离散数学 求生成树的个数
离散数学中的图的树与生成树的计数

在离散数学中,图是一个由点和边组成的抽象数学模型。
其中,树是一种特殊的图,它是一个无环连通图。
在图论中,树扮演了重要的角色,它具有许多有趣的性质和应用。
而生成树则是树的一个特殊子集,它由给定图中的所有顶点和部分边构成。
本文将介绍图的树的基本概念,并探讨生成树的计数方法。
首先,让我们来看看图的树。
树是一种无环连通图,其中任意两个顶点之间存在唯一一条路径。
它具有以下性质:1.n个顶点的树有n-1条边。
这可以通过归纳法证明:当n=1时,结论成立;假设n=k时成立,那么n=k+1时,只需要添加一个顶点和一条边,即可构成n=k+1个顶点的树。
因此,结论成立。
2.连接树上任意两个顶点的边都是桥。
即如果一条边被删除,那么树就会变成两个或更多个不相连的子树。
3.树是一个高度平衡的结构。
对于一个n个顶点的树,任意两个叶子结点之间的路径长度至多相差1。
4.树的任意两个顶点之间有唯一一条路径,路径长度为顶点之间的边数。
接下来,让我们来讨论生成树的计数方法。
生成树是树的一个特殊子集,它是由给定图中的所有顶点和部分边构成。
生成树的计数在图论中具有重要的意义和应用。
对于一个具有n个顶点的连通图来说,其生成树的个数可以通过Cayley公式计算得到。
Cayley公式是由亚瑟·凯利于1889年提出的,它给出了完全图的生成树数目。
据此,我们可以得到生成树的计数公式为:T = n^(n-2),其中T表示生成树的个数。
此外,还有一种常见的计数方法是基于度数矩阵和邻接矩阵的矩阵树定理。
矩阵树定理由高斯于1847年提出,它提供了一种计算图的生成树个数的方法。
根据矩阵树定理,一个无向图G的生成树数目等于该图度数矩阵的任意一个(n-1)阶主子式的行列式的值。
其中,度数矩阵是一个对角矩阵,它的对角线上的元素为各个顶点的度数。
邻接矩阵则是一个关于顶点间连接关系的矩阵,其中1表示相邻顶点之间存在边,0表示不存在边。
除了数学方法,还存在一种基于图的遍历的计数方法,称为Kirchhoff矩阵树定理。
离散数学

(注)以上算法需假定图中每条边的权都不 相同.但事实上对图中有若干条边的权相同的情 形,只要将它们的权作微小的变动,使之各不相同, 即可使用这个算法.
例:见书本图9.4
又有计算最小生成树的实例:
1 11
6
3 2
9
7 8
10
4 5
红绿粉红紫黄
另有“破圈法”:删除边破坏回路,同时保持图的连 通性,直到没有回路为止。 a
注意,具有 n 个结点和恰有 n-1 条边的图未 必是树,但连通或无回路的是。 连通无圈完全刻划了树,这是树的一个特
性;树还有另外一个重要性质是:它以最少的
边使结点连通。
定理9.2 给定树T=<V,E>,若|V|≥2,则T中至 少存在两个悬挂结点(树叶)。
证明: 1)设T=<V,E>是树,|V|=v.因为T是连通图,viT 有deg(vi)≥1且由定理5-1.1有∑deg(vi)=2(|V|-1)=2v-2.
例:下图为根树,右边是左图省掉方向的代替图。
v1
v2 v3 v4 v2
v1
v3 v4
v5
v6
v7
v8 v9
v5
v6
v7
v8 v9
v10 v11 v12
v10
v11 v12
为表示结点间的关系,有时借用家族中的
术语。一棵根树可以看成一棵家族树。令u是有
根树中的分枝结点,若从u到v有一条边或,则 结点v称为结点u的“儿子”,或称u是v的“父 亲”;若从u到w有一条路,称u是w的“祖先”, 或称w是u的“子孙”或“后代”,同一个分枝
第九章 树
9.1 无向树及生成树
9.2 根树及其应用
离散数学中的生成树与生成树计数

离散数学是计算机科学中的重要学科,其中生成树是一个重要的概念。
在图论中,生成树是一棵树,它包含了图中的所有顶点,并且是由图边组成的无环连通子图。
生成树在图论中有着重要的应用,特别是在计算机网络、运筹学和电路设计等领域。
生成树的概念与基础就是组成它的边是有限的,并且连接图中的所有顶点,但没有形成圈回到起点。
生成树通常是用来描述一个系统的最小连接方式。
生成树可以应用于计算机网络的设计中,用于构建最小生成树算法,以便在网络中选择最小的数据传输路径。
此外,在运筹学中,生成树被用于求解最小生成树问题,即为一个加权图找到一棵包含所有顶点的生成树,使得树中边的权重之和最小。
在离散数学中,生成树计数是一个重要的研究分支。
生成树计数是指对给定图,计算其生成树的数目。
生成树计数的问题可以通过使用基于图论和组合数学的算法来解决。
通常,生成树计数的问题与相应图的特性和性质密切相关。
对于一个简单图来说,如果图中任意两点之间至少有一条边,那么该图一定存在生成树。
对于有 n 个顶点的连通图来说,它的生成树数量可以通过Cayley公式计算得到。
Cayley公式表明,一个有 n 个标号的顶点的完全图的生成树数量等于 n^(n-2)。
而对于非完全图,生成树的计数问题则较为困难。
在处理非完全图的生成树计数问题时,可以使用基于递归和动态规划的算法来解决。
一个常见的方法是使用Kirchhoff矩阵树定理,它将生成树计数的问题转化为计算矩阵的行列式的问题。
Kirchhoff矩阵树定理提供了一种计算给定图的生成树数目的有效算法,通过计算图的基尔霍夫矢量的一个特征值,可以得到图的生成树的数目。
另一个常见的方法是使用Prufer编码,它是一个用于描述无环连通图的序列。
通过Prufer编码,我们可以将计算生成树的问题转化为计数树的问题。
通过对无向图进行Prufer编码,我们可以计算出生成树的数目,并且可以根据生成树的数目来确定该无向图的种类和特征。
离散数学中的树和图的应用

离散数学是数学的一个分支,主要研究离散对象的性质和关系。
在离散数学中,树和图是两个重要的概念和工具。
它们不仅在数学中具有重要的地位,而且在计算机科学、电子工程、通信工程等领域中也有广泛的应用。
首先,让我们来了解一下树和图的定义。
在离散数学中,树是一种特殊的图。
树是由若干个节点组成的,其中一个节点被称为根节点,其他节点分布在根节点之下的若干层次中,并且每个节点最多有一个父节点。
除此之外,树的每个节点可以有零个或多个子节点。
树的一个重要特点是:任意两个节点之间有且仅有一条路径相连。
在离散数学中,图是由若干个节点和连接节点的边组成的。
图可以分为有向图和无向图。
有向图中的边是有方向的,无向图中的边没有方向。
图的节点可以表示实体,边可以表示实体之间的关系。
图的一个重要特点是:图中的节点和边可以有多个连接。
树和图有着广泛的应用。
在计算机科学中,树和图常常被用于数据结构和算法。
比如,树可以用来实现二叉搜索树、堆、二叉树等数据结构;图可以用来实现图算法,如最短路径算法、最小生成树算法、拓扑排序算法等。
树和图的应用还涉及到网络优化、模式识别、数据挖掘、人工智能等领域。
在电子工程中,树和图被用来描述和分析电路。
树可以用来表示电路的拓扑结构,图可以用来表示电路元件之间的连接关系。
树和图在电路分析和设计中起到了至关重要的作用。
比如,树可以用来分析电路的戴维南等效电路、回路等;图可以用来优化电路的布局和布线。
在通信工程中,树和图被用来表示通信网络和通信路径。
通信网络可以看作是由节点和连接节点的通信链路组成的图,而通信路径可以看作是图中的一条路径。
树和图在通信网络的规划、管理和优化中扮演重要的角色。
比如,树可以用来构建网络拓扑,图可以用来分析和优化通信路径。
总之,离散数学中的树和图是非常重要的概念和工具,并且在各个领域中有广泛的应用。
无论是计算机科学、电子工程还是通信工程,都离不开树和图的帮助。
因此,我们应该加强对树和图的学习和应用,以更好地解决实际问题。
离散数学 图论-树

中序遍历(次序:左-根-右) 前序遍历(次序:根-左-右) 后序遍历(次序:左-右-根) b 中序遍历: c b e d g f a I k h j 前序遍历: a b c d e f g h i k j 后序遍历: c e g f d b k i j h a
例:给定二叉树,写出三种访问 结点的序列
是否为根树
(a) (no)
(b) (no)
(c) (yes)
从树根到T的任意顶点v的通 路(路径)长度称为v的层数。 v5的层数为 层。
层数最大顶点的层数称为树 高.将平凡树也称为根树。 右图中树高为( )。
v1
v2 v3
v4 v8v5Fra bibliotekv6v7 v10
v9
在根树中,由于各有向边的方向是一 致的,所以画根树时可以省去各边上的所 有箭头,并将树根画在最上方.
等长码:0-000;1-001;2-010;3-011;4-100; 5-101;6-110;7-111. 总权值: W2=3*100=300
4、二叉树的周游(遍历)
二叉树的周游:对于一棵二叉树的每一个结点都访问一次且 仅一次的操作 1)做一条绕行整个二叉树的行走路线(不能穿过树枝) 2)按行走路线经过结点的位臵(左边、下边、右边) 得到周游的方法有三种: 中序遍历(路线经过结点下边时访问结点) 访问的次序:左子树-根-右子树 前序遍历(路线经过结点左边时访问结点) 访问的次序:根-左子树-右子树 后序遍历(路线经过结点右边时访问结点) 访问的次序:左子树-右子树-根
2、根树中顶点的关系
定义:设T为一棵非平凡的根树, v2 ∀vi,vj∈V(T),若vi可达vj,则称vi为 vj的祖先,vj为vi的后代; v4 v5 若vi邻接到vj(即<vi,vj>∈E(T),称 vi为vj的父亲,而vj为vi的儿子 v8 若vj,vk的父亲相同,则称vj与vk是兄 弟
第四部分图论练习题答案

《离散数学》第四部分---图论练习题答案一、选择或填空1、设G是一个哈密尔顿图,则G一定是( )。
(1) 欧拉图(2) 树(3) 平面图(4) 连通图答:(4)2、下面给出的集合中,哪一个是前缀码?( )(1) {0,10,110,101111} (2) {01,001,000,1}(3) {b,c,aa,ab,aba} (4) {1,11,101,001,0011}答:(2)3、一个图的哈密尔顿路是一条通过图中( )的路。
答:所有结点一次且恰好一次4、在有向图中,结点v的出度deg+(v)表示( ),入度deg-(v)表示( )。
答:以v为起点的边的条数,以v为终点的边的条数5、设G是一棵树,则G 的生成树有( )棵。
(1) 0 (2) 1 (3) 2 (4) 不能确定答:16、n阶无向完全图K n 的边数是( ),每个结点的度数是( )。
答:2)1(nn, n-17、一棵无向树的顶点数n与边数m关系是( )。
8、一个图的欧拉回路是一条通过图中( )的回路。
答:所有边一次且恰好一次9、有n个结点的树,其结点度数之和是( )。
答:2n-210、下面给出的集合中,哪一个不是前缀码( )。
(1) {a,ab,110,a1b11} (2) {01,001,000,1}(3) {1,2,00,01,0210} (4) {12,11,101,002,0011}答:(1)11、n个结点的有向完全图边数是( ),每个结点的度数是( )。
答:n(n-1),2n-212、一个无向图有生成树的充分必要条件是( )。
答:它是连通图13、设G是一棵树,n,m分别表示顶点数和边数,则(1) n=m (2) m=n+1 (3) n=m+1 (4) 不能确定。
答:(3)14、设T=〈V,E〉是一棵树,若|V|>1,则T中至少存在( )片树叶。
答:215、任何连通无向图G至少有( )棵生成树,当且仅当G 是( ),G的生成树只有一棵。
《离散数学》练习题和参考答案

《离散数学》练习题和参考答案《离散数学》练习题和参考答案⼀、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)?Q=>Q→P (2)?Q=>P→Q (3)P=>P→Q (4)?P∧(P∨Q)=>?P 答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→?R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q) 答:(2),(3),(4)3、设有下列公式,请问哪⼏个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ?(P→Q)=>P (6) ?P∧(P∨Q)=>?P 答:(2),(3),(4),(5),(6)4、公式?x((A(x)→B(y,x))∧?z C(y,z))→D(x)中,⾃由变元是( ),约束变元是( )。
答:x,y, x,z5、判断下列语句是不是命题。
若是,给出命题的真值。
( )北京是中华⼈民共和国的⾸都。
(2) 陕西师⼤是⼀座⼯⼚。
(3) 你喜欢唱歌吗? (4) 若7+8>18,则三⾓形有4条边。
(5) 前进!(6) 给我⼀杯⽔吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在⼀些⼈是⼤学⽣”的否定是( ),⽽命题“所有的⼈都是要死的”的否定是( )。
答:所有⼈都不是⼤学⽣,有些⼈不会死7、设P:我⽣病,Q:我去学校,则下列命题可符号化为( )。
(1) 只有在⽣病时,我才不去学校 (2) 若我⽣病,则我不去学校(3) 当且仅当我⽣病时,我才不去学校(4) 若我不⽣病,则我⼀定去学校答:(1)PQ→(2)QP?→(3)QP?(4)QP→8、设个体域为整数集,则下列公式的意义是( )。
(1) ?x?y(x+y=0) (2) ?y?x(x+y=0)答:(1)对任⼀整数x存在整数 y满⾜x+y=0(2)存在整数y对任⼀整数x满⾜x+y=09、设全体域D是正整数集合,确定下列命题的真值:(1) ?x?y (xy=y) ( ) (2) ?x?y(x+y=y) ( )(3) ?x?y(x+y=x) ( ) (4) ?x?y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式?x(P(x)∨Q(x))在哪个个体域中为真?( ) (1) ⾃然数(2) 实数 (3) 复数(4) (1)--(3)均成⽴答:(1)11、命题“2是偶数或-3是负数”的否定是()。
离散数学7-树

(b)
(a)
V5
2
1
V7
8
9
V2
V4
2
3
V8
5
V1
V1
V4
V5
1
3
V7
V6
8
V4
2
V8
5
6
V1
1
V5
6
V7
V6
8
3
V8
5
6
V7
9
V3
(e)
V3
(f)
(g)
22
V2
V3
(h)
五.应用举例——求最小生成树
例3 用管梅谷算法求下图的最小生成树。
23
五.应用举例——求最小生成树
例3 用管梅谷算法求下图的最小生成树。
成圈。
首先证明T无简单回路。对n作归纳证明。
(i) n=1时,m=n-1=0,显然无简单回路;
(ii)假设顶点数为n-1时无简单回路,现考察顶点数是n的情况:此时至少有一
个顶点v其次数d(v)=1。因为若n个顶点的次数都大于等于2,则不少于n条边,但这与
m=n-1矛盾。
删去v及其关联边得到新图T’,根据归纳假设T’无简单回路,再加回v及其关联
边又得到图T,则T也无简单回路。
再由图的连通性可知,加入任何一边后就会形成圈,且只有一个圈,否则原图
中会含圈。
9
二. 基本定理——证明
证明(4):(3)(4),即证一个无圈图若加入任一边就形成圈,
则该图连通,且其任何一边都是桥。
若图不连通,则存在两个顶点vi和vj,在vi和vj之间没有路,若
加边(vi,vj)不会产生简单回路,但这与假设矛盾。由于T无简单回
离散数学-树

离散数学导论
. 树
1.2 生成树
➢定义9.10
图T称为无向图G的生成树(spanning tree), 如果T为G的生成子图且T为树。
✓定理9.17
任一连通图G都至少有一棵生成。
.. 树树
1.2 生成树
✓ 定理9.18
设G为连通无 向图,那么G的 任一回路与任一生 成树T的关于G的补 G – T ,至少有一 条公共边。
1.3 根树
➢ 定义9.15
每个结点都至多有两个儿子的根树称为 二元树(quasibinary tree)。类似地,每个结点都
至多有n个儿子的根树称为n元树。 对各分支结点 的诸儿子规定了次序(例如左兄右弟)的n 元树称
为n元有序树;若对各分支结点的已排序的诸儿子
规定了在图示中的位置(例如左、中、右),那么
弦组成G的一个割集,它被称为枝t-割集(t-cut set);
而每一条弦e与T中的通路构成一回路,它被称为弦e-回
路(e-circuit)。
. 树
1.2 生成树
✓ 定理9.20
在连通无向图G中,任一回路与任 一割集均有偶数条公共边。
. 树
1.2 生成树
✓ 定理9.21
设G为一连通无向图,T是G的生成树, S = {e1, e2, e3,…,ek}
✓ 定理9.19
设G为连通无 向图,那么G的任 一割集
与任一生成树至少
有一条公共边。
.. 树树
1.2 生成树
➢ 定义9.11
设T为图G的生成树,称T中的边为树枝(branch) 称G – T 中的边为弦(chord)。对每一树枝t,T–t分为
离散数学-第10章 树

避圈法
1
1
2
6
5
2
6
5
3
4
3
4
➢ 由于生成树的形式不惟一,故上述两棵生成树 都是所求的。
➢ 破圈法和避圈法的计算量较大,主要是需要找 出回路或验证不存在回路。
2023/11/30
算法10.2.3
求连通图G = <V, E>的生成树的广度优先搜索算法: (1)任选s∈V,将s标记为0,令L = {s},V = V-
(a)
(b)
(c)
(d)
(e)
2023/11/30
定义10.3.2
一棵非平凡的有向树,如果恰有一个结点的入度为 0,其余所有结点的入度均为1,则称之为根树 (Root Tree)或外向树(Outward Tree)。入度为0的 结点称为根(Root);出度为0的结点称为叶(Leaf); 入度为1,出度大于 0的结点称为内点(Interior Point) ; 又 将 内 点 和 根 统 称 为 分 支 点 (Branch Point)。在根树中,从根到任一结点v的通路长度, 称为该结点的层数(Layer Number);称层数相同的 结点在同一层上;所有结点的层数中最大的称为根 树的高(Height)。
2023/11/30
例10.2.5
利用广度优先搜索算法求下图的生成树。
1(a) 3(e) bd
4(gd1)(a) 3(e) bd
4(gh)
0(a-)
2e(b0)(a-)
h 3(e)
4(jh2e)(b)
h
4(h) j
3(e)
cf 1(a) 2(c)
3(ie1)(ca)
f 2(c)
【离散数学讲义】8.树与生成树53

2.弦:图G中,不在其生成树里的边,称作弦. 所有弦的集合,
称为该生成树的补.
v1
定理2 :连通图G中至少有一棵生成树.
v2
v3
证明:如果G中无回路, 则G本身就是树. v4
v5
如果G中有回路,可以通过反复删去回路
中的边,使之既无回路,又连通.就得到生成树.
思考题:设G是有n个结点,m条边的连通图, 问要删去多少
为该结点的层次. 同一层次的结点称为兄弟结点.
7.树高:从树根到各个叶结点的路径中, 最长路径的长度,
称为该树的高度(树高).
三.举例: a)语法树
主语
句子
谓语短语
冠词 形容词 名词 动词
宾语
The little
b)算术表达式树 ((a+b)÷c)×(d-e)
19
42,58 24,34,42 19,23,24,34
17,17,19,23,24
11,13,17,17,19,23
7,10,11,13,17,19,23 5,5,7,11,13,17,19,23
2,3,5,7,11,13,17,19,23
23 24
34
11 13 17 17
7 10
55
23
5. 最优树的应用举例
34 6 6 v6
Kruskal算法: 设G是有n个结点,m条边(m≥n-1)的连通图. S=Φ i=0 j=1
将所有边按照权升序排序: e1, e2, e3,… ,em
S=S∪{ai} j=j+1
|S|=n-1 Y 输出S 停 N
N
取ej使得
ai=ej i=i+1
湘潭大学计算机科学与技术刘任任版离散数学课后习题答案-第二学期--图论与组合数学

湘潭大学计算机科学与技术刘任任版离散数学课后习题答案-第二学期--图论与组合数学习题六1.设G是一个无回路的图,求证:若G中任意两个顶点间有惟一的通路,则G是树.证明:由假设知,G是一个无回路的连通图,故G是树。
2.证明:非平凡树的最长通路的起点和终点均为悬挂点.分析:利用最长通路的性质可证。
证明:设P是树T中的极长通路。
若P的起点v满足d(v)1,则P不是T中极长的通路。
对终点u也可同理讨论。
故结论成立。
3.证明:恰有两个悬挂点的树是一条通路.分析:因为树是连通没有回路的,所以树中至少存在一条通路P。
因此只需证明恰有两个悬挂点的树中的所有的点都在这条通路P中即可。
证明:设u,v是树T中的两个悬挂点,即d(u)d(v)1。
因T是树,所以存在(u,v)-通路P:uw1wkv,k0。
显然,d(wi)2。
若d(wi)2,则由T恰有两个悬挂点的假设,可知T中有回路;若T中还有顶点某不在P中,则存在(u,某)-通路,显然u与某不邻接,且d(某)2。
于是,可推得T中有回路,矛盾。
故结论成立。
4.设G是树,Gk,求证:G中至少有k个悬挂点.分析:由于Gk,所以G中至少存在一个顶点v的度≥k,于是至少有k个顶点与邻接,又G是树,所以G中没有回路,因此与v邻接的点往外延伸出去的分支中,每个分支的最后一个顶点必定是一个悬挂点,因此G中至少有k个悬挂点。
证明:设uV(G),且d(u)mk。
于是,存在v1,,vmV(G),使(l)uviE(G),i1,,m。
若vi不是悬挂点,则有viV(G),使。
如此下去,有viV(G),满足vi(l)vj,ij,且d(vi(l))1,i1,,m。
故G中至少有k个悬挂点。
5.设Gp,q是一个图,求证:若qp,则G中必含回路.分析:利用树是没有回路且连通的图,且树中的顶点数和边数的关系可证。
证明:设G(p,q)有k个分支:G[V1]G1(p1,q1),,G[Vk]Gk(pk,qk)。
显然,pp1pk,qq1qk。
离散数学——树

例16.2
例16.2 7阶无向图有3片树叶和1个3度顶点,其余3个顶点的度 数均无1和3。试画出满足要求的所有非同构的无向树。
解答 设Ti为满足要求的无向树,则边数mi=6,于是 ∑d(vj)=12=e+3+d(v4)+d(v5)+d(v6)。
由于d(vj)≠1∧d(vj)≠3,而且d(vj)≥1且d(vj)≤6,j=4,5,6, 可知d(vj)=2,j=4,5,6。于是Ti 的度数列为
s
s
s
m mi (ni 1) ni s n s
i 1
i 1
i 1
由于s≥2,与m=n-1矛盾。
(4)(5)
如果G是连通的且m=n1,则G是连通的且G中任何边均为桥。
只需证明G中每条边均为桥。 e∈E,均有|E(G-e)|=n-1-1=n-2, 由习题十四题49(若G是n阶m条边的无向连通图,则m≥n-1)可
(1) 1,1,1,1,1,5 (2) 1,1,1,1,2,4 (3) 1,1,1,1,3,3 (4) 1,1,1,2,2,3 (5) 1,1,2,2,2,2
(4)对应两棵非同构的树, 在一棵树中两个2度顶点相邻, 在另一棵树中不相邻, 其他情况均能画出一棵非同构 的树。
例16.1
人们常称只有一个分支点,且分支点的度数为n-1的 n(n≥3)阶无向树为星形图,称唯一的分支点为星心。
(1)(2)
如果G是树,则G中任意两个顶点之间存在唯一的路径。
存在性。 由vj(Gvi的v连j)通存性在及通定路理,1则4.vi5到的v推j 一论定(存在在n阶长图度G小中于,等若于从n顶-1点的v初i到 级通路(路径))可知,
u,v∈V,u与v之间存在路径。
唯一性(反证法)。 若路径不是唯一的,设Г1与Г2都是u到v的路径, 易知必存在由Г1和Г2上的边构成的回路, 这与G中无回路矛盾。
离散数学第十一章 树

m 1 ) t t 1 即(
这个定理实质上可以用每局有m个选手参加的单淘汰制比赛来说明。t个叶表 示t个参赛的选手,i则表示必须按排的总的比赛局数。每一局由m个参赛者中产生 一个优胜者,最后决出一个冠军。
11.2 有向树及其应用
m叉树
例11.8 设有28盏电灯,拟公用一个电源插座,问需要多少块具有四插 座的接线板? 这个公用插座可以看成是正则四叉树的根,每个接线板看成是其它的 分枝点,灯泡看成是叶,则问题就是求总的分枝点的数目,由定理11.4可 1 以算得 i (281 ) 9 。因此,至少需要9块接线板才能达到目的。 3
图11.6
11.2 有向树及其应用
定义11.10 设<D,W>是叶加权二叉树。如果对于一切叶加权二叉树
DW ', ' 只要对于任意正实数r,D和 D ' 中权等于r的叶的数目相同,就 ', ' 的叶加权路径长度,则称 有<D,W>的叶加权路径长度不大于 DW
<D,W>为最优的。 这样,我们把求某问题的最佳算法就归结为求最优二叉树的问题。
11.1 树与生成树
生成树与最小生成树
定理11.2 无向图 为连通当且仅当 有生成树。
证明:先采用反证法来证明必要性。 若 G 不连通,则它的任何生成子图也不连通,因此不可能有生成树,与 G 有 生成树矛盾,故 G 是连通图。 再证充分性。 设 G 连通,则 G 必有连通的生成子图,令 T 是 G 的含有边数最少的生成子图, 于是 T 中必无回路(否则删去回路上的一条边不影响连通性,与 T 含边数最少矛 盾),故 T 是一棵树,即生成树。
离散数学(第二版)第9章树

e10, 则分别产生初级回路e1e3e4, e1e4e5e2, e6e8e9,
•
•
•
e7e6e9e10。
•
第九章 树
这些初级回路有一个共同特点: 它们中均只含一条弦,
其余的边均是树枝, 我们称这样的回路为基本回路。 对于
G的每棵生成树T, m-n+1条弦对应着m-n+1个基本回路,
这些基本回路构成的集合称为对应T的基本回路系统。 显
例如图9.1.3中, T1和T2是图G的两棵生成树, 1 和2 是 分别对应于它们的余树。
第九章 树
图9.1.3 图的生成树和余树
第九章 树
由图9.1.3可见, G与T1、 T2的区别是G中有回路, 而 它的生成树中无回路, 因此要在一个连通图G中找到一棵 生成树, 只要不断地从G的回路上删去一条边, 最后所得 无回路的子图就是G的一棵生成树。 于是有如下定理。
这个问题的数学模型为: 在已知的带权图上求权最小 的生成树。
定义9.1.4 设无向连通带权图G=〈V, E, ω〉, G中带 权最小的生成树称为G的最小生成树(最优树)。
定理9.1.4 设连通图G的各边的权均不相同, 则回路 中权最大的边必不在G的最小生成树中。
证明略。
第九章 树
定理的结论是显然的, 由此寻找带权图G的最小生成 树, 可以采用破圈法, 即在图G中不断去掉回路中权最大 的边。
(5) 1, 1, 1, 1, 1, 2, 5
(6) 1, 1, 1, 1, 1, 3, 4
(7) 1, 1, 1, 1, 1, 1, 6
第九章 树
注意到, 不同构的度数列对应不同的树, 但对应同一 度数列的非同构的树不一定唯一, 所以对应(1)有T1, 对应 (2)有T2、 T3和T4, 对应(3)有T5和T6, 对应(4)有T7和T8, 对应(5)有T9, 对应(6)有T10, 对应(7)有T11(见图9.1.2)。
离散数学第九章树知识点总结

生成树的存在性 定理 任何无向连通图都有生成树. 证 用破圈法. 若图中无圈, 则图本身就是自己的生成树.
否则删去圈上的任一条边, 这不破坏连通性, 重复进行 直到无圈为止,剩下的图是一棵生成树. 推论 1 设 n 阶无向连通图有 m 条边, 则 mn1. 推论 2 设 n 阶无向连通图有 m 条边, 则它的生成树的余树 有 mn+1 条边.
{0,10,010, 1010} 不是前缀码
例 在通信中,设八进制数字出现的频率如下:
0:25%
1:20%
2:15%
3:10%
4:10%
5:10%6:5% Nhomakorabea7:5%
采用 2 元前缀码, 求传输数字最少的 2 元前缀码 (称作最佳前
缀码), 并求传输 10n(n2)个按上述比例出现的八进制数字需
要多少个二进制数字?若用等长的 (长为 3) 的码字传输需要
推论 3 设
为 G 的生成树 T 的余树,C 为 G 中任意一个
圈,则 C 与
一定有公共边.
基本回路与基本回路系统
定义 设 T 是 n 阶 m 条边的无向连通图 G 的一棵生成 树,设 e1, e2, … , emn+1 为 T 的弦. 设 Cr 为 T 添加弦 er 产生的 G 中惟一的圈(由 er和树枝组成), 称 Cr 为对应 弦 er的基本回路或基本圈, r=1, 2, …, mn+1. 称{C1, C2, …, Cmn+1}为对应 T 的基本回路系统. 求基本回路的算法: 设弦 e=(u,v), 先求 T 中 u 到 v 的路径 uv, 再并上弦 e, 即得对应 e 的基本回路. 基本割集与基本割集系统定义 设 T 是 n 阶连通图 G 的一棵生成树, e1, e2, …, en1 为 T 的树枝,Si 是 G 的只含树枝 ei, 其他边都是弦
离散数学中的图的树与生成树计数算法

离散数学是数学的一个重要分支,它研究的是离散的对象和离散的结构。
图论作为离散数学的分支之一,研究的是图的性质和结构。
在离散数学中,图的树是一种重要的概念,而生成树则是树的一种特殊类型。
本文将介绍图的树以及生成树的计数算法。
在图论中,图是由节点和边组成的集合。
树是一种特殊的图,它是一个无环图,并且其中的任意两个节点都是通过唯一的路径连接在一起的。
树的一个重要性质是它具有n个节点的话,就有n-1条边。
这个性质可以通过归纳法进行证明。
生成树是图的一个特殊类型,它是包含所有节点并且没有环的子图。
图中可能存在多个生成树,而生成树的计数是一个重要的问题。
一个图有多少种不同的生成树取决于图的结构和节点之间的连接关系。
在计算生成树数量时,有一些经典的算法可以使用。
其中,几个著名的算法包括Matrix Tree 定理、Kirchhoff定理和Prufer编码。
Matrix Tree 定理是一个重要的生成树计数定理。
该定理指出,一个图的生成树数量等于其拉普拉斯矩阵中任意一个不连通的块的行列式。
拉普拉斯矩阵是一个图的特殊矩阵,其中的元素是节点之间的连接关系。
通过计算拉普拉斯矩阵的行列式,我们可以得到图的生成树数量。
Kirchhoff定理是图论中的另一个重要定理。
它指出,一个图的所有生成树组成的集合,可以通过这个图的基尔霍夫矩阵的任意一个不连通部分的代数余子式求和得到。
基尔霍夫矩阵是一个与图的边相关的矩阵,通过对基尔霍夫矩阵的计算,我们可以得到图的生成树数量。
Prufer编码是一个用于计算生成树数量的编码技术。
在Prufer编码中,我们将图的生成树转化为一个特殊的序列。
通过对这个序列的计算和转化,我们可以得到图的生成树数量。
Prufer编码是一个相对简单的方法,但它可以应用于不同类型的图,因此是一个实用且灵活的生成树计数方法。
总之,在离散数学中,图的树和生成树是重要的概念。
图的树是一种无环图,而生成树是包含所有节点且没有环的子图。
离散数学解决离散数学中的问题

离散数学解决离散数学中的问题离散数学是数学的一个分支领域,主要研究离散结构以及离散对象之间的关系。
它在计算机科学、信息技术、密码学等领域中有着广泛的应用。
在离散数学中,我们可以通过不同的方法和技巧来解决各种问题。
本文将介绍几个常见的离散数学问题,并探讨它们的解决方法。
一、图论问题图论是离散数学中一个重要的分支,主要研究图的性质和关系。
在图论中,常常出现以下几类问题:1. 最短路径问题:给定一个带权重的有向图,要求找到两个顶点之间的最短路径。
常用的解决方法包括Dijkstra算法和Floyd-Warshall算法。
2. 最小生成树问题:给定一个带权重的无向图,要求找到一个包含所有顶点且边的权重之和最小的生成树。
常用的解决方法包括Prim算法和Kruskal算法。
3. 旅行商问题:给定一个带权重的完全有向图,要求找到一条经过每个顶点一次且路径权重最小的环路。
该问题属于NP难问题,常用的解决方法包括动态规划和回溯法。
二、集合与逻辑问题在离散数学中,集合论和逻辑推理是非常重要的工具。
以下是几个与集合和逻辑相关的问题:1. 集合关系的判断:给定两个集合A和B,判断A是否是B的子集、两个集合是否相等等。
可以通过集合的定义和性质进行判断。
2. 命题逻辑问题:给定一系列命题,通过逻辑推理判断命题之间的关系,如“与”、“或”、“非”等。
常用的推理方法包括真值表、推理规则和演绎法。
3. 谓词逻辑问题:给定一个谓词逻辑表达式,通过推理判断该表达式的真假。
谓词逻辑是一种对命题进行量化的方式,常用的推理规则包括全称量化规则和存在量化规则。
三、组合数学问题组合数学是研究离散结构的一种方法,常常涉及到排列、组合和集合等概念。
以下是几个与组合数学相关的问题:1. 排列组合问题:给定一组元素,问有多少种排列或组合方式。
可以通过组合数学中的排列和组合公式来计算。
2. 鸽巢原理问题:给定一组容器和一组元素,要求将元素放入容器中,保证每个容器至少包含一个元素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在离散数学中,生成树(Spanning Tree)是一个图(Graph)的子图,它包含图中的所有顶点,并且是一个树(Tree)。
生成树的一个重要性质是它不包含任何环(Cycle)。
求一个给定图的生成树个数是一个经典问题,通常使用矩阵树定理(Matrix Tree Theorem)来解决。
矩阵树定理给出了一个图的生成树个数的计算公式,它基于图的拉普拉斯矩阵(Laplacian Matrix)的行列式。
拉普拉斯矩阵是一个方阵,其大小为图的顶点数,矩阵的元素定义如下:
•如果i和j是不同的顶点,则矩阵的第i行第j列的元素是顶点i和j之间的边的权重(如果存在边的话),否则是0。
•对于每个顶点i,矩阵的第i行第i列的元素是顶点i的度(即与顶点i相邻的边的数量)的负值。
矩阵树定理指出,图的生成树个数等于其拉普拉斯矩阵的任何一个n-1阶主子式的行列式值的绝对值。
n是图的顶点数,n-1阶主子式意味着去掉矩阵中的一行和一列后得到的矩阵。
下面是一个简单的例子,说明如何使用矩阵树定理计算生成树的个数:
假设有一个包含4个顶点的简单图,其边和权重如下:
A -- 2 -- B
| |
1 3 1
| |
C -- 4 -- D
1 -3 1 0
0 1 -3 4
0 0 1 -4
主子式的行列式值。
去掉第一行和第一列后,我们得到:
1 0
1 -3 4
0 1 -4
x3矩阵的行列式,我们得到:
1 * 1) - (0 * 0) = 1
2 - 1 = 11
过程可能涉及复杂的行列式计算,特别是对于大型图来说。
在实际应用中,通常会使用专门的数学软件或库(如Python中的NumPy或SciPy)来进行这些计算。
此外,还有一些算法(如Kruskal算法和Prim算法)可以用来构造生成树,但它们并不直接计算生成树的总数。
这些算法通常用于找到图的一个生成树,而不是计算所有可能的生成树的数量。