析】x =4×3+3×2+5×4+6×23+2+4+2≈4.55.【答案】 A教材整理2 频率分布直方图中的众数、中位数、平均数 阅读教材P 72~P 73的内容,完成下列问题.在频率分布直方图中,众数是最高矩形中点的横坐标,中位数左边和右边的直方图的面积应该相等,平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.教材整理3 标准差、方差阅读教材P 74~P 77例2上面的内容,完成下列问题. 1.标准差的计算公式标准差是样本数据到平均数的一种平均距离,一般用s 表示, s =1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. 2.方差的计算公式 标准差的平方s 2叫做方差.s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2].其中,x i (i =1,2,…,n )是样本数据,n 是样本容量,x 是样本平均数.某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4. 则:(1)平均命中环数为________; (2)命中环数的标准差为________.【解析】 (1)x =7+8+7+9+5+4+9+10+7+410=7.(2)s 2=110[(7-7)2+(8-7)2+(7-7)2+(9-7)2+(5-7)2+(4-7)2+(9-7)2+(10-7)2+(7-7)2+(4-7)2]=4,∴s=2.【答案】(1)7(2)2[小组合作型](2)这个问题中,平均数能客观地反映该工厂的工资水平吗?为什么?【精彩点拨】先结合众数、中位数、平均数的意义求出众数、中位数、平均数,再结合影响平均数的因素作答.【尝试解答】(1)由题中表格可知:众数为1 200,中位数为1 220,平均数为(2 200+1 250×6+1 220×5+1 200×10+490)÷23=1 230(元/周).(2)虽然平均数为1 230元/周,但从题中表格中所列出的数据可见,只有经理在平均数以上,其余的人都在平均数以下,故用平均数不能客观真实地反映该厂的工资水平.1.众数、中位数、平均数都是刻画数据特征的,但任何一个样本数据改变都会引起平均数的改变,而众数、中位数不具有这个性质.所以平均数可以反映出更多的关于样本数据全体的信息,它是样本数据的重心.2.在样本中出现极端值的情况下,众数、中位数更能反映样本数据的平均水平.[再练一题]1.已知一组数据按从小到大排列为-1,0,4,x,6,15,且这组数据的中位数是5,那么数据的众数是________,平均数是________.【解析】 ∵中位数为5,∴4+x2=5,即x =6.∴该组数据的众数为6,平均数为-1+0+4+6+6+156=5.【答案】 6 5甲、乙两机床同时加工直径为100 cm 的零件,为检验质量,从中抽取6件测量数据为:甲:99 100 98 100 100 103 乙:99 100 102 99 100 100 (1)分别计算两组数据的平均数及方差;(2)根据计算说明哪台机床加工零件的质量更稳定. 【精彩点拨】【尝试解答】 (1)x 甲=16[99+100+98+100+100+103]=100, x 乙=16[99+100+102+99+100+100]=100,s2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73,s2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1.(2)由(1)知x甲=x乙,比较它们的方差,∵s2甲>s2乙,故乙机床加工零件的质量更稳定.1.在实际问题中,仅靠平均数不能完全反映问题,还要研究其偏离平均值的离散程度(即方差或标准差),方差大说明取值分散性大,方差小说明取值分散性小或者取值集中、稳定.2.关于统计的有关性质及规律(1)若x1,x2,…,x n的平均数为x,那么mx1+a,mx2+a,…,mx n+a的平均数是m x+a;(2)数据x1,x2,…,x n与数据x1+a,x2+a,…,x n+a的方差相等;(3)若x1,x2,…,x n的方差为s2,那么ax1,ax2,…,ax n的方差为a2s2.[再练一题]2.某校高二年级在一次数学选拔赛中,由于甲、乙两人的竞赛成绩相同,从而决定根据平时在相同条件下进行的六次测试确定出最佳人选,这六次测试的成绩数据如下:求两人比赛成绩的平均数以及方差,并且分析成绩的稳定性,从中选出一位参加数学竞赛.【解】 设甲、乙两人成绩的平均数分别为x 甲,x 乙, 则x 甲=130+16(-3+8+0+7+5+1)=133, x 乙=130+16(3-1+8+4-2+6)=133,s 2甲=16[(-6)2+52+(-3)2+42+22+(-2)2]=473, s 2乙=16[(02+(-4)2+52+12+(-5)2+32]=383. 因此,甲与乙的平均数相同,由于乙的方差较小,所以乙的成绩比甲的成绩稳定,应该选乙参加竞赛比较合适.125 121 123 125 127 129 125 128 130129 126 124 125 127 126 122 124 125 126 128 (1)填写下面的频率分布表:(2)(3)根据频率分布直方图或频率分布表求这组数据的众数、中位数和平均数. 【精彩点拨】 将数据分组后依次填写分布表.然后画出直方图,最后根据数字特征在直方图中的求法求解.【尝试解答】 (1)(3)在[124.5,126.5)中的数据最多,取这个区间的中点值作为众数的近似值,得众数为125.5,事实上,众数的精确值为125.图中虚线对应的数据是124.5+2×58=125.75,事实上中位数为125.5.使用“组中值”求平均数:x -=121.5×0.1+123.5×0.15+125.5×0.4+127.5×0.2+129.5×0.15=125.8,事实上平均数的精确值为x -=125.75.1.利用频率分布直方图求数字特征 (1)众数是最高的矩形的底边的中点;(2)中位数左右两侧直方图的面积相等;(3)平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和.2.利用直方图求众数、中位数、平均数均为近似值,往往与实际数据得出的不一致,但它们能粗略估计其众数、中位数和平均数.[再练一题]3.某中学举行电脑知识竞赛,现将高一参赛学生的成绩进行整理后分成五组,绘制成如图2-2-20所示的频率分布直方图,已知图中从左到右的第一、二、三、四、五小组的频率分别是0.30,0.40,0.15,0.10,0.05.求:图2-2-20(1)高一参赛学生的成绩的众数、中位数;(2)高一参赛学生的平均成绩.【解】(1)由题图可知众数为65,又∵第一个小矩形的面积为0.3,∴设中位数为60+x,则0.3+x×0.04=0.5,得x=5,∴中位数为60+5=65.(2)依题意,平均成绩为:55×0.3+65×0.4+75×0.15+85×0.1+95×0.05=67,∴平均成绩约为67.[探究共研型]探究【提示】一组数据的平均数、中位数都是唯一的,众数不唯一,可以有一个,也可以有多个,还可以没有.如果有两个数据出现的次数相同,并且比其他数据出现的次数都多,那么这两个数据都是这组数据的众数.探究2如何从样本的数字特征中了解数据中是否存在极端数据?【提示】中位数不受几个极端数据的影响,而平均数受每个数据的影响,“越离群”的数据,对平均数的影响越大,因此如果样本平均数大于样本中位数,说明数据中存在许多较大的极端值;反之,说明数据中存在许多较小的极端值.在实际应用中,如果同时知道样本中位数和样本平均数,可以了解样本数据中极端数据的信息.探究3众数、中位数有哪些应用?【提示】(1)众数只与这组数据中的部分数据有关,当一组数据中有不少数据重复出现时,众数往往更能反映问题.(2)中位数仅与数据的排列位置有关,中位数可能在所给数据中,也可能不在所给数据中.当一组数据中的个别数据变动较大时,可用中位数描述其集中趋势.探究4【提示】(1)数据的离散程度可以通过极差、方差或标准差来描述,极差反映了一组数据变化的最大幅度,它对一组数据中的极端值极为敏感,一般情况下,极差大,则数据波动性大;极差小,则数据波动性小.极差只需考虑两个极端值,便于计算,但没有考虑中间的数据,可靠性较差.(2)标准差和方差则反映了一组数据围绕平均数波动的大小,方差、标准差的运算量较大.因为方差与原始数据单位不同,且平方后可能夸大了偏差程度,所以虽然标准差与方差在体现数据离散程度上是一样的,但解决问题时一般用标准差.探究5【提示】(1)样本的数字特征具有随机性,这种随机性是由样本的随机性引起的.(2)样本的数字特征具有规律性,在很广泛的条件下,简单随机样本的数字特征(如众数、中位数、平均数和标准差等)随样本容量的增加而稳定于总体相应的数字特征(总体的数字特征是一定的,不存在随机性).某班4个小组的人数为10,10,x,8,已知该组数据的中位数与平均数相等,求这组数据的中位数.【精彩点拨】x的大小未知,可根据x的取值不同分别求中位数.【尝试解答】该组数据的平均数为14(x+28),中位数一定是其中两个数的平均数,由于x不知是多少,所以要分几种情况讨论:(1)当x≤8时,原数据按从小到大的顺序排列为x,8,10,10,其中位数为12×(10+8)=9.若14(x+28)=9,则x=8,此时中位数为9.(2)当8<x≤10时,原数据按从小到大的顺序排列为8,x,10,10,其中位数为12(x+10).若14(x+28)=12·(x+10),则x=8,而8不在8<x≤10的范围内,所以舍去.(3)当x>10时,原数据按从小到大的顺序排列为8,10,10,x,其中位数为12×(10+10)=10.若14(x +28)=10,则x =12,此时中位数为10.综上所述,这组数据的中位数为9或10.当在数据中含有未知数x ,求该组数据的中位数时,由于x 的取值不同,所以数据由小到大(或由大到小)排列的顺序不同,由于条件的变化,问题的结果有多种情况,不能用同一标准或同一种方法解决,故需分情况讨论,讨论时要做到全面合理,不重不漏.[再练一题]4.为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为____________.【解析】 设5个班级中参加的人数分别为x 1,x 2,x 3,x 4,x 5,则由题意知x 1+x 2+x 3+x 4+x 55=7,(x 1-7)2+(x 2-7)2+(x 3-7)2+(x 4-7)2+(x 5-7)2=20,五个整数的平方和为20,则必为0+1+1+9+9=20,由|x -7|=3可得x =10或x =4.由|x -7|=1可得x =8或x =6,由上可知参加的人数分别为4,6,7,8,10,故最大值为10.【答案】 101.样本101,98,102,100,99的标准差为( ) A.2B .0C.1 D.2【解析】样本平均数x=100,方差为s2=2,∴标准差s=2,故选A.【答案】 A2.甲乙两名学生六次数学测验成绩(百分制)如图2-2-21所示.图2-2-21①甲同学成绩的中位数大于乙同学成绩的中位数;②甲同学的平均分比乙同学高;③甲同学的平均分比乙同学低;④甲同学成绩的方差小于乙同学成绩的方差.上面说法正确的是()A.③④B.①②④C.②④D.①③【解析】甲的中位数81,乙的中位数87.5,故①错,排除B、D;甲的平均分x=16(76+72+80+82+86+90)=81,乙的平均分x′=16(69+78+87+88+92+96)=85,故②错,③对,排除C,故选A.【答案】 A3.甲、乙、丙、丁四名射手在选拔赛中所得的平均环数x及其方差s2如下表所示,则选送决赛的最佳人选应是()【解析】∵x乙=x丙>x甲=x丁,且s2甲=s2乙<s2丙<s2丁,∴应选择乙进入决赛.【答案】 B4.为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量得到频率分布直方图如图2-2-22,则图2-2-22(1)这20名工人中一天生产该产品数量在[55,75)的人数是________.(2)这20名工人中一天生产该产品数量的中位数为________.(3)这20名工人中一天生产该产品数量的平均数为________.【解析】(1)(0.040×10+0.025×10)×20=13.(2)设中位数为x,则0.2+(x-55)×0.04=0.5,x=62.5.(3)0.2×50+0.4×60+0.25×70+0.1×80+0.05×90=64.【答案】(1)13(2)62.5(3)645.甲、乙两人在相同条件下各打靶10次,每次打靶的成绩情况如图2-2-23所示:图2-2-23(1)填写下表:①从平均数和方差结合分析偏离程度;②从平均数和中位数结合分析谁的成绩好些;③从平均数和命中9环以上的次数相结合看谁的成绩好些;④从折线图上两人射击命中环数及走势分析谁更有潜力.【解】(1)乙的射靶环数依次为2,4,6,8,7,7,8,9,9,10.所以x乙=110(2+4+6+8+7+7+8+9+9+10)=7;乙的射靶环数从小到大排列为2,4,6,7,7,8,8,9,9,10,所以中位数是7+82=7.5;甲的射靶环数从小到大排列为5,6,6,7,7,7,7,8,8,9,所以中位数为7.于是填充后的表格如下表所示:(2)①甲、乙的平均数相同,均为7,但s甲乙小,而乙偏离平均数的程度大.②甲、乙的平均水平相同,而乙的中位数比甲大,说明乙射靶成绩比甲好.③甲、乙的平均水平相同,而乙命中9环以上(包含9环)的次数比甲多2次,可知乙的射靶成绩比甲好.④从折线图上看,乙的成绩呈上升趋势,而甲的成绩在平均线上波动不大,说明乙的状态在提升,更有潜力.学业分层测评(十三)用样本的数字特征估计总体的数字特征(建议用时:45分钟)[学业达标]一、选择题1.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图2-2-24所示,则( )图2-2-24A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差【解析】 由题意可知,甲的成绩为4,5,6,7,8,乙的成绩为5,5,5,6,9.所以甲、乙的成绩的平均数均为6,A 错;甲、乙的成绩的中位数分别为6,5,B 错;甲、乙的成绩的方差分别为15×[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=2,15×[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=125,C 对;甲、乙的成绩的极差均为4,D 错.【答案】 C2.若样本1+x 1,1+x 2,1+x 3,…,1+x n 的平均数是10,方差为2,则对于样本2+x 1,2+x 2,…,2+x n ,下列结论正确的是( )A .平均数是10,方差为2B .平均数是11,方差为3C .平均数是11,方差为2D .平均数是10,方差为3【解析】 若x 1,x 2,…,x n 的平均数为x ,方差为s ,那么x 1+a ,x 2+a ,…,x n +a 的平均数为x +a ,方差为s .【答案】 C3.如图2-2-25是某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图,甲、乙两人这几场比赛得分的平均数分别为x 甲,x 乙;标准差分别是s 甲,s 乙,则有( )图2-2-25A.x 甲>x 乙,s 甲>s 乙B.x 甲>x 乙,s 甲<s 乙C.x 甲<x 乙,s 甲>s 乙D.x 甲<x 乙,s 甲<s 乙【解析】 观察茎叶图可大致比较出平均数与标准差的大小关系,或者通过公式计算比较.【答案】 C4.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是x =2,方差是13,那么另一组数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数和方差分别为( )A .2,13 B .2,1 C .4,13D .4,3【解析】 平均数为x ′=3x -2=3×2-2=4,方差为s ′2=9s 2=9×13=3.【答案】 D5.为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如图2-2-26所示.由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力在4.6到5.0之间的学生数为b ,则a ,b 的值分别为( )图2-2-26A .0.27,78B .0.27,83C .2.7,78D .2.7,83【解析】 由题意,4.5到4.6之间的频率为0.09,4.6到4.7之间的频率为0.27,后6组的频数成等差数列,设公差为d ,则6×0.27+15d =1-0.01-0.03-0.09,∴d =-0.05.∴b =(0.27×4+6d )×100=78,a =0.27. 【答案】 A 二、填空题6.一个样本数据按从小到大的顺序排列为:13,14,19,x,23,27,28,31,中位数为22,则x =________.【解析】 由题意知x +232=22,则x =21. 【答案】 217.甲、乙两位同学某学科的连续五次考试成绩用茎叶图表示如图2-2-27所示,则平均分数较高的是________,成绩较为稳定的是________.图2-2-27【解析】x甲=70,x乙=68,s 2甲=15×(22+12+12+22)=2,s 2乙=15×(52+12+12+32)=7.2.【答案】甲甲8.已知样本9,10,11,x,y的平均数是10,标准差为2,则xy=________.【解析】由平均数得9+10+11+x+y=50,∴x+y=20.又由(9-10)2+(10-10)2+(11-10)2+(x-10)2+(y-10)2=(2)2×5=10,得x2+y2-20(x+y)=-192,(x+y)2-2xy-20(x+y)=-192,∴xy=96.【答案】96三、解答题9.从高三抽出50名学生参加数学竞赛,由成绩得到如图2-2-28的频率分布直方图.图2-2-28由于一些数据丢失,试利用频率分布直方图求:(1)这50名学生成绩的众数与中位数;(2)这50名学生的平均成绩.【解】(1)由众数的概念可知,众数是出现次数最多的数.在直方图中高度最高的小长方形的底边中点的横坐标即为所求,所以众数应为75.由于中位数是所有数据中的中间值,故在频率分布直方图中体现的是中位数的左右两边频数应相等,即频率也相等,从而就是小矩形的面积和相等.因此在频率分布直方图中将所有小矩形的面积一分为二的垂直于横轴的直线与横轴交点的横坐标所对应的成绩即为所求.∵0.004×10+0.006×10+0.02×10=0.04+0.06+0.2=0.3,∴前三个小矩形面积的和为0.3.而第四个小矩形面积为0.03×10=0.3,0.3+0.3>0.5,∴中位数应约位于第四个小矩形内.设其底边为x ,高为0.03,∴令0.03x =0.2得x ≈6.7, 故中位数应约为70+6.7=76.7.(2)样本平均值应是频率分布直方图的“重心”,即所有数据的平均值,取每个小矩形底边的中点的横坐标乘以每个小矩形的面积求和即可.∴平均成绩为45×(0.004×10)+55×(0.006×10)+65×(0.02×10)+75×(0.03×10)+85×(0.021×10)+95×(0.016×10)=73.65.10.对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:(1)(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、极差、方差,并判断选谁参加比赛比较合适?【解】 (1)画茎叶图如下:中间数为数据的十位数.从茎叶图上看,甲、乙的得分情况都是分布均匀的,只是乙更好一些.乙发挥比较稳定,总体情况比甲好.(2)x 甲=27+38+30+37+35+316=33.x 乙=33+29+38+34+28+366=33.s 2甲=16[(27-33)2+(38-33)2+(30-33)2+(37-33)2+(35-33)2+(31-33)2]≈15.67.s 2乙=16[(33-33)2+(29-33)2+(38-33)2+(34-33)2+(28-33)2+(36-33)2]≈12.67.甲的极差为11,乙的极差为10.综合比较以上数据可知,选乙参加比赛较合适.[能力提升]1.有一笔统计资料,共有11个数据如下(不完全以大小排列):2,4,4,5,5,6,7,8,9,11,x ,已知这组数据的平均数为6,则这组数据的方差为( )A .6 B.6 C .66D .6.5【解析】 ∵x =111(2+4+4+5+5+6+7+8+9+11+x )=111(61+x )=6,∴x =5.方差为:s 2=42+22+22+12+12+02+12+22+32+52+1211=6611=6.【答案】 A2.将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图2-2-29中以x 表示:89⎪⎪⎪7 74 0 1 0 x 9 1图2-2-29则7个剩余分数的方差为( )A.1169B.367C .36D.677【解析】 根据茎叶图,去掉1个最低分87,1个最高分99, 则17[87+94+90+91+90+(90+x )+91]=91, ∴x =4.∴s 2=17[(87-91)2+(94-91)2+(90-91)2+(91-91)2+(90-91)2+(94-91)2+(91-91)2]=367.【答案】 B3.若40个数据的平方和是56,平均数是22,则这组数据的方差是________,标准差是________.【解析】 设这40个数据为x i (i =1,2,…,40),平均数为x . 则s 2=140×[(x 1-x )2+(x 2-x )2+…+(x 40-x )2] =140[x 21+x 22+…+x 240+40x 2-2x (x 1+x 2+…+x 40)] =140⎣⎢⎡⎦⎥⎤56+40×⎝ ⎛⎭⎪⎫222-2×22×40×22=140×⎝ ⎛⎭⎪⎫56-40×12=0.9. ∴s =0.9=910=31010. 【答案】 0.9310104.某地区100位居民的人均月用水量(单位:t)的分组及各组的频数如下: [0,0.5),4;[0.5,1),8;[1,1.5),15;[1.5,2),22;[2,2.5),25;[2.5,3),14;[3,3.5),6;[3.5,4),4;[4,4.5),2.(1)列出样本的频率分布表;(2)画出频率分布直方图,并根据直方图估计这组数据的平均数、中位数、众数;(3)当地政府制定了人均月用水量为3t的标准,若超出标准加倍收费,当地政府说,85%以上的居民不超过这个标准,这个解释对吗?为什么?【解】(1)频率分布表(2)频率分布直方图如图:众数:2.25,中位数:2.02,平均数:2.02.(3)人均月用水量在3t以上的居民所占的比例为6%+4%+2%=12%,即大约有12%的居民月用水量在3t以上,88%的居民月用水量在3t以下,因此政府的解释是正确的.。

人教版高中数学必修3第二章统计-《2.1.3分层抽样》教案(10)

人教版高中数学必修3第二章统计-《2.1.3分层抽样》教案(10)

2.1.3分层抽样学习目标:1、知识与技能:(1)正确理解分层抽样的概念;(2)掌握分层抽样的一般步骤;(3)区分简单随机抽样、系统抽样和分层抽样,并选择适当正确的方法进行抽样。

2、过程与方法:通过对现实生活中实际问题进行分层抽样,感知应用数学知识解决实际问题的方法。

3、情感态度与价值观:通过对统计学知识的研究,感知数学知识中“估计与“精确”性的矛盾统一,培养学生的辩证唯物主义的世界观与价值观。

4、重点与难点:正确理解分层抽样的定义,灵活应用分层抽样抽取样本,并恰当的选择三种抽样方法解决现实生活中的抽样问题。

【探究新知】一、分层抽样的定义。

一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫分层抽样。

【说明】分层抽样又称类型抽样,应用分层抽样应遵循以下要求:(1)分层:将相似的个体归人一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则。

(2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等。

二、分层抽样的步骤:(1)分层:按某种特征将总体分成若干部分。

(2)按比例确定每层抽取个体的个数。

(3)各层分别按简单随机抽样的方法抽取。

(4)综合每层抽样,组成样本。

【说明】(1)分层需遵循不重复、不遗漏的原则。

(2)抽取比例由每层个体占总体的比例确定。

(3)各层抽样按简单随机抽样进行。

探究交流(1)分层抽样又称类型抽样,即将相似的个体归入一类(层),然后每层抽取若干个体构成样本,所以分层抽样为保证每个个体等可能入样,必须进行 ( )A 、每层等可能抽样B 、每层不等可能抽样C 、所有层按同一抽样比等可能抽样(2)如果采用分层抽样,从个体数为N 的总体中抽取一个容量为n样本,那么每个个体被抽到的可能性为 ( )A .N 1B.n 1C.N nD.N n 点拨:(1)保证每个个体等可能入样是简单随机抽样、系统抽样、分层抽共同的特征,为了保证这一点,分层时用同一抽样比是必不可少的,故此选C 。

高中必修三数学统计教案

高中必修三数学统计教案

高中必修三数学统计教案
主题:统计学概述
目标:学生能够了解统计学的基本概念和应用,并掌握一些基本的统计方法。

一、引入
通过实例引入统计学的概念,让学生了解统计学在日常生活中的重要性。

二、概念介绍
1.统计学的定义和作用:统计学是研究数据收集、整理、分析和解释的一门学科,是现代科学和社会科学中不可或缺的工具。

2.统计学的基本概念:总体、样本、抽样、数据等。

三、常用统计方法
1.描述统计方法:平均数、中位数、众数等。

2.概率统计方法:频率分布、概率分布、期望值等。

3.推断统计方法:参数估计、假设检验等。

四、练习
1.实例分析:通过实例让学生掌握如何应用统计方法进行数据分析。

2.练习题:让学生做一些实践练习,巩固所学的统计方法。

五、总结
总结本节课的内容,强调统计学的重要性,并展望后续学习内容。

六、作业
布置相关作业,让学生进一步巩固所学知识。

七、扩展
介绍一些统计学在现代科学研究和社会应用中的具体案例,激发学生对统计学的兴趣和好奇心。

注:此为一份简单的高中必修三数学统计教案范本,具体教学内容和方法可根据教学需求进行调整和改进。

2022版优化方案高一数学人教版必修三学案 第二章 统计 2.1.3分层抽样

2022版优化方案高一数学人教版必修三学案 第二章 统计 2.1.3分层抽样

2.1.3分层抽样问题导航(1)什么叫分层抽样?(2)分层抽样适用于什么状况?(3)分层抽样时,每个个体被抽到的机会是相等的吗?1.分层抽样的概念一般地,在抽样时,将总体分成互不交叉的层,然后依据肯定的比例,从各层独立地抽取肯定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.2.分层抽样的适用条件分层抽样尽量利用事先所把握的各种信息,并充分考虑保持样本结构与总体结构的全都性,这对提高样本的代表性格外重要.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.1.推断下列各题.(对的打“√”,错的打“×”)(1)系统抽样时,将总体分成均等的几部分,每部分抽取一个,符合分层抽样,故系统抽样就是一种特殊的分层抽样;()(2)在分层抽样时,每层可以不等可能抽样;()(3)在分层抽样的过程中,每个个体被抽到的可能性是相同的,与层数及分层有关.()解析:(1)由于分层抽样是从各层独立地抽取个体,而系统抽样各段上抽取时是按事先定好的规章进行的,各层编号有联系,不是独立的,故系统抽样不同于分层抽样.(2)分层抽样时,每层仍旧要等可能抽样.(3)与层数及分层无关.答案:(1)×(2)×(3)×2.某地区为了解居民家庭生活状况,先把居民按所在行业分为几类,然后每个行业抽取1100的居民家庭进行调查,这种抽样是()A.简洁随机抽样B.系统抽样C.分层抽样D.分类抽样解析:选C.符合分层抽样的特点.3.一个班共有54人,其中男、女比为5∶4,若抽取9人参与教改调查会,则每个男同学被抽取的可能性为________,每个女同学被抽取的可能性为________.解析:男、女每人被抽取的可能是相同的,由于男同学共有54×59=30(人),女同学共有54×49=24(人),所以每个男同学被抽取的可能性为530=16,每个女同学被抽取的可能性为424=16.答案:16164.分层抽样的操作步骤是什么?解:总体分层;依据比例独立抽取.1.分层抽样的特点(1)适用于总体由有明显差别的几部分组成的状况.(2)抽取的样本更好地反映了总体的状况.(3)是等可能性抽样,每个个体被抽到的可能性都是nN.2.分层抽样的公正性假如总体中个体的总数是N,样本容量为n,第i层中个数为N i,则第i层中要抽取的个体数为n i=n·N iN.每一个个体被抽取的可能性是n iN i=1N i·n·N iN=nN,与层数无关.所以对全部个体来说,被抽取的可能性是一样的,与层数及分层无关,所以分层抽样是公正的.3.分层抽样需留意的问题(1)分层抽样中分多少层、如何分层要视具体状况而定,总的原则是每层内样本的差异要小,不同层之间的样本差异要大,且互不重叠.(2)抽取比例由每层个体占总体的比例确定.(3)各层抽样按简洁随机抽样或系统抽样进行.分层抽样的概念某中学有老年老师20人,中年老师65人,青年老师95人.为了调查他们的健康状况,需从他们中抽取一个容量为36的样本,则合适的抽样方法是()A.抽签法B.系统抽样C.分层抽样D.随机数法[解析]各部分之间有明显的差异是分层抽样的依据.[答案] C方法归纳各部分之间有明显的差异是分层抽样的依据,至于各层内用什么方法抽样是机敏的,可用简洁随机抽样,也可接受系统抽样.分层抽样中,无论哪一层的个体,被抽中的机会均等,体现了抽样的公正性.1.(1)某市有四所重点高校,为了解该市高校生的课外书籍阅读状况,则接受下列哪种方法抽取样本最合适(四所高校图书馆的藏书有肯定的差距)( )A .抽签法B .随机数表法C .系统抽样法D .分层抽样法解析:选D. 由于学校图书馆的藏书对同学课外书籍阅读影响比较大,因此实行分层抽样.(2)某校高三班级有男生800人,女生600人,为了解该班级同学的身体健康状况,从男生中任意抽取40人,从女生中任意抽取30人进行调查.这种抽样方法是( )A .简洁随机抽样法B .抽签法C .随机数表法D .分层抽样法解析:选D.总体中个体差异比较明显,且抽取的比例也符合分层抽样.分层抽样的应用(2022·高考湖北卷)甲、乙两套设备生产的同类型产品共4 800件,接受分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.[解析] 设乙设备生产的产品总数为x 件,则甲设备生产的产品总数为(4 800-x )件.由分层抽样特点,结合题意可得5080=4 800-x4 800,解得x =1 800.[答案] 1 800[互动探究] 将本例条件“若样本中有50件产品由甲设备生产”换为“已知甲、乙两套设备生产的同类型产品数量之比为5∶3”,求样本中抽取的由甲、乙设备生产的数量分别是多少件?解:设样本中抽取的由甲、乙设备生产的数量分别是x ,y 件,则x =80×55+3=50,y =80×35+3=30.故样本中抽取的由甲、乙设备生产的数量分别是50,30件. 方法归纳在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .2.(1)为了调查城市PM 2.5的状况,按地域把48个城市分成大型、中型、小型三组,相应的城市数分别为8,16,24.若用分层抽样的方法抽取12个城市,则应抽取的中型城市数为( )A .3B .4C .5D .6解析:选B.依据分层抽样的特点可知,抽样比例为1248=14,则应抽取的中型城市数为16×14=4.(2)一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,则应抽取超过45岁的职工________人.解析:抽样比为25∶200=1∶8,而超过45岁的职工有80人,则从中应抽取的个体数为80×18=10.答案:10三种抽样方法的考查选择合适的抽样方法抽样,并写出抽样过程.(1)有甲厂生产的30个篮球,其中一箱21个,另一箱9个,抽取10个入样; (2)有30个篮球,其中甲厂生产的有21个,乙厂生产的有9个,抽取10个入样; (3)有甲厂生产的300个篮球,抽取10个入样; (4)有甲厂生产的300个篮球,抽取30个入样. [解] (1)总体容量较小,用抽签法.①将30个篮球编号,编号为00,01, (29)②将以上30个编号分别写在完全一样的一张小纸条上,揉成小球,制成号签. ③把号签放入一个不透亮 的袋子中,充分搅拌均匀. ④从袋子中逐个抽取10个号签,并记录上面的号码. ⑤找出和所得号码对应的篮球即可得到样本.(2)总体由差异明显的两个层次组成,需选用分层抽样.①确定抽取个数.由于1030=13,所以甲厂生产的应抽取213=7(个),乙厂生产的应抽取93=3(个).②用抽签法分别抽取甲厂生产的篮球7个,乙厂生产的篮球3个.这些篮球便组成了我们要抽取的样本. (3)总体容量较大,样本容量较小,宜用随机数表法. ①将300个篮球用随机方式编号,编号为001,002, (300)②在随机数表中随机地确定一个数作为开头,如(教材P 103附表)第8行第29列的数“7”开头.任选一个方向作为读数方向,比如向右读.③从数“7”开头向右读,每次读三位,凡不在001~300中的数跳过去不读,遇到已经读过的数也跳过去不读,便可依次得到10个号码,这就是所要抽取的10个样本个体的号码.(4)总体容量较大,样本容量也较大,宜用系统抽样.①将300个篮球用随机方式编号,编号为000,001,002,…,299,并分成30段,其中每一段包含30030=10个个体.②在第一段000,001,002,…,009这十个编号中用简洁随机抽样抽出一个(如002)作为起始号码.③将编号为002,012,022,…,292的个体抽出,即可组成所要求的样本.方法归纳(1)简洁随机抽样、系统抽样和分层抽样是三种常用的抽样方法,在实际生活中有着广泛的应用.(2)三种抽样的适用范围不同,各自的特点也不同,但各种方法间又有亲密联系.在应用时要依据实际状况选取合适的方法.(3)三种抽样中每个个体被抽到的可能性都是相同的.扫一扫进入91导学网()三种抽样方法的比较3.(1)某饮料公司在华东、华南、华西、华北四个地区分别有200个、180个、180个、140个销售点.公司为了调查产品销售的状况,需从这700个销售点中抽取一个容量为100的样本,记这项调查为①;在华南地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务状况,记这项调查为②.则完成①、②这两项调查宜接受的抽样方法依次是()A.分层抽样法、系统抽样法B.分层抽样法、简洁随机抽样法C.系统抽样法、分层抽样法D.简洁随机抽样法、分层抽样法解析:选B. 当总体中个体较多时宜接受系统抽样;当总体中的个体差异较大时,宜接受分层抽样;当总体中个体较少时,宜接受简洁随机抽样.依题意,第①项调查应接受分层抽样法、第②项调查应接受简洁随机抽样法.故选B.(2)调查某班同学的平均身高,从50名同学中抽取5名,抽样方法是________,假如男女身高有显著不同(男生30人,女生20人),抽样方法是________.解析:从50名同学中抽取5名,总体中个体数不多,接受简洁随机抽样;总体中个体差异比较明显,接受分层抽样.答案:简洁随机抽样分层抽样(3)下列问题中,接受怎样的抽样方法较为合理?①从10台电冰箱中抽取3台进行质量检查;②某学校有160名教职工,其中老师120名,行政人员16名,后勤人员24名,为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.解:①抽签法,由于总体容量较小,宜用抽签法.②分层抽样,由于学校各类人员对这一问题的看法可能差异较大,用分层抽样.易错警示分层抽样的应用某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为n的样本,假如接受系统抽样和分层抽样方法抽取,不用剔除个体;假如样本容量增加1个,则在接受系统抽样时,需要在总体中先剔除1个个体,则样本容量为________.[解析]总体容量N=36.当样本容量为n时,系统抽样间隔为36n∈N+,所以n是36的约数;分层抽样的抽样比为n36,求得工程师、技术员、技工的抽样人数分别为n6,n3,n2,所以n应是6的倍数,所以n=6或12或18或36.当样本容量为n+1时,总体中先剔除1人时还有35人,系统抽样间隔为35n+1∈N+,所以n只能是6.[答案] 6[错因与防范]由36n,n6,n3,n2∈N+求n时,n的值有遗漏;35n+1∈N+易错写成36n+1∈N+.为猎取各层入样数目,需先正确计算出抽样比k=样本容量总体容量,若k与某层个体数的积不是整数时,可先将该层等可能性剔除多余个体.4.某林场有树苗30 000棵,其中松树苗4 000棵.为调查树苗的生长状况,接受分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为()A.30 B.25C.20 D.15解析:选C.抽样比为150∶30 000=1∶200,则样本中松树苗的数量为4 000×1200=20.故选C.1.某高校共有同学5 600人,其中有专科生1 300人、本科生3 000人、争辩生1 300人,现接受分层抽样的方法调查同学利用因特网查找学习资料的状况,抽取的样本为280人,则应在专科生、本科生与争辩生这三类同学中分别抽取( )A .65人、150人、65人B .30人、150人、100人C .93人、94人、93人D .80人、120人、80人解析:选A.依据分层抽样按比例抽取的特点,有5 600280=1 300x =3 000y =1 300z ,解得x =z =65,y =150,即专科生、本科生与争辩生应分别抽取65、150、65,故选A.2.某地共有10万户居民,从中随机调查了1 000户拥有彩电的调查结果如下表:彩电 城市 农村 有 432 400 无48120若该地区城市与农村住户之比为4∶6,估量该地区无彩电的农村总户数约为( )A .0.923万户B .1.385万户C .1.8万户D .1.2万户 解析:选B.无彩电的农村总户数约为10×610×120520≈1.385万户.3.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为2∶3∶5,现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号产品有16件,那么此样本的容量n =________.解析:由分层抽样的特点,得n ×22+3+5=16,所以n =80.答案:804.某校对全校男、女同学共1 200名进行健康调查,选用分层抽样抽取一个容量为200的样本,已知男生比女生多抽了10人,则该校男生人数为________.解析:入样比例=2001 200=16,则男生应抽105人,设男生为x 人,所以105x =16⇒x =630.答案:630[A.基础达标]1.某社区有500个家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户.为了调查社会购买力的某项指标,要从中抽取1个容量为100的样本,记作①;某学校高一班级有12名女排运动员,要从中选出3名调查学习负担状况,记作②.那么完成上述两项调查应接受的抽样方法是( )A .①用简洁随机抽样法;②用系统抽样法B .①用分层抽样法;②用简洁随机抽样法C .①用系统抽样法;②用分层抽样法D .①用分层抽样法;②用系统抽样法解析:选B.对于①,总体由高收入家庭、中等收入家庭和低收入家庭差异明显的3部分组成,而所调查的指标与收入状况亲密相关,所以应接受分层抽样法.对于②,总体中的个体数较少,而且所调查内容对12名调查对象是“公平”的,所以应接受简洁随机抽样法.2.已知某单位有职工120人,其中男职工90人,现接受分层抽样的方法(按男、女分层)抽取一个样本,若已知样本中有27名男职工,则样本容量为( )A .30B .36C .40D .无法确定解析:选B.分层抽样中抽样比肯定相同,设样本容量为n ,由题意得,n 120=2790,解得n =36.3.(2022·高考重庆卷)某中学有高中生3 500人,学校生1 500人,为了解同学的学习状况,用分层抽样的方法从该校同学中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( )A .100B .150C .200D .250解析:选A.法一:由题意可得70n -70=3 5001 500,解得n =100,故选A.法二:由题意,抽样比为703 500=150,总体容量为3 500+1 500=5 000,故n =5 000×150=100.4.(2021·中山高一检测)某校选修乒乓球课程的同学中,高一班级有30名,高二班级有40名,现用分层抽样的方法在这70名同学中抽取一个样本,已知在高一班级的同学中抽取了6名,则在高二班级的同学中应抽取的人数为( )A .6B .8C .10D .12解析:选B.设高二班级抽取x 人,则有630=x40,解得x =8,故选B.5.(2021·潍坊高一检测)某学校在校同学2 000人,为了同学的“德、智、体”全面进展,学校进行了跑步和登山竞赛活动,每人都参与而且只参与其中一项竞赛,各班级参与竞赛的人数状况如下表:高一班级高二班级高三班级跑步人数 a b c 登山人数xyz其中a ∶b ∶c =2∶5∶3,全校参与登山的人数占总人数的14.为了了解同学对本次活动的满足程度,从中抽取一个200人的样本进行调查,则高三班级参与跑步的同学中应抽取( )A .15人B .30人C .40人D .45人解析:选D.全校参与登山的人数是2 000×14=500,所以参与跑步的人数是1 500,应抽取1 5002 000×200=150,c =150×310=45(人).6.某学校高一、高二、高三班级的同学人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个班级的同学中抽取一个容量为50的样本,则应从高二班级抽取________名同学.解析:抽取比例与同学比例全都.设应从高二班级抽取x 名同学,则x ∶50=3∶10.解得x =15.答案:157.某公司生产三种型号的轿车,产量分别为1 200辆,6 000辆和2 000辆,为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应当抽取________辆,________辆,________辆.解析:由于461 200+6 000+2 000=1200,所以这三种型号的轿车依次应当抽取1 200×1200=6辆,6 000×1200=30辆,2 000×1200=10辆.即这三种型号的轿车依次应当抽取6辆、30辆、10辆进行检验.答案:6 30 108.某地区有农夫、工人、学问分子家庭共计2 015家,其中农夫家庭1 600户,工人家庭303户.现要从中抽出容量为40的样本,则在整个抽样过程中,可以用到下列抽样方法中的________.(将你认为正确的选项的序号都填上)①简洁随机抽样;②系统抽样;③分层抽样.解析:为了保证抽样的合理性,应对农夫、工人、学问分子分层抽样,在各层中接受系统抽样和简洁随机抽样,抽样时还要先用简洁随机抽样剔除多余的个体.答案:①②③ 9.(2021·莱州高一检测)某校高一班级500名同学中,血型为O 的有200人,血型为A 的有125人,B 型的有125人,AB 型的有50人.为了争辩血型与色弱的关系,要从中抽取一个容量为40的样本,应如何抽样?写出血型为AB 型的抽样过程.解:由于40÷500=225,所以应用分层抽样法抽取血型为O 型的225×200=16(人),A 型的225×125=10(人),B 型的225×125=10(人),AB 型的225×50=4(人).AB 型的4人可以这样抽取:第一步,将50人随机编号,编号为1,2, (50)其次步,把以上50人的编号分别写在大小相同的小纸片上,揉成小球,制成号签. 第三步,把得到的号签放入一个不透亮 的袋子中,充分搅拌均匀. 第四步,从袋子中逐个抽取4个号签,并记录上面的编号. 第五步,依据所得编号找出对应的4人即可得到样本.10.某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参与其中一组.在参与活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参与活动总人数的14,且该组中青年人占50%,中年人占40%,老年人占10%.为了了解各组不同年龄层次的职工对本次活动的满足程度,现用分层抽样的方法从参与活动的全体职工中抽取一个容量为200的样本.试确定:(1)游泳组中,青年人、中年人、老年人分别所占的比例; (2)游泳组中,青年人、中年人、老年人分别应抽取的人数.解:(1)设登山组人数为x ,游泳组中,青年人、中年人、老年人所占比例分别为a 、b 、c , 则有x ×40%+3xb 4x =47.5%,x ×10%+3xc 4x =10%,解得b =50%,c =10%, 故a =100%-50%-10%=40%,即游泳组中,青年人、中年人、老年人所占比例分别为40%、50%、10%. (2)游泳组中,抽取的青年人人数为200×34×40%=60(人);抽取的中年人人数为200×34×50%=75(人);抽取的老年人人数为200×34×10%=15(人).即游泳组中,青年人、中年人、老年人分别应抽取的人数为60人,75人,15人.[B.力量提升]1.某鱼贩一次贩运草鱼、青鱼、鲢鱼、鲤鱼及鲫鱼各有80条、20条、40条、40条、20条,现从中抽取一个容量为20的样本进行质量检测,若接受分层抽样的方法抽取样本,则抽取的青鱼与鲤鱼共有( )A .6条B .8条C .10条D .12条解析:选A.设抽取的青鱼与鲤鱼共有x 条,依据分层抽样的比例特点有20+4080+20+40+40+20=x 20,所以x=6.2.某校做了一次关于“感恩父母”的问卷调查,从8~10岁,11~12岁,13~14岁,15~16岁四个年龄段回收的问卷依次为:120份,180份,240份,x 份.因调查需要,从回收的问卷中按年龄段分层抽取容量为300的样本,其中在11~12岁同学问卷中抽取60份,则在15~16岁同学中抽取的问卷份数为( )A .60B .80C .120D .180解析:选C.11~12岁回收180份,其中在11~12岁同学问卷中抽取60份,则抽样比为13.∵从回收的问卷中按年龄段分层抽取容量为300的样本,∴从8~10岁,11~12岁,13~14岁,15~16岁四个年龄段回收的问卷总数为30013=900(份),则15~16岁回收问卷份数为:x =900-120-180-240=360(份).∴在15~16岁同学中抽取的问卷份数为360×13=120(份),故选C.3.某校高一班级有x 名同学,高二班级有y 名同学,高三班级有z 名同学,接受分层抽样抽取一个容量为45的样本,高一班级被抽取20人,高二班级被抽取10人,高三班级共有同学300人,则此学校共有同学________人.解析:高三班级被抽取了45-20-10=15(人),设此学校共有同学N 人,则45N =15300,解得N =900.答案:900 4.(2021·泰安质检)某企业三月中旬生产A ,B ,C 三种产品共3 000件,依据分层抽样的结果,企业统计员制作了如下的统计表格:由于不当心,表格中A 、C A 产品的样本容量比C 产品的样本容量多10,依据以上信息,可得C 产品的数量是________件.解析:抽样比为130∶1 300=1∶10,又A 产品的样本容量比C 产品的样本容量多10,故C 产品的数量是[(3 000-1 300)-100]×12=800(件).答案:8005.某校有在校高中生共1 600人,其中高一班级同学520人,高二班级同学500人,高三班级同学580人.假如想通过抽查其中的80人来调查同学的消费状况,考虑到不同班级同学的消费状况有明显差别,而同一班级内消费状况差异较小,问应接受怎样的抽样方法?高三班级同学中应抽查多少人?解:因不同班级的同学消费状况有明显差别,所以应接受分层抽样.由于520∶500∶580=26∶25∶29,于是将80分成比例为26∶25∶29的三部分.设三部分各抽个体数分别为26x ,25x ,29x ,由26x +25x +29x =80,解得x =1.所以高三班级同学中应抽查29人.6.(选做题)某中学进行了为期3天的新世纪体育运动会,同时进行全校精神文明擂台赛.为了解这次活动在全校师生中产生的影响,分别在全校500名教职员工、3 000名学校生、4 000名高中生中进行问卷调查,假如要在全部答卷中抽出120份用于评估.(1)应如何抽取才能得到比较客观的评价结论?(2)要从3 000份学校生的答卷中抽取一个容量为48的样本,假如接受简洁随机抽样,应如何操作? (3)为了从4 000份高中生的答卷中抽取一个容量为64的样本,如何使用系统抽样抽取得到所需的样本?解:(1)由于这次活动对教职员工、学校生和高中生产生的影响不相同,所以应当实行分层抽样的方法进行抽样.∵样本容量为120,总体个数为500+3 000+4 000=7 500(名),则抽样比为1207 500=2125.∴500×2125=8(人),3 000×2125=48(人),4 000×2125=64(人),∴在教职员工、学校生、高中生中抽取的个体数分别是8、48、64.分层抽样的步骤是:第一步,分为教职员工、学校生、高中生共三层.其次步,确定每层抽取个体的个数:在教职员工、学校生、高中生中抽取的个体数分别是8、48、64. 第三步,各层分别按简洁随机抽样的方法抽取样本. 第四步,综合每层抽样,组成样本.这样便完成了整个抽样过程,就能得到比较客观的评价结论.(2)由于简洁随机抽样有两种方法:抽签法或随机数表法.若用抽签法,则要做3 000个号签,费时费劲,因此接受随机数表法抽取样本,步骤是:第一步,编号:将3 000份答卷都编上号码:0 001,0 002,…,3 000. 其次步,在随机数表上随机选取一个起始位置.第三步,规定读数方向:向右连续取数字,以4个数为一组,遇到右边线时接下一行左边线连续向右连续取数,若读取的4位数大于3 000,则去掉,假如遇到相同号码则只取一个,这样始终到取满48个号码为止.(3)由于4 000÷64=62.5不是整数,故应先使用简洁随机抽样法从4 000名同学中随机剔除32个个体,再将剩余的3 968个个体进行编号:1,2,…,3 968,然后将整体分为64个部分,其中每个部分中含有62个个体,如第一部分个体的编号为1,2,…,62.从中随机抽取一个号码,若抽取的是23,则从第23号开头,每隔62个号码抽取一个,这样得到一个容量为64的样本:23,85,147,209,271,333,395,457,…,3 929.。

人教A版高中数学必修3 统计 教材分析

人教A版高中数学必修3  统计 教材分析
③甲品种棉花的纤维长度的中位数为 307 mm,乙品种棉花的纤维长度的中位数为 318
mm.
④乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近).甲品种棉花的
纤维长度除一个特殊值 352 外,也大致对称,其分布较均匀.
2.直方图的识图要点
⑴通过直方图估计平均数——
平均数的估计值等于频率分布直方图中每个小矩形的面积
容大大的增加,这已经成为国际中小学数学课程发展的趋势。
2. “新课标”的新要求
第一部分 前言
……与时俱进地认识“双基”(摘录)
数学课程设置和实施应重新审视基础知识、基本技能和能力的内涵,形成符合时代要求
的新的"双基"。例如,为了适应信息时代发展的需要,高中数学课程应增加算法的内容,把 最基本的数据处理、统计知识等作为新的数学基础知识和基本技能;
乘以小矩形底面中点的横坐标之和. ⑵通过直方图估计中位数—— 在频率分布直方图中,中位数左边和右边的直方图的面积
应该相等.
(三)统计软件 Excel 与 SPSS.
推荐一本书——《用 Excel 与 Spss 学习统计学》毛炳寰编
1.添加“分析工具库”(平均数、中位数、众数,方差,相等)
本功能需要使用 Excel 扩展功能,如果您的 Excel 尚未安装数据分析, 请依次选择“工具”-“加载宏”,在安装光盘中加载“分析数据库”。加载成功 后,可以在“工具”下拉菜单中看到“数据分析”选项。
分析:将直方图与加权平均数结合考查
(二)重视统计思想的理解,重视结果的解释和应用.
1.茎叶图的识图要点
例 1 (2009 安徽)某良种培育基地正在培育一种小麦新品种 A.将其与原有的一个优良品
种 B 进行对照试验.两种小麦各种植了 25 亩,所得亩产数据(单位:千克)如下: A:357,359,367,368,375,388,392,399,400,405,412,414,415,421,423,423,427,

高中数学人教A版必修三习题第二章-用样本的数字特征估计总体的数字特征含答案

高中数学人教A版必修三习题第二章-用样本的数字特征估计总体的数字特征含答案

;x =
5

5
=30,
2.所以-x 甲<-x 乙,s 甲>s 乙.
答案:B 二、填空题 6.甲、乙两位同学某学科连续五次的考试成绩用茎叶图表示如图所示,则平均分数较 高的是________,成绩较为稳定的是________.
解析:-x
甲=70,-x 乙
=68,s甲2
=1 5
×(22+12+12+22)=2,s乙2
11
= =6. 11
答案:A
2.甲、乙两同学在高考前各做了 5 次立定跳远测试,测得甲的成绩如下(单位:米):
2.20, 2.30, 2.30, 2.40, 2.30, 若 甲 、 乙 两 人 的 平 均 成 绩 相 同 , 乙 的 成 绩 的 方 差 是
0.005,那么甲、乙两人成绩较稳定的是________. 解析:求得甲的平均成绩为 2.30米,甲的成绩的方差是 0.004.由已知得甲、乙平均成
而 2(k1-3),2(k2-3),…,2(k6-3)的平均数为 2(k -3),则所求方差为
16[4(k1--k )2+4(k2--k )2+…+4(k6-
- k )2]=4×3=12.
答案:12
8.若有一个企业,70%的员工年收入 1 万元,25%的员工年收入 3 万元,5%的员工年收
入 11万元,则该企业员工的年收入的平均数是________万元,中位数是________万元,众
乙品种的样本平均数也为 10,样本方差为
[(9.4-10)2+(10.3-10)2+(10.8-10)2+(9.7-10)2)+(9.8-10)2]÷5=0.24.
因为 0.24>0.02,所以,由这组数据可以认为甲种水稻的产量比较稳定.

数学人教A版必修3第二章《统计》教案.doc

数学人教A版必修3第二章《统计》教案.doc

2.1.1简单随机抽样一、三维目标:1、知识与技能:正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;2、过程与方法:(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。

3、情感态度与价值观:通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。

二、重点与难点:正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。

三、教学设想:假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本。

(为什么?)那么,应当怎样获取样本呢?【探究新知】一、简单随机抽样的概念一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,这样抽取的样本,叫做简单随机样本。

【说明】简单随机抽样必须具备下列特点:(1)简单随机抽样要求被抽取的样本的总体个数N是有限的。

(2)简单随机样本数n小于等于样本总体的个数N。

(3)简单随机样本是从总体中逐个抽取的。

(4)简单随机抽样是一种不放回的抽样。

(5)简单随机抽样的每个个体入样的可能性均为n/N。

思考?下列抽样的方式是否属于简单随机抽样?为什么?(1)从无限多个个体中抽取50个个体作为样本。

(2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子。

二、抽签法和随机数法1、抽签法的定义。

一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

【说明】抽签法的一般步骤:(1)将总体的个体编号。

最新人教版高中数学必修3第二章《第二章统计》示范教案

最新人教版高中数学必修3第二章《第二章统计》示范教案

示范教案整体设计教学分析本节是对第二章知识和方法的归纳和总结,从总体上把握本章,使学生的基本知识系统化和网络化,基本方法条理化,本章内容是相互独立的,随机抽样是基础,在此基础上学习了用样本估计总体和变量间的相关关系,要注意它们的联系.本章介绍了从总体中抽取样本的常用方法,并通过实例,研究了如何利用样本对总体的分布规律、整体水平、稳定程度及相关关系等特性进行估计和预测.当总体容量大或检测具有一定的破坏性时,可以从总体中抽取适当的样本,通过对样本的分析、研究,得到对总体的估计,这就是统计分析的基本过程.而用样本估计总体就是统计思想的本质.要准确估计总体,必须合理地选择样本,我们学习的是最常用的三种抽样方法.获取样本数据后,将其用频率分布表、频率直方图、频率折线图或茎叶图表示后,蕴涵于数据之中的规律得到直观的揭示.运用样本的平均数可以对总体水平作出估计,用样本的极差、方差(标准差)可以估计总体的稳定程度.对两个变量的样本数据进行相关性分析,可发现存在于现实世界中的回归现象.用最小二乘法研究回归现象,得到的线性回归方程可用于预测和估计,为决策提供依据.总之,统计的基本思想是从样本数据中发现统计规律,实现对总体的估计.三维目标1.会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题.2.能通过对数据的分析,为合理的决策提供一些依据,认识统计的作用,体会统计思维与确定性思维的差异.3.通过本节学习,培养学生的直觉思维和归纳能力.重点难点教学重点:会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题.教学难点:能通过对数据的分析为合理的决策提供一些依据,认识统计的作用,体会统计思维与确定性思维的差异.课时安排1课时教学过程导入新课思路1.为了系统掌握本章的知识,我们复习本章内容,教师直接点出课题.思路2.同一支球队,在不同的教练带领下战斗力会有很大的不同,例如达拉斯小牛队在“小将军”约翰逊的带领下攻防俱佳所向披靡,同样一张书桌有的整洁、有的凌乱,为什么呢?因为球队需要系统的训练、清晰的战术、完整的攻防体系.书桌需要不断整理,我们学习也是一样需要不断归纳整理、系统总结、升华提高,现在我们就统计这章进行归纳复习,教师点出课题.推进新课新知探究提出问题(1)随机抽样的内容包括哪些?(2)用样本估计总体包括几部分?(3)变量的相关性包括几部分?(4)画出本章知识网络.讨论结果:(1)随机抽样①简单随机抽样抽签法:将总体中的所有个体编号(号码可以从1到 N);将1到N 这N 个号码写在形状、大小相同的号签上(号签可以用小球、卡片、纸条等制作).将号签放在同一不透明的容器中,并搅拌均匀;从箱中每次抽出1个号签,并记录其编号,连续抽取k 次;从总体中将与抽到的签的编号相一致的个体取出.抽样具有公平性原则:等可能性、随机性;抽签法适用于总体中个数N 不大的情形.随机数表法:对总体中的个体进行编号(每个号码位数一致);在随机数表中任选一个数作为开始;从选定的数开始按一定的方向读下去,得到数码.若不在编号中,则跳过;若在编号中,则取出;如果得到的号码前面已经取出,也跳过;如此继续下去,直到取满为止;根据选定的号码抽取样本.②系统抽样采用随机的方式将总体中的个体编号;将整个的编号按一定的间隔(设为k)分段,当N n (N 为总体中的个体数,n 为样本容量)是整数时,k =N n ;当N n不是整数时,从总体中剔除一些个体,使剩下的总体中个体的个数N ′能被n 整除,这时k =N ′n,并将剩下的总体重新编号;在第一段中用简单随机抽样或系统抽样确定起始的个体编号;将编号为,+k ,+2k ,…,+(n -1)k 的个体抽出. ③分层抽样将总体按一定标准分层;计算各层的个体数与总体的个体数的比;按各层个体数占总体的个体数的比确定各层应抽取的样本容量;在每一层进行抽样(可用简单随机抽样或系统抽样).适用于总体中个体有明显的层次差异.(2)用样本估计总体①用样本的频率分布估计总体分布频率分布是指一个样本数据在各个小范围内所占比例的大小;一般用频率分布直方图反映样本的频率分布.其一般步骤为:计算一组数据中最大值与最小值的差,即求极差;决定组距与组数;决定分点;列频率分布表;画频率分布直方图.频率分布直方图的特征:从频率分布直方图可以清楚地看出数据分布的总体趋势;从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.茎叶图.画茎叶图的步骤如下:a .将每个数据分为茎(高位)和叶(低位)两部分.b .将最小茎和最大茎之间的数按大小次序排成一列,写在左(右)侧;c .将各个数据的叶按大小次序写在其茎右(左)侧.用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示.茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观、清晰.②用样本的数字特征估计总体的数字特征a .利用频率分布直方图估计众数、中位数、平均数估计众数:频率分布直方图面积最大的方条的横轴中点数字.(最高矩形的中点)估计中位数:中位数把频率分布直方图分成左右两边面积相等.估计平均数:频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和. 众数、中位数、平均数都是对数据中心位置的描述,可以作为总体相应特征的估计.样本众数易计算,但只能表达样本数据中的很少一部分信息,不一定唯一;中位数仅利用了数据中排在中间数据的信息,与数据的排列位置有关;平均数受样本中的每一个数据的影响,绝对值越大的数据,对平均数的影响也越大.三者相比,平均数代表了数据更多的信息,描述了数据的平均水平,是一组数据的“重心”.b .标准差考察样本数据的分散程度的大小,最常用的统计量是标准差.标准差是样本数据到平均数的一种平均距离,一般用s 表示.s =1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. c .方差从数学的角度考虑,人们有时用标准差的平方s 2(即方差)来代替标准差,作为测量样本数据分散程度的工具:s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. 在刻画样本数据的分散程度上,方差和标准差是一样的,但在解决实际问题时,一般多采用标准差.(3)变量间的相关关系①变量之间的相关关系自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系.两个变量之间的关系分两类:a .确定性的函数关系,例如我们以前学习过的一次函数、二次函数等;b .带有随机性的变量间的相关关系,例如“身高者,体重也重”,我们就说身高与体重这两个变量具有相关关系.相关关系是一种非确定性关系.②两个变量的线性相关a .散点图:将各数据在平面直角坐标中的对应点画出来,得到表示两个变量的一组数据的图形,这样的图形叫作散点图.b .正相关与负相关:如果散点图中的点散布在从左下角到右上角的区域内,称为正相关.如果散点图中的点散布在从左上角到右下角的区域内,称为负相关.(注:散点图的点如果几乎没有什么规则,则这两个变量之间不具有相关关系)c .最小二乘法与回归直线方程:y ^=a ^+b ^x ,其中b ^=∑i =1n x i y i -n x y∑i =1n x 2i -n x 2,a ^=y -b ^x . 上述方程中的b ^,a ^是在所得样本数据的点到这条直线的距离的平方和最小的情形下得到的,这种使“偏差平方和为最小”的方法就是最小二乘法.(4)本章知识网络应用示例 思路1例1某单位有老人28人,中年人54人,青年人81人,为了调查他们的身体状况,从他们中抽取容量为36的样本,最适合抽取样本的方法是( )A .简单随机抽样B .系统抽样C .分层抽样D .先从老人中剔除1人,再用分层抽样解析:总体总人数163人,样本容量为36,由于总体由差异明显的三部分组成,考虑用分层抽样.若按36∶163分配无法得到整数解,故考虑先剔除1人,抽取比例变为36∶162=2∶9,则依次为12、18、6.答案:D点评:选择抽样方法过程中,应结合三种抽样方法的使用范围和实际情况灵活使用各种抽样方法.在现实生活中,由于资金、时间有限,人力、物力不足,加之不断变化的环境条件,普查往往不可能,因此采取抽样调查.在实际操作中,为了使样本具有代表性,通常要了其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的14,且该组中,青年人占50%,中年人占40%,老年人占10%. 为了了解各组不同的年龄层次的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取一个容量为200的样本.试确定:(1)游泳组中,青年人、中年人、老年人分别所占的比例;(2)游泳组中,青年人、中年人、老年人分别应抽取的人数.分析:本题的抽样方法属于分层抽样,根据分层抽样的方法求解.解:(1)设登山组人数为x ,游泳组中,青年人、中年人、老年人各占比例分别为a 、b 、c ,则有x ×40%+3xb 4x =47.5%,x ×10%+3xc 4x=10%,解得b =50%,c =10%. 故a =100%-50%-10%=40%,即游泳组中,青年人、中年人、老年人各占比例分别为40%、50%、10%.(2)游泳组中,抽取的青年人数为200×34×40%=60(人);抽取的中年人数为200×34×50%=75(人);抽取的老年人数为200×34×10%=15(人). 点评:分层抽样适用于数目较多且各部分之间具有明显差异的总体,由于在分层抽样中抽取样本应该在各层用同一抽样比抽取,所以应首先求出各个年级的人数分别是多少,再根据抽样比计算各层分别应该抽取的人数,另外还要注意,不论用哪一种抽样方法,在整个抽程.分析:因为1 002=20×50+2,为保证“等距”分段,应先剔除2人.对“多余”个体的剔除应不影响总体中每个个体被抽到的可能性,仍然能保证抽样的公平性.解:(1)将1 002名学生用随机方式编号;(2)从总体中剔除2人(可用随机数表法),将剩下的 1 000名学生重新编号(000,001,002,…,999),并分成20段;(3)在第一段000,001,002,…,049这50个编号中用简单随机抽样抽出一个(如003)作为起始号码;(4)将编号为003,053,103,…,953的个体抽出,组成样本.点评:选用系统抽样方法时,应着力解决N不能被n整除的问题.在剔除“多余”的思路1例1为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得的数据整理后画出频率分布直方图(如下图),已知图中从左到右的前三个小组的频率分别是0.1,0.3,0.4.第一小组的频数是5.(1)求第四小组的频率和参加这次测试的学生的总人数;(2)在这次测试中,学生跳绳次数的中位数落在第几小组内?(3)参加这次测试跳绳次数在100次以上为优秀,试估计该校此年级跳绳成绩的优秀率.解:(1)由于各小组概率的和是1,因此第四小组的频率为1-0.1-0.3-0.4=0.2;由于第一小组的频数是5,频率为0.1,因此总人数为5÷0.1=50.(2)由于第三小组的频率最大,因此学生跳绳次数的中位数落在第三小组内.(3)由于第三小组的频率和第四小组的频率和为0.6,因此该校此年级跳绳成绩的优秀率是0.6.点评:本题考查对直方图的理解及读图能力,直方图中横轴表示试验结果,纵轴表示频率与组距的比值.例2下面是关于世界20个地区受教育的人口的百分比与人均收入的散点图.(1)两个变量有什么样的相关关系?(2)利用散点图中的数据建立的回归方程为y ^=3.193x +88.193,若受教育的人口百分比相差10%,其人均收入相差多少?解:(1)散点图中的样本点基本集中在一个条型区域中,因此两个变量呈线性相关关系.(2)回归系数为3.193,因此当人口的百分比相差10%时,其人均收入相差3.193×10=知能训练1.为了了解所加工的一批零件的长度,抽测了200个零件的长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量答案:C2.为了解电视对生活的影响,就平均每天看电视的时间,一个社会调查机构对某地居民调查了10 000人,并根据所得数据画出样本的频率分布直方图(如下图),为了分析该地居民平均每天看电视的时间与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人做进一步调查,则在[2.5,3](小时)时间段内应抽出的人数是()A.25 B.30C.50 D.75解析:抽出的100人中平均每天看电视的时间在[2.5,3](小时)时间内的频率是0.5×0.5=0.25,所以这10 000人中平均每天看电视的时间在[2.5,3](小时)时间内的人数是10000×0.25=2 500,抽样比是10010 000=1100,则在[2.5,3](小时)时间段内应抽出的人数是 2500×1100=25.答案:A3.某校共有师生1 600人,其中教师有100人,现用分层抽样的方法,从所有师生中抽取一个容量为80的样本,则抽取的学生数为________.解析:抽样比是801 600=120,该校有学生 1 600-100=1 500(人).则抽取的学生为 1500×120=75.答案:754.从两个班中各随机抽取10名学生,他们的数学成绩如下:通过作茎叶图,分析两个班学生的数学学习情况.解:茎叶图为:从这个茎叶图中可以看出乙班的数学成绩更好一些.5.假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从下面随机数表第2行第18列的数7开始向右读,请你依次写出最先检测的5袋牛奶的编号.84 42 17 53 3157 24 55 06 8877 04 74 47 6721 76 33 50 2583 92 12 06 7663 01 63 78 5916 95 56 67 1998 10 50 71 7512 86 73 58 0744 39 62 58 7973 21 12 34 2978 64 56 07 8252 42 07 44 3815 51 06 13 4299 66 02 79 54……解:从第2行第18列的数开始向右读,是小于或等于799的数就为1个,即719,050,717,512,358是最先检测的5袋牛奶的编号.6.某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为应怎样进行抽样?分析:因为总体中人数较多,所以不宜采用简单随机抽样.又由于持不同态度的人数差异较大,故也不宜用系统抽样方法,所以应采用分层抽样.解:可用分层抽样方法,其总体容量为12 000.“很喜爱”占2 43512 000=4872 400,应取60×4872 400≈12人;“喜爱”占4 56712 000,应取60×4 56712 000≈23人;“一般”占3 92612 000,应取60×3 92512 000≈20人;“不喜爱”占1 07212 000,应取60×1 07212 000≈5人.因此,采用分层抽样的方法在“很喜爱”“喜爱”“一般”和“不喜爱”的2 435人、4 567人、3 926人和1 072人中分别抽取12人、23人、20人和5人.拓展提升为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:(Ⅰ)填充频率分布表的空格(将答案直接填在表格内);(Ⅱ)补全频率分布直方图;(Ⅲ)若成绩在75.5~85.5分的学生为二等奖,问获得二等奖的学生约为多少人?分析:(Ⅰ)利用频率分布表的第2行求出样本容量,根据频率=频数/样本容量,来填充频率分布表的空格;(Ⅱ)根据(Ⅰ)补全频率分布直方图;根据频率分布表解决.解:(1)(2)频率分布直方图如下图所示.(3)成绩在75.5~80.5分的学生占70.5~80.5分的学生的510=12,因为成绩在70.5~80.5分的学生频率为0.2,所以成绩在75.5~80.5分的学生频率为0.1,成绩在80.5~85.5分的学生占80.5~90.5分的学生的510=12,因为成绩在80.5~90.5分的学生频率为0.32,所以成绩在80.5~85.5分的学生频率为0.16.所以成绩在75.5~85.5分的学生频率为0.1+0.16=0.26,由于有900名学生参加了这次竞赛,所以该校获得二等奖的学生约为0.26×900=234(人).课堂小结本节课主要是对第二章基本知识进行系统化、网络化,并对常见题型加以巩固提高.作业本章小结Ⅲ.巩固与提高1、5.设计感想本教学设计依据高中数学课程标准,并结合高考,对本章进行了全面复习和巩固.所选题例新颖,贴近学生实际,是一节非常好的探究性复习课.备课资料广告中数据的可靠性今天已进入数字时代,各种各样的统计数字和图表充斥着媒体,由于数字给人的印象直观具体,所以让数据说话是许多广告的常用手法,但广告中的数据可靠吗?在各类广告中,你会经常遇到由“方便样本(即样本没有代表性)”所产生的结论.例如,某减肥药的广告称,其减肥的有效率为75%.见到这样的广告你会怎么想?通过学习统计这部分内容,你会提出下面的问题吗?这个数据是如何得到的;该药在多少人身上做过试验,即样本容量是多少;样本是如何选取的;等等.假设该药仅在4个人身上做过试验,样本容量为4,用这样小的样本容量来推断总体是不可信的.“现代研究证明,99%以上的人感染有螨虫……”这是一家化妆品公司的广告.第一次听到此话的人会下意识地摸一下自己的皮肤,甚至会感觉到有虫在里面蠕动,恨不得立即弄些药膏抹抹,广告的威慑作用不言而喻.但这里99%是怎么得到的?研究共检测了多少人?这些人是如何挑选的?如果检测的人都是去医院看皮肤病的人,这个数据就不适用于一般人群.某化妆品的广告声称:“它含有某种成分,可以彻底地清除脸部皱纹,只需10天,就能让肌肤得到改善.”我们看到的数字很精确,而“能让肌肤得到改善”却是很模糊的.这样的数字能相信吗?试验是在什么样的皮肤上做的?试验的人数是多少?当我们见到广告中的数据时一定要多提几个问题.。

高中数学必修三第二章《统计》学案2.3.变量间的相关关系(学生专用)(A版)

高中数学必修三第二章《统计》学案2.3.变量间的相关关系(学生专用)(A版)

高中数学必修三第二章《统计》学案2.3.变量间的相关关系(学生专用)(A版)普通高中数学必修3(A版)学案 2.3. 变量间的相关关系2.3.1变量之间的相关关系授课时间:年月日【学习目标】通过收集现实问题中两个有关联变量的数据认识变量间的相关关系。

【重点难点】1. 通过收集现实问题中两个有关联变量的数据直观认识变量间的相关关系。

2. 变量之间相关关系的理解。

【学习过程】一、学习引导在中学校园里,有这样一种说法:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着某种关系,我们把数学成绩和物理成绩看成是两个变量,那么这两个变量之间的关系是函数关系吗?二、合作交流(教师可做点拨)相关关系的概念:两个变量之间的关系可能是确定的关系(如:函数关系),或非确定性关系。

当自变量取值一定时,因变量也确定,则为确定关系;当自变量取值一定时,因变量带有随机性,这种变量之间的关系称为相关关系。

相关关系是一种非确定性关系。

(分析:两个变量→自变量取值一定→因变量带有随机性→相关关系)三、随堂练习思考1:考察下列问题中两个变量之间的关系:(1)商品销售收入与广告支出经费;(2)粮食产量与施肥量;(3)人体内的脂肪含量与年龄.这些问题中两个变量之间的关系是函数关系吗?思考2:“名师出高徒”可以解释为教师的水平越高,学生的水平就越高,那么学生的学业成绩与教师的教学水平之间的关系是函数关系吗?你能举出类似的描述生活中两个变量之间的这种关系的成语吗?思考3:商品销售收入与广告支出经费之间的关系。

(还与商品质量,居民收入,生活环境等有关)四、能力提升1. 上述两个变量之间的关系是一种非确定性关系,称之为相关关系,那么相关关系的含义如何?2. 对于一个变量,可以控制其数量大小的变量称为可控变量,否则称为随机变量,那么相关关系中的两个变量有哪种类型?3. 相关关系与函数关系的异同点?【小结反思】1. 变量具有不确定性,需要通过收集大量的数据(通过调查或试验)在对数据进行统计分析的基础上,发现其中的规律,才能对它们之间的关系做出正确的判断。

人教A版高中数学必修3《二章统计2.2用样本估计总体阅读与思考生产过程中的质量控制图》优质课教案_4

人教A版高中数学必修3《二章统计2.2用样本估计总体阅读与思考生产过程中的质量控制图》优质课教案_4

阅读与思考:生产过程中的质量控制图》教学设计阅读与思考:生产过程中的质量控制图——正态分布[ 教材分析]本节课选自人教A 版必修3第二章“统计”第2.2节“用样本估计总体”课后的“阅读与思考”部分。

在第2.1节通过抽样收集数据之后,第2.2节给出了两种用样本估计总体的方式,一种是用样本的频率分布估计总体的分布,另一种是用样本的数字特征(如平均数、标准差等)估计总体的数字特征。

本节课是在这基础上,结合前面所学的总体密度曲线、平均数和标准差的概念,通过生产过程中的产品质量控制图引出正态分布,利用具体的生活应用介绍正态分布密度曲线的特点以及期望、标准差对整个正态分布的影响。

正态分布无论是在理论上还是应用上都是极其重要的一个分布,将正态分布的这些特点应用到质量控制中,可使学生进一步加强对标准差的认识。

由于正态分布的随机变量是连续型随机变量,这也让学生对随机变量由离散型到连续型有一个初步的认识。

从教材编排上来看,“阅读与思考”内容是对频率分布直方图、标准差认识的深化,是统计知识体系的一种承接和完善,也是后续选修2-3 中第2.4“正态分布”一课的铺垫。

[学情分析]学生在之前章节的学习中,已经掌握如何通过抽样来收集数据,能够画出所收集数据的频率分布直方图、折线图,会根据图表初步分析数据的分布规律,会计算平均数与标准差,这为本节课的探究学习打下了坚实的基础。

但学生仍存在一些知识短板和理解缺口。

其一,本节课学习的正态分布的随机变量是连续型随机变量的分布问题,学生一直以来接触的都是离散型随机变量,这在概念接受与理解上会有一定困难,可以通过信息技术辅助理解;其二,由于学生在此之前还未学习过定积分、随机事件的概率以及二项分布,只在初中接触过简单的概率定义,因而对本节课正态分布的本质理解会显得生涩;其三,正态分布的密度曲线函数较为复杂,学生对抽象且陌生的公式会存在惧怕心理,需要通过一些函数模型及实际应用帮助学生体会其参数的作用。

高中高中数学第二章统计章末总结课件新人教A版必修320190108244

高中高中数学第二章统计章末总结课件新人教A版必修320190108244

(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这 10 000人中按分层抽样方法抽出100人作进一步分析,则月收入在[2 500, 3 000)的这段应抽取多少人?
解:(3) 100 = 1 ,0.000 5×500=0.25, 10000 100
10 000×0.25× 1 =25. 100
女生 男生
(A)24
(B)18
(C)16
(D)12
一年级 373 377
二年级 x
370
三年级 y z
解析:(1)由题意可知 x =0.19,所以 x=380,所以三年级的总人数为 y+z=500, 2000
所以应在三年级抽取的学生人数为 500 ×64=16(人),故选 C. 2000
(2)(202X·泰安高一检测)总体由编号为01,02,…,19,20的20个个体组成.
(2)根据(1)中所求线性回归方程,如果植被面积为 200 公顷,那么下降的气温大约是 多少℃?
n
n
(xi x)( yi y)
xi yi n x y
参考公式: b i1 n
(xi x)2
= i1 n
xi2
n
2
x
, a = y -bx .
i 1
i 1
解:(2)由(1)得当 x=200 时, y =0.03×200+2.5=8.5. 所以植被面积为 200 公顷时,下降的气温大约是 8.5 ℃.
(1)求居民收入在[3 000,3 500)的频率; (2)根据频率散布直方图算出样本数据的中位数;
解:(1)0.000 3×500=0.15. (2)0.000 2×500=0.1,0.000 4×500=0.2, 0.000 5×500=0.25. 设中位数为x,则0.1+0.2+(x-2 000)×0.000 5=0.5, 解得x=2 400,中位数为2 400元.

高中数学人教A版必修三课时习题:第2章 统计 2.2.2.2含答案

高中数学人教A版必修三课时习题:第2章 统计 2.2.2.2含答案

2.2.2 用样本的数字特征估计总体的数字特征第2课时方差、标准差课时目标1.理解方差、标准差的意义,会计算一组数据的方差和标准差,掌握用样本方差或标准差去估计总体方差或总体标准差的方法.2.会用平均数和方差对数据进行处理与比较.识记强化标准差及方差考察样本数据的分散程度的大小,最常用的统计量是标准差.标准差是样本数据到平均数的一种平均距离,一般用s表示.标准差的平方s2叫做方差,也为测量样本数据分散程度的工具.若样本数据是x1,x2,…,x n,x表示这组数据的平均数,则s=1n[x1-x2+x2-x2+…+x n-x2];s2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2].课时作业一、选择题1.下列说法正确的是( )A.在两组数据中,平均值较大的一组方差较大C .2x -+3和s 2D .2x -+3和4s 2+12s +9 答案:B解析:由平均数、方差的求法可得.6.甲、乙两位同学都参加了由学校举办的篮球比赛,他们都参加了全部的7场比赛,平均得分均为16分,标准差分别为5.09和3.72,则甲、乙两同学在这次篮球比赛活动中,发挥得更稳定的是( )A .甲B .乙C .甲、乙相同D .不能确定 答案:B解析:方差或标准差越小,数据的离散程度越小,表明发挥得越稳定.∵5.09>3.72,故选B.二、填空题7.已知样本9、10、11、x 、y 的平均数是10,方差是2,则xy =________. 答案:96解析:由平均数得9+10+11+x +y =50,∴x +y =20,又由(9-10)2+(10-10)2+(11-10)2+(x -10)2+(y -10)2=(2)2×5=10,得x 2+y 2-20(x +y )=-192,(x +y )2-2xy -20(x +y )=-192,xy =96.8.如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为________.答案:6.8解析:x =15(8+9+10+13+15)=11,s 2=15[(8-11)2+(9-11)2+(10-11)2+(13-11)2+(15-11)2]=6.8.9.若k 1,k 2,…,k 8的方差为3,则2(k 1-3),2(k 2-3),…,2(k 8-3)的方差为________. 答案:12解析:设k 1,k 2,…,k 8的平均数为k ,则18[(k 1-k )2+(k 2-k )2+…+(k 8-k )2]=3,而2(k 1-3),2(k 2-3),…,2(k 8-3)的平均数为2(k -3),解析:x 9=x 8+19(x 9-x 8)=5+19×(4-5)=449,s 29=89[s 28+19(x 9-x 8)2]=89[22+19(4-5)2]=29681. 13.下图为我国10座名山的“身高”统计图,请根据图中信息回答下列问题。

本册综合-人教A版高中数学选择性必修第三册(2019版)教案

本册综合-人教A版高中数学选择性必修第三册(2019版)教案

本册综合-人教A版高中数学选择性必修第三册(2019版)教案一、教材简介《本册综合-人教A版高中数学选择性必修第三册(2019版)》是人民教育出版社出版的一本高中数学教材,适合高中三年级学生使用,主要包括以下内容:•函数及三角函数•导数与微分•不等式与极值•平面向量•空间向量•平面解析几何•空间解析几何•推理与证明教材全面、系统性强,涉及到大量的数学概念和知识点,便于学生深入理解数学原理,并能在应用中灵活运用,提升数学水平。

二、教学目标本教案旨在使学生掌握本册综合教材中重要的数学概念和知识点,提高学生数学解决问题的能力和实际应用能力,具体包括以下目标:1.掌握函数的概念,具有根据函数图像和性质解决实际问题的能力。

2.了解导数的概念和几何意义,掌握常用函数的导数公式及其在实际问题中的应用。

3.掌握解不等式的基本方法,了解函数中极值、最值的概念,通过实际问题的应用,培养思维能力和判断能力。

4.掌握平面向量和空间向量的基本概念、数量表示法和运算法则,熟悉向量的几何意义及其在实际问题中的应用。

5.理解平面解析几何和空间解析几何的基本思想和方法,掌握重要公式和定理,熟悉解析几何应用题的解法。

6.培养逻辑思维能力,掌握推理和证明方法,能够进行简单的数学证明。

三、教学内容与方法1. 函数与三角函数内容•函数概念•函数性质(奇偶性、单调性、周期性等)•常用函数(幂函数、指数函数、对数函数、三角函数等)•函数图像和应用方法•教师讲解+学生思考•教师示范+学生练习•学生小组合作完成练习题和应用题2. 导数与微分内容•导数的概念和含义•常用函数的导数公式(标准函数、初等函数、反三角函数等)•函数的微分及其应用方法•教师讲解+学生思考•教师示范+学生练习•学生小组合作完成练习题和应用题3. 不等式与极值内容•不等式的基本性质和解法•函数极值和最值的概念•常用不等式及其应用(比如柯西-施瓦茨不等式、均值不等式等)方法•教师讲解+学生思考•教师示范+学生练习•学生小组合作完成练习题和应用题4. 平面向量和空间向量内容•向量的基本概念和数量表示法•向量的加减法和数量积、向量积运算•向量的几何意义及其在空间几何中的应用(平行四边形定理、共面向量定理等)•向量的坐标表示和平面向量在平面直角坐标系下的应用(平面向量共线、垂直等问题)方法•教师讲解+学生思考•教师示范+学生练习•学生小组合作完成练习题和应用题5. 平面解析几何和空间解析几何内容•平面解析几何基本思想和方法(点、线、圆等的方程及其特殊情况的处理)•空间解析几何基本思想和方法(点、直线、平面等的方程和参数式)方法•教师讲解+学生思考•教师示范+学生练习•学生小组合作完成练习题和应用题6. 推理与证明内容•命题概念和表示方法•命题的逻辑运算和关系•常见的逻辑命题和其真值表•数学证明方法和技巧方法•教师讲解+学生思考•教师示范+学生练习•学生小组合作完成练习题和应用题四、教学评价与反馈本教学计划采用阶段性、多元化的评价方式,包括课堂测验、作业评查、小组合作成果评价等。

高中数学必修3(人教A版)第二章统计2.1知识点总结含同步练习及答案

高中数学必修3(人教A版)第二章统计2.1知识点总结含同步练习及答案

⑤确定样本:从总体中找出与号签上的号码对应的个体,组成样本.
随机数表法是随机数表由数字 0 ,1 ,2,3,⋯,9 这 10 个数字组成,并且每个数字在表中 各个位置上出现的机会都是一样的,通过随机数表,根据实际需要和方便使用的原则,将几个数
组成一组,然后通过随机数表抽取样本.随机数表的优点是简单易行,它很好的解决了当总体中
样.因为 50 名官兵是从中挑出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单 随机抽样中“等可能抽样”的要求.(3)是简单随机抽样.因为总体中的个体数是有限的,并且
是从总体中逐个进行抽取的,是不放回、等可能的抽取.
2013年第27届世界大学生运动会在俄罗斯举行,为了支持这次运动会,某大学从报名的 20 名大 三学生中选取 6 人组成志愿小组,请用抽签法设计抽样方案. 解:(1)将 20 名志愿者编号,编号为 1,2,3,4,⋯,20; (2)将 20 个号码分别写在 20 张形状相同的卡片上,制成号签; (3)将 20 张卡片放入一个不透明的盒子里,搅拌均匀; (4)从盒子中逐个不放回地抽取 6 个号签,并记录上面的号码;
A.2
B.3
C.6
D.7
解:C
间隔相等,所以 126 − 8 × 15 = 6.
4.分层抽样
描述: 将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在 总体中所占比例进行简单随机抽样或系统抽样,这种抽样的方法叫做分层抽样.当总体由明显差 别的几部分组成时,为了使抽取样本更好地反映总体的情况,常采用分层抽样.
③简单随机抽样是一种不放回抽样.
④简单随机抽样是一种等可能的抽样,每个个体被抽取到的可能性均为
n N

常用的简单随机抽样方法有抽签法和随机数表法.

新人教版高中数学必修三教案

新人教版高中数学必修三教案

新人教版高中数学必修三教案第一课时:函数及其应用教学目标- 了解函数的定义和特点- 掌握函数的表示方法和求解- 学会应用函数解决实际问题教学内容1. 函数的概念- 函数定义及其特点- 自变量和因变量的关系2. 函数的表示和求解- 函数的符号表示法- 函数的图象表示方法- 函数的求解方法3. 函数的应用- 函数的实际问题求解- 函数的应用实例分析教学步骤1. 导入新知,引发学生对函数的认知- 引用生活中的例子,说明自变量和因变量的关系- 提出问题,让学生思考函数的含义2. 介绍函数的定义和特点- 通过定义解释函数的概念- 引导学生理解函数的自变量和因变量之间的关系3. 讲解函数的表示和求解方法- 通过示例演示函数的符号表示法- 展示函数的图象表示方法和求解过程4. 进行实际应用练- 设计一些实际问题,让学生运用函数求解- 引导学生分析实际应用中函数的作用和意义5. 总结课堂内容,提出课后练- 概括函数的定义和特点- 提供一些题供学生巩固练教学资源- 教案- PowerPoint幻灯片- 笔记本电脑和投影仪- 黑板和彩色粉笔教学评估- 课堂练:为学生布置一些小题,检查他们对函数的掌握程度- 教师观察:观察学生在课堂上对函数的理解和应用情况- 学生互评:学生之间相互评价、讨论和提问教学延伸- 鼓励学生自主研究,发现更多函数的应用场景- 提供更多复杂实际问题的应用训练- 引导学生思考函数的局限性和实际意义参考资料- 《新人教版高中数学必修三教材》- 附带教辅资料及题- 互联网平台上的相关研究资源。

最新人教版高中数学必修三电子课本名师优秀教案

最新人教版高中数学必修三电子课本名师优秀教案

人教版高中数学必修三电子课本篇一:人教版高一数学必修三课本教材word版第一章算法初步第一章算法初步第一节算法与程序框图 1.1.1 算法概念:实际上,算法对我们来说并不陌生(回顾二元一次方程组我们可以归纳出以下步骤: 第一步,???×2,第三步,?,?×2,得得?x?2y??1??2x?y?1? ?的求解过程,5x?1?第二步,解?,第四步,解?,得得x?y?115 355y?3 ??x?????y???1535第五步,得到方程组的解为思考,能写出求解一般的二元一次方程组的步骤吗, 对于一般的二元一次方程组?a1x?b1y?c1??a2x?b2y?c2? ?其中a1b2?a2b1?0,可以写出类似的求解步骤:得第一步,?×b2,?×b1,第二步,解?第三步,?×a1,?×a2 第四步,解?(a1b2?a2b1)x?b2c1?b1c2 ?得x?b2c1?b1c2a1b2?a2b1得(a1b2?a2b1)y?a1c2?a2c1 ?y?2a1c2?a2c1a1b2?a2b1得第五步,得到方程组的解为得??x????y???b2c1?b1c2a1b2?a2b1a1c2?a2c1a1b2?a2b1上述步骤构成了解二元一次方程组的一个算法,我们可以进一步根据这一算法编制计算机程序,让计算机来解二元一次方程组。

算法? (algorithm)一词出现于12 世纪,指的是用阿拉伯数字进行算术运算的过程。

在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。

现在,算法通常可以编成计算机程序,让计算机执行并解决问题( 例1 (1)设计一个算法,判断7 是否为质数(2)设计一个算法,判断35 是否为质数只能被1和自身整除的大于1的正是叫质数算法分析:(1)根据质数的定义,可以这样判断:依次用 26 除7 ,如果它们中有一个能整除7,则7 不是质数。

2017-2018学年高中数学人教A版必修3教学案:第二章 2.3 变量间的相关关系

2017-2018学年高中数学人教A版必修3教学案:第二章 2.3 变量间的相关关系

变量间的相关关系(1)函数关系与相关关系的区别与联系是什么?(2)如何判断两个变量之间是否具备相关关系?(3)什么是正相关、负相关?与散点图有什么关系?[新知初探]1.相关关系如果两个变量中一个变量的取值一定时,另一个变量的取值带有一定的随机性,那么这两个变量之间的关系叫做相关关系.2.散点图将各数据在平面直角坐标系中的对应点画出来,得到表示两个变量的一组数据的图形,这样的图形叫做散点图,利用散点图,可以判断两个变量是否相关,相关时是正相关还是负相关.3.正相关和负相关(1)正相关:散点图中的点散布在从左下角到右上角的区域.(2)负相关:散点图中的点散布在从左上角到右下角的区域.[点睛]对正相关和负相关的理解(1)正相关随自变量的变大(或变小),因变量也随之变大(或变小),这种带有随机性的相关关系,我们称为正相关.例如,人年龄由小变大时,体内脂肪含量也由少变多.(2)负相关随自变量的变大(或变小),因变量却随之变小(或变大),这种带有随机性的相关关系,我们称为负相关.例如,汽车越重,每消耗1 L 汽油所行驶的平均路程就越短.4.回归直线方程(1)回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)回归方程:回归直线的方程,简称回归方程. (3)回归方程的推导过程:①假设已经得到两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ).②设所求回归方程为y ^=b ^x +a ^,其中a ^,b ^是待定参数. ③由最小二乘法得⎩⎪⎨⎪⎧b ^=∑i =1n(x i-x )(y i-y )∑i =1n (x i-x )2=∑i =1nx i y i-n x y ∑i =1n x 2i-n x 2a ^=y -b ^x其中:b ^是回归方程的斜率,a ^是截距.[小试身手]1.下列命题正确的是( ) ①任何两个变量都具有相关关系; ②圆的周长与该圆的半径具有相关关系;③某商品的需求量与该商品的价格是一种非确定性关系; ④根据散点图求得的回归直线方程可能是没有意义的;⑤两个变量间的相关关系可以通过回归直线,把非确定性问题转化为确定性问题进行研究.A .①③④B .②③④C .③④⑤D .②④⑤解析:选C ①显然不对,②是函数关系,③④⑤正确.2.对变量x ,y 有观测数据(x i ,y i )(i =1,2,…,10),得散点图图1;对变量u ,v 有观测数据(u i ,v i )(i =1,2,…,10),得散点图图2.由这两个散点图可以判断( )A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关解析:选C 由这两个散点图可以判断,变量x 与y 负相关,u 与v 正相关. 3.若施肥量x (kg)与水稻产量y (kg)的线性回归方程为y ^=5x +250,当施肥量为80 kg 时,预计水稻产量约为________kg.解析:把x =80代入回归方程可得其预测值y ^=5×80+250=650(kg). 答案:6504.对具有线性相关关系的变量x 和y ,测得一组数据如下表所示.x 2 4 5 6 8 y3040605070若已求得它们回归直线的方程为______________________.解析:由题意可知x =2+4+5+6+85=5,y =30+40+60+50+705=50.即样本中心为(5,50).设回归直线方程为y ^=6.5x +a ^, ∵回归直线过样本中心(x ,y ), ∴50=6.5×5+a ^,即a ^=17.5, ∴回归直线方程为y ^=6.5x +17.5 答案:y ^=6.5x +17.5相关关系的判断①正方形的边长与面积之间的关系;②农作物的产量与施肥量之间的关系;③出租车费与行驶的里程;④降雪量与交通事故的发生率之间的关系.(2)某个男孩的年龄与身高的统计数据如下表所示.年龄x(岁)12345 6身高y(cm)788798108115120①画出散点图;②判断y与x是否具有线性相关关系.[解析](1)在①中,正方形的边长与面积之间的关系是函数关系;在②中,农作物的产量与施肥量之间不具有严格的函数关系,但具有相关关系;③为确定的函数关系;在④中,降雪量与交通事故的发生率之间具有相关关系.答案:②④(2)解:①散点图如图所示.②由图知,所有数据点接近一条直线排列,因此,认为y与x具有线性相关关系.两个变量是否相关的两种判断方法(1)根据实际经验:借助积累的经验进行分析判断.(2)利用散点图:通过散点图,观察它们的分布是否存在一定的规律,直观地进行判断.[活学活用]如图所示的两个变量不具有相关关系的是________(填序号).解析:①是确定的函数关系;②中的点大都分布在一条曲线周围;③中的点大都分布在一条直线周围;④中点的分布没有任何规律可言,x ,y 不具有相关关系.答案:①④[典例] (1)已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能是( )A.y ^=0.4x +2.3 B.y ^=2x -2.4 C.y ^=-2x +9.5D.y ^=-0.3x +4.4(2)一台机器按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点的零件的多少随机器的运转的速度的变化而变化,下表为抽样试验的结果:转速x (转/秒)16 14 12 8 每小时生产有缺点的零件数y (件)11985②如果y 对x 有线性相关关系,请画出一条直线近似地表示这种线性关系; ③在实际生产中,若它们的近似方程为y =5170x -67,允许每小时生产的产品中有缺点的零件最多为10件,那么机器的运转速度应控制在什么范围内?[解析] (1)依题意知,相应的回归直线的斜率应为正,排除C 、D.且直线必过点(3,3.5),代入A 、B 得A 正确.答案:A(2)解:①散点图如图所示:②近似直线如图所示:③由y ≤10得5170x -67≤10,解得x ≤14.9,所以机器的运转速度应控制在14转/秒内.求回归直线方程的步骤(1)收集样本数据,设为(x i ,y i )(i =1,2,…,n )(数据一般由题目给出). (2)作出散点图,确定x ,y 具有线性相关关系. (3)把数据制成表格x i ,y i ,x 2i ,x i y i . (4)计算x ,y,∑i =1nx 2i ,∑i =1nx i y i . (5)代入公式计算b ^,a ^,公式为⎩⎪⎨⎪⎧b ^=∑i =1n x i y i -n x y∑i =1n x 2i-n x2,a ^=y -b ^x .(6)写出回归直线方程y ^=b ^x +a ^. [活学活用]已知变量x ,y 有如下对应数据:x 1 2 3 4 y1345(1)作出散点图;(2)用最小二乘法求关于x ,y 的回归直线方程. 解:(1)散点图如图所示.(2)x =1+2+3+44=52,y =1+3+4+54=134, ∑i =14x i y i =1+6+12+20=39.∑i =14x 2i =1+4+9+16=30,b ^=39-4×52×13430-4×⎝⎛⎭⎫522=1310,a ^=134-1310×52=0,所以y ^=1310x 为所求的回归直线方程.利用线性回归方程对总体进行估计[典例] 下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据:x 3 4 5 6 y2.5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,求出y 关于x 的回归直线方程y ^=b ^x +a ^;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的回归直线方程,预测生产100吨甲产品的生产能耗比技改前降低了多少吨标准煤?[解] (1)散点图如图:(2)x =3+4+5+64=4.5,y =2.5+3+4+4.54=3.5,∑i =14x i y i =3×2.5+4×3+5×4+6×4.5=66.5,∑i =14x 2i =32+42+52+62=86, 所以b ^=∑i =14x i y i -4x y ∑i =14x 2i -4x2=66.5-4×4.5×3.586-4×4.52=0.7,a ^=y -b ^x =3.5-0.7×4.5=0.35. 所以所求的线性回归方程为y ^=0.7x +0.35.(3)当x =100时,y ^=0.7×100+0.35=70.35(吨标准煤),90-70.35=19.65(吨标准煤).即生产100吨甲产品的生产能耗比技改前降低了19.65吨标准煤.只有当两个变量之间存在线性相关关系时,才能用回归直线方程对总体进行估计和预测.否则,如果两个变量之间不存在线性相关关系,即使由样本数据求出回归直线方程,用其估计和预测结果也是不可信的.[活学活用](重庆高考)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份 2010 2011 2012 2013 2014 时间代号t 1 2 3 4 5 储蓄存款y (千亿元)567810(1)求y 关于t 的回归方程y ^=b ^t +a ^;(2)用所求回归方程预测该地区2015年(t =6)的人民币储蓄存款. 解:(1)列表计算如下:i t i y i t 2i t i y i 1 2 3 4 51 2 3 4 55 6 7 8 101 4 9 16 255 12 21 32 50这里n =5,t -=1n ∑i =1n t i =155=3,y -=1n ∑i =1ny i =365=7.2.∑i =1nt 2i -n t -2=55-5×32=10,∑i =1nt i y i -n t -y -=120-5×3×7.2=12,从而b ^=1210=1.2,a ^=y --b ^t -=7.2-1.2×3=3.6,故所求回归方程为y ^=1.2t +3.6.(2)将t =6代入回归方程可预测该地区2015年的人民币储蓄存款为y ^=1.2×6+3.6=10.8(千亿元).[层级一 学业水平达标]1.下列变量具有相关关系的是( ) A .人的体重与视力B .圆心角的大小与所对的圆弧长C .收入水平与购买能力D .人的年龄与体重解析:选C B 为确定性关系;A ,D 不具有相关关系,故选C. 2.已知变量x ,y 之间具有线性相关关系,其散点图如图所示,则其回归方程可能为A.y ^=1.5x +2 B.y ^=-1.5x +2 C.y ^=1.5x -2 D.y ^=-1.5x -2解析:选B 设回归方程为y ^=b ^x +a ^,由散点图可知变量x ,y 之间负相关,回归直线在y 轴上的截距为正数,所以b ^<0,a ^>0,因此方程可能为y ^=-1.5x +2.3.设(x 1,y 1),(x 2,y 2),…,(x n ,y n )是变量x 和y 的n 个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线如图所示,则以下结论正确的是( )A .直线l 过点(x ,y )B .回归直线必通过散点图中的多个点C .直线l 的斜率必在(0,1)D .当n 为偶数时,分布在l 两侧的样本点的个数一定相同解析:选A A 是正确的;回归直线可以不经过散点图中的任何点,故B 错误;回归直线的斜率不确定,故C 错误;分布在l 两侧的样本点的个数不一定相同,故D 错误.4.对有线性相关关系的两个变量建立的回归直线方程y ^=a ^+b ^x 中,回归系数b ^( ) A .不能小于0 B .不能大于0 C .不能等于0D .只能小于0解析:选C 当b ^=0时,r =0,这时不具有线性相关关系,但b ^能大于0,也能小于0. 5.2016年元旦前夕,某市统计局统计了该市2015年10户家庭的年收入和年饮食支出的统计资料如下表:(2)若某家庭年收入为9万元,预测其年饮食支出. (参考数据:∑i =110x i y i =117.7,∑i =110x 2i =406)解:依题意可计算得:x =6,y =1.83,x 2=36,x y =10.98, 又∵∑i =110x i y i =117.7,∑i =110x 2i =406,∴b ^=∑i =110x i y i -10x y∑i =110x 2i -10x2≈0.17,a ^=y -b ^x =0.81,∴y ^=0.17x +0.81. ∴所求的回归方程为y ^=0.17x +0.81.(2)当x =9时,y ^=0.17×9+0.81=2.34(万元).可估计年收入为9万元的家庭每年饮食支出约为2.34万元.[层级二 应试能力达标]1.一个口袋中有大小不等的红、黄、蓝三种颜色的小球若干个(大于5个),从中取5次,那么取出红球的次数和口袋中红球的数量是( )A .确定性关系B .相关关系C .函数关系D .无任何关系解析:选B 每次从袋中取球取出的球是不是红球,除了和红球的个数有关外,还与球的大小等有关系,所以取出红球的次数和口袋中红球的数量是一种相关关系.2.农民工月工资y (元)依劳动生产率x (千元)变化的回归直线方程为y ^=50+80x ,下列判断正确的是( )A .劳动生产率为1 000元时,工资为130元B .劳动生产率提高1 000元时,工资水平提高80元C .劳动生产率提高1 000元时,工资水平提高130元D .当月工资为210元时,劳动生产率为2 000元解析:选B 由回归直线方程y ^=50+80x 知,x 每增加1,y 增加80,但要注意x 的单位是千元,y 的单位是元.3.为了解儿子身高与其父亲身高的关系,随机抽取5对父子身高数据如下:父亲身高x (cm) 174 176 176 176 178 儿子身高y (cm)175175176177177则y 对x 的线性回归方程为( ) A .y =x -1 B .y =x +1 C .y =88+12xD .y =176解析:选C 计算得,x =174+176+176+176+1785=176,y =175+175+176+177+1775=176,根据回归直线经过样本中心(x ,y )检验知,C 符合.4.已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为y ^=b ^x +a ^,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( )A.b ^>b ′,a ^>a ′B.y ^>b ′,a ^<a ′C.b ^<b ′,a ^>a ′D.y ^<b ′,a ^<a ′解析:选C 由(1,0),(2,2)求b ′,a ′. b ′=2-02-1=2,a ′=0-2×1=-2.求b ^,a ^时,∑i =16x i y i =0+4+3+12+15+24=58,x =3.5,y =136, ∑i =16x 2i =1+4+9+16+25+36=91,∴b ^=58-6×3.5×13691-6×3.52=57, a ^=136-57×3.5=136-52=-13,∴b ^<b ′,a ^>a ′.5.正常情况下,年龄在18岁到38岁的人,体重y (kg)对身高x (cm)的回归方程为y ^=0.72x -58.2,张红同学(20岁)身高为178 cm ,她的体重应该在________ kg 左右.解析:用回归方程对身高为178 cm 的人的体重进行预测,当x =178时,y ^=0.72×178-58.2=69.96(kg).答案:69.966.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:由表中数据,求得线性回归方程为y =-4x +a ,则a =________. 解析:x =4+5+6+7+8+96=132,y =92+82+80+80+78+686=80,由回归方程过样本中心点(x ,y ) 得80=-4×132+a ^.即a ^=80+4×132=106.答案:1067.对某台机器购置后的运行年限x (x =1,2,3,…)与当年利润y 的统计分析知x ,y 具备线性相关关系,回归方程为y ^=10.47-1.3x ,估计该台机器最为划算的使用年限为________年.解析:当年利润小于或等于零时应该报废该机器,当y =0时,令10.47-1.3x =0,解得x ≈8,故估计该台机器最为划算的使用年限为8年.答案:88.一项关于16艘轮船的研究中,船的吨位区间为[192,3 246](单位:吨),船员的人数5~32人,船员人数y 关于吨位x 的回归方程为y ^=9.5+0.006 2x ,(1)若两艘船的吨位相差1 000,求船员平均相差的人数; (2)估计吨位最大的船和最小的船的船员人数. 解:(1)设两艘船的吨位分别为x 1,x 2,则 y ^1-y ^2=9.5+0.006 2x 1-(9.5+0.006 2x 2) =0.006 2×1 000≈6, 即船员平均相差6人.(2)当x =192时,y ^=9.5+0.006 2×192≈11, 当x =3 246时,y ^=9.5+0.006 2×3 246≈30.即估计吨位最大和最小的船的船员数分别为30人和11人.9.某个体服装店经营某种服装在某周内所获纯利y (元)与该周每天销售这种服装的件数x (件)之间有一组数据如下表:(1)求x ,y ;(2)若纯利y 与每天销售这种服装的件数x 之间是线性相关的,求回归直线方程; (3)若该店每周至少要获纯利200元,请你预测该店每天至少要销售这种服装多少件? (提示:∑i =17x 2i =280,∑i =17y 2i =45 309,∑i =17x i y i =3 487)解:(1)x =3+4+5+6+7+8+97=6,y =66+69+73+81+89+90+917≈79.86.(2)∵b ^=3 487-7×6×79.86280-7×62≈4.75,a ^=79.86-4.75×6=51.36,∴纯利与每天销售件数x 之间的回归直线方程为y ^=51.36+4.75x . (3)当y ^=200时,200=4.75x +51.36,所以x ≈31.29.因此若该店每周至少要获纯利200元,则该店每天至少要销售这种服装32件.(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列三个抽样:①一个城市有210家某商品的代理商,其中大型代理商有20家,中型代理商有40家,小型代理商有150家,为了掌握该商品的销售情况,要从中抽取一个容量为21的样本;②在某公司的50名工人中,依次抽取工号为5,10,15,20,25,30,35,40,45,50的10名工人进行健康检查;③某市质量检查人员从一食品生产企业生产的两箱(每箱12盒)牛奶中抽取4盒进行质量检查.则应采用的抽样方法依次为( )A .简单随机抽样;分层抽样;系统抽样B .分层抽样;简单随机抽样;系统抽样C .分层抽样;系统抽样;简单随机抽样D .系统抽样;分层抽样;简单随机抽样解析:选C ①中商店的规模不同,所以应利用分层抽样;②中抽取的学号具有等距性,所以应是系统抽样;③中总体没有差异性,容量较小,样本容量也较小,所以应采用简单随机抽样.故选C.2.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是( )A .09,14,19,24B .16,28,40,52C .10,16,22,28D .08,12,16,20解析:选B 分成5组,每组12名学生,按等间距12抽取.选项B 正确.3.某学校有教师200人,男学生1 200人,女学生1 000人.现用分层抽样的方法从全体师生中抽取一个容量为n 的样本,若女学生一共抽取了80人,则n 的值为( )A .193B .192C .191D .190解析:选B 1 000×n200+1 200+1 000=80,求得n =192.4.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( )A.y ^=-10x +200 B.y ^=10x +200 C.y ^=-10x -200D.y ^=10x -200解析:选A 由于销售量y 与销售价格x 成负相关,故排除B ,D.又因为销售价格x >0,则C 中销售量全小于0,不符合题意,故选A.5.设有两组数据x 1,x 2,…,x n 与y 1,y 2,…,y n ,它们的平均数分别是x 和y ,则新的一组数据2x 1-3y 1+1,2x 2-3y 2+1,…,2x n -3y n +1的平均数是( )A .2x -3yB .2x -3y +1C .4x -9yD .4x -9y +1解析:选B 设z i =2x i -3y i +1(i =1,2,…,n ),则z =1n (z 1+z 2+…+z n )=2n (x 1+x 2+…+x n )-3n (y 1+y 2+…+y n )+⎝⎛⎭⎫1+1+…+1n =2x -3y +1.6.有一个容量为66的样本,数据的分组及各组的频数如下: [11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 11 [31.5,35.5) 12 [35.5,39.5) 7 [39.5,43.5) 3则总体中大于或等于31.5的数据所占比例约为( ) A.211 B.13 C.12D.23解析:选B 由题意知,样本的容量为66,而落在[31.5,43.5)内的样本个数为12+7+3=22,故总体中大于或等于31.5的数据约占2266=13.7.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数、众数、中位数分别是( )A .85,85,85B .87,85,86C .87,85,85D .87,85,90解析:选C ∵得85分的人数最多为4人, ∴众数为85,中位数为85,平均数为110(100+95+90×2+85×4+80+75)=87.8.某出租汽车公司为了了解本公司司机的交通违章情况,随机调查了50名司机,得到了他们某月交通违章次数的数据,结果制成了如图所示的统计图,根据此统计图可得这50名出租车司机该月平均违章的次数为( )A .1B .1.8C .2.4D .3解析:选B5×0+20×1+10×2+10×3+5×450=1.8.9.下表是某厂1~4月份用水量情况(单位:百吨)的一组数据月份x 1 2 3 4 用水量y4.5432.5用水量y 与月份x 之间具有线性相关关系,其线性回归方程为y ^=-0.7x +a ,则a 的值为( )A .5.25B .5C .2.5D .3.5解析:选A 线性回归方程经过样本的中心点,根据数据可得样本中心点为(2.5,3.5),所以a =5.25.10.如图是在元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A .84,4.84B .84,1.6C .85,1.2D .85,4解析:选C 去掉一个最高分95,去掉一个最低分77,平均数为80+15(5+3+6+5+6)=85,方差为15[(85-85)2+(85-83)2+(85-86)2+(85-85)2+(85-86)2]=1.2,因此选C.11.如果数据x 1,x 2,x 3,…,x n 的平均数是x ,方差是s 2,则3x 1+2,3x 2+2,…,3x n +2的平均数和方差分别是( )A.x 和s 2 B .3x 和9s 2 C .3x +2和9s 2D .3x +2和12s 2+4解析:选C 3x 1+2,3x 2+2,…,3x n +2的平均数是3x +2,由于数据x 1,x 2,…x n的方差为s2,所以3x1+2,3x2+2,…,3x n+2的方差为9s2.12.如图是某赛季甲、乙两名篮球运动员5场比赛得分的茎叶图,已知甲的成绩的极差为31,乙的成绩的平均值为24,则下列结论错误的是()A.x=9B.y=8C.乙的成绩的中位数为26D.乙的成绩的方差小于甲的成绩的方差解析:选B因为甲的成绩的极差为31,所以其最高成绩为39,所以x=9;因为乙的成绩的平均值为24,所以y=24×5-(12+25+26+31)-20=6;由茎叶图知乙的成绩的中位数为26;对比甲、乙的成绩分布发现,乙的成绩比较集中,故其方差较小.二、填空题(本大题共4小题,每小题5分,共20分)13.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x-y|的值为________.解析:由平均数为10,得(x+y+10+11+9)×15=10,则x+y=20;又方差为2,∴[(x-10)2+(y-10)2+(10-10)2+(11-10)2+(9-10)2]×15=2,得x2+y2=208,2xy=192,∴|x-y|=(x-y)2=x2+y2-2xy=4.答案:414.一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为________.解析:抽取的男运动员的人数为2148+36×48=12.答案:1215.要考察某种品牌的500颗种子的发芽率,抽取60粒进行实验,利用随机数表抽取种子时,先将500颗种子按001,002,…,500进行编号,如果从随机数表第7行第8列的数3开始向右读,请你依次写出最先检测的5颗种子的编号:________,________,________,________,________.(下面摘取了随机数表第7行至第9行)84 42 17 53 3157 24 55 06 8877 04 74 47 6721 76 33 50 2583 92 12 06 7663 01 63 78 5916 95 55 67 1998 10 50 71 7512 86 73 58 0744 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 解析:选出的三位数分别为331,572,455,068,877,047,447,…,其中572,877均大于500,将其去掉,剩下的前5个编号为331,455,068,047,447.答案:331 455 068 047 44716.从某小学随机抽取100名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如下图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________.解析:∵0.005×10+0.035×10+a ×10+0.020×10+0.010×10=1, ∴a =0.030.设身高在[120,130),[130,140),[140,150]三组的学生分别有x ,y ,z 人, 则x100=0.030×10,解得x =30.同理,y =20,z =10. 故从[140,150]的学生中选取的人数为1030+20+10×18=3.答案:0.030 3三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)为调查某班学生的平均身高,从50名学生中抽取110,应如何抽样?若知道男生、女生的身高显著不同(男生30人,女生20人),应如何抽样?解:从50名学生中抽取110,即抽取5人,采用简单随机抽样法(抽签法或随机数法).若知道男生、女生的身高显著不同,则采用分层抽样法,按照男生与女生的人数比为30∶20=3∶2进行抽样,则男生抽取3人,女生抽取2人.18.(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示.(1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?解:(1)样本均值为17+19+20+21+25+306=1326=22.(2)由(1)知样本中优秀工人所占比例为26=13,故推断该车间12名工人中有12×13=4名优秀工人.19.(本小题满分12分)2016年春节前,有超过20万名广西、四川等省籍的外出务工人员选择驾乘摩托车沿321国道长途跋涉返乡过年,为防止摩托车驾驶人员因长途疲劳驾驶,手脚僵硬影响驾驶操作而引发交通事故,肇庆市公安交警部门在321国道沿线设立了多个长途行驶摩托车驾乘人员休息站,让返乡过年的摩托车驾乘人员有一个停车休息的场所.交警小李在某休息站连续5天对进站休息的驾驶人员每隔50辆摩托车就进行一次省籍询问,询问结果如图所示:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是什么抽样方法?(2)用分层抽样的方法对被询问了省籍的驾驶人员进行抽样,若广西籍的有5人,则四川籍的应抽取几人?解:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是系统抽样法.(2)从题图可知,被询问了省籍的驾驶人员广西籍的有5+20+25+20+30=100(人); 四川籍的有15+10+5+5+5=40(人).设四川籍的驾驶人员应抽取x 人,依题意得5100=x 40,解得x =2,即四川籍的应抽取2人.20.(本小题满分12分)某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量(单位:kg),分别记录抽查数据如下:甲:102,101,99,98,103,98,99; 乙:110,115,90,85,75,115,110. (1)这种抽样方法是哪一种方法?(2)试计算甲、乙车间产品重量的平均数与方差,并说明哪个车间产品较稳定? 解:(1)甲、乙两组数据间隔相同,所以采用的方法是系统抽样. (2)x 甲=17(102+101+99+98+103+98+99)=100,x 乙=17(110+115+90+85+75+115+110)=100,s 2甲=17(4+1+1+4+9+4+1)≈3.43,s 2乙=17(100+225+100+225+625+225+100)=228.57, ∴s 2甲<s 2乙,故甲车间产品比较稳定.21.(本小题满分12分)对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:(1)求出表中M ,p 及图中a 的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)的人数.解:(1)由分组[10,15)的频数是10, 频率是0.25知, 10M =0.25,所以M =40. 因为频数之和为40,所以10+25+m +2=40,解得m =3. 故p =340=0.075.因为a 是对应分组[15,20)的频率与组距的商, 所以a =2540×5=0.125.(2)因为该校高一学生有360人,分组[10,15)的频率是0.25,所以估计该校高一学生参加社区服务的次数在此区间内的人数为360×0.25=90.22.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =110x 2i =720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.解:(1)由题意知n =10,x =1n ∑i =1n x i =8010=8, y =1n ∑i =1n y i =2010=2, 又∑i =110x 2i -10x 2=720-10×82=80,∑i =110x i y i -10x y =184-10×8×2=24,由此得b ^=∑i =110x i y i -10x y∑i =110x 2i -10x 2=2480=0.3, a ^=y -b ^x =2-0.3×8=-0.4,故所求回归方程为y ^=0.3x -0.4.(2)由于变量y 的值随x 的值增加而增加(b =0.3>0),故x 与y 之间是正相关.(3)将x =7代入回归方程可以预测该家庭的月储蓄为y =0.3×7-0.4=1.7千元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章统计本章教材分析现代社会是信息化的社会,数字信息随处可见,因此专门研究如何收集、整理、分析数据的科学——统计学就备受重视.统计学是研究如何收集、整理、分析数据的科学,它可以为人们制定决策提供依据.在客观世界中,需要认识的现象无穷无尽.要认识某现象的第一步就是通过观察或试验取得观测资料,然后通过分析这些资料来认识此现象.如何取得有代表性的观测资料并能够正确地加以分析,是正确地认识未知现象的基础,也是统计所研究的基本问题.本章主要介绍最基本的获取样本数据的方法,以及几种从样本数据中提取信息的统计方法,其中包括用样本估计总体分布、数字特征和线性回归等内容.从义务教育阶段来看,统计知识的教学从小学到初中分为三个阶段,在每个阶段都要学习收集、整理、描述和分析数据等处理数据的基本方法,教学目标随着学段的升高逐渐提高.在义务教育阶段的统计与概率知识的基础上,《课程标准》要求通过实际问题及情境,进一步介绍随机抽样、样本估计总体、线性回归的基本方法,了解用样本估计总体及其特征的思想,体会统计思维与确定性思维的差异;通过实习作业,较为系统地经历数据收集与处理的全过程,进一步体会统计思维与确定性思维的差异.2.1 随机抽样2.1.1 简单随机抽样整体设计教学分析教材是以探究一批小包装饼干的卫生是否达标为问题导向,逐步引入简单随机抽样概念.并通过实例介绍了两种简单随机抽样方法:抽签法和随机数法.值得注意的是为了使学生获得简单随机抽样的经验,教学中要注意增加学生实践的机会.例如,用抽签法决定班里参加某项活动的代表人选,用随机数法从全年级同学中抽取样本计算平均身高等等.三维目标1.能从现实生活或其他学科中推出具有一定价值的统计问题,提高学生分析问题的能力. 2.理解随机抽样的必要性和重要性,提高学生学习数学的兴趣.3.学会用抽签法和随机数法抽取样本,培养学生的应用能力.重点难点教学重点:理解随机抽样的必要性和重要性,用抽签法和随机数法抽取样本.教学难点:抽签法和随机数法的实施步骤.课时安排1课时教学过程导入新课抽样的方法很多,某个抽样方法都有各自的优越性与局限性,针对不同的问题应当选择适当的抽样方法.教师点出课题:简单随机抽样.推进新课新知探究提出问题(1)在1936年美国总统选举前,一份颇有名气的杂志(Literary Digest)的工作人员做了一次民意测验.调查兰顿(ndon)(当时任堪萨斯州州长)和罗斯福(F.D.Roosevelt)(当时的总统)中谁将当选下一届总统.为了了解公众意向,调查者通过电话簿和车辆登记簿上的名单给一大批人发了调查表(注意在1936年电话和汽车只有少数富人拥有).通过分析收回的调查表,显示兰顿非常受欢迎,于是此杂志预测兰顿将在选举中获胜.(2)假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本.那么,应当怎样获取样本呢?(3)请总结简单随机抽样的定义.讨论结果:(1)预测结果出错的原因是:在民意测验的过程中,即抽取样本时,抽取的样本不具有代表性.1936年拥有电话和汽车的美国人只是一小部分,那时大部分人还很穷.其调查的结果只是富人的意见,不能代表穷人的意见.由此可以看出,抽取样本时,要使抽取出的样本具有代表性,否则调查的结果与实际相差较大.(2)要对这批小包装饼干进行卫生达标检查,只能从中抽取一定数量的饼干作为检验的样本,用样本的卫生情况来估计这批饼干的卫生情况.如果对这批饼干全部检验,那么费时费力,等检查完了,这批饼干可能就超过保质期了,再就是会破坏这批饼干的质量,导致无法出售.获取样本的方法是:将这批小包装饼干,放入一个不透明的袋子中,搅拌均匀,然后不放回地摸取(这样可以保证每一袋饼干被抽到的可能性相等),这样就可以得到一个样本.通过检验样本来估计这批饼干的卫生情况.这种抽样方法称为简单随机抽样.(3)一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.最常用的简单随机抽样方法有两种:抽签法和随机数法.提出问题(1)抽签法是大家最熟悉的,也许同学们在做某种游戏,或者选派一部分人参加某项活动时就用过抽签法.例如,高一(2)班有45名学生,现要从中抽出8名学生去参加一个座谈会,每名学生的机会均等.我们可以把45名学生的学号写在小纸片上,揉成小球,放到一个不透明袋子中,充分搅拌后,再从中逐个抽出8个号签,从而抽出8名参加座谈会的学生.请归纳抽签法的定义.总结抽签法的步骤.(2)你认为抽签法有什么优点和缺点?当总体中的个体数很多时,用抽签法方便吗?(3)随机数法是利用随机数表或随机骰子或计算机产生的随机数进行抽样.我们仅学习随机数表法即利用随机数表产生的随机数进行简单随机抽样的方法.怎样利用随机数表产生样本呢?下面通过例子来说明.假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验.利用随机数表抽取样本时,可以按照下面的步骤进行.第一步,先将800袋牛奶编号,可以编为000,001, (799)第二步,在随机数表中任选一个数.例如选出第8行第7列的数7(为了便于说明,下面摘取了附表1的第6行至第10行.)16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5457 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785<799,说明号码785在总体内,将它取出;继续向右读,得到916,由于916>799,将它去掉.按照这种方法继续向右读,又取出567,199,507,…,依次下去,直到样本的60个号码全部取出.这样我们就得到一个容量为60的样本.请归纳随机数表法的步骤.(4)当N=100时,分别以0,3,6为起点对总体编号,再利用随机数表抽取10个号码.你能说出从0开始对总体编号的好处吗?(5)请归纳随机数表法的优点和缺点.讨论结果:(1)一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.抽签法的步骤是:1°将总体中个体从1—N编号;2°将所有编号1—N写在形状、大小相同的号签上;3°将号签放在一个不透明的容器中,搅拌均匀;4°从容器中每次抽取一个号签,并记录其编号,连续抽取n次;5°从总体中将与抽取到的签的编号相一致的个体取出.(2)抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,如果标号的签搅拌得不均匀,会导致抽样不公平.因此说当总体中的个体数很多时,用抽签法不方便.这时用随机数法.(3)随机数表法的步骤:1°将总体中个体编号;2°在随机数表中任选一个数作为开始;3°规定从选定的数读取数字的方向;4°开始读取数字,若不在编号中,则跳过,若在编号中则取出,依次取下去,直到取满为止;5°根据选定的号码抽取样本.(4)从0开始编号时,号码是00,01,02,…,99;从3开始编号时,号码是003,004,…,102;从6开始编号时,号码是006,007,…,105.所以以3,6为起点对总体编号时,所编的号码是三位,而从0开始编号时,所编的号码是两位,在随机数表中读数时,读取两位比读取三位要省时,所以从0开始对总体编号较好.(5)综上所述可知,简单随机抽样有操作简便易行的优点,在总体个数不多的情况下是行之有效的.但是,如果总体中的个体数很多时,对个体编号的工作量太大,即使用随机数表法操作也并不方便快捷.另外,要想“搅拌均匀”也非常困难,这就容易导致样本的代表性差.应用示例例1 某车间工人加工一种轴共100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?分析:简单随机抽样有两种方法:抽签法和随机数表法,所以有两种思路.解法一(抽签法):①将100件轴编号为1,2, (100)②做好大小、形状相同的号签,分别写上这100个号码;③将这些号签放在一个不透明的容器内,搅拌均匀;④逐个抽取10个号签;⑤然后测量这10个号签对应的轴的直径的样本.解法二(随机数表法):①将100件轴编号为00,01,…99;②在随机数表中选定一个起始位置,如取第22行第1个数开始(见教材附录1:随机数表);③规定读数的方向,如向右读;④依次选取10个为68,34,30,13,70,55,74,77,40,44,则这10个号签相应的个体即为所要抽取的样本.点评:本题主要考查简单随机抽样的步骤.抽签法的关键是为了保证每个个体被抽到的可能性相等而必须搅拌均匀,当总体中的个体无差异,并且总体容量较小时,用抽签法;用随机数表法读数时,所编的号码是几位,读数时相应地取连续的几个数字,当总体中的个体无差异,并且总体容量较多时,用抽签法.变式训练1.下列抽样的方式属于简单随机抽样的有____________.(1)从无限多个个体中抽取50个个体作为样本.(2)从1 000个个体中一次性抽取50个个体作为样本.(3)将1 000个个体编号,把号签放在一个足够大的不透明的容器内搅拌均匀,从中逐个抽取50个个体作为样本.(4)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子.(5)福利彩票用摇奖机摇奖.解析:(1)中,很明显简单随机抽样是从有限多个个体中抽取,所以(1)不属于;(2)中,简单随机抽样是逐个抽取,不能是一次性抽取,所以(2)不属于;很明显(3)属于简单随机抽样;(4)中,抽样是放回抽样,但是简单随机抽样是不放回抽样,所以(4)不属于;很明显(5)属于简单随机抽样.答案:(3)(5)2.要从某厂生产的30台机器中随机抽取3台进行测试,写出用抽签法抽样样本的过程.分析:由于总体容量和样本容量都较小,所以用抽签法.解:抽签法,步骤:第一步,将30台机器编号,号码是01,02, (30)第二步,将号码分别写在一张纸条上,揉成团,制成号签.第三步,将得到的号签放入不透明的袋子中,并充分搅匀.第四步,从袋子中依次抽取3个号签,并记录上面的编号.第五步,所得号码对应的3台机器就是要抽取的样本.例2 人们打桥牌时,将洗好的扑克牌随机确定一张为起始牌,这时按次序搬牌时,对任何一家来说,都是从52张牌中抽取13张牌,问这种抽样方法是否是简单随机抽样?解:简单随机抽样的实质是逐个地从总体中随机抽取样本,而这里只是随机确定了起始张,其他各张牌虽然是逐张起牌,但是各张在谁手里已被确定,所以不是简单随机抽样.点评:判断简单随机抽样时,要紧扣简单随机抽样的特征:逐个、不放回抽取且保证每个个体被抽到的可能性相等.变式训练现在有一种“够级”游戏,其用具为四副扑克,包括大小鬼(又称为花)在内共216张牌,参与人数为6人并坐成一圈.“够级”开始时,从这6人中随机指定一人从已经洗好的扑克牌中随机抽取一张牌(这叫开牌),然后按逆时针方向,根据这张牌上的数字来确定谁先抓牌,这6人依次从216张牌中抓取36张牌,问这种抓牌方法是否是简单随机抽样?解:在这里只有抽取的第一张扑克牌是随机抽取的,其他215张牌已经确定,即这215张扑克牌被抽取的可能性与第一张扑克牌可能性不相同,所以不是简单随机抽样.知能训练1.为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是()A.总体是240B.个体C.样本是40名学生D.样本容量是40答案:D2.为了了解所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量答案:C3.一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某一特定个体被抽到的可能性是____________.1答案:104.为了检验某种产品的质量,决定从40件产品中抽取10件进行检查,如何用简单随机抽样抽取样本?解:方法一(抽签法):①将这40件产品编号为1,2, (40)②做好大小、形状相同的号签,分别写上这40个号码;③将这些号签放在一个不透明的容器内,搅拌均匀;④连续抽取10个号签;⑤然后对这10个号签对应的产品检验.方法二(随机数表法):①将40件产品编号,可以编为00,01,02,…,38,39;②在随机数表中任选一个数作为开始,例如从第8行第9列的数5开始,;③从选定的数5开始向右读下去,得到一个两位数字号码59,由于59>39,将它去掉;继续向右读,得到16,将它取出;继续下去,又得到19,10,12,07,39,38,33,21,随后的两位数字号码是12,由于它在前面已经取出,将它去掉,再继续下去,得到34.至此,10个样本号码已经取满,于是,所要抽取的样本号码是16,19,10,12,07,39,38,33,21,34.拓展提升现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数法设计抽样方案?分析:重新编号,使每个号码的位数相同.解:方法一:第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数“9”,向右读.第三步,从数“9”开始,向右读,每次读取三位,凡不在010—600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.第四步,以上这6个号码所对应的6个元件就是所要抽取的对象.方法二:第一步,将每个元件的编号加100,重新编号为110,111,112,…,199,200,…,700. 第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第8行第1个数“6”,向右读.第三步,从数“6”开始,向右读,每次读取三位,凡不在110—700中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到630,163,567,199,507,175.第四步,这6个号码分别对应原来的530,63,467,99,407,75.这些号码对应的6个元件就是要抽取的对象.课堂小结1.简单随机抽样是一种最简单、最基本的抽样方法,简单随机抽样有两种选取个体的方法:放回和不放回,我们在抽样调查中用的是不放回抽样,常用的简单随机抽样方法有抽签法和随机数法.2.抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平,随机数表法的优点与抽签法相同,缺点是当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体容量较小的抽样类型.3.简单随机抽样每个个体入样的可能性都相等,均为Nn ,但是这里一定要将每个个体入样的可能性、第n 次每个个体入样的可能性、特定的个体在第n 次被抽到的可能性这三种情况区分开来,避免在解题中出现错误.作业课本本节练习2、3.设计感想本节教学设计以课程标准的要求为指导,重视引导学生参与到教学中,体现了学生的主体地位.同时,根据高考的要求,适当拓展了教材,做到了用教材,而不是教教材.整体设计教学分析教材通过探究“学生对教师教学的意见”过程,介绍了一种最简单的系统抽样——等距抽样,并给出实施等距抽样的步骤.值得注意的是在教学过程中,适当介绍当nN 不是整数时,应如何实施系统抽样. 三维目标1.理解系统抽样,会用系统抽样从总体中抽取样本,了解系统抽样在实际生活中的应用,提高学生学习数学的兴趣.2.通过自学课后“阅读与思考”,让学生进一步了解虚假广告是淡化总体和抽样方法、强化统计结果来夸大产品的有效性,以提高学生理论联系实际的能力.重点难点教学重点:实施系统抽样的步骤. 教学难点:当nN 不是整数,如何实施系统抽样. 课时安排1课时教学过程导入新课思路1上一节我们学习了简单随机抽样,那么简单随机抽样的特点是什么?简单随机抽样是最简单和最基本的抽样方法,当总体中的个体较少时,常采用简单随机抽样.但是如果总体中的个体较多时,怎样抽取样本呢?教师点出课题:系统抽样.思路2某中学有5 000名学生,打算抽取200名学生,调查他们对奥运会的看法,采用简单随机抽样时,无论是抽签法还是随机数法,实施过程很复杂,需要大量的人力和物力,那么有没有更为方便可行的抽样方法呢?这就是今天我们学习的内容:系统抽样.推进新课新知探究提出问题(1)某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法?(2)请归纳系统抽样的定义和步骤.(3)系统抽样有什么特点?讨论结果:(1)可以将这500名学生随机编号1—500,分成50组,每组10人,第1组是1—10,第二组11—20,依次分下去,然后用简单随机抽样在第1组抽取1人,比如号码是2,然后每隔10个号抽取一个,得到2,12,22, (492)这样就得到一个容量为50的样本.这种抽样方法称为系统抽样.(2)一般地,要从容量为N 的总体中抽取容量为n 的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样.其步骤是:1°采用随机抽样的方法将总体中的N 个个体编号;2°将整体按编号进行分段,确定分段间隔k(k ∈N ,l≤k);3°在第1段用简单随机抽样确定起始个体的编号l (l ∈N ,l≤k );4°按照一定的规则抽取样本.通常是将起始编号l 加上间隔k 得到第2个个体编号(l+k),再加上k 得到第3个个体编号(l+2k),这样继续下去,直到获取整个样本.说明:从系统抽样的步骤可以看出,系统抽样是把一个问题划分成若干部分分块解决,从而把复杂问题简单化,体现了数学转化思想.(3)系统抽样的特点是:1°当总体容量N 较大时,采用系统抽样;2°将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,这时间隔一般为k =[nN ]. 3°预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号.应用示例例1 为了了解参加某种知识竞赛的1 000名学生的成绩,应采用什么抽样方法较恰当?简述抽样过程.解:适宜选用系统抽样,抽样过程如下:(1)随机地将这1 000名学生编号为1,2 ,3, (1000)(2)将总体按编号顺序均分成50部分,每部分包括20个个体.(3)在第一部分的个体编号1,2,3,…,20中,利用简单随机抽样抽取一个号码,比如18.(4)以18为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:18,38,58,…,978,998.点评:系统抽样与简单随机抽样一样,每个个体被抽到的概率都相等,从而说明系统抽样是等概率抽样,它是公平的.系统抽样是建立在简单随机抽样的基础之上的,当将总体均分后对每一部分进行抽样时,采用的是简单随机抽样.变式训练1.下列抽样不是系统抽样的是( )A.从标有1—15号的15个小球中任选3个作为样本,按从小号到大号排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样B.工厂生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验C.搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止D.电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈 分析:C 中,因为事先不知道总体,抽样方法不能保证每个个体按事先规定的概率入样,所以不是系统抽样.答案:C2.某校高中三年级的295名学生已经编号为1,2,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程.分析:按1∶5分段,每段5人,共分59段,每段抽取一人,关键是确定第1段的编号. 解:抽样过程是:(1)按照1∶5的比例,应该抽取的样本容量为295÷5=59,我们把259名同学分成59组,每组5人,第一组是编号为1—5的5名学生,第2组是编号为6—10的5名学生,依次下去,59组是编号为291—295的5名学生;(2)采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编号为l(l≤5);(3)按照一定的规则抽取样本.抽取的学生编号为l+5k(k=0,1,2,…,58),得到59个个体作为样本,如当k=3时的样本编号为3,8,13,…,288,293.例2 为了了解参加某种知识竞赛的1 003名学生的成绩,请用系统抽样抽取一个容量为50的样本.分析:由于501003不是整数,所以先从总体中随机剔除3个个体. 步骤:(1)随机地将这1003个个体编号为1,2,3, (1003)(2)利用简单随机抽样,先从总体中剔除3个个体(可利用随机数表),剩下的个体数 1 000能被样本容量50整除,然后再重新编号为1,2,3, (1000)(3)确定分段间隔.501000=20,则将这1 000名学生分成50组,每组20人,第1组是1,2,3,...,20;第2组是21,22,23,...,40;依次下去,第50组是981,982, (1000)(4)在第1组用简单随机抽样确定第一个个体编号l(l≤20).(5)按照一定的规则抽取样本.抽取的学生编号为l+20k (k=0,1,2,...,19),得到50个个体作为样本,如当k=2时的样本编号为2,22,42, (982)点评:如果遇到nN 不是整数的情况,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除.变式训练1.某校高中三年级有1 242名学生,为了了解他们的身体状况,准备按1∶40的比例抽取一个样本,那么( )A.剔除指定的4名学生B.剔除指定的2名学生C.随机剔除4名学生D.随机剔除2名学生分析:为了保证每名学生被抽到的可能性相等,必须是随机剔除学生,由于401242的余数是2,所以要剔除2名学生.答案:D2.从2 005个编号中抽取20个号码,采用系统抽样的方法,则抽样的分段间隔为( )A.99B.99.5C.100D.100.5答案:C例3 从已编号为1—50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是( )A.5,10,15,20,25B.3,13,23,33,43C.1,2,3,4,5D.2,4,6,16,32分析:用系统抽样的方法抽取到的导弹编号应该为k,k+d,k+2d,k+3d,k+4d,其中d=50/5=10,k 是1到10中用简单随机抽样方法得到的数,因此只有选项B 满足要求.答案:B点评:利用系统抽样抽取的样本的个体编号按从小到大的顺序排起来,从第2个号码开始,每一个号码与前一个号码的差都等于同一个常数,这个常数就是分段间隔.。

相关文档
最新文档