等边三角形(2)优质课件PPT
合集下载
最新人教版八年级数学上册《13.3.2 等边三角形(第2课时)》优质教学课件
含30°角的直角三角形的性质:
在直角三角形中,如果一个锐角等于30°,那么它所对的
直角边等于斜边的一半.
A
应用格式:
∵ 在Rt△ABC 中,∠C =90°,∠A =30°,
∴
BC
=
1 2
AB.
B
C
探究新知
素养考点 1 利用含30°角的直角三角形的性质求线段的值
例1 如图,在Rt△ABC中,∠ACB=90°,∠B=30°,CD是斜边AB
课堂检测
拓广探索题
如图,已知△ABC是等边三角形,D,E分别为BC,AC上的点,且 CD=AE,AD、BE相交于点P,BQ⊥AD于点Q,求证:BP=2PQ.
证明:∵△ABC为等边三角形, ∴ AC=BC=AB ,∠C=∠BAC=60°, ∵CD=AE, ∴△ADC≌△BEA.
课堂检测
∴∠CAD=∠ABE. ∵∠BAP+∠CAD=60°, ∴∠ABE+∠BAP=60°. ∴∠BPQ=60°. 又∵ BQ⊥AD, ∴∠BQP=90°, ∴∠PBQ=30°, ∴BP=2PQ.
课堂检测
3.在△ABC中,∠A: ∠B: ∠C=1:2:3,若AB=10,则BC = 5 .
4.如图,Rt△ABC中,∠A= 30°, B
8
AB+BC=12cm,则AB=______cm.
C
A
第4题图
课堂检测
能力提升题
1.在△ABC中,∠C=90°,∠B=15°,DE是AB的垂直平分线,
BE=5,则求AC的长.
∵ ∠A= 30°,
∴ ∠ECA=∠BEC–∠A=60°–30° = 30°.
∴ AE=EC, ∴ AE=BE=BC,
《等边三角形》课件PPT1
将两个含30°角的同样的三角尺如图摆放在一起. 4m, ∠A=30°.
例 2.已 知 : 如 图 , △ ABC 中 , AB = AC, ∠ A = 在直角三角形中, 如果有一个锐角等于300,那么它所对的直角边等于斜边的一半.
你会用学过的方法证明吗?
120°,DE垂直平分AB于D,交BC于E点. 如图:△ABC是等边三角形,AD⊥BC,DE⊥AB,若AB=8cm, 求证:CE=2BE. 如图,已知△ABC 是等边三角形,D、E 分别是
B C 30° A
2.如图:△ABC是等边三角形,
A
AD⊥BC,DE⊥AB,若AB=8cm,
BD=___,BE=_______.
E
B DC
【典例分析】
例1.已知,如图是屋架设计图的一部分,点D是斜 梁 AB 的 中 点 , 立 柱 BC,DE 垂 直 于 横 梁 AC , AB=7.4m, ∠A=30°.立柱BC,DE要多长.
AB
你会用学过的方法证明吗?
【归纳】
定理:在直角三角形中,如果一个锐角等于30°, 那么它所对的直角边等于斜边的一半.
应用格式:
B
在△ABC中,∵∠ACB=90°,∠A=30°.
∴BC=
1 2
AB.
A 300
C
这是一个判定两条线段成倍半关系的根据之一.
【比一比】看 谁 算 得 快
1.如图:在Rt△ABC中 ∠A=30°,AB+BC=12cm, 则AB=_____cm.
2.等边三角形的判定:
(1)三边相等的三角形是等边三角形. (2)三个内角都相等的三角形是等边三角形. (3)有一个角是60 °的等腰三角形是等边三角形.
【探究】
将两个含30°角的同样的三角尺如图摆放在 一起.你能借助这个图形,找到Rt△ABC的直角边 BC与斜边AB之间的数量关系吗?
13.3.2等边三角形(2) 课件(共19张PPT)
∴ Rt△BDE中, DB=2DE=12
E
B
∵ AD是∠BAC的平分线, DE⊥AB, DC⊥AC
∴DC=DE=6
∴BD=DC+DB=18.
课后作业
教材83页习题13.3第14、15题.
解:∵ DE⊥AC,BC⊥AC,∠A =30°,
∴ BC = 1 AB,DE = 1 AD.
2
2
B D
∴ BC =3.7(m).
又 AD = 1 AB,
2
A EC
∴DE = 1 AD =1.85(m) .
2
答:立柱BC 的长是3.7 m,DE 的长是1.85 m.
小试牛刀
1.如图,一棵树在一次强台风中于离地面8米
4
证明: ∵∠ACB=90°,∠A=30°,
∴BC=
1 2
AB,∠B=60°
∵CD是高,
∴∠CDB=90°,∠B=60°,
∴∠BCD=30°,
∴BD= 1 BC, ∴BD=1 AB.
2
4
课堂小结
今天我们收获了哪些知识? (畅所欲言)
1、含30°角的直角三角形的性质是什么? 2、需要注意什么?
实战演练
1
∴ BC = 2 AB.
B
C
合作探究
B
A 归纳总结:
在直角三角形中,如果一个锐角等于30°,
那么它所对的直角边等于斜边的一半.
符号语言:∵∠C =90°, ∠A=30°
1
C
∴ BC = 2 AB.
典例精析
例.如图是屋架设计图的一部分,点D 是斜梁AB的中点,立柱BC、 DE 垂直于横梁AC,AB =7.4 cm,∠A =30°,立柱BC、DE 要多长?
等边三角形PPT课件
2.如图,等边三角形⊿ABC中,AD是BC边
上的高,∠BDE=∠CDF=60°图中与
BD相等的线学习的是第11页,课件共12页
BD C
你现在学习的是第12页,课件共12页
(2)当底角∠ B= 60°时,∠ C=60 °, ∠A=180 -60 °x2=60 °
∴ ∠A= ∠ B= ∠ C=60 °
∴ △ABC是等边三角形. (判定方法2)
你现在学习的是第7页,课件共12页
归纳:怎样判断一个三角形是等边三角形?
A
方法一:三角形的三边相等;
方法二:三角形的三角相等;
B
是轴对称 图形, 有一条 对称轴
三边 都相 等的
三 三个内
边 角都相 相 等,每
顶角的平分线 是轴对称图
、底边上的中 线和底边上的
形,
三角 等 个角都 高线互相重合 有三条
形
是60° (三线合一) 对称轴
☻等边三角形的判定方法
一个三角形满足什么条件 就是等边三角形?
我们仍然把等边三角形和等腰三角形进行 类比的方法来探究。
你现在学习的是第3页,课件共12页
类比探究一:等边三角形的性质
名
图形
称
等 腰 三 角 形
等 边 三 角 形
你现在学习的是第4页,课件共12页
定 义边 角
性质
重要线段
对称性
有两边 相等的 三角形
两 两底角 顶角的平分线、 腰 相等 底边上的中线和 相 (等边 底边上的高线 等 对等角) 互相重合
(三线合一)
关于等边三角形PPT
你现在学习的是第1页,课件共12页
☻等边三角形的定义:
三边都相等的三角形叫等边三角 形(也叫正三角形) 。
等边三角形PPT课件
03
02
特点
04
三个内角均为60°。
任意两边之和大于第三边。
05
06
任意一边都小于另外两边之和。
与其他三角形关系
03
与等腰三角形的关系
与直角三角形的关系
与其他三角形的比较
等边三角形是特殊的等腰三角形,其中两 条等腰边长度相等且等于第三边。
等边三角形不是直角三角形,因为其三个 内角均为60°,不满足直角三角形的定义 (有一个90°的内角)。
相比于其他三角形,等边三角形的三边长 度相等,三个内角也相等,具有独特的对 称性和稳定性。
性质总结
对称性
等边三角形具有轴对称性,即关于其三 条中垂线(同时也是角平分线和高线) 中的任意一条都具有对称性。
稳定性
由于三边长度相等,等边三角形在几何 形状中具有很高的稳定性,不易变形。
内角和
等边三角形的内角和为180°,每个内角 均为60°。
根据三角形面积公式 $S = frac{1}{2} times text{ 底} times text{高}$,代 入底和高,得到 $S = frac{1}{2}a times frac{sqrt{3}}{2}a = frac{sqrt{3}}{4}a^{2}$ 。
周长计算公式推导
01
等边三角形周长公式:$P = 3a$,其中 $a$ 为等边三角
形的边长。
02
推导过程
03
由于等边三角形的三条边长 度相等,因此周长等于边长
乘以3,即 $P = 3a$。
典型例题解析
01
例题1
已知等边三角形的边长为 4 cm,求其面积和周长。
02
解析
根据等边三角形面积公式 $S = frac{sqrt{3}}{4}a^{2}$ 和周长 公式 $P = 3a$,代入 $a = 4$
课件《等边三角形》优质PPT课件_人教版1
以AD为一边,作等边三角形ADE,则DE与AC垂直吗?请说明理由。 ⒈ 三个角都相等的三角形是等边三角形.
∴ ∠A=∠B=∠C(在同一个三角形中等边对等角)
∴BC=CA(等角对等边)
1、如图,在等边三角形ABC中AD⊥BC于D。
三边相等的三角形是等边三角形.
有一个角是60°的等腰三角形是等边三角形.
已知:等边△ABC中, BD是AC边上的高,E是BC延长线上一点,且DB=DE,求∠ E的度数.
(2) △DEF为等边三角形吗?为什么?
探究:如图,等边三角形ABC,以下三种方法分别得到的三角形ADE都是等边三角形吗?为什么?
等腰三角形 (2)∠ADE=60°,D,E分别在边AB,AC上
∴ ∠A=∠B=∠C(在同一个三角形中等边对等角)
0
A
(1)求∠BEC的度数.
已知: ⊿ABC中,AB=AC, ∠B=600。
求证:AB=AC=BC ∵ ∠ A=∠B(已知)
等边三角形的判定方法:
∴ ∠B=∠C (等边对等角)
证明: ⊿ABC中 有一个是60°的等腰三角形是等边三角形。
∠APB=60°AP=BP=200cm,他们 等边三角形的内角都相等,且等于60 °
想想看,等边三角形
A
有什么性质?
B
C
⑴三边之间 AB_=AC_=BC
⑵三角之间 ∠A_=∠B_=∠C
探索星空:探究性质一
1、等边三角形的三个内角都相等,并且每一
个角都等于60°.
A
∵ AB=AC=BC
∴ ∠A=∠B=∠C(在同一
B
C
个三角形中等边对等角)
∵ ∠A+∠B+∠C=180° ∴ ∠A=∠B=∠C=60°
∴ ∠A=∠B=∠C(在同一个三角形中等边对等角)
∴BC=CA(等角对等边)
1、如图,在等边三角形ABC中AD⊥BC于D。
三边相等的三角形是等边三角形.
有一个角是60°的等腰三角形是等边三角形.
已知:等边△ABC中, BD是AC边上的高,E是BC延长线上一点,且DB=DE,求∠ E的度数.
(2) △DEF为等边三角形吗?为什么?
探究:如图,等边三角形ABC,以下三种方法分别得到的三角形ADE都是等边三角形吗?为什么?
等腰三角形 (2)∠ADE=60°,D,E分别在边AB,AC上
∴ ∠A=∠B=∠C(在同一个三角形中等边对等角)
0
A
(1)求∠BEC的度数.
已知: ⊿ABC中,AB=AC, ∠B=600。
求证:AB=AC=BC ∵ ∠ A=∠B(已知)
等边三角形的判定方法:
∴ ∠B=∠C (等边对等角)
证明: ⊿ABC中 有一个是60°的等腰三角形是等边三角形。
∠APB=60°AP=BP=200cm,他们 等边三角形的内角都相等,且等于60 °
想想看,等边三角形
A
有什么性质?
B
C
⑴三边之间 AB_=AC_=BC
⑵三角之间 ∠A_=∠B_=∠C
探索星空:探究性质一
1、等边三角形的三个内角都相等,并且每一
个角都等于60°.
A
∵ AB=AC=BC
∴ ∠A=∠B=∠C(在同一
B
C
个三角形中等边对等角)
∵ ∠A+∠B+∠C=180° ∴ ∠A=∠B=∠C=60°
等边三角形(课件)-八年级数学上册(人教版)
证明:在△ABC 中,∵ ∠C =90°,
A
∠A =30°, ∴ ∠B =60°.
延长BC 到D,使BD =AB,连接AD,
则△ABD 是等边三角形.
又∵AC⊥BD, ∴BC = 1 BD.
2
∴BC = 1 AB.
2
B
C
证明方法: 倍长法
D
证法2
证明: 在BA上截取BE=BC,连接EC.
∵ ∠B= 60° ,BE=BC.
三个角都相等的三角 形是等边三角形
有一角是60°的等腰 三角形是等边三角形
例2 如图,在等边三角形ABC中,DE∥BC,
求证:△ADE是等边三角形.
证明:∵ △ABC是等边三角形, ∴ ∠A= ∠B= ∠C. ∵ DE//BC, ∴ ∠ADE= ∠B, ∠ AED= ∠C.
∴ ∠A= ∠ADE= ∠ AED.
证明: 三个角都相等的三角形是等边三角形.
已知:如图,∠A=∠B=∠C.
A
求证:AB=AC=BC.
证明: ∵ ∠A= ∠B,
∴ AC=BC. ∵ ∠B=∠C,
Bபைடு நூலகம்
C
∴ AB=AC.
∴AB=AC=BC.
证明: 有一个角是60°的等腰三角形是等边三角形.
已知: 若AB=AC ,∠A= 60°.
A
求证: AB=AC=BC.
从而△ABD是一个等边三角形. 再由AC⊥BD, 可得BC=CD=你 法还 证12 能 明AB用吗. 其?他方 性质:
B
C
D
在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等 于斜边的一半.
证法1
已知:如图,在Rt△ABC 中,∠C =90°,∠A =30°.
等边三角形2
2021/4/9
1
14.3.2等边三角形
2021/4/9
2
你发现了什么?
这就是今天我们要学的
2021/4/9
3
2021/4/9
4
你知道什么是等边三角形?
定义:三边都相等的三角形叫做等边 三角形
等边三角形是特殊的等腰三A角形, 也叫正三角形。
想一想,你会画一个边长
为2cm的等边三角形吗? B
C
2# 13.
2021/4/9
15
小小探索家:
80分
3. 已 知 在 等 边 △ ABC 中 , 如 果 P 是
△ABC所在平面上的一点,且△PAB、
△ PBC 、 △ PCA 都 是 等 腰 三
· 角形,那么这样的点P的位置共有几个? 试一一画出。 P1
A
B
C
2#13.
幻灯 2021/4/9
16
50分 4.若三角形的三边a,b,c,满足(a-b)2+ (b-C)2 + (c-a)2= 0,则它的形状是( )。
∵ ∠A= ∠ B= ∠ C ∴
角形是等边三角形A .
AB=BC=AC ∴△ABC是等边三角形
等腰三角形
等边三角形
B
C
3 . 有一个角是60°的等腰
三角202形1/4/9 是等边三角形.
∵ ∠B=600 AB=BC ∴△ABC是等边三 角形
9
2021/4/9
10
例1:课外活动小组在一次测量活动中,测
A 直角三角形 B 等腰三角形
C 等腰直角三角形 D 等边三角形
请思考:若a,b,c,满足(a-b) (b-c) (c-a) = 0, 你能判断△ABC的形状吗?
1
14.3.2等边三角形
2021/4/9
2
你发现了什么?
这就是今天我们要学的
2021/4/9
3
2021/4/9
4
你知道什么是等边三角形?
定义:三边都相等的三角形叫做等边 三角形
等边三角形是特殊的等腰三A角形, 也叫正三角形。
想一想,你会画一个边长
为2cm的等边三角形吗? B
C
2# 13.
2021/4/9
15
小小探索家:
80分
3. 已 知 在 等 边 △ ABC 中 , 如 果 P 是
△ABC所在平面上的一点,且△PAB、
△ PBC 、 △ PCA 都 是 等 腰 三
· 角形,那么这样的点P的位置共有几个? 试一一画出。 P1
A
B
C
2#13.
幻灯 2021/4/9
16
50分 4.若三角形的三边a,b,c,满足(a-b)2+ (b-C)2 + (c-a)2= 0,则它的形状是( )。
∵ ∠A= ∠ B= ∠ C ∴
角形是等边三角形A .
AB=BC=AC ∴△ABC是等边三角形
等腰三角形
等边三角形
B
C
3 . 有一个角是60°的等腰
三角202形1/4/9 是等边三角形.
∵ ∠B=600 AB=BC ∴△ABC是等边三 角形
9
2021/4/9
10
例1:课外活动小组在一次测量活动中,测
A 直角三角形 B 等腰三角形
C 等腰直角三角形 D 等边三角形
请思考:若a,b,c,满足(a-b) (b-c) (c-a) = 0, 你能判断△ABC的形状吗?
《等边三角形二》课件
提升习题
提升习题1
请证明等边三角形的高等于一边的一半。
提升习题2
请计算等边三角形的周长和面积。
提升习题3
请找出等边三角形中的中线、垂线和角平分线。
综合习题
1 2
综合习题1
请证明等边三角形中的垂线、中线和角平分线三 线合一。
综合习题2
请计算等边三角形中的内心、外心和重心的位置 。
3
综合习题3
请找出等边三角形中的内心、外心和重心的性质 。
面积与边长的关系
总结词
等边三角形面积与边长的关系
详细描述
等边三角形的面积与边长之间存在正比关系,即随着边长的增加或减小,面积也会相应地增加或减小 。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
04
等边三角形的实际应用
建筑学中的应用
01
02
03
桥梁设计
等边三角形在桥梁设计中 常被用作支撑结构,因为 它具有较高的稳定性。
REPORT
THANKS
感谢观看
CATALOG
DATE
ANALYSIS
SUMMAR Y
总结词
等边三角形面积公式
详细描述
等边三角形的面积公式为 (S = sqrt{3} times a^2/4),其中 (S) 是面积,(a) 是 等边三角形的边长。
面积计算方法
总结词
等边三角形面积计算方法
ቤተ መጻሕፍቲ ባይዱ
详细描述
等边三角形的面积可以通过以下步骤计算:首先,确定等边三角形的边长;其次 ,使用面积公式计算面积;最后,得出结果。
边判定法
总结词
通过三边相等判定等边三角形。
等边三角形的性质和判定 优质课获奖课件
可由学生口答完成,教师多媒体展示结果,提高课 堂效率.
2.教材例4:运用完全平方公式计算: (1)1022=(100+2)2=1002+2×100×2+22 =10 000+400+4
=10 404;
(2)992=(100-1)2=1002-2×100×1+12 =10 000-200+1
=9 801.
2.你能根据下图说明(a-b)2=a2-2ab+b2吗?
第1小题由小组合作共同完成拼图游戏,比一比哪个小组 快?第2小题借助多媒体课件,直观演示面积的变化,帮 助学生联想代数恒等式:(a-b)2=a2-b2-2b(a-b)=a2- 2ab+b2.
六、巩固拓展
教材例5:运用乘法公式计算: (1)(x+2y-3)(x-2y+3);(2)(a+b+c)2.
三角形的判定方法?让学生先自主探索再合作交流,小组 内、小组间充分讨论后概括所得结论.这既巩固应用等腰 三角形的知识,又类比探索等边三角形性质定理和判定定 理的方法,并使学生加深对等腰三角形与等边三角形的联 系与区别的理解.
14.2
14.2.2
乘法公式
完全平方公式
1.完全平方公式的推导及其应用. 2.完全平方公式的几何解释.
第1题图
第2题图
教师提出要求,补充题1,2可以让学生板书过程. 五、总结提高 小结:通过本节课的学习,你了解到了等边三角形有 哪些特点? 怎样判定一个三角形是等边三角形? 布置作业:教材习题13.3第12,14题.
教学中设计了两个问题:把等腰三角形的性质用于等边三
角形,你能得到什么结论?类似地,你又能得到哪些等边
重点 完全平方公式的推导过程、结构特点、几何解释 ,
灵活应用.
难点 理解完全平方公式的结构特征 , 并能灵活应用公 式进行计算.
等边三角形PPT课件
回头看了一眼,朝独自跪在那里的人最后投去悲哀的一瞥。因为挨了四鞭,那人的背还在火辣辣的痛,他的膝盖也跪疼了。不过,这个老人会带着尊严死去,或至少是抱着这样的想法死去。 (节选自《偷书贼》第七章P265~267,略有删改) 致中国读者的信 亲爱的中国读者: ? 谢谢您阅读了这
本《偷书贼》。 ? 我小时候长听故事。我的爸爸妈妈经常在厨房里,把他们小时候的故事告诉我的哥哥、两个姐姐和我,我听了非常着迷,坐在椅子上动都不动。他们提到整个城市被大火笼罩,炸弹掉在他们家附近,还有童年时期建立的坚强友谊,连战火、时间都无法摧毁的坚强友谊。 ? 其中有
所以∠B=600
2
从而∠B=300
B
C
6
逆定理
在直角三角形中锐角是30°。
A
∵ AC⊥BC , BC= 1AB
2
∴ ∠A= 30°
B
C
2021/4/8
7
例1 如图,是屋架设计图的一部分,点D是斜梁
AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4 m ∠A= 30°,立柱BC、DE要多长?
;单创:/c/7radcKIT9fA
;
本文以小红包为线索,两次设置悬念,把小说情节推向高潮;小说的结尾安排巧妙,出人意料却又在情理之中,引人入胜. 【点评】本题考查对文本、故事情节的理解分析能力和对句子含义、作者感情的理解分析能力.其中第(2)题是重点题目,学生解答时,在理解文章内容主旨的基础上,结合
2
如图,将两个含30°角的三角尺摆放在一起。 你能借助这个图形,找到Rt △ABC的直角 边BC与斜边AB之间的数量关系吗?
A
另证:在BA上截取BE=BC,连接EC
30 ° 30 °
则△BCE是等边三角形,所以
等边三角形PPT课件
②得出300 角所对的直角边与斜边之间的数量关系,说明理由.
第34页/共50页
• 探究2
操 作探 究
①当将两个同样大小的三角板(含30 °和60 °的角)摆在一起,
新得到的三角形是特殊的三角形吗?请说明理由;
②得出300 角所对的直角边与斜边之间的数量关系,说明理由.
第35页/共50页
验证:我们可以用两个同样大小的三角尺
二、 等边三角形的判定
1.三个边都相等的三角形是等边三角形; 2.三个角都相等的三角形是等边三角形; 3.有一个内角等于60 °的等腰三角形是等边三角形.
第31页/共50页
• 探究1
操 作探 究
用直尺量一量含30°角的直角三角板的最短直角边(即300 角所
对的直角边)与斜边,记录下数据,你有什么发现?
第14页/共50页
(3)等边三角形各边上中线,高
A
和所对角的平分线都三线合一. D
E
O
(4)等边三角形是轴对称 B F C
图形,有三条对称轴.
A
B
C
第15页/共50页
△ABC是等边三角形,D为AC的中点,延长BC到 E,使CE=CD, 求证:BD=DE A
证明:∵ △ABC是等边三角形
∴ AB=AC=BC,
B
C
第25页/共50页
1.三边都相等的三角形是等边三角形.(定义)
A ∵AB=BC=AC
一般三角形
∴△ABC是等边三角形 等边三角形
B
C
2. 三个角都相等的三角形是 ∵ ∠A= ∠ B= ∠ C
等边三角形.
A
∴△ABC是等边三角形
等腰三角形
等边三角形
B
等边三角形PPT课件
三等分点, △AED是等边三角形,则
∠BAC为(
)度?
A
B
D
E
C
A
因为 ∠A+∠B+∠C=180°,
所以∠A=∠B=∠C=60°.
B
C
试用推理格式写出整个推理过程
推理过程:
∵ AB=AC (已知)
ห้องสมุดไป่ตู้
A
∴∠B=∠C (等边对等角)
同理 ∠A=∠B
∴ ∠A=∠B=∠C
B
C
∵ ∠A+∠B+∠C=180°
(三角形内角和为180°) ∴ ∠A=∠B=∠C = 1830°= 60°.
一、创设情境 1.有两边相等的三角形是等腰三角形,有 三边相等的三角形是等边三角形也称正三 角形.(如图)
2.①等腰三角形是轴对称图形. ②等腰三角形的两个底角相等.简写成 “等边对等角”. ③等腰三角形的顶角平分线,底边上的 中线和底边上的高互相重合.
3.以上等腰三角形的三个结论能传递给等边 三角形吗?
可以.因为等边三角形是特殊的等腰三角形.
4.既然等边三角形是一个特殊的等腰三角形, 那么这个特殊的等腰三角形也会有自己特有的 结论吗?请同学们相互讨论一下.
二、探究归纳
1.将等边三角形△ABC画到黑板上(如图).
△ABC是一个等边三角形也是等腰三角形,
根据三角形中等边对等角 ,可以得到
∠A=∠B=∠C.
1、等边三角形是_______对称图形,它有 _______条对称轴,是_________________。
2、已知△ABC中,∠A=∠B=60°,AB=3cm 则△ABC的周长________
3、 △ABC是等腰三角形,周长为15cm且 ∠A=60°,则BC=_______
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12
9、如图, ∠AOB= 30°,P是角平分线上的点,
PM⊥OB于M,PN//OB交OA于N,若PM=1cm,
则PN=__2_c_m____.
A
E
N P
O
MB
2021/02/01
13
Thank you
感谢聆听 批评指导
汇报人:XXX 汇报日期:20XX年XX月XX日
感谢您的观看!本教学内容具有更强的时代性和丰富性,更适合学习需要和特点。为了 方便学习和使用,本文档的下载后可以随意修改,调整和打印。欢迎下载!
所以AE=EC,于是有 BC= 1 AB
E
2
D
B
3C
直角三角形的性质定理:
在直角三角形中,如果一个锐角等于30°, 那么它所对的直角边等于斜边的一半。
A
∵ AC⊥BC ,∠A= 30° ∴BC= 1 AB
2
B
C
在解有关直角三角形的边的关系的问题中, 常常会用到这条性质,这是一种常用的方法。
2021/02/01
且BD=16cm,则BC= 24cm .
AD=2CD成立吗?
2021/02/01
8
4、如图, △ABC是等边三角形,
A
AD⊥BC,DE⊥AB,垂足分别
是D、E,如果AB=8cm,
则BD=___4_cm____, ∠BDE= ∠A= 30°, BE=__2_cm____.
E
B
D
C
5、如图,在△ABC中, ∠ACB= 90°,BA的
2021/02/01
14
A 11
7、如图,在△ABC中, AB=AC, ∠BAC= 120°,AC的垂直平分线EF交AC 于点E,交BC于点F。求证:BF=2CF。
A E
C D
B
F
C
B
E
A
8、 如图,在△ABC中, ∠ACB= 90°,
∠B= 15°,AB的垂直平分线分别交BC、AB 于D、E。求证:DB=2AC
2021/02/01
2
如图,将两个含30°角的三角尺摆放在一起。 你能借助这个图形,找到Rt △ABC的直角 边BC与斜边AB之间的数量关系吗?
A
30 ° 30 °
B C 2021/02/01
另证:在BA上截取BE=BC,连接EC
则△BCE是等边三角形,所以
∠BEC= 60°,而∠A= 30°, A
所以∠ECA= 30°,B DAEC
2021/02/01
7
1、如图,在Rt△ABC中, ∠B=2 ∠A,AB=6cm, 则BC=___3_c_m___.
2、如图, Rt△ABC中, ∠A= 30°,AB+BC=12cm, 则AB= __8_c_m___.
B
CD
A
3、如图, Rt△ABC中, ∠A= 30°,BD平分∠ABC,
4
想一想:如图,在Rt△ABC中,若
则∠A为几度?
BC=
1 2
AB
A
B
C
2021/02/01
另证:作AC的垂直平分线MN,连接MC 则AM=MC,∠A= ∠1
又∠A+ ∠B=900
∠1+ ∠2=900
所以∠B= ∠2
A
D 所以MB=MC=AM
所以MB=MC=
又BC=
1 2
AB
1 2
AB
M
N
1
所以∠B=600
14.3.2 等边三角形(2)
2021/02/01
1
复习回顾
A
1、等边三角形的概念:
2、等边三角形的性质:
B
C
等边三形的三个内角都相等,并且每一个角都等于600.
3、等边三角形的判定: (1)定义法;
(2)三个角都相等的三角形是等边三角形;
(3)有一个角是600的等腰三角形是等边三角形;
2021/02/01
A
D
D
A
B
2021/02/01
C
B
C
10
例2:如图,上午9时,一条渔船从A出发,以12 海里/时的速度向正北航行,11时到达B处,从A、 B两处望小岛C,测得∠NAC=150, ∠NBC=300, 若小岛周围12.3海里内有暗礁,问该渔船继续向 正北航行有无触礁的危险?
N
C
D
B
2021/02/01
2
从而∠B=300
B
C
5
逆定理
在直角三角形中,如果一条直角边是斜边的 一半,那么这条直角边所对 的锐角是30°。
A
∵ AC⊥BC , BC= 1 AB
2
∴ ∠A= 30°
B
C
2021/02/01
6
例1 如图,是屋架设计图的一部分,点D是斜梁
AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4 m ∠A= 30°,立柱BC、DE要多长?
垂直平分线交边CB于D。若AB=10,AC=5,
则图中等于 30°的角的个数为(B ) C
D
A.2
B.3
C.4
2021/02/01
D.5
B
E
A
9
6、等腰三角形一腰上的高线等于腰长的一半, 则此三角形的三个角的度数分别是_________ _3_0_°__、___7_5_°__、___7_5_°__或__1_5_°__、__1_5_°__、___1_5_0°