九章算术与圆有关的内容
割圆术——刘徽《九章算术注》
割圆术——刘徽《九章算术注》割圆术(cyclotomic method)所谓“割圆术”,是用圆内接正多边形的周长去无限逼近圆周并以此求取圆周率的方法。
这个方法,是刘徽在批判总结了数学史上各种旧的计算方法之后,经过深思熟虑才创造出来的一种崭新的方法。
中国古代从先秦时期开始,一直是取“周三径一”(即圆周周长与直径的比率为三比一)的数值来进行有关圆的计算。
但用这个数值进行计算的结果,往往误差很大。
正如刘徽所说,用“周三径一”计算出来的圆周长,实际上不是圆的周长而是圆内接正六边形的周长,其数值要比实际的圆周长小得多。
东汉的张衡不满足于这个结果,他从研究圆与它的外切正方形的关系着手得到圆周率。
这个数值比“周三径一”要好些,但刘徽认为其计算出来的圆周长必然要大于实际的圆周长,也不精确。
刘徽以极限思想为指导,提出用“割圆术”来求圆周率,既大胆创新,又严密论证,从而为圆周率的计算指出了一条科学的道路。
在刘徽看来,既然用“周三径一”计算出来的圆周长实际上是圆内接正六边形的周长,与圆周长相差很多;那么我们可以在圆内接正六边形把圆周等分为六条弧的基础上,再继续等分,把每段弧再分割为二,做出一个圆内接正十二边形,这个正十二边形的周长不就要比正六边形的周长更接近圆周了吗?如果把圆周再继续分割,做成一个圆内接正二十四边形,那么这个正二十四边形的周长必然又比正十二边形的周长更接近圆周。
这就表明,越是把圆周分割得细,误差就越少,其内接正多边形的周长就越是接近圆周。
如此不断地分割下去,一直到圆周无法再分割为止,也就是到了圆内接正多边形的边数无限多的时候,它的周长就与圆周“合体”而完全一致了。
按照这样的思路,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.14和 3.1416这两个近似数值。
这个结果是当时世界上圆周率计算的最精确的数据。
刘徽对自己创造的这个“割圆术”新方法非常自信,把它推广到有关圆形计算的各个方面,从而使汉代以来的数学发展大大向前推进了一步。
九年级圆的基础知识点、经典例题及课后习题
圆【知识梳理】1.圆的有关概念和性质(1) 圆的有关概念①圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点为圆心,定长为半径.②弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.③弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.(2)圆的有关性质①圆是轴对称图形;其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.②垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。
上述五个条件中的任何两个条件都可推出其他三个结论。
③弧、半圆、优弧、劣弧:,简称弧.,用符号“⌒”表示,弧:圆上任意两点间的部分叫做圆弧..以CD为端点的弧记为“”,读作“圆弧CD”或“弧CD”。
半圆:直径的两个端点分圆成两条弧,每一条弧叫做半圆..优弧:大于半圆的弧叫做优弧..。
(为了区别优弧和劣弧,优弧用三个字劣弧:小于半圆的弧叫做劣弧..母表示。
)④弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;90”的圆周角所对的弦是直径.⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。
⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧...⑦圆心角:顶点在圆心的角叫做圆心角...⑧弦心距:从圆心到弦的距离叫做弦心距....(3)对圆的定义的理解:①圆是一条封闭曲线,不是圆面;②圆由两个条件唯一确定:一是圆心(即定点),二是半径(即定长)2.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角。
圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边分别和圆相交的角,叫圆周角。
《九章算术》中一些求平面图形面积的题目
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 《九章算术》中一些求平面图形面积的题目《九章算术》中一些求平面图形面积的题目《九章算术》共收集了 246 道应用问题和各种问题的解法,是当时由国家组织力量编纂的官方数学教科书,对我国数学的发展产生了很大影响。
下面从书中选取一些求平面图形面积的题目,仍然采取译述的方式,供五六年级老师和有兴趣的网友参考。
如果有可能的话,以适当的方式有选择地把这些材料介绍给学生,对于扩大学生的视野,培养学生学习数学的兴趣,加强对祖国优秀文化遗产的认识,都是有好处的。
原题 1:又有田广十二步,纵十四步。
问:为田几何?答曰:一百六十八步。
方田术曰:广纵步数相乘得积步。
译述:方田是古代对正方形和长方形的统称。
步是当时的长度单位。
相应的面积单位平方步也简称为步。
又有田广十二步,纵十四步。
1 / 10问:为田几何?有一块长方形地,宽 12 步,长 14 步。
问:它的面积是多少?答曰:一百六十八步。
答案是:168 平方步。
方田术曰:广纵步数相乘得积步。
计算长方形面积的方法是:宽与长相乘得面积。
1214=168(平方步) 原题 2:今有田广七分步之四,纵五分步之三。
问:为田几何?答曰:三十五分步之十二。
乘分术曰:母相乘为法,子相乘为实。
译述:今有田广七分步之四,纵五分步之三。
问:为田几何?有一4步,长5块长方形地,宽73步。
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 问:它的面积是多少?答曰:三十五分步之十二。
《九章算术》的主要内容
不朽的古代数学名著——《九章算术》每当提起中国古代数学,肯定会提到《九章算术》。
《九章算术》是流传至今的我国一部古代数学典籍,根据考证,大约成书于东汉初期,作者姓名不详。
《九章算术》是中国古典数学的一部最重要的经典著作。
它总结了我国先秦至西汉的数学成果,形成以问题为中心的算法体系。
它是我国传统文化的一部分,有着鲜明的特色,对世界数学宝库作出了重要贡献。
我国杰出的古代数学家刘徽于魏景元四年(263年)首次注释《九章算术》;唐初,数学家李淳风于显庆元年(656年)奉命对《九章算术》也作了注释。
刘徽在《九章算术注序》中说:“往昔暴秦焚书,经术散坏,自时厥后,汉北平侯张苍、大司农中丞耿寿昌皆以善算命世。
苍等因旧文之遗残,各称删补。
”可见,在秦朝以前已有算书流传,但因受秦始皇焚书而散失,后来张苍和耿寿昌等收集了旧算书的残篇,进行了删补。
他们删补校订旧算书的目的显然是为了培养行政官吏,或教习官家子弟,以实用为宗旨。
1983年从湖北江陵张家山出土的西汉早年(约公元前180年左右)的竹简算书《算数书》,也是采用问题集的形式,并按算法将问题分类。
其中大部分算法术语,都出现在以后的《九章算术》之中,因此,《算数书》可能是《九章算术》的取材来源之一。
《九章算术》就是在这类算书的基础上,经过多人之手,不断补充、修改、增订而逐步形成的。
由于《九章算术》是我国古代数学教材之一,在民间流传较为广泛,所以,对我国古代数学的影响十分巨大。
《九章算术》对分数、正负数的记载是世界上早而有系统的论述。
这不仅早于欧洲,也比印度的有关记载早五、六世纪。
我国古代虽然没有无理数的明确记载,但是,《九章算术》里早有这一概念的萌芽。
刘徽意识到有一种开不尽方的数,为了近似地表示这种开不尽方的数,便创造了十进制分数。
刘徽十分重视比例算法,当比例算法传到欧洲时,欧洲人对比例算法也很重视,不但称为“黄金算法”,而且往往还把简单的问题化为比例问题去研究。
《九章算术》里提出的方程组的解法是“直除”法。
九年级《圆》经典例题分析总结
《圆》经典例题分析总结经典例题透析1.垂径定理及其应用在圆这一章中,涉及垂径定理的有关知识点很多,如弓形中的有关计算、切线的性质、判定定理等,也是在各地中考中经常出现的一个考点.应用垂径定理可以进行线段的垂直、平分以及弓形面积的计算等.1.某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图所示是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面图;(2)若这个输水管道有水部分的水面宽AB=16cm,水最深的地方的高度为4cm,求这个圆形截面的半径.总结升华:在解答有关圆的问题时,常需要运用图中已知条件寻找线段之间、角之间、弧之间的关系,从中探索出如等腰三角形、直角三角形等信息,从而达到解决问题的目的,此题还可以进一步求出阴影部分的周长或面积等.举一反三:【变式1】“圆材埋壁”是我国古代著名的数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表示为:如图所示,CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD的长为( )A.12.5寸B.13寸C.25寸D.26寸2.圆周角及其应用圆周角与圆心角是本章中最常用的角,在中考中经常出现,一般单独考查它的题目不多,都是隐含在其他题目中.2.如图所示,△ABC内接于⊙O,点D是CA延长线上一点,若∠BOC=120°,∠BAD等于( )A.30°B.60°C.75°D.90°举一反三:【变式1】如图所示,⊙O的内接四边形ABCD中,AB=CD,则图中与∠1相等的角有________________.【变式2】如图所示,已知AB为⊙O的直径,AC为弦,OD∥BC,BC=4cm.(1)说明AC⊥OD;(2)求OD的长.3.切线的性质及判定涉及圆的切线的问题在各地中考中以各种题型出现,主要考查切线的识别方法、切线的特征以及对切线的应用能力,所以应认真理解有关切线的内容,并能用来解答实际问题.3.如图所示,直线MN是⊙O的切线,A为切点,过A的作弦交⊙O于B、C,连接BC,证明∠NAC=∠B.举一反三:【变式1】如图所示,DB切⊙O于点A,∠AOM=66°,则∠DAM=________________.【变式2】如图所示,AB是⊙O的直径,是⊙O的切线,C是切点,过A、B分别作的垂线,垂足分别为E、F,证明EC=CF.4.如图所示,EB、BC是⊙O是两条切线,B、C是切点,A、D是⊙O上两点,如果∠E=46°,∠DCF=32°,那么∠A的度数是________________.答案:99°.解析:由EB=EC,∠E=46°知,∠ECB= 67°,从而∠BCD=180°-67°-32°=81°,在⊙O中,∠BCD与∠A互补,所以∠A=180°-81°=99°.举一反三:【变式1】如图所示,已知在△ABC中,∠B=90°,O是AB上一点,以O为圆心、OB为半径的圆与AB交于点E,与AC切于点D.求证:DE∥OC;4.两圆位置的判定在各地中考试题中,单独考查点与圆、直线与圆、圆与圆的位置关系的题目一般多以选择题、填空题为主,在解答题、探究题中也经常作为主要考查目标,这部分内容不仅考查基础知识,而且考查综合运用能力.5.填空题(1)已知圆的直径为13 cm,圆心到直线的距离为6cm,那么直线和这个圆的公共点的个数是______.(2)两个圆内切,其中一个圆的半径为5,两圆的圆心距为2,则另一个圆的半径是_______________.【变式2】已知两圆的圆心距为3,的半径为1.的半径为2,则与的位置关系为________.【变式3】在平面直角坐标系中如图所示,两个圆的圆心坐标分别是(3,0)和(0,-4),半径分别是和,则这两个圆的公切线有( )A.1条B.2条C.3条D.4条5.弧长的计算及其应用6.如图所示,在正方形铁皮下剪下一个圆形和扇形,使之恰好围成图中所示的一个圆锥模型,设圆的半径为r,扇形半径为R,则圆的半径与扇形半径之问的关系为( )A. B. C. D.6.图形面积的计算及其应用与圆有关的图形面积计算问题有圆的面积、扇形面积、圆柱及圆锥的侧面积与全面积.考查题型以选择题、填空题、解答题为主,考查重点是对有关公式的灵活运用.其中是不规则图形面积的计算,应首先将其转化为规则图形,然后再进行.7.沈阳市某中学举办校园文化艺术节,小颖设计了同学们喜欢的图案“我的宝贝”,图案的一部分是以斜边长为12cm的等腰直角三角形的各边为直径作的半圆,如图所示,则图中阴影部分的面积为( )A. B.72 C.36 D.727.圆与其他知识的综合运用8.如图所示,已知灯塔A的周围7海里的范围内有暗礁,一艘渔船在B处测得灯塔A在北偏东60°的方向,向正东航行8海里到达C处后,又测得该灯塔在北偏东30°的方向,渔船如果不改变方向,继续向东航行,有没有触的礁危险?思路点拨:若渔船在向东航行的过程中的每一位置到A点的距离都大于7海里,则不会进入危险区域,所以只要计算航线上到A点最近的点与A点的距离.解:过点A作AD⊥BC交直线BC于D,设AD=x海里.∵∠ABD=90°-60°=30°,∠ACD=90°-30°=60°,∴AB=2x,AC=2CD.∴,,∴,.∵,∴,.即.这就是说当渔船航行到点D时,在以A为圆心、以7海里为半径的圆形暗礁内.所以,若不改变航向继续向正东航行,有触礁的危险.总结升华:解这类实际问题,只需求其最小值或最大值,与已知数据进行比较,从而得出正确的结论.9.小明要在半径为1 m、圆心角为60°的扇形铁皮中剪取一块面积尽可能大的正方形铁皮,小明在扇形铁皮上设计如图1和图2所示的甲、乙两种剪取方案,请你帮小明计算一下,按甲、乙两种方案剪取所得的正方形的面积,并估算哪个正方形的面积较大.(估算时取1.73,结果保留两个有效数字).思路点拨:要比较甲、乙两方案剪取的正方形的面积大小,关键在于求出边长.解:方案甲:如图,连接OH,设EF=x,则OE=2OF,,∴.在Rt△OGH中,OH2=GH2+OG2,即,解得.方案乙:如图所示,作于M,交于N,则M、N分别是和的中点,,连接.设,则,在中,,即,∴.若取,则,.∴x2>y2,即按甲方案剪得的正方形面积较大.总结升华:此类问题是生活中的一个实际问题,解决此类问题时,应先将实际问题转化为数学问题.10.已知射线OF交⊙O于B,半径OA⊥OB,P是射线OF上的一个动点(不与O、B重合),直线AP交⊙O于D,过D作⊙O的切线交射线OF于E.(1)如图所示是点P在圆内移动时符合已知条件的图形,请你在图中画出点P在圆外移动时符合已知条件的图形.(2)观察图形,点P在移动过程中,△DPE的边、角或形状存在某些规律,请你通过观察、测量、比较写出一条与△DPE的边、角或形状有关的规律.(3)点P在移动过程中,设∠DEP的度数为x,∠OAP的度数为y,求y与x的函数关系式,并写出自变量x的取值范围.思路点拨:如图所示,连接OD,因为DE是⊙O的切线,故∠ODE=90°,又OA=OD,故∠A=∠ODA,∠OAP+∠OPD=90°,∠ODA+∠ADC=90°,故∠OPD=∠ADC=∠EDP,△DEP是等腰三角形.解:(1)在BF上取点P,连AP交⊙O于点D,过D作⊙O切线,交OF于E,如图即为所求.(2)∠EDP=∠DPE,或ED=EP或△PDE是等腰三角形.(3)根据题意,得△PDE是等腰三角形,∴∠EDP=∠DPE,∴,在Rt△OAP中,,∴,自变量x的取值范围是且.。
关于刘徽的割圆术(终审稿)
关于刘徽的割圆术文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-关于刘徽的割圆术关键词九章算术, 刘徽, 割圆术, 圆周率1 刘徽割圆术的内容刘徽的割圆术, 是刘徽在为《九章算术》第一卷方田中的圆田术所作的注中提出来的, 包括如下内容:1) 刘徽首先解释了圆田术求圆面积的方法, 然后指出“周三径一”是不对的, 他说: 以半周乘半径而为圆幂, “此以周径谓至然之数, 非周三径一之率也. 周三者, 从其六觚之环耳, 以推圆规多少之较, 乃弓之与弦也. ”2) 刘徽提出用割圆内接正六边形为正十二边形等步骤, 使圆内接正多边形的面积逐次逼近圆的面积. 进而又指出: “割之弥细, 所失弥少. 割之又割, 以至于不可割, 则与圆周合体而无失矣. 觚面之外, 又有余径. 以面乘余径则幂出弧表. 若夫觚之细者, 与圆合体, 则表无余径. 表无余径, 则幂不外出矣. ”3) 刘徽详述了割圆的算法, 例如, 关于割圆内接正六边形为正十二边形, 他说: “令半径一尺为弦, 半面五寸为勾, 为之求股. 以勾幂二十五寸减弦幂, 余七十五寸, 开方除之, 下至秒忽, 又一退法求其微数, 微数无名者以为分子, 以下为分母, 约为五分忽之二, 故得股八寸六分六厘二秒五忽五分忽之二. 以减半径, 余一寸三分三厘九毫七秒四忽五分忽之三, 谓之小股, 为之求弦, 其幂二千六百七十九亿四千九百一十九万三千四百四十五忽, 余分弃之, 开方除之, 即十二觚之一面也. ”4) 刘徽在计算了圆内接正一百九十二边形的面积后, 对圆面积进行了大胆推断, 从而获得了当时世界上最精确的圆周率的值. 他说: “差幂六百二十五分寸之一百五, 以十二觚之幂为率消息, 当取此分寸之三十六以增于一百九十二觚之幂( 即三百一十四寸六百二十五分寸之六十四) , 以为圆幂三百一十四寸二十五分寸之四. ”5) 刘徽验证了自己获得的结果的正确性, 为此, 他继续用割圆术, 直到求出圆内接正三千零七十二边形的面积. 他说: “当求一千五百三十六觚之一面, 得三千七十二觚之幂,而裁其微分, 数亦宜然, 重其验耳. ”2 刘徽割圆术的历史地位2. 1 古希腊已有割圆思想古希腊巧辩学派的学者Ant iphon ( 约公元前五世纪) 提出用边数不断增加的圆内接正多边形来接近圆, 并提出把圆看作是无穷多边的正多边形; 另一个古希腊巧辩学派的学者Br yso n( 约公元前五世纪) 类似地提出用边数不断增加的圆外切正多边形来接近圆; 而古希腊的一位大数学家Eudox us( 约公元前四世纪) 则依据这一思想创立了穷竭法这种着名的获取定理和证明定理的方法.虽然刘徽不是人类历史上第一个提出割圆思想的人, 但是, 他没有简单地重复任何人, 而是独立地、完整地、创造性地提出了割圆术, 和古希腊的数学家们一样, 刘徽的思想同样是辉煌的.2. 2 刘徽用割圆术获得了当时世界上最精确的圆周率值古希腊的Ant iphon, Br yso n, Eudo xus 虽然先于刘徽提出割圆思想, 但他们都没有用它去求圆周率的值. 然而, Archimedes( 公元前287~公元前212年) 继承了割圆思想, 并根据圆周长大于圆内接正多边形周长而小于圆外切正多边形周长, 得到圆周率P满足223/ 71 < P< 22/ 7 的结果. 古希腊的Ptolemy( 公元~168年) 并没有专门研究圆周率的值, 他依据他的定理( Ptolemy 定理) 提出一种特殊的割圆技巧,求出了各圆心角所对的弦长的六十进制数值, 其中1/ 2度圆心角所对弦长的数值为31′2 5″,相当于求得P的值为P≈377/ 120. 这是刘徽以前有据可考的圆周率的最好结果.我国古代很早就知道“周三径一”误差很大, 需要改进, 不少人在这方面作过工作:汉代的刘歆( 约公元前50~公元23年) 所用圆周率的值为P≈3. 1547;汉代的张衡( 公元78~139年) 所用圆周率的值为P≈3. 1623; 三国的王蕃( 公元219~257年) 所用圆周率的值为P≈3. 1556. 这些P的近似值都不如Archimedes 和Ptolemy 的结果好, 并且都未提供出正确的算法, 缺乏理论根据.而刘徽根据他所提出的割圆术, 运用勾股定理, 设计出一个完整的求圆周率P近似值的算法.设n= 6 ( 术曰: 割六觚以为十二觚) , 又设r= 1, 则有s= 1( 术曰: 置圆径二尺, 半之为一尺, 即六觚之面也) , 算法步骤如下:1 设弦为r , 勾为s/ 2, 求股, 赋予a( 此为小股, 术曰: 令半径为弦,半面为勾, 为之求股) ;o将r - a 赋予b( 此为余径, 术曰: 觚面之外, 又有余径, 又曰: 以减半径, 谓之小股) ;设勾仍为s/ 2, 股为b, 求弦, 赋予s( 实为圆内接正2n 边形的边长, 术曰: 为之求小弦, 即十二( 2n) 觚之一面也) ;求S= ns 圆周率的近似值( 实为圆内接正2n 边形的半周长, 亦为圆内接正4n 边形的面积, 术曰: 得二十四( 4n) 觚之幂) ;将2n 赋予向1 .上述算法为计算出更精确的圆周率值奠定了基础. 刘徽所获得的“圆幂三百一十四寸二十五分寸之四”,即P≈3. 1416, 这是当时世界上最精确的圆周率的值.顺便指出, 祖冲之( 公元429~500年) 研究过刘徽的割圆术, 再加上自己的创造, 他获得了当时世界上最精确的圆周率的值: 3. 1415926 < P< 3. 1415927. 此外, 他还用最佳近似分数给出所谓疏率和密率: P≈22/ 7, 这一结果与Archimedes的上限结果相同; P≈355/ 113, 这一结果在西方迟至1573年才由Otho 重新获得.2. 3 在中国刘徽首次比较准确地描述了极限概念在中国战国时代的着作《庄子》中记录了名家惠施的话: “一尺之棰, 日取其半, 万世不竭. ”这段话已经有了极限思想的雏形. 但名家所表现出的极限思想是不自觉的、模糊的. 名家的目的仅仅是为了在辩论中强调名词概念的相对性, 因而不可能形成数学上的清晰的极限概念.但是, 刘徽在割圆术中比较准确地描述了极限概念. 他说: “割之弥细, 所失弥少. 割之又割, 以至于不可割, 则与圆周合体而无失矣. ”这明确地肯定了limS= P. 这里S是圆内接正2n 边形的半周长, 亦为圆内接正4n 边形的面积.他又说: “觚面之外, 又有余径. 以面乘余径则幂出弧表. ”这表明刘徽实际上建立了不等式S < P< S+ e, 其中e= S- S , 此即刘徽所说的“差幂”.刘徽的这一不等式明显地优于Archimedes 的不等式, 这是因为: 第一, Archimedes 既要用到圆内接正多边形,也要用到圆外切正多边形, 而刘徽用“差幂”,只需要用圆内接正多边形, 可以减少大约一半运算次数; 第二, 由于S 等于圆内接正4n 边形的半周长, 并且容易证明, S+ e小于圆外切正4n 边形的半周长, 因而, 刘徽的这一不等式比Archimedes 的不等式更精确. 刘徽显然和Archimedes 一样, 已经意识到这里存在类似夹逼定理这样的极限性质, 由此既可以推断极限的存在, 还可以确定极限值各数位上的准确的有效数字. 刘徽正是这样做的, 他用圆内接正一千五百三十六边形和圆内接正三千零七十二边形的面积, 依据他的不等式, 验证了他的结果直到第四位小数都是正确的.刘徽接着说: “觚之细者, 与圆合体, 则表无余径, 表无余径, 则幂不外出矣. ”他正是根据这一点, 解释了圆田术求圆面积的方法( 半周半径相乘得积步) . 刘徽的解释方法, 与Eudox us 证明圆面积之比等于半径平方比的穷竭法如出一辙.3 刘徽割圆术的局限性刘徽的极限概念是不彻底的刘徽的割圆术虽然比较准确地描述了极限概念, 而且, 很可能进行了真正的极限运算, 但刘徽的数学素养还不足以完整地描述这个无限的趋向过程. 他采用了“割之又割, 以至于不可割, 则与圆周合体而无失矣”,“觚之细者, 与圆合体, 则表无余径”等绝对的、不准确的言词. 实际上, 刘徽的思想陷入了矛盾之中, 一方面, 他像惠施那样意识到割圆的过程是无限的, 是万世不竭的, 另一方面, 他又竭力回避无限, 不愿意正视无限, 相信总有“不可割”,“表无余径”,“幂不外出”,“与圆周合体而无失”之时. 这就足以说明刘徽的极限概念是不彻底的. 事实上, 我国古代还有不少学者虽具有极限思想的雏形, 但在描述中都毫无例外地不得不采用绝对的、不准确的言词. 极限概念的不彻底, 限制了刘徽对极限概念的挖掘和应用, 也限制了刘徽在数学上的创造性. 纵观刘徽在数学上的工作可以看出, 虽然他在圆周率的计算等方面取得了令世人瞩目的成果, 但是, 刘徽在整个数学史上的地位,则不可能超过Ar chimedes 等人.参考文献1 刘徽注. 九章算术. 上海: 上海古籍出版社, 19902 Morris Kl ine 着; 张理京, 张锦炎译. 古今数学思想. 上海: 上海科学技术出版社, 19793 How ard Eves . An In tr od uct ion to the His tory of Mathemat ics. New York: Saunders Coll ege Pub lish ing, 19834 李俨. 中算史论丛. 北京: 中国科学院出版, 19545 钱宝琮. 中国数学史. 北京: 科学出版社, 19816 邓建中, 葛仁杰, 程正兴. 计算方法. 西安: 西安交通大学出版社, 19857 王乃信,王树林,西北农业大学学报,1997年8月。
割圆术――刘徽《九章算术注》
割圆术——刘徽《九章算术注》割圆术(cyclotomic method)所谓“割圆术”,是用圆内接正多边形的周长去无限逼近圆周并以此求取圆周率的方法。
这个方法,是刘徽在批判总结了数学史上各种旧的计算方法之后,经过深思熟虑才创造出来的一种崭新的方法。
中国古代从先秦时期开始,一直是取“周三径一”(即圆周周长与直径的比率为三比一)的数值来进行有关圆的计算。
但用这个数值进行计算的结果,往往误差很大。
正如刘徽所说,用“周三径一”计算出来的圆周长,实际上不是圆的周长而是圆内接正六边形的周长,其数值要比实际的圆周长小得多。
东汉的张衡不满足于这个结果,他从研究圆与它的外切正方形的关系着手得到圆周率。
这个数值比“周三径一”要好些,但刘徽认为其计算出来的圆周长必然要大于实际的圆周长,也不精确。
刘徽以极限思想为指导,提出用“割圆术”来求圆周率,既大胆创新,又严密论证,从而为圆周率的计算指出了一条科学的道路。
在刘徽看来,既然用“周三径一”计算出来的圆周长实际上是圆内接正六边形的周长,与圆周长相差很多;那么我们可以在圆内接正六边形把圆周等分为六条弧的基础上,再继续等分,把每段弧再分割为二,做出一个圆内接正十二边形,这个正十二边形的周长不就要比正六边形的周长更接近圆周了吗?如果把圆周再继续分割,做成一个圆内接正二十四边形,那么这个正二十四边形的周长必然又比正十二边形的周长更接近圆周。
这就表明,越是把圆周分割得细,误差就越少,其内接正多边形的周长就越是接近圆周。
如此不断地分割下去,一直到圆周无法再分割为止,也就是到了圆内接正多边形的边数无限多的时候,它的周长就与圆周“合体”而完全一致了。
按照这样的思路,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.14和3.1416这两个近似数值。
这个结果是当时世界上圆周率计算的最精确的数据。
刘徽对自己创造的这个“割圆术”新方法非常自信,把它推广到有关圆形计算的各个方面,从而使汉代以来的数学发展大大向前推进了一步。
重难点 圆中的计算及其综合专项 中考数学
重难点 圆中的计算及其综合考点一:圆中的角度计算圆中角度的相关考点主要是圆周角定理和圆心角定理,这两个定理都有对应推论,考察难度不大,题型基本以选择、填空题为主,所以重点是要把这两个定理及其推论熟练掌握即可!题型01 圆中常见的角度计算易错点:圆中角度定理都有一个大前提——在同圆或等圆中,特别是一些概念性选择题,没有这个前提的话,对应结论是不正确的。
解题大招01:圆中角度计算口诀——圆中求角度,同弧或等弧+直径所对圆周角是90度圆心角定理、圆周角定理以及其推论为圆中角的计算提供了等量关系,圆中的等角也是解决角度问题中常见的转化关系,所以特别要注意同弧或等弧所对的圆周角相等,以及直径所对圆周角=90°的固定关系解题大招01:圆中求角度常用的其他规律:圆内接四边形的一个外角=其内对角折叠弧过圆心→必有30°角以等腰三角形的腰长为直径的圆→必过底边中点圆中出现互相垂直的弦,常作两弦心距→必有矩形(当弦相等,则得正方形)【中考真题练】1.(2023•河南)如图,点A,B,C在⊙O上,若∠C=55°,则∠AOB的度数为( )A.95°B.100°C.105°D.110°2.(2023•吉林)如图,AB,AC是⊙O的弦,OB,OC是⊙O的半径,点P为OB上任意一点(点P不与点B重合),连接CP.若∠BAC=70°,则∠BPC的度数可能是( )A.70°B.105°C.125°D.155°3.(2023•枣庄)如图,在⊙O中,弦AB,CD相交于点P.若∠A=48°,∠APD=80°,则∠B的度数为( )A.32°B.42°C.48°D.52°4.(2023•眉山)如图,AB切⊙O于点B,连结OA交⊙O于点C,BD∥OA交⊙O于点D,连结CD,若∠OCD=25°,则∠A的度数为( )A.25°B.35°C.40°D.45°5.(2023•湖北)如图,在△ABC中,∠ACB=70°,△ABC的内切圆⊙O与AB,BC分别相切于点D,E,连接DE,AO的延长线交DE于点F,则∠AFD= .【中考模拟练】1.(2024•连云区一模)如图,正五边形ABCDE内接于⊙O,点P是劣弧上一点(点P不与点C重合),则∠CPD=( )A.45°B.36°C.35°D.30°2.(2024•岱岳区一模)如图,AB是⊙O的直径,点D是的中点,∠BAC=40°,则∠ACD的度数是( )A.40°B.25°C.40°.D.30°3.(2024•甘井子区校级一模)如图,在⊙O中,OA、OB、OC为半径,连接AB、BC、AC.若∠ACB=53°,∠CAB =17°,则∠OAC 的度数为( )A .10°B .15°C .20°D .25°4.(2024•连云区一模)如图,一块直角三角板的30°角的顶点P 落在⊙O 上,两边分别交⊙O 于A ,B 两点,连结AO ,BO ,则∠AOB 的度数 °.5.(2024•新城区模拟)如图,在△ABC 中,∠B =70°,⊙O 是△ABC 的内切圆,M ,N ,K 是切点,连接OA ,OC .交⊙O 于E ,D 两点.点F 是上的一点,连接DF ,EF ,则∠EFD 的度数是 .题型02 “知1得4”模型的常见题型解题大招:圆中模型“知1得4”由图可得以下5点:①AB=CD;②⋂⋂=CD AB ;③OM=ON;④F E ∠=∠;⑤COD AOB ∠=∠;以上5个结论,知道其中任意1个,剩余的4个都可以作为结论使用。
《九章算术》中的几何部分
数学史话《九章算术》是一部现有传本中最古老的中国数学经典著作.书中收集了二百四十六个应用问题和各个问题的解法,分别隶属于方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股九章.现在拟就问题的性质分成算术、几何、代数三类,介绍全书的主要内容.下面主要讨论《九章算术》中的几何部分.一、面积和体积计算面积和体积的方法起源于春秋时期,从有按亩收税的制度后,田地面积的量法、算法就成为古代算术的重要组成部分.所以《九章算术》以方田章为第一章.有些古代建筑的基地是圆形的,储藏粮食的囤大多也是圆形的,随着这些实际需要,有关圆面积的计算方法应运而生,因而方田章内有圆田、环田、弧田等问题的解法.建筑城墙、开掘沟渠等一切重大工程都需要用到计算体积的方法,所以商功章也是《九章算术》中重要的一章.方田、商功两章中,除了有关圆面积的部分只能算出比较粗糙的近似结果外,一切与直线有关的图形的面积或体积的量法都是正确的.古代数学家习惯借用长度的单位名称来表示面积或体积的单位.例如王莽铜斛的铭文“幂一百六十二寸,深一尺,积一千六百二十寸,容十斗”.实际上,铜斛的剖面积是162方寸,体积是1620立方寸,铭文中用“寸”字代替了“方寸”和“立方寸”两个单位名称.方田章中的“方田术”说:“广从步数相乘得积步.”这里的“方田”是指长方形的田,或是长方形的面积.“广”是长方形的底,“从”读作“纵”,是指长方形的高.术文的意思是,长方形的面积等于底乘高.“步”是长度的单位,也借用了面积的单位(方步).三角形的田叫做圭田.“圭田术”说:“半广以乘正从.”这里的“正从”,明确指出了高是与底边垂直的.梯形的田叫做“箕田”.设梯形的上、下底为a 1、a 2,高为h ,则面积等于12(a 1+a 2)h .“圆田术”说:“半周、半径相乘得积步.”该理论是正确的.但用“径一周三”作为周径的比率,由此得出的圆的面积是不够精密的.“环田术”说:“并中、外周而半之,以径乘之为积步.”这里的“径”是中周与外周之间的最短距离,是中、外周半径的差.设r 中周和外周的半径,则圆环形的面积为πr 12-πr 22=12⋅(2πr 2+2πr 1)(r 2-r 1).弓形的田叫做“弧田”.“弧田术”说:“以弦乘矢,矢又自乘,并之,二而一.”设弓形的弦长为c ,矢高为V ,则其面积为A =12(cV +V 2).这是一个根据经验得来的公式,由此算出来的面积的近似值不很精密.商功章的第1题是:“今有穿地积一万尺,问为坚、壤各几何.”在后面的许多问题中还提到了按照季节每个工作日规定的土方数,来计算某项工程的人工数量.计算筑城墙、开沟渠等土方的方法是:如果剖面都是相等的梯形、它的上、下底广是a 1、a 2,高或深是h ,工程的总长是l .那么这一段的土方是V =12(a 1+a 2)hl .正方形柱体叫方堢壔.设a 为方边,h 为高,则其体积等于a 2h .正圆柱体叫圆堢壔.若圆周是p ,则体积等于112p 2h.这里用3作圆周率进行计算.正方锥体叫“方锥”,它的体积是13a 2h .正圆锥体叫“圆锥”,它的体积是136p 2h .“方亭”是平截头的正方锥体.设a 1、a 2为上、下方边的长,h 为截高,则体积为13(a 21+a 22+a 1a 2)h .圆亭是平截头的正圆锥体,它的体积是136(p 21+p 22+p 1p 2)h 、其中p 1、P 2为上、下圆的周长,h 为截高.“堑堵”是两个底面为直角三角形的正柱体.设底面直角旁的两边为a 和b ,柱体的高为h ,则体积等于12abh .“阳马”是底面为长方形,有一棱与底面垂直的锥体,它的体积是13abh.“鳖臑”是底面为直角三角形,有一棱与底面垂直的锥体,它的体积是16abh .楔形体的三个侧面不是长方形而是梯形的叫做“羡除”.设一个梯形侧面的上、下广是a 1、a 2,高是h ,其他两个梯形侧面的公共边长为a 3,这一边到第一个梯形侧面的垂直距离是l ,则其体积为V =16(a 1+a 2+a 3)hl .“刍童”是上、下底面都是长方形的棱台体.设上、下底面58数学史话的面积分别为a 1×b 1,a 2×b 2,高为h ,则体积为V =16[(2a 1+a 2)b 1+(2a 2+a 1)b 2]h .二、勾股勾股章为《九章算术》的第九章,包含二十四个问题的解法.现在就问题的不同性质分成三组,介绍如下:1.从第1题到第14题都是利用勾股定理来求解的应用问题.设勾股形直角旁的两边为勾a 和股b ,对边为弦c ,则勾股定理是a 2+b 2=c 2.西汉时期的《周髀算经》中记载了利用勾股定理解决太阳在正东西方向上的距离问题.此后数学家又由勾股定理出发,导出了几个关于勾、股、弦的关系式,用来解决日常生活中的几何问题.《九章算术》中重点介绍这些问题的解法.例如,第6题:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深葭长各几何.”如图1,在直角三角形ABC 内,已知a =5尺,c -b =1尺,用关系式b =a 2-(c -b )22(c -b )得出b =12尺,c =13尺.图1图2第9题:“今有圆材埋在壁中不知大小.以锯锯之,深一寸,锯道长一尺.问径几何.”其解法为:如图2,在直角三角形ABC 中,已知a =5寸,c -b =1寸,由恒等式c +b =a 2c -b可得出c +b =25寸,故圆材径2c =25+1=26寸.第11题:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何”即已知b -a =68寸,c =l00寸.其解法是:由关系式12(b +a )=可得12(b +a )=62,则b =96寸,a =28寸.第12题:“今有户不知高、广,竿不知长短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何.”已知c -a =4尺,c -b =2尺.因为a +b -c =2(c -a )(c -b )=4尺,所以a =6尺,b =8尺、c =10尺.2.第15题:“今有勾五步,股十二步,问勾中容方几何”,这是一个直角三角形内容正方形问题,文中指出了内容正方形边长等于aba +b.第16题“今有勾八步,股十五步,问勾中容圆,径几何”,是一个直角三角形内切圆问题,文中指出了内切圆径等于2aba +b +c.这两个公式都是用图形的面积来证明的.3.从第17题到第24题共8题,都是测量问题.求解这几个问题都要利用相似直角三角形对应边成比例的原理,这可能是东汉初年“九数”中的“旁要”术.清代的孔继涵说:“旁要云者,不必实有是形,可自旁假设要(读平声)取之”.勾股章中最后的8个问题确是从旁要取进行求解的.例如,第17题:“今有邑方二百步,各中开门.出东门十五步有木,问出南门几何步而见木.”如图3,已知AC =AD =100步,CB =15步,求DE .由题意可知,DE =AC ×AD CB =100215=66623.第22题:“有木去人不知远近.立四表相去各一丈,令左两表与所望参相直.从后右表望之,入前右表三寸.问木去人儿何.”如图4,已知BC =CD =100寸,ED =3寸,由题意知BP =CD ×BC ED ,则BP =10023=333313寸=33丈3尺313寸.图3图4第23题:“有山居木西,不知其高.山去木五十三里,木高九丈五尺.人立木东三里,望木末适与山峰斜平.人目高七尺,问山高几何.”如图5,已知RB =53里,CA =3里,CB =95-7=88尺,EB =95尺,计算可得QP =CB ×RB CA +EB =88×533+95=1649尺.图5——摘自《中国数学史》59。
(中考考点梳理)与圆有关的计算-中考数学一遍过
考点19 与圆有关的计算一、正多边形的有关概念正多边形中心:正多边形的外接圆的圆心叫做这个正多边形的中心.正多边形半径:正多边形外接圆的半径叫做正多边形半径.正多边形中心角:正多边形每一边所对的圆心角叫做正多边形中心角.正多边形边心距:正多边形中心到正多边形的一边的距离叫做正多边形的边心距.二、与圆有关的计算公式1.弧长和扇形面积的计算扇形的弧长l=π180n r;扇形的面积S=2π360n r=12lr.2.圆锥与侧面展开图(1)圆锥侧面展开图是一个扇形,扇形的半径等于圆锥的母线,扇形的弧长等于圆锥的底面周长.(2)若圆锥的底面半径为r,母线长为l,则这个扇形的半径为l,扇形的弧长为2πr,圆锥的侧面积为S圆锥侧=12ππ2l r rl⋅=.圆锥的表面积:S圆锥表=S圆锥侧+S圆锥底=πrl+πr2=πr·(l+r).在求不规则图形的面积时,注意利用割补法与等积变化方法归为规则图形,再利用规则图形的公式求解.考向一正多边形与圆任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.典例1 如图,已知⊙O的周长等于8π cm,则圆内接正六边形ABCDEF的边心距OM的长为A.2 cm B.cmC.4 cm D.cm【答案】B【点睛】本题考查了正多边形和圆、正六边形的性质、等腰三角形的判定与性质;熟练掌握正六边形的性质是解决问题的关键.1.若一个正多边形的一个外角为60°,则它的内切圆半径与外接圆半径之比是__________.2.如图,正方形ABCD的外接圆为⊙O,点P在劣弧CD上(不与C点重合).(1)求∠BPC的度数;(2)若⊙O的半径为8,求正方形ABCD的边长.考向二弧长和扇形面积1.弧长公式:π180n Rl=;2.扇形面积公式:2π360n RS=扇形或12S lR=扇形.典例2 时钟的分针长5 cm ,经过15分钟,它的针尖转过的弧长是 A .254π cm B .152π cm C .52π cm D .512π cm 【答案】C【解析】∵分针经过60分钟,转过360°,∴经过15分钟转过360°×1560=90°,则分针的针尖转过的弧长是l C .学科=网 典例3 小明用如图所示的扇形纸片折叠成一个圆锥的侧面,已知圆锥的母线长为5 cm ,扇形的弧长是6πcm ,那么这个圆锥的高是A .4 cmB .6 cmC .8 cmD .3 cm【答案】A【解析】设圆锥的底面半径是r ,则2πr =6π,解得:r =3cm ). 【点睛】本题主要考查圆锥侧面展开图的计算.用到的知识点:圆锥的侧面展开图是一个扇形,扇形的弧长等于圆锥底面的周长,扇形的半径是圆锥的母线长.3.已知扇形的圆心角为60°,半径长为12,则扇形的面积为 A .34π B .2π C .3π D .24π4.如图1,圆锥底面圆半径为1,母线长为4,图2为其侧面展开图.(1)求阴影部分面积(π可作为最后结果);(2)母线SC 是一条蜜糖线,一只蚂蚁从A 沿着圆锥表面最少需要爬多远才能吃到蜜糖?1,则该圆的内接正六边形的边心距是A.2B.1C D2.如图,正方形ABCD内接于⊙O,AB,则 AB的长是A.πB.32πC.2πD.12π3.圆锥的主视图与左视图都是边长为4的等边三角形,则圆锥的侧面展开图扇形的圆心角是A.90° B.120° C.150° D.180°4.已知半径为5的⊙O是△ABC的外接圆.若∠ABC=25°,则劣弧 AC的长为A.25π36B.125π36C.25π18D.5π365.如图,ABCDEF为⊙O的内接正六边形,AB=a,则图中阴影部分的面积是A .2π6aB .26π(a C 2D .23π(a 6.如图,在ABC △中,90ACB ∠=︒,30A ∠=︒,4AB =,以点B 为圆心,BC 长为半径画弧,交AB于点D ,则 CD的长为A .1π6B .1π3C .2π3D 7.如图,AB 是圆锥的母线,BC 为底面半径,已知BC =6 cm ,圆锥的侧面积为15π cm 2,则sin ∠ABC的值为A .34B .35C .45D .538.如图,在正方形ABCD 中,AB =12,点E 为BC 的中点,以CD 为直径作半圆CFD ,点F 为半圆的中点,连接AF ,EF ,图中阴影部分的面积是A .18+36πB .24+18πC .18+18πD .12+18π9.如图,从一块直径为2m 的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为A .2πm 2B 2mC .2πmD .22πm10.如图,在⊙O 的内接四边形ABCD 中,AB AD =,120C ∠=︒,点E 在弧AD 上.若AE 恰好为⊙O 的内接正十边形的一边, DE的度数为__________.11cm ,其侧面展开图的圆心角为120°,则圆锥的母线长是__________cm . 12.用一块圆心角为216︒的扇形铁皮,做一个高为40cm 的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是__________cm .13.如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则∠AFE 的度数为__________.14.如图,正六边形ABCDEF 的边长为1,以点A 为圆心,AB 的长为半径,作扇形ABF ,则图中阴影部分的面积为__________(结果保留根号和π).15.如图1,作∠BPC 平分线的反向延长线PA ,现要分别以∠APB ,∠APC ,∠BPC 为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC 为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而902=45是360°(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是__________;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是__________.16.如图,AB是⊙O的弦,BC切⊙O于点B,AD⊥BC,垂足为D,OA是⊙O的半径,且OA=3.(1)求证:AB平分∠OAD;(2)若点E是优弧AEB上一点,且∠AEB=60°,求扇形OAB的面积(计算结果保留π).17.已知:如图,AB是⊙O的直径,AB=4,点F,C是⊙O上两点,连接AC,AF,OC,弦AC平分∠FAB,∠BOC=60°,过点C作CD⊥AF交AF的延长线于点D,垂足为点D.(1)求扇形OBC的面积(结果保留π);(2)求证:CD是⊙O的切线.学-科网18.已知:如图,以等边△ABC的边BC为直径作⊙O,分别交AB,AC于点D,E,过点D作DF⊥AC交AC于点F.(1)求证:DF是⊙O的切线;(2)若等边△ABC的边长为8,求由 DE、DF、EF围成的阴影部分面积.19.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点D作DF⊥AC于点F.(1)若⊙O的半径为3,∠CDF=15°,求阴影部分的面积;(2)求证:DF是⊙O的切线;(3)求证:∠EDF=∠DAC.20.如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.21.如图,AB 是⊙O 的直径,AM 和BN 是⊙O 的两条切线,E 为⊙O 上一点,过点E 作直线DC 分别交AM ,BN 于点D ,C ,且CB =CE . (1)求证:DA =DE ;(2)若AB =6,CD1.(2018·益阳)如图,正方形ABCD 内接于圆O ,AB =4,则图中阴影部分的面积是A .4π16-B .8π16-C .16π32-D .32π16-2.(2018·山西)如图,正方形ABCD 内接于⊙O ,⊙O 的半径为2,以点A 为圆心,以AC 长为半径画弧交AB 的延长线于点E ,交AD 的延长线于点F ,则图中阴影部分的面积为A .4π-4B .4π-8C .8π-4D .8π-83.(2018·抚顺)如图,AB 是⊙O 的直径,CD 是弦,∠BCD =30°,OA =2,则阴影部分的面积是A .π3B .2π3C .πD .2π4.(2018·十堰)如图,扇形OAB 中,∠AOB =100°,OA =12,C 是OB 的中点,CD ⊥OB 交 AB 于点D ,以OC 为半径的 CE交OA 于点E ,则图中阴影部分的面积是A .B .C .D .5.(2018·盘锦)如图,一段公路的转弯处是一段圆弧 AB ,则 AB 的展直长度为A .3π mB .6π mC .9π mD .12π m6.(2018·广安)如图,已知⊙O 的半径是2,点A 、B 、C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分面积为A .23π- B .13πC .43π- D .43π7.(2018·钦州)如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB =2,则莱洛三角形的面积(即阴影部分面积)为A .π+B .π-C .2πD .2π-8.(2018·成都)如图,在ABCD 中,60B ∠=︒,C 的半径为3,则图中阴影部分的面积是A .πB .2πC .3πD .6π9.(2018·湖州)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣: ①将半径为r 的⊙O 六等分,依次得到A ,B ,C ,D ,E ,F 六个分点; ②分别以点A ,D 为圆心,AC 长为半径画弧,G 是两弧的一个交点; ③连接OG . 问:OG 的长是多少? 大臣给出的正确答案应是A r B.()rC.()r D r10.(2018·温州)已知扇形的弧长为2π,圆心角为60°,则它的半径为__________.11.(2018·呼和浩特)同一个圆的内接正方形和正三角形的边心距的比为__________.△是半径为2的圆内接正三角形,则图中阴影部分的面积是__________ 12.(2018·绥化)如图,ABC(结果用含π的式子表示).13.(2018·贵阳)如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是__________度.学科网14.(2018·玉林)如图,正六边形ABCDEF的边长是O1,O2分别是△ABF,△CDE的内心,则O1O2=__________.15.(2018·烟台)如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1∶r2=__________.16.(2018·株洲)如图,正五边形ABCDE 和正三角形AMN 都是⊙O 的内接多边形,则∠BOM =__________.17.(2018·宜宾)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O 的半径为1,若用圆O 的外切正六边形的面积来近似估计圆O 的面积,则S =__________.(结果保留根号)18.(2018·凉山州)将ABC △绕点B 逆时针旋转到A'BC'△使A 、B 、C'在同一直线上,若90BCA ∠=︒,30BAC ∠=︒,4cm AB =,则图中阴影部分面积为__________2cm .19.(2018·重庆A 卷)如图,在矩形ABCD 中,3AB =,2AD =,以点A 为圆心,AD 长为半径画弧,交AB 于点E ,图中阴影部分的面积是__________(结果保留π).20.(2018·泰州)如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠ABC 的平分线交⊙O 于点D ,DE ⊥BC于点E .(1)试判断DE 与⊙O 的位置关系,并说明理由;(2)过点D 作DF ⊥AB 于点F ,若BE ,DF =3,求图中阴影部分的面积.21.(2018·扬州)如图,在ABC ∆中,AB AC =,AO BC ⊥于点O ,OE AB ⊥于点E ,以点O 为圆心,OE 为半径作半圆,交AO 于点F . (1)求证:AC 是O 的切线;(2)若点F 是AO 的中点,3OE =,求图中阴影部分的面积;(3)在(2)的条件下,点P 是BC 边上的动点,当PE PF +取最小值时,直接写出BP 的长.1∶2.【解析】∵一个正多边形的一个外角为60°,∴360°÷60°=6, ∴这个正多边形是正六边形,设这个正六边形的半径是r ,则外接圆的半径是r ,,2.2.【点睛】垂径定理:垂直于弦的直径平分弦并且平分弦所对的两条弧.3.【答案】D【解析】扇形的面积为D.4.【答案】(1)S阴=4π–8;(2)一只蚂蚁从A沿着圆锥表面最少需要爬个单位长度才能吃到蜜糖.【解析】(1)如图2中,作SE⊥AF交弧AF于C,设图2中的扇形的圆心角为n°·1,∴n=90°,∵SA=SF,∴△SFA是等腰直角三角形,∴S△SAF=12×4×4=8,又S扇形SAFS阴=S扇形SAF–S△SAF=4π–8.(2)在图2中,∵SC是一条蜜糖线,AE⊥SC,AF=,AE∴一只蚂蚁从A沿着圆锥表面最少需要爬个单位长度才能吃到蜜糖.1.【答案】B,故选B . 2.【答案】A【解析】如图,连接OA 、OB ,∵正方形ABCD 内接于⊙O , ∴AB =BC =DC =AD ,∴ AB BCCD DA ===, ∴∠AOB =14×360°=90°,在Rt △AOB 中,由勾股定理得:2AO 2=()2, 解得:AO =2, ∴ AB 的长为90π2180⨯=π,故选A . 3.【答案】D【解析】∵圆锥的主视图与左视图都是边长为4的等边三角形, ∴圆锥的母线长为4,底面圆的直径为4, 则圆锥的侧面展开图扇形的半径为4, 设圆锥的侧面展开图扇形的圆心角是n , 根据题意,得:·π·4180n =4π, 解得:n =180°,故选D . 4.【答案】C【解析】如图,连接AO ,CO ,∵∠ABC =25°,∴∠AOC =50°,∴劣弧 AC 的长=50π525π=18018⨯,故选C . 5.【答案】B【解析】∵正六边形的边长为a , ∴⊙O 的半径为a , ∴⊙O 的面积为π×a 2=πa 2,∵空白正六边形为六个边长为a 的正三角形,∴每个三角形面积为12×a ×a a 2,∴正六边形面积为a 2a 2,∴阴影面积为(πa 2a 2)×16=(π6)a 2,故选B .6.【答案】C【解析】∵90ACB ∠=︒,4AB =,30A ∠=︒,∴60B ∠=︒,2BC =,∴ CD的长为60π22π1803⨯=,故选C . 7.【答案】C【解析】设圆锥的母线长为R ,由题意得15π=π×3×R ,解得R =5, ∴圆锥的高为4,∴sin ∠ABC =45.故选C . 8.【答案】C【解析】作FH ⊥BC 于H ,连接FH ,如图,∵点E 为BC 的中点,点F 为半圆的中点,∴BE =CE =CH =FH =6,AE易得Rt △ABE ≌△EHF ,∴∠AEB =∠EFH ,而∠EFH +∠FEH =90°,∴∠AEB +∠FEH =90°,∴∠AEF =90°,∴图中阴影部分的面积=S 正方形ABCD +S 半圆-S △ABE -S △AEF =12×12+12·π·62-12×12×6-12· =18+18π.故选C . 9.【答案】A【解析】如图,连接AC .∵从一块直径为2 m 的圆形铁皮上剪出一个同心角为90°的扇形,即∠ABC =90°, ∴AC 为直径,即AC =2 m ,AB =BC .∵AB 2+BC 2=22,∴AB =BC m =1π2(m 2).故选A .11.【答案】【解析】设该圆锥的母线长是x cm x =.故答案为:. 12.【答案】50【解析】设这个扇形铁皮的半径为R cm ,圆锥的底面圆的半径为r cm , 根据题意得2πr =216π180R ⋅⋅,解得r =35R ,因为402+(35R )2=R 2,解得R =50. 所以这个扇形铁皮的半径为50 cm .故答案为:50. 13.【答案】72°【解析】∵五边形ABCDE 为正五边形,∴AB =BC =AE ,∠ABC =∠BAE =108°, ∴∠BAC =∠BCA =∠ABE =∠AEB =(180°−108°)÷2=36°, ∴∠AFE =∠BAC +∠ABE =72°,故答案为:72°.14-π3 【解析】正六边形的中心为点O ,如图,连接OD 、OE ,作OH ⊥DE 于H ,∴∠DOE =3606︒=60°,∴OD =OE =DE =1,∴OH∴正六边形ABCDEF 的面积=12,∠A =(62)1806-⨯︒=120°,∴扇形ABF 的面积=2120π13π603⨯=,∴图中阴影部分的面积-π3-π3. 15.【答案】14;21【解析】图2中的图案外轮廓周长是:8-2+2+8-2=14; 设∠BPC =2x ,∴以∠BPC 为内角的正多边形的边数为:360180180290x x =--,以∠APB 为内角的正多边形的边数为:360x,∴图案外轮廓周长是=18090x --2+360x -2+360x -2=18090x -+720x-6,根据题意可知:2x 的值只能为60°,90°,120°,144°, 当x 越小时,周长越大,∴当x =30时,周长最大,此时图案定为会标, 则则会标的外轮廓周长是=180720903030+--6=21,故答案为:14;21.16.【解析】(1)连接OB ,如图所示:∵BC切⊙O于点B,∴OB⊥BC,∵AD⊥BC,∴AD∥OB,∴∠DAB=∠OBA,∵OA=OB,∴∠OAB=∠OBA,∴∠DAB=∠OAB,∴AB平分∠OAD;(2)∵点E是优弧AEB上一点,且∠AEB=60°,∴∠AOB=2∠AEB=120°,∴扇形OAB的面积=2120π3360⨯=3π.17.【解析】(1)∵AB=4,∴OB=2,∵∠COB=60°,∴S扇形OBC=60π42π3603⨯=.(2)∵AC平分∠FAB,∴∠FAC=∠CAO,∵AO=CO,∴∠ACO=∠CAO,∴∠FAC=∠ACO,∴AD∥OC,∵CD⊥AF,∴CD⊥OC∵C在圆上,∴CD是⊙O的切线.18.【解析】(1)如图,连接CD、OD,∵BC是⊙O的直径,∴∠CDB=90°,即CD⊥AB,又∵△ABC是等边三角形,∴AD=BD,∵BO=CO,∴DO是△ABC的中位线,∴OD∥AC,∵DF⊥AC,∴DF⊥OD,∴DF是⊙O的切线.19.【解析】(1)如图,连接OE,过O作OM⊥AC于M,则∠AMO=90°,∵DF⊥AC,∴∠DFC=90°,∵∠FDC=15°,∴∠C=180°-90°-15°=75°,∵AB=AC,∴∠ABC=∠C=75°,∴∠BAC=180°-∠ABC∠C=30°,∴OM =12OA =12×3=32,AM OM , ∵OA =OE ,OM ⊥AC ,∴AE =2AM , ∴∠BAC =∠AEO =30°, ∴∠AOE =180°-30°-30°=120°,∴阴影部分的面积S =S 扇形AOE -S △AOE =2120π3133π36022⨯-⨯=-.(2)如图,连接OD ,∵AB =AC ,OB =OD ,∴∠ABC =∠C ,∠ABC =∠ODB , ∴∠ODB =∠C , ∴AC ∥OD , ∵DF ⊥AC , ∴DF ⊥OD , ∵OD 过点O , ∴DF 是⊙O 的切线. (3)如图,连接BE ,∵AB 为⊙O 的直径, ∴∠AEB =90°, ∴BE ⊥AC ,∵DF ⊥AC , ∴BE ∥DF , ∴∠FDC =∠EBC , ∵∠EBC =∠DAC , ∴∠FDC =∠DAC , ∵A 、B 、D 、E 四点共圆, ∴∠DEF =∠ABC , ∵∠ABC =∠C , ∴∠DEC =∠C , ∵DF ⊥AC , ∴∠EDF =∠FDC , ∴∠EDF =∠DAC .20.【解析】(1)直线DE 与⊙O 相切.理由如下:连接OE 、OD ,如图,∵AC 是⊙O 的切线, ∴AB ⊥AC , ∴∠OAC =90°,∵点E 是AC 的中点,O 点为AB 的中点, ∴OE ∥BC ,∴∠1=∠B ,∠2=∠3, ∵OB =OD , ∴∠B =∠3, ∴∠1=∠2,在△AOE 和△DOE 中,12OA OD OE OE =⎧⎪∠=∠⎨⎪=⎩,∴△AOE≌△DOE,∴∠ODE=∠OAE=90°,∴OA⊥AE,∴DE为⊙O的切线.(2)∵点E是AC的中点,∴AE=12AC=2.4,∵∠AOD=2∠B=2×50°=100°,∴图中阴影部分的面积=2×12×2×2.4-2100π2104.8π3609⨯=-.21.【解析】(1)如图,连接OE、BE,∵OB=OE,∴∠OBE=∠OE B.∵BC=EC,∴∠CBE=∠CEB,∴∠OBC=∠OEC.∵BC为⊙O的切线,∴∠OEC=∠OBC=90°.∵OE为半径,∴CD为⊙O的切线,∵AD切⊙O于点A,∴DA=DE.(2)如图,连接OC,过点D作DF⊥BC于点F,则四边形ABFD是矩形,∴AD=BF,DF=AB=6,∴DC=BC+AD,∵CF=,∴BC -AD∴BC在直角△OBC 中,tan ∠BOC =BCOB, ∴∠BOC =60°.在△OEC 与△OBC 中,OE OB OC OC CE CB =⎧⎪=⎨⎪=⎩,∴△OEC ≌△OBC (SSS ), ∴∠BOE =2∠BOC =120°,∴S 阴影部分=S 四边形BCEO -S 扇形OBE =2×12BC ·OB -2120π360OB ⋅⋅-3π.1.【答案】B【解析】如图,连接OA 、OB ,∵四边形ABCD 是正方形, ∴∠AOB =90°,∠OAB =45°, ∴OA =AB ·, 所以阴影部分的面积=S ⊙O -S 正方形ABCD =π×()2-4×4=8π-16.故选B . 2.【答案】A【解析】利用对称性可知:阴影部分的面积=扇形AEF 的面积-△ABD 的面积=290π413602⨯⨯-×4×2=4π-4,故选A . 3.【答案】B【解析】∵∠BCD =30°,∴∠BOD =60°, ∵AB 是⊙O 的直径,CD 是弦,OA =2,∴阴影部分的面积是:260π22π3603⨯⨯=,故选B . 4.【答案】C【解析】如图,连接OD ,AD ,∵点C 为OA 的中点,∴OC =12OA =12OD , ∵CD ⊥OA ,∴∠CDO =30°,∠DOC =60°,∴△ADO 为等边三角形,OD =OA =12,OC =CA =6,∴CD ,∴S 扇形AOD =260π12360⋅⋅=24π, ∴S阴影=S扇形AOB -S扇形COE -(S扇形AOD -S △COD)=22100π12100π61(24π63603602⋅⋅⋅⋅---⨯⨯,故选C . 5.【答案】B【解析】 AB 的展直长度为:108π10180⨯=6π(m ).故选B .6.【答案】C【解析】连接OB 和AC 交于点D ,如图,∵圆的半径为2,∴OB =OA =OC =2,又四边形OABC 是菱形,∴OB ⊥AC ,OD =12OB =1,在Rt △COD 中利用勾股定理可知:CD =,AC =2CD ,∵sin ∠COD =CD OC =∴∠COD =60°,∠AOC =2∠COD =120°,∴S 菱形ABCO =12B ×AC =12S 扇形AOC =2120π24π3603⨯⨯=,则图中阴影部分面积为S 菱形ABCO -S 扇形AOC =4π3-C .8.【答案】C【解析】∵在 ABCD 中,∠B =60°,⊙C 的半径为3,∴∠C =120°,∴图中阴影部分的面积是:2120π3360⨯⨯=3π,故选C . 9.【答案】D【解析】如图,连接CD ,AC ,DG ,AG .∵AD 是⊙O 直径,∴∠ACD =90°,在Rt △ACD 中,AD =2r ,∠DAC =30°,∴AC , ∵DG =AG =CA ,OD =OA ,∴OG ⊥AD ,∴∠GOA =90°,∴OG r ,故选D .10.【答案】6【解析】设扇形的半径为r ,根据题意得:60π2π180r=,解得:r =6,故答案为:6.111【解析】设⊙O 的半径为r ,⊙O 的内接正方形ABCD ,如图,过O 作OQ ⊥BC 于Q ,连接OB 、OC ,即OQ 为正方形ABCD 的边心距, ∵四边形BACD 是正方形,⊙O 是正方形ABCD 的外接圆, ∴O 为正方形ABCD 的中心,∴∠BOC =90°, ∵OQ ⊥BC ,OB =CO ,∴QC =BQ ,∠COQ =∠BOQ =45°,∴OQ =OC R . 设⊙O 的内接正△EFG ,如图,过O 作OH ⊥FG 于H ,连接OG ,即OH 为正△EFG 的边心距,∵正△EFG 是⊙O 的外接圆,∴∠OGF =12∠EGF =30°, ∴OH =OG ×sin30°=12R ,∴OQ ∶OH =R )∶(12R )∶1∶1.12.【答案】4π-【解析】如图,点O 既是它的外心也是其内心,∴2OB =,130∠=︒,∴112OD OB ==,BD =,∴3AD =,BC =,∴132ABC S =⨯=△2π24π=⨯=,所以阴影部分的面积4π=-,故答案为:4π-. 13.【答案】72【解析】如图,连接OA 、OB 、OC ,∠AOB =3605︒=72°, ∵∠AOB =∠BOC ,OA =OB ,OB =OC ,∴∠OAB =∠OBC ,在△AOM 和△BON 中,OA OB OAM OBN AM BN =⎧⎪∠=∠⎨⎪=⎩,∴△AOM ≌△BON ,∴∠BON =∠AOM ,∴∠MON =∠AOB =72°,故答案为:72. 14.【答案】【解析】如图,过A 作AM ⊥BF 于M ,连接O 1F 、O 1A 、O 1B ,∵六边形ABCDEF 是正六边形,∴∠A =(62)1806-⨯︒=120°,AF =AB ,∴∠AFB =∠ABF =12×(180°-120°)=30°, ∴△AFB 边BF 上的高AM =12AF =12×(FM =BM+6,∴BF设△AFB 的内切圆的半径为r , ∵S △AFB =111AO F AO B BFO S S S ++△△△,∴12×()×(+6)=12×()×r +12×()×r +12×(×r , 解得:r =32,即O 1M =r =32,∴O 1O 2=2×32.152【解析】如图,连接OA ,由已知,M 为AF 中点,则OM ⊥AF ,∵六边形ABCDEF 为正六边形,∴∠AOM =30°,设AM =a ,∴AB =AO =2a ,OM , ∵正六边形中心角为60°,∴∠MON =120°,∴扇形MON πa =,则r 1a , 同理:扇形DEF 的弧长为:120π24π1803a a ⋅⋅=,则r 2=23a ,r 1:r 222. 16.【答案】48°【解析】如图,连接OA ,∵五边形ABCDE 是正五边形,∴∠AOB =3605︒=72°,∵△AMN 是正三角形,∴∠AOM =3603︒=120°, ∴∠BOM =∠AOM -∠AOB =48°,故答案为:48°.17.【答案】【解析】依照题意画出图象,如图所示.∵六边形ABCDEF 为正六边形,∴△ABO 为等边三角形,∵⊙O 的半径为1,∴OM =1,∴BM =AM AB∴S =6S △ABO =6×12. 18.【答案】4π【解析】由旋转可得△ABC ≌△A ′BC ′.∵∠BCA =90°,∠BAC =30°,AB =4 cm ,∴BC =2 cm ,AC ,∠A ′BA =120°,∠CBC ′=120°,∴阴影部分面积=(S △A ′BC ′+S 扇形BAA ′)-S 扇形BCC ′-S △ABC =120π360×(42-22)=4π cm 2.故答案为:4π. 19.【答案】6π- 【解析】S 阴影=S 矩形ABCD -S 扇形ADE =2×3-290π2360⨯=6-π,故答案为:6-π. 20.【解析】(1)DE 与⊙O 相切,理由:如图,连接DO ,∵DO =BO ,∴∠ODB =∠OBD ,∵∠ABC 的平分线交⊙O 于点D ,∴∠EBD =∠DBO ,∴∠EBD =∠BDO ,∴DO ∥BE ,∵DE ⊥BC ,∴∠DEB =∠EDO =90°,∴DE 与⊙O 相切.(2)∵∠ABC 的平分线交⊙O 于点D ,DE ⊥BE ,DF ⊥AB ,∴DE =DF =3,∵BE ,∴BD =6, ∵sin ∠DBF =31=62, ∴∠DBA =30°,∴∠DOF =60°,∴sin60°=3DF DO DO ==,∴DO ,则FO132π2=. 21.【解析】(1)如图,过O 作AC 垂线OM ,垂足为M .∵AB AC =,AO BC ⊥,∴AO 平分BAC ∠,∵OE AB OM AC ⊥⊥,, ∴OE OM =,∵OE 为⊙O 的半径,∴OM 为⊙O 的半径,∴AC 是⊙O 的切线.(2)∵3OM OE OF ===,且F 是OA 的中点,∴6AO =,AE =,∴2AEO S AO AE =⋅÷=△, ∵OE AB ⊥,∴60EOF ∠=︒,即9π603π3602OEF S ⋅︒==︒扇形,∴3π2S =-阴影.学科=网 (3)作B 关于BC 的对称点G ,交BC 于H ,连接FG 交BC 于P ,此时PE PF +最小, 由(2)知60EOF ∠=︒,30EAO ∠=︒,∴60B ∠=︒,∵3EO =,∴3EG =,32EH =,BH =, ∵EG BC ⊥,FO BC ⊥,∴EHP △∽FOP △, ∴31322EH HP FO PO ==÷=,即2HP OP =,∵BO HP OP =+=,∴3HP =,即HP =,∴BP ==.。
《九章算术注》中的数学思想和方法
数学史话关于圆周率与圆的面积《九章算术》中求圆的面积一律用古法的所失弥少.割之又割以至于不可割则与圆合体而无所失矣.”这几句话反映了他的极限觚面之外,又有余径.以面乘余径则幂若夫觚之细者与圆合体,则表无余径.表无余这里,“觚面”是圆内接正多边形的是边心距与圆半径的差.如图1,设PQ为圆《九章算术注》中的数学思想和方法钱宝琮刘徽宋本《九章算术》中的割圆术图1数学史话当然,这个不等式可以写成:S2n<S<S2n+(S2n-Sn).在割圆术中,刘徽称S2n-S n为“差幂”.当n很大时,“差幂”很小,因而S2n很接近于S,这是可以理解的.刘徽设圆内接正六边形的边长与半径相等,半径OP=1尺=1000000忽,则PT=12PQ=500000忽.OT= OP2-PT2=86605425忽,TR=OR-OT=13394535忽,PR2=PT2+TR2=267949193445方忽,PR就是圆内接正十二边形的边长.依此推算,刘徽求得圆内接正二十四边形、正四十八边形、正九十六边形的边长.刘徽根据S2n=n⋅PQ⋅OR2算出在半径为10寸时,S96=313584625方寸,S192=31464625方寸,“幂差”S192-S96=105625,S192+(S192-S96)=314169625方寸,故31464625< 100π<314169624.刘徽舍弃不等式两端的分数,取100π=314或π=15750.他再三声明这个圆周率不够精确.刘徽又说:“差幂六百二十五分寸之一百五,以十二觚之幂为率消息,当取此分寸之三十六以增于一百九十二觚之幂,以为圆幂三百一十四寸、二十五分寸之四.”这就是说,圆的面积应是31464625+36625= 314425方寸,由此得出π=314425÷100=39271250.这个近似分数化成十进小数是3.1416,自然是更精确了.他又说:“当求一千五百三十六觚之一面,得三千七十二觚之幂而裁其微分,数亦宜然,重其验耳.”据此可知,刘徽曾求得圆内接正3072边形的面积,以证实圆周率39271250的正确性.在实用算术方面,他主张用π=15750来计算圆的面积.当边数无限增加时,圆内接正多边的面积趋近于圆的面积.公元前五世纪,希腊数学家安提丰(Anti⁃phon)最早发现了这个原理,但没有利用它来计算π的近似值.公元前三世纪中叶,阿基米德(Archimedes)以为圆周长介于圆内接多边形的周长和外切多边形的周长之间,算出31071<π<317.刘徽的割圆术思想比古希腊人的思想迟了几百年,而他的成就超过了和他同时代的数学家,这是值得表彰的.需要指出的是:①刘徽的不等式只需用圆内接正多边形的面积而不用外切多边形的面积来求解,所以能够达到事半功倍的效果;②我们的祖先很早就用位值制记数,能迅速地进行乘方、开方,数字计算工作比古希腊人的要容易得多.《九章算术》方田章的弧田术说:“设c为弧田(弓形)的弦,v为矢,则面积为A=12(cv+v2).”这不是一个很精密的近似公式.刘徽以为,在弧田为半圆时用这个公式计算出来的面积与用π=3计算出来的面积相等,如果弧田为劣弧,误差比率(相对误差)更大.在批判了旧法以后,他指出了处理弧田面积的正确方法.他说:“既知直径则弧可割分.”即依据已知的弦和矢,可求弧的直径.按照割圆术,求12弧、14弧、18弧等的弦和矢,并将这些大大小小的弦矢相乘,再折半,就得到相当精密的弧田(弓形)的面积值.但他又说:“若但度田,取其大数,旧术为约耳.”意思是说,在量田地的面积时不需要十分精密的数据,还可以用以前的方法.二、圆锥体积与球体积《九章算术》的商功章中,直立圆锥体与平截头直立圆锥体的体积公式,在假设π=3的条件下,是准确的.刘徽在“委粟依垣”术里注解说:“从方锥中求圆锥之积亦犹方幂求圆幂.”这说明圆锥体的体积和它的外切方锥体的体积之比等于圆的面积和它的外切正方形面积之比.方边为a、高为h的方锥体的体积是13a2h,所以底的直径为a、高为h的圆锥体的体积应是π4⋅13a2h=π12a2h.仿照此方法可得,平截头圆锥体的体积是平截头方锥体体积的π4倍.刘徽在方田章的畹田术注中讨论过直立圆锥的侧面积,他说:“若令其(直立方锥)中容圆锥,圆锥见幂(侧面积)与方锥见幂(侧面积)其率犹方幂之与圆幂也.”因此,他断定:“折径(斜高)以乘下周之半即圆锥之幂(侧面积)也”.若圆锥的底径为a,斜高为l,则它的侧面积应是12πal.刘徽用这种简单明了的方法处理圆锥的体积与侧面积问题,是容易被人们接受的.少广章的开立圆术中说:“置积尺数,以十六乘之,九而一,开立方除之即丸(球)径.”设球的体积为V、球径为D,则由开立圆术可得D =9或V=916D3.九60数学史话图2图3三、关于十进分数少广章开方术:“设整数N为被开方数,a为方根的整数部分,r=N-a2,则N=a+r a.”这当然太不准确.当时人们还用a+r2a+。
九章算术经典题目及解析
九章算术经典题目及解析
《九章算术》是中国古代数学专著,其经典题目包括:
1. 鸡兔同笼问题:已知一笼子里有鸡和兔子,已知头数和脚数,求鸡和兔子各多少只。
这个问题可以用简单的代数方法解决。
2. 雨淋原谷仓的面积问题:原谷仓的上部呈三角形,下部呈矩形,已知矩形的长和宽,以及三角形的高和底,求雨淋原谷仓的面积。
这个问题需要用到三角形的面积公式和矩形的面积公式。
3. 汉诺塔问题:有三根柱子,第一根柱子上从小到大叠放着一些圆盘。
要求将第一根柱子上的圆盘移动到第三根柱子上,每次只能移动一个圆盘。
这个问题可以用递归的方法解决。
4. 引葭赴岸问题:有一水池,形状是正方形,边长为1丈,池中生有一棵芦苇,露出水面1尺。
将芦苇拉到岸边,则芦苇和岸边恰好重合。
求水深和芦苇长度。
这个问题可以用勾股定理来解决。
5. 二人同耘问题:二人同时从两头耕作,甲耕了一亩三分四厘,乙耕了一亩三分六厘。
各人所耕的长度虽然不等,但是耕了半个时辰便完成了。
问田长多少里?这个问题可以用比例的方法解决。
6. 女子三日归家问题:一家有三个女儿都已出嫁。
大女儿五天回一次娘家,二女儿四天回一次娘家,小女儿三天回一次娘家。
某个日子三个女儿同时回到娘家,问三个女儿下一次何时能再次同时回娘家?这个问题可以用最小公倍数来解决。
7. 百羊问题:牧场上有100只羊,牧羊人要从中选出10只羊来放牧。
问题是:选出的羊中至少有几只羊是同一性别?这个问题可以用抽屉原理来解决。
以上是《九章算术》中的一些经典题目及解析。
九章算术卷一方田割圆术
劉徽(公元三世紀)
九章算術卷一《方田》
• [31]今有圓田,周三十步,徑十步。問為田幾何? • [32]又有圓田,周一百八十一步,徑六十步、三分
步之一。問為田幾何? • (圓田)術曰:半周半徑相乘得積步。
面積 圓周 半徑 2
A C r 2πr r πr2
2
2
割圓術(6觚)
• T. L. Heath 著,朱恩寬、李文鉻等譯,《阿基米 德全集》,陝西科學技術出版社, 1998
• 吳文俊主編,《中國數學史大系》第3卷,北京師 範大學出版社, 1998
• 李繼閔,《 九章算術及其劉徽注研究》,九章出 版社, 1992
古人是如何發現圓形的方程式呢?
பைடு நூலகம்
圓周率
• 舊約聖經《列王紀》提到所 羅門王建造宮殿時: 「他又 鑄一個銅海、樣式是圓的、 高五肘、徑十肘、圍三十 肘。」[王上7:23]
• 《周髀算經》注中,趙爽指 出「圓徑一而周三,方徑一 而匝四」。
圓周 直徑
C 2r
π
3
C 2πr
阿基米德
• Archimedes of Syracuse 287 BC – 212 BC
2
兩種證明方法的比較
阿基米德 公元前三世紀
劉徽 公元三世紀
歐氏幾何的演繹 窮盡法,雙歸謬法 在有限的步驟內完成
化曲為直,出入相補 無窮分割 典型的極限方法
主要參考資料
• T. L. Heath, The Works of Archimedes , Cambridge University Press, 1897
• 內接正方形於圓內,平分 弧直至…
• 弓形面積總和 < A – K • A – 多邊形面積 < A – K • 多邊形面積 > K
九章算术详细内容九章算术作者
九章算术详细内容九章算术作者话题:九章算术作者计算方法十二卷算术《九章算术》全部古文详细资料,现已完成上线。
《九章算术》作者不详,是一部现有传本的、最古老的中国数学书,它的编纂年代大约是在东汉初期。
书中汇集了二百四十六个应用问题的解法,分别隶属于方田、粟米、衰分、少广、商功、均输、盈不足、方程、句股九章。
春秋、战国时期社会生产力的逐渐提高,促进了数学知识和计算技能的发展。
当时各国的统治阶级要按亩收税,必须有测量土地、计算面积的方法;要储备粮食,必须有计算仓库容积的方法;要修建灌溉渠道、治河堤防和其他土木工事,必须能计算工程人功;要修订一个适合农业生产的历法,必须能运用有关的天文数据。
那时的百姓掌握了相当丰富的、由日常生活中产生的数学知识和计算技能。
虽然没有一本先秦的数学书流传到后世,但无可怀疑的是九章算术方田、粟米、衰分、少广、商功等章中的题解方法,绝大部分是产生于秦以前的。
汉书艺文志术数类著录有许商算术二十六卷,杜忠算术十六卷,这两部算术虽早已失传,应该是东汉初编纂的九章算术的前身,它们的主要教材应当被保存于九章算术各章之内。
周礼大司徒篇说:「保氏掌谏王恶而养国子以道。
乃教之六艺:一曰五礼,二曰六乐,三曰五射,四曰五驭,五曰六书,六曰九数。
」这是说,主持贵族子弟教育的保氏以礼、乐、射、驭、书、数为「小学」的六门课程,每一门课程又各有若干细目,例如「数」学中有九个细目。
但在周礼里没有把「九数」列举出来,我们就无法考证它的内容。
汉武帝时这部周礼开始受到经学家的注意。
到东汉时期,郑众、马融等都为「九数」作了注解。
东汉末郑玄周礼注引郑众说:「九数:方田、粟米、差分、少广、商功、均输、方程、盈不足、旁要,今有重差、句股。
」事实上,郑众所说「九数」中的「均输」已是汉武帝太初元年以后的赋税制度,决不是周礼九数原有的一个细目。
「方田、粟米、差分、少广、商功、均输、方程、盈不足、旁要」大概是西汉末传统算术的主要纲目,「今有重差、句股」说明数学有了新的发展。
刘徽九章算术注与祖冲之计算圆周率之谜
刘徽的开方术 – 近似计算
《九章算术》第四卷少广的开方术如下:
术曰:置积为实。借一算,步之,超一等。议所得,以一乘所借一算为法,而以除。 除已,倍法为定法。其复除,折法而下......
刘徽为此写的注文如下:
术或有以借算加定法而命分者,虽粗相近,不可用也。凡开积为方,方之自乘当还复 有积分。令不加借算而命分,则常微少;其加借算而命分,则又微多。其数不可得而 定。故惟以面命之,为不失耳。譬犹以三除十,以其余为三分之一,而复其数可以举。 不以面命之,加定法如前,求其微数。微数无名者以为分子,其一退以十为母,其再 退以百为母。退之弥下,其分弥细,则朱幂虽有所弃之数,不足言之也。
λ1
10
≈
A -B 2B
2
然后验算开方近似值的平方是否与A相等或与A还有多少差距:
祖冲之利用刘徽的开方术实现高精度开方(二)
如果加了一个微数之后开方近似值的平方与A还有差距,很容易想到用同样的 方法计算出第2个微数 100 ≈
λ2
A -B 1 2B 1
2
再次验算开方近似值的平方是否与A相等或与A还有多少差距:
大意如下:对A开方开不尽,而A = B + Δ
B+
2
Δ
2B+1
<
A
<
B+
Δ 2B
A ≈ B+
λ1
10
+
λ2
100
+
……
近似值的范围
近似值表达式。微数为十进制分 数,其实质等同于十进制小数。
祖冲之利用刘徽的开方术实现高精度开方(一)
祖冲之熟读过《九章算术》,能准确理解刘徽注文的涵义,并且他善于筹算。 按刘徽的近似计算思路,祖冲之利用刘徽开方近似值的上下限范围计算出刘徽 的第1个微数:
九章算术圆与扇形原理-概述说明以及解释
九章算术圆与扇形原理-概述说明以及解释1.引言1.1 概述概述九章算术圆与扇形原理是古代中国数学经典著作《九章算术》中的重要内容之一。
圆与扇形作为几何学中的基本概念,深入人们的日常生活和数学研究中。
九章算术圆与扇形原理以其独特的思维方式和精确的推理方法,在解决数学问题和应用到实际生活中起着重要的作用。
本文将对九章算术圆与扇形原理进行深入探讨。
首先,我们将介绍九章算术圆原理的定义与特点,包括圆的基本属性以及九章算术中所定义的圆。
其次,我们将详细讨论九章算术扇形原理,包括扇形的定义与特点以及计算方法。
最后,我们将进一步探讨九章算术圆与扇形的关系,包括圆与扇形的相互转化以及如何利用圆与扇形原理解决实际问题。
在展示了九章算术圆与扇形原理的应用举例后,我们将总结该原理的重要性,并对未来研究的展望进行探讨。
通过本文的阅读,读者将对九章算术圆与扇形原理有更深入的了解,并能够应用这一原理解决各种数学问题。
同时,我们也希望通过对这一经典数学著作的研究,引发读者对数学思维方式的思考,并为未来的数学研究提供新的启示。
1.2文章结构1.2 文章结构本文主要围绕九章算术圆与扇形原理展开,共分为引言、正文和结论三大部分。
引言部分将概述文章的主要内容和目的。
首先介绍九章算术圆与扇形,包括它们的定义和特点。
然后简要说明文章的结构,即正文部分将分为三小节,分别介绍九章算术圆原理、九章算术扇形原理以及九章算术圆与扇形的关系。
最后,明确本文的目的,即通过研究和应用九章算术圆与扇形原理,解决实际问题,拓展数学思维。
正文部分将详细介绍九章算术圆原理、九章算术扇形原理以及九章算术圆与扇形的关系。
对于九章算术圆原理,将给出其定义与特点,并阐述运算规则及应用举例。
对于九章算术扇形原理,将给出其定义与特点,并介绍计算方法及应用举例。
然后,将详细探讨九章算术圆与扇形的关系,包括圆与扇形的相互转化以及如何利用圆与扇形原理解决问题。
最后,将列举实际应用案例,以展示九章算术圆与扇形的实际应用价值。
九章算术
九章算术一:《方田》1、方田:今有田广十五步,从十六步。
问为田几何?答曰:一亩。
2、方田:又有田广十二步,从十四步。
问为田几何?答曰:一百六十八步。
方田术曰:广从步数相乘得积步。
以亩法二百四十步除之,即亩数。
百亩为一顷。
3、方田:今有田广一里,从一里。
问为田几何?答曰:三顷七十五亩。
4、方田:又有田广二里,从三里。
问为田几何?答曰:二十二顷五十亩。
里田术曰:广从里数相乘得积里。
以三百七十五乘之,即亩数。
5、方田:今有十八分之十二。
问约之得几何?答曰:三分之二。
6、方田:又有九十一分之四十九。
问约之得几何?答曰:十三分之七。
约分术曰:可半者半之,不可半者,副置分母子之数,以少减多,更相减损,求其等也。
以等数约之。
7、方田:今有三分之一,五分之二。
问合之得几何?答曰:十五分之十一。
8、方田:又有三分之二,七分之四,九分之五。
问合之得几何?答曰:得一、六十三分之五十。
9、方田:又有二分之一,三分之二,四分之三,五分之四。
问合之得几何?答曰:得二、六十分之四十三。
合分术曰:母互乘子,并以为实,母相乘为法,实如法而一。
不满法者,以法命之。
其母同者,直相从之。
10、方田:今有九分之八,减其五分之一。
问馀几何?答曰:四十五分之三十一。
11、方田:又有四分之三,减其三分之一。
问馀几何?答曰:十二分之五。
减分术曰:母互乘子,以少减多,馀为实,母相乘为法,实如法而一。
12、方田:今有八分之五,二十五分之十六。
问孰多?多几何?答曰:二十五分之十六多,多二百分之三。
13、方田:又有九分之八,七分之六。
问孰多?多几何?答曰:九分之八多,多六十三分之二。
14、方田:又有二十一分之八,五十分之十七。
问孰多?几何?答曰:二十一分之八多,多一千五十分之四十三。
课分术曰:母互乘子,以少减多,馀为实,母相乘为法,实如法而一,即相多也。
15、方田:今有三分之一,三分之二,四分之三。
问减多益少,各几何而平?答曰:减四分之三者二,三分之二者一,并以益三分之一,而各平于十二分之七。
三国演义九章算术的小故事
三国演义九章算术的小故事
张飞由于没有及时纳税,被蜀军抓到了,但念其为蜀军立下汗马功劳便让他去卖竹筒饭。
还好张飞参军前就卖过肉,现在卖竹筒饭,小菜一碟。
张飞那模样让人看了就胆颤,更何况他那嗓声,众人“自觉”地围着张飞为圆心,站成了一个圆圈。
过了好久,才有一个男孩壮着胆子来到张飞的摊前,毕竟现在城里只有张飞一家卖竹筒饭。
“你要这么大的竹筒米饭?”张飞指了指一旁的大竹筒。
这些竹子的长度是相同的,但是底部的圆形却是不一样的。
大竹筒底的直径是二十公分,而竹筒的底部则是十公分。
”看到如此之多的竹筒,张飞决定还是先卖了再说。
小男孩望着张飞摊位上的一碗小小的竹筒米饭,沉吟片刻,说:“你不肯卖大竹筒米饭,就用四个小号来代替大的。
”
张飞一听,顿时不高兴了:“四个小号,怎么能换一个大的?大竹筒的底部是小竹筒的两倍,两个竹筒米饭只能买一大碗米饭。
”
“如果你能给我两个竹筒,那我岂不是要吃亏?1个大的竹筒,就是4个小竹筒。
”。