浙江省塑料改性与加工技术研究重点实验室

合集下载

微孔发泡注塑成型工艺及其设备的技术进展

微孔发泡注塑成型工艺及其设备的技术进展

塑料工业CHINAPLASTICSINDUSTRY第49卷第2期2021年2月微孔发泡注塑成型工艺及其设备的技术进展∗任亦心1ꎬ刘君峰1ꎬ许忠斌1ꎬ∗∗ꎬ王金莲2ꎬ∗∗∗ꎬ虞伟炳3ꎬ应建华3(1.浙江大学能源工程学院ꎬ浙江杭州310027ꎻ2.杭州科技职业技术学院ꎬ浙江杭州311402ꎻ3.浙江赛豪实业有限公司ꎬ浙江台州318020)㊀㊀摘要:微孔发泡注塑技术是实现塑料轻量化设计的重要途径ꎮ在简要回顾微孔塑料发泡注塑成型工艺的基础上ꎬ重点介绍了微孔发泡注塑成型设备的发展动向ꎮ从注气㊁塑化㊁注射㊁模具和辅助系统等五个模块ꎬ分析总结工艺要求及多种国外产业端的先进设备特点和解决方案ꎮ文中重点论述多个成功应用的生产设备创新案例ꎬ并对微孔发泡注塑成型技术和设备的未来发展趋势进行展望ꎮ关键词:微孔泡沫塑料ꎻ注塑成型ꎻ设备ꎻ轻量化设计中图分类号:TQ320 66+2㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1005-5770(2021)02-0012-04doi:10 3969/j issn 1005-5770 2021 02 003开放科学(资源服务)标识码(OSID):TechnicalProgressofMicrocellularFoamInjectionMoldingProcessandEquipmentRENYi ̄xin1ꎬLIUJun ̄feng1ꎬXUZhong ̄bin1ꎬWANGJin ̄lian2ꎬYUWei ̄bing3ꎬYINGJian ̄hua3(1.CollegeofEnergyEngineeringꎬZhejiangUniversityꎬHangzhou310027ꎬChinaꎻ2.HangzhouPolytechnicꎬHangzhou311402ꎬChinaꎻ3.ZhejiangSaihaoIndustrialCo.ꎬLtd.ꎬTaizhou318020ꎬChina)Abstract:Microcellularinjectionmoldingwasanefficientandimportantapproachappliedinthelightweightplastics.Basedonabriefreviewofmicrocellularinjectionmoldingprocessꎬthedevelopmenttrendofthemoldingequipmentofmicroporousplasticfoaminjectionwasmainlyintroduced.Theprocessrequirementsandthecharacteristicsandsolutionsofvariousadvancedequipmentinforeignindustrieswereanalyzedandsummarizedfromfivemodulesꎬsuchasꎬgasinjectionꎬplasticizingꎬinjectionꎬmoldandauxiliarysystem.Manysuccessfulappliedproductionequipmentcaseswerediscussedꎬandthefuturedevelopmenttrendofmicrocellularfoaminjectionmoldingtechnologyandequipmentwasprospected.Keywords:MicroPorousFoamPlasticꎻInjectionMoldingTechnologyꎻEquipmentꎻLightweightDesign轻量化设计是未来塑料加工技术的趋势之一ꎮ塑料轻量化不仅有助于节省原料成本ꎬ对于汽车㊁航天航空等产业更意味着产品整体性能和竞争力的提升ꎮ微孔发泡注塑成型是在这个背景下发展起来的新技术ꎮ其最大的优势在于能进一步激发塑料轻量化的潜能ꎮ同时ꎬ该技术还可减少缩痕㊁翘曲变形和内应力区域[1]ꎬ降低锁模力和注塑压力ꎬ实现节能环保ꎮ特殊制备的微孔发泡塑料还可以根据产品需求具备一些功能特性ꎬ例如隔热[2]㊁隔声[3]㊁较低的介电常数等ꎮ近年来ꎬ国内外产业端的需求和环保政策的导向使发泡注塑成型技术成为领域内的研究热点ꎬ也促使该工艺不断发展和完善ꎮ但是微孔发泡注塑成型设备和工艺关键技术大多为国外大型公司如Trexel㊁Arburg㊁Engel等所垄断ꎬ在一定程度上制约了国内产业的发展ꎮ本文介绍了微孔发泡注塑成型的原理和工艺过程ꎬ结合国内外产业界具体的设备创新案例ꎬ就微孔发泡注塑设备的各个功能模块分别展开综述ꎬ并对今后微孔发泡注塑的发展趋势进行了展望ꎮ1㊀微孔发泡注塑成型工艺过程微孔发泡注射成型的原理是利用快速改变温度㊁压力等工艺参数的方法ꎬ使聚合物-熔体气体均相体系进行微孔发泡而成型制品[4]ꎮ以Trexel公司的MuCell技术为典例ꎬ微孔发泡注塑设备及其过程中对应的两相形态变化如图1所示ꎮ首先ꎬ由高压气瓶提供超临界流体(通常为氮气或二氧化碳ꎬ典型剂量为0 2%~1 0%)ꎬ在螺杆回收期间通过喷射器以精确的流率注入混合段机筒内已经熔化的聚合物中ꎻ在螺杆向前输送物料的同时ꎬ特殊设计的螺杆混合段元件把气体切碎㊁搅混ꎬ使其均匀溶解在聚合物熔体中ꎬ形成塑料熔体-气体均相体系ꎮ有些设备还会专门设置扩散室进一步均化ꎮ由于止回阀和封闭式射咀的存在ꎬ均相体系能在高压下保持不发生离析ꎬ这是均匀成核的条件ꎮ随后ꎬ该体系将通过封闭式射咀高速注入已充压缩气体的模腔ꎮ模腔内足够高的压力防止21∗国家自然科学基金资助项目(52073247)ꎬ浙江省教育厅一般科研项目(Y201941430)ꎬ浙江大学项目(校合-2020-KYY-533005-0041)∗∗通信作者xuzhongbin@zju edu cn㊀㊀∗∗∗通信作者wangjinlian83@126 com作者简介:任亦心ꎬ女ꎬ1998年生ꎬ本科ꎬ主要从事高分子成型加工方面的研究ꎮ第49卷第2期任亦心ꎬ等:微孔发泡注塑成型工艺及其设备的技术进展气泡在充模阶段生长ꎮ充模完成后ꎬ型腔内压力骤降ꎬ气体在聚合物中形成非常高的过饱和度ꎬ极不稳定ꎮ高能态分子聚合诱发形成泡核ꎮ随着外部压力继续减小ꎬ气泡迅速膨胀ꎬ直至模腔被充满㊁物料凝固ꎮ图1㊀微孔发泡注塑成型设备及工艺对应两相形态简图Fig1㊀Schematicillustrationofamicrocellularinjectionmoldingequipmentsetandthecorrespondingtwo ̄phasemorphology相对于普通注射成型ꎬ气体的加入导致了系统额外的可变工艺参数ꎬ因此微孔发泡注塑成型过程要复杂得多ꎮ许忠斌等[5]曾系统地分析了影响微孔塑料注射成型过程的重要工艺参数ꎬ包括注射压力㊁注射时间㊁熔体温度等ꎮKastner等[6]也曾就改变各个工艺参数进行过最终塑料制品力学性能的测试ꎮ微孔发泡过程工艺参数的复杂性要求设备的设计者必须深入了解原理ꎬ准确控制各部分参数ꎬ最大程度利用微孔发泡的优势而减少其负面影响ꎮ2㊀微孔发泡注塑成型设备典范2 1㊀注气系统注气系统即实现发泡剂注入聚合物体系的设备模块ꎮ不同的设备注气系统所在位置和注气形式各不相同ꎬ但均需要考虑能否精确控制注剂量㊁能否为后续的两相混合预留时间或提供基础ꎮ最后ꎬ注气系统的成本和可拆卸性也越来越成为重要的参考ꎮ注气系统所在位置主要可分为均化段机筒处和喷嘴处ꎮ注气系统接入均化段的机筒的典型案例有Trexel公司的MuCell注塑机ꎮ该系列注塑机将微孔发泡技术最早实现商用ꎮ早期的MuCell注塑机用泵通过旁路阀控制注入量ꎻ随后先后引入了阻力元件㊁歧管系统㊁伺服电机系统等ꎬ实现精准注气和同步计量ꎮ目前ꎬ最新T系列注塑机拥有对新用户友好的智能给料控制系统ꎬ仅要求操作员输入装料质量和超临界氮的百分比ꎮ其注气系统会根据螺杆位置信号的反馈自动控制单个或多个位置的注气喷嘴开闭ꎬ根据实际熔胶时间和压力降情况调节打气时间和流速ꎬ实现注气环节智能化ꎮ然而该技术对已有注塑机的机筒㊁螺杆改造程度大ꎬ对起始投入资金要求高ꎮ针对此ꎬTrexel公司在2019年塑料技术大会上发布了可代替端盖ꎬ用螺栓加装在标准化的螺杆/机筒上的新型螺杆尖端加料模块ꎬ如图2b所示ꎮ该技术使得新机不需要特殊的定制螺杆㊁机筒和止回环ꎬ能够方便地切换回传统注塑ꎬ灵活适应生产ꎮa-传统MuCell定制螺杆b-MuCell新型螺杆尖端加料模块c-Optifoam技术鱼雷体状注气喷嘴d-ProFoam技术及其颗粒锁e-IQFoam颗粒-SCF气体注气方式图2㊀微孔发泡注塑成型技术案例示意图Fig2㊀Casediagramsofmicrocellularinjectionmoldingtechnology注气位置同样在均化段的还有意大利NegriBossi公司在2017年法国国际塑料行业解决方案展览会上推出的泡沫微孔成型方案(FMC)ꎮ与MuCell不同ꎬFMC将气体从螺杆尾部引入螺杆内部的通道中ꎬ并通过螺杆均化段上的一系列 喷针 注入熔体聚合物ꎮ该方法无需对机筒进行更换ꎮ另一个常见的注气位置在喷嘴处ꎬ经典的工业案例有31塑㊀料㊀工㊀业2021年㊀㊀Sulzer化学技术公司和德国亚琛大学塑料加工研究所(IKV)的Optifoam以及Demag公司的Ergozell技术ꎮ如图2cOpti ̄foam[7]在注气时设计了一种鱼雷体状有环形间隙结构的喷嘴ꎮ该环形间隙由可通过气体的特殊烧结的金属制成ꎬ可将SCF由此注入聚合物流道ꎬ既使注入时气体与熔体之间的接触表面最大化ꎬ又可防止聚合物渗出流道ꎮ使用这个注气系统ꎬ只需更新传统注塑机的喷嘴即可ꎮ但相较于均化段注塑ꎬ该方法建议的注射速度更小ꎮ在注气形式上ꎬ除了上述的注入超临界流体外ꎬ一些公司和研究所还开发了不需使用超临界流体的微孔发泡技术来避免造价高昂的超临界流体控制系统ꎮ例如塑胶颗粒-气体的混合注气方式ꎮ如图2dꎬArburg和IKV开发的ProFoam技术[8-9]可以将自创的颗粒密封锁安装在任何常规注塑机的料斗和进料口之间ꎮ颗粒锁内的密封舱将颗粒聚合物从环境压力转移到发泡剂压力ꎬ在恒压储存仓中用气体浸渍ꎮ颗粒锁有专门的控制器ꎬ全过程仅新增一个发泡剂的压力参数ꎮ从整体上ꎬ该技术除了加入防气体流失的螺杆尾部额外密封外ꎬ无需干预原增塑单元ꎮ大众汽车公司构思并申请专利㊁预计近几年投产的IQFoam[10]采用类似的方式ꎬ如图2eꎬ通过调节阀门以及两个致动器ꎬ在中低压下将气体与颗粒一起引入塑化系统ꎮProTech公司在2018年国际塑料加工贸易展览会上首次展示的SomosPerfoamer制造解决方案也采取将粒料经过浸渍送入一台或多台注塑机内的类似做法ꎮ塑胶颗粒 气体的注气方式体现了工业生产中模块化思想ꎬ通过可拆卸的组件进行扩展ꎬ从而灵活适应生产需求ꎮ但是在如何加快这种形式的气固吸收㊁缩短间歇注入的周期的问题上还有研究的空间ꎮ目前研究领域也提出了诸多代替超临界流体实现发泡的想法ꎮYusa等[11]开发的微孔发泡技术将物理发泡剂通过喷射阀和特殊螺杆运动的配合直接从气瓶中注入到熔融聚合物中ꎮ该装置形态与MuCell装置类似ꎬ新增一个排气循环系统ꎬ在聚合物饱和时将气体回收ꎬ不饱和时再次注入气体ꎮ在此基础上ꎬWang等[12]实现了用空气作为发泡剂进行微孔塑料的制备ꎬ并验证得到相比于氮气和二氧化碳发泡剂更细腻均匀的微孔结构ꎬ具有较好的商业前景ꎮ2 2㊀塑化系统塑化系统是微孔发泡注塑机的核心组成部分ꎬ它是实现聚合物机械塑化㊁加热塑化和两相混合的场所ꎮ对于注气位置靠前的设备ꎬ往往会从优化螺杆的角度促进两相混合ꎮ专为微孔发泡而开发的螺杆主要需考虑:提高塑化能力和分散混合能力㊁降低熔体温度不均匀性㊁防止发泡熔体中气体溢出逆流等ꎮ例如ꎬTrexel为MuCell技术定制的螺杆具有长径比大的特点ꎬ塑化段后设置提高聚合物/气体混合效果的混炼元件ꎮ螺杆上的后止回阀和前止回阀使得混合段保持高压ꎬ防止混合物向进料区和喷嘴膨胀ꎮ对于注气位置偏后的设备ꎬ通过螺杆机械混合时间极短的工艺ꎬ例如Ergocell和Optifoam[13]ꎬ塑化系统会在螺杆到喷嘴之间专门设置混合室㊁扩散室等来强化气体在聚合物中的扩散和均化ꎮ其中ꎬOptifoam采取了高压静态混合室ꎬ使得两相混合更充分ꎮErgocell则采用动态混合室ꎬ由电机驱动旋转ꎬ连接气体计量模块ꎬ加在标准化的塑化装置前端ꎬ该设计使得注入气体的混合速度独立于螺杆转速ꎬ让塑化过程和两相混合过程分别控制在最优参数下ꎮ2 3㊀注射装置在微孔发泡技术的注射环节ꎬ压降速率的增加会使得熔体成核速率提高ꎬ泡核均含气量减少ꎮ因此注射时的压降速率是得到均匀尺寸及分布的微孔的关键加工参数ꎮ提高压降速率的方式有提高注射速度㊁缩小喷嘴尺寸和延长喷嘴通道等ꎮ例如ꎬMuCell注塑机喷嘴大小相较等效实心注塑缩小了九成ꎻ微孔发泡注塑机的塑化系统和注塑系统的动力装置也通常是分离的ꎬ分别提供较高的分散混合能力和注射速率ꎮ由于熔体黏度降低ꎬ微孔发泡注射装置的注射压力相比于传统注塑可降低40%~50%ꎮ注射喷嘴通常选择封闭式喷嘴以防止气体泄漏和提前发泡ꎮ2 4㊀模具装置模具系统是塑料发泡成型的场所ꎬ同时具有了监控和调整塑料发泡过程的功能ꎮ为防止充模时期的预发泡ꎬ用于微孔发泡注塑的模具中通常会注入压缩气体ꎮ当塑料熔体被高速注入模腔时ꎬ该部分气体产生反压阻碍压降ꎮ因此微孔发泡的模具系统需具备高效排气进气系统ꎬ以便产生均匀的充模流场ꎮ由于注射速度高ꎬ连接流道和型腔的浇口截面积相对较大ꎮ对于传统注塑过程ꎬ模腔压力已被广泛应用作为监控成型过程的参量ꎮ但微孔发泡注塑中ꎬ在充模即将结束时压力就已经比较低的情况下ꎬ发泡过程的模腔压力很可能无法单独作为有用的反馈量ꎮ针对此ꎬBerry等[13]的研究提出可以通过快速响应热电偶和传统的压力传感器的结合来监控㊁预测微孔发泡成型的效果ꎮ另一方面ꎬ由于聚合物发泡会自主膨胀压实型模腔ꎬ几乎不需要保压的过程ꎬ微孔发泡技术有着更节能省时的优点ꎮ2 5㊀液压系统液压系统起到支持以上系统实现低注射压力㊁高注射速率的作用ꎬ并且能在螺杆停止转动和注射开始前维持机筒内压力ꎬ固定螺杆和防止预发泡ꎮ液压系统与注塑设备是相对独立的体系ꎬ在这里不做具体展开ꎮ2 6㊀辅助系统通过微孔发泡注塑制作的产品在表面性能和力学性能可能有缺陷ꎮ针对这个问题ꎬ常采用共注射模塑㊁快速热循环㊁绝缘涂层法㊁气体对压和芯背膨胀法等[14-18]加以改善ꎬ注塑机中会相应增加辅助系统ꎮ共注射模塑是传统的改善产品表面的方式ꎬ在微孔发泡中也有运用ꎮ实心-微孔材料共注射成型设备能够解决产品表面缺陷的问题ꎮ它增设了固体表层塑料的注射筒ꎮ在加工时ꎬ先注射实心塑料作为表皮ꎬ然后注射发泡塑料作为制品芯部ꎬ最后以实心材料封口[14]ꎻ循环加热法能提高模具和聚合物熔体之间的界面温度以保证表面的质量ꎬ同时避免长时间升温41第49卷第2期任亦心ꎬ等:微孔发泡注塑成型工艺及其设备的技术进展影响成核发泡ꎬ减少能耗浪费ꎮChen等[15]采用电磁感应加热与水冷相结合的方法ꎬ实现了快速的㊁仅限于模具表面的温度控制ꎬ可消除涡流痕迹ꎮ薄膜绝缘涂层法[16]则是通过在模具的内表面添加不同厚度的聚四氟乙烯隔热薄膜ꎬ将界面温度保持在熔融温度以上ꎻ气体对压法即将模腔内气压升高ꎬ使得聚合物在填充过程中被限制发泡ꎮ一旦模腔被完全填充ꎬ表面层冷却ꎬ再减压发泡[17]ꎮ该方法还能用来控制核的生长ꎮMuCell的经典设备中应用了气体对压法ꎻ芯背膨胀法[18]在对压法的基础上发展ꎬ以高注射速度将聚合物注入腔体厚度可变的精密机械ꎬ形成固体外层 皮肤 后ꎬ模具扩张厚度ꎬ压力突然下降诱导零件内部产生泡孔ꎬ逐渐达到更低的密度ꎮ该工艺能使制品减少表面漩涡痕迹ꎬ表层变薄ꎬ制品密度更低ꎮ此外ꎬ由于总厚度的增加ꎬ也改善了包括抗弯刚度在内的部分力学性能ꎮ3㊀展望微孔发泡注塑成型技术和设备在未来会呈现如下发展趋势:1)设备复杂性降低ꎮ许多大型注塑设备企业开始涉足这一市场ꎬ他们迫切需要解决的是如何将微孔发泡技术与客户已有的普通注塑机进行适配ꎬ实现低成本的更新改造ꎮ设备研发整体朝着降低发泡设备复杂性的方向发展ꎮ2)智能化提升ꎮ随着仿真软件和人工智能技术的发展ꎬ更加智能㊁操作友好的控制系统会集成到微孔发泡注塑机中ꎮ能进行状态监测㊁仿真计算㊁智能控制及可视化呈现的辅助模块在未来也适合应用于更为复杂的微孔发泡注塑过程ꎬ在气泡形态稳定性的控制㊁表面缺陷处理上有所突破ꎮ3)关注环保领域ꎮ作为一种绿色塑料加工技术ꎬ微孔发泡还可能进一步与塑料循环利用相结合ꎮ例如对废弃塑料制品粉碎㊁再造粒和再发泡ꎻ或采用三明治结构将回收的废弃塑料发泡作为内芯等ꎮ4)关注功能材料领域ꎮ对于微孔发泡塑料功能的深入研究会让微孔发泡技术潜在的应用场景进一步拓宽ꎬ特别是在对声学㊁热学㊁减震等有要求的特殊场景中ꎮ目前ꎬ几乎所有领先的微孔发泡注塑设备厂商都是国外的企业ꎮ国内微孔发泡领域主要集中在对原料工艺方面的研究ꎬ在设备和产业化方面还处于起步阶段ꎮ为实现国内微孔发泡塑料技术革新ꎬ还需通过产学研结合ꎬ不断优化过程设备ꎬ早日实现我国塑料产业的高端化㊁智能化升级ꎮ参㊀考㊀文㊀献[1]KRAMSCHUSTERAꎬCAVITTRꎬERMERDꎬetal.Quantitativestudyofshrinkageandwarpagebehaviorformicrocellularandconventionalinjectionmolding[J].Pol ̄ymerEngineering&Scienceꎬ2005ꎬ45(10):1408-1418.[2]ZHAOJCꎬZHAOQLꎬWANGLꎬetal.DevelopmentofhighthermalinsulationandcompressivestrengthBPPfoamsusingmold ̄openingfoaminjectionmoldingwithin ̄situfibrillatedPTFEfibers[J].EuropeanPolymerJournalꎬ2018ꎬ98:1-10.[3]NEYCIYANIBꎬKAZEMINAJAFISꎬGHASEMII.In ̄fluenceoffoamingandcarbonnanotubesonsoundtransmis ̄sionlossofwoodfiber ̄lowdensitypolyethylenecomposites[J].JournalofAppliedPolymerScienceꎬ2017ꎬ134(29):45096.[4]李从威ꎬ周南桥ꎬ王全新.微孔发泡注射成型设备及技术研究进展[J].工程塑料应用ꎬ2008ꎬ36(10):76-80.LICWꎬZHOUNQꎬWANGQX.Developmentofmi ̄crocellularinjectionmoldingtechnology[J].EngineeringPlasticsApplicationꎬ2008ꎬ36(10):76-80. [5]许忠斌ꎬ吴舜英ꎬ黄步明ꎬ等.微孔塑料注射成型机理及其技术发展动向[J].轻工机械ꎬ2003(4):24-28.XUZBꎬWUSYꎬHUANGBMꎬetal.Mechanismandtechnologicaldevelopmenttrendofinjectionmoldingofmi ̄crocellularplastics[J].LightIndustryMachineryꎬ2003(4):24-28.[6]KASTNERCꎬSTEINBICHLERGꎬKAHLENSꎬetal.Influenceofprocessparametersonmechanicalpropertiesofphysicallyfoamedꎬfiberreinforcedpolypropyleneparts[J].JournalofAppliedPolymerScienceꎬ2019ꎬ136(14):47275.[7]SASANHN.OptifoamTM theflexiblesolutionforfoaminjectionmolding[M]//RapraTechnology.BlowingA ̄gentsandFoamingProcesses.Hamburg:iSmithersRapraPublishingꎬ2004:64.[8]MICHAELIWꎬKRUMPHOLZTꎬOBELOERD.Pro ̄foam anewfoamingprocessforinjectingmolding[C]//Proceedingsofthe66thannualtechnicalconferenceofthesocietyofplasticsengineers.Milwaukee:Wisconsinꎬ2008:1019-1023.[9]GAUBH.Profoam ̄cost ̄efficientprocessformanufacturingfoamedlightweightparts[J].ReinforcedPlasticsꎬ2017ꎬ61(2):109-112.[10]GÓMEZ ̄MONTERDEJꎬHAINJꎬS NCHEZ ̄SOTOMꎬetal.Microcellularinjectionmolding:Acomparisonbe ̄tweenMuCellprocessandthenovelmicro ̄foamingtech ̄nologyIQFoam[J].JournalofMaterialsProcessingTechnologyꎬ2019ꎬ268:162-170.[11]YUSAAꎬYAMAMOTOSꎬGOTOHꎬetal.Anewmi ̄crocellularfoaminjection ̄moldingtechnologyusingnon ̄su ̄percriticalfluidphysicalblowingagents[J].PolymerEn ̄gineering&Scienceꎬ2017ꎬ57(1):105-113. [12]WANGLꎬHIKIMAYꎬOHSHIMAMꎬetal.Develop ̄mentofasimplifiedfoaminjectionmoldingtechniqueanditsapplicationtotheproductionofhighvoidfractionpoly ̄(下转第67页)51第49卷第2期倪金平ꎬ等:阻燃玻璃纤维增强PA6的紫外光稳定性PlasticsApplicationꎬ2019ꎬ47(11):149-155. [10]武海花.抗老化助剂对尼龙6耐老化性能的影响[J].工程塑料应用ꎬ2017ꎬ45(7):124-148.WUHH.Effectsofanti ̄agingadditivesonanti ̄agingre ̄sistanceofPA6[J].EngineeringPlasticsApplicationꎬ2017ꎬ45(7):124-128.[11]姜建洲ꎬ虞鑫海.应用于PA6工程塑料的氮系阻燃剂的研究现状[J].合成技术及应用ꎬ2014ꎬ29(3):9-12.JIANGJZꎬYUXH.Researchprogressofnitrogen ̄con ̄tainingflameretardantsappliedinPA6engineeringplastic[J].SyntheticTechnologyApplicationꎬ2014ꎬ29(3):9-12.[12]王良民ꎬ王龙礼ꎬ刘文哲ꎬ等.含溴阻燃PBT的阻燃性及紫外光稳定性[J].塑料工业ꎬ2020ꎬ28(8):47-51.WANGLMꎬWANGLLꎬLIUWZꎬetal.Flamere ̄tardancyandultravioletstabilityofbromineflameretardedPBTcomposites[J].ChinaPlasticsIndustryꎬ2020ꎬ28(8):47-51.[13]姚培培ꎬ李琛ꎬ肖生苓.紫外老化对聚苯乙烯泡沫性能的影响[J].化工学报ꎬ2014ꎬ65(11):4620-4626.YAOPPꎬLICꎬXIAOSL.Effectofultravioletagingonpropertiesandstructureofpolystyrene[J].CIESCJournalꎬ2014ꎬ65(11):4620-4626.(本文于2020-11-05收到)㊀(上接第15页)propylenefoams[J].Industrial&EngineeringChemistryResearchꎬ2017ꎬ56(46):13734-13742.[13]BERRYM.Appliedplasticsengineeringhandbook:Mi ̄crocellularinjectionmolding[M]Bedford:WilliamAn ̄drewPublishingꎬ2011.[14]TURNGLSꎬKHARBASH.Developmentofahybridsolid ̄microcellularco ̄injectionmoldingprocess[J].In ̄ternationalPolymerProcessingꎬ2004ꎬ19(1):77-86. [15]CHENSCꎬLINYWꎬCHIENRDꎬetal.Variablemoldtemperaturetoimprovesurfacequalityofmicrocellularinjectionmoldedpartsusinginductionheatingtechnology[J].AdvancesinPolymerTechnology:JournalofthePolymerProcessingInstituteꎬ2008ꎬ27(4):224-232.[16]LEEJꎬTURNGLS.Improvingsurfacequalityofmicro ̄cellularinjectionmoldedpartsthroughmoldsurfacetem ̄peraturemanipulationwiththinfilminsulation[J].Poly ̄merEngineering&Scienceꎬ2010ꎬ50(7):1281-1289. [17]CHENSCꎬHSUPSꎬLINYW.Establishmentofgascounterpressuretechnologyanditsapplicationtoimprovethesurfacequalityofmicrocellularinjectionmoldedparts[J].InternationalPolymerProcessingꎬ2011ꎬ26(3):275-282.[18]WANGGLꎬZHAOJCꎬWANGGZꎬetal.Strongandsuperthermallyinsulatingin ̄situnanofibrillarPLA/PETcompositefoamfabricatedbyhigh ̄pressuremicrocel ̄lularinjectionmolding[J].ChemicalEngineeringJournalꎬ2020ꎬ390:124520.(本文于2020-11-09收到)㊀(上接第23页)reductionforAu(III)forcatalyticapplication[J].Pol ̄ymerꎬ2014ꎬ55(20):5211-5217.[16]吴蒙华ꎬ李智ꎬ夏法锋ꎬ等.纳米Ni ̄Al2O3复合层的超声-电沉积制备[J].功能材料ꎬ2004ꎬ35(6):776-778.WUMHꎬLIZꎬXIAFFꎬetal.StudyonthepreparationofnanoNi ̄Al2O3compositelayerbyultrasonic ̄electrodepositingmethod[J].JournalofFunctionalMate ̄rialsꎬ2004ꎬ35(6):776-778.[17]SHANMUGAMSꎬSANETUNTIKULJꎬMOMMATꎬetal.EnhancedoxygenreductionactivitiesofPtsupportedonnitrogen ̄dopedcarbonnanocapsules[J].ElectrochimicaActaꎬ2014ꎬ137:41-48.[18]EREꎬÇELIKKANH.Anefficientwaytoreducegrapheneoxidebywatereliminationusingphosphoricacid[J].RSCAdvancesꎬ2014ꎬ4(55):29173-29179.[19]MITRAMꎬMAHAPATRAMꎬDUTTAAꎬetal.Car ̄bohydrateandcollagen ̄baseddoubly ̄graftedinterpenetratingterpolymerhydrogelviaN ̄HactivatedinsituallocationofmonomerforsuperadsorptionofPb(II)ꎬHg(II)ꎬdyesꎬvitamin ̄Cꎬandp ̄nitrophenol[J].JournalofHazardousMaterialsꎬ2019ꎬ369:746-762. [20]KONGASSERIAꎬSOMPALLINꎬMODAKVꎬetal.Solid ̄stateionrecognitionstrategyusing2Dhexagonalme ̄sophasesilicamonolithicplatform:Asmarttwo ̄in ̄oneap ̄proachforrapidandselectivesensingofCdandHgions[J].MicrochimicaActaꎬ2020ꎬ187(7):1-13. [21]MADHESANTꎬMOHANAJA.Poroussilicaandpolymermonolitharchitecturesassolid ̄stateopticalchemosensorsforHgions[J].AnalticalandBioanalyticalChemistryꎬ2020ꎬ412:7357-7370.(本文于2020-10-19收到)76。

【重点】浙江省省级重点实验室

【重点】浙江省省级重点实验室

【关键字】重点
浙江省省级重点实验室
发布机构:浙江省科技厅
1文档收集于互联网,如有不妥请联系删除.
2文档收集于互联网,如有不妥请联系删除.
3文档收集于互联网,如有不妥请联系删除.
4文档收集于互联网,如有不妥请联系删除.
5文档收集于互联网,如有不妥请联系删除.
6文档收集于互联网,如有不妥请联系删除.
7文档收集于互联网,如有不妥请联系删除.
8文档收集于互联网,如有不妥请联系删除.
9文档收集于互联网,如有不妥请联系删除.
10文档收集于互联网,如有不妥请联系删除.
11文档收集于互联网,如有不妥请联系删除.
12文档收集于互联网,如有不妥请联系删除.
13文档收集于互联网,如有不妥请联系删除.
14文档收集于互联网,如有不妥请联系删除.
15文档收集于互联网,如有不妥请联系删除.
16文档收集于互联网,如有不妥请联系删除.
17文档收集于互联网,如有不妥请联系删除.
18文档收集于互联网,如有不妥请联系删除.
19文档收集于互联网,如有不妥请联系删除.
此文档是由网络收集并进行重新排版整理.word可编辑版本!
20文档收集于互联网,如有不妥请联系删除.。

塑料改性粒子项目可行性研究报告立项审批报告

塑料改性粒子项目可行性研究报告立项审批报告

塑料改性粒子项目可行性研究报告立项审批报告一、项目背景和目标塑料改性粒子是一种对塑料进行改性处理的新材料,具有优异的耐磨性、耐腐蚀性和耐高温性能。

在工业生产和日常生活中广泛应用,特别是在汽车、电子、包装等领域具有巨大的市场潜力。

本项目拟通过对塑料改性粒子的研究和应用,提高塑料产品的质量和性能,推动我国塑料行业的发展。

二、项目内容和技术路线1.项目内容:(1)研究塑料改性粒子的制备工艺和改性机理,探索适合各种塑料的改性方法;(2)开发高性能塑料改性粒子,提高其物理性能和化学稳定性;(3)开展塑料改性粒子的应用研究,探索其在不同领域的广泛应用。

2.技术路线:(1)研究改性粒子的制备方法,包括物理法、化学法和生物法等;(2)通过改变改性粒子的形貌和结构,提高塑料的力学性能、热稳定性和耐化学腐蚀性;(3)通过表面改性,改善塑料改性粒子与塑料基体的相容性,提高混合性能和分散性。

三、项目可行性分析1.市场需求分析:目前,全球塑料市场规模巨大,但传统塑料的性能和应用受到限制。

塑料改性粒子作为一种新型材料,具有广阔的市场前景。

尤其是随着环保意识的增强和高性能塑料需求的不断增长,塑料改性粒子将成为未来塑料行业的重要发展方向。

2.技术可行性分析:塑料改性粒子的制备方法和改性机理已有一定研究基础,但仍然存在技术难题。

本项目拟通过对国内外相关研究成果的分析和总结,结合实际生产需求,开展重点研究和技术攻关,提高塑料改性粒子的制备工艺和改性效果,使其能够满足市场需求。

3.经济可行性分析:塑料改性粒子作为一种新型材料,其市场价格相对较高,且市场竞争激烈。

但随着研发水平的提高和生产规模的扩大,成本将逐步降低,利润空间将增大。

本项目拟通过引进先进生产设备和管理经验,提高生产效率和产品质量,降低生产成本,提高经济效益。

四、项目实施方案和预期成果1.项目实施方案:(1)成立项目组,由专业技术人员负责研究和开发工作;(2)建立研发平台和实验室,配备必要的仪器设备;(3)开展塑料改性粒子的制备工艺研究和改性机理探索;(4)加强与塑料生产企业和应用企业的合作,实施塑料改性粒子的应用研究。

高分子材料与工程专业考研学校选择

高分子材料与工程专业考研学校选择

高分子材料与工程专业考研学校选择在全国高校中在高分子领域领先工科偏合成的浙江大学国内高分子鼻祖尤其在合成方面、华东理工、北京化工大学、清华大学偏加工和应用的四川大学、华南理工大学、东华大学原中国纺织大学理科偏合成的北京大学好像北大遥遥领先其他象南开、南京大学明显差一些偏性能形态研究的中科院北化所明显领先、南京大学、复旦大学、北京大学上述为网上摘录不一定全面简单评述下浙江大学是出高分子院士最多的学校。

北京大学合成做的好特别是高分子液晶。

复旦大学的研究偏向理论研究有杨玉良和江明两位院士实力不凡。

华南理工和北京化工大学研究领域较广在橡胶、塑料、纤维方面做的都不错。

华南理工大学有3 位中科院院士程镕时、姜中宏生、曹镛、长江学者特聘教授2 人、珠江学者特聘教授2 人、博士生导师43 人副教授、副研究员和高级工程师67 人高分子加工实力很强的。

在全国排前3 名。

四川大学有高分子材料工程国家重点实验室主要是做塑料的加工改性实力虽有下滑但仍然很强毕竟其根基很厚。

东华大学的研究重点在纤维方面建有纤维素改性国家重点实验室。

中科院长春应化所和中科院北京化学研究所共同建有高分子化学与物理国家重点实验室。

长春应化所在一直是在做合成方面比较强。

化学所在前两年还有个工程塑料国家重点实验室不过现在降格为中科院的重点实验室了。

所以化学所的合成和加工做的都还不错。

青岛科技大学在高分子方面主要的特色是其橡胶2003 年建成了教育部橡塑工程重点实验室也是多年来对青岛科技大学研究工作的肯定。

研究生的方向很多大的方面大概一下几个树脂合成环氧丙烯酸聚苯聚酯等每个方向都很多塑料/纤维加工加工工艺川大最强的模具和机械华南理工及北化都不错生物医用高分子华东理工等高分子理论及表征中科院化学所及南京大学最强液晶高分子吉大北大北科大等导电高分子化学所等纳米高分子化学所碳纤维/碳纳米北化清华有机硅化学所等等而在珠三角这一带华南理工中山大学都是不错选择有志在高分子领域深入了解的同学可以报读。

学院教学科研机构一览表

学院教学科研机构一览表
学院教学科研机构一览表
类别
名称
负责人
国家重点实验室
绿色化学合成技术国家重点实验室培育基地
马淳安
国际科技合作基地
能源材料及应用国家国际科技合作基地
马淳安
国家级实验教学中心
国家级化学化工实验教学示范中心
计伟荣
国家级化学化工虚拟仿真实验教学中心
计伟荣
省级实验教学中心
浙江省化学实验教学示范中心
计伟荣
浙江省化工实验教学示范中心
催化新材料研究所
周Байду номын сангаас晖
催化反应工程研究所
陈银飞
化学工程设计研究所
姚克俭
分离工程研究所
计建炳
化工技术与装备研究所
程榕
催化加氢研究中心
徐振元
电化学工程与技术研究所
马淳安
分析化学研究所
莫卫民
精细化工研究所
高建荣
石油化工研究所
任杰
农药研究所
丁成荣
生物质能源技术研究中心
计建炳
过程系统工程研究所
潘海天
高建荣
省级重点实验室
浙江省绿色合成技术重点实验室
马淳安
浙江省生物燃料利用技术重点实验室
计建炳
浙江省绿色农药清洁生产技术研究重点实验室
许丹倩
工程与教学中心
神华浙工大创新工程中心
李小年
催化剂工程开发研究中心
霍超
纳米科学与工程技术研究中心
马淳安
研究所
工业化学(资源与环境催化)研究所
李小年
工业催化研究所
刘化章

蒙脱土的有机化处理及其在塑料改性中的应用

蒙脱土的有机化处理及其在塑料改性中的应用

第 7 卷第 3 期 2010 年 6 月
纳米科技
Nanoscience & Nanotechnology
No.3 June 2010
1 蒙脱土的环氧化改性机理
介孔化学反应解聚纳米软团聚体机理:纳米 粉体是由纳米级颗粒通过物理或化学作用相联结 的软团聚体,有片层结构、棒状结构和颗粒结构三 种。纳米软团聚体内表面积很大,粒子之间存在许 多介孔或间隙。介孔中吸附有许多可交换的小分 子或离子。这些小分子或离子可被特定的化学活 性物质置换。化学活性物质在一定条件下可在介 孔中发生化学反应(放热反应),反应热可以使纳 米软团聚体膨胀,扩大纳米粒子之间的距离,解聚 纳米软团聚体,使聚合物分子易插入纳米粒子之 间的间隙。此外,化学活性物质应有良好的热稳定 性和较高的沸点,在高温、高压、高剪切力下不易 分解和气化,化学活性物质还应能进一步和高分 子链上的活性基团发生化学作用,以提高纳米粒 子与聚合物的相容性。
[1] 张玉龙,李长德.纳米技术与纳米塑料[M].北京:中国 轻工出版社,2002
[2] 柯扬船,皮特.斯壮.聚合物-无机纳米复合材料[M].北 京:化学工业出版社,2003
[3] 徐国财, 张立德.纳米复合材料[M].北京:化学工业出 版社,2003
[4] 谢松桂.一种高有机蒙脱土含量的有机蒙脱土母料及 其制备方法[P].中国专利:03137638.X,2005-7-27
[5] 谢松桂,盛仲夷.一种纳米蒙脱土的固相插层制备方 法 及 其 制 备 的 纳 米 蒙 脱 土 母 料 [P]. 中 国 专 利 : 200410015775.2,2006-4-5
[6] 谢松桂,盛仲夷.一种聚合物基蒙脱土母料及其制备 方法中国专利[P].中国专利:200510061489.4,20067-12

纸基复合及涂层阻隔材料的研究进展

纸基复合及涂层阻隔材料的研究进展

摘要:传统的塑料材料面临着越来越多的限制和挑战,“以纸代塑”成为当下包装领域的重要趋势。

纸基材料通过物理、化学方法与防水防油材料进行复合加工,可以得到在常温下具有高度防水防油性的纸基复合阻隔材料。

另外,利用涂布工艺将低表面能共聚物或生物质基聚合物涂覆在纸张表面,这种涂层能够防止水分和油脂渗透到纸张中,得到防水防油性能更加良好的纸基涂层阻隔材料。

本文综述了纸基复合阻隔材料及纸基涂层阻隔材料的研究进展,分析比较了不同类型的阻隔材料性能的优劣,指出高性能的生物质基复合阻隔材料将是未来的发展趋势,较高的可回收性和可降解性使其符合现代社会可持续性发展的要求。

关键词:纸基材料;阻隔;防水防油性;环境保护;热稳定性;可持续性Abstract: Traditional plastic materials are facing more and more restrictions and challenges, and “paper rather than plastics” has become an important trend in packaging industry today. Through physical and chemical methods, waterproof and oil-proof materials and paper-based materials are compounded to obtain paper-based composite barrier materials with high water and oil resistance properties at room temperature. In addition, the paper-based coating barrier material with better waterproof and oil-proof performance can be obtained by coating low surface energy纸基复合及涂层阻隔材料的研究进展⊙ 杨靖雪1 许宝明1 王娜1 王欣辉1 张恒1,2*(1.青岛科技大学海洋科学与生物工程学院,山东青岛 260412;2.浙江省精细化学品传统工艺替代技术研究重点实验室,浙江绍兴 312000)Research Progress of Paper-Based Composite Barrier Materials and Paper-Based Coated Barrier Materials⊙ Yang Jingxue 1, Xu Baoming 1, Wang Na 1, Wang Xinhui 1, Zhang Heng 1,2*(1.College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 260412, China; 2.Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing, Zhejiang 312000, China)□ 基金项目:山东省自然科学基金(ZR2022MB135);浙江省精细化学品传统工艺替代技术研究重点实验室开放基金(2023)。

浙江省科技厅2015年拟认定省级重点实验室(工程技术研究中心)公示

浙江省科技厅2015年拟认定省级重点实验室(工程技术研究中心)公示

浙江省科技厅2015年拟认定省级重点实验室(工程技
术研究中心)公示
文章属性
•【制定机关】浙江省科学技术厅
•【公布日期】2015.03.12
•【字号】
•【施行日期】2015.03.12
•【效力等级】地方规范性文件
•【时效性】现行有效
•【主题分类】基础研究与科研基地
正文
2015年拟认定省级重点实验室(工程技术研究中心)公示
根据《浙江省重点实验室(工程技术研究中心)管理办法》(浙科发条〔2014〕175号)和有关规定要求,2015年省级重点实验室(工程技术研究中心)组建已完成单位申报、材料审查、实地考察、专家评审和厅务会审定等程序。

现将拟认定的省级重点实验室(工程技术研究中心)名单进行公示(见附件)。

公示时间2015年3月13日至23日。

对公示对象有异议的,请在公示期内实名并书面向我厅反映。

单位提出异议的应加盖公章,个人提出异议的应签署真实姓名和联系方式。

联系方式:
省科技厅条件处张薏萍*************
省科技厅监察室曹保华*************
邮编:310006
地址:杭州市环城西路33号
附件:拟认定省级重点实验室(工程技术研究中心)名单
浙江省科技厅
2015年3月12日。

浙江工业大学学科、学位点简介

浙江工业大学学科、学位点简介

浙工大研究生浙江工业大学学科、学位点简介001化学工程与材料学院 (1)002机械工程学院 (4)003信息工程学院 (6)008计算机科学与技术学院 (7)004经贸管理学院 (9)005生物与环境工程学院 (10)006建筑工程学院 (13)007药学院 (14)009理学院 (15)010人文学院 (16)011政治与公共管理学院 (17)012教育科学与技术学院 (18)014法学院 (19)015艺术学院 (19)099MBA教育中心 (19)001化学工程与材料学院070302 分析化学本学位点以浙江省重中之重学科应用化学学科和浙江工业大学分析测试中心为支撑,以浙江省省属高校中唯一拥有50年以上分析化学本科专业的教学与科研为根底,积累了大量的教书育人的经历,形成具有一套特色的教学标准和管理体系。

历年来,已培养了4000余名本科生、60余名硕士研究生,现有在读硕士研究生30余人。

本学位点现有硕士生导师17人,其中教授12人,副教授5人,具有博士学位9人,大部分导师也同时拥有应用化学学位点硕士与博士研究生的招生资格。

本学位点还与浙江省出入境检验检疫局、浙江省食品药品检验所、浙江省疾病预防与控制中心、浙江省方圆检测集团等单位合作培养硕士生。

本学位点的导师主要从事天然产物别离与分析、色谱与别离科学、现代谱学分析、原子及分子光谱分析、现代分析仪器及其联用技术、精细化工合成及过程分析等领域的研究工作。

现已根本拥有国际一流的各种类型的分析测试仪器。

本学位点注重学科前沿与穿插学科的开展研究和高素质人才的培养,重视现代仪器分析新方法与新技术的开发。

近5年来承担国家级和省级等纵向科研工程20多项、企业委托的横向科研工程20多项,科研经费超过1000万元;在国内外杂志上发表论文200余篇,其中被SCI及EI收录的论文70多篇。

070303 有机化学有机化学学位点是我校化材学院首批理科硕士点,07年开始招生。

重点实验室申报模板

重点实验室申报模板

装饰用产品
一、重点实验室的研究方向及意义
1.4 重点实验室学术研究在纱线成型领域中的地位
②本重点实验室相关成果居国内领先水平。
短纤维纱线成型加工技术
研发 单位 创新点
水平
东华大学 香港理工大学 武汉纺织大学
结构复合纺纱 紧密纺光洁纱
结构纺纱 低扭矩纺
复合纺纱 嵌入式 双对称轴 伴纺特细特纱
国内领先
浙江省重大科技专项
颜志勇 (1/8)
2010~2012
7
超细聚乳酸纤维的高速纺生产工艺与设备 (项目编号:2009C21003)
浙江省科技计划项目
兰平 (1/6)
2009~2011
8
生物质聚乳酸(PLA)纤维及制品开发关键技术研究( 项目编号:2011C31043)
浙江省科技计划项目
曹建达 (1/6)
浙江省纱线材料成型与复合加工技术研究 重点实验室
——以纤维材料为对象,以纺织品的性能、功能、风格和舒 适性的综合最优为目标,从分子结构、超分子聚集态结构和 纤维结构三个层面调控纱线材料的结构、外观与性能,为纺 织品的创新提供有效手段。
一、重点实验室的研究方向及意义
1.1 实验室研究内容及主要研究方向
科技部科技型企业创业投资引 导基金
兰平 (1/8)
19
长丝短纤复合纺纱技术及其产业化 (委托课题)
解放军总后勤部 浙江春江轻纺集团
薛元 (1/8)
20
The antimicrobial mechanism of novel metal ion containing chitosan fibers and wound dressings
68151人才3名titlehere实验室人才队伍titlehere学术带头人titlehere实验室主任教授首席科学家院士外聘专家here科研骨干26名63名院士研究生访问学者23202141三科技队伍状况及人才培养科研队伍基本情况方向1生物质高分子材料的制备与功能化改性技术研究团队性别职称学位所在单位教授博士嘉兴学院高分子材料教授博士嘉兴学院生物工程教授博士嘉兴学院高分子材料副教授博士嘉兴学院高分子材料张葵花副教授博士嘉兴学院高分子材料讲师博士嘉兴学院高分子化学与物理讲师博士嘉兴学院高分子材料讲师博士嘉兴学院高分子化学与物理讲师博士嘉兴学院高分子化学与物理讲师博士嘉兴学院高分子材料实验师硕士嘉兴学院化工材料24202141三科技队伍状况及人才培养科研队伍基本情况方向2生物质高分子材料的成纤技术与装备研究团队性别职称学位毕业院校教授博士东华大学纺织材料教授博士陕西科技大学轻化工程教授博士东华大学化学纤维高工博士东华大学化学纤维副教授博士东华大学化学纤维副教授博士东华大学纺织材料讲师博士四川大学轻化工程杨树讲师博士东华大学纺织材料沈加加讲师硕士浙江理工大学纺织化学助理实验师硕士陕西科技大学轻化工程助教硕士天津工业大学化学纤维助理实验师硕士常州大学化工材料25202141三科技队伍状况及人才培养科研队伍基本情况方向3纱线复合加工技术及功能化纺织品开发研究团队性别职称学位毕业院校教授博士东华大学纺织工程黄立新教授学士东华大学纺织工程高工学士浙江理工大学纺织工程副教授硕士天津工业大学纺织工程副教授硕士东华大学纺织工程曹斯通副教授硕士江南大学纺织工程讲师博士四川大学轻化工程王东升讲师硕士浙江理工大学纺织化学讲师硕士西安工程大学纺织工程吕海宁实验师硕士青岛大学纺织化学助教硕士山西理工大学纺织工程26202141三科技队伍状况及人才培养实验室主任方向带头人简介及代表性成果薛元教授实验室主任工学博士教授研究生生导师省重点学科负责人省重点科技创新团队负责人嘉兴学院材料与纺织工程学院院长浙江省十二五现代纺织皮塑技术成果转化工程咨询专家中国纺织服装教育学会常务理事嘉兴市纺织工程学会理事长获浙江省科技进步二等奖上海市技术发明二等奖浙江省和中国纺织工业协会高等教育教学成果二等奖嘉兴市自主创新贡献奖

搭建科技基础条件平台建立省级重点实验室

搭建科技基础条件平台建立省级重点实验室

重 点实 验 室 是开 展基 础研 究 、公 益研 究 和 战略 高技 术研 究 的创 新平 台 。加 强 国家科 技创 新 体 系建 设 已成 为我 国 的发展 战 略 .同时 .建设 一流 的科 研 基础 设施 也 已成 为 国家科 技创 新 体 系建设 的基础 任 务 因此 .重 点 实验 室建 设 必将 在科 技创 新 体 系建 设 中发挥 重要 的作用
验 室必将在科技创新体 系建设 中发挥重要的作用。
关 键 词 : 技 基 础 条 件平 台 ; 级 重 点 实验 室 ; 科 省 建设 中 图 分 类号 : 3 G1 文 献 标识 码 : A
当代 科学 技术 发 展呈 现着 渗透 、交 叉 与融 合 的 态势 ,研 究 与开 发 的全球 化趋 势 明显加 快 .信 息技 术 的普遍 应 用 正在深 刻 地改变 着传 统 的科研 方 式 与
确保科技能力持续积累和科技资源得到高效利用的
客观 要求 , 也是 实施 人 才强 国战 略 、 深化科 技 体制 改
收稿 日期 :0 6 1— 4 修 回 日期 :06 1— 1 20—0 2 : 2 0 — 0 3
作者简介 : 徐
华 (98 , , 16 一) 女 山西右玉人。19 90年 7月毕
节 ,汇集科技基础条件资源.并进行统筹规划和合 理 安 排 ,实 现 对 资 源 的优 化 配 置 和科 学 管 理 。可
见 ,平 台 对 科 技 基 础 条 件 资 源 具 有 调 配 和 管 理 作
用。
创新模式。科技资源的占有 、配置 、开发和利用方 式 的优 劣 , 日益 成 为决定 科技 创新 能 力强 弱 的关 键
提 ,是 国家创 新 体 系建设 的 重要 组 成部 分 。 建 立 省级 重 点 实

国内改性塑料用阻燃剂约80%为含卤阻燃剂

国内改性塑料用阻燃剂约80%为含卤阻燃剂
( 来源 : 际新 能源 网) 国
苏 威将 在 亚 洲新 设 三 家研 发中心
21 0 0年 2月 l I I .苏威 宣 布将 在亚 洲新 建 了 1T 个研 发 与技术 巾心 ,并根 据该 地 区需 求定制 产 一 , 日 l
以及加强 与 当地 高校 的联 系 。 三个 新 r 心分 别位 于 f 1
识 。 据 与会 代 表 的意 见 , 盟 筹 备 组 将 于近 期 完 根 联
成联 盟章 程 的最 后修 订丁作 , 确定 联盟 运 作 的机 制
及最 终 方案 , 择机 召 开第二 次 筹备 会 币I 盟成立 大 J 联
会。 ( 来源 : 中国经济 网)
首尔南部 4 0公里 处 , 在 占地 超过 3 0平方 米 。 现 0
( 来源 : W.akr OAC ) WW w 1e. D.3 . C 1
中心专 门 准 电子 、 离子 电池 和光 伏 电池等 高增 锂 长市场 . 上海 巾心则 将 为 巾 市场 ” 定制创新 的解决 力 案 ”苏戚 还 表示 , 为 在 泰 『 的现 自 亚 洲总部新 ‘ 将 玉 I
金 氟 化 T( 中 ) 限公 司现 ’ 区 内。 次 改造 的 ‘ 厂 本 内容 主要 包 括 :增 产 10 3 0吨/ 分 敞 聚 四氟 乙烯 f 年 l E 、 产 10 、 一、 增 F ) 5 0吨/ 年六 氟 丙 烯 ; 设 l 精馏 增 套 塔 ,使 聚 网氟 乙烯 中 产 品的产 能 r 原来 的 10 0 h 00 I/ 提高 到 l0 0吨/ 、 I年 g , 0 3 年 目前 , 扩建 项 目正进 行环 公示 。 该 ( 来源: 中国化 工 网)
立筹备会
增 加六 氟丙烯 ( F )I 四氟 乙烯 ( 1 E产能 。 目 H P ̄I 聚 VF ) 项

布鲁克收购X射线测量解决方案提供商Jordan Valley

布鲁克收购X射线测量解决方案提供商Jordan Valley

步的解决 方案 。
( 分析测试百科)
南通大学附中建成纳米创新实验室 配置超微型纳米显微镜
1 O月 9日, 南通大学 附属中学纳 米创新实 验室安装 工 作 全部完成 ,教 师培训工作 也基本 结束 ,至此 ,一 间在 国 内尚属 少见 的高端 纳米创新实验室终 于顺利建成 。 中学纳米创新实验室 ,目前在全 国一些重点 中学兴起 , 这种实验室 旨在通过先进 的纳米检测 仪器 ,创建 可供推 广
碎机 、超细辊压磨 、双转子 冲击磨 、多 轮超微 分级机 、重 质碳 酸钙干法表 面改性设备等 1 1 个 品种列入浙江省级新产
品 。丰利开发 的 “ 废塑料 复合材料 回收处 理成套装 备”人 选 工业 和信息化部 、科技 部和环境保 护部三部 委联合 发布
的 《 国家 鼓 励 发 展 的重 大 环 保 技 术 装 备 目录 ( 2 0 1 4年 版) 》 。最近 ,浙江省经信 委发 布 了 《 浙 江省 高端装 备制造
全 国颗粒表征与分检及筛 网标委会 超微粉碎设 备工作 组秘
书长单位 ,闻名海 内外 的成 套超微粉 体设备 和绿色环 保装 备生产基地 。
( 吴红富)

6 8・h t t p: | | 咖 . c r n a s t e q . c o m
“ 丰利 ”企 业商号 榜上 有名 ,再 次被 认定 为浙 江省 知名 商
号 ,有效期 6年 。 浙江省知名商号 的评选 一年一 次 ,系根据 《 浙江省 企 业商号管理和保护规定 》 、《 浙江省知 名商号认定 办法 》等 规定作 出 ,由浙 江省 知名商 号评审委 员会负 责评审 。浙 江
的纳米科学教育 与传 播课程 , 重 点在实 践性 、实操 性 、实

浙江省人民政府关于2010年度浙江省科学技术奖励的决定-浙政发[2011]23号

浙江省人民政府关于2010年度浙江省科学技术奖励的决定-浙政发[2011]23号

浙江省人民政府关于2010年度浙江省科学技术奖励的决定正文:---------------------------------------------------------------------------------------------------------------------------------------------------- 浙江省人民政府关于2010年度浙江省科学技术奖励的决定(浙政发〔2011〕23号)各市、县(市、区)人民政府,省政府直属各单位:为认真贯彻落实党的十七大和十七届五中全会精神,全面落实科学发展观,深入实施“八八战略”和“创业富民、创新强省”总战略,加快建设创新型省份和科技强省,增强我省自主创新能力,根据《浙江省科学技术奖励办法》等规定,决定授予“冲拔式车载大直径高压天然气无缝钢瓶关键技术及产业化”等26项成果2010年度省科学技术奖一等奖,授予“夏热冬冷地区建筑节能新材料新技术新体系研究”等92项成果省科学技术奖二等奖,授予“煤粉与油雾混合气流燃烧、传热过程的计算机模拟技术与产业化应用”等161项成果省科学技术奖三等奖;授予“盐酸表柔比星科技成果转化项目”等3项成果省科技成果转化奖一等奖,授予“纳米超硬薄膜制备及应用关键技术研究”等15项成果省科技成果转化奖二等奖,授予陈正勇等6人省科技成果转化奖三等奖(具体获奖项目和人员名单由省科技厅负责印发)。

希望获奖的科技工作者戒骄戒躁、再接再厉,不断取得新的突破。

全省科技工作者要向获奖人员学习,继续发扬潜心钻研、开拓创新、团结协作、勇攀高峰的精神,努力创造更多更好的科技成果,为深入实施自主创新能力提升行动计划,加快推进国家技术创新工程试点省和科技强省建设,推动我省经济社会又好又快发展,全面建设惠及全省人民的小康社会作出更大的贡献。

二○一一年四月十九日——结束——。

生活垃圾填埋场开采再利用碳排放模型及其应用

生活垃圾填埋场开采再利用碳排放模型及其应用

浙江理工大学学报,第51卷,第2期,2024年3月J o u r n a l o f Z h e j i a n g S c i -T e c h U n i v e r s i t yD O I :10.3969/j.i s s n .1673-3851(n ).2024.02.013收稿日期:2023 09 22 网络出版日期:2023-12-13基金项目:浙江省自然科学基金项目(L Y 21E 080029)作者简介:俞金灵(1999 ),女,浙江诸暨人,硕士研究生,主要从事固体废弃物碳排放方面研究㊂通信作者:徐 辉,E -m a i l :x u h u i @z s t u .e d u .c n生活垃圾填埋场开采再利用碳排放模型及其应用俞金灵1,彭明清1,徐 辉1,刘文莉2(1.浙江理工大学建筑工程学院,杭州310018;2.台州学院建筑工程学院,浙江台州318000) 摘 要:采用碳排放因子法建立了生活垃圾填埋场开采再利用的全生命周期碳排放模型,核算了单位质量填埋垃圾在保持原状㊁开采-材料再回收和开采-能源回收三种场景的碳排放量,分析了开采再利用场景下碳减排主要驱动因素与碳减排量的影响规律,探究了填埋场开采再利用相对于保持原状的碳减排潜力㊂结果表明:开采-材料再回收场景的碳排放量少于开采-能源回收场景;开采-材料再回收场景的碳减排量随塑料回收率的提高而增大,开采-能源回收场景的碳减排量随垃圾衍生燃料热处理量的增加而增大;简易填埋场在开采-材料再回收场景的碳减排潜力最大,达-495k g C O 2e q /t ㊂该研究可为我国垃圾填埋场开采再利用的碳减排潜力评估提供一定的参考依据㊂关键词:城市生活垃圾;单位质量填埋垃圾;填埋场开采再利用;材料和能源回收;碳排放模型;碳减排量中图分类号:X 705文献标志码:A 文章编号:1673-3851(2024)03-0245-10引文格式:俞金灵,彭明清,徐辉,等.生活垃圾填埋场开采再利用碳排放模型及其应用[J ].浙江理工大学学报(自然科学),2024,51(2):245-254.R e f e r e n c e F o r m a t :Y U J i n l i n g ,P E N G M i n g q i n g,X U H u i ,e t a l .A c a r b o n e m i s s i o n m o d e l f o r d o m e s t i c w a s t e l a n d f i l l m i n i n g a n d r e u s e a n d i t s a p p l i c a t i o n s [J ].J o u r n a l o f Z h e j i a n g S c i -T e c h U n i v e r s i t y,2024,51(2):245-254.A c a r b o n e m i s s i o n m o d e l f o r d o m e s t i c w a s t e l a n d f i l lm i n i n g a n d r e u s e a n d i t s a p pl i c a t i o n s Y U J i n l i n g 1,P E N G M i n g q i n g 1,X U H u i 1,L I U W e n l i 2(1.S c h o o l o f C i v i l E n g i n e e r i n g a n d A r c h i t e c t u r e ,Z h e j i a n g S c i -T e c h U n i v e r s i t y ,H a n gz h o u 310018,C h i n a ;2.S c h o o l o f C i v i l E n g i n e e r i n g a n d A r c h i t e c t u r e ,T a i z h o u U n i v e r s i t y,T a i z h o u 318000,C h i n a) A b s t r a c t :A c a r b o n e m i s s i o n m o d e l f o r t h e f u l l l i f e c y c l e o f d o m e s t i c w a s t e l a n d f i l l s w a s c o n s t r u c t e d b yu s i n gt h e c a r b o n e m i s s i o n f a c t o r m e t h o d .T h e c a r b o n e m i s s i o n s o f u n i t m a s s w a s t e w e r e c a l c u l a t e d u n d e r t h r e e s c e n a r i o s :'k e e p d o -n o t h i n g 's c e n a r i o ,'w a s t e t o m a t e r i a l 's c e n a r i o a n d 'w a s t e t o e n e r g y's c e n a r i o .T h i s m o d e l e x p l o r e d t h e p r i m a r y f a c t o r s d r i v i n g ca rb o n e m i s s i o n r e d uc t i o n a nd t he i nf l u e n c e o f c a r b o n e m i s s i o n r e d u c t i o n i n m i n i ng a n d r e u s e s c e n a r i o s ,a n d i n v e s t i ga t e d t h e p o t e n t i a l f o r c a rb o n e m i s s i o n r e d uc t i o n t h r o u g h l a nd f i l l m i n i n g a n d re u s e a s c o m p a r e d t o t h e p r e s e r v a t i o n of t h e l a n d f i l l i n 'k e e p do -n o t h i n g's c e n a r i o .T h e a b o v e r e s u l t s s h o w t h a t t h e c a r b o n e m i s s i o n o f t h e 'w a s t e t o m a t e r i a l 's c e n a r i o i s l e s s t h a n t h e 'w a s t e t o e n e r g y's c e n a r i o ;t h e c a r b o n e m i s s i o n r e d u c t i o n i n t h e 'w a s t e t o m a t e r i a l 's c e n a r i o i n c r e a s e s w i t h t h e i n c r e a s e o f t h e p l a s t i c r e c o v e r yr a t e ,a n d t h e c a r b o n e m i s s i o n r e d u c t i o n i n t h e 'w a s t e t o e n e r g y's c e n a r i o i n c r e a s e s w i t h t h e i n c r e a s e o f t h e h e a t t r e a t m e n t a m o u n t o f r e f u s e d e r i v e d f u e l ;t h e c a r b o n e m i s s i o n r e d u c t i o n p o t e n t i a l i n t h e 'w a s t e t o m a t e r i a l 's c e n a r i o o f t h e s i m p l e l a n d f i l l i s t h e b e s t ,u p to -495k g C O 2e q /t .T h e s e c o n c l u s i o n s c a n p r o v i d e c e r t a i n r ef e r e n c e f o r t h e a s s e s s m e n t o f c a r b o n e m i s s i o n r e d u c t i o n p o t e n t i a l o f l a n d f i l l m i n i ng an d r e u s e i n C h i n a .K e y w o r d s:m u n i c i p a l s o l i d w a s t e;p e r u n i t m a s s o f l a n d f i l l w a s t e;l a n d f i l l m i n i n g a n d r e u s e;m a t e r i a l a n d e n e r g y r e c o v e r y;c a r b o n e m i s s i o n m o d e l;c a r b o n e m i s s i o n r e d u c t i o n0引言我国城市生活垃圾(M u n i c i p a l s o l i d w a s t e, M S W)的处置方式以填埋为主[1]㊂截至2020年,在役生活垃圾填埋场数量约6900座,填埋垃圾存量超80亿t[2]㊂城市生活垃圾填埋产生的温室气体是垃圾处理领域碳排放的主要来源[3-4]㊂垃圾填埋场开采再利用是指从填埋场挖掘矿化垃圾并进行资源回收和生态修复[5],具有降碳减排的潜力㊂碳排放模型是用于评估填埋场开采再利用相对于持续填埋情况下的碳减排潜力的重要方式,可定量计算碳排放量并优选填埋场开采再利用路径[6]㊂因此,构建垃圾填埋场开采再利用碳排放模型并以此进行碳减排核算具有重要的科学意义和工程价值㊂垃圾填埋场开采再利用作为一种将填埋资源重新引入材料循环并减少环境负担的技术措施,以往研究主要集中于填埋垃圾的资源化利用技术[7-8]㊂随着人们对温室效应和气候变化的日益关注,研究者们逐渐关注垃圾填埋场开采再利用产生的碳减排潜力㊂C a p p u c c i等[9]构建了填埋场矿化塑料回收再利用的碳排放模型,对塑料再利用全生命周期的碳排放进行了核算,发现原材料生产塑料的碳排放量是矿化塑料回收再利用的4.5倍㊂H u a n g等[10]基于生命周期评价(L i f e c y c l e a s s e s s m e n t,L C A),构建了填埋垃圾可燃材料制备垃圾衍生燃料(R e f u s e d e r i v e d f u e l,R D F)的碳排放模型,发现填埋垃圾仅采用能源回收是增加碳排放的过程㊂以上研究均局限于单一材料回收利用的碳排放量核算,如塑料再生利用㊁可燃材料热处理等,未对填埋场内全部矿化垃圾的回收处置展开碳排放研究㊂J o n e s 等[11]首次提出了强化填埋垃圾开采路径的理念,强调通过优化材料和能源的回收路径来实现填埋场开采再利用项目的最大碳减排㊂S a n k a r等[12]采用L C A构建了填埋场材料和能源回收再利用的碳排放模型,核算发现,在生活填埋垃圾场中的1t垃圾,通过金属回收和可燃材料焚烧发电,可实现0.6 t C O2e q的碳减排㊂D a n t h u r e b a n d a r a等[13]构建了适用于比利时丹顿垃圾填埋场开采再利用项目的碳排放模型,核算了建筑材料二次利用和可燃材料热处理的碳减排量,研究表明填埋场开采再利用存在碳减排潜力㊂以上研究者通过建立垃圾填埋场开采再利用的碳排放模型,核算了垃圾填埋场可回收材料和可燃材料综合利用的碳减排潜力㊂但目前在相关研究中,选择的材料和能源综合利用的方式仍较为单一,塑料和纸张一般归为可燃材料用于能源回收,缺乏对材料与能源多路径利用技术下的碳排放研究㊂本文采用碳排放因子法构建了生活垃圾填埋场开采再利用的全生命周期碳排放模型,通过该模型核算填埋场单位填埋垃圾在保持原状场景('K e e p d o-n o t h i n g's c e n a r i o,K D N S)㊁开采-材料再回收(W a s t e t o m a t e r i a l,W t M)场景和开采-能源回收(W a s t e t o e n e r g y,W t E)场景的碳排放量,以分析生活垃圾填埋场开采再利用场景(L a n d f i l l m i n i n g a n d r e u s e s c e n a r i o,L M R S)主要碳减排影响因素与其碳减排量的影响关系,得到填埋场相对于K D N S场景,采用W t M场景和W t E场景的碳减排量㊂本文建立的碳排放模型可用于核算生活垃圾填埋场低碳化利用技术路径的碳排放量,研究结论可为我国生活垃圾填埋场开采再利用的碳减排路径优选和碳减排潜力评估提供初步参考依据㊂1全生命周期碳排放模型1.1垃圾填埋场场景设立与技术流程概述垃圾填埋场场景设立与技术流程如图1所示㊂根据本文的研究目标和技术实用性,设立了垃圾填埋场K D N S场景和L M R S场景,K D N S场景和L M R S场景皆以填埋垃圾稳定化完成为开始节点㊂1.1.1 K D N S场景生活垃圾填埋场K D N S场景中,填埋垃圾中的有机质通过厌氧食物链的协同作用持续产生C H4㊁C O2等填埋气和渗滤液,填埋气回收发电或排放至大自然,渗滤液采用无害化处理后排放㊂K D N S场景用于评估生活垃圾填埋场L M R S场景的碳减排潜力㊂1.1.2L M R S场景生活垃圾填埋场L M R S场景主要包括渗滤液处理㊁垃圾挖掘粗筛和细筛回收㊁材料加工处理㊁R D F生产与热处理㊁危废物质处置㊁土地回填等过程㊂填埋场垃圾组分主要取决于填埋场类型㊁储存时间㊁降解程度和地理来源[14],按利用途径分为3大类:建筑组分㊁可燃组分和细粒组分[15]㊂卫生填642浙江理工大学学报(自然科学)2024年第51卷图1 垃圾填埋场场景设立与技术流程图埋场(S a n i t a r y l a n d f i l l ,S a L )和简易填埋场(S i m pl e l a n d f i l l ,S i L )矿化垃圾组分占比见表1㊂根据纸张和塑料的最终处置方式,L M R S 场景细分为W t M场景和W t E 场景㊂W t M 场景以材料再回收为主,塑料和纸张加工处理为再生塑料和再生纸张,联合国政府间气候变化专门委员会(I n t e r go v e r n m e n t a l P a n e l o n C l i m a t e C h a n ge ,I P C C )的第四次评估报告[16](A R 4)指出塑料和纸张的回收利用率缺省值为80%~90%㊂W t E 场景以能源回收为主,塑料和纸张用于生产R D F ㊂表1 生活垃圾填埋场矿化垃圾组分占比组分S a L 组分占比/%S i L 组分占比/%易腐垃圾52.5148.03灰土砖石20.6427.01金属1.111.09玻璃2.802.87纸类2.232.23织物2.872.35塑料9.248.01竹木3.024.60混合垃圾4.613.09有害物质0.300.071.2 碳排放模型构建生命周期碳排放核算(L i f e c yc l e c a r b o n a c c o u n t i n g,L C C A )是量化碳排放变化趋势㊁研究碳排放影响因素和设计减排路径的基础㊂全生命周期碳排放模型包括碳排放核算范围和核算方法㊂通过相关文献调研确定K D N S 场景和L M R S 场景各阶段碳排放源范围,并绘制碳排放系统边界图㊂本文构建的碳排放模型采用‘2006年I P C C 国家温室气体清单指南“[17]推荐的碳排放因子法来计算K D N S 场景和L M R S 场景全生命周期各阶段的碳排放量㊂1.2.1 K D N S 场景碳排放模型构建 垃圾填埋场K D N S 场景的碳排放系统边界如图2所示㊂S a L 配备较完善的顶部覆盖系统和填埋气收集利用系统[18],一部分填埋气收集发电,减少传统燃料的使用,另一部分泄漏至大气中㊂S i L 一般情况下不配备填埋气收集系统,导致填埋气直接向大气排放㊂此外,S a L 相较S i L 具备更完善的渗滤液处理设备,能最大限度地减少渗滤液的排放㊂由于生活垃圾填埋场达到稳定化后方可开挖,因此K D N S 场景计算填埋垃圾达到稳定化后保持填埋产生的碳排放量㊂即K D N S 场景的总碳排放量等于填埋气排空㊁渗滤液处理和填埋气发电3个阶段的碳排放之和㊂a )填埋气排空碳排放㊂填埋气中的C H 4是生活垃圾填埋场最主要的碳排放来源㊂I P C C 在2019R e fi n e m e n t t o t h e 2006I P C C G u i d e l i n e s f o r N a t i o n a l G r e e n h o u s e G a s I n v e n t o r i e s [19]推荐使用一级衰减动力学模型(F i r s t -o r d e r k i n e t i c ,F O D )估742第2期俞金灵等:生活垃圾填埋场开采再利用碳排放模型及其应用图2 垃圾填埋场K D N S 场景的碳排放系统边界算垃圾填埋场C H 4排放量㊂因此本文结合F O D 模型和甲烷全球变暖潜势建立生活垃圾填埋场填埋气排空的碳排放量计算公式,参数取值来源于中国环境规划研究院㊁C a i 等[2]㊂填埋气排空碳排放量可用式(1)计算:C C H 4=ð4i =1H ˑf i ˑD i ˑD f ˑe-(t -1)ˑk iˑF ˑ1612ˑ(1-R )ˑ(1-O )ˑEF g (1)其中:C C H 4为填埋垃圾填埋气排空碳排放量,t C O 2e q ;t 为垃圾填埋时间,年;H 为C H 4的修正因子;f i 为不同垃圾成分比例,%;i 为不同种类垃圾,i =1表示厨余垃圾,i =2表示纸张,i =3表示织物,i =4表示竹木;D i 为i 类垃圾可降解有机碳比例,%;D f 为分解的D i 比例,%;k i 为C H 4产生速率常数;F 为填埋气体中C H 4比例,50%;R 为C H 4收集率,%;O 为C H 4氧化系数;E F g 为甲烷全球变暖潜势值,28t C O 2e q /t ㊂b)渗滤液处理碳排放㊂渗滤液的排放和处理过程会产生温室气体㊂渗滤液处理碳排放计算公式为C l =T l ˑE F f ,其中:C l 为渗滤液处理排放的碳排放量,t C O 2e q ;T l 为垃圾渗滤液产量,t ;E Ff 为渗滤液处理的碳排放因子,t C O 2e q /t ㊂c)填埋气发电碳排放㊂填埋气发电可替代传统燃料的使用,从而间接产生碳减排㊂通过能源热值转换公式得到单位质量填埋气的发电量,再使用碳排放因子法计算得到填埋气发电基于传统能源发电的碳减排量㊂填埋气发电的碳排放量可用式(2)计算:C r =T C H 4ˑR ˑJ C H 4ˑK ˑ1000ρ㊃a ˑ(E F e 1-E F e 2)(2)其中:C r 为填埋垃圾收集的甲烷发电的碳减排量,t C O 2e q ;T C H 4为填埋垃圾甲烷产量,t ;J C H 4为甲烷热值,M J /m 3;K 为甲烷发电效率,%;ρ为甲烷密度,0.72k g/m 3;a 为能源转换系数,3.6M J /MW h ;E F e 1为甲烷发电的碳排放因子,t C O 2e q /MW h ;E F e 2为燃煤发电的碳排放因子,t C O 2e q /MW h ㊂1.2.2 L M R S 场景碳排放模型构建 垃圾填埋场L M R S 场景的碳排放系统边界如图3所示㊂垃圾填埋场通过挖掘筛分将填埋垃圾回收处理成再生产品与R D F ,再生产品生产可减少原材料的开采㊂R D F 热处理可替代传统燃料的使用,本文根据我国热处理厂建设现状和实际需求,将R D F 产品以3ʒ2ʒ5的质量比投放至气化发电厂㊁垃圾焚烧厂和水泥厂㊂L M R S 场景的总碳排放量等于设备运行㊁物料运输㊁材料再利用㊁能源回收和土壤堆肥5个阶段的碳排放之和㊂a )设备运行碳排放㊂设备运行过程中消耗柴油和电力,产生碳排放㊂设备运行主要包括填埋场渗滤液处理㊁挖掘粗筛㊁细筛回收㊁危废物质处置㊁土地回填㊁R D F 生产过程㊂设备运行的碳排放量可用式(3)计算:C m =T m ˑ(y ˑE F e 3+h ˑE F d )(3)其中:C m 为设备处理物料产生的碳排放量,t C O 2e q ;T m 为物料处理量,t ;y 为设备处理物料的耗电量,MW h ;E F e 3为中国国家电网电能碳排放因子,t C O 2e q /MW h ;h 为设备处理单位质量物料的柴油耗量,t ;E F d 为柴油使用的碳排放因子,t C O 2e q /t ㊂b )物料运输碳排放㊂物料运送过程中柴油消耗产生C O 2排放㊂由于物料运输为单程运输,故在运输过程中,需考虑运输车辆空载对碳排放的影响,空载时的环境负荷是满载时的0.67倍[21]㊂本文忽略由材料状态(如土体松散状态)变化引起的物料质量改变㊂物料运输的碳排放量可用式(4)计算:C h =T h ˑL h ˑE F h1000ˑk(4)其中:C h 为物料运输导致的碳排放量,t C O 2e q ;T h 为物料运输质量,t ;L h 为物料运输距离,k m ;E F h为柴油货运每千米每吨物料的碳排放因子,k g C O 2e q /(t ㊃k m );k 为空载返回系数,1.67㊂842浙江理工大学学报(自然科学)2024年 第51卷图3 垃圾填埋场L M R S 场景的碳排放系统边界c)材料再利用碳排放㊂矿化垃圾经筛分处理后可生产再生产品,减少原材料的开采,从而减少碳排放㊂材料再利用的碳排放量可用式(5)计算:C r =T r ˑ(E F m -E F n )(5)其中:C r 为二次材料利用产生的碳排放量,t C O 2e q ;T r 为二次材料质量,t ;E F m 为二次材料再利用的碳排放因子,t C O 2e q /t ;E F n 为原材料初次开采的碳排放因子,t C O 2e q /t ㊂d )能源回收碳排放㊂填埋垃圾中的高热值可燃物为R D F 原料,R D F 热处理产生的能源可减少传统燃料的使用,从而减少碳排放㊂R D F 气化和焚烧发电路径的碳排放量计算公式为C s 1=-T s ˑE F e 2+T r ˑE F r ,其中:C s 1为R D F 发电产生的碳排放量,t C O 2e q ;T s 为R D F 投入质量,t ;T r 为底物处理量,t ;E F r 为底物处理的碳排放因子,t C O 2e q /t ㊂R D F 在水泥窑路径的碳排放量计算公式为C s 2=-T s ˑE F e 2ˑJ R D F /J c ,其中C s 2为R D F 产热产生的碳排放量,t C O 2e q ;J R D F为R D F 热值,20M J /m 3;J c 为煤炭热值,25M J /m3㊂e)土壤堆肥碳排放㊂研究表明土壤类材料堆肥时通过微生物作用,可将有机废弃物转化为稳定的腐殖质,同时固定有机碳[13]㊂土壤堆肥的碳排放量计算公式为C n =-T n ˑE F p ,其中:C n 为土壤堆肥产生的碳排放量,t C O 2e q ;T n 为土壤堆肥的质量,t ;E F p 为单位质量土壤堆肥的固碳因子,t C O 2e q /t ㊂2 垃圾填埋场场景的碳排放核算及其碳减排分析2.1 垃圾填埋场碳排放核算过程根据相关文献和统计资料绘制碳排放因子表,如表2所示㊂将碳排放因子和其他参数值代入生活垃圾填埋场K D N S 场景和L M R S 场景生命周期碳排放模型,对单位质量填埋垃圾在K D N S 场景㊁W t M 场景和W t E 场景各个阶段以及整个生命周期的碳排放进行计算,并根据计算结果分析W t M 场景和W t E 场景的主要碳排放和碳减排路径,探究其主要碳减排驱动因素与碳减排量的影响规律,最终确定单位质量填埋垃圾基于K D N S 场景时,其在W t M 场景和W t E 场景的碳减排量㊂2.2 垃圾填埋场碳排放量分析本节讨论了我国单位质量填埋垃圾在K D N S 场景㊁W t M 场景和W t E 场景的总碳排放量㊁主要碳排放和碳减排路径㊂总碳排放量是正值表示该场景为碳排放过程,总碳排放量是负值表示该场景为碳减排过程㊂单位质量M S W 在K D N S 场景的碳排放量如图4(a )所示㊂S i L 和S a L 单位质量填埋垃圾在K D N S 场景的总碳排放量分别为185k g C O 2e q /t 和105k g C O 2e q /t ,表明生活垃圾填埋场在K D N S 场景会增加碳排放㊂单位质量M S W 在W t M 场景942第2期俞金灵等:生活垃圾填埋场开采再利用碳排放模型及其应用表2 碳排放因子汇总表因子符号符号含义因子单位因子值E F f 单位质量渗滤液处理的碳排放因子t C O 2e q /t 0.11[22]E F e 1甲烷发电1MW h 的碳排放因子t C O 2e q /MW h 0.39[23]E F e 2燃煤发电1MW h 的碳排放因子t C O 2e q /MW h 0.92[23]E F e 3国家电网发电1MW h 的碳排放因子均值t C O 2e q /MW h 0.58[24-25]E F d 单位质量柴油使用的碳排放因子t C O 2e q /t 3.15[26]E F h 单位质量物料通过重型货车货运1k m 的碳排放因子k g C O 2e q /(t ㊃k m )0.05[27]E F m 1单位质量玻璃二次回收处理的碳排放因子t C O 2e q /t 0.35[28]E F m 2单位质量金属二次回收处理的碳排放因子t C O 2e q /t 0.72~1.53[29-30]E F m 3单位质量塑料二次回收处理的碳排放因子t C O 2e q /t 0.56[10]E F m 4单位质量砂石二次回收处理的碳排放因子k g C O 2e q /t 2.50[10]E F m 5单位质量纸张二次回收处理的碳排放因子t C O 2e q /t 0.66[13]E F n 1单位质量玻璃原材料开采生产的碳排放因子t C O 2e q /t 0.66[28]E F n 2单位质量金属原材料开采生产的碳排放因子t C O 2e q /t 2.81~15.80[29-30]E F n 3单位质量塑料原材料开采生产的碳排放因子t C O 2e q /t 3.24[31]E F n 4单位质量砂石原材料开采生产的碳排放因子k g C O 2e q /t 7.76[10]E F n 5单位质量纸张原材料开采生产的碳排放因子t C O 2e q /t 1.82[32]E F r 1单位质量热处理残渣生产水泥的碳排放因子t C O 2e q /t -0.75[33]E F r 2单位质量底灰无害化处理的碳排放因子t C O 2e q /t 0.04[34]E F p单位质量腐殖土堆肥的固碳量t C O 2e q /t -0.05[13]图4 单位质量M S W 在不同场景的碳排放量和W t E 场景的碳排放量如图4(b )所示㊂S i L 和S a L 单位质量填埋垃圾在W t M 场景的总碳排放量分别为-310k g C O 2e q /t 和-354k g C O 2e q /t ,其在W t E 场景的总碳排放量分别为-194k g C O 2e q /t 和-220k g C O 2e q /t ,表明垃圾填埋场在W t M 场景和W t E 场景均可实现碳减排,其中W t M 场景的碳减排潜力是W t E 场景的1.6倍㊂单位质量M S W 在填埋场L M R S 场景的碳排放路径的碳排放量如表3所示㊂从表3可以发现:L M R S 场景的碳排放路径的碳排放量与W t M 场景或W t E 场景的选择影响关系较小,其碳排放量主要取决于填埋场类型㊂S i L 单位质量垃圾在L M R S 场景的碳排放总量高于S a L ,前者是后者的1.2倍;S i L 的主要碳排放为大宗设备的运输,S a L 的主要碳排放为垃圾细筛回收过程㊂单位质量M S W 在填埋场L M R S 场景的碳减排路径的碳减排量如表4所示㊂从表4可以发现:L M R S 场景的碳减排路径的碳减排量与填埋场类型影响关系较小,其碳减排量主要取决于W t M 场景或W t E 场景的选择㊂W t M 场景主要的碳减排方式为塑料再生利用,其碳减排量在碳减排总量中的占比为50%;W t E 场景主要的碳减排方式为R D F 在水泥窑与煤混燃,其碳减排量在碳减排总量中的占比为46%㊂52浙江理工大学学报(自然科学)2024年 第51卷表3单位质量M S W在填埋场L M R S场景的碳排放路径的碳排放量k g C O2e q/t场景填埋场设备运行物料运输挖掘粗筛细筛回收土地回填渗滤液处理R D F生产粗筛ң细筛危废ң处理材料ң加工可燃材料ң热处理设备ң场地W t M W t E S i L4.054.570.265.570.700.540.011.330.6021.01 S a L4.054.600.252.230.590270.021.180.513.15 S i L4.054.570.265.571.730.540.010.951.4921.01 S a L4.054.600.252.231.740270.020.761.503.15表4单位质量M S W在填埋场L M R S场景的碳减排路径的碳减排量k g C O2e q/t场景填埋场材料再利用能源回收再生金属再生塑料再生玻璃再生砂石再生纸张气化发电焚烧发电水泥窑助燃土壤堆肥W t M W t E S i L-79.09-171.77-7.12-1.14-19.27-5.35-2.83-43.32-18.91 S a L-80.64-198.16-7.12-0.87-19.24-4.54-2.40-36.77-20.68 S i L-79.090.00-7.12-1.140.00-13.23-7.00-107.23-18.91 S a L-80.640.00-7.12-0.870.00-13.27-7.00-108.34-20.682.3L M R S场景碳减排影响因素分析从垃圾填埋场碳排放量的分析可知,W t M场景和W t E场景的最大碳减排影响因素分别为塑料再生和R D F热处理,因此本文对塑料利用率㊁R D F热值㊁R D F利用率等影响因素进行分析㊂S i L和S a L 中再生塑料㊁R D F热处理的碳减排量占总碳排放量的比例相近,故本文以S a L作为研究对象,其碳排放量随碳减排影响因素的变化规律同样适用于S i L㊂单位质量M S W采用W t M场景时碳排放量随塑料回收率的变化关系如图5所示,其中R1表示再生塑料碳减排量占W t M场景总碳排放量的比例㊂在S a L中,当塑料利用率从80%提高至90%, W t M场景的再生塑料碳减排量在总碳排放量中的占比将从55%变化至71%;当塑料利用率从80%降低至70%,再生塑料碳减排量在总碳排放量中的占比将从55%变化至34%㊂这表明生活垃圾填埋场在W t M场景时,其碳减排量随塑料利用率增大而增大㊂单位质量M S W采用W t E场景时碳排放量随R D F热值的变化关系如图6(a)所示㊂R2表示R D F水泥窑热处理产生的碳减排量占W t E场景总排放量的比例㊂当R D F热值从20M J提高至25M J,R D F水泥窑热处理的碳减排量在W t E场景总碳排放量中的占比从50%变化至78%;当R D F热值从20M J降低至15M J,R D F水泥窑热处理的碳减排量在总碳排放量中的占比从50%变化至18%㊂结果表明提高R D F的热值增大了R D F在水泥窑产热的碳减排量㊂单位质量M S W 采用W t E场景时碳排放量随R D F利用率的变化图5单位质量M S W采用W t M场景碳排放量随塑料回收率的变化关系曲线关系如图6(b)所示㊂R3表示再生能源回收的碳减排量占W t E场景总碳排放量的比例㊂当R D F 利用率从80%提高至90%,R D F热处理产生的碳减排量在W t E场景总碳排放量中的占比从55%变化至71%;当R D F利用率从80%降低至70%,R D F热处理产生的碳减排量在总碳排放量中的占比从55%变化至38%㊂这表明R D F热处理技术产生的碳减排量随R D F利用率的增加而增大㊂2.4L M R S场景的碳减排量分析本文采用W t M场景和W t E场景的碳减排量,核算了我国生活垃圾填埋场相对于K D N S场景㊂单位质量M S W采用W t M场景或W t E场景的碳减排量如图7所示,图中计算公式用于核算W t M场景和W t E场景的碳减排量,其中:C为垃圾填埋场在W t M场景或W t E场景的碳减排量,P为填埋垃152第2期俞金灵等:生活垃圾填埋场开采再利用碳排放模型及其应用图6 单位质量M S W 采用W t E 场景碳排放量随R D F 的变化关系曲线图7 单位质量M S W 采用W t M 场景或W t E 场景的碳减排量圾采用K D N S 场景的量在填埋垃圾总量的比例,1-P 为填埋垃圾采用W t M 场景或W t E 场景的量在填埋垃圾总量的比例,C E 为填埋垃圾在W t M 场景或W t E 场景的总碳排放量,C K 为填埋垃圾K D N S 场景的总碳排放量㊂由图7可知,当填埋场单位质量垃圾全部采用W t M 场景时,其碳减排量达到最大,为-459~-495k g C O 2e q /t ㊂垃圾填埋场碳中和表现为其在W t M 场景或W t E 场景的碳减排恰好抵消其在K D N S 场景的碳排放,即填埋垃圾采用W t M 场景的量占填埋垃圾总量中的比例为19%~27%,或其采用W t E 场景的量占填埋垃圾总量中的比例为24%~33%,此时垃圾填埋场处于碳中和状态㊂3 结 论本文采用碳排放因子法构建了生活垃圾填埋场开采再利用的全生命周期碳排放模型,通过该模型核算和对比了单位质量生活填埋垃圾在K D N S 场景㊁W t M 场景和W t E 场景的碳排放量,分析了W t M 场景和W t E 场景碳排放的主要驱动因素与碳排放量的变化规律,评估了单位质量生活填埋垃圾在W t M 场景和W t E 场景的碳减排潜力㊂所得主要结论如下:a )生活垃圾填埋场单位质量垃圾采用W t M 场景的碳排放量低于W t E 场景,前者的碳减排潜力是后者的1.6倍㊂b )提高塑料回收率将显著提升W t M 场景的碳减排总量,提高R D F 热处理量(R D F 热值和利用率)有助于增加W t E 场景的碳减排总量,其中R D F 热值变化对W t E 场景的碳减排影响大于R D F 利用率变化对其碳减排影响㊂c )在填埋场K D N S 场景基准下,W t M 场景或W t E 场景将直接影响生活垃圾填埋场L M R S 场景的总碳减排量,另外垃圾填埋场类型也会影响总碳减排量㊂仅从碳减排潜力考虑,S i L 单位质量垃圾在W t M 场景的碳减排潜力最佳㊂d)减少垃圾填埋场生命周期碳排放的有效措施包括:加快垃圾稳定化,提前开展垃圾填埋场的开采;提高垃圾填埋场甲烷收集利用率,减少填埋气泄漏;提高垃圾再生利用技术和R D F热处理技术,降低处理过程中二氧化碳等温室气体排放㊂本文构建了生活垃圾填埋场开采再利用的全生命周期碳排放模型,可用于定量核算填埋场材料与能源多路径利用技术下的碳排放量㊂本文可为填埋场开采再利用路径的优选提供思路,也可为我国生活垃圾填埋场开采再利用的碳减排潜力评估提供参考㊂252浙江理工大学学报(自然科学)2024年 第51卷参考文献:[1]肖电坤.垃圾填埋场好氧降解稳定化模型及其应用[D].杭州:浙江大学,2023:3.[2]国家统计局.2020年城乡建设统计年鉴[M].北京:中国统计出版社,2021:53-60.[3]郭含文,徐海云,聂小琴,等.我国城乡生活垃圾处理温室气体排放清单研究[J].环境工程,2023,41(S2): 286-290.[4]仲璐,胡洋,王璐.城市生活垃圾的温室气体排放计算及减排思考[J].环境卫生工程,2019,27(5):45-48.[5]H o g l a n d W.R e m e d i a t i o n o f a n o l d l a n d s f i l l s i t e:S o i la n a l y s i s,l e a c h a t e q u a l i t y a n d g a s p r o d u c t i o n[J].E n v i r o n m e n t a l S c i e n c e a n d P o l l u t i o n R e s e a r c h,2002,9 (S1):49-54.[6]肖旭东.绿色建筑生命周期碳排放及生命周期成本研究[D].北京:北京交通大学,2021:2-6.[7]郑康琪,陈萍,邱鈺峰,等.生活垃圾腐殖土物化性质及资源化利用途径:以浙江省某高龄期填埋场为例[J].中国环境科学,2022,42(7):3254-3264. [8]白秀佳,张红玉,顾军,等.填埋场陈腐垃圾理化特性与资源化利用研究[J].环境工程,2021,39(2):116-120.[9]C a p p u c c i G M,A v o l i o R,C a r f a g n a C,e t a l.E n v i r o n m e n t a l l i f e c y c l e a s s e s s m e n t o f t h e r e c y c l i n g p r o c e s s e s o f w a s t e p l a s t i c s r e c o v e r e d b y l a n d f i l l m i n i n g [J].W a s t e M a n a g e m e n t,2020,118:68-78.[10]H u a n g T,T a n g Y T,S u n Y,e t a l.L i f e c y c l ee n v i r o n m e n t a l a n d e c o n o m i c c o m p a r i s o n of t h e r m a l u t i l i z a t i o n o f r e f u s e d e r i v e d f u e l m a n u f a c t u r e d f r o m l a n d f i l l e d w a s t e o r f r e s h w a s t e[J].J o u r n a l o fE n v i r o n m e n t a l M a n a g e m e n t,2022,304:114156.[11]J o n e s P T,G e y s e n D,T i e l e m a n s Y,e t a l.E n h a n c e d L a n d f i l l M i n i n g i n v i e w o f m u l t i p l e r e s o u r c e r e c o v e r y:a c r i t i c a l r e v i e w[J].J o u r n a l o f C l e a n e r P r o d u c t i o n, 2013,55:45-55.[12]S a n k a r C V R,M i c h e l e J,W a h i d u l B,e t a l.E n v i r o n m e n t a l i m p a c t e v a l u a t i o n o f l a n d f i l l m i n i n g o f l e g a c y w a s t e w i t h o n-s i t e s o r t i n g u s i n g l i f e c y c l e a s s e s s m e n t[J].E n v i r o n m e n t a l S c i e n c e a n d P o l l u t i o n R e s e a r c h,2023,30(11):30033-30047.[13]D a n t h u r e b a n d a r a M,V a n P a s s e l S,V a n d e r r e y d t I,e ta l.A s s e s s m e n t o f e n v i r o n m e n t a l a n d e c o n o m i c f e a s ib i l i t y o f E n h a nc ed L a n d f i l l M i n i n g[J].W a s te M a n a g e m e n t,2015,45:434-447.[14]Q u a g h e b e u r M,L a e n e n B,G e y s e n D,e t a l.C h a r a c t e r i z a t i o n o f l a n d f i l l e d m a t e r i a l s:s c r e e n i n g o f t h e e n h a n c e d l a n d f i l l m i n i n g p o t e n t i a l[J].J o u r n a l o f C l e a n e r P r o d u c t i o n,2013,55:72-83.[15]K a a r t i n e n T,S o r m u n e n K,R i n t a l a J.C a s e s t u d y o n s a m p l i n g,p r o c e s s i n g a n d c h a r a c t e r i z a t i o n o f l a n d f i l l e d m u n i c i p a l s o l i d w a s t e i n t h e v i e w o f l a n d f i l l m i n i n g[J]. J o u r n a l o f C l e a n e r P r o d u c t i o n,2013,55:56-66.[16]I n t e r g o v e r n m e n t a l P a n e l o n C l i m a t e C h a n g e.C l i m a t eC h a n g e2007:S y n t h e s i s R e p o r t:A R4[R/O L].(2007-04-23)[2023-10-04].h t t p s:ʊw w w.i p c c.c h/s i t e/a s s e t s/u p l o a d s/2018/02/a r4_s y r_f u l l_r e p o r t.p d f.[17]E g g l e s t o n H S,B u e n d i a L,M i w a K,e t a l.2006I P C CG u i d e l i n e s f o r N a t i o n a l G r e e n h o u s e G a s I n v e n t o r i e s[M]. K a n a g a w a,J a p a n:I n s t i t u t e f o r G l o b a l E n v i r o n m e n t a l S t r a t e g i e s,2006:2.4-2.14.[18]陈云敏,刘晓成,徐文杰,等.填埋生活垃圾稳定化特征与可开采性分析:以我国第一代卫生填埋场为例[J].中国科学:技术科学,2019,49(2):199-211.[19]I n t e r g o v e r n m e n t a l P a n e l o n C l i m a t e C h a n g e.2019 R e f i n e m e n t t o t h e2006I P C C G u i d e l i n e s f o r N a t i o n a l G r e e n h o u s e G a s I n v e n t o r i e s[R/O L].(2019-05-12) [2023-10-04].h t t p s:ʊw w w.r e s e a r c h g a t e.n e t/ p u b l i c a t i o n/333984998_2019_r e f i n e m e n t_t o_t h e_2006_ i p c c_g u i d e l i n e s_f o r_n a t i o n a l_g r e e n h o u s e_g a s_ i n v e n t o r i e s_v o l_1_c h a p t e r_6_q u a l i t y_a s s u r a n c e q u a l i t y_c o n t r o l_a n d_v e r i f i c a t i o n.[20]C a i B F,L o u Z Y,W a n g J N,e t a l.C H4m i t i g a t i o n p o t e n t i a l s f r o m C h i n a l a n d f i l l s a n d r e l a t e d e n v i r o n m e n t a lc o-b e n e f i t s[J].S c i e n c e Ad v a n ce s,2018,4(7):e a a r8400.[21]毛睿昌.基于L C A的城市交通基础设施环境影响分析研究:以深圳为例[D].深圳:深圳大学,2017:32.[22]W a n g X J,J i a M S,C h e n X H,e t a l.G r e e n h o u s e g a se m i s s i o n sf r o m l a n d f i l l l e a c h a t e t r e a t m e n t p l a n t s:A c o m p a r i s o n o f y o u ng a n d a g e d l a n d f i l l[J].W a s t e M a n a g e m e n t,2014,34(7):1156-1164. [23]中华人民共和国生态环境部.2019-2020年全国碳排放权交易配额总量设定与分配实施方案(发电行业):国环规气候 2020 3号[A/O L].(2020-12-29)[2023-10-04].h t t p s:ʊw w w.m e e.g o v.c n/x x g k2018/x x g k/ x x g k03/202012/t20201230_815546.h t m l. [24]刘昱良,李姚旺,周春雷,等.电力系统碳排放计量与分析方法综述[J/O L].中国电机工程学报:1-16(2023-06-27)[2023-10-04].h t t p s:ʊd o i.o r g/10.13334/j. 0258-8013.p c s e e.223452.[25]清华大学建筑节能研究中心.中国建筑节能年度发展研究报告:2019[M].北京:中国建筑工业出版社, 2019:11-12.[26]中华人民共和国国家发展和改革委员会.中国煤炭生产企业温室气体排放核算方法与报告指南(试行)[R/ O L].h t t p s:ʊw w w.n d r c.g o v.c n/x x g k/z c f b/t z/ 201502/W020190905507324625877.p d f.352第2期俞金灵等:生活垃圾填埋场开采再利用碳排放模型及其应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省塑料改性与加工技术研究重点实验室
佚名
【期刊名称】《实验室研究与探索》
【年(卷),期】2018(37)2
【摘要】简介浙江省“塑料改性与加工技术研究重点实验室”依托浙江工业大学材料科学与工程省重点一级学科,并以浙江工业大学材料学院高分子材料与工程研究所为主体和浙江俊儿新材料有限公司合作,2011年被批准为浙江省以高性能塑料材料开发及加工技术为主要研究方向的省级重点实验室。

合作单位浙江俊尔新材料有限公司是浙江省塑料改性行业生产规模最大的省专利示范、创新型试点企业。

【总页数】2页(PI0003-I0004)
【关键词】重点实验室;加工技术;塑料改性;浙江省;材料科学与工程;浙江工业大学;高分子材料;高性能塑料
【正文语种】中文
【中图分类】TB3
【相关文献】
1.农业农村部果品产后处理重点实验室国家浆果保险加工技术研发专业中心浙江省果蔬保鲜与加工技术研究重点实验室 [J],
2.农业农村部果品产后处理重点实验室国家浆果保鲜加工技术研发专业中心浙江省果蔬保鲜与加工技术研究重点实验室 [J],
3.农业农村部果品产后处理重点实验室国家浆果保鲜加工技术研发专业中心浙江省果蔬保鲜与加工技术研究重点实验室 [J],
4.农业农村部果品产后处理重点实验室国家浆果保鲜加工技术研发专业中心浙江省果蔬保鲜与加工技术研究重点实验室 [J],
5.农业农村部果品产后处理重点实验室国家浆果保鲜加工技术研发专业中心浙江省果蔬保鲜与加工技术研究重点实验室 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。

相关文档
最新文档