eviews时间序列一阶自相关检验命令
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
eviews时间序列一阶自相关检验命令
在EViews中,我们可以使用AR(p)模型来进行时间序列的一阶自相关检验。AR(p)模型表示自回归模型,其中p表示阶数。
一阶自相关检验是用来确定时间序列数据是否存在自相关性。自相关是指序列中一个值与其在时间上前一时刻的值之间的相关性。在时间序列分析中,我们希望序列的值是彼此相互独立的,因此自相关性可能会影响我们对序列的分析和预测。
在EViews中,可以通过以下步骤来进行一阶自相关检验:
1.打开EViews软件并导入时间序列数据。
2.在EViews主菜单中选择“Quick/Estimate Equation”(快速估计方程)。
3.在“Equation Specification”(方程规范)对话框中,输入要估计的模型。例如,如果要进行一阶自相关检验,则可以输入模型“y c ar(1)”。
- “y”表示被解释变量。
- “c”表示常数项。
- “ar(1)”表示自回归项,其中1表示阶数。
4.单击“OK”按钮以估计模型。
5.将结果显示为估计方程的系数,t统计量,R-squared(R平方值)等。
在估计方程后,EViews将为我们提供一阶自相关检验的结果。重要的统计值包括Jarque-Bera(JB)统计量、ARCH LM检验、DW统计量等。
- Jarque-Bera(JB)统计量是用来检验数据是否服从正态分布。如果JB统计量的p值小于0.05,则我们可以拒绝原假设,即数据不服从正态分布。
- ARCH LM检验旨在检验序列中是否存在异方差性。如果ARCH LM 统计量的p值小于0.05,则我们可以拒绝原假设,即序列中存在异方差性。
- Durbin-Watson(DW)统计量是用来检验序列的自相关性。DW统计量的值介于0和4之间,如果DW值接近于2,则表示序列不存在一
阶自相关。
除了上述统计量之外,EViews还提供了其他有关模型估计的信息,包括系数的标准误差、置信区间、F统计量和R平方等。
总结起来,EViews提供了方便快捷的方法来进行时间序列的一阶
自相关检验。使用AR(p)模型,我们可以轻松地估计时间序列数据,并通过统计量来判断序列的自相关性和其他性质。通过这些分析结果,我们可以更好地理解时间序列数据的特征,并进行进一步的分析和预测。