解一元二次方程的方法总结
一元二次方程解法知识点总结
一元二次方程解法知识点总结一元二次方程是高中数学中重要的概念之一,解一元二次方程是解决实际问题中的关键步骤。
在本文中,我将总结一元二次方程解法的主要知识点。
以下是详细介绍:一、一元二次方程的定义和一般形式一元二次方程指形如ax² + bx + c = 0的方程,其中a、b和c是已知常数,且a ≠ 0。
二、求一元二次方程的解的三种方法1. 因式分解法因式分解法是解一元二次方程的一种简单方法,适用于方程可以因式分解的情况。
2. 完全平方式当一元二次方程无法因式分解时,我们可以使用完全平方式解方程。
公式为:x = (-b ± √(b² - 4ac)) / (2a)。
3. 直接法(配方法)当一元二次方程无法因式分解且也不适用完全平方式时,我们可以使用配方法解方程。
通过变形将一元二次方程转化为一个平方的求解问题。
三、一元二次方程解的判别式判别式用于判断一元二次方程的解的性质。
判别式的公式为:Δ = b² - 4ac,其中Δ≥0且Δ<0代表不同的解的情况。
四、一元二次方程解的特殊情况1. 重根情况:当判别式Δ = 0时,方程仅有一个解,此时方程的两个解重合。
2. 无解情况:当判别式Δ < 0时,方程无实数解。
五、一元二次方程解法的应用一元二次方程解法的应用非常广泛,例如可以用来解决关于运动、生活中的数学题目,比如求解物体下落时间、销售利润最大化等。
六、例题与解析为了更好地理解一元二次方程解法,以下是两个例题的详细解析:例题1: 解方程x² - 5x + 6 = 0。
解析:首先计算判别式Δ = b² - 4ac = (-5)² - 4*1*6 = 25 - 24 = 1。
由于判别式Δ > 0,方程有两个不相等的实数解。
接下来使用公式 x = (-b ± √Δ) / 2a 计算解,得到:x₁ = (5 + √1) / 2 = 3x₂ = (5 - √1) / 2 = 2所以,方程的解为x₁ = 3和x₂ = 2。
解一元二次方程的几种方法
解一元二次方程的几种方法一元二次方程是数学中常见的方程类型,解这类方程可以使用多种方法,下面将介绍一些常用的方法来解一元二次方程。
1.公式法一元二次方程的一般形式为ax² + bx + c = 0,其中a、b、c为已知实数,且a≠0。
使用公式法可以通过求解二次方程的根来得出方程的解。
根据求根公式:x = (-b ± √(b² - 4ac)) / (2a)其中±表示两个解,分别为x1和x2。
通过带入方程的系数a、b、c即可得到方程的解。
2.配方法配方法也称为配方或变量代换法。
当一元二次方程不易使用公式法解时,可以通过配方法将方程变形为一个完全平方的形式来求解。
具体步骤如下:首先,将方程转化为完全平方的形式,即将方程化简为(x + p)² = q的形式,其中p和q为待定数;然后,展开得到方程的标准形式,计算出p和q的具体值;最后,将求得的p和q代回原方程中,解出方程的根。
3.因式分解法当一元二次方程的形式为(ax + b)(cx + d) = 0时,可以使用因式分解法来求解。
具体步骤如下:将方程用因式分解的形式表示出来;令每个因式为0,解出各个因式对应的x值;得到方程的解。
4.图像法图像法是通过绘制一元二次方程的图像来求解方程。
一元二次方程的图像为抛物线,可以通过观察抛物线与x轴的交点来得到方程的解。
具体步骤如下:根据方程的系数a、b、c绘制出抛物线的图像;观察抛物线与x轴的交点,即可得到方程的解。
5.完全平方法当一元二次方程的形式为x² + bx + c = 0时,可以使用完全平方法来求解。
具体步骤如下:将方程转化为(x + m)² = n的形式,其中m和n为待定数;展开等式,计算出m和n的具体值;将求得的m和n代回原方程中,解出方程的根。
总结:解一元二次方程的几种方法包括公式法、配方法、因式分解法、图像法和完全平方法。
根据方程的形式和问题的要求选择合适的方法来解方程。
一元二次方程的解法总结
一元二次方程的解法总结一元二次方程是代数学中最基本的方程形式之一,求解一元二次方程有多种方法,本文将对几种常见的解法进行总结。
方法一:因式分解法对于形如ax^2+bx+c=0的一元二次方程,首先需要将其因式分解为两个一次方程的乘积形式。
例如:x^2+5x+6=0可以分解为(x+2)(x+3)=0,然后令每个因式等于零,解得x=-2和x=-3,即为方程的解。
方法二:配方法当一元二次方程无法直接因式分解时,可以尝试使用配方法。
配方法的基本思路是将方程中的二次项与一次项配对,并进行变量代换。
具体步骤如下:1. 将方程形式为ax^2+bx+c=0,其中a≠0。
2. 将方程两边同时除以a,得到x^2+(b/a)x+(c/a)=0。
3. 将方程右侧的常数项c/a拆分为两个数的乘积,使得这两个数之和等于b/a,即将其配对。
4. 在方程左侧增加与拆分后的两个数相等的数,构成一个完全平方项的形式。
即在x^2+(b/a)x上加上一个常数d/d,使得(x+d)^2=x^2+(b/a)x+d^2。
5. 将方程重新写为扩展后的形式(x+d)^2+d^2=c/a,这就是已经变量代换后的方程。
6. 将方程左侧完全平方项展开,并与方程右侧常数项进行化简,得到新方程x^2+2dx+d^2-d^2=c/a,即x^2+2dx=(c/a-d^2)。
7. 整理方程,得到(x+d)^2-d^2=(c/a-d^2)。
8. 使用平方差公式,将等式左侧进行运算,得到(x+d-d)(x+d+d)=(c/a-d^2)。
9. 化简等式左侧,得到(x+2d)(x)=(c/a-d^2)。
10. 若c/a-d^2≥0,即存在实数解,解方程(x+2d)(x)=(c/a-d^2),得到x+2d=0或x=c/a-d^2。
11. 解方程x+2d=0,得到x=-2d,然后将其代入方程(x+2d)(x)=c/a-d^2中,求解得到剩下的解。
方法三:求根公式法求根公式是一元二次方程的一种解法,通过使用求根公式,可以直接求得方程的解。
一元二次方程的解法大全
一元二次方程的解法大全【直接开平方法解一元二次方程】把方程ax2+c = 0(a工0),化成以=--,当乳亡异号时"两边同时开平方得x = 土J--*这解一元二次方程的方法叫做直接开平方法。
例:用直接开平方法解方程:1. 9X2-25= 0;2. (3X+2)2-4= 0;4. (2X+3)2= 3(4X+3).解:1 . 9X2-25= 09X2= 25立259-3* _ 55・-X]—万・-亍2. (3X+2)2-4= 0(3X+2)2= 43x+2 = ± 23x = -2 土2-2±2H3= 0,X2気G+V3)鸟=吗岳i" + 2^3+ $=4 辰」2岳+片QX I = X2= 3 .4. (2x+3) 2= 3(4x+3)4X2+12X+9=12x+94X2= 0• X i = x =0.【配方法解一元二次方程】将一元二次方程化成一般形式,如ax2+bx+c = 0(a丰0);把常数项移到方程的右边,如ax2+bx = -c;方程的两边都加上一次项系数一半的平方,以二次项系数,使二次项系数为1,如x2+ '+ 3=--+〔= 把方程的左边变形为一次二项式的完za a Za方程的两边都除ati b — 4 0.0全平方,右边合并或一个常数,如心斗丁尸-=二_;方程的两边同2a4酋时开平方.得到两个一元一欢方程.如1;= ±塔竺分别解这za 2a两个一元一次方程,求岀两个根,即竺。
2a例:用配方法解下列方程:1. x2-4x-3 = 0; 2 . 6x2+x = 35;3. 4x2+4x+1 = 7; 4 . 2x2-3x-3= 0.解:1 . x2-4x-3= 0x2-4x = 3x2-4x+4 = 3+4(x-2)2= 7耳_2= ± 7?耳=2 士V?j2. 6x2+x=351 35X *产石工】 『「 艾 1x 十一范十(—)=一 ■+—— 6 f 6 144 伍+A _ 8411441 29X + — + 12 ' 121 29蛊十 12 - 12. 7 5* - H i _ ~t 匕 =——2 '3. 4X 2+4X +1= 74=—6 X 3+K +〔壬)3 6 1=―十—— a+打3 _ 72 4J 貯 呂+ —二土——2 2—产冷十孚4. 2X 2-3X -3= 0卫一二直二匸2 2 ,3 3.39S 一尹十(可)"2-K163 753旨一一二 I ---4 43侮【公式法解一元二次方程】元二次方程 ax 2+bx+c = 0(a丹)-用配方法所求出的两个根孔二 土史土和心二 -b + -4 遑亡2 a.广泛的代换意义,只要是有实数根的一元二次方程,均可将 a ,b ,c 的值代入两根公式中直接解出,所以把这种方法 例:用公式法解一元二次方程:1. J+2=2屁2. 2X 2+7X -4=0;4. x 2-a(3x -2a+b)-b 2 = 0(a -2b > 0,求 x).解小J + 2=2屈2 屈富 + 2 = 0i a = 1 j b = — : 1 c = 2 xb a -4ac= (-2V2)3-4XlX2 = 0•/ a = 2, b = 7, c = -4.b 2-4ac = 72-4X 2 X (-4) = 49+32= 813. J + 2 (柘+1) K +2^3 = 0T a~ 11 b = 2 1) * 匚=2V3・b 2-4ac= (2 (73+1) ) 2—国浓 M2费.=4(4+273)—8柘=16 + 8,^-873=16称为公式法’而把敢==0(a 丰0)的求根公式。
一元二次方程的解法
一元二次方程的解法一元二次方程是数学中常见的形式为ax²+bx+c=0的方程,其中a、b、c为已知常数,x为未知数。
解一元二次方程的方法有两种常用的方式,分别是因式分解法和求根公式法。
一、因式分解法因式分解法是一种基于因式分解思想的解法,用于解决特定类型的一元二次方程。
1. 随机方程形式:ax²+bx+c=0要使用因式分解法解决一元二次方程,首先要确保方程可被因式分解。
具体步骤如下:Step 1: 将方程左侧的二次项进行因式分解。
对于二次项ax²,可以进行因式分解为(ax+m)(ax+n),其中m和n为常数。
Step 2: 确定常数m和n的值。
将因式分解得到的形式(ax+m)(ax+n)与方程的形式ax²+bx+c进行比较,从而确定常数m和n的值。
Step 3: 通过求解常数m和n的值,得到一元二次方程的解。
将(ax+m)(ax+n)=0,根据乘法零因子法则,可将方程转化为两个一次方程,即ax+m=0和ax+n=0。
然后分别求解这两个一次方程,得到x的值。
2. 示例:例如,解方程x²+5x+6=0。
Step 1: 将方程左侧的二次项进行因式分解。
方程的左侧二次项x²可因式分解为(x+2)(x+3)。
Step 2: 确定常数m和n的值。
由比较可知,m=2,n=3。
Step 3: 通过求解常数m和n的值,得到一元二次方程的解。
将(x+2)(x+3)=0转化为两个一次方程,即x+2=0和x+3=0。
分别解得x=-2和x=-3,因此方程x²+5x+6=0的解为x=-2和x=-3。
二、求根公式法求根公式法是解决一元二次方程的另一种常用方法,可以适用于一切一元二次方程。
1. 一元二次方程的一般形式:ax²+bx+c=0对于一元二次方程ax²+bx+c=0,可以使用求根公式法进行解答。
求根公式为x=(-b±√(b²-4ac))/(2a)。
一元二次方程的解法(知识梳理)
一元二次方程的解法
1、知识要点:一元二次方程和一元一次方程都是整式方程
一元二次方程的一般形式为:ax2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2的整式方程。
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
一元二次方程有四种解法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。
2、方法
1、直接开平方法:
直接开平方法就是用直接开平方求解一元二次方程的方法。
用直接开平方法解形如(x-m)2=n (n≥0)的方程,其解为x=m±
.
2.配方法:用配方法解方程ax2+bx+c=0 (a≠0) 先将常数c移到方程右边:ax2+bx=-c
将二次项系数化为1:x2+
x=-
方程两边分别加上一次项系数的一半的平方:
x2+
x+(
)2=-
+(
)2方程左边成为一个完全平方式:(x+
)2=
当b2-4ac≥0时,x+
=±
∴x=
(这就是求根公式)
3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a, b, c的值代入求根公式x=
(b2-4ac≥0)就可得到方程的根。
4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。
这种解一元二次方程的方法叫做因式分解法。
一元二次方程的解法总结
x a 0或x a 0
x1 a
形如
2
x2 a
的式子运用完全平方公式得:
x2 2ax a 2 0
( x a) 0 x1 x2 a 或 x1 x2 a
例题讲解
例1 解下列方程
16(2 x) 9 0 (1) 解:原方程变形为: 9 2 (2 x) 16
解:提公因式得:
(3x 2)( x 6) 0
(3x 5)( x 2) 0
3x 5 0或x 2 0
3x 2 0或x 6 0
2 x1 3
5 x1 3
x2 6
x2 2
平方差公式与完全平方公式
形如
x2 a2 0 运用平方差公式得:
2
(2) x( x 2) 1 0 解:原方程变形为:
直接开平方得:
x2 2 x 1 0
( x 1)2 0
3 2 x 4 11 5 x2 x1 4 4
x1 x2 1
2 十字相乘法
步骤:
1 二次项系数为1的情况:
将一元二次方程常数项进行分解成两个数(式)p , q的乘 积的形式,且p + q = 一次项系数。
例题讲解
例1. 用配方法解下列方程
x2+6x-7=0
解:
x 6x 7 2 x 6x 9 7 9 2 x 3 16 x 3 4 x1 1 x2 7
2
例题讲解
例2. 用配方法解下列方程
2x2+8x-5=0
5 解: x 4x 2 5 2 x 4x 4 4 2
一元二次方程的求解方法
一元二次方程的求解方法一元二次方程是一种常见的数学问题,它的解法有多种。
本文将介绍三种常用的求解一元二次方程的方法:因式分解法、配方法和求根公式法。
通过这些方法,我们可以轻松解决一元二次方程,并找到它们的根。
1. 因式分解法一元二次方程一般形式为:ax²+ bx + c = 0。
当我们将方程化简后,可以尝试使用因式分解法求解。
例如,对于方程x² + 5x + 6 = 0,我们可以尝试将其因式分解为(x + 2)(x + 3) = 0。
这样,我们就可以得到两个根分别为x = -2和x = -3。
2. 配方法如果无法通过因式分解法求解一元二次方程,我们可以尝试使用配方法。
该方法的核心思想是通过添加一个适当的常数使方程能够进行因式分解。
以方程x² + bx + c = 0为例,我们可以通过添加一个常数m,使得方程变为x² + bx + c + m = (x + p)² = 0的形式。
然后,我们可以通过p = b/2和p² = c + m的关系求解出m的值,并将其带入方程中求解x的值。
3. 求根公式法求根公式法是一元二次方程求解的基本方法之一。
一元二次方程ax² + bx + c = 0的两个根可通过求根公式得到。
求根公式为:x = (-b ± √(b² - 4ac)) / (2a)根据方程的三个系数a、b和c,我们可以直接将求根公式带入计算,找到方程的根。
总结:通过因式分解法、配方法和求根公式法,我们可以解决一元二次方程,并找到它们的根。
当方程可以通过因式分解法求解时,我们可以直接因式分解得到方程的根。
当无法因式分解时,我们可以尝试使用配方法,通过添加适当的常数来进行求解。
而求根公式法是一种基本的求解方法,适用于所有的一元二次方程。
根据方程的系数,我们可以直接带入求根公式,求得方程的根。
以上就是三种常见的求解一元二次方程的方法。
一元二次方程及其解法
一元二次方程及其解法一元二次方程是数学中常见的一类方程,形式为ax^2 + bx + c = 0,其中a、b、c是已知常数,且a ≠ 0。
解一元二次方程的方法有多种,包括因式分解法、配方法、公式法和完成平方法等。
本文将逐一介绍这些解法,并通过例子加深理解。
一、因式分解法当一元二次方程可以因式分解时,可以利用因式分解的形式将方程解出。
具体步骤如下:1. 将方程ax^2 + bx + c = 0进行因式分解,得到(ax + m)(x + n) = 0的形式;2. 根据分解得到的(x + m)(x + n) = 0,可得到两个线性方程x + m = 0和x + n = 0;3. 解两个线性方程,即可得到方程的解x = -m和x = -n。
例如,解方程2x^2 + 5x + 3 = 0:1. 将方程因式分解为(2x + 1)(x + 3) = 0;2. 得到两个线性方程2x + 1 = 0和x + 3 = 0;3. 解得x = -1/2和x = -3。
二、配方法当一元二次方程无法直接因式分解时,可以利用配方法将其转化为可因式分解的形式。
具体步骤如下:1. 对方程ax^2 + bx + c = 0,将b项的系数b拆分成两个数p和q,使得p + q = b且pq = ac;2. 将方程重写为ax^2 + px + qx + c = 0,并进行合并得到ax^2 +(p+q)x + c = 0;3. 将方程的前两项进行因式分解,并重写为a[x^2 + (p+q)x] + c = 0;4. 提取公因式,得到a[x(x + (p+q))] + c = 0;5. 将方程重新整理为a(x + p)(x + q) = 0的形式;6. 根据分解得到的(x + p)(x + q) = 0,可得到两个线性方程x + p = 0和x + q = 0;7. 解两个线性方程,即可得到方程的解x = -p和x = -q。
例如,解方程2x^2 + 7x + 3 = 0:1. 将方程配成2x^2 + 6x + x + 3 = 0;2. 可以选择p = 3和q = 1,满足p + q = 7且pq = 6;3. 将方程重写为2x(x + 3) + (x + 3) = 0,并合并得到2x(x + 3) + (x +3) = 0;4. 提取公因式,得到(x + 3)(2x + 1) = 0;5. 因式分解后得到(x + 3)(2x + 1) = 0;6. 得到两个线性方程x + 3 = 0和2x + 1 = 0;7. 解两个线性方程,即可得到方程的解x = -3和x = -1/2。
一元二次方程的解法归纳总结
一元二次方程的解法归纳总结一元二次方程是高中数学中的重要内容之一,它可以通过求解来确定方程的根或解。
解一元二次方程的方法有多种,包括公式法、配方法、图像法等。
本文将对这些方法进行归纳总结,以便读者更清晰地理解和应用一元二次方程的解法。
一、公式法公式法是解一元二次方程最常用的方法之一,它基于一元二次方程的标准形式ax^2 + bx + c = 0。
一元二次方程的解可通过求根公式得到。
求根公式:对于一元二次方程ax^2 + bx + c = 0,其中a、b、c为已知常数,且a ≠ 0。
1. 判别式D = b^2 - 4ac。
- 当D > 0时,方程有两个不相等的实根。
- 当D = 0时,方程有两个相等的实根。
- 当D < 0时,方程没有实根。
2. 根据判别式的情况,求解一元二次方程的根。
- 当D > 0时,方程的两个根为 x1 = (-b + √D)/(2a) 和 x2 = (-b -√D)/(2a)。
- 当D = 0时,方程的两个根为 x1 = x2 = -b/(2a)。
- 当D < 0时,方程没有实根。
公式法适用于所有一元二次方程,但需注意的是,当D < 0时,方程没有实数解,因此解为复数,需要用复数域来表示。
二、配方法对于一些特殊形式的一元二次方程,如完全平方差、平方差、求负等,可以通过配方法将其转化成更容易求解的方程,进而求得解。
1. 完全平方差形式对于形如(x ± a)^2 = b的方程,可利用完全平方差公式,将其转化为(x ± a) = √b的形式,然后解得解x。
2. 平方差形式对于形如x^2 - a^2 = b的方程,可通过配方法将其转化为(x + a)(x -a) = b的形式,然后选取合适的值求解。
3. 求负对于形如x^2 + px = q的方程,可通过将方程两边同乘以负一进行转化,变为x^2 - px = -q的形式,然后应用配方法解方程。
配方法是解特殊形式一元二次方程的有效方法,通过将方程转化为更简单的形式,能够简化解的过程。
一元二次方程的解法总结
一元二次方程的解法(直接开平方法、配方法、公式法和分解法)一元二次方程定义:只含有一个未知数,并且未知数的最高次数为2的整式方程叫做一元二次方程。
一般形式:ax²+bx+c=0(a,b,c为常数,x为未知数,且a≠0).顶点式: y=a(x—h)²+k(a≠0,a、h、k为常数)交点式:y=a(x—x₁)(x—x₂)(a≠0)[有交点A(x₁,0)和B(x₂,0)的抛物线,即b²-4ac≥0] .直接开平方法:直接开平方法就是用直接开平方求解一元二次方程的方法。
用直接开平方法解形如(x—m)²=n(n≥0)的方程,其解为x=m±配方法:1.将此一元二次方程化为ax²+bx+c=0的形式(此一元二次方程满足有实根)2.将二次项系数化为13.将常数项移到等号右侧4。
等号左右两边同时加上一次项系数一半的平方5.将等号左边的代数式写成完全平方形式6。
左右同时开平方7.整理即可得到原方程的根公式法:1。
化方程为一般式:ax²+bx+c=0 (a≠0)2。
确定判别式,计算Δ(=b²—4ac);3。
若Δ〉0,该方程在实数域内有两个不相等的实数根:x=若Δ=0,该方程在实数域内有两个相等的实数根:x₁=x₂=若Δ〈0,该方程在实数域内无实数根因式分解法:因式分解法又分“提公因式法”;而“公式法”(又分“平方差公式”和“完全平方公式”两种),另外还有“十字相乘法”,因式分解法是通过将方程左边因式分解所得,因式分解的内容在八年级上学期学完。
用因式分解法解一元二次方程的步骤1. 将方程右边化为0;2. 将方程左边分解为两个一次式的积;3. 令这两个一次式分别为0,得到两个一元一次方程;4. 解这两个一元一次方程,它们的解就是原方程的解。
用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax²+bx+c(a≠0).(2)当题给条件为已知图象的顶点坐标或对称轴或极大(小)值时,可设解析式为顶点式:y=a(x-h)²+k(a≠0)。
总结解一元二次方程的常用技巧
总结解一元二次方程的常用技巧解一元二次方程是数学中的基础知识之一,也是很多学生常常遇到的问题。
掌握解一元二次方程的常用技巧对于提高数学能力和解题速度具有重要意义。
本文将总结解一元二次方程的常用技巧,帮助读者更好地掌握这一知识点。
一、一元二次方程的定义及基本形式一元二次方程是指只含有一个未知数的二次方程。
其一般形式为:ax² + bx + c = 0,其中a、b、c为已知系数,且a ≠ 0。
二、求解一元二次方程的常用技巧1. 通过因式分解法求解当一元二次方程可以被因式分解为两个一次因式相乘的形式时,我们可以通过解这两个一次方程来求解原方程。
例如,对于方程x² - 5x + 6 = 0,可以因式分解为(x - 2)(x - 3) = 0,从而得到x = 2或x = 3,即原方程的解为x = 2或x = 3。
2. 利用配方法求解当一元二次方程不能直接进行因式分解时,可以利用配方法来求解。
配方法的基本思路是通过添加合适的常数使得方程左边成为一个平方差的形式,从而方便求解。
具体步骤如下:a. 如果原方程为ax² + bx + c = 0,首先计算方程的判别式Δ = b² -4ac。
b. 如果Δ大于0,则可得到两个实根。
假设方程的根为x₁和x₂,则通过方程x₁ + x₂ = -b/a和x₁x₂ = c/a来求解。
c. 如果Δ等于0,则可得到两个相等的实根。
通过方程x = -b / 2a来求解。
d. 如果Δ小于0,则无实根,方程只有复数解。
举例说明:以方程x² - 4x + 4 = 0为例,使用配方法来求解:a. 计算Δ = (-4)² - 4 * 1 * 4 = 0。
b. 由于Δ等于0,方程有两个相等的实根x = -(-4) / 2*1 = 2。
即原方程的解为x = 2。
3. 利用求根公式求解一元二次方程还可以通过求根公式来求解。
一元二次方程的求根公式为:x = (-b ± √(b² - 4ac)) / 2a。
一元二次方程的解法有哪些 具体解题技巧介绍
很多人对于一元二次方程的学习上上非常吃力,想知道一元二次方程有哪些解法,有哪些详细的解题技巧呢?下面下面小编为大家介绍一下!一元二次方程的详细解法解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程.一元二次方程有四种解法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法.1、直接开平方法:直接开平方法就是用直接开平方求解一元二次方程的方法.用直接开平方法解形如(x-m)2=n (n≥0)的方程,其解为x=±根号下n+m .例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解.(3x+1)2=7×∴(3x+1)2=5∴3x+1=±(注意不要丢解)∴x=∴原方程的解为x1=,x2=9x2-24x+16=11∴(3x-4)2=11∴3x-4=±∴x=∴原方程的解为x1=,x2=2.配方法:用配方法解方程ax2+bx+c=0 (a≠0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2方程左边成为一个完全平方式:(x+ )2=当b^2-4ac≥0时,x+ =±∴x=(这就是求根公式)例2.用配方法解方程 3x^2-4x-2=0 (注:X^2是X的平方)将常数项移到方程右边 3x^2-4x=2将二次项系数化为1:x^2-x=方程两边都加上一次项系数一半的平方:x^2-x+( )2= +( )2配方:(x-)2=直接开平方得:x-=±∴x=∴原方程的解为x1=,x2= .3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a),(b^2-4ac≥0)就可得到方程的根.例3.用公式法解方程 2x2-8x=-5将方程化为一般形式:2x2-8x+5=0∴a=2,b=-8,c=5b^2-4ac=(-8)2-4×2×5=64-40=24>0∴x=[(-b±(b^2-4ac)^(1/2)]/(2a)∴原方程的解为x1=,x2= .4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根.这种解一元二次方程的方法叫做因式分解法.例4.用因式分解法解下列方程:(1) (x+3)(x-6)=-8 (2) 2x2+3x=0(3) 6x2+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学)(x+3)(x-6)=-8 化简整理得x2-3x-10=0 (方程左边为二次三项式,右边为零)(x-5)(x+2)=0 (方程左边分解因式)∴x-5=0或x+2=0 (转化成两个一元一次方程)∴x1=5,x2=-2是原方程的解.2x2+3x=0x(2x+3)=0 (用提公因式法将方程左边分解因式)∴x=0或2x+3=0 (转化成两个一元一次方程)∴x1=0,x2=-是原方程的解.注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解.6x2+5x-50=0(2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)∴2x-5=0或3x+10=0∴x1=,x2=- 是原方程的解.x2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)(x-2)(x-2 )=0∴x1=2 ,x2=2是原方程的解.一元二次方程的三个特点(1)只含有一个未知数。
解一元二次方程五种方法
解一元二次方程五种方法解一元二次方程五种方法一元二次方程是中学数学中最基础的知识之一,也是许多高中数学知识的基础。
在解决实际问题中,我们常常需要用到一元二次方程。
下面将介绍解一元二次方程的五种基本方法。
方法一:公式法公式法是解一元二次方程最基本的方法。
对于一元二次方程$ax^2+bx+c=0$,我们可以使用求根公式来求解。
即:$$x=dfrac{-bpmsqrt{b^2-4ac}}{2a}$$这种方法比较简单、直接,但是需要注意判别式($b^2-4ac$)的正负性,判别式小于零时方程没有实数根。
方法二:配方法配方法也是解一元二次方程常用的方法。
对于一元二次方程$ax^2+bx+c=0$,我们可以通过配方法将其变形为 $(x+p)^2+q=0$ 的形式,然后求解。
具体的配方法步骤如下:1. 把方程变形为 $ax^2+bx=-c$2. 在等式两边同时加上 $dfrac{b^2}{4a^2}$,即$ax^2+bx+dfrac{b^2}{4a^2}=dfrac{b^2}{4a^2}-c$3. 左边变形为 $(x+dfrac{b}{2a})^2$,右边化简为$dfrac{b^2-4ac}{4a^2}$4. 对于二次方程 $(x+dfrac{b}{2a})^2=dfrac{b^2-4ac}{4a^2}$,可以解出 $x$ 的值。
方法三:图像法图像法是解一元二次方程的另一种方法。
对于一元二次方程$ax^2+bx+c=0$,我们可以将其转化为 $ax^2+bx=-c$ 的形式,然后画出函数图像 $y=ax^2+bx$,并找到其与 $y=-c$ 相交的点,即为方程的解。
方法四:因式分解法对于形如 $x^2+px+q=0$ 的一元二次方程,我们可以利用因式分解法来求解其根。
具体的步骤如下:1. 求出 $q$ 的所有因数。
2. 在所有因数中找到两个数,它们的和等于 $p$。
3. 将方程变形为 $(x+a)(x+b)=0$ 的形式,其中 $a$、$b$ 分别为上一步中找到的两个数。
解一元二次方程五种方法
解一元二次方程五种方法解一元二次方程五种方法一元二次方程是高中数学中比较重要的一种方程类型,解题方法也非常多样。
下面介绍五种解一元二次方程的方法。
方法一:配方法配方法是一种比较常用的解一元二次方程的方法。
通过给方程两边添加一个适当的常数,使得方程左边变成一个平方式,从而利用完全平方公式求解。
例如,将方程x^2+6x-7=0配成(x+3)^2-16=0的形式,然后利用完全平方公式(x+3)^2=a^2-b^2=(a+b)(a-b)求解方程。
方法二:公式法公式法是一种利用一元二次方程求根公式解方程的方法。
一元二次方程的求根公式为x=(-b±√(b^2-4ac))/2a。
例如,对于方程x^2+6x-7=0,利用公式x=(-6±√(6^2-4×1×(-7)))/2×1,化简得到x=-3±√16,即x=-7或x=1。
方法三:因式分解当一元二次方程的系数a,b,c都是整数时,可以尝试使用因式分解的方法解方程。
主要思路是将方程左边化成一个二次式的乘积。
例如,对于方程x^2+6x-7=0,可以将其因式分解为(x-1)(x+7)=0,从而解得x=1或x=-7。
方法四:图解法图解法是一种利用平面直角坐标系中的图形来解一元二次方程的方法。
主要思路是将方程左边的二次式与右边的常数b进行比较,从而确定图形的形状。
例如,对于方程x^2+6x-7=0,将其化为x^2+6x=7,可以发现这是一个开口向上的抛物线,与y=7的直线交于两点,即方程的两个解。
方法五:牛顿迭代法牛顿迭代法是一种利用曲线的切线来近似求解方程的方法。
它的基本思路是从一个初始值开始,利用切线和方程的导数来逐步逼近方程的解。
例如,对于方程x^2+6x-7=0,可以选取一个初始值x0,然后通过迭代公式x=x0-(x0^2+6x0-7)/(2x0+6)来不断逼近方程的解。
当相邻两次迭代值的差小于一定精度时,可以认为迭代已经收敛,此时的迭代值即为方程的解。
解一元二次方程的方法总结
解一元二次方程的方法总结一元二次方程是高中数学中的重要知识点,在各种数学问题中都有广泛的应用。
解一元二次方程的方法有多种,本文将对常见的几种方法进行总结和分析。
一、因式分解法对于形如ax^2+bx+c=0的一元二次方程,如果可以将其因式分解为(a1x+m)(a2x+n)=0的形式,那么方程就可以简化为两个一次方程相乘的形式,进而求得方程的解。
这种方法要求我们能够巧妙地分解方程,并利用因子之间的关系进行求解。
例如,对于方程x^2+5x+6=0,我们可以将其分解为(x+2)(x+3)=0,进而得到x=-2和x=-3两个解。
二、配方法当方程无法直接因式分解时,我们可以考虑使用配方法。
配方法的关键是通过加减恰当的常数,将方程转化为一个完全平方的形式。
具体而言,对于形如ax^2+bx+c=0的方程,我们可以通过添加或减去b^2/4a,将方程的左侧转化为(a*x^2+b*x+b^2/4a)的形式,从而可以化简为(a*x+b/2a)^2=0的形式,进而求得方程的解。
例如,对于方程x^2+4x+4=0,我们可以通过配方法将其转化为(x+2)^2=0的形式,进而得到x=-2的解。
三、求根公式求根公式是解一元二次方程的基本方法之一。
对于一元二次方程ax^2+bx+c=0,其中a≠0,它的解可以由以下公式得到:x = (-b ± √(b^2-4ac))/(2a)这里的±表示两个解,即正负两个可能的值。
通过代入方程的系数a、b和c,我们可以求得方程的根。
例如,对于方程x^2+3x+2=0,通过求根公式,我们可以得到x=-1和x=-2两个解。
四、图像法一元二次方程的解还可以通过图像法得到。
我们可以将方程表示为y=ax^2+bx+c的二次曲线方程,进而绘制出对应的抛物线图像。
方程的解即为抛物线与x轴交点的横坐标。
通过观察抛物线的开口方向、顶点位置以及与x轴的交点,我们可以直观地得到方程的解。
综上所述,解一元二次方程的方法包括因式分解法、配方法、求根公式和图像法。
一元二次方程的解法
一元二次方程的解法一.直接开平方法:在解一元二次方程时通常通过“降次”把它转化为两个一元一次方程.如果方程能化成x 2=p(p ≥0)或(mx +n)2=p(p ≥0)的形式,那么可得x =mx +n =解方程: (1)2x 2﹣8=0; (2)(2x ﹣3)2=25.总结:运用直接开平方法解一元二次方程,首先要将一元二次方程的左边化为含有未知数的完全平方式,右边化为非负数的形式,然后直接用开平方的方法求解.解方程: (3)(2x+3)2﹣25=0 (4)9(x+1)2=4(x ﹣2)2.(5)(x ﹣2)2﹣16=0. (6)259522=-)(x(7)x 2﹣9=0 (8)x 2=2 (9) 8x 2﹣72=0二.配方法通过配成完全平方形式来解一元二次方程的方法,叫配方法.其步骤如下:(1)化二次项系数为1.(2)移项,使方程左边为二次项,一次项,右边为常数项.(3)配方.依据等式的基本性质和完全平方公式,在方程的左右两边同时加上一次项系数一半的平方.(4)用直接开平方法求解.配方法的理论依据是完全平方公式:a 2±2ab +b 2=(a ±b )2,解下列方程:(1)x 2-8x+7=0 (2)x 2+4x+1=0 (3)x 2+6x+5=0(4)2x 2+6x-2=0 (5)(1+x )2+2(1+x )-4=0(6)x 2+4x=2 (7)3 x 2+8 x -3=0(8)3x 2 -9x +2=0 (9) 2x 2+6=7x三.因式分解法把一元二次方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.关键是把一元二次方程分解降次为一元一次方程,其理论是0B 00A ==⇔=•或A B解下列方程(1)2x 2+x=0 (2)3x 2+6x=0 (3)4x 2=11x(4)(x-2)2=2x-4 (5)x 2-3x-4=0 (6)x 2-7x+6=0(7)x 2+4x-5=0 (8)x 2-3x +2=0; (9)3x (x-1)+2x =2;四.公式法用公式法解一元二次方程的步骤1. 把方程华为一般式:)0(02≠=++a c bx ax2. 写出a,b,c 的值,计算ac b 42-=∆(特别注意当0<∆无解)3. 代入求根公式aac b b x 242-±-=4. 写出方程的解21,x x解方程:(1)x 2+x-6=0; (2)x 2-x-=0; (3)3x 2-6x-2=0;(4)4x 2-6x=0; (5)x 2+4x+8=4x+11; (6)x(2x-4)=5-8x.(7)3x 2+4x+2=0 (8)3x 2-2x+1=0; (9)4x 2-16x-3=0 ;分式方程分母中含有未知数的方程叫做分式方程。
一元二次方程五大解法
一元二次方程五大解法
1、直接开平方法。
对于直接开平方法解一元二次方程时注意一般都有两个解,不要漏解,如果是两个相等的解,也要写成x1=x2=a的形式,其他的都是比较简单。
2、配方法。
在化成直接开平方法求解的时候需要检验方程右边是否是非负的,如果是则利用直接开平方法求解即可,如果不是,原方程就没有实数解。
3、公式法。
公式法是解一元二次方程的根本方法,没有使用条件,因此是必须掌握的。
用公式法的注意事项只有一个就是判断“△”的取值范围,只有当△≥0时,一元二次方程才有实数解。
4、因式分解法。
因式分解,在初二下学期的时候重点讲了,之前也有相关的文章,重要性毋庸置疑,在一元二次方程里,因式分解法用的还是挺多的,难度非常容易调节。
5、图像解法。
一元二次方程ax2+bx+c=0的根的几何意义是二次函数y=ax2+bx+c的图像(为一条抛物线)与x轴交点的x坐标。
当△>0时,则该函数与x轴相交(有两个交点)。
当△=0时,则该函数与x轴相切(有且仅有一个交点)。
当△<0时,则该函数与轴x相离(没有交点)。
一元二次方程的判别式。
利用一元二次方程根的判别式(△=b2-4ac)可以判断方程的根的情况。
一元二次方程ax+bx+c=0(a不等于0)的根与根的判别式有如下关系:△=b2-4ac。
①当△>0时,方程有两个不相等的实数根。
②当△=0时,方程有两个相等的实数根。
③当△<0时,方程无实数根,但有2个共轭复根。
一元二次方程的解法大全
一元二次方程的解法大全【直接开平方法解一元二次方程】把方程ax2+c=0(a≠0),这解一元二次方程的方法叫做直接开平方法。
例:用直接开平方法解方程:1.9x2-25=0;2.(3x+2)2-4=0;4.(2x+3)2=3(4x+3).解:1.9x2-25=09x2=252.(3x+2)2-4=0(3x+2)2=43x+2=±23x=-2±2∴x1=x2=3.4.(2x+3)2=3(4x+3)4x2+12x+9=12x+94x2=0∴x1=x=0.【配方法解一元二次方程】将一元二次方程化成一般形式,如ax2+bx+c=0(a≠0);把常数项移到方程的右边,如ax2+bx=-c;方程的两边都除以二次项系数,使二次项系数为1,如x2+例:用配方法解下列方程:1.x2-4x-3=0; 2.6x2+x=35;3.4x2+4x+1=7; 4.2x2-3x-3=0.解:1.x2-4x-3=0x2-4x=3x2-4x+4=3+4(x-2)2=72.6x2+x=353.4x2+4x+1=74.2x2-3x-3=0【公式法解一元二次方程】一元二次方程ax2+bx+c=0(a广泛的代换意义,只要是有实数根的一元二次方程,均可将a,b,c的值代入两根公式中直接解出,所以把这种方法=0(a≠0)的求根公式。
例:用公式法解一元二次方程:2.2x2+7x-4=0;4.x2-a(3x-2a+b)-b2=0(a-2b≥0,求x).2.2x2+7x-4=0∵a=2,b=7,c=-4.b2-4ac=72-4×2×(-4)=49+32=814.x2-a(3x-2a+b)-b2=0(a-2b≥0)x2-3ax+2a2-ab-b2=0∵a=1,b=-3a,c=2a2-ab-b2b2-4ac=(-3a)2-4×1×(2a2+ab-b2)=9a2-8a2-4ab+4b2=a2-4ab+4b2=(a-2b)2当(a-2b≥0)时,得【不完全的一元二次方程的解法】在不完全的一元二次方程中,一次项与常数至少缺一项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解一元二次方程
(1)配方法:①、将方程的常数项移到方程的右边;②、将二次项系数化
为1(每项都除以二次项系数a );③在式子左边加上2
2⎪⎭
⎫ ⎝⎛b ,即一次项系数b 的一半,同时在式子的右边也加上22⎪⎭⎫ ⎝⎛b ;④将方程式化为()02常数或者=+b a ,()0-2常数或者=b a 的完全平方公式形式再求解。
(2)公式法:把一元二次方程的各系数分别代入,这里二次项的系数为a ,
一次项的系数为b ,常数项的系数为c 。
用公式a ac b b x 242-±
-=求解即可。
(注意使用判别式△=ac b 42-)
(3)因式分解法:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘法,如果可以,就可以化为乘积的形式。