原子物理学第八章习题答案

合集下载

原子物理学习题与答案

原子物理学习题与答案

h

; B.E= h ,P= ;
C. E=h ,p=


;
D. E= ,p=


20 为使电子的德布罗意假设波长为 0.39nm , 应加多大的能量: A.20eV; B.10eV; C.100eV; D.150eV -7 21.如果一个原子处于某能态的时间为 10 S,原子这个能态能量的最小不确定数量级为 (以焦耳 为单位) : -34 -27 -24 -30 A.10 ; B.10 ; C.10 ; D.10 -13 22.将一质子束缚在 10 cm 的线度内,则估计其动能的量级为: -20 A. eV; B. MeV; C. GeV; D.10 J 23.按量子力学原理,原子状态用波函数来描述. 不考虑电子自旋,对氢原子当有确定主量子数 n 时,对应的状态数是: 2 2 A.2n; B.2n+1; C.n ; D.2n 24.按量子力学原理,原子状态用波函数来描述.不考虑电子自旋,对氢原子当 nl 确定后,对应的 状态数为: 2 A.n ; B.2n; C. l ; D.2 l +1 25.按原子力学原理,原子状态用波函数来描述.考虑电子自旋,对氢原子当 nl 确定后,对应的状 态数为: 2 A.2(2 l +1) ; B.2 l +1; C. n; D.n 26.按量子力学原理,原子状态用波函数来描述.考虑自旋对氢原子当 nl m 确定后对应的状态数 为:A.1; B.2; C.2 l +1; D. n 27.单个 f 电子总角动量量子数的可能值为: A. j =3,2,1,0; B .j=± 3; C. j= ± 7/2 , ±5/2; D. j= 5/2 ,7/2 28.单个 d 电子的总角动量投影的可能值为: A.2 ,3 ; B.3 ,4 ; C.

原子物理学杨福家1-6章 课后习题答案(2020年7月整理).pdf

原子物理学杨福家1-6章 课后习题答案(2020年7月整理).pdf

原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线第一章 习题1、2解1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为Mα,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射。

电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。

α粒子-电子系统在此过程中能量与动量均应守恒,有:222212121v m V M V M e +'=αα (1)ϕθααcos cos v m V M V M e +'= (2)ϕθαsin sin 0v m V M e −'= (3)作运算:(2)×sin θ±(3)×cos θ,(4)(5)再将(4)、(5)二式与(1)式联立,消去V’与v,化简上式,得(6)θϕμϕθμ222sin sin )(sin +=+ (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有令sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sin θ=0若 sin θ=0, 则 θ=0(极小) (8)(2)若cos(θ+2φ)=0 ,则 θ=90º-2φ (9)将(9)式代入(7)式,有θϕμϕμ2202)(90sin sin sin +=−θ≈10-4弧度(极大)此题得证。

1.2(1)动能为5.00MeV 的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大? (2)如果金箔厚1.0 μm ,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n 值.其他值从书中参考列表中找.解:(1)依金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为22.8fm.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来. (问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=1.888×104kg/m3依θasin即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。

原子物理学 杨福家 第四版(完整版)课后答案

原子物理学 杨福家 第四版(完整版)课后答案
6 (Å), r,4r,1.06v,,C,2.19,10(m/s)221
1++6 Li离子:r,,0.529,0.176(Å), v,3,c,6.57,10(m/s)113
36 (Å), r,4r,0.704v,,C,3.29,10(m/s)2212(2) H原子: E,,Rhc,,13.6(eV)1
22,,,,,ZZe2sindsinZZed221212,,()NNnt,1-10 ,2()Nnt,4,4,4,Esin4Esin22
2ZZe12,2b12, N2nt()4[sin] ,,,,,a24E2
12,49,N,9.38,10,6.24,10,0.242,1.41,10(1) 12,410,N,9.38,10,6.24,10,3,1.76,10(2) ,12,411(3) ,N(,,10),9.38,10,6.24,10,131,7.68,10,121112 ?,N(,,10),9.38,10,7.68,10,8.61,10
原子物理学 杨福家 第四版(完整版)课后答案
原子物理习题库及解答
第一章
111,222,,mvmvmv,,,,,,,ee222,1-1 由能量、动量守恒
,,,mvmvmv,,,,,,ee,
(这样得出的是电子所能得到的最大动量,严格求解应用矢量式子)
Δp θ
mv2,,,得碰撞后电子的速度 p v,em,m,e
24Ze4,79,.5mv,,
24Ze4,3,1.44Li核: r,,,1.92(fm)m22,4.5mv,,
2ZZe1,79,1.4412E,,,16.3(Mev)1-4 (1) pr7m
2ZZe1,13,1.4412E,,,4.68(Mev)(2) pr4m

最新原子物理学答案(杨福家-高教第四版)(第一章)无水印-打印版

最新原子物理学答案(杨福家-高教第四版)(第一章)无水印-打印版

原子物理学课后答案(第四版)杨福家著高等教育出版社第一章:原子的位形:卢瑟福模型第二章:原子的量子态:波尔模型第三章:量子力学导论第四章:原子的精细结构:电子的自旋第五章:多电子原子:泡利原理第六章:X射线第七章:原子核物理概论第八章:超精细相互作用原子物理学——学习辅导书吕华平刘莉主编(7.3元定价)高等教育出版社第一章习题答案1-1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为410-rad.解:设碰撞以后α粒子的散射角为θ,碰撞参数b 与散射角的关系为2cot 2θa b =(式中Ee Z Z a 02214πε=)碰撞参数b 越小,则散射角θ越大。

也就是说,当α粒子和自由电子对头碰时,θ取得极大值。

此时粒子由于散射引起的动量变化如图所示,粒子的质量远大于自由电子的质量,则对头碰撞后粒子的速度近似不变,仍为,而电子的速度变为,则粒子的动量变化为v m p e 2=∆散射角为410*7.21836*422-=≈≈∆≈v m v m p p e αθ 即最大偏离角约为410-rad.1-2 (1)动能为5.00MeV 的α粒子被金核以︒90散射时,它的瞄准距离(碰撞参数)为多大? (2)如果金箔厚为1.0um ,则入射α粒子束以大于︒90散射(称为背散射)的粒子是全部入射粒子的百分之几? 解:(1)碰撞参数与散射角关系为:2cot 2θa b =(式中Ee Z Z a 02214πε=)库伦散射因子为:Ee Z Z a 02214πε==fm MeV MeV fm 5.45579*2**44.1= 瞄准距离为: fm fm a b 8.2245cot *5.45*212cot 2===︒θ(2)根据碰撞参数与散射角的关系式2cot 2θa b =,可知当︒≥90θ时,)90()(︒≤b b θ,即对于每一个靶核,散射角大于︒90的入射粒子位于)90(︒<b b 的圆盘截面内,该截面面积为)90(2︒=b c πσ,则α粒子束以大于︒90散射的粒子数为:π2Nntb N =' 大于︒90散射的粒子数与全部入射粒子的比为526232210*4.98.22*142.3*10*0.1*19788.18*10*02.6--===='πρπtb M N ntb N N A 1—3 试问:4.5Mev 的α粒子与金核对心碰撞时的最小距离是多少?若把金核改为Li 7核,则结果如何? 解:(1)由式4—2知α粒子与金核对心碰撞的最小距离为=m r Ee Z Z a 02214πε==fm MeV MeV fm 6.505.479*2**44.1=(2)若改为Li 7核,靶核的质量m '不再远大于入射粒子的质量m ,这时动能k E 要用质心系的能量c E ,由式3—10,3—11知,质心系的能量为:)(212mm mm m v m E u u c +''==式中 得k k k Li He Li k u c E E E A A A E m m m v m E 117747212=+=+≈+''==α粒子与Li 7核对心碰撞的最小距离为:=m r Ee Z Z a 02214πε==fm MeV MeV fm 0.37*5.411*3*2**44.1=1—4 (1)假定金核半径为7.0fm ,试问:入射质子需要多少能量,才能在对头碰撞时刚好到达金核的表面?(2)若金核改为铝核,使质子在对头碰撞时刚好到达铝核的表面,那么,入射质子的能量应为多少?设铝核半径为4.0fm 。

原子物理习题解答

原子物理习题解答

原子物理习题解答1(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--原子物理学习题解答电子和光子各具有波长,它们的动量和总能量各是多少?解:由德布罗意公式p h /=λ,得:m/s kg 10315.3m 1020.0s J 1063.624934⋅⨯=⨯⋅⨯===---λhp p 光电 )J (109.94510310315.316-824⨯=⨯⨯⨯====-c p hch E 光光λν21623116222442022)103101.9(103)10315.3(⨯⨯⨯+⨯⨯⨯=+=--c m c p E 电电)J (1019.8107076.61089.9142731---⨯=⨯+⨯=铯的逸出功为,试求: (1)铯的光电效应阈频率及阈值波长;(2)如果要得到能量为的光电子,必须使用多大波长的光照射?解:(1) 由爱因斯坦光电效应公式w h mv -=ν221知,铯的光电效应阈频率为: Hz)(10585.41063.6106.19.11434190⨯=⨯⨯⨯==--h w ν 阈值波长: m)(1054.610585.4103714800-⨯=⨯⨯==νλc (2) J 101.63.4eV 4.3eV 5.1eV 9.12119-2⨯⨯==+=+=mv w h ν 故: m)(10656.3106.14.31031063.6719834---⨯=⨯⨯⨯⨯⨯===ννλh hc c若一个电子的动能等于它的静止能量,试求:(1)该电子的速度为多大(2)其相应的德布罗意波长是多少解:(1)由题意知,20202c m c m mc E k =-=,所以20222022/1c m c v c m mc =-=23cv =⇒ (2)由德布罗意公式得: )m (104.1103101.931063.632128313400---⨯=⨯⨯⨯⨯⨯=====c m h v m h mv h p h λ (1)试证明: 一个粒子的康普顿波长与其德布罗意波长之比等于2/120]1)/[(-E E ,式中0E 和E 分别是粒子的静止能量和运动粒子的总能量.(2)当电子的动能为何值时,它的德布罗意波长等于它的康普顿波长? (1)证明:粒子的康普顿波长:c m h c 0/=λ德布罗意波长: 1)/(1)/(2020204202-=-=-===E E E E c m hcc m E hc mv h p h c λλ 所以, 2/120]1)/[(/-=E E c λλ(2)解:当c λλ=时,有11)/(20=-E E ,即:2/0=E E 02E E =⇒故电子的动能为:2000)12()12(c m E E E E k -=-=-=)J (1019.8)12(109101.9)12(141631--⨯⨯-=⨯⨯⨯⨯-=MeV 21.0eV 1051.0)12(6=⨯⨯-=一原子的激发态发射波长为600nm 的光谱线,测得波长的精度为710/-=∆λλ,试问该原子态的寿命为多长?解: 778342101061031063.6)(---⨯⨯⨯⨯⨯=∆⋅=∆-=∆=∆λλλλλνhc c h h E )J (10315.326-⨯= 由海森伯不确定关系2/ ≥∆∆t E 得:)s (1059.110315.32100546.1292634---⨯=⨯⨯⨯=∆≥=∆E t τ 一个光子的波长为300nm,如果测定此波长精确度为610-.试求此光子位置的不确定量.解: λλλλλλλλ∆⋅=∆≈∆+-=∆h h h h p 2,或:λλλλλνννν∆⋅=∆=∆-=∆+-=∆h c c h c h c h c h p 2)( m/s)kg (1021.2101031063.6336734⋅⨯=⨯⨯⨯=---- 由海森伯不确定关系2/ ≥∆∆p x 得:)m (10386.21021.22100546.1223334---⨯=⨯⨯⨯=∆≥∆p x 当一束能量为的α粒子垂直入射到厚度为5100.4-⨯cm 的金箔上时,探测器沿20°方向每秒纪录到4100.2⨯个α粒子.试求:(1)仅改变探测器安置方位,沿60°方向每秒可纪录到多少个α粒子?(2)若α粒子能量减少一半,则沿20°方向每秒可测得多少个α粒子?(3) α粒子能量仍为,而将金箔换成厚度相同的铝箔, 则沿20°方向每秒可纪录到多少个α粒子(金和铝的密度分别为cm 3和cm 3,原子量分别为197和27,原子序数分别为79和13.忽略核的反冲).解:由公式, )2/(sin /')()41('42220220θπεr S Mv Ze Nnt dN =)2/(sin /')2()41(422220θπεαr S E Ze Nnt = (1) 当︒=60θ时, 每秒可纪录到的α粒子2'dN 满足:01455.030sin 10sin )2/(sin )2/(sin ''44241412=︒︒==θθdN dN 故 241210909.210201455.0'01455.0'⨯=⨯⨯==dN dN (个)(2) 由于2/1'αE dN ∝,所以 413108'4'⨯==dN dN (个) (3) 由于2'nZ dN ∝,故这时:31211342442112441410/10/''--⨯⨯==A Z N A Z N Z n Z n dN dN A A ρρ 55310227793.19197137.2''4221421112444=⨯⨯⨯⨯⨯⨯=⋅⋅=dN A Z A Z dN ρρ(个)动能为40MeV 的α粒子和静止的铅核(Z=82)作对心碰撞时的最小距离是多少?解:由公式: ])2/sin(11[2412020θπε+=Mv Ze r m , 当对心碰撞时,πθ=,1)2/sin(=θ,则 m)(109.5106.11040)106.1(82210924115196219920---⨯=⨯⨯⨯⨯⨯⨯⨯==απεE Ze r m 动能为的质子接近静止的汞核(Z=80),当散射角2/πθ=时,它们之间的最小距离是多少?解:最小距离为:])2/sin(11[241])2/sin(11[41202020θπεθπε+=+=p p m E Ze v m Ze r m)(1060.1]45sin 11[106.11087.02106.180109131962199---⨯=︒+⨯⨯⨯⨯⨯⨯⋅⨯=)( 试证明α粒子散射中α粒子与原子核对心碰撞时两者间的最小距离是散射角为90°时相对应的瞄准距离的两倍。

原子物理学 课后答案

原子物理学  课后答案

目录第一章原子的位形 (2)第二章原子的量子态:波尔模型 (8)第三章量子力学导论 (12)第四章原子的精细结构:电子的自旋....................... 错误!未定义书签。

第五章多电子原理:泡利原理 (23)第六章X射线 (28)第七章原子核物理概论.......................................... 错误!未定义书签。

1.本课程各章的重点难点重点:α粒子散射实验公式推导、原子能量级、氢原子的玻尔理论、原子的空间取向量子化、物质的波粒二象性、不确定原则、波函数及其物理意义和薛定谔方程、电子自旋轨道的相互作用、两个价电子的原子组态、能级分裂、泡利原理、电子组态的原子态的确定等。

难点:原子能级、电子组态、不确定原则、薛定谔方程、能级分裂、电子组态的原子态及基态的确定等。

2.本课程和其他课程的联系本课程需在高等数学、力学、电磁学、光学之后开设,同时又是理论物理课程中量子力学部分的前导课程,拟在第三学年第一学期开出。

3.本课程的基本要求及特点第一章原子的位形:卢瑟福模型了解原子的质量和大小、原子核式模型的提出;掌握粒子散射公式及其推导,理解α粒子散射实验对认识原子结构的作用;理解原子核式模型的实验验证及其物理意义。

第二章原子的量子态:玻尔模型掌握氢原子光谱规律及巴尔末公式;理解玻尔原子模型的基本假设、经典轨道、量子化条件、能量公式、主量子数、氢能级图;掌握用玻尔理论来解释氢原子及其光谱规律;了解伏兰克---赫兹实验的实验事实并掌握实验如何验证原子能级的量子化;理解索菲末量子化条件;了解碱金属光谱规律。

第三章量子力学导论掌握波粒二象性、德布罗意波的假设、波函数的统计诠释、不确定关系等概念、原理和关系式;理解定态薛定谔方程和氢原子薛定谔方程的解及n,l,m 三个量子数的意义及其重要性。

第四章 原子的精细结构:电子的自旋理解原子中电子轨道运动的磁矩、电子自旋的假设和电子自旋、电子量子态的 确定;了解史特恩—盖拉赫实验的实验事实并掌握实验如何验证角动量取向的量子化;理解碱金属原子光谱的精细结构;掌握电子自旋与轨道运动的相互作用;了解外磁场对原子的作用,理解史特恩—盖拉赫实验的结果、塞曼效应。

原子物理学习题(参考答案)

原子物理学习题(参考答案)

【1-6】一束α 粒子垂直射到一重金属箔上,求α 粒子被金属箔散射后,散射角θ ≥600 的 α 粒子数与散射角θ ≥900 的α 粒子数之比。
Z Z e2 dN 1 2 sin 4 ( ) Nnt ( 1 2 2 ) 2 2 4 0 2Mv 解:由 d 可得散射角 90 的α 粒子数为

2
1 ) 180 0 sin 2
5.06 10 14 m
α 粒子与 7Li 核对心碰撞的最小距离(考虑质心系运动)
rm
1 4 0 1 4 0 1 4 0
Z1 Z 2 e 2 (1 v 2 Z1 Z 2 e 2 (1 2 Ec
2
1 sin 1 sin

2
)


2
原子物理学习题 一、选择10-8m ; C C、10-10m ;
D、10-13m 。 C
(2)原子核式结构模型的提出是根据 粒子散射实验中 A、绝大多数 粒子散射角接近 180 ; C、以小角散射为主也存在大角散射;
B、 粒子只偏 2 ~3 ; D、以大角散射为主也存在小角散射。
散射角 60 的α 粒子数
N dN (
1 4 0
) 2 Nnt (
Z1 Z 2 e 2 2 ) 2Mv 2
180
1 sin
4

2
d
散 射 角
60 的 α 粒子数与散 (
α 【2-2】 分别计算 H、 He+、 Li++: (1)第一波尔半径、第二波尔半径及电子在这些轨道上的速度; (2)电子在基态的结合能; (3)由基态到第一激发态所需的激发能量及由第一激发态到基态所辐射的光子的波长。 解: (1)由

原子物理学第八章习题答案

原子物理学第八章习题答案

原子物理学第八章习题答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第八章 X 射线8.1 某X 光机的高压为10万伏,问发射光子的最大能量多大?算出发射X 光的最短波长。

光的最短波长。

解:电子的全部能量转换为光子的能量时,X 光子的波长最短。

而光子的最大能量是:5max 10==Ve ε电子伏特电子伏特而 min max λεch = 所以οελA c h124.01060.1101031063.6195834max min =⨯⨯⨯⨯⨯==-- 8.2 利用普通光学反射光栅可以测定X 光波长。

当掠射角为θ而出现n 级极大值出射光线偏离入射光线为αθ+2,α是偏离θ级极大出射线的角度。

试证:出现n 级极大的条件是λααθn d =+2sin 22sin 2 d 为光栅常数(即两刻纹中心之间的距离)。

当θ和α都很小时公式简化为λαθαn d =+)2(2。

解:相干光出现极大的条件是两光束光的光程差等于λn 。

而光程差为:2sin 22sin 2)cos(cos ααθαθθ+=+-=∆d d d L 根据出现极大值的条件λn L =∆,应有λααθn d =+2sin 22sin 2当θ和α都很小时,有22sin ;22222sin αααθαθαθ≈+=+≈+ 由此,上式化为:;)2(λααθn d =+即 λαθαn d =+)2(28.3 一束X 光射向每毫米刻有100条纹的反射光栅,其掠射角为20'。

已知第一级极大出现在离0级极大出现射线的夹角也是20'。

算出入射X 光的波长。

解:根据上题导出公式:λααθn d =+2sin 22sin 2 由于'20,'20==αθ,二者皆很小,故可用简化公式:λαθαn d =+)2(2由此,得:οαθαλA n d 05.5)2(;=+=8.4 已知Cu 的αK 线波长是1.542οA ,以此X 射线与NaCl 晶体自然而成'5015ο角入射而得到第一级极大。

原子物理学课后答案

原子物理学课后答案

第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。

散射物质是原子序数79Z =的金箔。

试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:20222442K M vctgb b Z eZ eαθπεπε==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Z e ctgctgb K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K M v α=是α粒子的功能。

1.2已知散射角为θ的α粒子与散射核的最短距离为222121()(1)4s inm Z e r M vθπε=+,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2m in 22121()(1)4sinZ e r M vθπε=+1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。

当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。

根据上面的分析可得:220m in124pZ eM vKr πε==,故有:2m in 04pZ er Kπε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米由上式看出:m in r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。

原子物理U8

原子物理U8

LIII 系与碱金属第一辅线系有相仿结构。其他 X 光谱系也具有同金属相仿的结构。
w.
组量子数分别对应五个光谱项值,所以 M 系带有五个吸收限,即是五重的。同理可知:N 系是七重的。O系是九重的。 8.8 试证明 X 光标识谱和碱金属原子光谱有相仿的结构。 证明:我们以 X 光谱 L 系与碱金属光谱进行比较。L 系是由外层电子向 L 壳层(n=2)
由于 20' , 20' ,二者皆很小,故可用简化公式:
ww
由此,得: ;
w.
kh da
2d sin
2 d ( ) n 2
d ( ) 5.05 A n 2
8.4 已知 Cu 的 K 线波长是 1.542 A ,以此 X 射线与 NaCl 晶体自然而成 15 50' 角入射
(2) n, l 相同时, ml 还可以取两 2l 1 个值,而每一个 m s 还可取两个值,所以 n, l 相同的最大电子数为 2(2l 1) 个。 (3) n 相同时,在(2)基础上, l 还可取 n 个值。因此 n 相同的最大电子数是:
n 1
N 2(2l 1) 2n 2
kh da

第八章 X 射线
6.63 10 34 3 10 8 0 . 124 A 10 5 1.60 10 19
答 案
2
2
w.
2

起到钙 Z=20 的 4 S 能级低于 3 D 能级,所以钾和钙从第 19 个电子开始不是填 3d而填4 s
2 2 2
Hale Waihona Puke co m始不填 3d而填4s 次壳层,又从钪 Z=21 开始填 3d而不填4s 次壳层?

《原子物理学》部分习题解答(杨福家)

《原子物理学》部分习题解答(杨福家)
Bz dD z m v
gJ
2
z g J B
氢原子基态 氯原子基态
2
3 2 3
S1/ 2 P3 / 2

1 S ( S 1) L ( L 1) 2 2 J ( J 1)
两束
四束
2
gJ
1 S ( S 1) L ( L 1) 4 2 2 J ( J 1) 3
pc
E k ( E k 2m0c ) E k
2
所以
E k m in p m in c 6 2 M eV
4-2 解: 原子态
2
D3/2
1 2 , J 3 2
可得
gJ 3 2
L 2, S
mJ
1 2
,
3 2
1 S ( S 1) L ( L 1) 4 2 J ( J 1) 5
Ek Ek
3.1keV 0.0094keV
3-3 解:
Ek m0 c 0.511MeV
2
若按非相对论处理
Ek 1 2 m0 v ,有
2
1 2
m0 v m0 c
2
2
v 2c
显然不合理,需要用相对论来处理。
E Ek m0 c 2m0c
2 2
又E mc m0 c
有磁场
m mg
1 2
3
S
1
0
1
0
2
g 2
h 0
3
P0
0
0
m 2 g 2 m1 g 1
2
0
2
相邻谱线的频率差
c

《物理学基本教程》课后答案第八章真空中的静电场精品资料

《物理学基本教程》课后答案第八章真空中的静电场精品资料

第八章真空中的静电场8-1在正方形的四个顶点上放置四个等量正电荷q 4.010 8 C, 要想在此正方形的中心再放置一个负电荷,使在每个电荷上的合力为零,此负电荷的量值应为多少?分析本题是应用库仑定律求解电荷受电场力yF21 F31 q 4q 1的平衡问题.注意到库仑定律表达式是矢量式,求解时,通常可以建立直角坐标系,将各力投影在两O F41xF Q1Q正交方向上,得到各分量之间的代数关系式;也可以直接用矢量合成关系得出相同的结果.因为正方形四个顶点上的点电荷带电量相等,负电荷 Q 置于正方形中心,因此电荷分布具有明显的对称性,四顶点上的点电荷受力大小相同,而且两坐标方向分量的方程应具有相同的表达形式.解 1设a为正方形边长,取如图8-1 所示的 Oxy 坐标系.以 F1 x表示电荷q1所受的合力在 x 方向的分量,F i1 x表示其它电荷对它的作用力在x 方向的分量,根据题意,合力的在x 方向分量的代数和为零,有F1x F21xF31xF41xFQ 1x应用库仑定律,可得电荷 q1所受其它电荷对它的力在x 方向的分量,代入上式得0q 2 cos45q2qQ cos450 42a240 a22400 2 a2Q1 2 q12 4.0 108C42423.8310 8C解 2由图 8-1知 F Q1与电荷 q1所受另三力的合力均在对角线方向上,故在该方向上力的平衡方程为F Q12F21 cos45F310应用库仑定律,可得上式中各力的量值,则有qQ2q 2 cos45q 22240 a 2 4 02a2402a亦有Q1 2 q12 4.010 8C 3.83 10 8 C42428-2电荷量为等值同号的两个点电荷之间距离为2l,求其连线的中垂面上电场强度最大处到两电荷连线中点的距离.分析因两电荷等量同号,由于对称性,在连线中垂面上,以连线中点为圆心的圆上各点电场强度大小相等,方向沿径向.只需求出电场强度沿径向的分布规律,电场强度最大处应满足极值条件.yEE2E1( 0, y)解以两点电荷连线中点 O 为原点 ,x轴沿连线方向, y 轴为中垂面上任一径向,取如图8-2所示的坐标系. E 、E分别为两点电荷在y 轴上任意点 (0, y) 处产生的电场强度,由12于对称性,合场强 E (0, y)沿y正向,y轴上任意点的合场强为E E1E22E1 cos j其中E1 E2q, cosy40y2l2221y l2故E qy22320y l2dE电场强度最大处应满足极值条件,令0,得dyq l 2 2 y222250y l2解得y 2 l2因 y 轴为中垂面上任一径向,无须取负值,则极值位置为y02l .又由计算2可得 d2 E0 ,故在位置为 y02l 处E有极大值,即在中垂面(x= 0)上dy 2y y02场强最大处是以 O 为中心,半径为2l 的圆.28-3半径为R的一段圆弧,圆心角为60 ,一半均匀带正电,另一半均匀带负电,单位长圆弧上所带电荷量分别为和,求其圆心处的电场强度.分析当电荷沿一细线连续分布时,电荷线密度为,须将带电细线分为足够小的一系列电荷元 dq dl ,每一电荷元都可视为点电荷.设r 为电荷元 dq 到空间某点的径矢,则场强叠加原理给出该点场强为沿电荷分布曲线L 的矢量积分 Er dq r dl,通常应取平面直角坐标系,将矢量积分化为两标量L 40 r3L40 r3积分进行计算在解题时应该注意到,电荷分布的对称性往往会使问题得到简化..解以带电圆弧的圆心为原点,取如图8-3 的 Oxy坐标系,带正电的圆弧上电荷元 dq dl Rd的角位置为,在圆心处的场强为 d E,与之对称的带负电的圆弧上电荷元 dq dl 角位置为,+在圆心处的场强为 d E.不难看出,dE x与dE x相抵消, dE y与 dE y相等,即d ldE x dE x0+dE y dE y2dE y2dE sin+θOx–- θ电荷元 dq 在圆心处电场强度的大小为dEdqd4 0R 24 0R应用场强叠加原理,得3030sin d3E E y 2 dE y 214 0R20R28-4 均匀带正电荷圆环,半径为R ,电荷线密度为,其上有一长度为d ( dR) 的缺口,试求轴线上距环心x 处 P 点的电场强度.分析 根据场强叠加原理,完整的圆环在 x 处的电场强度应等于带缺口的圆弧在 x 处的场强与缺口弧元在该点场强的叠加.因例题 8-3 已经给出了完整的圆环在 x 处的电场强度,而且对于弧元,因 dR ,可以视为一个点电荷,所以带缺口圆弧在轴线上 x 处的电场强度应等于完整的圆环在x 处的场强与视为点电荷的弧元在该点场强的矢量差.y d- E 2yEOθxE 1 xRE 2yE 2图 8-4解 取如图 8-4 所示的 O xy 坐标系, x 轴在圆环轴向,使缺口与圆心连线在 O xy 平面内.利用例题 8-3 结果,完整带电圆环在 x 处的场强 E 1 沿 x 方向,即E1E1 xqx22340xR2其中 q 2 R .由点电荷场强表达式,带电量为 d 的点电荷在x处的场强为E21d40 ( x2R2 )E2 x1x d, E2 y E2 sinR dE2 cos x R3x R34 02224222带缺口圆弧在轴线上 x 处的电场强度应等于完整的圆环在x 处的场强与弧元d 在该点场强的矢量差,即E E1 E 2,并得两坐标方向的分量表达式为E x E1xE2x2 R d x0 (x 234R2) 2E y0E2 yR d0 ( x234R2) 2E 方向与x轴正向夹角为arctan E yE xarctanRdx 2 R d8-5一半径为R 的均匀带电细圆环,一半电荷线密度为,另一半电荷线密度为,求轴线上距环心x 处的电场强度(假设电荷是不能移动的).d qA d E dE O x d E xBd q ˊyd EˊdEd E yd E'x x d E z z( a)(b)图 8-5分析根据电荷分布的对称性,在带电细圆环上取任一条直径的两端等量异号电荷元,它们在轴线上距环心x 处的电场强度沿轴线方向的分量大小相等方向相反,故相互抵消,而垂直于轴线的分量互相加强.但是,这些成对的电荷元在x处的电场强度垂直于轴线的分量方向却各不相同,均匀分布在一个半圆区域内,与各电荷元在圆环上的位置有关.所以,还必须在垂直于轴线的平面内进行矢量叠加,才能求出整个圆环在 x 处的电场强度.解取圆环的轴线为x 轴,在圆环上距正负电荷分界点 A 的张角为处取电荷元 dq Rd,直径的另一端等量异号电荷元为dq ,它们在x处的电场强度沿轴线方向的分量dE x和 dE x大小相等方向相反,相互抵消,如图8-5 (a)所示,而垂直于轴线的分量dE 则互相加强.由点电荷场强表达式得dE Rd sin R2 d0 ( x 2R2 )R2)324 4 0 (x 2在垂直于轴线的平面内,以OA 方向为 z 轴正向,可得 dE 的投影如图 8-5( b)所示,则有dE y dE sin,dE z dE c o s对带正电荷的半圆环积分的 2 倍,就是整个圆环在x 处的电场强度,即得E z 2dE z 2 cos dE000E E y 2 sin dE R 2sinR 23d30 ( x204 0 ( x24R2) 2R2) 2x 处的电场强度方向为y 轴正向.8-6 均匀带电细棒,棒长l = 20cm ,线电荷密度 3 10 8 C/m .求:(1)棒的延长线上与棒的中点相距L = 18cm处的电场强度;(2)棒的垂直平分线上与棒的中点相距 d = 8cm处的电场强度.yd E Qd E d E′Qdd x′x d x P d E PO L x图 8-6分析当电荷沿一细线连续分布时,须将带电细线分为足够小的一系列电荷元 dq dl ,空间某点电场强度为沿电荷分布曲线L 的矢量积分E r dl3 .当L 40 r计算细棒延长线上某点的电场强度时,细棒上各电荷元在该点的电场强度方向相同,均沿延长线方向,矢量积分将简化为标量积分,而不论细棒上的电荷分布是否均匀.当计算细棒的垂直平分线上某点的电场强度时,由于电荷分布的对称性,均匀带电细棒中点两边对称位置处的电荷元在该点的电场强度沿棒长方向的分量将互相抵消,只需计算垂直于棒长方向的分量.由于电荷分布关于中垂线为对称,对中垂线上距原点d 远的 Q 点,不仿作出它们在 Q 点产生的场元, dE , d E ’ , 不难看出, Q 点电场的积分因此而简化,结果必沿 y 轴正向 .解 (1)取Oxy坐标系如图8-6所示,在细棒上坐标x 处取 dx 宽的电荷元 dqdx ,细棒延长线上的P 点与电荷元的距离为Lx , dq 在 P 点产生的电场强度大小为dxdE p24 0 (L x)细棒在 P 点产生的电场强度大小为L dxlE pdE p22.41 10 3 N/CL L224 02xL2l4方向沿 x 轴正向.(2 )在细棒上 x 和 x 处取对称的两个电荷元 dq 和 dq ,它们在 Q 点产生的电场强度分别为 d E 和 dE ’, 如图 8-6 所示.它们的 x 方向分量相互抵消, y 方向分量相互加强,叠加后得到沿y 方向的合场强 dE Q ,其大小为dE Q 2dxx 2 )cosd dx4 0 (d22 0 (d 2 x 2 )3 2细棒在 Q 点产生的电场强度大小为LdLdxdx2E E Q dE Q21 222 3 2222d x 2(d)2dx 0L121 / 2 5.27 103 N/Cd2Ld4方向沿 y 轴正向.8-7有一沿x 轴放置的无限长分段均匀带电直线,电荷线密度分别为x0 和x 0 ,求y轴上距坐标原点为d处的电场强度.分析与上题的方法类似,当计算该带电直线y 轴上某点的电场强度时,由于电荷分布的对称性,均匀带电直线原点两边对称位置处的电荷元在该点的电场强度垂直于棒长方向的分量将互相抵消,只需计算沿棒长方向的分量.yd EP d E Pd E′dd q d q′++++++++++O -------图 8-7解如图 8-7 所示,在 x 轴上取以原点为对称的两电荷元dq 及 dq dx ,它们在 y 轴上距坐标原点为 d 处的电场强度分别为d E和 d E,由于对称性,它们的 y 方向分量相互抵消,而x 方向分量叠加合成为dE P 2dE x2 dx 2 cosxdxd2 x 2 0 d 2x 2 3 24该带电直线在 P 点产生的电场强度大小为E E xdE Pxdx(d2x 2 )3 / 22114031d 2 x21 / 22 0 d2方向沿 x 正向,即Ej20 d8-8 电荷线密度为 的无限长均匀带电直线,中部弯成半径为 R 的四分之一圆弧,求圆弧的圆心 O 点的电场强度.xd E 1xd EAO d E ’d q ’d Ed E 2d q ’ARRd E ’d qBB l d q分析由于整个带电线以过圆心对半分割圆弧垂直带电线平面的平面为对称,可以确定圆心处的电场强度应沿圆弧等分点指向圆心的方向.按照电荷分布特征,分别计算圆弧和两段直带电线在O 点的场强,再叠加求和较为简便.解 先计算圆弧 AB 在 O 点的场强.如图8-8 ( a )所示,取圆弧等分点指向圆心的方向为 x 轴.对称的两电荷元 dq Rd及 dq 在 O 点电场强度分别为d E 和 d E ,由于对称性,它们叠加后的合场强沿x 方向,大小为dE 1 2Rd2 coscos dR42 0 R整个圆弧部分在O 点电场强度的大小为E14 cos d22 0 R00 R再计算两段直带电线在O 点的场强.如图8-8 (b )所示,取圆弧等分点指向圆心的方向为x 轴.对称的两电荷元dq及dq在 O 点电场强度分别为d E和d E,其中 dq dl 到B点距离为l.由于对称性,它们叠加后的合场强沿x 方向,大小为dE22dl2 )cos dlcos 40(R2l420 (R2l 2 )4由几何关系可得1l 2cos2, l R tan ,cos2(cos sin ) ,R 2R242则 dl1d,代入上式并积分,得两段直带电线在O 点的场强为Rcos2E2dE222 (cos sin)d04 0 R0由场强叠加原理, O 点处的总场强大小为EE1E2E124 0 R方向沿 x 轴正向.8-9均匀带电圆盘,电荷面密度为,半径为 R,在其轴线上放置一均匀带电细杆,电荷线密度O d q L x x 为,长为 L,求圆盘轴线上距盘心 x(设 x>L )处的电场强度.分析由于已经计算过圆盘图 8-9轴线上的电场分布和带电细杆延长线上的电场分布,两者的叠加就是所要求的电场强度分布情况.解以盘心为原点, x 轴沿轴向,如图8-9 所示.例题 8-4 给出,均匀带电圆盘轴线上距盘心x 处的场强沿 x 轴正向,大小为E11x2 0R2x 2应用习题 8-6中的方法,在细杆上距盘心l 远处取电荷元dq dl ,它在距盘心 x 远处产生的电场强度大小为dE dl40 (L x) 2方向沿 x 轴正向.整个细杆在该点产生的电场强度大小为L dl11E20 40 x l 2 4 0x L x叠加后 x 处的电场强度大小为x11E E1E212 0R 2x2 4 0x L x方向沿 x 轴正向.当 x 变化时,上式反映了x 轴上 E 随坐标 x 的变化规律.8-10半径为R的半球面,均匀带有电荷,电荷面密度为,求其球心处的电场强度.分析电荷呈面分布,把半球面分割为中心均在轴上半径连续变化的一系列细圆环带,球心处的电场强度是这一系列细圆环带在该点电场强度的叠加.解如图 8-10所示,取半径为 r ,宽度为dl的细圆环带,面积为dS 2 r dl ,带电量为 dqdS 2 r dl 2 rR d .例题8-3给出半径为 r ,带电量为 q的细圆环轴线上距环心 x 远处的电场强度为Exq4 0 r 2x2 3 / 2作代换: q dq , E dE ,细圆环带在球心O d lRrO点的电场强度大小为xdq R cos 2 R 2 sin ddEx2 3 / 240 R 34 0 r 22c o s s i n d4 0方向沿对称轴向.半球面在球心O 点的电场强度大小为E dE02 2 si n s i n d4040若半球面带正电,则O 点电场强度方向沿对称轴向右.8-11圆锥体底面半径为R,高为 H,均匀带电,电荷体密度为,求其顶点 A 点的电场强度.分析把电荷按体积连续分布的圆锥体分割为半径连续变化(从而到锥顶A点的距离也连续变化)的一系列圆盘,HR rA顶点 A 处的电场强度是这一系列圆盘在x该点电场强度的叠加.解例题 8-4 给出半径为 r、电荷面密度为的带电圆盘轴线上距盘心为x远处的电场强度的大小为E1x ( 1)r 22x 2如图 8-11 所示,在距 A 为 x 远处取厚度为 dx 的薄圆盘,半径为 r ,面积为r 2 , 体 积 为 r 2dx , 因 dx 为 一 无 穷 小 量 , 薄 圆 盘 上 电 荷 面 密 度r 2 dx dx ,代入( 1)式,得薄圆盘在 A 点产生的电场强度为r 2dE2dx 1 r 2xx 2利用几何关系x H,对上式积分得圆锥体在 A 点的电场强x 2R 2r 2H 2度为EdE1HHH 1 HR 2dxH 22 0H 22 0R 2 方向为沿对称轴向.8-12在半径为 R ,高为 2R 的圆柱面中心处放置一点电荷 q ,求通过此柱面的电场强度通量.R分析在本题中,用直接积分法求电场强度通量比较困难.根据点电荷电场分布的球对称性,如果2R S1Q以 2R 为半径作一球面与圆柱相切,如图8-12 所示,不难看出,高为 2R 的球台侧面的电通量与同高的圆柱侧面的电通量相同.由于球面上各点场强大小相等,方向均垂直于球面,所以球面上面积相同的部分电通量必定相同. 又因为已知以点电荷为中心的球面的电通量,问题就归结为计算球台的侧面积.解 半径 r2R 的球面积为 S 4 r 2 8 R 2 ,高 h2R 的球台侧面积为S1 2 r h 22R 2R 4 2 R2以点电荷为中心的球面的电通量为q,则该圆柱侧面的电通量为0e1S1q 2 q S 2 08-13电荷面密度为的均匀带电平板,以平板上的一点O 为中心, R 为半径作一半球面,如图所示,求通过此半球面的电场强度通量.分析无限大带电平板两侧的电场强度大小为 E,方向垂直于带电平板,但是本题中2 0带电平板面积有限,空间各点的电场强度方向和大小都难以确定,所以不可能用积分的方法计算半球面的电场强度通量.不过,带电平板两侧的R O图 8-13电场是对称的,如果在平板另一侧补上另一半球面合成一个球面,则通过两个半球面的电通量相同,等于整个球面总电通量的一半.即使平板上电荷分布不均匀,平板两侧的电场仍然是对称的,只要知道半球面所覆盖的电荷量,也同样可以计算出半球面的电场强度通量.解在平板另一侧补上另一半球面,形成一球面,其包围的电荷为图中阴影部分,即半径为R 的圆面上所带的电量q R2,由高斯定理,通过球面的总电通量为E d S 1 q R 2S00所以,通过半球面的电通量为11R 2 2 2 08-14有半径为 R ,电荷量为 q 的均匀带电球体, 求其球内外各点的电场强度.S 2Ed r ’r ’ rRRS 1Rr(a)(b) (c)图 8-14分析因为电荷分布具有球对称性,所以电场分布也具有球对称性,在与带电球同心、半径为 r 的球面上各点的电场强度大小相等,并垂直于球面沿径向,因此可以应用高斯定理计算电场分布.本题还可以用场强叠加原理积分求解. 将均带电球体分割为半径连续变化的一系列同心薄球壳, 其中任一薄球壳都可视为均匀带电球面. 由于已知均匀带电球面内部电场强度为零, 外部电场分布与位于球心处的点电荷的相同, 方向沿径向,故可以用标量积分求出本题结果.解 1 应用高斯定理计算电场分布.(1 )球体内的电场强度球体体积为 V4 R 3,均匀带电,电荷体密度 q.如图 8-14(a) 所示,3V4r 3 ,包围的作半径为 r 0r R 的球形高斯面 S 1 ,所包围的球体体积为 V 13电荷量为qV 1qV 1q r 31VR 3 ,设半径为 r 处的场强为 E ,由高斯定理得E 1 d S E 1 4 r 21qS 1得qr E 14 0R 3(2 )球体外的电场强度作半径 rR 的球形高斯面 S 2 ,包围电荷量为qV q ,由高斯定理得E 2 dS E 2 4 r 21qqS 2得E 2q4 r2表明均匀带电球体外任一点场强与假设全部电荷集中在球心的点电荷产生在该点的场相同.根据以上结果可作场强分布曲线如图8-14(b) 所示.注意到在 r=R处场强是连续的.解 2 用场强叠加原理积分求解(1)球体内的电场强度在球体内取半径为 r ,厚度为 dr 的薄球壳,如图 8-14(c) 所示,体积为dV4 r 2 dr ,带电量为dqdVq 4 r 2 dr 3q r 2 drVR 3在距球心 r (0 r R , rr ) 远处产生的场强为dE 1dq3qr 2 dr0r240R 3r 24在 rr 处产生的场强为零. 所以球内 r 处的场强是半径 r r 的所有薄球壳在该处产生的场强的叠加,积分得E 1rdE 13q3 2 rr 2 drqr30 4 0 R r4R(2 )球体外的电场强度球外 r 处的场强是整个球内所有薄球壳在该处产生的场强的叠加,积分得3q RqE2dE22r 2 dr243r4 0 r 0 R结果与解 1 相同.8-15 均匀带电球壳内半径为6cm ,外半径为10cm ,电荷体密度为 2×10 -5 C/m 3,求距球心为 5cm 、8cm及 12cm 各点的电场强度.分析与上题相同,由于电荷分布具有球对S C称性,所以电场分布也是球对称的,在半径为r 的同心球面上各点场强大小相等,沿径向,可以用高斯定理求解.本题也同样可用场强叠加原理,S BR1R2S A由均匀带电球面的场强积分求出空间场强分布.解球壳内外半径分别为R1 = 0.06m ,图8-15R2 =0.10m,题中所求三点到球心的距离分别为r A=0.05m,r B =0.08m, r C =0.12m .分别以 r A、 r B、 r C为半径作球形高斯面 S A、S B、S C,如图 8-15 所示.由于电场分布的球对称性,对各球面的高斯定理表达式均可写为E d S E4r 21q(1)S(1 ) r A0.05m ,即 r A R1,在 S B面内包围的电荷q0 ,代入 (1) 式得S AAr 20AE 4 E =0(2 )r B0.08m ,即R1r B R2,在 S B面内包围的电荷为q dV r B4r2dr 433R13(r B R1 )S B 代入 (1) 式得E B 4 r B24r B3R13E B3 0r B R133r B2代入数字得E B210 50.080.063N / C 3.48104N / C8.8510120.0823(3 ) r C0.12m,即 r C R2,在 S C面内包围的电荷为q dV R24 r 2 dr4(R23R13 )R1S C3代入 (1) 式得E C 4 r C24R23R13E c2 R23R133030 r c代入数字得E C 210 50.1030.0634.1 104N / C 38.8510120.123 N/C8-16 两无限长同轴圆柱面,半径分别为 R1和 R2(R2 > R1),带有等值异号电荷,单位长度的电荷量为和,求距轴线R1r 处的电场强度,当:(1)r R2;r R1;( 2)R1R2( 3) r R2.S C分析因为电荷分布具有轴对称性,所以S A h 电场分布也是轴对称的,即在半径为 r 的无限长S B圆柱面(与带电体共轴)的侧面上各点电场强度大小相等,方向垂直于侧面沿径向,故可用高斯定理求解.图 8-16由于例题 8-6 已经给出了无限长均匀带电圆柱面的电场分布,可以将其结果作为既有公式,应用场强叠加原理计算带有等值异号电荷的两同轴长圆柱面产生的电场.解 1分别两柱面内、两柱面间和两柱面外作高为h 的柱面形高斯面S A、S B、S C,如图 8-16 所示.由于电场分布的轴对称性,上下两底面上的场强方向与底面平行,对通量没有贡献,故对各柱面的高斯定理表达式均可写为E d SE d S E 2 r h1( 1)qS侧(1) rR 1 时,高斯面 S A 内包围的电荷q0 ,代入 (1) 式得S AE A 2 r h 0E A 0(2) R 1r R 2 ,高斯面 S B 内包围的电荷qh ,代入 (1)式得S AE B2 0 r B(3 ) rR 2 ,高斯面 S c 内包围的电荷qhh 0 ,代入 (1) 式得S AE C =0解 2 利用例题 8-6 的结果,两无限长均匀带电圆柱面的在各自柱面内的场强为零,在各自柱面外的电场强度分别为E 1外r R 1 ,E 2外r R 220r2 0 r两柱面的电场叠加后,得(1 ) r R 1 时E AE 1内 E 2内 0(2 ) R 1 r R 2 时E BE 1外E 2内2 0 r B(3 ) r R 2 时E C E 1外 E 2 外20 rC8-17一厚度为d的均匀带电无限大平板,体电荷密度为,求板内外各点的电场强度 .分析由于均匀带电厚板是无限的,所以其电场具有对称性.厚板平分面两侧ES Axd2 S S Bx电场强度垂直于平板,与平分面距离相同的各点场强相0d/ 2x等.因此可以应用高斯定理( a )( b )计算电场分布.图 8-17解作高为 2x,侧面垂直于平板,两底平行于平板、底面积为S 的的柱形高斯面,如图 8-17(a) 所示.由于侧面与电场线平行,无电场线穿过,则有E d SE d S 2ES1q(1)侧(1)厚板外的场强x d时,柱面 S A内包围的电荷qSd ,代入 (1) 式得2S A2E A S Sd E Ad2 0即均匀无限大带电厚平板板外的电场是均匀电场.(2)厚板内的场强x d时,柱面 S B内包围的电荷q 2x S ,代入 (1) 式得2S B2E B S2xS E B x00厚板内外场强分布曲线如图8-17(b) 所示.8-18 一半径为 R 的无限长均匀带电半圆柱面,电荷面密度为,求:(1 )轴线上任意点的电场强度; ( 2)若0 sin ( 0为常量 ) 结果又如何?分析 无限长半圆柱面可以沿轴向分割成一系列无限长带电条带,由例题8-6 给出的无限长带电直线的电场分布,用 场强叠加原理可以求半圆柱面轴上的场强.解 ( 1)作与轴线垂直的截面并建立如d l ’dd lRy图 8-18 所示的坐标系,在d 处取宽d Ed E ˊ为 dl Rd的无限长带电条带,其单位长所x带电荷量为dl ,利用例题 8-6 给出的结图 8-18果,它在轴线上产生的场强大小为dEdl d2R2 0在与 dl 对称的位置上取宽为 dl dl 的另一长直带电条带,它们在轴上的场强分别为 d E 和 d E ,由于对称性,它们的 y 方向分量相互抵消, x 方向分量相互加强,如图所示,所以带电半圆柱面在轴线上O 点的电场应沿 x 方向,大小为EE xsin dE2sin d(2)若0 sin ( 0 为常量),半圆柱面上电荷分布以 x 轴为对称,所取对称位置上宽为 dl 和 dldl 的无限长带电条带上的电荷线密度相同,均为dl0 Rsin d ,在轴线上产生的场强大小为dERd 0 sin d2 0 R2 0它们的 y 方向分量仍然相互抵消, x 方向分量相互加强,得EE x sin dEsin 2 d20 04 08-19 如图所示,在 Oxy 平面上有一沿 y 方向的无限长带电板,宽度为L ,电荷面密度为k( xL ),k 为一常量,求( 1 )x= 0 直线上的电场强度,并讨论dL 时的情况;( 2) x=b 直线上的电场强度.分析把无限长有限宽的带电板分割成一系列带电条带, 同样由例题 8-6 给出的无限长带电直线的电场分布,用场强叠加原理可以求解.解( 1 )在位置 x 处取 宽为 dx 的 长直 带电 条带,单位长带电 量为dx k (xL)dx ,利用例题 8-6 结果,它在 x0 处产生的场强为dEdxk (x L ) dx2 0 x2x方向沿 x 轴向.由于分割出来的各带电条带在x 0 处的场xx强均沿 x 方向,应用场强叠加原理,无限长带电板在 x0处产生的场强大小为d xkd L ( xL)dLEddx2 xkL (1 d L2ln)db当 dL 时,根据近似公式 lim ln(1x)xx 0Elim kL [1 ln(1 L)] kL (1 L )图 8-19L 2 0d 2 0 dd(2)由于 x 处取宽为 dx 的长直带电条带与 xb 的直线相距 b x ,故dEdx k( x L) dx2 0 (b x)20 (bx)Ekd L ( xb) (b L)dEddx2 0 x bkb d L ][(bL ) lnd2 0b L方向沿 x 轴向.8-20 在边长为 10cm 的等边三角形的三顶角上, 各放有等量电荷, 电荷量 均为 6.0 10 8C .(1 )计算此三角形中线交点处的电场强度和电势;(2 )将2.0 10 9 C 的电荷从无穷远处移到中心点,电场力作了多少功?分析 场强是矢量,而电势是标量,要用矢量q叠加法求点电荷系的场强, 用标量叠加求其电势.当 a电荷分布于有限区域时,往往选无穷远点为电势零点.电场力所作的功等于电荷始末位置的电势能之差.qq解 ( 1)根据等边三角形的几何特征,任意两个等量同号电荷在三角形中线交点处产生的场强之矢量和正好与第三个同号等量电荷在该点的场强等大反向,如图 8-20所示,故由场强叠加原理得中心处 O点 场 强3EE i 0i1又由电势叠加原理和点电荷电势公式,该点电势为3qVV i30 ri 14其中 r 为点电荷到等边三角形中线交点之距, r3a ,则33 3q 9336.0 10810 4 VV9100.10V 2.84a(2 )无穷远点为电势零点,电荷在无穷远处电势能为零,则移到三角形中心电场力作功为W q V V qV05.6105J(0)8-21 两块带有等值异号电荷的大金属平行板,相距为 15cm ,负极接地(即以地球电势为零),电荷面密度 4.510 6 C / m 2.求:(1)正极板的电势;(2)两极板之间距正极板为8cm处的电势;(3)把q 2.510 9 C 的电荷从正极板移到负极板,电++++++++++场力作了多少功?E分析应用例题 8-7 的结果,忽略边缘效应,––––––––––两板间电场可视为两个无限大均匀带等值异号电图 8-21荷平面间场强 E,为匀强电场,方向从正极指向负极,如图8-21 所示.负板接地后电势为零,由电势的定义,两极间任一点的电势等于该点到负极板的距离与场强的乘积.解(1)正极板的电势为V Ed d 4.51060.15V48.8510127.63 10 V(2 )两板间距正极板为8cm 处的电势为V1 Ed Ed 4.5 1060.07V 3.56 10 4 V8.8510 12(3 )电荷从正极板移到负极板,电场力作的功等于极板间电势差与电荷量的乘积,即W qV 2.5 10 77.63 104 J 1.91 104J8-22如图8-22所示的电四极子,q和l都为已知,P点到电四极子中心O 处的距离为 r ,求 P 点处的电势,并由电势求电场强度.分析 在点电荷系电场中,由电势叠加原理可求出空间各点的电势.由场强与电势的微分关系可求出 P 点的场强.+ q –2 q + qP- l O lr解 三个点电荷在 P 点的电势分别为V 11 ( q), V 2 41 2q , 图 8-224 r lr1 qV 3r l4由电势叠加原理,得P 点的电势为V Pq( 121 )2ql 214rlr rl4 r 3l 2(1r 2)当电四级子的电荷间距比 P 点到四极子中心的距离小得多,即 lr 时,得2ql 2Q V Pr 24r 34其中 Q2ql 2 ,称为电四极矩.由于 P 点电势只是 r 的函数,由电场强度与电势的微分关系知 P 点电场强度一定沿 r 方向,大小为dV P 3Q E P4 r 4dr8-23 一半径为 R 非均匀带电半圆环, 电荷线密度为 0 cos ( 0 为一正常数),求环心处的电场强度和电势,若电荷线密度为 0 sin ,结果又会怎样?分析半圆环上电荷分布不均匀,但是 cos 或 sin 的函数,因此必定以过的平分线为奇对称或偶对称, 在计算电场强度和电势时, 充分利用对称性, 可2以使计算过程大大简化.y解 (1 )在圆环上对称位置 和处分别取弧元 dl Rd 和 dl ,在环心 O点产生的场强分别为 d E 和 d E ,如图d l ˊd l8-23 所示,它们的 y 方向分量相互抵消,d E ˊ dx 方向分量相互加强.dl 的电荷量 dqdl 0 R cos d ,Oxd E在 O 点场强的 x 方向分量为dl cos 2dE x4R 2cos4 Rd图 8-23半圆环在 O 点的电场强度大小为EE x dE x 02 d4 RcosoR 1 cos2 dR8方向沿 x 轴负向.因为cos ,电荷分布以 y 轴为奇对称,显然,弧元 dl 和 dl 的正负电荷在 O 点的电势相互抵消,所以半圆环在O 点的电势为零.(2)如果0 sin ,用同样的分析方法知 O 点电场强度的 x 方向分量为零,场强沿 y 轴负向.弧元 dl 在 O 点场强的 y 方向分量为dE ydlsinsin 2 dR24 0 R 24。

褚圣麟原子物理学习题解答

褚圣麟原子物理学习题解答

For personal use only in study and research; not for commercialuse原子物理学习题解答(褚圣麟编)第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。

散射物质是原子序数79Z =的金箔。

试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mv α=是α粒子的功能。

1.2已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+ ,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min 202121()(1)4sin Ze r Mv θπε=+143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。

当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。

根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。

(完整版)《原子物理学》经典例题及答案

(完整版)《原子物理学》经典例题及答案

《原子物理学》经典题一、简答题【每题满分15分,满分合计60分】1、简述原子的样子(结构、大小、质量)。

答:(1)α粒子散射的实验与理论充分证明了原子具有核式结构:原子具有一个集中了原子绝大部分质量和所有正电荷但尺度较小的中心体——原子核,原子核所带正电的数值是原子序数乘单位正电荷,原子核周围散布着带负电的电子。

【9分】(2)原子半径:10-10米。

【2分】(3)原子核半径:10-15米。

【2分】(4)原子质量:10-27千克。

【2分】2、简述氢原子光谱的特征和实验规律。

答:(1)氢原子光谱是线状分离谱,谱线分为赖曼线系(紫外光区)、巴尔末线系(可见光区)、帕邢线系(近红外光区)、布喇开线系(中红外光区)、普丰德线系(远红外光区)五个线系。

【7分】(2)氢原子光谱的每一条谱线的波数都可以表达为: 【4分】 氢原子光谱的每一条谱线的波数都可以表达为两光谱项之差:()()T m T n ν=-% ——里兹并合原理。

其中,()H R T n n 2= (n 为正整数)【4分】【备注:照抄课本P26页的(1)、(2)、(3)条而且抄全的得9分】3、简述玻尔理论对氢原子光谱实验规律的解释。

2271111()1231.096775810%L H HR k n k n k n k R m νλ-==-=>=⨯其中:、为整数,、 、 、 ;; 里德堡常数答:(1)玻尔理论的三个基本假设:定态假设、频率假设、量子化假设。

【6分】(2)将氢原子的库仑作用力和势能表达式联立玻尔理论的角动量量子化和频率假设,可得:【4分】【4分】 和氢原子光谱实验规律吻合。

【1分】二、计算题【满分合计40分】1、试由氢原子的里德伯常数计算基态氢原子的电离电势和第一激发电势。

【本题满分16分】解:电离能为i E E E 1∞=-,【4分】氢原子的能级公式n E Rhc n 2/=-,【2分】 代入,得:i H H E R hc R hc 211()1=-=∞=13.6eV 。

原子物理学杨福家1-6章_课后习题答案

原子物理学杨福家1-6章_课后习题答案

原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线第一章 习题1、2解1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为Mα,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射。

电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。

α粒子-电子系统在此过程中能量与动量均应守恒,有:222212121v m V M V M e +'=αα (1)ϕθααcos cos v m V M V M e +'= (2)ϕθαsin sin 0v m V M e -'= (3)作运算:(2)×sin θ±(3)×cos θ,得)sin(sin ϕθθα+=VM v m e (4))sin(sin ϕθϕαα+='VM V M (5)再将(4)、(5)二式与(1)式联立,消去V’与v化简上式,得(6)θϕμϕθμ222sin sin )(sin +=+ (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有令sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sin θ=0若 sin θ=0, 则 θ=0(极小) (8)(2)若cos(θ+2φ)=0 ,则 θ=90º-2φ (9)将(9)式代入(7)式,有θϕμϕμ2202)(90si n si n si n +=-θ≈10-4弧度(极大)此题得证。

1.2(1)动能为5.00MeV 的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大?(2)如果金箔厚1.0 μm ,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n 值.其他值从书中参考列表中找.解:(1)依金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为22.8fm.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来.(问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=1.888×104kg/m3依θa2 sin即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。

原子物理学杨福家1_6章_课后习题答案

原子物理学杨福家1_6章_课后习题答案

原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型第二章:原子的量子态:波尔模型第三章:量子力学导论第四章:原子的精细结构:电子的自旋第五章:多电子原子:泡利原理第六章:X射线第一章习题1、2解1.1 速度为v的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为Mα,碰撞前速度为V,沿X方向入射;碰撞后,速度为V',沿θ方向散射。

电子质量用me表示,碰撞前静止在坐标原点O处,碰撞后以速度v沿φ方向反冲。

α粒子-电子系统在此过程中能量与动量均应守恒,有:ϕθααcos cos v m V M V M e +'= (2)ϕθαsin sin 0v m V M e -'= (3)作运算:(2)×sinθ±(3)×cos θ, (4)(5)再将(4)、(5)二式与(1)式联立,消去V’与v,化简上式,得(6)可将(6)式改写为θϕμϕθμ222s i n s i n )(s i n +=+(7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有令则sin2(θ+φ)-sin2φ=0 即2cos(θ+2φ)sinθ=0若sinθ=0, 则θ=0(极小)(8)(2)若cos(θ+2φ)=0 ,则θ=90º-2φ(9)将(9)式代入(7)式,有θϕμϕμ222)(90si nsi nsi n+=-θ≈10-4弧度(极大)此题得证。

1.2(1)动能为5.00MeV的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大?(2)如果金箔厚1.0 μm,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n值..解:(1)依金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为22.8fm.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来.(问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=1.888×104kg/m3依: θa 2sin注意到即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。

原子物理学杨福家1-6章-课后习题标准答案

原子物理学杨福家1-6章-课后习题标准答案

原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线第一章 习题1、2解1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为M α,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射。

电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。

α粒子-电子系统在此过程中能量与动量均应守恒,有:(1)ϕθααcos cos v m V M V M e +'= (2) ϕθαsin sin 0v m V M e -'= (3)作运算:(2)×sin θ±(3)×cos θ,(4)(5)再将(4)、(5)二式与(1)式联立,消去V’与v化简上式,得(6)θϕμϕθμ222s i n s i n )(s i n +=+ (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有令sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sin θ=0若 sin θ=0, 则 θ=0(极小) (8)(2)若cos(θ+2φ)=0 ,则 θ=90º-2φ (9)将(9)式代入(7)式,有θϕμϕμ2202)(90sin sin sin +=-θ≈10-4弧度(极大)此题得证。

1.2(1)动能为5.00MeV 的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大?(2)如果金箔厚1.0 μm ,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n 值.其他值从书中参考列表中找.解:(1)依金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为22.8fm.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来. (问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=1.888×104kg/m3依θa 2sin即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原子物理学第八章习题
答案
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
第八章 X 射线
8.1 某X 光机的高压为10万伏,问发射光子的最大能量多大?算出发射X 光的最短波长。

解:电子的全部能量转换为光子的能量时,X 光子的波长最短。

而光子的最大能量是:5max 10==Ve ε电子伏特
而 min
max λεc
h = 所以οελA c h 124.01060.1101031063.61958
34max
min =⨯⨯⨯⨯⨯==-- 8.2 利用普通光学反射光栅可以测定X 光波长。

当掠射角为θ而出现n 级极大值出射光线偏离入射光线为αθ+2,α是偏离θ级极大出射线的角度。

试证:出现n 级极大的条件是
λααθn d =+2
sin 22sin 2 d 为光栅常数(即两刻纹中心之间的距离)。

当θ和α都很小时公式简化为λαθαn d =+)2(2。

解:相干光出现极大的条件是两光束光的光程差等于λn 。

而光程差为:2
sin 22sin 2)cos(cos ααθαθθ+=+-=∆d d d L 根据出现极大值的条件λn L =∆,应有
λααθn d =+2
sin 22sin
2 当θ和α都很小时,有22sin ;22222sin αααθαθαθ≈+=+≈+ 由此,上式化为:;)2(λααθn d =+
即 λαθαn d =+)2(2
8.3 一束X 光射向每毫米刻有100条纹的反射光栅,其掠射角为20'。

已知第一级极大出现在离0级极大出现射线的夹角也是20'。

算出入射X 光的波长。

解:根据上题导出公式:
λααθn d =+2
sin 22sin 2 由于'20,'20==αθ,二者皆很小,故可用简化公式:
λαθαn d =+)2(2
由此,得:οαθαλA n d 05.5)2
(;=+= 8.4 已知Cu 的αK 线波长是1.542ο
A ,以此X 射线与NaCl 晶体自然而成'5015ο角入射而得到第一级极大。

试求NaCl 晶体常数d 。

解:已知入射光的波长ολA 542.1=,当掠射角'5015οθ=时,出现一级极大(n=1)。

οθλ
θ
λA d d n 825.2sin 2sin 2===
8.5 铝(Al )被高速电子束轰击而产生的连续X 光谱的短波限为5ο
A 。

问这时是否也能观察到其标志谱K 系线?
解:短波X 光子能量等于入射电子的全部动能。

因此 31048.2⨯≈=λεc h 电电子伏特
要使铝产生标志谱K 系,则必须使铝的1S 电子吸收足够的能量被电离而产生空位,因此轰击电子的能量必须大于或等于K 吸收限能量。

吸收限能量可近似的表示为:
22)(σ-=Z n
Rhc E K 这里,13,0,1===Z n σ;所以有:
1030.21031063.610097.116913133834722电子伏特⨯=⨯⨯⨯⨯⨯⨯=≈=-∞hc
R Rhc E K
故能观察到。

8.6 已知Al 和Cu 对于ολA 7.0=的X 光的质量吸收系数分别是
公斤米公斤和米/0.5/5.022,Al 和Cu 的密度分别是33/107.2米公斤⨯和
33/1093.8米公斤⨯。

现若分别单独用Al 板或Cu 板作挡板,要ολA 7.0=的X 光的强度减至原来强度的1/100。

问要选用的Al 板或Cu 板应多厚?
解:ο
λA 7.0=,公斤米公斤;米/0.5)(/5.0)(22==Cu Al ρτρτ 3333/1093.8/107.2米公斤,米公斤⨯=⨯=Cu Al ρρ
x
e I I I I μ-==001001
因为X 光子能量较低,通过物质时,主要是电离吸收,故可只考虑吸收而略掉散射。

x
x
e I I e I I τττ
μ--====∴100
100 所以有:100ln 1τ=
x
对于Al: 公斤米/5.02=ρ
τ
米米米公斤公斤米31
33321041.3100ln 11035.1/107.2/5.0--⨯==⨯=⨯⨯=∴τ
τAl x 对于Cu: 公斤米/0.52=ρ
τ 米米米公斤公斤米41
43321003.1100ln 110465.4/1093.8/0.5--⨯==⨯=⨯⨯=∴τ
τCu x 8.7 为什么在X 光吸收光谱中K 系带的边缘是简单的,L 系带是三重的,M 系带是五重的?
答:X 射线通过物质时,原子内壳层电子吸收X 射线能量而被电离,从而产生吸收谱中带有锐利边缘的多个线系。

吸收谱的K 、L 、M 、……系是高能X 光子分别将n=1,2,3……壳层的电子电离而产生的。

每一谱线的锐边相当于一极限频率,在这频率下,X 光子恰好把电子从相应壳层电离而不使其具有动能。

对应于X 射线能级的谱项公式是:⋯⋯+--+-=)43()()(44222K n n
S Z R n Z R T ασ 式中σ对不同的n 和不同的l 都不同,K=J+1/2。

由于J 不同也有不同的谱项数。

对于K 壳层,2
1,0,1===J l n ,σ只有一个值,只有一个光谱项,所以K 系带的边缘是简单的。

对于L 壳层2=n 可以有三组量子数
)2
3,1(),21,1(),21,0(======J l J l J l 。

此三组量子数分别对应有三种谱项值,所以,L 系有三个吸收限,即是三重的。

M 壳层, 3=n ,可以有五组量子数:
)2
5,2(),23,2(),23,1(),21,1(),21,0(==========J l J l J l J l J l 。

此五组量子数分别对应五个光谱项值,所以M 系带有五个吸收限,即是五重的。

同理可知:N 系是七重的。

O系是九重的。

8.8 试证明X 光标识谱和碱金属原子光谱有相仿的结构。

证明:我们以X 光谱L 系与碱金属光谱进行比较。

L 系是由外层电子向L 壳层(n=2)上的空位跃迁时发射的。

它可分成三个小系。

I L 系是电子由诸n>2的p 能级向s 2能级跃迁产生的。

s 能级是单层的,p 能级是双层的且间隔随n 的增大而逐渐减小。

所以I L 系由双线构成且随波数增加而双线间隔缩小。

对应的碱金属主线系也是诸p 能级向较低的s 能级跃迁产生的,而p 、s 能级结构与X 能级相仿。

所以其光谱具有相仿的结构。

II L 系是由诸的3 n 能级跃迁到2P 能级上产生的,而s 是单层的,p 是双层的。

所以II L 系谱必是由一组等间距的双线构成。

II L 系对应于碱金属第二辅线系的跃迁。

它们有相仿的结构。

同理,III L 系与碱金属第一辅线系有相仿结构。

其他X 光谱系也具有同金属相仿的结构。

X 光标志谱之所以与碱金属原子光谱具有相仿的结构,在于满壳层缺少一个电子形成的原子态同具有一个价电子的原子态相同。

X 能级是有满壳层缺少一个电子构成的;碱金属能级是一个价电子形成的。

根据第七章习题8的证明,它们应有相同的谱项,因而具有相仿的结构。

在跃迁是,它们服从同样的选择定则,因此它们应有相仿的光谱线系。

相关文档
最新文档