简述高速铁路的概念

合集下载

高速铁路工务知识手册(路基桥隧)

高速铁路工务知识手册(路基桥隧)

高速铁路工务知识手册(路基桥隧)《高速铁路工务知识手册》(路桥)1高速铁路的基本概念1.3 高速铁路工务设施十大技术特点。

1.3.2 新型桥梁。

对高速铁路桥梁,要求具有较大的刚度,常用跨度桥大量采用预应力混凝土双线整孔箱梁、大跨度桥梁采用梁拱组合桥梁、更大跨度桥梁采用斜拉桥等新型桥梁。

1.3.3 以桥代路。

高速铁路沿线经济社会发达,需跨越的城市道路、公路、既有铁路、地下管线多,沿海地区河道水网密布、软土等特殊性土分布广泛,大量采用高架桥以桥代路。

已开通和在建设计速度350km/h、250km/h高速铁路桥梁比例分别达到了71%和35%。

1.3.4 隧道净空。

高速运行引起的隧道空气动力学问题突出。

为减缓高速列车通过隧道时产生的空气动力学效应对旅客舒适度和车厢变形的影响,加大隧道净空面积。

350km/h双线和单线隧道有效净空面积分别达到了100m2和70m2,250km/h双线和单线隧道分别达到了90m2和58m2。

1.3.5 刚度均匀。

路基沿线路的刚度不平顺会造成轨道动态不平顺。

列车速度越高、刚度变化越剧烈,引起的列车振动越强烈,因此,除要求路基段刚度均一外,在路基与桥梁、涵洞、隧道等结构物之间和路堑遇路堤之间设置路桥、路涵、路隧、堤堑等各种过渡段,以实现刚度均匀过渡。

1.3.6 沉降控制。

为确保高速铁路正常行车和减少维修量,对工后沉降控制严格。

路基工后沉降:无砟轨道不大于15mm,250和350 km/h线路有砟轨道分别不大于100mm和50mm。

桥梁基础工后沉降:无砟轨道不大于20mm,250和350 km/h线路有砟轨道分别不大于50mm和30mm。

涵洞工后沉降量与相邻路基地段协调一致。

1.3.8 动态优化。

为有效控制工后沉降和沉降速率,对软土、松软土和湿陷性黄土等特殊地段路基,提前开展实验工程,根据沉降观测数据和发展趋势、工期等,采取调整预压土高度、卸荷时间、基床底层顶面抬高、铺轨时间等,进行动态优化设计。

修建高铁的意义

修建高铁的意义

中国发展高速铁路的深远意义1高速铁路概念高速铁路是一个具有国际性和时代性的概念。

它一个集各项最先进的铁路技术、先进的运营管理方式、市场营销和资金筹措于一体的十分复杂的系统工程,具有高效率的运营体系,它包含了基础设施建设、机车车辆配置、站车运营规则等多方面的技术与管理。

2高速铁路意义一、从运输发展理论上分析,我国加快高速铁路建设是必然要求运输发展理论认为,运输化是工业化的重要特征之一,也是伴随工业化而发生的一种经济过程。

在运输化过程中,人与货物空间位移的规模由于近代和现代运输工具的使用而急剧扩大,交通运输成为经济进入现代增长所依赖的最主要的基础产业、基础结构和环境条件。

经济发展的运输化过程有一定的阶段性运输化本身的特征又在“初步运输化”和“完善运输化”这两个分阶段中得到充分发展;随着发达国家逐步向后工业经济转变,运输化的重要性在相对地位上开始让位于信息化,从而呈现出一种“后运输化”的趋势。

中国的运输化仍旧处于需要扩大运输能力的初级阶段。

二、从国情实际出发,我国加快发展高速铁路也是必然选择一是我国正处于经济会持续快速发展的重要时期,铁路“瓶颈”制约矛盾非常突出。

铁路运输生产力快速发展,改革不断深化,运输效率和效益显著提高。

但铁路运输能力紧张问题仍然很突出,严重不适应经济会发展的需要,铁路网规模的扩张严重滞后于国民经济发展的速度。

二是我国正处于工业化加快形成的重要时期,铁路运输远远不能适应工业化发展的迫切要求。

运输发展理论表明,铁路先行是工业化发展的重要基础,在运输化初级阶段,对铁路运输的需求更大。

在运输化初级阶段生产产品所需要的原材料数量大,对铁路的依赖性强。

正因为发展滞后,铁路运输能力严重不适应会需求。

许多煤炭、矿石等初级产品通过公路运输,大量消耗石油这一高级能源,不高速铁路对于就业和工业发展的带动和促进作用高速铁路的兴建和正常运行需要大批的修建人员,铁路建成后将在沿线形成大批的中、小城市,这将促进农村的城市化进程,引资本的投入,形成新的经济发展产业群,为我国的工业化,信息化,城镇化建设提供新的发展契机。

高速铁路简述

高速铁路简述

917(815新线)
4
西班牙
471
5
意大利
254
6
比利时
88
7
英国
74(海峡隧道)
8
瑞典
1377(既有线)
高速铁路简述
§1.3 世界高速铁路发展状况
世界高速铁路分布在世界上10个国家和我国的台湾 地区。
德国 比利时 英国
法国 西班牙
瑞典 意大利
韩国 日本
台湾省
高速铁路简述
§1.3 世界高速铁路发展状况
此后列车试验速度不断刷新:1981年2月法国TGV试验速度达到380 km/h ;
1988年5月德国ICE把这一速度提高到406.9 km/h; 1988年底,法国人创造了482.4 km/h的新纪录; 1990年5月18日法国再次刷新了自己的纪录,法国TGV-A型高速列车把试 验速度提高到515.3 km/h; 2003年12月2日,日本磁浮列车试验速度达到了581 km/h。 2007年4月3日进行超高速列车(TGV)新型“V150”列车的行驶实验,时速 达574.8km,打破了17年前高创速下铁的路时简速述515.3km的有鬼铁路行驶世界纪录。
高速铁路简述
§1.1 高速铁路与高速列车定义
三、高速列车的定义
• 高速列车——以最高速度200km/h以上运行的列车。 • 高速列车可以是由机车牵引客车组成的列车,也可
以是动车组组成的列车,称为高速动车组。严格地 说,高速列车涵义更广泛,它不但包括轮轨式列车, 还应包括磁悬浮列车等。 • 动车组——由两辆或两辆以上带动力的车辆(动车) 和不带动力的客车(拖车)固定编组在一起的列车。 (拖车可有可无)
• 2、1985年欧洲经济委员会在日内瓦签署国际铁路干线协议 规定:列车最高运行速度达到300km/h及以上的客运专线或 最高速度达到250km/h及以上的客货混用线。

高速铁路简介(知识汇总)

高速铁路简介(知识汇总)
精品PPT
4.2城际客运系统
(城际铁路)
城际客运系统是指建设于各都市圈内部, 尤其是人口稠密地区(如环渤海地区、珠 江三角洲、长江三角洲等地区)的短途高 速铁路,线路长度一般在500公里以下。一 部分线路的时速可以达到200~250公里, 例如青烟威荣城际铁路,另外一部分线路 的时速可以达到300公里以上,例如京津城 际铁路、沪宁城际铁路。
精品PPT
3.3德国的ICE模式
该模式全部修建新线、旅客列车及货物列 车混用。
德国高速铁路ICE于1985年首次试车,1991 年曼海姆至斯图加特线建成通车,1992年 汉诺威至维尔茨堡线建成通车,1992年德 国购买了60列ICE列车,其中41列运行于第 6号高速铁路,分别连接汉堡、法兰克福、 斯图加特。目前,德国的泛欧高速铁路和 第三期高速铁路陆续建成,实现了高速铁 路国际直通运输。
精品PPT
2.1世界高速铁路发展 历程
1983年开通第一条现
1964年开始,新干 代化高速铁路,高速
线总长度达1835 列车TGV运行速度为
公里,高速列车 300~350km/h,
客运量为世界之 最高试验速度为
最。
515.3km/h
日本
法国
1985年开始研究 ICE高速列车, 1991年投入运营, m/h
1.高速铁路的概念
当前,根据所采用的不同技术,高速铁 路分为轮轨接触技术类型和磁悬浮技术 类型。轮轨技术有非摆式车体和摆式车 体两种;磁悬浮技术又根据所采用的悬 浮技术分为超导和常导两种。
精品PPT
2.高速铁路发展历程
2.1世界高速铁路发展历程 世界第一条高速铁路是日本1964年建成的
东海道新干线,最高运行速度210km/h,法 国、德国紧随其后,目前建设高速铁路的国 家(不含中国大陆及台湾)有欧盟10国、 日本、韩国、美国、加拿大,全世界高速 铁路建成总里程达7000km以上。

简述我国高速铁路的发展概况

简述我国高速铁路的发展概况

简述我国高速铁路的发展概况作者:陈铭儒来源:《当代经济(下半月)》2010年第08期【摘要】高速铁路是现代化的标志,高速铁路的修建,对国家的经济发展,以及社会的稳定,都起到了关键的作用。

同时,高速铁路已成为世界铁路发展的普遍趋势。

本文从全球高速铁路的发展现状和我国高速铁路的发展现状入手,进行系统分析,论述了高速铁路的发展历程,以及对我国的影响。

同时对我国高速铁路的发展,提出了相关建议。

【关键词】高速铁路现状发展一、引言随着经济的高速发展、生活节奏的加快以及世界人口的增长,人们对交通工具的质量要求,也在不断提高。

为了满足人们对交通工具的需要,高速铁路应运而生。

世界各国根据自己国家的经济实力、科技实力、幅员、工商业布局、人口分布等具体国情,从国民的实际需要出发,采取高速铁路这种客运工具。

目前,在发达国家和大多数发展中国家,高速铁路都在进行建设,由于国情原因,不同国家发展程度不同,技术水平也存在差别。

在目前,随着公路、海运和航空的发展,铁路运输面临严峻挑战,这种发展趋势,必将促使铁路进行体制改革,带来运输手段的技术创新,进一步实现铁路的重载化和高速化,进而实现铁路路网的现代化建设。

二、世界高速铁路发展现状自1964年,日本建成世界上第一条高速铁路(东京至大阪高速铁路)以来,高速铁路经历了从无到有、迅速发展的过程。

据不完全统计,截至2005年12月,全世界运营中的高速铁路,营业里程总长已经达到6393千米。

这些线路,分布在10个国家和地区。

21世纪的铁路运输业,将会出现高速铁路的全面发展,全球性高速铁路网的建设时期,已经到来。

据业内学者分析调研,高速铁路的发展,可以划分为三个阶段。

1、60年代至80年代末期——高速铁路建设的第一次高潮。

1964—1990年,建设并投入运营的高速铁路有:日本的上越、东北、山阳、和东海道新干线;法国的大西洋TGV线,东南TGV 线;德国的汉诺威—维尔茨堡高速新线;意大利的罗马—佛罗伦萨线。

关于高铁的科普知识

关于高铁的科普知识

关于高铁的科普知识高铁,又称高速铁路,是一种运行速度高于传统铁路的铁路交通工具。

它以其快速、安全、舒适的特点而受到人们的青睐。

下面我将从高铁的发展历史、技术特点以及对社会经济的影响等方面,为大家介绍关于高铁的科普知识。

让我们来看一下高铁的发展历史。

高铁的历史可以追溯到20世纪初。

最早的高速铁路是德国的汉诺威至汉堡铁路,于1903年开始运营。

随后,日本在1964年成功开通了首条高速铁路——东京至大阪新干线,标志着高铁时代的正式到来。

此后,世界各国纷纷投入高铁建设,如法国的TGV、中国的复兴号等,高铁成为了现代交通的重要组成部分。

接下来,我们来了解一下高铁的技术特点。

高铁的运行速度通常在每小时200公里以上,最高时速甚至超过了400公里。

高铁通过使用特殊的轨道、车辆和供电系统等技术手段,实现了高速、稳定的运行。

高铁的轨道采用了高强度钢轨和混凝土枕木,确保了列车行驶的平稳性和稳定性。

高铁的车辆则采用了轻量化设计,减少了车辆的重量,提高了运行速度。

此外,高铁还采用了电力牵引技术,通过供电系统为列车提供动力,大大提高了运行效率。

高铁的发展对社会经济产生了深远的影响。

首先,高铁的快速运行速度大大缩短了地域距离,使人们可以更加方便地进行出行。

高铁的开通,不仅提高了人们的出行效率,还促进了各地区的交流和合作。

其次,高铁的建设和运营带动了相关产业的发展,如钢铁、建筑、电力等行业。

高铁的建设不仅创造了大量的就业机会,还带动了地方经济的发展。

此外,高铁的运行还减少了传统交通工具的使用,降低了能源消耗和环境污染。

高铁的普及,有助于推动可持续发展和低碳经济的实现。

高铁作为一种先进的铁路交通工具,以其快速、安全、舒适的特点受到了广大人民群众的喜爱。

高铁的发展历史、技术特点以及对社会经济的影响都证明了高铁在现代交通中的重要地位。

相信随着科技的不断进步,高铁将会在未来发展得更加完善和先进,为人们的出行带来更多便利。

世界高速铁路的发展

世界高速铁路的发展

世界高速铁路的发展1.高速铁路的基本概念高速铁路简称“高铁”,是指通过改造原有线路(直线化、轨距标准化),使最高营运速率达到不小于每小时200公里,或者专门修建新的“高速新线”,使营运速率达到每小时至少250公里的铁路系统。

2.高速铁路的发展铁路是人类发明的首项公共交通工具,在十九世纪初期便在英国出现。

直至二十世纪初发明汽车,铁路一向是陆上运输的主力。

早在20世纪初前期,当时火车“最高速率”超过时速200公里者寥寥无几。

直到1964年日本的新干线系统开通,是史上第一个实现“营运速率”高于时速200公里的高速铁路系统。

世界上首条出现的高速铁路是日本的新干线,于1964年正式营运。

日系新干线列车由川崎重工建造,行驶在东京-名古屋-京都-大阪的东海道新干线,营运速度每小时271公里,营运最高时速300公里。

2.1第一阶段1959年4月5日,世界上第一条真正意义上的高速铁路东海道新干线在日本破土动工,经过5年建设,于1964年3月全线完成铺轨,同年7月竣工,1964年10月1日正式通车。

东海道新干线从东京起始,途经名古屋,京都等地终至(新)大阪,全长515.4公里,运营速度高达210公里/小时,它的建成通车标志着世界高速铁路新纪元的到来。

随后法国、意大利、德国纷纷修建高速铁路。

1972年继东海道新干线之后,日本又修建了山阳、东北和上越新干线;法国修建了东南TGV线、大西洋TGV线;意大利修建了罗马至佛罗伦萨。

以日本为首的第一代高速铁路的建成,大力推动了沿线地区经济的均衡发展,促进了房地产、工业机械、钢铁等相关产业的发展,降低了交通运输对环境的影响程度,铁路市场份额大幅度回升,企业经济效益明显好转。

2.2第二阶段法国、德国、意大利、西班牙、比利时、荷兰、瑞典、英国等欧洲大部分发达国家,大规模修建该国或跨国界高速铁路,逐步形成了欧洲高速铁路网络。

这次高速铁路的建设高潮,不仅仅是铁路提高内部企业效益的需要,更多的是国家能源、环境、交通政策的需要。

高铁知识大全

高铁知识大全

高铁知识大全高铁知识大全高铁,全称为高速铁路,是指在设计时时速达到或超过每小时250公里的铁路交通工具。

它具有速度快、安全可靠、环保节能等特点,成为现代交通领域的重要一部分。

以下将介绍一些关于高铁的基本知识。

一、高铁的起源和发展高铁的起源可追溯到20世纪70年代,当时法国和日本率先开发了高速铁路技术。

随着技术的进一步突破,高铁系统在世界范围内迅速传播和发展。

中国于2008年成功组织了首次高速动车组试验运营,并在之后进行了大规模建设,成为世界上高铁发展最快、网络最为广泛的国家之一。

二、高铁的优势和特点1. 速度快:高铁的设计时速可达每小时350公里,最高时速甚至可达到每小时400多公里,大大缩短了旅行时间。

2. 安全可靠:高铁采用先进的列车控制系统和安全设备,能够准确控制列车的运行,保障乘客的安全。

3. 环保节能:高铁使用电力作为动力源,相较于传统的燃油动车,减少了大量的废气排放,对环境更加友好。

4. 舒适体验:高铁列车座椅宽敞舒适,设有餐车、洗手间等便利设施,为乘客提供良好的旅行体验。

三、高铁的建设和运营高铁的建设和运营涉及到多个环节和各种专业技术。

首先需要进行线路勘测和设计,确定高铁线路的位置和建设方案。

然后进行土地征收和施工,在建设过程中要确保施工质量和安全。

高铁动车组的制造需要专业的工程师和技术人员,他们负责列车的设计、组装和测试。

最后,高铁的运营需要进行严格的安全管理、列车调度和乘客服务等工作。

四、高铁的发展前景目前,高铁已经成为世界各国重要的交通运输方式之一。

随着技术的不断进步和应用的扩大,高铁在未来仍然有着广阔的发展空间。

预计未来几年内,全球范围内的高铁建设和运营规模将进一步扩大,高铁将进一步提高运行速度和列车的组织能力,为人们提供更加便捷、舒适的出行方式。

总之,高铁作为一种现代化的交通方式,不仅具有速度快、安全可靠的特点,也对经济社会发展起到积极的推动作用。

随着高铁技术的不断进步和应用的扩大,高铁的未来发展前景将更加广阔。

高速铁路

高速铁路

高速铁路
高速铁路简称高铁,高速是一个相对的概念,在不同国家、不同时代有不同的规定。

西欧最初把新建时速达250~300 km、旧线改造时速达200 km的铁路定为高速铁路;1985年,联合国欧洲经济委员会在日内瓦签署的国际铁路干线协议规定:新建客运列车专用型高速铁路时速为350 km以上,新建客货运列车混用型高速铁路时速为250 km以上。

作为世界上最早开始发展高速铁路的国家,日本在1970年发布第71号法令,制定全国新干线铁路发展的法律时,对高速铁路的定义是:凡一条铁路的主要区段,列车的最高运行速度达到200 km/h或以上者,可以称为高速铁路。

美国联邦铁路管理局曾将高速铁路定义为最高营运速度高于145 km/h的铁路,但从社会大众的角度,“高速铁路”一词在美国通常被用来指营运速度高于160 km/h的铁路,这是因为在当地除了阿西乐快线(最高速度为240 km/h)以外,没有其他营运速度高于128 km/h的铁路客运服务。

中国国家铁路局将高速铁路定义为:新建设计开行250 km/h(含预留)及以上动车组列车、初期运营速度不小于200 km/h的客运专线铁路。

这个定义包括以下几个要素:
(1)将高速铁路限定于新建铁路。

既有线改造提速是中国高速铁路的探索地、过渡点,不符合中国高速铁路的“新建”标准。

另外,大量旧铁路扩改一般都规划为客货共线(保留原来的客、货运两种功能)的快铁级别,不是高速铁路。

(2)要求高速铁路最低设计时速为250 km(含预留),相关要求是运行动车组列车(否则时速达不到)。

(3)要求高速铁路初期运营速度不小于200 km/h。

(4)要求是客运专线。

高速铁路相关概念及主要技术特征(详细)

高速铁路相关概念及主要技术特征(详细)

第一节高速铁路概述随着我国对外开放和高科技技术的发展,高速电气化铁路被列为铁道部重点建设项目,对高速铁路的技术研究和开发已成为国家科技攻关的重要课题.在广大科技人员的努力下,国内几条主要干线已相继提速,广深线车速定为200 千米/h,一些适应高速铁路的接触网结构已在线路上使用,它将使接触网技术带入新的领域,为此有必要了解高速铁路的相关知识一、高速铁路相关的概念1970年5月,日本在第71号法律《全国新干线铁路整备法》中规定:“列车在主要区间能以200千米/h以上速度运行的干线铁道称为高速铁路”.这是世界上第一个以国家法律条文的形式给高速铁路下的定义.1985年5月,联合国欧洲经济委员会在日内瓦签署的国际铁路干线协议规定高速铁路的列车运行速度为:新建客运列车专用型高速铁路时速为300千米/h;新建客货运列车混用型高速铁路时速为25千米/h.1986年1月,国际铁路联盟秘书长勃莱认为,高速列车最高运行速度至少应达到200千米/h.因此,国际上目前公认列车最高运行速度达到200千米/h及其以上的铁路叫高速铁路.我国学术界定义(非官方定义):新建铁路列车最高运行时速≮250千米,改建铁路列车最高运行时速≮200千米,可称之为高速铁路;时速160~200千米铁路称为快速铁路;高速铁路、城际轨道交通、城市客运铁路、以客为主适量兼顾货运的铁路均为铁路客运专线.目前世界上有三种类型的高速铁路:一是既有线客货混运型;最高运行速度 200千米/h,如俄罗斯、英国等;二是新建客货混运型,最高运行速度 250千米/h,如德国、意大利等;三是新建客运专线型,最高运行速度可达300千米/h及其以上,如日本、法国、德国、西班牙、韩国等.高速列车按动力配置方式不同可分为动力分散型和动力集中型,按转向架形式不同分为绞接式和独立式.比较典型的如日本各系高速列车,属于动力分散型、独立转向架;法国的 TGV高速列车,属于动力集中型、绞接式转向架;德国的 ICE高速列车,属于动力集中型,独立转向架.二、高速铁路的主要技术特征1、高速铁路是当代高新技术的集成在世界上,高速铁路的诞生是继航天行业之后,最庞大复杂的现代化系统工程.它所涉及的学科之多、专业之广已充分反映了系统的综合性.20世纪后期科学技术蓬勃发展,迅速转化为生产力的三大技术有:计算机及其应用;微电子技术、电力电子器件的实用化与遥控自控技术的成熟;新材料、复合材料的推广.高速铁路绝非依靠单一先进技术所能成功,它正是建立在这些相关领域高新技术基础之上,综合协调,集成创新的成果.因此,高速铁路实现了由高质量及高稳定的铁路基础设施、性能优越的高速列车、先进可靠的列车运行控制系统、高效的运输组织与运营臂理体系等综合集成,如图2-1-1所示.系统协调的科学性,则是根据铁路行业总的要求,各子系统均围绕整体统一的经营管理目标,彼此相容,完整结合.高速铁路在实施中,从规划设计开始就把各项基础设施、运载装备、通信信号、运输组织及经营管理等于系统纳入整个大系统工程之中统筹运作.为实现总体目标,采用了多项关键技术.虽然这些新技术分别隶属于各有关的子系统,但其主要技术指标、性能参数是相互依存、相互制约的 ,均须经详细研究、反复论证与修订,才能保证实现大系统综合集成特性的要求,达到整个系统的合理与优化.图2-1-1 高新技术综合集成的高速铁路总示意图2、高速度是高速铁路高新技术的核心不言而喻,高速铁路的速度目标值是由常规铁路发展到高速铁路最主要的区别.按照铁道部现行的规定,列车速度的级别划分见表2-1-1.序号列车最高运行速度/千米·h-1列车级别1 v≤120 普速列车2 120<v≤200 快速列车3 v>200 高速列车列车运行速度是属第一层次的系统目标,只有将速度目标值确定之后才能选定线路的设计参数、列车总体技术条件、列车运行控制及通信信号系统:当然,运量规模、行车密度、运输组织、成本效益等也均是第一层次系统目标,但是在各种交通运输力式中,速度始终是技术发展的核心,它是技术进步的具体体现,所以速度目标应是第一位的.自20世纪后半叶以来,铁路旅客列车速度连续跃上三大台阶,60年代第一代高速列车,速度为230千米/h,80年代初第二代高速列车速度达到270千米/h,至90年代第三代高速列车速度已达到并超过了300千米/h.到2l世纪初,将要有350千米/h的高速列车问世.列车最高运行速度随着时代的进步不断提高,它体现了铁路的等级及其技术发展水平.但是对社会而言,旅客出行一般并不十分关注列车的最高速度,而关心旅行时间的缩短;只有提高旅行速度才能给旅客带来实惠.要提高旅速不是轻而易举的,这不仅只是列车的性能,还要看沿线的环境与条件,线路设计优劣,配套设施是否完善,还涉及行车组织及运营管理等,所以从整个系统来分析,列车旅速最能反映铁路的水平.当今,世界高速铁路区段旅速与最高行车速度之比最高的可超过0.8,而最低的不及0.6.重视提高旅速与最高速度之比也有利于获得良好的运营效果.所以说,高速铁路第一层次的技术核心指标是速度,它不仅是最高运行速度,还应包括高速列车的旅行速度.3、系统间相互作用发生了质变众所周知,常规铁路是一个庞大的综合系统,在长期的实践中,铁路行业的技术进步已获得科学的积累,至今巳形成了技术管理规程、系列规范、各种标准、各项规定等一整套可操作的法规,使具有复杂综合集成特性的铁路系统,有据可循、有序运作.在当今铁路系统中,运、机、工、电、辆各子系统的日常工作司各司其职,正常运转.然而,高速铁路情况大不相同,虽然它仍受铁路行业传统影响,但由于行车速度至少提高1倍以上,将引发铁路行业各系统及其相互关系的质变.过去用于常规铁路行之有效的法规不能照搬于高速铁路.高速铁路从可行性研究,规划、设训、施工、制造到运营管理,都要超前、系统地进行研究才能付诸实施.随着速度的提高,各子系统原有的规律和相互间关系将转化为强作用而须重新认定.系统中某项参数或标准选择不慎都将引发连锁反应.例如,线路参数、路基密实度或桥梁刚度选择不合理,不仅是线路质量问题,还将影响列车运行的平稳性及可靠性,也干扰运输组织、行车指挥.反之,确定列车主要参数及性能也必须考虑线路参数与控制系统方案,否则最终都要制约整个系统效能的发挥.系统之间的关系远比常规铁路复杂.所以,在筹划高速铁路之初,必须从总体上估计到这一庞大系统更加复杂的综合特性,认真研究并协调各子系统主要技术参数变异的合理范围,重视新系统的强耦联特性.4、系统动力学问题更加突出前面已经阐明了高速铁路整体的主要技术特征,并说明了高速铁路与常规铁路在本质上的差异,下面将着重从总体上分析发生本质差异的基本原因,以便更深刻地认识对高速铁路技术系统提出的新课题.纵观世界,凡能独立自主建设高速铁路的国家,在筹划立项之初,对高速铁路的重大技术与经济问题都进行了全面的研究.特别是在确定基本功能与主要技术参数时,都根据各自的条件结合其国情与路情做了周密的调查,进行必要的理论研究与试验分析.其中,高速铁路系统动力学问题是这一切的根由.(1)、高速铁路系统动力学问题○1高速列车的振动与冲击问题高速列车在线路上行驶,速度越高,激励车一线一桥系统发生的振动与冲击越强,致振的敏感因素越宽.振动与冲击的频响函数关系,主要取决于参振系统各自的动力学特性,它包括其内在的物理力学参量、相互间发生接触或约束的几何参量与物理参量.很明显,相互接触的物体其相对速度越高,在研究动载作用时应考察的截止频率越高,而可能发生的强作用点就越多:一般而言,振动与冲击动力响应的物理量(位移、速度、加速度)幅值是与速度的平方成正比的.在频域范围内,应考察的频率不仅取决于激励频率的高低,还与系统的固有频率密切相关.激扰频率与速度成正比,与接触表面沿速度方向上的几何变异之波长成反比.由此可见,高速铁路的基础设施及运载装备不但应具备优良的固有特性,还必须在界面上彼此都要保有均匀、平顺、光滑的特征.这是建立高速铁路各子系统都必须遵守的共性准则.系统振动与冲击力学分析,最主要的日的是协调各子系统组成部分的特性参数,保证系统功能优化.对于高速铁路来说,最重要的是确保列车持续、安全、平稳运行.因此,必须预见在各种速度工况下系统的动力响应.突出的问题如:轮轨间接触力的变化,将影响列车牵引与制动的实现、轮轨的磨损与疲劳、运行的安全指标;车一线一桥系统的动力反应,将影响结构功能与列车平稳运行;弓网系统的振动,将影响授电效能及安全;所以动力响应是涉及高速行车技术深层次的基本问题,须认真处理.○2.高速列车运行中的惯性问题在系统振动与冲击的动力学分析中,主要着重于研究列车以常速在直线线路上运行的动力反应.实际上对更为复杂的问题,如列车起动或制动时的变速运行工况,通过平面曲线或变坡段竖曲线上运行及高速过岔等问题,只能简化为刚体动力学或弹性联接的多体动力学来分析.其基本点是在理想状态下分析选定系统的固有特征及界面特性,对更复杂的某些非稳态问题着重研究列车的走行性能,限定在低频城内研究列车运行中的惯性问题.预见高速列车运行中可能发生的纵向及横向加速度,前者与列车的牵引制动性能、列车的操纵及线路纵断面有关,后者主要受线路平面设计参数制约.高速列车运行中的惯性问题直接影响旅客的安全与舒适.对于安全性来说,列车速度在300千米/h以下时,安全条件阈值一般宽于舒适度的要求,即只要满足了乘客舒适度就能保证安全的要求.但对超高速铁路来说条件就不一定总保持这样了,即在舒适条件范围内,超高速铁路系统中某些安全限值将超限.这是因为激扰频率增高以后,列车某些部件工作条件更不利于安全运行所致.所以,随着速度进一步提高,安全性将可能比舒适度有更严的要求,这是值得注意的.对于舒适度,人体承受振动的能力与频率密切相关,根据试验结果(图2-1-2),其频率在10 Hz以下更为敏感,承受能力较低.从感到不适的加速度幅值来看约为0.1g左右.对于这种超低频振动横向加速度的承受能力,因人体质而异,它与姿态.年龄、性别、职业、经历图2-1-2 人体对振动反应的示意图等都有关.一般采取在旅途中列车上抽样调查统计分析确定,现参考国外资料列于表2-1-2中.列车运行加速或减速时,旅客均要承受纵向惯性力的作用,通常亦以加速度衡量:加速时由于受到牵引功率的限制,一般准静态(平均,以下同)加速度值都不超过0.05g,所以加速时在正常操纵下,不会给旅客带来不适感:但制动时为确保列车安全,整列车制动功率大,减速距离较短,如列车速度为300 千米/h时,紧急制动距离小于3 700米,其准静态减速度低于0.1g,考虑车辆制动时动作不一致将有冲动现象发生,但瞬时减速度将接近0.3g,这时旅客将感到不适,所以紧急制动只能在非常情况下使用.在一般常用制动情况下有较严格的规定,当制动参数取0.8或0.5并操纵得当,其减速度分别为0.075g及0.05g.所以,为保证列车行驶时旅客的舒适度必须重视运动中的惯性问题.这应从线路基本参数、列车性能及操纵技术予以保证.(2).高速列车空气动力学问题○1列车空气阻力问题地面交通系统都有一个难以避免的共性问题,这就是空气动力学问题.在地表大气层中,交通载体所受到的空气阻力、竖向力、横向力和压力波等与速度平方成正比,随着速度的提高急剧增加,从而成为提高地面高速交通速度主要的制约因素.高速列车时速超过200千米/h, 就必须认真研究这一问题.为减缓空气动力的影响,通过大比例风洞模型试验及三维有限元空气动力学理论分析,筛选设计方案,可作出技术经济合理抉择.其主要问题如下:在一定速度下,高速列车空气阻力及其他空气动力作用取决于列车的外形、列车的截面及外发面的光滑平顺度:所以,在列车的总体设计及车体没计中都必须周密处置,使整列车具有良好的气动性能.○2)列车内部空气密封问题高速运行的列车,由于各种气动效应影响使列车内外压差增大.若列车密封性差.则必将引起车内气压的变化;超过一定范围,将引起人体各种不适感.所以,对车窗、车门、车辆间连结风挡都要求具有良好的密封性.○3线间距问题两列相对行驶的高速列车在线路上会车时各种串气动力作用比单列车行驶时强烈,并将影响列车运行的平稳性与车内人员的舒适感.这种影响在其他条件一定的情况下,与高速铁路的线间距成反比:高速铁路的线间距应根据车速、车宽、列车头形系数、车体密封程度、车窗玻璃承压能力等因素来考虑:若在高速线上有各种不同类型式列车运行,应顾及性能较差列车的承受能力.○4隧道断面选择问题对于有限界面的隧道而言,高速铁路的空气动力学作用将比在明线环境条件强烈,在一定速度下,其幅值主要与隧道断面的堵塞比密切相关.所以,列车速度越高,隧道断面应越大.对长隧道来说还必须考虑隧道内空气有较通畅的导流途径以缓解具动力效应.2、对高速铁路主要子系统的基本要求(1).高速铁路的基础设施高速铁路的基础设施是确保高速行车的基础.前巳论述,高速铁路与常规铁路相比最大的区别在于线路高平顺度特性方面.高平顺性最终体现是在轨道上,无论轨道是在路基上或在桥梁上,也无论是何种类型的轨道,都要求它不仅在空间要具有平缓的线型、高精度的允差、高光洁度的轨面,而在时间上还必须具有稳固的高保持性.由此决定了高速铁路基础设施各主要组成部分——路基、桥梁、隧道等的主要技术参数与技术规定,必须互相协调,使之整体上满足高速行车在运动学、动山学、空气动力学及运输质量方面各项技术指标;所有基础设施在运背管理方面还必须具备高可靠度与可维修、少维修的条件,以利降低成本及提高效能.(2). 高速列车高速列车是高速铁路的运输载休,是实现高速铁路功能的关键.为确保高速行车主要功能指标的落实,高速列车在车型、牵引、制动、减振、列控、检测、供电等一系列专业技术上都要取得重大突破.建立在轮轨系基础上的各型高速列车吸取了当代相关高新技术,已做出为世人瞩日的成就.为满足更高的目标需求,仍在不断更新换代,具技术发展永无止境.(3).高速铁路的运行控制、行车指挥及运营管理高速铁路运行控制、行车指挥及运营管理各系统是确保高速铁路列车运行安全有序、发挥效率与效益的核心体系.虽然高速铁路与常规铁路相似,其主要软硬技术都由区间轨道电路、自动闭塞、车站计算机联锁等所构成的调度系统支持,但由于运行速度大幅度的提高,列车密度增加,行车组织节奏明显增快,高速铁路的运行控制及调度系统应更加完备,运输组织与经营管理体系应更加严密.高速铁路调度指挥系统是以行车调度为核心,集动车底调度、电力调度、综合维修调度、客运服务调度、防灾安全监控为一体的综合自动化系统,该系统应能确保高速高密行车的安全与效能.高速铁路的经营管理从模式、体制到运作方法都要适应新的形势,必须结合国情与路情作山切合实际的选择,以促进高速铁路效能发挥.以上,从大系统总体观点概述了高速铁路的基本技术特征,并对现代化的高速铁路提出了系统的、原则的新要求.三、高速铁路的主要技术经济优势1、运行速度高速度是高速铁路的技术核心,也是其主要的技术经济优势所在.1990年5月18日法国TGV的试验速度就达到了515.3千米/h.新世纪伊始,2001年5月26日,TGV高速列车从法国的加来跑到马赛,全程1 067.2千米,只用了3 h 29 米in47 s.其中前1 000kin只有3 h 9i米n,平均运行速度达到了317.,千米/h;最高运行速度达到了366.6 千米/h.迄今,高速铁路是陆上运行距离最长,运行速度最高的交通运输方式.近几年相继建成的高速铁路,其最高运行速度都在300kin/h左右,预计几年内将达到或突破350千米/h.旅客出行在途中所花费的时间由’部分组成:一是山出发地(家)至始发站(港)的走行(或)短途运输方式的运行)时间及等待时间;二是所乘坐的交通运输方式白发站(港)至到站(港)的旅行时间干是由到站(港)至目的地(家)的走行(或短途运输方式运行)时间.不同的交通运输方式,其第一和第三部分时间(以下简称附加时间)是不同的.一般坐飞机,附加时间较长,而汽车就比较短,但对一定距离而言飞机的飞行时间要短于汽车的运行时问.就公路、铁路和航空而言,所谓某种交通运输力式的优势距离,即为旅客出行花费的总时间比其他交通运行方式都少的距离范围.速度越高,附加叫问越少,其优势距离范围就越大.当代大交通系统中,高速公路、航空运输与铁路并存,且都在迅速发展.旅客选择运输工具主要出于对速度、安全、经济及舒适度的综合比较.随着经济的发展、人民生活水平的提高、社会活动节奏的加快,将进一步增强旅客的时间价值观念,对交通运输下县速度的要求将更为迫切.如果旅客出行的附加时间以高速公路为零,高速铁路为1 .oh,航空为2.5 h(上飞机前1.5 h,下飞机后1.oh),汽车平均运行速度取120千米/h,飞机巡航速度取700千米/h,高速铁路最高运行速度分别取210 千米/h,250 千米/h,300 千米/h和350 千米/h,从旅客总的旅行时间进行比较,具有利吸引范围为:小汽车:优势距离在200千米以内;航空:优势距离在1 000千米以上.高速列车:速度为210千米/h,优势距离仅为300-500千米;速度为250 千米/h,优势距离为250—600 千米;速度为300 千米/h时,优势距离为200—800 千米;速度为350 千米/h时,优势距离为180—1 100 千米(图1.3 1).但旅客出行选择交通运输力式,除考虑时间节省(优势距离)外,还需综合考虑票价、舒适性、安全因素等.如果加上安全、舒适及票价等因素,高速铁路的有利吸引范围还将有所扩展,即使速度目标定为300千米/h,上限也将在1 000千米以上.某种运输方式的优势距离不等于其线路的长度范围:线路的长度指一条线两端点站间的距离.比如高速公路的优势距离在200千米以内,其线路长度超过200 千米者不胜枚举;航空优势距离在1 000 千米以上,小于1 0130 千米的航线和航班也有的是;高速铁路优势距离在200 千米—800千米间,小于200千米(如德国的曼海姆——斯图加特99 千米)和大于800千米(如闩本的东海道与山阳新干线计1 069 .4 千米)都有.高速公路和高速铁路都要为沿线的旅客服务,通过汽车和列车中途停站或开行短距离的班车,吸引沿线客流.京沪高速铁路全长1 300多公里,而旅客平均行程只有400余公里,北京——上海的客流只占总发送量的7%左右,其周转量也不到20%.因此,修建京沪高速铁路的目的决不仅仅是为了与航空争北京——上海的客流,而主要的市场是沿线各站到发的客流.列车运行距离指该列车始发站至终到站间的距离.除两站间的直达列车外,一般列车在中途却要停车上下旅客,既为长途旅客服务,也为短途旅客服务.列车的运行距离可小于或大于铁路运输的优势距离;也可小于或大于(如跨线运行的列车)某一线路的长度 .弄清楚优势距离、线路长度和列车运行距离的概念及其相互间的关系后,就不难理解最高运行速度为300千米/h的高速铁路其优势距离在200~800kn/间,而修建长达1 300多公里的京沪高速铁路的合理性了 .2.、运输能力大高速铁路旅客列车最小行车间隔可以达到3米ln,列车密度可达20列/h.每列车载客人数也比较多,如采用动力分散方式及双层客车,其列车定员可达1 200—1 500人/列,理论上每小时的输送能力可以达到2x 24 000—2x 30 000人.四车道的高速公路每小时的输送能力约为2x4 800人,2条跑道的机场每小时的吞吐能力约为2x 6000人.可见高速铁路的运输能力是高速公路和民用航空等现代交通运输方式不可比的.我国拟建中的京沪高速铁路,追踪列车间隔时间按3米in设计,高速列车定员初定为1200人/列,每年可完成1x6 500万人的输送任务,且还有进一步扩大其运输能力的空间.京沪高速铁路远期运量将达2x 5 500万人/年以上,这是其他现代交通运输方式难以胜任的.随着经济的发展及人民物质文化生活水平的提高,其潜在的客流量是很大的.我国需要发展高速度、大运量的公共交通体系:高速铁路运输能力大的特点在我国将得到充分发挥.3、安全性能好安全是人们出行选择交通运输方式的首要因素.尽管各种现代交通运输方式都竭力提高自身的安全性能,但交通事故仍时有发生.日本每10亿人公里死亡人数既有铁路为1.97人,汽车为18.9人.欧洲铁路共同体14个成员国,每年因公路交通事故死亡54 000人,伤170万人,超过铁路的125倍.美国死于高速公路交通事故者每年约5万人.据铁道科学研究院承担的“我国高速铁路的社会成本及对社会的贡献”课题的研究,我国交通运输中每亿人公里交通事故死伤人数公路为死亡10.5人,重伤24.88人;民航为死亡0.1人,受伤0.01人;铁路为0.29人,重伤0.72人.每人公里交通事故造成的损失公路为0.064 9元;民航为0.000 5元;铁路为0.001 8元.高速铁路采用了先进的列车运行控制系统,能保证前后两列车必要的安全距离,防止列车迫尾及正面冲撞事故.几乎与行车有关的固定设施与移动设备,都有信息化程度很高的诊断与监测设备,并有科学的养护维修制度.对一些有可能危及行车安全的自然灾害,设有预报预警装置.所有这些构成了高速铁路现代化的、完善的安全保障系统.这一系统可以防止人为的过失、设备故障及自然灾害等突发事件引起的事故.高速铁路在国外已有近39年运营实践,除德国1998午6月3日发生的翻车事故外,在其他国家从未发生乘客伤亡事故.其中日本39年来已安全运送近70亿人次的旅客,每天要到发800多列高速列车,无一伤亡事故发生.这是其他仟何现代交通运输方式难以做到的.相比之下,高速铁路是当今最安全的现代高速交通运输方式.4、全天候运行高速铁路的安全保障系统不但保证了高速列车运行安全,也使铁路运输全天候的优势得到了更充分的发挥.高速铁路系有轨交通系统,且取消了地面信号.因而,除可能危及行车安全的自然灾害外,几乎不受天气和气候条件的影响,且24小时都可安全地正常运行.由于高速铁路事故率几乎为零,再加上全天候都可正常运行,因此高速列车始终是在一个十分稳定的系统中运行,其正点率非常高.日本东海道新干线列车平均晚点不到o.3 米in,几乎与钟表一样的准.这是其他任何一种现代交通运输方式都做不到的.西班牙A VE高速列车晚点5米in,就要向旅客退回全部票款.这也是其他任何一种现代交通运输方式不敢承诺的.5、能源消耗少交通运输是能源消耗的大户,能耗标准是评价交通运输方式优劣的重要技术指标.研究表明:若以普通铁路每人公里消耗的能源为1单位,则高速铁路为1. 3,公共汽车为1.5,小汽车为8.8,飞机为9.8.高速铁路大约是小汽车和飞机的1/5.高速铁路使用的是二次能源——电力,而汽车、飞机使用的是不可再生的一次能能源——汽抽.因此,发展高速铁路,符合我国的能源发展战略.随着水电和核电的发展,高速铁路在能源消耗方面的优势还将更加突出.6、占用土地省交通运输,尤其是陆上文通运筋,由于要修建道路和停车场,需要占用大量的土地,而且大部分是耕地,双线高速铁路路基面宽9.6~14 米,而4车道的高速公路路基面宽达26米.双线铁路连同两侧排水沟用地在内,每公里用地约70亩;4车道的高速公路每公里用地要105亩.。

高铁乘务书稿第一章

高铁乘务书稿第一章

第一章高速铁路概述学习目标1.掌握高速铁路的概念、产生及发展。

2.掌握高速铁路的主要技术经济特点。

3.熟悉我国高速铁路的规划与建设。

4.了解我国高速铁路系统构成。

导入案例高速铁路是当代世界铁路的一项重大技术成就,它集中地反映了一个国家的铁路牵引动力、线路结构、运行控制、运输组织和经营管理等方面技术进步,体现了一个国家的科技和工业综合水平。

第一节高速铁路的产生和发展一、高速铁路的概念定义:列车的最高运行速度能以200km/h及以上的干线铁道称为高速铁路。

随着高铁不断发展变化,世界上对铁路速度进行了等级区分如下图:(见图1-1)图1-1二、高速铁路的产生1825年,英国修建了世界上第一条铁路。

铁路运输的特点:运量大、可靠性高、全天候。

1903年10月27日,德国用电动机车首创运行时速达到210km/h;1955年3月,法国刷新了高速铁路的记录,用两台电力机车牵引三辆客车实验运行时速达到了331km/h;1964年日本东海道新干线成功运营;1981年法国建成了最高时速为270km/h的20时期80年代,世界铁路进入第二发展期--高速铁路的大发展期。

提高列车速度是铁路赖以生存和适应社会经济发展的唯一出路。

三、高速铁路的发展高速铁路是现代世界铁路的一项重大技术成就。

它集中反映了一个国家铁路牵引力、线路结构、车辆技术、制造工艺、列车运行控制、运输组织等方面的发展和进步。

在日本,高速铁路被誉为日本“经济起飞的脊梁”。

在台湾,2003年,台北--高雄(345km/h)在韩国,2004年,汉城--釜山(300km/h)在欧洲,高速铁路建设始于法国。

四、世界高速铁路的发展阶段1.初期阶段:1964--1990年(见图1-2)日本的东海道、山阳、上越、东北新干线:法国的东南TGV线、大西洋TVG线:意大利的罗马--佛罗伦萨线:德国的汉诺威--维尔茨堡线。

推动了高速铁路的第一次建设高潮。

图1-22.第二阶段1990--1998年(见图1-3)西班牙、法国、日本、比利时、德国在这一时期分别又建成了新的高速铁路线路。

高铁知识简介

高铁知识简介

了解高铁吧一、高铁的技术优势高速铁路与普通铁路、公路、航空相比,其主要技术优势有:1)运行速度高。

2)运输能力大。

3)安全性能好。

4)全天候运行。

5)能源消耗少。

6)占用土地省。

7) 污染环境轻。

8) 乘坐舒适。

9) 社会效益好。

二、高速铁路发展历程1、高速铁路的定义(1)国际铁路联盟(UIC)的以速度为等级将铁路划分为:常速铁路:100~120公里/小时中速铁路:120~160公里/小时。

常速、中速铁路均属于普速铁路。

准高速铁路:160~200公里/小时高速铁路:200~400公里/小时超高速铁路:400公里/小时以上(2)中国高速列车的定义高速铁路是指通过改造原有线路(直线化、轨距标准化),使营运速率达到每小时200公里以上,或者专门修建新的“高速新线”,使营运速率达到每小时250公里以上的铁路系统。

时速在200km/h以上,为动车组时速在300km/h以上,为高速动车组2、高速铁路的发展历史1814年,英国人斯蒂芬森发明了世界上第一台沿轨道运行的蒸汽机车。

1825年9月27日斯蒂芬森亲自驾驶首台机车(12节煤车,20多节车厢,约450名旅客),成功在英国斯托克顿Stockton 和达灵顿Darlington之间的36km距离内,以24km/h速度运行,铁路运输事业从这天开始。

1903年10月28日,德国的AEG轨道电动车创下了最高运行速度h的世界记录。

1964年10月,日本东海道新干线建成,列车以210km/h速度营运,世界上才真正出现第一条高速铁路。

1959 年 4 月 5 日破土动工,经过 5 年建设,于 1964 年 3 月全线完成铺轨,同年 7月竣工,1964 年 10 月 1 日正式通车。

东海道新干线全长公里,运营速度高达 210 公里/小时,它的建成通车标志着世界高速铁路新纪元的到来。

继东海道新干线之后,日本又修建了山阳、东北和上越新干线。

)1983年9月,法国TGV东南线建成通车,最高运行时速达 270 公里/小时。

高铁基本知识材料免费全文阅读

高铁基本知识材料免费全文阅读
结构稳定性和轨道平顺性高、刚度均匀性好、 久性耐强、轨道几何尺寸变化小、维修工作量显著减少。 缺点:
工程造价高。
1.7 高速铁路线路养护重点
曲线 道岔 焊缝 过渡段
(1)曲线
保证线形、线位正确; 重视曲线头尾的养护; 严格控制曲线正矢差、几何尺寸的变化率和 波长不平顺。 重视竖曲线养护,保持竖曲线圆顺。
1.11 高速铁路工务作业安全管理
1、发生危及行车安全的设备故障时,应立即 通知列车调度员或司机,果断采取措施拦停列
车或封锁线路,确保行车安全。 2、检查车检查发现Ⅲ级及以上偏差时,检测单 位应立即通知铁路局,对Ⅲ级偏差处所应及时
处理,对Ⅳ级偏差处所应立即限制行车速度并 及时处理。
1.11 高速铁路工务作业安全管理
1.12 高速铁路钢轨技术特点
(1)高纯净 采用炉外精炼、真空脱气、大方坯连铸等先进行技术进
炼。行冶 (2)高平直
采用热预弯、平立复合矫直、四面液压补矫技术精整钢 (3)轨高。精度
采用万能法轧制技术,保证钢轨的外形尺寸精度。 (4)长定尺
钢轨定尺长度达到50—120米。
1.13 高速铁路道岔技术体系
1.4 高速铁路工务设备维护管理要求
高可靠性是指工务设备适应高速度、高密度 行的车要求,能保证高速列车行车安全和秩序, 具有更高的抵御自然灾害和突发事件的能力。 高稳定性是指强化线桥设备结构,降低设备 障故率,延长维修周期,减少维修工作量。 高平顺性是指轨道几何尺寸精度高,轨道结 经构常处于良好状态,以保证高速列车运行的 安全、平稳、舒适。
(2)提高道岔质量
从制造、运输和铺设等方面严格管理,保证道岔的 设铺质量。 充分利用精测网,确保岔位和线形正确。 将道岔及其两端各150-200m线路作业一个管理单元 养来护,重视长波不平顺。 加强扣件和几何尺寸养护,控制各部件的状态,保 道证岔的刚度均匀性。 养护中要关注钢轨光带,保持光带在变截面处的均 过匀渡,并保证尖轨和心轨降低值的正确。

高速铁路技术考试试题

高速铁路技术考试试题

高速铁路技术考试试题一、选择题(每题 2 分,共 40 分)1、以下哪项不是高速铁路的特点?()A 速度快B 安全性高C 运输能力小D 正点率高2、高速铁路的设计速度通常在()以上。

A 200km/hB 250km/hC 300km/hD 350km/h3、高速铁路轨道结构中的扣件主要作用是()A 固定钢轨B 调整轨距C 提供弹性D 以上都是4、高速铁路牵引供电系统采用的供电方式通常为()A 直接供电方式B BT 供电方式C AT 供电方式D 以上都不是5、以下哪种列车控制系统是我国高速铁路普遍采用的?()A CTCS-1B CTCS-2C CTCS-3D CTCS-46、高速铁路桥梁所占比例较大,主要是为了()A 减少线路沉降B 节省土地资源C 降低建设成本D 提高线路平顺性7、高速铁路车站的布置形式一般分为()A 越行站、中间站、枢纽站B 客运站、货运站、客货运站C 高架站、地面站、地下站D 以上都是8、高速列车的制动方式不包括()A 电阻制动B 再生制动C 空气制动D 蒸汽制动9、以下哪项不是高速铁路通信系统的功能?()A 语音通信B 数据通信C 图像通信D 热力供应10、高速铁路的道床一般采用()A 有砟道床B 无砟道床C 混合道床D 以上都不是11、高速列车的车头形状设计主要考虑()A 降低空气阻力B 提高美观度C 增加载客量D 便于维护12、高速铁路接触网的悬挂类型有()A 简单悬挂B 链形悬挂C 弹性悬挂D 以上都是13、以下哪种材料常用于高速铁路的车体制造?()A 铝合金B 钢铁C 木材D 塑料14、高速铁路信号系统的核心设备是()A 轨道电路B 转辙机C 车载设备D 联锁设备15、高速铁路的线路平面设计中,曲线半径的选择主要取决于()A 列车速度B 地形条件C 工程造价D 以上都是16、高速列车的转向架主要作用不包括()A 支撑车体B 引导列车转向C 传递牵引力D 提供动力17、高速铁路的隧道设计需要考虑的因素不包括()A 空气动力学效应B 照明通风C 地质条件D 乘客舒适度18、以下哪项不是高速铁路牵引变压器的特点?()A 容量大B 重量轻C 体积小D 效率低19、高速铁路的维修养护方式主要采用()A 事后维修B 定期维修C 状态维修D 以上都是20、高速列车的受电弓与接触网之间的接触压力应保持在()A 50-100NB 100-150NC 150-200ND 200-250N二、填空题(每题 2 分,共 20 分)1、高速铁路的轨道平顺性要求非常高,轨距偏差应控制在______以内。

高速铁路

高速铁路

高速铁路1 高速铁路简述1.1 高速铁路的定义1.2 铁路发展到高速铁路的历程(1笔带过,主要强调第一条高铁的产生)世界高速铁路发展历程(3次浪潮)1.3高速铁路的优缺点及经济效益1.4现今高速铁路的技术1.5 世界高速铁路的发展动向2.6世界高速铁路发展趋势(1)21世纪的铁路运输业将会出现轮轨系高速铁路的全面发展,全球性高速铁路网建设的时期已经到来。

(2)高速铁路的优势已为世人所认同,其战略意义成为各国政府的共识,高速铁路促进地区之间的交往和平衡发展。

(3)对速度的追求和对技术的创新永无止境。

速度和技术成为引领世界高速铁路发展的重要因素;高速轮轨技术成为当今世界高速铁路建设的潮流;而磁悬浮技术代表高速铁路未来的发展方向。

(4)高速铁路的技术创新正在向相关领域辐射和发展。

2 我国高速铁路的发展2.1 我国高速铁路的发展史兴建高速铁路的动议早在20世纪80年代中期就为我国的有识之士所提出,十多年来,国家有关部门组织了数以百计的专家学者从各个方面对高速铁路项目进行了详细的考察、分析和论证。

经过多次的反复和论争,各方面的意见已经大致趋同:高速铁路技术可行、经济合理、社会效益良好、国力能够承受,围此应该建设,而且应该及早建设。

1998年3月,全国人代会在“十五”计划纲要草案中提出建设高速铁路。

中国高速铁路的建设背景我国自1876年出现第一条铁路以来已经120多年了。

遗憾的是百余年来,我国的铁路事业无论从横向上还是从纵向上来讲.都是远远落后的,同其他国家比较,我国的铁路在运营里程,运输效率,技术水准,装备质量等方面相差极远,令人堪忧。

改革开放20多年来,国民经济持续高速发展对于交通运输的巨大需求常常得不到满足,铁路沦落成为了“瓶颈”产业。

低速成为制约国民经济快速发展的瓶颈。

高速铁路速度快、运量大、能耗少、污染小、安全、舒适、占地少,上世纪九十年代初,我国铁路专家提出,中国修建高速铁路势在必行。

高速铁路是一个高科技技术,包括了宇航、冶金、材料、电子、机械等等高技术所形成的综合性的技术配套系统,需要做大量的准备工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简述高速铁路的概念
高速铁路是指列车以较高的运行速度在专用铁路线上运行的铁路系统。

一般来说,高速铁路的运行速度大于传统铁路系统的运行速度。

高速铁路的建设和发展可以提供更快、更安全和更便捷的交通工具,为人们提供更高效的出行方式。

高速铁路采用了许多先进的技术和设备,以确保列车的平稳运行和高速行驶。

这些技术和设备包括:电气化供电系统、电机驱动和制动系统、轨道设计和道岔系统、信号控制系统、列车控制系统等。

此外,高速铁路还采用了优化的车辆和轨道结构设计,以减少摩擦阻力、降低能耗,并提高列车的经济性和运营效率。

高速铁路可以提供更高的运输能力和更好的运营效率。

由于高速铁路列车的速度快,可以在短时间内覆盖较长的距离,相比其他交通工具,高速铁路的运输能力更大。

高速铁路还可以提供更可靠和准时的服务,减少列车晚点和停滞现象,为乘客提供更好的出行体验。

高速铁路在经济、社会和环境方面都具有重要的作用。

经济上,高速铁路可以促进区域间的经济发展和产业升级,提高区域间的经济联系和交流。

社会上,高速铁路可以减少交通拥堵和道路事故,提高人们的出行质量和安全性。

环境上,高速铁路可以减少交通运输对环境的污染,减少能源消耗,降低温室气体排放,有助于可持续发展。

总的来说,高速铁路是一种现代化的交通系统,旨在提供高效、
安全、绿色的出行方式,为人们的生活和经济发展带来积极的影响。

相关文档
最新文档