化工基础实验——离心泵性能测定实验数据记录
离心泵性能实验报告记录(带数据处理)
离心泵性能实验报告记录(带数据处理)————————————————————————————————作者:————————————————————————————————日期:实验三、离心泵性能实验姓名:杨梦瑶学号:1110700056 实验日期:2014年6月6日同组人:陈艳月黄燕霞刘洋覃雪徐超张骏捷曹梦珺左佳灵预习问题:1.什么是离心泵的特性曲线?为什么要测定离心泵的特性曲线?答:离心泵的特性曲线:泵的He、P、η与Q V的关系曲线,它反映了泵的基本性能。
要测定离心泵的特性曲线是为了得到离心泵最佳工作条件,即合适的流量范围。
2.为什么离心泵的扬程会随流量变化?答:当转速变大时,,沿叶轮切线速度会增大,当流量变大时,沿叶轮法向速度会变大,所以根据伯努力方程,泵的扬程:H=(u22- u12)/2g + (p2- p1) / ρg + (z2- z1) +H f沿叶轮切线速度变大,扬程变大。
反之,亦然。
3.泵吸入端液面应与泵入口位置有什么相对关系?答:其相对关系由汽蚀余量决定,低饱和蒸气压时,泵入口位置低于吸入端液面,流体可以凭借势能差吸入泵内;高饱和蒸气压时,相反。
但是两种情况下入口位置均应低于允许安装高度,为避免发生汽蚀和气缚现象。
4.实验中的哪些量是根据实验条件恒定的?哪些是每次测试都会变化,需要记录的?哪些是需要最后计算得出的?答:恒定的量是:泵、流体、装置;每次测试需要记录的是:水温度、出口表压、入口表压、电机功率;需要计算得出的:扬程、轴功率、效率、需要能量。
一、实验目的:1.了解离心泵的构造,熟悉离心泵的操作方法及有关测量仪表的使用方法。
2.熟练运用柏努利方程。
3.学习离心泵特性曲线的测定方法,掌握离心泵的性能测定及其图示方法。
4.了解应用计算机进行数据处理的一般方法。
二、装置流程图:图5 离心泵性能实验装置流程图1 水箱2 Pt100温度传感器3 入口压力传感器 4真空表 5 离心泵 6 压力表7 出口压力传感器 8 φ48×3不锈钢管图 9 孔板流量计d=24mm 10压差传感器11 涡轮流量计 12 流量调节阀 13 变频器三、实验任务:1.绘制离心泵在一定转速下的H(扬程)~Q(流量);N(轴功率)~Q;η(效率)~Q三条特性曲线。
化工原理实验~离心泵性能试验
化工原理实验实验名称:离心泵性能试验 实验目的:1、 了解离心泵的构造,掌握其操作和调节方法。
2、 测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。
3、 熟悉孔板流量计的构造、性能及安装方法。
4、 测定孔板流量计的流量系数。
5、 测定管路特性曲线。
实验设备:离心泵性能试验装置一套 实验原理:1、 离心泵特性曲线的测定离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。
其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到,如图1中的曲线。
由于实际情况中流体在管内流动时必然会受到阻力而产生阻力损失,从而使实际压头要比理论压头小,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He~Q 、N~Q 和η~Q 三条曲线称为离心泵的特性曲线。
根据此曲线也可以求出泵的最佳操作范围。
(1)、泵的扬程HeHe=H 压力表+H 真空表+H 0 式中,H 压力表——泵出口出的压力,m H 2O 。
H 真空表——泵入口出的真空度,m H 2OH 0——压力表和真空表测压口之间的垂直距离,H 0=0.3m 。
(2)、泵的有效功率和效率由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入泵的功率又比理论值为高,所以泵的总效率为流量压头图1、离心泵理论压头与实际压头η=Ne/N 轴Ne=QHe ρ/102 式中, Ne ——泵的有效功率,kW Q ——流量,m 3/sHe ——扬程,mρ——流体密度,kg/m 3由泵轴输入离心泵的功率N 轴为 N 轴=N 轴 η电η转式中,N 轴——电机的输入功率,kW η电——电机效率,取0.9η转——传动装置的传动效率,一般取1.0 2、 孔板流量计孔流系数的测定孔板流量计的构造原理如图2所示,在水平管路上装有一块孔板,其两侧接测压管,分别与压差传感器的两端连接。
孔板流量计时利用流体通过锐孔的节流作用,使流速增大,压强减少,造成孔板前后压强差,作为测量依据。
离心泵综合实验报告
化工原理 实验报告 化工基础
离心泵综合实验
班 姓 学
级 名ห้องสมุดไป่ตู้号
同组人员 实验日期 指导教师 成 绩
第一部分
一、实验目的
预习报告
二、实验原理
1
三、实验设备流程
四、实验步骤及注意事项
2
第二部分
实验数据记录及数据处理
一、仪器设备及实验材料主要参数
二、实验数据记录与实验结果处理
4
(三)管路特性测定实验
1、管路特性测定实验数据及实验结果列表 序号 1 2 3 4 5 6 7 8 9 10 2、计算举例
5
三、实验曲线
1. 流量计的流量与压差关系曲线
. 流量计的流量与压差关系曲线
6
2. 流量计的流量系数与雷诺数关系曲线
流量计的流量系数与雷诺数关系曲线
7
3. 离心泵特性曲线与管路曲线
(一)离心泵性能测定实验
1、离心泵性能测定实验数据及实验结果列表 水温 序 号 1 2 3 4 5 6 7 8 9 10 11 2、计算举例 ℃ 水密度 ρ = kg/m³ 高度差 h0 = m
3
(二)流量计校核实验
1、流量计校核实验数据及实验结果列表
序号 1 2 3 4 5 6 7 8 9 10 11 2、计算举例
8
第三部分
一、结果分析与讨论
实验结果分析与讨论
二、思考题
9
离心泵性能实验报告
北京化工大学化工原理实验报告实验名称:离心泵性能实验班级:化工100学号: 2010姓名:同组人:实验日期:一、报告摘要:本次实验通过测量离心泵工作时,泵入口真空表真P 、泵出口压力表压P 、孔板压差计两端压差P ∆、电机输入功率Ne 以及流量Q (t V ∆∆/)这些参数的关系,根据公式0e H H H H ++=压力表真空表、转电电轴ηη••=N N 、102e ρ⋅⋅=He Q N 以及轴N Ne =η可以得出离心泵的特性曲线;再根据孔板流量计的孔流系数ρp u C ∆=2/0与雷诺数μρdu =Re 的变化规律作出Re 0-C 图,并找出在Re 大到一定程度时0C 不随Re 变化时的0C 值;最后测量不同阀门开度下,泵入口真空表真P 、泵出口压力表压P 、孔板压差计两端压差P ∆,根据已知公式可以求出不同阀门开度下的Q H -e 关系式,并作图可以得到管路特性曲线图。
二、目的及任务①了解离心泵的构造,掌握其操作和调节方法。
②测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。
③熟悉孔板流量计的构造、性能及安装方法。
④测定孔板流量计的孔流系数。
⑤测定管路特性曲线。
三、基本原理1.离心泵特性曲线测定离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。
其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到。
由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头笑,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q 、N-Q 和η-Q 三条曲线称为离心泵的特性曲线。
另外,曲线也可以求出泵的最佳操作范围,作为选泵的依据。
(1)泵的扬程He :e 0H H H H =++真空表压力表v1.0 可编辑可修改式中:H 真空表——泵出口的压力,2mH O ,H 压力表——泵入口的压力,2mH O0H ——两测压口间的垂直距离,0H 0.85m = 。
离心泵性能实验报告
北京化工大学化工原理实验报告实验名称:离心泵性能实验班级:化工100学号:2010姓名:同组人:实验日期:2012.10.7一、报告摘要:本次实验通过测量离心泵工作时,泵入口真空表P真、泵出口压力表P压、孔板压差计两端压差P 、电机输入功率Ne 以及流量Q(V/t )这些参数的关系,根据公式H e H 真空表H 压力表H0、N轴N 电电转、 Ne Q He以及Ne 可以得出102N 轴离心泵的特性曲线;再根据孔板流量计的孔流系数C 0u 0 / 2 p 与雷诺数Re du的变化规律作出C0Re 图,并找出在Re 大到一定程度时 C 0不随Re变化时的 C0值;最后测量不同阀门开度下,泵入口真空表P真、泵出口压力表P压、孔板压差计两端压差P ,根据已知公式可以求出不同阀门开度下的H e Q 关系式,并作图可以得到管路特性曲线图。
二、目的及任务①了解离心泵的构造,掌握其操作和调节方法。
②测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。
③熟悉孔板流量计的构造、性能及安装方法。
④测定孔板流量计的孔流系数。
⑤测定管路特性曲线。
三、基本原理1.离心泵特性曲线测定离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。
其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到。
由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头笑,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q、 N-Q 和η-Q 三条曲线称为离心泵的特性曲线。
另外,曲线也可以求出泵的最佳操作范围,作为选泵的依据。
(1)泵的扬程He:H e H 真空表H 压力表H 0式中: H 真空表——泵出口的压力,mH 2O ,H 压力表——泵入口的压力,mH 2 OH 0——两测压口间的垂直距离,H 00.85m。
(2)泵的有效功率和效率由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入泵的功率又比理论值高,所以泵的总效率为:Ne Q HeN 轴, Ne102式中 Ne ——泵的有效效率,kW ;Q ——流量, m 3/s ; He ——扬程, m ;3由泵输入离心泵的功率N 轴为: N 轴 N 电电 转式中: N 电 ——电机的输入功率, kW电 ——电机效率,取0.9;转 ——传动装置的效率,一般取1.0;2.孔板流量计空留系数的测定在水平管路上装有一块孔板, 其两侧接测压管, 分别与压差传感器两端连接。
化工原理实验报告-离心泵试验
化工原理实验报告班级: XXXXXX指导老师: XXX小组: XXX组员:XXX XXXXXX XXX实验时间: X年X月X日目录一、摘要 (2)二、实验目的及任务 (2)三、基本原理 (2)1.泵的扬程He (3)2.泵的有效功率和效率 (3)四、实验装置和流程 (4)五、操作要点 (4)六、实验数据记录与处理 (5)1.泵的扬程与流量关系曲线的测定(H e~Q) (5)2.泵的轴功率与流量关系曲线的测定(N轴~Q) (6)3.泵的总效率与流量关系曲线的测定(η~Q) (8)4.计算示例 (9)(1)泵的扬程与流量关系曲线的测定(H e~Q) (9)(2)泵的轴功率与流量关系曲线的测定(N轴~Q) (10)(3)泵的总效率与流量关系曲线的测定(η~Q) (10)七、实验结果及分析 (11)八、误差分析 (11)九、思考题 (12)实验二离心泵性能试验一、摘要本实验以水为工作流体,使用WB70/055型离心泵实验装置。
通过调节阀门改变流量,测得不同流量下离心泵的各项性能参数,流量通过涡轮流量计测量。
实验中直接测量量有P真空表、P压力表、电机功率N电、水流量Q、水温℃。
根据上述测量量来计算泵的扬程He、泵的有效功率Ne、泵的总效率η。
从而绘制He-Q、N e-Q和η-Q三条曲线即泵的特性曲线图,并根据此图求出泵的最佳操作范围。
关键词:离心泵特性曲线二、实验目的及任务①了解离心泵的构造,掌握其操作和调节方法。
②测定离心泵的扬程与流量关系曲线。
③测定离心泵的轴功率与流量关系曲线。
④测定离心泵的总效率与流量关系曲线。
⑤综合测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。
三、基本原理离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。
其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到。
由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头笑,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q、N-Q和η-Q三条曲线称为离心泵的特性曲线。
离心泵性能综合实验(化工原理实验)
离心泵性能综合实验一、实验目的1、观察离心泵汽蚀、气缚现象,了解汽蚀、气缚现象产生原因及其防止方法;2、学习工业上流量、功率、转速、压力和温度等参数的测量方法,了解转子流量计的工作原理;3、测定离心泵特性曲线,绘制出扬程、功率和效率与流量的关系曲线图。
二、实验原理1、气缚现象离心泵靠离心力输送液体。
离心力大小,除与叶轮直径及叶轮旋转速度有关外,还与流体重度有关。
若离心泵启动时,泵壳内存在大量空气,则由于空气的重度远远低于液体的重度,叶轮旋转所造成的离心力也很小,导致泵入口与水池液面间的压差太小,不能把水池内液体抽压到叶轮中心,就会发生离心泵空转却送不出液体的状况,这种现象称“气缚”。
所以,离心泵若安装在液面上方时,启动前必须先使泵体及吸入管路中充满液体(所谓“灌泵”)。
同时,在运转过程中也要防止外界空气大量漏入,以免产生气缚。
2、汽蚀现象离心泵之所以能吸取液体,是由于泵的叶轮旋转时,将液体抛向外沿,而中心形成真空,而贮槽液面上的压力却为大气压,因此,泵就依靠此压差将液体压入泵内,如果输送的是水,并设叶轮进口处为绝对真空,管路阻力为零,液面上为一个标准大气压,那么最大几何吸上高度也不超过10.33米。
图1离心泵吸上真空度参照图1,列0~0,1~1截面间柏努利方程式:0120112s f p p u Z h g g g ρρ-⎛⎫=-++∑ ⎪⎝⎭(1)式中s Z 为几何安装高度。
设:01s p p H gρ-=,s H 为吸上真空高度,则012112o s s f p p u H Z h g gρ--==++∑(2)由此可知,1p 愈小,s H 愈大。
但当1p 低达v p (输送液体的饱和蒸汽压)时,液体就要汽化,就产生汽蚀现象,使泵无法工作,所以对1p 的降低幅度应有限制。
由上式可见,1p 随着泵的几何安装高度s Z 提高而降低,故最终应对泵的几何安装高度加以限制。
在离心泵的铭牌(性能表)上一般都列有允许吸上真空高度s H 允许和汽蚀余量h ∆允许,二者均是对泵的安装高度加以限制,以避免汽蚀现象发生。
离心泵性能实验报告
实验名称:离心泵性能实验 一、 实验目的① 了解离心泵的构造,掌握其操作和调节方法。
② 测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。
③ 熟悉孔板流量计的构造、性能及安装方法。
④ 测定孔板流量计的孔流系数。
⑤ 测定管路特性曲线。
二、 实验器材离心泵性能实验装置三、 实验原理1、离心泵特性曲线测定离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。
其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到,如图-1的曲线。
由于流体流经泵时,不可避免的会遇到种种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头小,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测得:He ~Q 、N ~Q 和η~Q 三条图-1 离心泵的理论压头与实际压头曲线称为离心泵的特性曲线。
另外,根据此曲线也可以求出离心泵的最佳操作范围,泵的高效率区作为选用离心泵的依据。
(1) 泵的扬程He0H H H He ++=真空表压力表式中 压力表H ________泵出口处的压力,O H m 2; 真空表H ________泵入口处的真空度,O H m 2;0H _______压力表和真空表测压口之间的垂直距离,m H 85.00=。
(2) 泵的有效功率和效率由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值较低,而输入泵的功率又比理论值高,所以泵的总效率为:轴N N e =η 102QHe e ρ=N式中 e N ________泵的有效功率,kW ;Q ________流量,m 3/s ; e H ________扬程,m ;ρ________流体密度,kg/m 3。
由泵轴输入离心泵的功率轴N 为:转电电轴ηηN N =式中 电N ________电机的输入功率,kW ; 电η________电机效率,取0.9;转η________传动装置的传动效率,一般取1.0。
离心泵性能测定实验报告
离心泵性能测定实验报告化工原理实验实验题目:——离心泵性能实验姓名:沈延顺同组人:覃成鹏臧婉婷王俊烨实验时间:2011.11.21由于流体流经泵时,不可避免的会遇到种种阻力,产生能量损失,诸如摩擦阻力、环流损失等,因此,实际压头比理论压头小,且难以通过计算求得,因此通常采用实验方法,直接测定其参数见的关系,并将测出的He~Q、N~Q、和η~Q三条曲线称为离心泵的特性曲线。
另外,根据此曲线也可以求出最佳操作范围,作为选泵的依据。
图(1)、泵的扬程He式中:——泵出口处的压力。
——泵入口处的真空度。
——压力表和真空表测压口之间的垂直距离,=0.85m。
(2)、泵的有效功率和效率。
由于泵在运转中存在种种能量损失,是泵的实际压头和流量较理论值为低,而输入泵的功率又比理论值为高,所以泵的总效率为:式中:Ne——泵的有效功率,KwQ——流量,He——扬程,ρ——流体的密度,kg/m3由泵轴输入离心泵的功率为:式中:——电机的输入功率,kw——电机效率,取0.9——传动装置的转动效率,一般取1.01、孔板流量计孔流系数的测定孔板流量计的构造原理如图所示,图在水平管路上装有一块孔板,其两侧接测压管,分别与压差传感器的两端连接。
孔板流量计是利用流体通过锐孔的节流作用,使流速增大,压强减小,造成孔板前后压强差,作为测量的依据。
若管路的直径为,孔板锐孔直径为,流体流经孔板后所形成缩脉的与,根据伯努利方程,不考虑能量损失,可得:或由于缩脉的位置随流速的变化而变化,故缩脉处截面积难以知道,孔口的面积已知,且测压口的位置在设备制成后也不改变,因此,可以用孔板孔径处的代替,考虑到流体因局部阻力而造成的能量损失,用校正系数C校正后,则有:对于不可压缩流体,根据连续性方程有经过整理可得:令,则又可以化简为:根据和,即可算出流体的体积流量,为:或式中:——流体的体积流量,——孔板压差,Pa——孔口的面积,——流体的密度,——孔流系数孔流系数的大小由孔板锐孔的形状、测压口的位置、孔径与管径比和雷诺数共同决定,具体数值由实验确定。
化工原理实验报告离心泵的性能试验北京化工大学
北京化工大学化工原理实验报告实验名称:离心泵性能实验班级:化工13姓名:学号: 20130 序号:同组人:实验二:离心泵性能实验摘要:本实验以水为介质,使用离心泵性能实验装置,测定了不同流速下,离心泵的性能、孔板流量计的孔流系数以及管路的性能曲线。
实验验证了离心泵的扬程He 随着流量的增大而减小,且呈2次方的关系;有效效率有一最大值,实际操作生产中可根据该值选取合适的工作范围;泵的轴功率随流量的增大而增大;当Re 大于某值时,C 0为一定值,使用该孔板流量计时,应使其在C 0为定值的条件下。
关键词:性能参数(N H Q ,,,η) 离心泵特性曲线 管路特性曲线C 0 一.目的及任务1.了解离心泵的构造,掌握其操作和调节方法。
2.测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。
3.熟悉孔板流量计的构造,性能和安装方法。
4.测定孔板流量计的孔流系数。
5.测定管路特性曲线。
二. 实验原理1.离心泵特性曲线测定离心泵的性能参数取决于泵的内部结构,叶轮形式及转速。
其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到,如图1中的曲线。
由于流体流经泵时,不可避免的会遇到种种阻力,产生能量损失,诸如摩擦损失,环流损失等,因此通常采用实验方法,直接测定参数间的关系,并将测出的He-Q,N-Q 和η-Q 三条曲线称为离心泵的特性曲线。
另外,根据此曲线也可以求出泵的最佳操作范围,作为泵的选择依据。
图1.离心泵的理论压头与实际压头(1)泵的扬程HeHe=0真空表压力表H H H ++ 式中 H 压力表——泵出口处的压力,mH 2o ;H 真空表——泵入口处的真空度,mH 2o ;H 0——压力表和真空表测压口之间的垂直距离,H 0=0.2m 。
(2)泵的有效功率和效率由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入泵的功率又比理论值为高,所以泵的总效率为轴ηN Ne=102QHe Ne ρ=式中 Ne ——泵的有效功率,kW ;Q ——流量,m 3/s ; He ——扬程,m ;ρ——流体密度,kg/ m 3。
离心泵性能测定实验分析报告
离心泵性能测定实验一、实验目的:1、了解离心泵的构造,掌握其操作和调节方法;2、测量离心泵在恒定转数下的特性曲线,并确定其最佳工作范围;3、测量管路特性曲线及双泵并联时特性曲线;4、了解工作点的含义及确定方法;5、测定孔板流量计孔流系数C0与雷诺数Re的关系(选做)。
二、基本原理:1、离心泵特性曲线测定离心泵的特征方程是从理论上对离心泵中液体质点的运动情况进行分析研究后,得出的离心泵压头与流量的关系。
离心泵的性能受到泵的内部结构、叶轮形式和转数的影响,故在实际工作中,其内部流动的规律比较复杂,实际压头要小于理论压头。
因此,离心泵的扬程尚不能从理论上作出精确的计算,需要实验测定。
在一定转数下,泵的扬程、功率、效率与其流量之间的关系,即为特性曲线。
泵的扬程可由进、出口间的能量衡算求得:He = H压力表+ H真空表+ H0 [ m ]其中:H真空表,H压力表分别为离心泵进出口的压力[ m ];H0为两测压口间的垂直距离,H0= 0.3m 。
N轴= N电机•η电机•η传动[ kw ]其中:η电机—电机效率,取0.9;η传动—传动装置的效率,取1.0;102ρ⋅⋅=He Q N [ kw ] 因此,泵的总效率为:轴N Ne =η 2、孔板流量计孔流系数的测定孔板流量计孔板孔径处的流速u 0可以简化为:u 0=C 0(2gh )1/2根据u 0和S 0,即可算出流体的体积流量Vs 为:Vs=u 0S 0=C 0S 0(2gh )1/2或: Vs= C 0S 0(2△p/ρ)1/2式中Vs ——流体的体积流量,m 3/s ;△ p ——孔板压差,Pa ;S 0——孔口面积,m 2;ρ——流体的密度,kg/m 3;C 0——孔流系数。
孔流系数的大小由孔板锐孔的形状、测压口的位置、孔径与管径比和雷诺数共同决定,具体数值由实验确定。
当d 0/d 1一定,雷诺数Re 超过某个数值后,C 0就接近于定值。
通常工业上定型的孔板流量计都在C 0为常数的流动条件下使用。
离心泵性能测试实训报告
一、实验目的1. 熟悉离心泵的结构、工作原理和操作方法。
2. 掌握离心泵性能测试的基本原理和操作步骤。
3. 学会使用相关测试仪器,如流量计、压力表、功率计等。
4. 通过实验,了解离心泵的性能参数,如流量、扬程、效率等,并分析其变化规律。
二、实验原理离心泵是一种通过离心力将流体加速并输送的机械设备。
其性能参数主要包括流量、扬程、功率、效率等。
离心泵的性能测试是通过在不同工况下测量其流量、扬程、功率等参数,绘制出泵的性能曲线,从而了解泵的工作特性。
三、实验设备1. 离心泵一台2. 流量计一台3. 压力表一台4. 功率计一台5. 计时器一台6. 数据采集器一台7. 计算机一台四、实验步骤1. 准备工作(1)检查离心泵、流量计、压力表、功率计等设备是否完好,并连接好。
(2)打开离心泵,使其处于待机状态。
(3)启动数据采集器,设置好测试参数。
2. 实验操作(1)调节离心泵的进口阀门,改变进口压力,记录不同进口压力下的流量、扬程、功率等参数。
(2)在保持进口压力不变的情况下,改变出口阀门的开度,改变出口压力,记录不同出口压力下的流量、扬程、功率等参数。
(3)重复以上步骤,获取不同工况下的测试数据。
3. 数据处理(1)将测试数据输入计算机,绘制出流量-扬程曲线、功率-流量曲线、效率-流量曲线等。
(2)分析曲线,了解离心泵在不同工况下的性能变化规律。
五、实验结果与分析1. 流量-扬程曲线流量-扬程曲线反映了离心泵在不同进口压力下的流量和扬程关系。
曲线的斜率表示泵的扬程系数,斜率越大,泵的扬程系数越大。
2. 功率-流量曲线功率-流量曲线反映了离心泵在不同进口压力下的功率和流量关系。
曲线的斜率表示泵的效率,斜率越大,泵的效率越高。
3. 效率-流量曲线效率-流量曲线反映了离心泵在不同进口压力下的效率和流量关系。
曲线的峰值表示泵的最高效率点,峰值对应的流量表示泵的最佳工作点。
六、实验结论1. 通过实验,掌握了离心泵性能测试的基本原理和操作步骤。
离心泵性能实验报告记录(带数据处理)
离心泵性能实验报告记录(带数据处理)离心泵性能实验报告记录(带数据处理)————————————————————————————————作者:————————————————————————————————日期:实验三、离心泵性能实验姓名:杨梦瑶学号:1110700056 实验日期:2014年6月6日同组人:陈艳月黄燕霞刘洋覃雪徐超张骏捷曹梦珺左佳灵预习问题:1.什么是离心泵的特性曲线?为什么要测定离心泵的特性曲线?答:离心泵的特性曲线:泵的He、P、η与Q V的关系曲线,它反映了泵的基本性能。
要测定离心泵的特性曲线是为了得到离心泵最佳工作条件,即合适的流量范围。
2.为什么离心泵的扬程会随流量变化?答:当转速变大时,,沿叶轮切线速度会增大,当流量变大时,沿叶轮法向速度会变大,所以根据伯努力方程,泵的扬程:H=(u22- u12)/2g + (p2- p1) / ρg + (z2- z1) +H f沿叶轮切线速度变大,扬程变大。
反之,亦然。
3.泵吸入端液面应与泵入口位置有什么相对关系?答:其相对关系由汽蚀余量决定,低饱和蒸气压时,泵入口位置低于吸入端液面,流体可以凭借势能差吸入泵内;高饱和蒸气压时,相反。
但是两种情况下入口位置均应低于允许安装高度,为避免发生汽蚀和气缚现象。
4.实验中的哪些量是根据实验条件恒定的?哪些是每次测试都会变化,需要记录的?哪些是需要最后计算得出的?答:恒定的量是:泵、流体、装置;每次测试需要记录的是:水温度、出口表压、入口表压、电机功率;需要计算得出的:扬程、轴功率、效率、需要能量。
一、实验目的:1.了解离心泵的构造,熟悉离心泵的操作方法及有关测量仪表的使用方法。
2.熟练运用柏努利方程。
3.学习离心泵特性曲线的测定方法,掌握离心泵的性能测定及其图示方法。
4.了解应用计算机进行数据处理的一般方法。
二、装置流程图:图5 离心泵性能实验装置流程图1 水箱2 Pt100温度传感器3 入口压力传感器 4真空表 5 离心泵 6 压力表7 出口压力传感器8 φ48×3不锈钢管图 9 孔板流量计d=24mm 10压差传感器11 涡轮流量计 12 流量调节阀 13 变频器三、实验任务:1.绘制离心泵在一定转速下的H(扬程)~Q(流量);N(轴功率)~Q;η(效率)~Q三条特性曲线。
离心泵性能实验报告
离心泵性能实验报告一、实验目的:1.熟悉离心泵的工作原理和结构;2.掌握离心泵的性能曲线测定方法;3.分析离心泵的性能特点和工作状态。
二、实验原理:离心泵是利用旋转叶轮受到离心力作用,使流体获得能量并实现输送的一种装置。
其主要组成部分包括进口管道、叶轮、轮壳和出口管道等。
流体通过进口管道进入离心泵,由叶轮受到离心力作用,流体获得动能并进一步增压,然后流向出口管道。
离心泵的性能可以通过性能曲线进行表述,性能曲线是流量Q和扬程H之间的关系曲线。
在实验中,通过改变离心泵的转速和阀门的开度,测定不同工作点的流量和扬程,并绘制出性能曲线。
三、实验器材和设备:1.离心泵2.流量计3.压力表4.进口和出口管道5.计时器四、实验步骤:1.将离心泵安装在平稳的工作台上,固定好进口和出口管道;2.排空进口和出口管道,确保泵的内部无空气;3.打开进口管道的阀门,逐渐增大泵的转速,同时记录每个转速对应的流量和扬程;4.根据测得的数据,绘制离心泵的性能曲线。
五、实验数据处理:根据实验测量得到的流量和扬程数据,可以计算离心泵的效率和功率等性能参数,并绘制性能曲线。
1.流量Q与扬程H的关系:根据测得的流量和扬程数据,可以绘制出性能曲线。
例如,测得的数据如下表所示:转速 n(r/min),流量 Q(m³/h),扬程 H(m)------,---------,-------1500,500,452000,400,302500,300,153000,200,5(插入性能曲线图)2.离心泵的效率:离心泵的效率η定义为输出功率和输入功率之比。
输入功率可以通过流量和扬程计算得到,而输出功率可以通过流量和扬程及流体密度来计算。
输入功率P_in = (ρQgH)/1000,其中ρ为流体密度,g为重力加速度(9.8m/s²)。
输出功率P_out = ρQgHη离心泵的效率η = P_out / P_in根据已知数据,可以计算得到离心泵在不同工作点的效率值,并绘制效率随流量变化的曲线。
化原实验离心泵性能实验报告
化原实验离心泵性能实验报告本实验主要是通过对化原实验离心泵的性能进行测试,了解其基本性能参数和工作原理。
实验过程中,我们通过测量不同流量下的扬程和功率,计算出泵的效率和特性曲线,并对实验结果进行分析和讨论,探究实验中的一些问题和应对策略。
一、实验目的1.了解离心泵的基本工作原理和结构特点,掌握其性能测试方法和计算公式;2.测定化原实验离心泵在不同流量下的扬程和功率,并计算出其效率和特性曲线;3.分析实验结果,探究影响离心泵性能的因素,了解如何调整和优化离心泵的工作条件。
二、实验原理离心泵是以离心力为主要作用力的泵类,其具有结构简单、流量大、扬程高、容易维修等特点,广泛应用于化工、水利、供水、排水等领域。
离心泵的主要部件包括叶轮、泵体、轴承、密封件等。
流量Q=VA(V为流速,A为截面积)扬程H:液体上升高度,即泵的出口压力与入口压力的差值。
功率P=QHρg/η(ρ为液体密度,g为重力加速度,η为效率)效率η=P实际/P理论(P实际为实测功率,P理论为理论功率)特性曲线:是指在离心泵各种工况下的扬程H和流量Q之间的关系曲线,即H-Q曲线。
三、实验设备和药品1.实验设备:化原实验离心泵、流量计、压力表、电动机等;2.实验药品:水。
四、实验过程1. 实验前准备(1)确认离心泵的运转方向,调整流量计的刻度和释放压力表上的气泡。
(2)将流量计连接到泵的进口处,压力表连接到泵的进出口处,电动机连接到泵的轴端。
(3)开启流量计、压力表和电源开关,调整电动机转速为预定值。
2. 测量扬程和功率依次改变流量调节阀的开度,记录每一个流量下泵的扬程和功率,并根据上述公式计算泵的效率和特性曲线。
3. 记录和统计实验数据每个流量下的扬程、功率、效率和特性曲线数据进行记录并统计分析,观察数据变化趋势和规律。
五、实验结果分析流量(m³/h)扬程(m)功率(W)效率(%)1 11.2 81.7 562 9.3 93.3 643 8.2 104.7 714 7.3 117.8 785 6.4 135.4 836 4.3 87.4 662. 特性曲线分析根据实验数据得到的特性曲线如下所示:从图中可以看出,在流量增加的时候扬程逐渐下降,而功率和效率则相应增加。
化工原理实验报告离心泵的性能试验北京化工大学
北京化工大学化工原理实验报告实验名称:离心泵性能实验班级:化工13姓名:学号: 20130 序号:同组人:实验二:离心泵性能实验摘要:本实验以水为介质,使用离心泵性能实验装置,测定了不同流速下,离心泵的性能、孔板流量计的孔流系数以及管路的性能曲线。
实验验证了离心泵的扬程He随着流量的增大而减小,且呈2次方的关系;有效效率有一最大值,实际操作生产中可根据该值选取合适的工作范围;泵的轴功率随流量的增大而增大;当Re大于某值时,C0为一定值,使用该孔板流量计时,应使其在C为定值的条件下。
关键词:性能参数(NHQ,,, )离心泵特性曲线管路特性曲线C0一.目的及任务1.了解离心泵的构造,掌握其操作和调节方法。
2.测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。
3.熟悉孔板流量计的构造,性能和安装方法。
4.测定孔板流量计的孔流系数。
5.测定管路特性曲线。
二. 实验原理1.离心泵特性曲线测定离心泵的性能参数取决于泵的内部结构,叶轮形式及转速。
其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到,如图1中的曲线。
由于流体流经泵时,不可避免的会遇到种种阻力,产生能量损失,诸如摩擦损失,环流损失等,因此通常采用实验方法,直接测定参数间的关系,并将测出的He-Q,N-Q 和η-Q 三条曲线称为离心泵的特性曲线。
另外,根据此曲线也可以求出泵的最佳操作范围,作为泵的选择依据。
图1.离心泵的理论压头与实际压头(1)泵的扬程HeHe=0真空表压力表H H H ++式中 H 压力表——泵出口处的压力,mH 2o ;H 真空表——泵入口处的真空度,mH 2o ;H 0——压力表和真空表测压口之间的垂直距离,H 0=。
(2)泵的有效功率和效率由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入泵的功率又比理论值为高,所以泵的总效率为轴ηN Ne= 102QHe Ne ρ=式中 Ne ——泵的有效功率,kW ;Q ——流量,m 3/s ; He ——扬程,m ;ρ——流体密度,kg/ m 3。
化工原理实验报告离心泵的性能试验北京化工大学资料
北京化工大学化工原理实验报告实验名称:离心泵性能实验班级:化工13姓名:学号: 20130 序号:同组人:实验二:离心泵性能实验摘要:本实验以水为介质,使用离心泵性能实验装置,测定了不同流速下,离心泵的性能、孔板流量计的孔流系数以及管路的性能曲线。
实验验证了离心泵的扬程He 随着流量的增大而减小,且呈2次方的关系;有效效率有一最大值,实际操作生产中可根据该值选取合适的工作范围;泵的轴功率随流量的增大而增大;当Re 大于某值时,C 0为一定值,使用该孔板流量计时,应使其在C 0为定值的条件下。
关键词:性能参数(N H Q ,,,)离心泵特性曲线管路特性曲线C 0一.目的及任务1.了解离心泵的构造,掌握其操作和调节方法。
2.测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。
3.熟悉孔板流量计的构造,性能和安装方法。
4.测定孔板流量计的孔流系数。
5.测定管路特性曲线。
二.实验原理1.离心泵特性曲线测定离心泵的性能参数取决于泵的内部结构,叶轮形式及转速。
其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到,如图1中的曲线。
由于流体流经泵时,不可避免的会遇到种种阻力,产生能量损失,诸如摩擦损失,环流损失等,因此通常采用实验方法,直接测定参数间的关系,并将测出的He-Q,N-Q 和η-Q 三条曲线称为离心泵的特性曲线。
另外,根据此曲线也可以求出泵的最佳操作范围,作为泵的选择依据。
图1.离心泵的理论压头与实际压头(1)泵的扬程He He=真空表压力表H H H 式中 H 压力表——泵出口处的压力,mH 2o ;H 真空表——泵入口处的真空度,mH 2o ;H 0——压力表和真空表测压口之间的垂直距离,H 0=0.2m 。
(2)泵的有效功率和效率由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入泵的功率又比理论值为高,所以泵的总效率为轴ηN Ne 102QHe Neρ式中 Ne ——泵的有效功率,kW ;Q ——流量,m 3/s ;He ——扬程,m ;ρ——流体密度,kg/ m 3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工基础实验——离心泵性能测定实验数据记录
本实验主要是对离心泵的性能进行测定。
通过实验,我们可以了解到离心泵的性能参数、工作原理以及运行过程中的注意事项等,对于离心泵的操作和维护具有重要的指导作用。
实验内容:
1. 离心泵流量和扬程的测定。
3. 研究离心泵在不同工况下的性能变化。
实验仪器和设备:
2. 水箱。
3. 流量计。
4. 压力计。
5. 磁力搅拌器。
6. 实验计算器。
实验步骤:
1. 将离心泵放在水箱内,与出水口相对应。
将水箱中水泵入离心泵内,直至其充满。
2. 将流量计放在离心泵出水口处,测出流量值。
4. 根据所得到的流量值和出口压力值计算出离心泵的流量和扬程。
5. 计算离心泵的功率和效率。
6. 测量离心泵在不同工况下的流量和扬程,绘制出其性能曲线。
实验数据记录:
(1)使用实验计算器计算流量值,记录实验数据表格如下:
水头(m)流速(m/s)流量(m³/h)
0.2 0.49 1.764
0.4 0.51 2.026
0.6 0.53 2.312
2. 效率测定
Q(m³/h) H(m) P(KW) n(r/min)η
3. 性能变化测定
(2)绘制出离心泵的性能曲线图如下:
结论:
通过本实验测量,我们可以得到如下结论:
3. 离心泵的性能曲线图呈现出一个斜坡状,其高峰点是离心泵的最大流量和扬程值。
4. 在离心泵的运行过程中,需要注意清洗和维护,以免造成堵塞和损坏。