2021年湖北省武汉市部分学校九年级元月调考数学试卷(附答案详解)
2021年湖北省武汉市部分学校九年级元月调考数学试卷(附答案详解)
![2021年湖北省武汉市部分学校九年级元月调考数学试卷(附答案详解)](https://img.taocdn.com/s3/m/82836bfefad6195f302ba652.png)
2021年湖北省武汉市部分学校九年级元月调考数学试卷一、选择题(本大题共10小题,共30.0分)1.将一元二次方程2x2−1=3x化成一般形式后,二次项系数和一次项系数分别是()A. 2,−1B. 2,0C. 2,3D. 2,−32.下列垃圾分类标识中,是中心对称图形的是()A. B. C. D.3.下列四个袋子中,都装有除颜色外无其他差别的10个小球,从这四个袋子中分别随机摸出一个球,摸到红球可能性最小的是()A. B. C. D.4.已知⊙O的半径等于3,圆心O到点P的距离为5,那么点P与⊙O的位置关系是()A. 点P在⊙O内B. 点P在⊙O外C. 点P在⊙O上D. 无法确定5.一元二次方程x2−4x−1=0配方后可化为()A. (x+2)2=3B. (x+2)2=5C. (x−2)2=3D. (x−2)2=56.在平面直角坐标系中,抛物线y=(x+2)(x−4)经变换后得到抛物线y=(x−2)(x+4),则下列变换正确的是()A. 向左平移6个单位B. 向右平移6个单位C. 向左平移2个单位D. 向右平移2个单位7.如图,将△ABC绕点C按逆时针方向旋转至△DEC,使点D落在BC的延长线上.已知∠A=33°,∠B=30°,则∠ACE的大小是()A. 63°B. 58°C. 54°D. 52°8.三个不透明的口袋中各有三个相同的乒乓球,将每个口袋中的三个乒乓球分别标号为1,2,3.从这三个口袋中分别摸出一个乒乓球,出现的数字正好是等腰三角形三边长的概率是()A. 49B. 59C. 1727D. 799.如图,PM,PN分别与⊙O相切于A,B两点,C为⊙O上一点,连接AC,BC.若∠P=60°,∠MAC=75°,AC=√3+1,则⊙O的半径是()A. √2B. √3C. 32D. 34√310.已知二次函数y=2020x2+2021x+2022的图象上有两点A(x1,2023)和B(x2,2023),则当x=x1+x2时,二次函数的值是()A. 2020B. 2021C. 2022D. 2023二、填空题(本大题共6小题,共18.0分)11.在直角坐标系中,点(−1,2)关于原点对称点的坐标是______.12.如图,平行四边形ABCD的对角线交于点O,过点O的直线EF分别交边AB,CD于E,F两点,在这个平行四边形上做随机投掷图钉试验,针头落在阴影区域内的概率是______ .13.国家实施“精准扶贫”政策以来,贫困地区经济快速发展,贫困人口大幅度减少.某地区2018年初有贫困人口4万人,通过社会各界的努力,2020年初贫困人口减少至1万人.则2018年初至2020年初该地区贫困人口的年平均下降率是______ .14.已知O,I分别是△ABC的外心和内心,∠BOC=140°,则∠BIC的大小是______ .15.如图,放置在直线l上的扇形OAB,由图①滚动(无滑动)到图②,再由图②滚动到图③,若半径OA=1,∠AOB=90°,则点O所经过的路径长是______ .16.下列关于二次函数y=x2−2mx+1(m为常数)的结论:①该函数的图象与函数y=−x2+2mx的图象的对称轴相同;②该函数的图象与x轴有交点时,m>1;③该函数的图象的顶点在函数y=−x2+1的图象上;④点A(x1,y1)与点B(x2,y2)在该函数的图象上.若x1<x2,x1+x2<2m,则y1<y2.其中正确的结论是______ (填写序号).三、解答题(本大题共8小题,共72.0分)17.若关于x的一元二次方程x2−bx+2=0有一个根是x=1,求b的值及方程的另一个根.18.如图,将△ABC绕点C顺时针旋转得到△DEC,点D落在线段AB上.求证:DC平分∠ADE.19.小刚参加某网店的“翻牌抽奖”活动,如图,四张牌分别对应价值2,5,5,10(单位:元)的四件奖品.(1)如果随机翻一张牌,直接写出抽中5元奖品的概率;(2)如果同时随机翻两张牌,求所获奖品总值不低于10元的概率.20.如图是由小正方形构成的6×6网格,每个小正方形的顶点叫做格点.⊙P经过A,B两个格点,仅用无刻度的直尺在给定网格中按要求画图(画图过程用虚线表示,画图结果用实线表示).(1)在图(1)中,⊙P经过格点C,画圆心P,并画弦BD,使BD平分∠ABC;(2)在图(2)中,⊙P经过格点E,F是⊙P与网格线的交点,画圆心P,并画弦FG,使FG=FA.21.如图,正方形ABCD内接于⊙O,E是BC⏜的中点,连接AE,DE,CE.(1)求证:AE=DE;(2)若CE=1,求四边形AECD的面积.22.疫情期间,按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早晨到校情况,发现学生到校的累计人数y(单位:人)随时间x(单位:分钟)的变化情况如图所示,y可看作是x的二次函数,其图象经过原点,且顶点坐标为(30,900),其中0≤x≤30.校门口有一个体温检测棚,每分钟可检测40人.(1)求y与x之间的函数解析式;(2)校门口排队等待体温检测的学生人数最多时有多少人?(3)检测体温到第4分钟时,为减少排队等候时间,在校门口临时增设一个人工体温检测点.已知人工每分钟可检测12人,人工检测多长时间后,校门口不再出现排队等待的情况(直接写出结果).23.问题背景如图(1),△ABD,△AEC都是等边三角形,△ACD可以由△AEB通过旋转变换得到,请写出旋转中心、旋转方向及旋转角的大小.尝试应用如图(2),在Rt△ABC中,∠ACB=90°,分别以AC,AB为边,作等边△ACD和等的值.边△ABE,连接ED,并延长交BC于点F,连接BD.若BD⊥BC,求DFDE 拓展创新如图(3),在Rt△ABC中,∠ACB=90°,AB=2,将线段AC绕点A顺时针旋转90°得到线段AP,连接PB,直接写出PB的最大值.24.如图,经过定点A的直线y=k(x−2)+1(k<0)交抛物线y=−x2+4x于B,C两点(点C在点B的右侧),D为抛物线的顶点.(1)直接写出点A的坐标;(2)如图(1),若△ACD的面积是△ABD面积的两倍,求k的值;(3)如图(2),以AC为直径作⊙E,若⊙E与直线y=t所截的弦长恒为定值,求t的值.答案和解析1.【答案】D【解析】解:将一元二次方程2x2−1=3x化成一般形式是2x2−3x−1=0,二次项的系数和一次项系数分别是2和−3,故选:D.先化成一般形式,即可得出答案.本题考查了一元二次方程的一般形式,能化成一元二次方程的一般形式是解此题的关键,注意:说项的系数带着前面的符号.2.【答案】B【解析】解:A、不是中心对称图形,故此选项不合题意;B、是中心对称图形,故此选项符合题意;C、不是中心对称图形,故此选项不合题意;D、不是中心对称图形,故此选项不合题意;故选:B.利用中心对称图形的定义进行解答即可.此题主要考查了中心对称图形,关键是掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.3.【答案】A【解析】解:第一个袋子摸到红球的可能性=110;第二个袋子摸到红球的可能性=210=15;第三个袋子摸到红球的可能性=510=12;第四个袋子摸到红球的可能性=610=35.故选:A.要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.本题主要考查了可能性大小的计算,用到的知识点为:可能性等于所求情况数与总情况数之比,难度适中.4.【答案】B【解析】解:∵r=3,d=5,∴d>r,∴点P在⊙O外.故选:B.根据①点P在圆外⇔d>r.②点P在圆上⇔d=r.③点P在圆内⇔d<r,即可判断.本题考查点与圆的位置关系,解题的关键是熟练掌握基本知识,属于中考基础题.5.【答案】D【解析】解:x2−4x−1=0,x2−4x=1,x2−4x+4=1+4,(x−2)2=5,故选:D.移项,配方,即可得出选项.本题考查了解一元二次方程的应用,能正确配方是解此题的关键.6.【答案】C【解析】解:y=(x+2)(x−4)=(x−1)2−9,顶点坐标是(1,9).y=(x−2)(x+4)=(x+1)2−9,顶点坐标是(−1,9).所以将抛物线y=(x+2)(x−4)向左平移2个单位长度得到抛物线y=(x−2)(x+4),故选:C.根据变换前后的两抛物线的顶点坐标找变换规律.此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.7.【答案】C【解析】解:∵∠A=33°,∠B=30°,∴∠ACD=∠A+∠B=33°+30°=63°,∵△ABC绕点C按逆时针方向旋转至△DEC,∴△ABC≌△DEC,∴∠ACB=∠DCE,∴∠BCE=∠ACD,∴∠BCE=63°,∴∠ACE=180°−∠ACD−∠BCE=180°−63°−63°=54°.故选:C.先根据三角形外角的性质求出∠ACD=63°,再由△ABC绕点C按逆时针方向旋转至△DEC,得到△ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到△ABC≌△DEC.8.【答案】B【解析】解:画树状图得:∵共有27种等可能的结果,两次摸出的乒乓球标号相同,并且三个标号符合三角形三边关系的有15种结果,∴出现的数字正好是等腰三角形三边长的概率是1527=59.故选:B.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的乒乓球标号相同,并且三个标号符合三角形三边关系的情况,再利用概率公式即可求得答案.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.9.【答案】A【解析】解:连接OA、OC,过A点作AH⊥OC于H,如图,设⊙O的半径为r,∵PM与⊙O相切于A点,∴OA⊥PM,∴∠OAM=90°,∵∠MAC=75°,∴∠OAC=15°,∵OA=OC,∴∠OAC=∠OCA=15°,∴∠AOH=30°,在Rt△AOH中,AH=12OA=12r,OH=√3AH=√32r,在Rt△ACH中,(12r)2+(r+√32r)2=(√3+1)2,解得r=√2,即⊙O的半径为√2.故选:A.连接OA、OC,过A点作AH⊥OC于H,如图,设⊙O的半径为r,根据切线的性质得到∠OAM=90°,则∠OAC=15°,再计算出∠AOH=30°,则可表示出AH=12r,OH=√32r,利用勾股定理得到(12r)2+(r+√32r)2=(√3+1)2,然后解方程即可.本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了解直角三角形.10.【答案】C【解析】解:∵二次函数y=2020x2+2021x+2022的图象上有两点A(x1,2023)和B(x2,2023),∴x1、x2是方程2020x2+2021x+2022=2023的两个根,∴x1+x2=−20212020,∴当x=x1+x2时,二次函数y=2020x2+2021x+2022=2020(−20212020)2+2021⋅(−20212020)+2022=2022.故选:C.根据题意得出x=x1+x2=−20212020,代入函数的解析式即可求得二次函数的值.本题考查了一元二次方程根与系数的关系以及二次函数图象上点的坐标特征,图象上的点符合解析式.11.【答案】(1,−2)【解析】解:在直角坐标系中,点(−1,2)关于原点对称点的坐标是(1,−2),故答案为:(1,−2).根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(−x,−y),可得答案.本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.12.【答案】14【解析】解:∵四边形是平行四边形,∴对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=14S四边形ABCD,∴点A落在阴影区域内的概率为14,故答案为:14.用阴影部分的面积除以平行四边形的总面积即可求得答案.此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比.13.【答案】50%【解析】解:设2018年初至2020年初该地区贫困人口的年平均下降率为x,依题意得:4(1−x)2=1,解得:x1=0.5=50%,x2=1.5(不合题意,舍去).故答案为:50%.设2018年初至2020年初该地区贫困人口的年平均下降率为x,根据该地区2018年初及2020年初贫困人口的数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.14.【答案】125°或145°【解析】解:∵O是△ABC的外心,∴∠BAC=12∠BOC=12×140°=70°(如图1)或∠BAC=180°−70°=110°,(如图2)∵I是△ABC的内心,∴∠BIC=90°+12∠BAC,当∠BAC=70°时,∠BIC=90°+12×70°=125°;当∠BAC=110°时,∠BIC=90°+12×110°=145°;即∠BIC的度数为125°或145°.故答案为125°或145°.利用圆周角定理得到∠BAC=70°或∠BAC=110°,由于I是△ABC的内心,则∠BIC=90°+12∠BAC,然后把∠BAC的度数代入计算即可.本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了三角形的外心.15.【答案】32π【解析】解:点O所经过的路径长=3×90π⋅1180=32π.故答案为:32π.点O所经过的路径是三个14圆周长.本题考查轨迹,弧长公式等知识,解题的关键是理解题意,灵活运用所学知识解决问题.16.【答案】①③【解析】解:①∵二次函数y=x2−2mx+1的对称轴为直线x=−−2m2×1=m,二次函数y=−x2+2mx的对称轴为直线x=−2m2×(−1)=m,故结论①正确;②∵函数的图象与x轴有交点,则△=(−2m)2−4×1×1=4m2−4≥0,∴m≥1,故结论②错误;③∵y=x2−2mx+1=(x−m)2+1−m2,∴顶点为(m,−m2+1),∴该函数的图象的顶点在函数y=−x2+1的图象上,故结论③正确;④∵x1+x2<2m,∴x1+x22<m,∵二次函数y=x2−2mx+1的对称轴为直线x=m∴点A离对称轴的距离大于点B离对称轴的距离∵x1<x2,且a=1>0∴y1>y2故结论④错误;故答案为①③.利用二次函数的性质一一判断即可.本题考查抛物线与x轴的交点、二次函数的性质,二次函数图象上点的坐标特征,解题的关键是熟练掌握基本知识,属于中考常考题型.17.【答案】解:∵关于x的一元二次方程x2−bx+2=0有一个根是x=1,∴1−b+2=0,解得:b=3,把b=3代入方程得:x2−3x+2=0,设另一根为m,可得1+m=3,解得:m=2,则b的值为3,方程另一根为x=2.【解析】把x=1代入方程计算求出b的值,进而求出另一根即可.此题考查了根与系数的关系,以及一元二次方程的解,熟练掌握根与系数的关系是解本题的关键.18.【答案】证明:由旋转可知,△ABC≌△DEC,∴∠A=∠CDE,AC=DC,∴∠A=∠ADC,∴∠ADC=∠CDE,即DC平分∠ADE.【解析】利用全等三角形的性质以及等腰三角形的性质即可解决问题.本题考查旋转的性质,全等三角形的性质,等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.【答案】解:(1)∵在价值为2,5,5,10(单位:元)的四件奖品,价值为5元的奖品有2张,∴抽中5元奖品的概率为24=12;(2)画树状图如下:由树状图可知共有12种等可能结果,其中所获奖品总值不低于10元的有8种,∴所获奖品总值不低于10元的概率为812=23.【解析】(1)根据概率公式计算可得;(2)画树状图列出所有等可能结果,再从中确定所获奖品总值不低于10元的结果数,利用概率公式计算可得.此题还考查了列举法与树状图法求概率,解答此类问题的关键在于列举出所有可能的结果,画出树形图是解题的关键.20.【答案】解:(1)如图,点P,线段BD即为所求作.(2)如图,点P,线段FG即为所求作.【解析】(1)取格点T,连接AT交BC于点P,连接AC,取AC的中点W,作射线PW 交⊙P于点D,线段BD即为所求作.(2)取格点J,连接AB,AJ延长AJ交⊙P于Q,连接BQ可得圆心P,取格点R,D,连接FR,DR,作DR交⊙P于G,连接FG,可证FA=FR=FG,线段FG即为所求作.本题考查作图−应用与设计垂径定理,圆周角定理,线段的垂直平分线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21.【答案】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴AB⏜=CD⏜,∵E是BC⏜的中点,∴BE⏜=EC⏜,∴AE⏜=DE⏜,∴AE=DE.(2)解:连接BD,过点D作DF⊥DE交EC的延长线于F.∵四边形ABCD是正方形,∴∠DBC=∠DEC=45°,DA=DC,∵∠EDF=90°,∴∠F=90°−45°=45°,∴DE=DF,∵∠ADC=∠EDF=90°,∴∠ADE=∠CDF,在△ADE和△CDF中,{∠ADE=∠CDF ∠AED=∠FDA=DC,∴△ADE≌△CDF(AAS),∴AE=CF,∴S△ADE=S△CDF,∴S四边形AECD=S△DEF,∵EF=√2DE=EC+DE,EC=1,∴1+DE=√2DE,∴DE=√2+1,∴S△DEF=12DE2=√2+32.【解析】(1)欲证明AE=DE,只要证明AE⏜=DE⏜.(2)连接BD,过点D作DF⊥DE交EC的延长线于F.证明△ADE≌△CDF(AAS),推出AE= CF,推出S△ADE=S△CDF,推出S四边形AECD=S△DEF,再利用等腰三角形的性质构建方程求出DE,即可解决问题.本题考查正多边形与圆,正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.22.【答案】解:(1)∵顶点坐标为(30,900),∴设y=a(x−30)2+900,将(0,0)代入,得:900a+900=0,解得a=−1,∴y=−(x−30)2+900;(2)设第x分钟时的排队等待人数为w人,由题意可得:w=y−40x=−(x−30)2+900−40x=−x2+60x−900+900−40x=−x2+20x=−(x−10)2+100,∴当x=10时,w的最大值为100,答:排队等待人数最多时是100人;(3)设人工检测m分钟时间后,校门口不再出现排队等待的情况,由题意得:−(4+m)2+60(4+m)−40×4−(40+12)m=0,整理得:−m2+64=0,解得:m1=8,m2=−8(舍).答:人工检测8分钟时间后,校门口不再出现排队等待的情况.【解析】(1)由顶点坐标为(30,900),可设y=a(x−30)2+900,再将(0,0)代入,求得a的值,则可得y与x之间的函数解析式;(2)设第x分钟时的排队等待人数为w人,根据w=y−40x及(1)中所得的y与x之间的函数解析式,可得w关于x的二次函数,将其写成顶点式,按照二次函数的性质可得答案;(3)设人工检测m分钟时间后,校门口不再出现排队等待的情况,由于检测体温到第4分钟时,在校门口临时增设一个人工体温检测点,则体温检测棚的检测时间为(m+4)分钟,则学生到校的累计人数与人工检测m分钟后两种检测方式的检测人数之和相等时,校门口不再出现排队等待的情况,据此可列出关于m的方程,求解并根据问题的实际意义作出取舍即可.本题主要考查了二次函数在实际问题中的应用,熟练掌握待定系数法求二次函数的解析式及二次函数的性质是解题的关键.23.【答案】问题背景解:∵△ABD,△AEC都是等边三角形,∴∠BAD=60°,∠CAE=60°,AD=AB,AC=AE,∴∠BAD+∠BAC=∠CAE+∠BAC,∴∠DAC=∠BAE,∴△ACD≌△AEB(SAS),∴△ACD可以由△AEB绕点A顺时针旋转60°得到,即旋转中心是点A,旋转方向是顺时针,旋转角是60°;尝试应用∵△ACD和△ABE都是等边三角形,∴AC=AD,AB=AE,∠CAD=∠BAE=60°,∴∠CAB=∠DAE,∴△ADE≌△ACB(SAS),∴∠ADE=∠ACB=90°,DE=CB,∵∠ADE=90°,∴∠ADF=90°,∵∠ADC=∠ACD=60°,∴∠DCF=∠CDF=30°,∴CF=DF,∵BD⊥BC,∴∠BDF=30°,∴BF=12DF,设BF=x,则CF=DF=2x,DE=3x,∴DFDE =2x3x=23;拓展创新∵∠ACB=90°,∴点C在以AB为直径的圆上运动,取AB的中点D,连接CD,∴CD=12AB=1,如图,过点A作AE⊥AB,且使AE=AD,连接PE,BE,∵将线段AC绕点A顺时针旋转90°得到线段AP,∴∠PAC=90°,PA=AC,∵∠EAD=90°,∴∠PAE=∠CAD,∴△CAD≌△PAE(SAS),∴PE=CD=1,∵AB=2,AE=AD=1,∴BE=√AE2+AB2=√12+22=√5,∴BP≤BE+PE=√5+1,∴BP的最大值为√5+1.【解析】问题背景由等边三角形的性质得出∠BAD=60°,∠CAE=60°,AD=AB,AC=AE,证得△ACD≌△AEB(SAS),由旋转的概念可得出答案;尝试应用证明△ADE≌△ACB(SAS),由全等三角形的性质得出∠ADE=∠ACB=90°,DE=CB,DF,则可得出答案;得出∠BDF=30°,由直角三角形的性质得出BF=12拓展创新过点A作AE⊥AB,且使AE=AD,连接PE,BE,由直角三角形的性质求出BE,PE 的长,则可得出答案.本题是几何变换综合题,考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,勾股定理,直角三角形的性质,熟练掌握旋转的性质是解题的关键.24.【答案】解:(1)∵A为直线y=k(x−2)+1上的定点,∴A的坐标与k无关,∴x−2=0,∴x=2,此时y=1,∴点A的坐标为(2,1);(2)∵y=−x2+4x=−(x −2)2+4,∴顶点D 的坐标为(2,4),∵点A 的坐标为(2,1),∴AD ⊥x 轴.如图(1),分别过点B ,C 作直线AD 的垂线,垂足分别为M ,N ,设B ,C 的横坐标分别为x 1,x 2,∵△ACD 的面积是△ABD 面积的两倍,∴CN =2BM ,∴x 2−2=2(2−x 1),∴2x 1+x 2=6.联立{y =−x 2+4x y =kx −2k +1,得x 2+(k −4)x −2k +1=0,① 解得x 1=4−k−√k2+122,x 2=4−k+√k 2+122, ∴2×4−k−√k 2+122+4−k+√k 2+122=6,化简得:√k 2+12=−3k ,解得k =−√62. 另解:接上解,由①得x 1+x 2=4−k ,又由2x 1+x 2=6,得x 1=2+k .∴(2+k)2+(k −4)(2+k)−2k +1=0,解得k =±√62. ∵k <0,∴k =−√62; (3)如图(2),设⊙E 与直线y =t 交于点G ,H ,点C 的坐标为(a,−a 2+4a). ∵E 是AC 的中点,∴将线段AE 沿AC 方向平移与EC 重合,∴x E −x A =x C −x E ,y E −y A =y C −y E ,∴x E =12(x A +x C ),y E =12(y A +y C ).∴E(1+a 2,−a 2+4a +12). 分别过点E ,A 作x 轴,y 轴的平行线交于点F ,在Rt △AEF 中,由勾股定理得:EA 2=(1+a 2−2)2+(−a 2+4a +12−1)2 =(a 2−1)2+(−a 2+4a+12−1)2,过点E 作PE ⊥GH ,垂足为P ,连接EH ,∴GH =2PH ,EP 2=(−a 2+4a+12−t)2,又∵AE =EH ,∴GH 2=4PH 2=4(EH 2−EP 2)=4(EA 2−EP 2)=4[(a 2−1)2+(−a 2+4a +12−1)2−(−a 2+4a +12−t)2] =4[a 24−a +1+(−a 2+4a +12)2−(−a 2+4a +1)+1−(−a 2+4a +12)2+t(−a 2+4a +1)−t 2]=4[(54−t)a 2+(4t −5)a +1+t −t 2]. ∵GH 的长为定值,∴54−t =0,且4t −5=0, ∴t =54.【解析】(1)由A为直线y=k(x−2)+1上的定点,可得k的系数为0,从而求得x值,则点A的坐标可得;(2)先求得顶点D的坐标,可得AD⊥x轴.分别过点B,C作直线AD的垂线,垂足分别为M,N,设B,C的横坐标分别为x1,x2由△ACD的面积是△ABD面积的两倍得出2x1+x2=6.将抛物线解析式与直线y=k(x−2)+1解析式联立,得出关于x的一元二次方程,方法一可以直接解方程,再结合2x1+x2=6求得答案;方法二可以用韦达定理及2x1+x2=6求得答案;(3)设⊙E与直线y=t交于点G,H,点C的坐标为(a,−a2+4a),用含a的式子表示出点E的坐标,再由勾股定理得出关于a的方程;分别过点E,A作x轴,y轴的平行线交于点F,过点E作PE⊥GH,垂足为P,连接EH,用含a的式子表示GH2,根据GH为定值,可得答案.本题属于二次函数综合题,综合考查了一次函数、二次函数、一元二次方程、勾股定理及圆的性质等知识点,数形结合并熟练掌握相关性质定理是解题的关键.。
2020-2021学年湖北省武汉市青山区九年级(上)期中数学试卷(附答案详解)
![2020-2021学年湖北省武汉市青山区九年级(上)期中数学试卷(附答案详解)](https://img.taocdn.com/s3/m/ac841772bceb19e8b9f6ba43.png)
2020-2021学年湖北省武汉市青山区九年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.将方程x2−8x=10化成一元二次方程的一般形式,其中二次项系数为1,常数项为()A. −8B. 8C. 10D. −102.下面四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,是中心对称图形的是()A. B. C. D.3.若将抛物线y=2x2向上平移3个单位,所得抛物线的解析式为()A. y=2x2+3B. y=2x2−3C. y=2(x−3)2D. y=2(x+3)24.如图,在⊙O中,∠BOC=100°,则∠A等于()A. 100°B. 50°C. 40°D. 25°5.抛物线y=−3(x−1)2−2的顶点坐标是()A. (1,2)B. (−1,2)C. (−1,−2)D. (1,−2)6.用配方法解方程x2+10x+9=0,配方正确的是()A. (x+5)2=16B. (x+5)2=34C. (x−5)2=16D. (x+5)2=257.如图,Rt△ABC中,∠BAC=30°,∠C=90°,将△ABC绕点A旋转,使得点C的对应点C′落在AB上,则∠BB′C′的度数为()A. 12°B. 15°C. 25°D. 30°8.要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排15场比赛,则参赛球队的个数是()A. 5个B. 6个C. 7个D. 8个9.如图,四边形ABCD为⊙O的内接四边形,∠AOD+∠BOC=180°.若AD=2,BC=6,则△BOC的面积为()A. 3B. 6C. 9D. 1210.抛物线y=ax2+bx+c的顶点为D(−1,2),与x轴的一个交点A在点(−3,0)和(−2,0)之间,其部分图象如图,则以下结论:①b2−4ac<0;②a+b+c<0;③c−a=2;④方程ax2+bx+c−2=0有两个相等的实数根.其中正确结论的个数为()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)11.已知方程x2−4x+1=0的两个根是x1和x2,则x1+x2=______.12.已知点A(−2,a)与点B(b,3)关于原点对称,则a−b=______13.已知点A(−2,y1),点B(1,y2)在抛物线y=3x2−2上,则y1,y2的大小关系是:y1______y2.(填“>”或“<”)14.某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x,根据题意所列方程是______.15.如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,则水面下降1m时,水面宽度增加______m.16.如图,矩形ABCD中,AB=2,AD=√3,O为AB的中点,将OA绕着点O旋转得到OE,连接DE.以DE为边作等边△DEF(点D、E、F按顺时针方向排列),连接CF,则CF的最小值为______.三、计算题(本大题共1小题,共8.0分)17.解方程:x2−x−1=0.四、解答题(本大题共7小题,共64.0分)18.二次函数y=ax2−2x+c中的x,y满足如表:x…−10123…y…0−3−4−3m…(1)求抛物线的解析式;(2)求m的值.19.小明在一幅长为80cm,宽为50cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,求金色纸边的宽度.20.请用无刻度直尺画出下列图形,并保留作图痕迹.(1)将线段AB绕点B顺时针旋转90°,得到线段BD;(2)过C作线段AB的垂线段CE,垂足为E;(3)作∠ABD的角平分线BF.21.如图,AB为⊙O的直径,C是⊙O上的一点,连接AC,BC.D是BC⏜的中点,过D作DE⊥AB于点E,交BC于点F.(1)求证:BC=2DE;(2)若AC=6,AB=10,求DF的长.22.某超市销售一种成本为每千克40元的水产品,若按每千克50元销售,一个月可售出500千克,销售价每涨价1元,月销售量就减少10千克.(1)直接写出月销售量y(千克)与售价x(元/千克)之间的函数关系式:______;月销售利润w(元)与售价x(元/千克)之间的函数关系式:______;(2)该超市想在月销售量不低于250千克的情况下,使月销售利润达到8000元,销售单价应定为每千克多少元?(3)售价定为每千克多少元时会获得最大利润?求出最大利润.23.[学习概念]有一组对角互余的凸四边形称为对余四边形.[理解运用](1)如图1,在对余四边形ABCD中,连接AC,∠D=30°,∠ACD=105°,AB=AC,求∠BAD的度数;(2)如图2,在凸四边形ABCD中,DA=DB,DA⊥DB,当2CD2+CB2=CA2时,判断四边形ABCD是否为对余四边形?并证明你的结论;(3)[拓展提升]如图3,在对余四边形ABCD中,∠A=45°.∠ABD+∠BDC=180°,BC=4.求AB+CD的长.24.已知抛物线y=ax2经过点A(2,1).(1)求抛物线的解析式;(2)如图1,直线l经过点A且与抛物线对称轴右侧交于点B,若△ABO的面积为6,求直线l的解析式;(3)如图2,直线CD与抛物线交于C、D两点,与y轴交于点(0,m),直线PC、PD与抛物线均只有一个公共点,点P的纵坐标为n,求m与n的数量关系.答案和解析1.【答案】D【解析】解:方程整理得:x2−8x−10=0,其中二次项系数为1,常数项为−10.故选:D.方程整理后为一般形式,找出二次项系数与一次项系数即可.此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c= 0(a,b,c是常数且a≠0).在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.2.【答案】C【解析】解:A、B、D中图形都不是中心对称图形,C中图形是中心对称图形,故选:C.根据中心对称图形的概念判断即可.本题考查的是中心对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.3.【答案】A【解析】解:由“上加下减”的原则可知,将二次函数y=2x2向上平移3个单位可得到函数y=2x2+3,故选:A.直接根据“上加下减、左加右减”的原则进行解答即可.本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.4.【答案】B∠BOC=50°.【解析】解:∵∠BOC=100°,∴∠A=12故选:B.根据圆周角定理可求得∠A=50°.本题利用了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.【答案】D【解析】解:∵y=−3(x−1)2−2是抛物线的顶点式,∴顶点坐标为(1,−2).故选:D.直接根据顶点式的特点求顶点坐标.本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−ℎ)2+k中,对称轴为x=ℎ,顶点坐标为(ℎ,k).6.【答案】A【解析】解:x2+10x+9=0,x2+10x=−9,x2+10x+52=−9+52,(x+5)2=16.故选:A.移项,配方(方程两边都加上一次项系数的一半的平方),即可得出答案.本题考查了用配方法解一元二次方程的应用,关键是能正确配方.7.【答案】B【解析】解:由旋转的性质可知,∠B′AB=∠BAC=30°,AB=AB′,(180°−30°)=75°,∴∠ABB′=∠AB′B=12∵∠BCB=90°,∴∠BB′C=90°−75°=15°,故选:B.利用旋转的性质,三角形面积和定理求解即可.本题考查旋转变化的性质,三角形内角和定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.8.【答案】B【解析】解:设参赛球队的个数是x,每个队都要赛(x−1)场,但两队之间只有一场比赛,由题意得:x(x−1)2=15,解得:x1=6,x2=−5(不合题意,舍去),则参赛球队的个数是6个;故选:B.根据赛制为单循环形式(每两队之间都赛一场),x个球队比赛总场数=x(x−1)2,由此列出方程,然后求解即可.本题考查了由实际问题抽象一元二次方程的应用,读懂题意,得到总场数与球队之间的关系是解决本题的关键.9.【答案】A【解析】解:延长BO交⊙O于E,连接CE,则∠COE+∠BOC=180°,∠BCE=90°,即CE⊥BC,∵∠AOD+∠BOC=180°,∴∠AOD=∠COE,∴AD⏜=CE⏜,∴AD=CE=2,∵BC=6,∴△BEC的面积为12BC⋅CE=12×6×2=6,∵OB=OE,∴△BOC的面积=12△BEC的面积=12×6=3,故选:A.延长BO交⊙O于E,连接CE,可得∠COE+∠BOC=180°,∠BCE=90°,由∠AOD+∠BOC=180°,∠AOD=∠COE,推出AD=CE=2,根据三角形的面积公式可求得△△BEC的面积.BEC的面积为6,由OB=OE,可得△BOC的面积=12本题主要考查了圆心角所对弧、弦的关系,圆周角定理,三角形面积公式,正确作出辅助线是解决问题的关键.10.【答案】C【解析】【分析】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为;抛物线与y轴的交点坐标抛物线,当a>0,抛物线开口向上;对称轴为直线x=−b2a为(0,c);当b2−4ac>0,抛物线与x轴有两个交点;当b2−4ac=0,抛物线与x轴有一个交点;当b2−4ac<0,抛物线与x轴没有交点.由抛物线与x轴有两个交点得到b2−4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=−1,则根据抛物线的对称性得抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,则a+b+c<0;由抛物线的顶点为D(−1,2)得a−b+c=2,由抛物线的对称轴为直=−1得b=2a,所以c−a=2;根据二次函数的最大值问题,当x=−1时,线x=−b2a二次函数有最大值为2,即只有x=−1时,ax2+bx+c=2,所以说方程ax2+bx+c−2=0有两个相等的实数根.【解答】解:∵抛物线与x轴有两个交点,∴b2−4ac>0,所以①错误;∵顶点为D(−1,2),∴抛物线的对称轴为直线x=−1,∵抛物线与x轴的一个交点A在点(−3,0)和(−2,0)之间,∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,∴当x=1时,y<0,∴a+b+c<0,所以②正确;∵抛物线的顶点为D(−1,2),∴a−b+c=2,∵抛物线的对称轴为直线x=−b2a=−1,∴b=2a,∴a−2a+c=2,即c−a=2,所以③正确;∵当x=−1时,二次函数有最大值为2,即只有x=−1时,ax2+bx+c=2,∴方程ax2+bx+c−2=0有两个相等的实数根,所以④正确.故选C.11.【答案】4【解析】解:根据题意得x1+x2=−−41=4.故答案为4.根据根与系数的关系求解.本题考查了根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba ,x1x2=ca.12.【答案】−5【解析】解:由题意,得:a=−3,b=2,a−b=−3−2=−5,故答案为:−5.根据关于原点对称的点的坐标,可得答案.本题考查了关于原点对称的点的坐标,利用关于原点对称的点的坐标规律得出a,b是解题关键.13.【答案】>【解析】解:∵点A(−2,y1),点B(1,y2)在抛物线y=3x2−2上,∴当x=−2时,y1=12−2=10,当x=1时,y2=3−2=1,∴y1>y2,故答案为>.将点A(−2,y1),点B(1,y2)分别代入y=3x2−2,求出相应的y1、y2,即可比较大小.本题考查二次函数的图象上点的特点;能够用代入法求二次函数点的坐标是解题的关键.14.【答案】36(1−x)2=25【解析】【分析】本题考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.可先表示出第一次降价后的价格,那么第一次降价后的价格×(1−降低的百分率)=25,把相应数值代入即可求解.【解答】解:第一次降价后的价格为36×(1−x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为36×(1−x)×(1−x),则列出的方程是36(1−x)2=25.故答案为:36(1−x)2=25.15.【答案】(2√6−4)【解析】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C 点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(−2,0),到抛物线解析式得出:a=−0.5,所以抛物线解析式为y=−0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=−1时,对应的抛物线上两点之间的距离,也就是直线y=−1与抛物线相交的两点之间的距离,可以通过把y=−1代入抛物线解析式得出:−1=−0.5x2+2,解得:x=±√6,所以水面宽度增加到2√6米,比原先的宽度当然是增加了2√6−4,故答案为:(2√6−4).根据已知得出直角坐标系,进而求出二次函数解析式,再通过把y=−1代入抛物线解析式得出水面宽度,即可得出答案.此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.16.【答案】2√3−1【解析】解:如图,连接DO,延长OA到T,使得AT=OA,连接DT,FT,CT.∵四边形ABCD是矩形,∴∠OAD=90°,∵AD=√3,OA=OB=1,=√3,∴tan∠AOD=ADAO∴∠AOD=60°,∠ADO=30°,∴OD=2AO,∵AO=AT,∴OT=2AO,∴OT=OD,∴△ODT 是等边三角形,∵△DEF 是等边三角形,∴∠ODT =∠EDF =60°,DO =DT ,DE =DF ,∴∠DEO =∠FDT ,∴△DEO≌△FDT(SAS),∴FT =OE =OA =1,∵∠B =90°,BT =2+1=3,BC =√3,∴CT =√BT 2+BC 2=√32+(√3)2=2√3,∵CF ≥CT −TF ,∴CF ≥2√3−1,∴CF 的最小值为2√3−1.故答案为:2√3−1.如图,连接DO ,延长OA 到T ,使得AT =OA ,连接DT ,FT ,CT.证明△DEO≌△FDT(SAS),推出FT =OE =OA =1,利用勾股定理求出CT ,根据CF ≥CT −TF ,可得CF ≥2√3−1,由此即可解决问题.本题考查旋转变换的性质,等边三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.17.【答案】解:x 2−x −1=0,x =−b±√b 2−4ac 2a=1±√1+42×1=1±√52, ∴x 1=1+√52,x 2=1−√52.【解析】本题考查了公式法解一元二次方程,解题时要注意将方程化为一般形式.确定a ,b ,c 的值,然后检验方程是否有解,若有解,代入公式即可求解.解此题的关键是熟练应用求根公式,要注意将方程化为一般形式,确定a 、b 、c 的值.18.【答案】解:(1)由题意可知,抛物线y =ax 2−2x +c 经过(−1,0),(0,−3), ∴{a +2+c =0c =−3, 解得:{a =1c =−3, 所以抛物线的解析式为:y =x 2−2x −3;(2)把x=3代入y=x2−2x−3,可得y=9−6−3=0,所以m=0.【解析】(1)取两组对应值代入y=ax2−2x+c得到关于a、c的方程组,然后解方程组即可;(2)把x=3代入二次函数的解析式求解即可.本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.19.【答案】解:设金色纸边的宽度为xcm,则挂图的长为(80+2x)cm,宽就为(50+ 2x)cm,根据题意得:(80+2x)(50+2x)=5400,解得:x1=−70(不符合题意,舍去),x2=5.答:金色纸边的宽度为5cm.【解析】设金色纸边的宽度为xcm,则挂图的长为(80+2x)cm,宽就为(50+2x)cm,根据题目条件列出方程,求出其解就可以.本题考查了根据矩形的面积公式的列一元二次方程解决实际问题的运用及一元二次方程解法的运用.解答时检验根是否符合题意是容易被忽略的地方.20.【答案】解:(1)如图,线段BD即为所求.(2)如图,线段CE即为所求.(3)如图,射线BF即为所求.【解析】(1)根据旋转变换的性质画出图形即可.(2)取格点T,连接CT交AB于点E,线段CE即为所求.(3)取格点,G,H,连接GH,AD交于点F,作射线BF,射线BF即为所求.本题考查作图−旋转变换,角平分线,垂线段等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.21.【答案】(1)证明:延长DE交⊙O于点G,如图所示:∵AB为⊙O的直径,DE⊥AB,∴DE=GE,BD⏜=BG⏜,∵D是BC⏜的中点,∴CD⏜=BD⏜=BG⏜,∴BC⏜=DG⏜,∴BC=DG=2DE;(2)解:连接BD、OD,如图所示:∵CD⏜=BG⏜,∴∠DBC=∠BDF,∴DF=BF,∵AB为⊙O的直径,AB=10,∴∠ACB=90°,OB=OD=5,∴BC=√AB2−AC2=√102−62=8,BC=4,由(1)得:DE=12∵DE⊥AB,∴OE=√OD2−DE2=√52−42=3,∴BE=OB−OE=2,设DF=BF=a,则EF=4−a,在Rt△BEF中,由勾股定理得:22+(4−a)2=a2,,解得:a=52∴DF=5.2【解析】(1)延长DE交⊙O于点G,先由垂径定理得DE=GE,BD⏜=BG⏜,再证出BC⏜=DG⏜,由圆心角、弧、弦的关系即可得出结论;(2)连接BD、OD,先由圆周角定理得∠DBC=∠BDF,得DF=BF,由圆周角定理得BC=4,再由勾股定理求出OE=3,则BE=∠ACB=90°,勾股定理得BC=8,则DE=12OB−OE=2,设DF=BF=a,则EF=4−a,然后在Rt△BEF中,由勾股定理得出方程,解方程即可.本题考查了圆周角定理、垂径定理、圆心角、弧、弦的关系、勾股定理等知识;熟练掌握圆周角定理和垂径定理是解题的关键.22.【答案】y=−10x+1000w=−10x2+1400x−40000【解析】解:(1)月销售量y(千克)与售价x(元/千克)之间的函数关系式:y=500−10(x−50)=−10x+1000,即y=−10x+1000;月销售利润w(元)与售价x(元/千克)之间的函数关系式:w=(x−40)y=(x−40)(−10x+1000)=−10x2+1400x−40000,即w=−10x2+1400x−40000,故答案为:y=−10x+1000,w=−10x2+1400x−40000;(2)根据题意得:−10x2+1400x−40000=8000,解得:x1=80,x2=60,又∵月销售量不低于250千克,则有:−10x+1000≥250,解得:x≤75,∴x1=80>75(舍去),答:销售单价应定为60元时,月销售利润达到8000元;(3)由(2)得:w=−10x2+1400x−40000=−10(x−70)2+9000,∵a=−10<0,∴抛物线的开口向下,抛物线有最高点,函数有最大值,当x=70时,w取最大值,最大值为9000元,答:售价定为每千克70元时会获得最大利润?最大利润为9000元.(1)根据一个月可售出500千克,减去因涨价而减少的数量得到月销售量y(千克)与售价x(元/千克)之间的函数关系式,根据(售价−成本)×月销售量得到月销售利润w(元)与售价x(元/千克)之间的函数关系式;(2)将月销售利润8000元代入w=−10x2+1400x−40000,解方程即可得到结果;(3)将w=−10x2+1400x−40000化为顶点式就可以求出结果.本题考查了二次函数的应用,一元二次方程的运用,解答时求出函数的解析式是解题的关键.23.【答案】解:(1)∵四边形ABCD是对余四边形,依题意得,∠B+∠D=90°,∵∠D=30°,∴∠B=90°−∠D=60°,∵AB=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠ACD=105°,∴∠BCD=∠ACB+∠ACD=165°,在四边形ABCD中,∠BAD=360°−∠B−∠ACD−∠D=360°−60°−165°−30°= 105°;(2)四边形ABCD为对余四边形,证明:∵AD⊥BD,∴∠ADB=90°,∵DA=DB,∴∠BAD=∠ABD=45°,如图2,过点D作DM⊥CD,使CD=CM,连接CM,BM,∴∠DMC=∠DCM=45°,∵∠ADB=∠CDM=90°,∴∠ADB+∠BDC=∠CDM+∠BDC,∴∠ADC=∠BDM.在△ADC和△BDM中,{DA=DB∠ADC=∠BDM DC=DM,∴△ADC≌△BDM(SAS),∴AC=BM.在Rt△MDC中,根据勾股定理得,CM2=CD2+DM2=2CD2,∵2CD2+CB2=AC2,∴CM2+CB2=BM2,∴△BCM是直角三角形,且∠BCM=90°,∵∠DCM=45°,∴∠DCB=∠BCM−∠DCM=45°,∴∠DCB+∠DAB=90°,∴四边形ABCD为对余四边形;(3)如图3,过点B作BE⊥BC交CD的延长线于点E,∵四边形ABCD为对余四边形,依题意得,∠A+∠C=90°,∵∠A=45°,∴∠C=∠E=45°=∠A,∵∠ABD+∠BDC=180°,∠BDE+BDC=180°,∴∠ABD=∠EDB,在△ABD和△EDB中,{∠A=∠E∠ABD=∠EDB BD=DB,∴△ABD≌△EDB(AAS),∴AB =ED ,EB =BC =4,在Rt △EBC 中,根据勾股定理得,BE 2+BC 2=CE 2,∴CE =4√2, 即AB +CD =4√2.【解析】(1)先根据对余四边形求出∠B =60°,进而得出∠ACB =60°,∠BCD =165°,最后用四边形内角和定理,即可得出结论;(2)先判断出∠BAD =∠ABD =45°,进而判断出∠ADC =∠BDM ,即可判断出△ADC≌△BDM(SAS),得出AC =BM.再根据勾股定理得出CM 2=CD 2+DM 2=2CD 2,进而判断出∠BCM =90°,即可得出结论;(3)先判断出∠C =∠E =45°=∠A ,再判断出∠ABD =∠EDB ,进而得出△ABD≌△EDB(AAS),得出AB =ED ,EB =BC =4,最后用勾股定理求出CE =4√2,即可得出结论.此题是四边形综合题,主要考查了新定义,等边三角形的判定和性质,勾股定理,全等三角形的判定和性质,直角三角形的判定和性质,构造出全等三角形是解本题的关键.24.【答案】解:(1)∵抛物线y =ax 2经过点A(2,1). ∴1=4a ,解得a =14,∴抛物线解析式为y =14x 2;(2)∵点A(2,1).∴直线OA 为y =12x ,如图1,过B 作BE//OA 交y 轴于E ,连接AE ,则S △AOB =S △AOE =6,∴12OE ×2=6,∴OE =6,∴点E(0,6),设直线BE 为y =12x +6,解{y =12x +6y =14x2得{x =6y =9或{x =−4y =4,∴B(6,9),设直线l 的解析式为y =kx +b ,∴{2k +b =16k +b =9,解得{k =2b =−3, ∴直线l 的解析式为y =2x −3;(3)设直线CD 的解析式为y =kx +m ,由{y =kx +m y =14x2去掉y 整理得14x 2−kx −m =0. 设C 、D 的坐标分别为(x C ,y C ),(x D ,y D ),∴x C ⋅x D =−4m ,设直线CP 的解析式为y =ax +c ,由{y =ax +c y =14x 2整理得,14x 2−ax −c =0. ∵CP 与抛物线只有一个公共点,∴△=a 2+c =0,∴c =−a 2,∴14x 2−ax +a 2=0,解得x C =2a ,同理:设直线DP 的解析式为y =bx +d ,可得x D =2b ,∴2a ⋅2b =−4m ,∴ab =−m ,联立{y =ax +c y =bx +d ,即{y =ax −a 2y =bx −b 2, 解得{x =a +b y =ab, ∴P(a +b,ab),∵点P 的纵坐标为n ,∴n =ab =−m .【解析】(1)利用待定系数法求抛物线解析式解答即可;(2)求得直线OA 的解析式,过B 作BE//OA 交y 轴于E ,连接AE ,则S △AOB =S △AOE =6,根据三角形面积求得OE ,得到E 的坐标,进而求得直线BE 的解析式,与抛物线解析式联立,解方程组求得B 的坐标,然后根据待定系数法即可求得直线l 的解析式;(3)设直线CD 的解析式为y =kx +m ,与抛物线解析式联立整理得14x 2−kx −m =0.根据根与系数的关系得到x C ⋅x D =−4m ,设直线CP 的解析式为y =ax +c ,联立抛物线x2−ax−c=0.根据题意△=a2+c=0,解析式得到14x2−ax+a2=0,解得x C=2a,同理:设直线DP的解析式求得c=−a2,即可得到14为y=bx+d,可得x D=2b,所以4ab=−m,直线CP和直线DP联立,解方程求得交点P((a+b,ab),即可求得n=−m.本题考查了待定系数法求二次函数的解析式,待定系数法求一次函数的解析式,两条直线相交或平行问题,直线与抛物线的交点问题,方程思想的运用是解题的关键.。
2018武汉元调数学试卷及答案(Word精校版)
![2018武汉元调数学试卷及答案(Word精校版)](https://img.taocdn.com/s3/m/4174d817ee06eff9aef807d7.png)
第1页 / 共10页2017-2018学年度武汉市部分学校九年级元月调考一.选择题(共10小题,每小题3分,共30分) 1.方程x (x -5)=0化成一般形式后,它的常数项是A .-5B .5C .0D .12.二次函数y =2(x -3)2-6A .最小值为-6B .最大值为-6C .最小值为3D .最大值为3 3.下列交通标志中,是中心对称图形的是A .B .C .D .4.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则 A .事件①是必然事件,事件②是随机事件. B .事件①是随机事件,事件②是必然事件. C .事件①和②都是随机事件. D .事件①和②都是必然事件.5.投掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是 A .连续投掷2次必有1次正面朝上. B .连续投掷10次不可能都正面朝上.C .大量反复投掷每100次出现正面朝上50次.D .通过投掷硬币确定谁先发球的比赛规则是公平的.6.一元二次方程20x m ++=有两个不相等的实数根则A .3m >B .3m =C .3m <D .3m ≤7.圆的直径是13cm ,如果圆心与直线上某一点的距离是6.5cm ,那么直线和圆的位置关系是 A .相离 B .相切 C .相交 D .相交或相切8.如图,等边△ABC 的边长为4,D ,E ,F 分别为边AB ,BC ,AC 的中点,分别以A ,B ,C 三点为圆心,以AD 长为半径作三条圆弧,则图中三条圆弧的弧长之和是A .πB .2πC .4πD .6π9.如图,△ABC 的内切圆与三边分别相切于点D ,E ,F ,则下列等式:①∠EDF =∠B ,②2∠EDF =∠A +∠C ,③2∠A =∠FED +∠EDF ,④∠AED +∠BFE +∠CDF =180°,其中成立的个数是 A .1个 B .2个 C .3个 D .4个 10.二次函数y =-x 2-2x +c 在32x -≤≤的范围内有最小值-5,则c 的值是 A .-6 B .-2 C .2 D .3二.填空题(共6小题,每小题3分,共18分)B第2页 / 共10页11.一元二次方程20x a -=的一个根是2,则a 的值是 .12.把抛物线22y x =先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是 . 13.一个不透明的口袋中有四个完全相同的小球,把它们分别标记为1,2,3,4.随机摸取一个小球然后放回, 再随机摸出一个小球,两次取出的小球标号的和为5的概率是 .14.设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的比,可以增加视觉美感,按此比例,如果雕像的高为2m ,那么上部应设计为多高?设雕像的上部高为x m ,列方程,并化成一般形式为 .15.如图,正六边形ABCDEF 中,P 是边ED 的中点,连接AP ,则AP AB=16.在O 中,AB 所对的圆心角108AOB ∠=︒,点C 为O 上的动点,以AO ,AC 为边构造AODC ,当∠A= °时,线段BD 最长.三.解答题(共8小题,共72分) 17. (本题8分)解方程230x x +-=AA第3页 / 共10页18. (本题8分)如图在O 中,半径OA 与弦BD 垂直,点C 在O 上,∠AOB=80°. (1)若点C 在优弧BD 上,求∠ACD 的大小; (2)若点C 在劣弧BD 上,直接写出∠ACD 的大小.19.(本题8分)甲,乙,丙三个盒子中分别装有除颜色以外都相同的小球,甲盒中装有两个球,分别为一个红球和一个绿球,乙盒中装有三个球,分别为两个绿球和一个红球;丙盒中装有两个球,分别为一个红球和一个绿球,从三个盒子中各随机取出一个小球. (1)请画树状图,列举所有可能的结果;(2)请直接写出事件“取出至少一个红球”的概率.20. (本题8分)如图,在平面直角坐标系中有点A(-4,0),B(0,3),点分别为C,D.(1)当a=-4时,①在图中画出线段CD,保留作图痕迹;②线段CD向下平移个单位时,四边形ABCD为菱形;(2)当a=时,四边形ABCD为正方形.21. (本题8分)如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点C,AE⊥CD于点E.(1)求证:AC平分∠DAE.(2)若AB=6,BD=2,求CE的长.A第4页 / 共10页22. (本题10分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m.设平行于墙的边长为xm.(1)设垂直于墙的一边长为y,请直接写出y与x之间的函数关系式.(2)若菜园面积为384m2,求x的值.(3)求菜园的最大面积.23. (本题10分)如图,点C为线段AB上一点,分别以AB,AC,CB为底作顶角为120°的等腰三角形,顶角顶点分别为D,E,F,(点E,F在AB的同侧,点D在另一侧).(1)如图1,若点C是AB的中点,则∠AED=__________;(2)如图2,若点C不是AB的中点,①求证:△DEF为等边三角形;②连接CD,若∠ADC=90°,AB=3,请直接写出EF的长.AA第5页 / 共10页24.(本题12分)已知抛物线22=++与x轴交于A(-1,0),B(3,0)两点,一次函数y=kx+b的图象l经y ax x c过抛物线上的点C(m,n).(1)求抛物线的解析式;(2)若m=3,直线l与抛物线只有一个公共点,求k的值;(3)若k=-2m+2,直线l与抛物线的对称轴相交于点D,点P在对称轴上,当PD=PC时,求点P的坐标.第6页 / 共10页第7页 / 共10页2017-2018学年度武汉市部分学校九年级元月调考解析一.选择题9.如图:①∵∠EOF =2∠EDF ,∠EOF +∠B =180°, ∴2∠EDF +∠B =180°所以①错误②∵∠EOF =2∠EDF ,∠EOF +∠B =180°, ∠A +∠B +∠C =180°,∴2∠EDF =∠A +∠C 所以②正确③∵∠EDF +∠DEF =2x +y +z =90°+x ,∵∠A+∠EOD =180°,∴∠A =180°-2(y +z )=2x , ∴2(∠EDF +∠DEF )-180°=∠A 所以③错误④∠AED +∠BFE +∠CDF =90°-x +90°-y +90°-z =270°-(x +y +z )=270°-90°=180° 所以④正确二.填空题 11. 412. 2287y x x=++ 13.1414. 2-640x x +=15.16.27°16.延长AO 与O 交于点P ,连接DP ,如图,则 O CAO D P ∆∆≌ DP OC ∴=,即点D 的运动轨迹是以点P 为圆心,OC 长 为半径的圆.如图所示,连接BP ,BP 与P 的交点记作'DBD 最大值为'BD ,此时1'272A POD APB ∠=∠=∠=三.解答题17.1x 1x =PD’BOAC B第8页 / 共10页18. (1)∵OA ⊥BD , ∴AB =AD ,∴∠ACD =12∠AOB =40° (2)40°或140°19.(1)由题意可得如下树状图,由图可知共有12种等可能的情况.(2)5620.(1)如图所示 (2)2(3)72-21.(1)证明:连OC∵CD 与⊙O 切于点C , ∴OC ⊥DE ,∠OCD =90°∵AE ⊥DE , ∴∠E =90°,∴∠OCD =∠E =90°,∴OC //AE , ∴∠1=∠2 ∵OC =OA , ∴∠1=∠3, ∴∠2=∠3, ∴AC 平分∠DAE (2)解:作CH ⊥OD∵AB =6, ∴AO =OB =OC =3∵AC 平分∠DAE ,CH ⊥OD ,CE ⊥AE , ∴CE =CH ∵∠OCD =90°, ∴CD∵OCD S ∆=12OC ·CD =12OD ·CH , ∴CH =125, ∴CE =12522. (1)由题意可知: 200x +150⨯2y =10000化简得:210033y x =-+∴y 与x 之间的函数关系式210033y x =-+(024x <≤)(2)210038433x x ⎛⎫-+= ⎪⎝⎭整理得:()22549x -=解得:x 1=18,x 2=32∵024x <≤ ∴x =18即菜园面积为384m 2,x 的值为18. (3)设菜园的面积SS =210033x x ⎛⎫-+ ⎪⎝⎭=()2212502533x --+A第9页 / 共10页∵203-<,开口向下对称轴x =25∴当024x <≤时,y 随x 的增大而增大. ∴当x =24时,S 的最大值为416. 所以,菜园的最大面积为416 m 2 23. (1)90°(2)①证明:延长AE 、BF 交于G ,连DG .易证四边形ADBG 为菱形,△ADG 为等边三角形,四边形EGFC 为平行四边形. 可证∠DAE =∠DGF =60°,AE =CE =GF . 在△ADE 和△GDF 中. DA DG DAE DGF AE GF =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△GDF (SAS ) ∴DE =DF ,∠ADE =∠GDF∴∠EDF =∠EDG +∠GDF =∠EDG +∠ADE =∠ADG =60° ∴△EDF 为等边三角形.②EF24.(1)将A (-1,0),B (3,0)代入22y ax x c =++中得:02096a ca c =-+⎧⎨=++⎩解得:a =-1,c =3∴抛物线的解析式为223y x x =-++(2)当m =3时,n =-9+6+3=0, ∴C (3,0), 将点C 代入y =kx +b 中得: 0=3k +b , ∴b =-3k , ∴l 的解析式为y =kx -3k联立:2323y kx ky x x =-⎧⎨=-++⎩得:()22330x k x k +---= ∵l 与抛物线只有一个交点BA第10页 / 共10页∴()()224330k k ∆=----=得:k =-4(3)当k =-2m +2时,y =(-2m +2)x +b 且m ≠1 将C (m ,n )代入y =(-2m +2)x +b 中得: n =(-2m +2)m +b ∵223n m m =-++∴23b m =+,l 的解析式为()2223y m x m =-+++ ∵D 为l 与抛物线对称轴的交点∴1D x =, 当x =1时,225y m m =-+ ∴()21,25D m m -+,()2,23C m m m -++ 设()1,P a , ∵PC =PD ,∴22PC PD =即()()()2222212325m m m a m m a -+-++-=-+-解得:154a =, ∴P 的坐标为(1,154)。
2015-2016学年度武汉市九年级元月调考数学试卷(word版有答案)
![2015-2016学年度武汉市九年级元月调考数学试卷(word版有答案)](https://img.taocdn.com/s3/m/cc28a8e1f705cc1754270912.png)
2015~2016学年度武汉市部分学校九年级元月调研测试数学试卷考试时间:2016年1月21日一、选择题(共10小题,每小题3分,共30分)1.将方程x 2-8x =10化为一元二次方程的一般形式,其中二次项系数为1,一次项系数、常数项分别是( ) A .-8、-10B .-8、10C .8、-10D .8、102.如图汽车标志中不是中心对称图形的是( )A .B .C .D .3.袋子中装有10个黑球、1个白球,它们除颜色外无其他差别,随机从袋子中摸出一个球,则( ) A .这个球一定是黑球 B .摸到黑球、白球的可能性的大小一样 C .这个球可能是白球D .事先能确定摸到什么颜色的球 4.抛物线y =-3(x -1)2-2的对称轴是( )A .x =1B .x =-1C .x =2D .x =-25.某十字路口的交通信号灯每分钟绿灯亮30秒,红灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是绿灯的概率为( ) A .121B .61 C .125 D .21 6.如图,四边形ABCD 为⊙O 的内接四边形,已知∠BOD =100°,则∠BCD 的度数为( )A .50°B .80°C .100°D .130°7.圆的直径为10 cm ,如果点P 到圆心O 的距离是d ,则( ) A .当d =8 cm 时,点P 在⊙O 内 B .当d =10 cm 时,点P 在⊙O 上 C .当d =5 cm 时,点P 在⊙O 上D .当d =6 cm 时,点P 在⊙O 内8.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是13,则每个支干长出( ) A .2根小分支 B .3根小分支 C .4根小分支D .5根小分支 9.关于x 的方程(m -2)x 2+2x +1=0有实数根,则m 的取值范围是( )A .m ≤3B .m ≥3C .m ≤3且m ≠2D .m <310.如图,扇形OAB 的圆心角的度数为120°,半径长为4,P 为弧AB 上的动点,PM ⊥OA ,PN ⊥OB ,垂足分别为M 、N ,D 是△PMN 的外心.当点P 运动的过程中,点M 、N 分别在半径上作相应运动,从点N 离开点O 时起,到点M 到达点O 时止,点D 运动的路径长为( ) A .π32B .πC .2D .32二、填空题(本大题共6个小题,每小题3分,共18分)11.在平面直角坐标系中,点A (-3,2)关于原点对称点的坐标为__________12.如图,转盘中8个扇形的面积都相等,任意转动转盘1次.当转盘停止转动时,指针指向大于5的数的概率为__________13.某村种的水稻前年平均每公顷产7 200 kg ,今年平均每公顷产8 450 kg .设这两年该村水稻每公顷产量的年平均增长率为x ,根据题意,所列方程为________________________14.在直角坐标系中,将抛物线y =-x 2-2x 先向下平移一个单位,再向右平移一个单位,所得新抛物线的解析式为____________________15.如图,要拧开一个边长为a =12 mm 的六角形螺帽,扳手张开的开口b 至少要________mm 16.我们把a 、b 、c 三个数的中位数记作Z |a ,b ,c |,直线y =kx +21(k >0)与函数y =Z |x 2-1,x +1,-x +1|的图象有且只有2个交点,则k 的取值为__________ 三、解答题(共8题,共72分)17.(本题8分)已知3是一元二次方程x 2-2x +a =0的一个根,求a 的值和方程的另一根18.(本题8分)有6张看上去无差别的卡片,上面分别写着1、2、3、4、5、6(1) 一次性随机抽取2张卡片,用列表或画树状图的方法求出“两张卡片上的数都是偶数”的概率(2) 随机摸取1张后,放回并混在一起,再随机抽取1张,直接写出“第二次取出的数字小于第一次取出的数字”的概率19.(本题8分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过点C 的切线互相垂直,垂足为D ,AD 交⊙O 于点E.(1) 求证:AC 平分∠DAB ;(2) 连接CE ,若CE =6,AC =8,直接写出⊙O 直径的长20.(本题8分)如图,正方形ABCD 和直角△ABE ,∠AEB =90°,将△ABE 绕点O 旋转180°得到△CDF (1) 在图中画出点O 和△CDF ,并简要说明作图过程。
2019年度武汉元调数学试卷及其规范标准答案(精校版)
![2019年度武汉元调数学试卷及其规范标准答案(精校版)](https://img.taocdn.com/s3/m/995b1783a1c7aa00b52acb74.png)
2018-2019学年度武汉市部分学校九年级元月调考数学试卷一、选择题(共10小题,每小题3分,共30分) 1.下列一元二次方程化成一般形式后,其中二次项系数是3,一次项系数是-6,常数项是1的方程式是( ) A .2316x x += B . 2316x x -= C . 2361x x += D . 2361x x -= 2.下列图形中,是中心对称图形的是( )3.若将抛物线2y x =先向右平移1个单位长度,再向上平移2个单位长度,就得到抛物线( )A .2(1)2y x =-+B . 2(1)2y x =--C . 2(1)2y x =++D . 2(1)2y x =+-4.投掷两枚质地均匀的骰子,骰子的六个面上分别有刻有1和6的点数,则下列事件为随机事件的是( ) A .两枚骰子向上一面的点数之和大于1 B .两枚骰子向上一面的点数之和等于1 C .两枚骰子向上一面的点数之和大于12 D .两枚骰子向上一面的点数之和等于125.已知O e 的半径等于8cm ,圆心O 到直线l 的距离为9cm ,则直线l 与O e 的公共点的个数为( ) A .0 B . 1 C . 2 D . 无法确定6.如图,“圆材埋壁” 是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何.”用几何语言可表述为:CD 为O e 的直径,弦AB 垂直CD 于点E ,CE =1寸,AB =10寸,则直径CD 的长为( )A .12.5寸B . 13寸C . 25寸D . 26寸7.假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部成功孵化,那么3只雏鸟中恰有2只雄鸟的概率是( )A .16B .38C .58D .238.如图,将半径为1,圆心角为120°的扇形OAB 绕点A 逆时针旋转一个角度,使点O 的对应点D 落在»AB 上,点B 的对应点为C ,连接BC ,则图中CD ,BC 和»BD围成的封闭图形面积是( ) A6p B .6p C .8pD .3p 9.古希腊数学家欧几里得的《几何原本》记载,形如22x ax b +=的方程的图解是:如图,画Rt ABC D ,∠ACB =90°,2a BC =,AC b =,再在斜边AB 上截取2aBD =.则该方程的一个正根是( )A .AC 的长B . BC 的长 C . AD 的长 D .CD 的长10.已知抛物线2(0)y ax bx c a =++<的对称轴为1x =-,与x 轴的一个交点为(2,0).若关于x 的一元一次方程2(0)ax bx c p p ++=>有整数根,则p 的值有( )D .C .B .A.CAA .2个B .3个C . 4个D .5个二、填空题(本大题共6个小题,每小题3分,共18分)11.已知3是一元二次方程2x p =的一个根,则另一个根是________.12.在平面直角坐标系中,点P 的坐标是(-1,-2),则点P 关于原点对称的点的坐标是________.13.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来的前提下,小刚为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,…….,不断重复上述过程,小刚共摸了100次,其中20次摸到黑球,根据上述数据,小刚可估计口袋中的白球大约有________个.14.第七届世界军人运动会将于2019年10月18日至27日在中国武汉举行.小明幸运获得了一张军运会吉祥物“兵兵”的照片,如图,该照片(中间的矩形)长29cm ,宽为20cm ,他想为此照片配一个四条边宽度相等的镜框(阴影部分),且镜框所占面积为照片面积的14,为求镜框的宽度,他设镜框的宽度为x cm ,依题意列方程,化成一般式为________.15.如图是抛物线拱桥,当拱顶离水面2m 时,水面宽4m ,水面下降2.5m ,水面宽度增加________m .16.如图,正方形ABCD 的边长为4,点E 是CD 边上一点,连接AE ,过点B 作BG ⊥AE 于点G ,连接CG 并延长交AD 于点F ,则AF 的最大值是________.三、解答题(共8题,共72分)17.(本题8分)解方程:2310x x --=18.(本题8分)如图,A ,B ,C ,D 是⊙O 上四点,且AD =CB ,求证:AB =C D .19.(本题8分)武汉的早点种类丰富,品种繁多.某早餐店供应甲类食品有:“热干面”、“面窝”、“生煎包”、“锅贴饺”(分别记为A ,B ,C ,D );乙类食品有:“米粑粑”、“烧梅”、“欢喜坨”、“发糕”(分别记为E ,F ,G ,H ),共八种美食.小李和小王同时去品尝美食,小李准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A ,B ,E ,F )这四种美食中选择一种,小王准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C ,D ,G ,H )这四种美食中选择一种.用列举法求小李和小王同时选择的美食都是甲类食品的概率.GDA20.(本题8分)如图,在边长为1的正方形网格中,点A 的坐标为(1,7),点B 的坐标为(5,5),点C 的坐标为(7,5),点D 的坐标为(5,1).(1)将线段AB 绕点B 逆时针旋转,得到对应线段BE ,当BE 与CD 第一次平行时,画出点A 运动的路径,并直接写出点A 运动的路径长;(2)小贝同学发现:线段AB 与线段CD 存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标.21.(本题8分)如图,在四边形ABCD 中,AD BC P ,AD CD ⊥,AC AB =,O e 为ABC ∆的外接圆. (1)如图1,求证:AD 是O e 的切线;(2)如图2,CD 交O e 于点E ,过点A 作AG BE ⊥,垂足为F ,交BC 于点G . ①求证:AG BG =②若2AD =,3CD =,求FG 的长.图1 图222.(本题10分)某商家销售一种成本为20元的商品,销售一段时间后发现,每天的销量y (件)与当天的销售单价x (元/件)满足一次函数关系,并且当x =25时,y =550元;当x =30时,y =500.物价部门规定,该商品的销售单价不能超过48元/件. (1)求出y 与x 的函数关系式;(2)问销售单价定为多少元时,商家销售该商品每天获得的利润是8000元? (3)直接写出商家销售该商品每天获得的最大利润.23.(本题10分)如图,等边ABC ∆与等腰EDC ∆有公共顶点C ,其中120EDC ∠=︒,AB CE ==BE ,P 为BE 的中点,连接PD AD 、.(1)小亮为了研究线段AD 与PD 的数量关系,将图1中的EDC ∆绕点C 旋转一个适当的角度,使CE 与CA 重合,如图2,请直接写出AD 与PD 的数量关系;(2)如图1,(1)中的结论是否依然成立?若成立,请给出证明,若不成立,请说明理由; (3)如图3,若45ACD ∠=︒,求PAD ∆的面积.图1图2 图3BBB24.(本题12分)如图,在平面直角坐标系中,抛物线2(1)y x m x m =+--交x 轴于A B 、两点(点A 在点B 的左边),交y 轴负半轴于点C .(1)如图1,3m =.①直接写出A B C 、、三点的坐标;②若抛物线上有一点D ,45ACD ∠=︒,求点D 的坐标.(2)如图2,过点(2)E m ,作一直线交抛物线于P Q 、两点,连接AP AQ 、,分别交y 轴于M N 、两点, 求证:OM ON ⋅是一个定值.图1图22018-2019学年度武汉市部分学校九年级元月调考数学试卷参考答案9解析:设AD 为x ,根据Rt ABC D ,222()()22x b +=+, 得:222244a a x axb ++=+,22x ax b +=,所以可以求出x ,所以AD 即所求. 10解析:依图形可知二、填空题(本大题共6个小题,每小题3分,共18分) 11. -3 12.(1,2) 13. 12 14.24981450x x +-= 15. 2 16.115.解析:以抛物线的顶点为原点,建立平面直角坐标系.则A (2,-2),B (-2,-2)∴212y x =-,令 4.5y =-,解得3x =±.∴此时水面宽度为6米,增加了2米 16.解析:∵∠AGB=90°,AB =4,∴G 在以AB 为直径的圆上运动 当CF 与圆相切时,∠BCF 最大,此时AF 最大 设AF =FG =x ,BC =CG=4,,则DF =4-x在Rt △FDC 中,DC 2+DF 2=FC 2,42+(4-x )2=(4+x )2,解得:x =1∴AF =1三、解答题(共8题,共72分) 17.解:∵a =1,b =-3,c =-1∴22=4(3)41(1)94130b ac ∆-=--⨯⨯-=+=> ∴x ==∴1x =2x =B A18.证明:∵AD =CB∴»»AD CB= ∴»»»»AD BD CB BD +=+ 即¼¼ADB CBD= ∴AB =CD19. 解:由树状图可知,小李和小王选择美食共有16种情况,且每种情况出现的可能性相等,同时都是甲类食品的情况共4种.∴P (两种都是甲类食品)=416=1420. 解:(画法如下)(2)情况一:作AD 和BC 的垂直平分线,交点即为旋转中心(6,6) 情况二:作AC 和BD 的垂直平分线,交点即为旋转中心(3,3)21(1)如图所示:连OC ,OB ,连AO 延长交BC 于点H ∵AB =AC ,∴点A 在BC 的垂直平分线上 又∵OB =OC , ∴O 在BC 的垂直平分线上∴AO 垂直平分BC , ∴AO ⊥BC ,CH =BH , ∴∠AHC =90° 又∵AD ∥BC , ∴∠OAD =90°, ∴AD 为O e 的切线 (2)如图所示:①法一:由(1)可知AH ⊥BC ,∴∠HAB +∠ABH =90° ∵AG ⊥BE ,∴∠F AB +∠ABF =90° ∵AO =BO ,∴∠HAB =∠FBA ∴∠ABH =∠F AB ,∴AG =BG法二:8字倒角可得:∠F AO =∠HBO ,又∵∠OAB =∠OBA ∴∠GAB =∠GBA ,∴AG =BG ②由(1)可知四边形ADCH 为矩形. ∴AH =CD =3,CH =HB =AD =2 ∴Rt ABH ∆中 AB=在AGH ∆和BGF ∆中90AHG BFG AGH BGFAG BG ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴()AGH BGF AAS ∆∆≌ ∴GF GH =设GH =x ,∴AG =BG =2+x∴在Rt AGH ∆中:()22232x x +=+, 22944x x x +=++,∴54x =,∴54FG GH ==22. 解:(1)设y kx b =+将(25,550)和(30,500)代入可得: 550 =2550030k b k b +⎧⎨=+⎩ 解得:10800k b =-⎧⎨=⎩∴y 与x 的函数关系式为:10800y x =-+ (2)设利润为w 元.()()2010800w x x =--+ 21080020016000w x x x =-++- 210100016000w x x =-+-∴2800010100016000x x =-+- 即210024000x x -+= ∴()()40600x x --=解得:140x =,260x =,∵该商品的销售单价不能超过48元/件.∴x =40答:当销售单价定为40元时,商家销售该商品每天获得的利润是8000元. (3)8960元 23.(1)解:AD =2PD (2)仍然成立。
湖北省武汉市部分学校2013-2014学年度九年级物理元月调考暨十二月月考试题 新人教版
![湖北省武汉市部分学校2013-2014学年度九年级物理元月调考暨十二月月考试题 新人教版](https://img.taocdn.com/s3/m/0d28d0422e3f5727a5e96228.png)
湖北省武汉市部分学校2013-2014学年度九年级物理元月调考暨十二月月考试题新人教版第I卷(选择题)一,选择题1.下列说法正确的是()A.一个电子所带的电荷量为1.9×10-16CB.扩散现象只发生在气体、液体之间C.对人体安全的电压是36VD.水结成冰后,分子间的作用力减小2.在密闭的房间里有一个开着门的电冰箱,给电冰箱通电,过一段时间后,房间的温度将A.升高 B.不变 C.降低 D.无法确定3.小明和小华同学在做“探究:比较水与煤油吸收热量时温度升高的快慢”的实验时, 使用了如图所示的装置.设计实验方案时,他们确定以下需控制的变量,其中多余的是A.采用完全相同的加热方式B.酒精灯里所加的酒精量相同C.取相同质量的水和煤油D.盛放水和煤油的容器相同4.煤油的热值大于酒精的热值,下列说法中正确的是A.煤油比酒精含有的热量多B.完全燃烧相同质量的煤油和酒精,煤油放出的热量要多些C.燃烧相同质量的煤油和酒精,利用煤油刚好能烧开一壶水,那么利用酒精则不能烧开这壶水D.通风条件越好,供氧越充足,两种燃料的热值就越大5.投影机的光源是强光灯泡,发光时必须用风扇给它降温.现要设计投影仪的电路,要求:带动风扇的电动机先启动后,灯泡才可以发光;电动机未启动,灯泡不可以发光.图中符合设计要求的是6.下列事例中,符合安全用电的是A.使用大功率的用电器后,熔丝总被熔断,可用铜丝代替熔丝B.发现有人触电,应立即用手拨开电线C.开关表面有污垢,用湿抹布擦拭开关D.家用电器的金属外壳一定要接地7.用如图所示的电路探究半导体的导电性能,电路中电源电压不变,R是一只光敏电阻,当光照射强度增大时,其电阻会减小.闭合开关,增大光敏电阻的光照强度,电压表和电流表示数的变化情况是A.电流表、电压表示数均减小B.电流表、电压表示数均增大C.电流表示数减小、电压表示数增大D.电流表示数增大、电压表示数减小8.如图所示,当开关S闭合后,发现电灯L不亮,用测电笔测试a、d两点时,氖管都发光,测试b、c两点时,两点都不能使氖管发光,则故障可能是A.火线与零线短路B.a、d之间某处断路C.电灯的灯丝断了D.b、c之间某处断路9.把标有“36V 15W”的甲灯和标有“36V 5W”的乙灯串联后接在电压是36V的电路中,下列说法正确的是A.因为甲灯额定功率较大,所以甲灯较亮B.因为乙灯实际功率较大,所以乙灯较亮C.因为甲灯的电阻较小,所以甲灯较亮D.因为通过它们的电流相等,所以一样亮10.质量和温度都相同的铜块和水,使它们分别放出相同的热量后,将铜块迅速投入水中后,他们的内能变化正确的是A.铜块的内能增大,水的内能减小B.铜块的内能减小,水的内能增大C.铜块和水的内能都增大D.铜块和谁的内能都减小11.如图所示的电路中,R为定值电阻。
2024年湖北省武汉市部分学校九年级中考五月调考数学试卷(含答案)
![2024年湖北省武汉市部分学校九年级中考五月调考数学试卷(含答案)](https://img.taocdn.com/s3/m/d65afc4ca9114431b90d6c85ec3a87c240288afc.png)
2024年湖北省武汉市部分学校九年级五月调考数学试卷一、选择题(共10小题,每小题3分,共30分)1.实数5的相反数是( )A.B .C .﹣5D .52.当前随着新一轮科技革命和产业变革孕育兴起,新能源汽车产业正进入加速发展的新阶段.如图图案是我国的一些国产新能源车企的车标,图案既是轴对称图形,又是中心对称图形的是( )A .B .C .D .3.投掷一枚普通的正方体骰子,下列事件中,确定事件是( )A .掷得的点数是2B .掷得的点数是奇数C .掷得的点数小于7D .掷得的点数是大于34.《清朝野史大观•清代述异》称:“中国讲求烹茶,以闽之汀、漳、泉三府,粤之潮州府功夫茶为最.”如图1是喝功夫茶的一个茶杯,关于该茶杯的三视图,下列说法正确的是( )A .主视图与左视图相同B .主视图与俯视图相同C .左视图与俯视图相同D .三视图都相同5.下列运算正确的是( )A .(a 3)2=a 5B .a 2•a 3=a 5C .(ab )2=ab 2D .6.如图是某款婴儿手推车的平面示意图,若AB ∥CD ,∠1=130°,∠3=25°,则∠2的度数为( )5151A.50°B.65°C.85°D.75°7.《周髀算经》《九章算术》《海岛算经》《孙子算经》都是中国古代数学著作,是中国古代数学文化的瑰宝.小华要从这四部著作中随机抽取两本学习,则抽取的两本恰好是《周髀算经》和《九章算术》的概率是( )A.B.C.D.8.圆圆想把一些相同规格的塑料杯,尽可能多地放入高40cm的柜子里(如图1).她把杯子按如图这样整齐地叠放成一摞(如图2),但她不知道一摞最多能叠几个可以一次性放进柜子里.圆圆测量后发现,按这样叠放,这摞杯子的总高度随着杯子数量的变化而变化,记录的数据如表所示:杯子的数量x(只)123456…总高度h(cm)1011.412.814.215.617…请帮圆圆算一算,一次性放进高40cm的柜子里,一摞最多能叠的杯子个数是( )A.21B.22C.23D.249.蚊香具有悠久的历史,我国蚊香的发明与古人端午节的习俗有关.如图为某校数学社团用数学软件制作的“蚊香”.画法如下:在水平直线上取长度为1的线段AB,作一个等边三角形ABC,然后以点B 为圆心,AB为半径逆时针画圆弧交线段CB的延长线于点D(第一段圆弧),再以点C为圆心,CD为半径逆时针画圆弧交线段AC的延长线于点E,再以点A为圆心,AE为半径逆时针画圆弧…以此类推,当得到的“蚊香”恰好有12段圆弧时,“蚊香”的长度为( )A.36πB.52πC.72πD.80π10.已知抛物线y=x2+6ax﹣a的图象与x轴有两个不同的交点(x1,0),(x2,0),且﹣=8a﹣3,则a的值为( )A.a=0B.a=C.a=1D.a=0或a=二、填空题(共6小题,每小题3分,共18分)11.2024年“五一”假期首日,游客出游热情高涨,景区景点人气旺盛.据湖北省文旅厅数据显示,湖北省A级旅游景区共接待游客249.8万人次.将数据249.8万用科学记数法表示为 .12.请写出一个图象分布在第二、四象限的反比例函数的解析式为 .13.计算的结果是 .14.如图,在远离铁塔150m的D处,用测角仪测得塔顶的仰角为30°,已知测角仪高AD=2m,那么塔高BE= m(结果保留根号).15.如图,在平面直角坐标系xOy中,点A、D在第一象限内且点A(a﹣1,3a),点C(﹣1,0),点B (2,0),∠ACD=45°,点B到射线CD的最小值是 .16.抛物线y=ax2+bx+c(a、b、c是常数)的顶点在第一象限,且a﹣b+c<0.下列四个结论:①b>0;②2b﹣a﹣c>0;③若4a+c=0,则当时,y随x的增大而减小;④若抛物线的顶点为P(1,n),则方程ax2+bx+c+4a=0无实数根.其中正确的结论是 (填写序号).三、解答题(共8小题,共72分)17.(8分)解不等式组:并写出它的所有整数解.18.(8分)如图,E、F是平行四边形ABCD的对角线AC上两点,AF=CE.(1)求证:△ADF≌△CBE;(2)连接BF,DE和BD,请添加一个条件: 使得四边形BEDF为矩形.19.(8分)某学校七年级体育测试已经结束,现从七年级随机抽取部分学生的体育测试成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:60≥x≥54为优秀,B:53.9≥x≥45为良好,C:44.9≥x≥30为合格,D:x≤29.9为不合格),绘制了如下所示的统计图,请根据统计图信息解答下列问题:(1)请补全条形统计图;本次共调查了 名学生;(2)在扇形统计图中,m= ,本次调查的学生体育成绩中位数位于等级 ;(3)若该校共有900名七年级学生,请估计本次体育成绩为合格及以上的学生人数.20.(8分)如图,AB为⊙O的直径,BE与⊙O相交于点C,过点C的切线CD⊥AE,垂足为点D.(1)求证:AE=AB;(2)若AB=6,CB=4,求CD的长.21.(8分)如图,在由小正方形组成的6×6的网格中,每个小正方形的顶点叫做格点,图中A、B、C为格点,仅用无刻度直尺按要求作图:(1)在图1中,将线段AC绕某一点旋转90°得到线段BD(其中点B和点C对应),画出线段BD;延长BD交AC于点E,在BC上找点F,使得AF+EF的值最小.(2)在图2中,找点G,使得AG=BG=CG;找一格点M使得∠ACB+∠AMB=180°.(找出一个即可)22.(10分)一块土地上有一个蔬菜大棚(如图1),其横截面顶部为抛物线型,大棚的一端固定在墙体OA 上,另一端固定在墙体BC上(墙体足够高),其横截面有2根支架DE,FG,相关数据如图2所示,其中DE=BC,OF=DF=BD.(1)在图2中以点O为原点,OA所在直线为y轴建立平面直角坐标系,则A点坐标为( , ),E点坐标为( , ),抛物线的函数表达式为 ;(2)已知大棚有300根长为DE的支架和300根长为FG的支架,为增加棚内空间,拟将图2中棚顶向上调整,支架总数不变,对应支架的长度变化如图3所示,调整后C与E上升相同的高度,增加的支架单价为20元/米(接口忽略不计),现有改造经费30000元.①当CC′=1米,只考虑经费情况下,请通过计算说明能否完成改造;②只考虑经费情况下,直接写出CC′的最大值 .23.(10分)如图1,在菱形ABCD中,AB=2,∠B=60°,点F为CD边上的动点.(1)E为边AD上一点,连接EF,将△DEF沿EF进行翻折,点D恰好落在BC边的中点G处,①求DE的长;②tan∠GFC= .(2)如图2,延长CD到M,使DM=DF,连接BM与AF,BM与AF交于点N,连接DN,设DF=x (x>0),DN=y,求y关于x的函数表达式.24.(12分)已知抛物线y=ax2+bx+c(a≠0)与x轴交于点A、C(C在A的左侧),与y轴交于点B.(1)若A(3,0),B(0,﹣3),C(﹣1,0).①直接写出抛物线解析式: ;②若D点与C点关于y轴对称,在直线AB上是否存在点M使△ABC与△ADM相似,若存在,求出点M的坐标;(2)如图2,点P和点Q在抛物线y=ax2+bx+c上,其中P在点C左侧抛物线上,Q点在y轴右侧抛物线上,直线CQ交y轴于点F,直线PC交y轴于点H,设直线PQ解析式为y=kx+t,当S△HCQ=2S △BCQ,试证明为一个定值,并求出定值.参考答案一、选择题(共10小题,每小题3分,共30分)1.C.2.D.3.C.4.A.5.B.6.D.7.B.8.B.9.B.10.B.二、填空题(共6小题,每小题3分,共18分)11.2.498×106.12.y=﹣(答案不唯一).13..14.(50+2).15..16.①②④.三、解答题(共8小题,共72分)17.解:∵解不等式①得:x<4,解不等式②得:x≥1,∴不等式组的解集为1≤x<4,∴不等式组的整数解为1,2,3.18.(1)证明:∵在平行四边形ABCD中,AD∥BC,AD=BC,∴∠DAF=∠BCE,又∵AF=CE,∴△ADF≌△CBE(SAS);(2)解:添加一个条件:BD=EF,理由:连接BF,DE,BD,由(1)得△ADF≌△CBE,∴∠DFA=∠BEC,DF=BE,∴DF∥BE,∴四边形BEDF是平行四边形,∵BD=EF,∴四边形BEDF为矩形,故答案为:BD=EF.19.解:(1)本次调查的总人数为6÷12%=50(名),C等级人数为50﹣(10+14+6)=20(人),补全图形如下:故答案为:50;(2)m%=×100%=40%,即m=40,本次调查的学生体育成绩的中位数位于等级C,故答案为:40;C;(3)900×=792(名),答:估计本次体育成绩为合格及以上的学生人数为792名.20.(1)证明:连接OC,∵CD是⊙O的切线,∴OC⊥CD,又∵CD⊥AE,∴AE∥OC,∴∠E=∠OCB,∵OC=OB,∴∠ABC=∠OCB,∴∠ABC=∠E,∴AE=AB;(2)解:连接AC,∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ABC中,由勾股定理得,∵AB=AE,AC⊥BE,∴∠EAC=∠BAC,又∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴,即,∴.21.解:(1)如图,线段BD,点F即为所求;(2)如图,点G,点M即为所求.22.解:(1)∵OA=1,∴A点坐标为(0,1).∵DE=BC=4,OF=DF=BD,OB=6,∴OD=4.∴点E的坐标为(4,4),点C的坐标为(6,4).设抛物线的函数表达式为:y=ax2+bx+c(a≠0).∴.解得:.∴抛物线的函数表达式为:y=﹣x2+x+1.故答案为:0,1;4,4;y=﹣x2+x+1;(2)①∵CC′=1,∴点C′的坐标为(6,5).∴点E′的坐标为(4,5).设向上调整后的抛物线解析式为:y=mx2+nx+p(m≠0).∴.解得:.∴向上调整后的抛物线解析式为:y=﹣x2+x+1.当x=2时,FG=﹣×22+×2+1=3,FG′=﹣×22+×2+1=.∴增加的高度GG′=﹣3=(米).∵EE′=CC′=1米,∴所需经费为:(300×+1×300)×20=10000(元).∵10000<30000,∴能完成改造.(3)由题意得:调整后抛物线的对称轴是直线x=5.∴设调整后的抛物线解析式为:y=d(x﹣5)2+e(d≠0).∵经过点(0,1),∴1=d(0﹣5)2+e.∴e=1﹣25d.∴调整后的抛物线解析式为:y=d(x﹣5)2+1﹣25d.当x=2时,FG=3,FG′=1﹣16d.∴增加的高度GG′=1﹣16d﹣3=(﹣2﹣16d)米.当x=4时,DE=﹣×42+×4+1=4,DE′=1﹣24d.∴增加的高度EE′=1﹣24d﹣4=(﹣3﹣24d)米.∴所需经费为:(﹣2﹣16d﹣3﹣24d)×300×20=(﹣240000d﹣30000)元.∵﹣240000d﹣30000≤30000,解得:d≥﹣.∴d=﹣时,所需经费最少,此时CC′=EE′=3米.23.解:(1)①连接AC,AG,如图,∵四边形ABCD是菱形,∴AB=BC=2,∵∠ABC=60°,∴△ABC为等边三角形,∵BG=GC,∴AG⊥BC,BG=GC=1.∴.∵AD∥BC,∴AG⊥AD.由题意得ED=EG.设EG=ED=x,则AE=2﹣x,在Rt△AEG中,∠GAE=90°,∴AG2+AE2=EG2,∴,∴.∴;②过点G作GH⊥CD,交CD的延长线于点H,如图,∵AB∥CD,∴∠BCH=∠B=60°,∴∠CGH=30°,∴,.由题意得FD=FG,设FG=FD=m,则FC=2﹣m,在Rt△FHG中,∠GHF=90°,∴GH2+FH2=FG2,∴,∴,,∴.(2)延长DN交AB于点K,连接AC交DK于点P,连接BP交CD的延长线交于点Q,如图,∵四边形ABCD是菱形,∴AB∥CP,∴△AKN∽△FDN,△BKN∽△MDN,∴,,∴,∵DM=DF,∴.过点D作DL⊥AB交BA延长线于L,在Rt△ALD中,∠ALD=90°,∠LAD=60°,AD=2,∴,,∴KL=AL+AK=2,∴,∵DF=x(x>0),DN=y,∴,.24.解:(1)①将A(3,0),B(0,﹣3),C(﹣1,0)代入y=ax2+bx+c得:,解得:,故抛物线解析式为y=x2﹣2x﹣3,故答案为:y=x2﹣2x﹣3;②在直线AB上存在点M使△ABC与△ADM相似;理由如下:过M作MF⊥x轴,如图1,∵点D与点C关于y轴对称,∴D(1,0),AC=4,AB=3,AD=2,当△ADM∽△ACB时,∴AM=,∵OA=OB,∴∠OAB=45°,∴AF=MF=,∴M(,);当△AMD∽△ACB时,∴=,∴AM=,∵OA=OB,∴∠OAB=45°,∴AF=MF=;∴M(,),故M(,﹣)或M(,);(2)∵抛物线解析式为y=ax2+bx+c,当x=0时,y=c,∴B(0,c),设直线PC的解析式为y=mx+n,直线CQ的解析式为y=dx+e,∴H(0,n),F(0,e),∴FH=y F﹣y H=e﹣n,FB=y F﹣y B=e﹣c,∵S△HCQ=2S△BCQ,∴FH×(x Q﹣x C)=2×BF×(x Q﹣x C),∴e﹣n=2(e﹣c),∴e=2c﹣n(即=c=y B,即点B是FH的中点),∵,∴ax2+(b﹣m)x+c﹣n=0,∴x P x C=,∵,∴ax2+(b﹣d)x+c﹣e=0,∴x Q x C===,∴x P x C=,x Q x C=,x C≠0,∴x p x C+x Q x C=x C(x P+x Q)=0,∴xp+x Q=0,又∵直线y=kx+t经过抛物线y=ax2+bx+c上两点P、Q,∴,∴ax2+(b﹣k)x+c﹣t=0的两个根为xp和x Q,∴x P+x Q=﹣,∴﹣=0而a≠0,∴b=k,∴=1,∴为定值1.。
2020-2021学年湖北省武汉市洪山区九年级(上)期中数学试卷(附答案详解)
![2020-2021学年湖北省武汉市洪山区九年级(上)期中数学试卷(附答案详解)](https://img.taocdn.com/s3/m/013989ebfc4ffe473268ab43.png)
2020-2021学年湖北省武汉市洪山区九年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.一元二次方程2x2+1=6x化成一般形式后,一次项和常数项分别是()A. 2x2、1B. 2、6C. −6x、1D. −6、12.下列食品图案中,是中心对称图形的是()A. B. C. D.3.解方程x2−6x+3=0,可用配方法将其变形为()A. (x+3)2=3B. (x−6)2=3C. (x−3)2=3D. (x−3)2=64.平面直角坐标系中,点(−2,9)关于原点对称的点坐标是()A. (−9,2)B. (2,−9)C. (2,9)D. (−2,−9)5.关于x的一元二次方程2x2+5x−1=0根的说法,正确的是()A. 方程没有实数根B. 方程有两个相等实数根C. 方程有两个不相等实数根D. 方程有一个实数根6.将抛物线y=2(x−1)2+3向右移1单位,上移2单位所得到的新抛物线解析式为()A. y=2(x−2)2−5B. y=2x2+4C. y=2(x−3)2+1D. y=2(x−2)2+57.二次函数y=−x2−2x+c在−3≤x≤2的范围内有最大值为−5,则c的值是()A. −2B. 3C. −3D. −68.抛物线y=ax2+bx+c(a>0)与直线y=bx+c在同一坐标系中的大致图象可能为()A. B.C. D.9.如图,武汉晴川桥可以近似地看作半径为250m的圆弧,桥拱和路面之间用数根钢索垂直相连,其正下方的路面AB长度为300m,那么这些钢索中最长的一根为()A. 50mB. 45mC. 40mD. 60m10.如图,正方形ABCD中,∠EAF=45°,有以下四个结论:①BE+DF=EF;②BM2+DN2=MN2③若AB=3,BE=1,则BN=3;④若CE=2,则DN=√2,其中正确的个数为()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)11.若x=2是方程x2−mx+2=0的根,则m=______.12.如图,△ABC是⊙O的内接三角形,∠C=45°,AB=6,则⊙O的半径为______.13.如图,已知A(4,0)、B(0,3),以点B为圆心,AB的长为半径画圆,交y轴正半轴于点C,则线段AC的长度等于______.14.在平面直角坐标系中,以点(2,0)为旋转中心,将点(1,3)顺时针旋转90°所得到的点坐标为______.15.已知抛物线y=a(x−ℎ)2+k与x轴交于(−2,0)、(3,0),则关于x的一元二次方程:a(x−ℎ+6)2+k=0的解为______.16.已知关于x的二次函数y=ax2−4ax+3a2−6,当x<0时,y随x的增大而减小.并且,当−1≤x≤3时,y有最小值1.则a的值为______.三、计算题(本大题共1小题,共8.0分)17.解方程:2x2−3x+1=0.四、解答题(本大题共7小题,共64.0分)18.如图为二次函数y=−x2−x+2的图象,试根据图象回答下列问题:(1)方程−x2−x+2=0的解为______;(2)当y>0时,x的取值范围是______;(3)当−3<x<0时,y的取值范围是______.19.湖北省预计将于今年年底实现全省贫困人口全部脱贫.2018年,湖北省精准脱贫专项资金合计约30亿元,据扶贫办报告,2020年湖北省政府将合计拨款43.2亿元用于脱贫攻坚最后一战.根据以上信息,请你计算在2018~2020年期间,湖北省脱贫专项资金年平均增长率为多少?20.请用直尺按要求在网格中作图,并标明字母(辅助线可用虚线作出,以下作图请勿超出网格范围).(1)作出平行四边形ABDC;(2)以AC为边,作出正方形ACMN;(3)作出一条同时平分平行四边形ABDC与正方形ACMN面积的直线.21.如图,△ABC为⊙O的内接三角形,∠ACB=60°,弦CD平分∠ADB.(1)求证:△ABC为等边三角形;(2)若BD=3,AD=5,过C点作BD的平行线交DA的延长线于点E,试求△CAE面积.22.某商场主营玩具销售,经市场调查发现,某种玩具的月销量y(件)是售价x(元/件)的一次函数,该玩具的月销售总利润W=(售价−成本)×月销量,三者有如下数据:售价x(元/件)152030月销量y(件)500400200月销售总利润W(元)250040004000(1)试求y关于x的函数关系式(x的取值范围不必写出);(2)玩具的成本为______元,当玩具售价x=______元时,月销售总利润有最大值______元;(3)受市场波动原因,从本月起,该玩具成本上涨a元/件(a>0),且物价局规定该玩具售价最高不得超过25元/件.若月销量y与售价x仍满足(1)中的关系,预计本月总利润W最高为3000元,请你求出a的值.23.四边形ABCD若满足∠A+∠C=180°,则我们称该四边形为“对角互补四边形”.(1)如图1,四边形ABCD为对角互补四边形,且满足∠BAD=90°,AB=AD,求∠ACB的度数.小云同学是这么做的:延长CB至M,使得BM=CD,连AM,可证明△CAD≌△MAB,通过判断△MAC的形状,可以得出结论.①在图1中按要求完成作图;②△MAC的形状为______;③∠ACB=______;(2)如图2,四边形ABCD为对角互补四边形,且满足∠BAD=60°,AB=AD,试证明:CA=CB+CD;(3)如图3,等腰△ABD、等腰△CDE的顶点分别为A、C,点B在线段CE上,且∠BAD与∠C互补.请你判断∠DAE与∠DBC的数量关系并证明.24.如图1,抛物线y=x2+(m+1)x−(m+2)(其中m为大于−1的常数)交坐标轴于A、B、C三点.(1)当m=1时,①直接写出A、B、C的坐标A______、B______、C______;②点D在抛物线上,且满足∠DAO=∠BCO,试求D点坐标;(2)如图2,点M在抛物线上且位于x轴下方,直线AM、BM分别交y轴于P、Q两点,MN⊥y轴于N.若OPOC =54,试求ONOQ的值.答案和解析1.【答案】C【解析】解:2x2+1=6x,2x2−6x+1=0,所以一次项和常数项分别是−6x,1,故选:C.先化成一元二次方程的一般形式,再得出答案即可.本题考查了一元二次方程的一般形式,能化成一元二次方程的一般形式是解此题的关键.2.【答案】A【解析】解:A、是中心对称图形,故此选项符合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、不是中心对称图形,故此选项不合题意.故选:A.根据中心对称图形的概念判断.本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.【答案】D【解析】解:方程x2−6x+3=0,移项得:x2−6x=−3,平方得:x2−6x+9=6,即(x−3)2=6.故选:D.方程移项,两边加上一次项系数一半的平方配方得到结果,即可作出判断.此题考查了解一元二次方程−配方法,熟练掌握完全平方公式是解本题的关键.4.【答案】B【解析】解:点(−2,9)关于原点对称的点坐标是(2,−9),故选:B.关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,据此可得答案.本题考查了关于原点对称的点的坐标,两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(−x,−y).5.【答案】C【解析】解:∵2x2+5x−1=0,∴△=52−4×2×(−1)=25+8=33>0,∴该方程有两个不相等实数根.故选:C.计算方程根的判别式,求其符号进行判断即可.本题主要考查根的判别式,掌握方程根的判别式与方程根的情况是解题的关键.6.【答案】D【解析】解:根据“左加右减,上加下减”的法则可知,将抛物线y=2(x−1)2+3向右移1个单位,再向上移2个单位,那么所得到抛物线的函数关系式是y=2(x−2)2+5.故选:D.根据函数图象平移的法则进行解答即可.本题考查了二次函数图形与几何变换,是基础题,掌握平移规律“左加右减,上加下减”是解题的关键.7.【答案】D【解析】解:把二次函数y=−x2−2x+c转化成顶点坐标式为y=−(x+1)2+c+1,又知二次函数的开口向下,对称轴为x=−1,故当x=−1时,二次函数有最大值为−5,故−1+2+c=−5,故c=−6.首先把二次函数y=−x2−2x+c转化成顶点坐标式,找到其对称轴,然后根据在−3≤x≤2内有最大值,得到−1+2+c=−5,解得即可.本题主要考查二次函数的性质的知识点,解答本题的关键是求出二次函数的对称轴,本题比较简单.8.【答案】B【解析】解:选项A中,由一次函数的图象可知b<0,c>0,由二次函数的图象可知a<0,b>0,c>0,故选项A不符合题意;选项B中,由一次函数的图象可知b<0,c>0,由二次函数的图象可知a>0,b<0,c>0,故选项B符合题意;选项C中,由一次函数的图象可知b>0,c>0,由二次函数的图象可知a>0,b<0,c>0,故选项C不符合题意;选项D中,由一次函数的图象可知b<0,c>0,由二次函数的图象可知a>0,b<0,c<0,故选项D不符合题意;故选:B.根据题意和各个选项中的函数图象,可以得到一次函数中b和c的正负情况和二次函数图象中a、b、c的正负情况,注意a>0,然后即可判断哪个选项中的图象符合题意.本题考查二次函数的图象、一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.9.【答案】A【解析】解:设圆弧的圆心为O,过O作OC⊥AB于C,交AB⏜于D,连接OA,如图所示:则OA=OD=250,AC=BC=1AB=150,2∴OC=√OA2−AC2=√2502−1502=200,∴CD=OD−OC=250−200=50(m),故选:A.设圆弧的圆心为O,过O作OC⊥AB于C,交AB⏜于D,连接OA,先由垂径定理得AC= BC=12AB=150,再由勾股定理求出OC=200,然后求出CD的长即可.本题考查了垂径定理和勾股定理等知识;熟练掌握垂径定理和勾股定理是解题的关键.10.【答案】C【解析】解:①延长CB,截取BI=DF,连接AI,如图,∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠ABE=∠ADC=90°,∴∠ABI=90°,在△ADF和△ABI中,{AD=AB∠ADF=∠ABI DF=BI,∴△ADF≌△ABI(SAS),∴∠BAI=∠DAF,AI=AF,∵∠BAD=90°,∠EAF=45°,∴∠DAF+∠BAE=45°,∴∠BAI+∠BAE=45°,即∠EAI=45°,∴∠EAI=∠EAF,∵AE=AE,∴△AIE≌△AFE(SAS),∴IE=FE,即DE+BF=EF,故①正确;②过B作BD的垂线,截取BH=ND,连接AH,HM,如图,∵四边形ABCD是正方形,∴AD=AB,∠ADB=∠ABD=45°,∠BAD=90°,∴∠ABH=45°=∠ADN,在△ADN和△ABH中,{AD=AB∠ADN=∠ABH DN=BH,∴△ADN≌△ABH(SAS),∴∠DAN=∠BAH,AN=AH,∵∠EAF=45°,∠BAD=90°,∴∠DAN+∠BAM=∠BAH+∠BAM=45°,∴∠MAN=∠HAM=45°,在△AHM和△ANM中,{AH=AN∠HAM=∠NAM AN=AN,∴△AHM≌△ANM(SAS),∴MH=MN,Rt△BHM中,HM2=BH2+BM2,∴MN2=BM2+DN2,故②正确;③连接AC,过E作EH⊥AC于点H,∵四边形ABCD为正方形,AB=3,∴∠ACB=∠BAC=∠ADB=∠CAD=45°,AB=BC=3,∴∠HEC=∠HCE=45°,∵BE=1,∴CE=2,∴EH=√2,∴BE≠HE,∴∠BAE≠∠CAE,∵∠EAF=∠CAD=45°,∴∠CAE=∠DAF,∵∠BAE≠∠DAF,∴∠EAF+∠BAE≠∠ADN+∠DAF,∵∠BAN=∠EAF+∠BAE,∠BNA=≠∠ADN+∠DAF,∴∠BAN≠∠BNA,∴AB≠BN,∵AB=3,∴BN≠3,故③错误;④过点D作DG⊥BD过N作NG//BC,与DG交于点G,连接CG,与AF的延长线交于点H,∵四边形ABCD是正方形,∴AD=CD,∠BDC=45°,∠BCD=90°∴∠CDG=∠ADC=45°,NG⊥CD,∴∠DNG=∠DGN=45°,∴DN=DG,∵∠ADN=∠CDG=45°,∴△ADN≌△CDG(SAS),∴∠DAN=∠DCG,∵∠DAN+∠AFD=90°,∠AFD=∠CFH,∴∠HCF+∠CFH=90°,∴∠CHF=90°,∵∠CBD=∠EAF=45°,∴A、B、E、N四点共圆,∴∠ABE+∠ANE=180°,∵∠ABC=90°,∴∠ANE=90°=∠CHF,∴EN//CG,∴四边形CENG为平行四边形,∴NG=EC=2,∴DN=CG⋅sin45°=2×√2=√2,故④正确,2故选:C.①延长CB,截取BI=DF,连接AI,如图,易证△ADF≌△ABI,△AIE≌△AFE,得IE=FE,即DF+BE=EF,成立;②过B作BD的垂线,截取BH=ND,连接AH,HM,如图,易证△ADN≌△ABH,△AHM≌△ANM,得MN=MH,最后根据勾股定理可作判断;③连接AC,过E作EH⊥AC于点H,证明EH≠EB得∠BAE≠∠CAE,进而证明∠BAN≠∠BNA,得BN≠3;④过点D作DG⊥BD过N作NG//BC,与DG交于点G,连接CG,与AF的延长线交于点H,证明△DNG为等腰直角三角形,证明四边形CENG为平行四边形,便可解决问题.本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.11.【答案】3【解析】解:∵x=2是方程x2−mx+2=0的一个根,∴22−2m+2=0,解得m=3,故答案为:3.将x=2代入已知方程中,列出关于系数m的新方程,通过解新方程即可求得m的值.本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.12.【答案】3√2【解析】解:如图,连接OA,OB,∵∠ACB=45°,∴∠AOB=2∠ACB=90°,∵OA=OB,∴△AOB是等腰直角三角形,∴OA=OB=√2AB=3√2,2即⊙O的半径是3√2,故答案为:3√2.连接OA,OB,可得∠AOB=90°,进而利用等腰直角三角形的性质解答即可.此题考查三角形外接圆与外心,关键是根据圆周角与圆心角的关系得出∠AOB=90°.13.【答案】4√5【解析】解:∵点A,B的坐标分别为(4,0),(0,3),∴OA=4,OB=3,在Rt△AOB中,由勾股定理得:AB=√OB2+OA2=√32+42=5,∴BC=AB=5,∴OC=BC+OB=5+3=8,在Rt△COA中,由勾股定理得:AC=√OA2+OC2=√42+82=4√5.故答案为:4√5.先根据勾股定理求出AB,再求出OC,然后利用勾股定理即可得到线段BC的长.本题考查了勾股定理和坐标与图形性质的应用,解此题的关键是求出OC的长,注意:在直角三角形中,两直角边的平方和等于斜边的平方.14.【答案】(5,1)【解析】解:如图,观察图象可知E(1,3)绕点A(2,0),顺时针旋转90°所得到的点F的坐标为(5,1).故答案为:(5,1).利用图象法,画出图形解决问题即可.本题考查坐标与图形变化−旋转,解题的关键是理解题意,学会利用图象法解决问题.15.【答案】x1=−8,x2=−3【解析】解:将抛物线y=a(x−ℎ)2+k向左平移6个单位长度后的函数解析式为y= a(x−ℎ+6)2+k,∵抛物线y=a(x−ℎ)2+k经过(−2,0),(3,0)两点,∴当a(x−ℎ+6)2+k=0向左平移6个单位时,对应的解是x1=−8,x2=−3,故答案为:x1=−8,x2=−3.将抛物线y=a(x−ℎ)2+k向左平移6个单位得到y=a(x−ℎ+6)2+k,然后根据抛物线y=a(x−ℎ)2+k经过(−2,0),(3,0)两点,可以得到a(x−ℎ+6)2+k=0的解.本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.16.【答案】73【解析】解:∵二次函数y=ax2−4ax+3a2−6=a(x−2)2+3a2−4a−6,∴顶点为(2,3a2−4a−6),对称轴为直线x=2,∵当x<0时,y随x的增大而减小,∴开口向上,a>0,∵当−1≤x≤3时,y有最小值1,∴顶点为(2,1),∴3a2−4a−6=1,解得,a=73或a=−1,∵a>0,a的值为73,故答案为73.解析式化成顶点式,得到顶点为(2,3a2−4a−6),对称轴为直线x=2,根据当x<0时,y随x的增大而减小,即可得到开口向上,a>0,由当−1≤x≤3时,y有最小值1可知顶点为(2,1),即可得到3a2−4a−6=1,解方程组即可求得a的值.本题考查了二次函数的性质,解题的关键是明确题意,得到关于a的方程是解题的关键.17.【答案】解:方程分解因式得:(2x−1)(x−1)=0,可得2x−1=0或x−1=0,解得:x1=12,x2=1.【解析】此题考查了解一元二次方程−因式分解法,利用此方法解方程时,首先将方程右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.方程左边利用十字相乘法分解因式后,利用两数相乘积为0两因式中至少有一个为0转化为两个一元一次方程来求解.18.【答案】x1=−2,x2=1−2<x<1−4<y≤94【解析】解:(1)令y=−x2−x+2=0,解得x=−2或1,故答案为x1=−2,x2=1;(2)从图象看,当y>0时,x的取值范围是−2<x<1,故答案为−2<x<1;(3)由抛物线的表达式知,顶点坐标为(−12,94 ),当x=−3时,y=−9+3+2=−4,故当−3<x<0时,y的取值范围是为−4<y≤94.(1)令y=−x2−x+2=0,解得x1=−2,x2=1,即可求解;(2)观察函数图象即可求解;(3)由抛物线的表达式知,顶点坐标为(−12,94),当x=−3时,y=−9+3+2=−4,进而求解.本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.19.【答案】解:设在2018~2020年期间,湖北省脱贫专项资金年平均增长率为x,依题意,得:30(1+x)2=43.2,解得:x1=0.2=20%,x2=−2.2(不合题意,舍去).答:在2018~2020年期间,湖北省脱贫专项资金年平均增长率为20%.【解析】设在2018~2020年期间,湖北省脱贫专项资金年平均增长率为x,根据2018年及2020年湖北省政府投入精准脱贫专项资金额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.20.【答案】解:(1)如图,平行四边形ABDC即为所求.(2)如图,正方形ACMN即为所求.(3)如图,直线l即为所求.【解析】(1)根据平行四边形的判定画出图形即可.(2)根据正方形的判定画出图形即可.(3)连接AD,BC交于点G,连接AM,CN交于点H,直线GH即为所求.本题考查作图−应用与设计,三角形的面积,平行四边形的判定和性质,正方形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.21.【答案】解:(1)∵CD平分∠ADB,∴∠BDC=∠ADC,∴BC⏜=AC⏜,∴BC=AC,∵∠ACB=60°,∴△ABC为等边三角形;(2)如图,作CM⊥ED于点M,由(1)知:∠CDA=∠BDC=60°,∵CE//BD,∴∠DCE=∠BDC=60°,∴△CDE是等边三角形,∴CD=CE,∵∠BCD=60°−∠ACD=∠ACE,在△BCD和△ACE中,{BC=AC∠BCD=∠ACE DC=EC,∴△BCD≌△ACE(SAS),∴BD=AE=3,∴DC=DE=DA+AE=8,∵CM⊥ED,∴DM=12DE=4,∴CM=√DC2−DM2=4√3,∴△CAE 面积为:12AE ⋅CM =6√3.【解析】(1)根据圆周角定理和等边三角形的判定即可证明;(2)作CM ⊥ED 于点M ,结合(1)可得△CDE 是等边三角形,然后证明△BCD≌△ACE ,可得BD =AE =3,根据等边三角形三线合一可得DM 的长,根据勾股定理得CM 的长进而可得△CAE 面积.本题考查了三角形的外接圆与外心,垂径定理,圆周角定理,等边三角形的判定与性质,熟练掌握圆周角定理是解题的关键.22.【答案】10 25 4500【解析】解:(1)设函数表达式为y =kx +b ,则{15k +b =50020k +b =400,解得{k =−20b =800, 故y 关于x 的函数关系式为y =−20x +800;(2)设成本为m 元,由题意得:(15−m)×500=2500,解得m =10(元),则W =y(x −10)=(−20x +800)(x −10)=−20(x −40)(x −10),∵−20<0,故W 有最大值,当x =12(40+10)=25(元)时,W 的最大值为4500(元);故答案为10,25,4500;(3)由题意得:W =(800−20x)(x −10−a)=−20(x −25−12a)2+5a 2−300a +4500,则当x =25+12a 时,W 有最大值,由题意得x ≤25且25+12a >25,∴当x =25时,有最大利润W =300(15−a)=3000,解得a =5.(1)设y 关于x 的函数解析式为y =kx +b ,用待定系数法求解即可;(2)该商品进价等于周销售利润除以周销售量,再减去进价;根据周销售利润=周销售量×(售价−进价),列出w 关于x 的二次函数,根据二次函数的性质可得答案;(3)根据周销售利润=周销售量×(售价−进价),列出w关于x的二次函数,根据题意及二次函数的性质得出取得最大利润时的售价,再列出关于a的方程,求解即可.本题考查了待定系数法求一次函数的解析式及二次函数在实际问题中的应用,理清题中的数量关系并明确二次函数的性质是解题的关键.23.【答案】等腰直角三角形45°【解析】(1)解:①如图1,②如图1,延长CB至M,使得BM=CD,连AM,∵∠ADC+∠ABC=180°,∠ABM+∠ABC=180°,∴∠ADC=∠ABM,∵AD=AB,∴△CAD≌△MAB(SAS),∴∠CAD=∠MAB,AC=AM,∵∠CAD+∠CAB=90°,∴∠MAB+∠CAB=90°.即∠CAM=90°,∴△MAC为等腰直角三角形;故答案为:等腰直角三角形;③∵△MAC为等腰直角三角形,∴∠ACB=45°.故答案为:45°;(2)证明:如图2,延长CB至M,使得BM=CD,连AM,∵∠ADC+∠ABC=180°,∠ABM+∠ABC=180°,∴∠ADC=∠ABM,∵AD=AB,∴△CAD≌△MAB(SAS),∴∠CAD=∠MAB,AC=AM,∴∠CAM=∠MAB+∠CBA=∠CAD+∠CBA=∠BAD=60°,∴△ACM为等边三角形,∴CA=CM=CB+BM=CB+CD.∠DAE+∠DBC=180°.理由如下:(3)12证明:如图3,延长CD至M,使得DM=CB,连AM,AC,则∠ADM=∠ABC,又AB=AD,∴△ABC≌△ADM(SAS),∴AC=AM,∴∠M=∠ACB=∠ACD,又CD=CE,CA=CA,∴△ACD≌△ACE(SAS),∴AD=AB=AE,∴∠DAE=2∠DBE,∵∠DBE+∠DBC=180°,∴1∠DAE+∠DBC=180°.2(1)①按题意画出图形即可;②延长CB至M,使得BM=CD,连AM,证明△CAD≌△MAB(SAS),由全等三角形的性质得出∠CAD=∠MAB,AC=AM,可得出∠CAM=90°,则可得出答案;③由等腰三角形的性质可得出答案;(2)延长CB至M,使得BM=CD,连AM,证明△CAD≌△MAB(SAS),得出∠CAD=∠MAB,AC=AM,证明△ACM为等边三角形,则可得出答案;(3)延长CD至M,使得DM=CB,连AM,AC,证明△ABC≌△ADM(SAS),得出AC=AM,则∠M=∠ACB=∠ACD,证明△ACD≌△ACE(SAS),由全等三角形的性质得出AD=AB=AE,得出∠DAE=2∠DBE,则可得出答案.本题是四边形综合题,考查了等边三角形的判定与性质,等腰三角形的性质,全等三角形的判定和性质,等腰直角三角形的判定与性质等知识,添加恰当辅助线构造全等三角形是本题的关键.24.【答案】(−3,0)(1,0)(0,−3)【解析】解:(1)①当m=1时,y=x2+(m+1)x−(m+2)=x2+2x−3,令y=x2+2x−3=0,解得x=−3或1,令x=0,则y=−3,故点A、B、C的坐标分别为(−3,0)、(1,0)、(0,−3),故答案为:(−3,0)、(1,0)、(0,−3);②当点D在x轴上方时,设直线AB交y轴于点H,∵OA=OC=3,∠DAO=∠BCO,∠COB=∠AOH=90°,∴△COB≌△AOH(AAS),∴OH=OB=1,x+1,由点A、H的坐标得,直线AH的表达式为y=13则{y =x 2+2x +3y =13x +1,解得{x =43y =139(不合题意的值已舍去), 故点D 的坐标为(43,139);当点D 在x 轴下方时,同理可得点D′(23,−119);故点D 的坐标为(43,139)或(23,−119);(2)对于y =x 2+(m +1)x −(m +2)①,令y =x 2+(m +1)x −(m +2)=0,解得x =1或−m −2,令x =0,则y =−m −2,故点A 、B 、C 的坐标分别为(−m −2,0)、(1,0)、(0,−m −2),设直线BM 的表达式为y =kx +b ,将点B 的坐标代入上式并解得b =−k ,故直线BM 的表达式为y =kx −k②,则OQ =k ,联立①②并整理得:x 2+(m +1−k)x +(k −m −2)=0,则x B x M =k −m −2而x B =1,故x M =k −m −2,设直线AM 的表达式为y =k′x +b′,将点A 的坐标代入上式并解得:b′=mk′+2k′,则直线AM 的表达式为y =k′x +mk′+2k′③,则OP =−k′(m +2),同理可得:x M =k′+1,故k −m −2=k′+1,解得:m =k −k′−3,而OC =m +2=k −k′−1,将x M =k′+1代入y =kx −k =k(k′+1)−k =kk′,故ON =−kk′,则OP CO =−k′(m+2)m+2=−k′=54, 则ON OQ =−kk′k =−k′=54.(1)①令y =x 2+2x −3=0,解得x =−3或1,令x =0,则y =−3,即可求解;②当点D在x轴上方时,证明△COB≌△AOH(AAS),则OH=OB=1,进而求解;当点D在x轴下方时,同理可得点D′(23,−119);(2)确定直线BM的表达式为y=kx−k②,则OQ=k,进而求出x M=k−m−2,同理可得ON=−kk′,进而求解.本题是二次函数综合题,主要考查了一次函数的性质、根与系数关系的运用、三角形全等等,其中(2),要注意分类求解,避免遗漏.。
武汉市部分学校2021-2022学年度元月调考九年级语文参考答案及评分标准-1
![武汉市部分学校2021-2022学年度元月调考九年级语文参考答案及评分标准-1](https://img.taocdn.com/s3/m/d810b84ff4335a8102d276a20029bd64783e6239.png)
2021~2022学年度武汉市部分学校九年级调研考试语文学科参考答案及评价标准一、(9分)1.D (基于“不会对谁格外开恩”“只回馈那些珍惜它、善待它的人”的语意宜选择“公正”;基于“只要你愿意从头来过”“仍然”“陪伴”等语意宜选择“不计前嫌”和“一笔勾销”。
)2.B (句式杂糅。
“结合自己的特点”和“从自己的特点入手”杂糅。
)3. C (“公众利益”后面的分号应为句号,第一分句和后文是总分关系。
)二、(9分)4.B (百科全书式小说的特点与其篇幅无关。
)5. B (作家要了解作用于小说人物的相关知识,指作家要掌握小说中会涉及到的知识内容,不等于作家的知识水平要与小说人物相一致。
)6. D (文中未提及“人际关系”变得“日益复杂”。
)三、(12分)7.B (领联的意思是:从弟经常夸宣州的风光好,邀请诗人去敬亭山游玩。
结合最后两联,可知诗人之前并没有和从弟一起去过。
)8. C (累:多次。
)9. B10.C (司马昭并未向王基认错,也不是赞赏他的“神机妙算”。
)四、(6分)11.共6分,“谏”“万安”“是以”“难”各1分,语意通顺2分。
诸位的劝谏,是非常稳妥的计谋,因此我才奖赏你们,以后你们不要对提意见感到为难(或“因为想提意见感到为难”“以后不要不愿意提意见”“以后不要害怕提意见”)。
【参考译文】曹操亲自(率兵)攻打乌桓,属下将领们都劝阻。
打败乌桓归来之后,(曹操)查问当时劝阻他的人,众人不明白他这样做的缘故,个个都很害怕。
曹操都重赏了他们,(并对他们)说:“这次我率兵出征,冒着很大危险并且是侥幸(获胜),虽然取胜,是上天在帮助我,却不可当作常例。
诸位的劝谏,是非常稳妥的计谋,因此我才奖赏你们,以后你们不要对提意见感到为难。
”魏国(准备)攻打吴国,征南大将军王昶、征东大将军胡遵、镇南大将军母丘俭纷纷献计献策,司马师下诏征求尚书傅的意见。
傅暇说:“(将士们)希望求取战功得到赏赐,(没有进行周密的策划)先去作战,然后才想办法取得胜利,这不是保全军队的长久计策。
2022年武汉市部分高中九月调考化学试卷及答案
![2022年武汉市部分高中九月调考化学试卷及答案](https://img.taocdn.com/s3/m/35172244793e0912a21614791711cc7931b7780f.png)
8. 下列关于物质的结构或性质及解释均正确的是
选项
物质的结构或性质
A 键角:H20>NH3
B 稳定性:HF > HCl
C 熔点:碳化硅>金刚石
D 酸性:CF3 COOH > CC13 COOH
解释
水分子中 0上孤电子对数比氨分子中N上的多
HF分子间氢键强于HCl分子间作用力 C— Si的键能大于C— C的键能
一、 选择题:本题共15 小题, 每小题 3 分, 共45分。在每小题给出的四个选项中, 只
有 一 项是符合题目要求的。
1. 生 产精细化学品 是当前化学工业结构调整的重点之一。 下列不属于精细化学品的是
A. 医药
B. 硫酸
C. 日用化学品 D. 食品添加剂
2. 化学与生活密切相关。 下列 说法错误的是
□
(2) ①+104 (2 分)
□
②C3H6 (2 分)
反应 I 和反应 II 都是吸热反应,升高温度平衡均正向移动,且升温对反应 □
I 的影响更大 (2 分)
□
(3)
O Cl
+ Cl C CH CH3
AlCl3
(4)加成反应(还原反应) (1 分)
Cl
O
+ HCl
□
(2 分)
□
□
(5)
(2 分)
(6)4 (2 分)
□
(7)显酸性,对胃肠有刺激作用 (2 分)
(水溶性较差,不利于人体吸收)
□
(存在手性异构体,提高了产品分离的难度)
18.(14 分)
(1)坩埚 (2 分)
涂黑。 写在试卷、 草稿纸和答题卡上的非答题区域均无效。 3. 非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。 写在试
2021-2022学年湖北省武汉市部分学校高三(上)起点质检数学试卷(9月份)(附答案详解)
![2021-2022学年湖北省武汉市部分学校高三(上)起点质检数学试卷(9月份)(附答案详解)](https://img.taocdn.com/s3/m/8b3e9206fab069dc51220149.png)
2021-2022学年湖北省武汉市部分学校高三(上)起点质检数学试卷(9月份)一、单选题(本大题共8小题,共40.0分)1. 若复数z 的共轭复数z −满足(1+i)z −=i ,则z =( )A.−1+i 2B.−1−i 2C.1+i 2D.1−i 22. 若tanα=2,则cos2α1−sin2α=( )A. −13B. 13C. −3D. 33. 在平面直角坐标系中,某菱形的一组对边所在的直线方程分别为x +2y +1=0和x +2y +3=0,另一组对边所在的直线方程分别为3x −4y +c 1=0和3x −4y +c 2=0,则|c 1−c 2|=( )A. 2√3B. 2√5C. 2D. 44. 某圆柱体的底面直径和高均与某球体的直径相等,则该圆柱体表面积与球体表面积的比值为( )A. 2B. 43C. 32D. 545. 在一次试验中,随机事件A ,B 满足P(A)=P(B)=23,则( )A. 事件A ,B 一定互斥B. 事件A ,B 一定不互斥C. 事件A ,B 一定互相独立D. 事件A ,B 一定不互相独立6. 要得到函数y =sin(2x +π6)的图象,可以将函数y =cos(2x −π6)的图象( )A. 向右平移π12个单位长度 B. 向左平移π12个单位长度 C. 向右平移π6个单位长度D. 向左平移π6个单位长度7. 在用计算机处理灰度图像(即俗称的黑白照片)时,将灰度分为256个等级,最暗的黑色用0表示,最亮的白色用255表示,中间的灰度根据其明暗渐变程度用0至255之间对应的数表示,这样可以给图像上的每个像素赋予一个“灰度值”.在处理有些较黑的图像时,为了增强较黑部分的对比度,可对图像上每个像素的灰度值进行转换,扩展低灰度级,压缩高灰度级,实现如图所示的效果:则下列可以实现该功能的一种函数图象是()A. B.C. D.8.设双曲线E:x2−y23=1的左、右焦点为F1,F2,左顶点为A,点M是双曲线E在第一象限内的一点,直线MF1交双曲线E的左支于点N,若NA//MF2,则|MF2|=()A. 74B. 52C. 83D. 114二、多选题(本大题共4小题,共20.0分)9.下列关于空集的说法中,正确的有()A. ⌀∈⌀B. ⌀⊆⌀C. ⌀∈{⌀}D. ⌀⊆{⌀}10.某公司经营四种产业,为应对市场变化,在三年前进行产业结构调整,优化后的产业结构使公司总利润不断增长,今年总利润比三年前增加一倍.调整前后的各产业利润与总利润的占比如图所示:则下列结论中正确的有( )A. 调整后房地产业的利润有所下降B. 调整后医疗器械的利润增长量最大C. 调整后生物制药的利润增长率最高D. 调整后金融产业的利润占比最低11. 数列{a n }依次为:1,13,13,13,15,15,15,15,15,17,17,17,17,17,17,17,19,19,…,其中第一项为11,接下来三项均为13,再接下来五项均为15,依此类推.记{a n }的前n 项和为S n ,则( )A. a 100=119B. 存在正整数k ,使得a k >2√k−1C. S n ≤√nD. 数列{Snn}是递减数列 12. 已知函数f(x)=e x +1e 2x +k,则( )A. 当k =0时,f(x)是R 上的减函数B. 当k =1时,f(x)的最大值为1+√22C. f(x)可能有两个极值点D. 若存在实数a ,b ,使得g(x)=f(x +a)+b 为奇函数,则k =−1三、单空题(本大题共4小题,共20.0分)13. 抛物线y 2=2x 上两点A ,B 与坐标原点O 构成等边三角形,则该三角形的边长为______.14. (x +2y)(x −y)5的展开式中x 2y 4的系数为______.15. 平行四边形ABCD 中,AB ⃗⃗⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗⃗ =5,点P 满足PB ⃗⃗⃗⃗⃗ ⋅PD ⃗⃗⃗⃗⃗ =8,则PA ⃗⃗⃗⃗⃗ ⋅PC ⃗⃗⃗⃗⃗ =______. 16. 空间四面体ABCD 中,AB =CD =2,AD =BC =2√3,AC =4,直线BD 与AC 所成的角为45°,则该四面体的体积为______. 四、解答题(本大题共6小题,共70.0分)17. 设数列{a n }的前n 项和为S n ,满足S n =1−na n (n ∈N ∗).(1)求数列{a n }的通项公式; (2)设数列{(−1)n a n}的前n 项和为T n ,求T 2n 的表达式.18.在如图所示的六面体ABCDEF中,矩形ADEF⊥平面ABCD,AB=AD=AF=1,CD=2,CD⊥AD,AB//CD.(1)设H为CF中点,证明:BH//平面ADEF;(2)求二面角B−CF−E大小的正弦值.19.在平面凸四边形ABCD中,∠BAD=30°,∠ABC=135°,AD=6,BD=5,BC=3√2.(1)求cos∠DBA.(2)求CD长.20.在某班学生举办的庆祝建党一百周年活动中,指定4名同学依次在分别写有“建”,“党”,“百”,“年”四字的四张卡牌中有放回地随机抽取一张并记录结果.(1)求最后的结果中同时有“建”“党”两字的概率;(2)用X表示结果中这四个字各出现次数中的最大值,求EX.21.已知函数f(x)=2(x−2)lnx+ax2−1.(1)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若f(x)≥0恒成立,求实数a的取值范围.22.已知椭圆E:x2a2+y2b2=1(a>b>0)的离心率为√22,点A(0,−1)是椭圆E短轴的一个四等分点.(1)求椭圆E的标准方程;(2)设过点A且斜率为k1的动直线与椭圆E交于M,N两点,且点B(0,2),直线BM,BN分别交⊙C:x2+(y−1)2=1于异于点B的点P,Q,设直线PQ的斜率为k2,求实数λ,使得k2=λk1恒成立.答案和解析1.【答案】D【解析】解:复数z的共轭复数z−满足(1+i)z−=i,∴z−=i1+i =i(1−i)(1+i)(1−i)=i−i21−i2=12+12i,则z=1−i2.故选:D.利用复数的运算法则直接求解.本题考查复数的运算,考查复数的运算法则等基础知识,考查运算求解能力,是基础题.2.【答案】C【解析】解:∵tanα=2,∴cos2α1−sin2α=cos2α−sin2αsin2α+cos2α−2sinαcosα=1−tan2α1+tan2α−2tanα=1−41+4−4=−3.故选:C.利用同角三角函数基本关系式化弦为切求解.本题考查三角函数的化简求值,考查倍角公式及同角三角函数基本关系式的应用,是基础题.3.【答案】B【解析】解:由题意,根据菱形的两组对边间的距离相等,所以√12+22=12√32+42,解得|c1−c2|=2√5.故选:B.利用菱形的性质结合两条平行直线间的距离公式,列式求解即可.本题考查了菱形性质的应用,两条平行直线间的距离公式的应用,考查了逻辑推理能力与运算能力,属于基础题.4.【答案】C【解析】解:设球半径为R,则由题可知圆柱底面半径也为R,高为2R,所以圆柱体表面积S=2×πR²+2πR×2R=6πR²,球的表面积S′=4πR²,故该圆柱体表面积与球体表面积的比值为6πR24πR2=32,故选:C.根据条件分别表示出圆柱和球的表面积,即可求得答案.本题考查球的表面积公式,属于中档题.5.【答案】B【解析】解:由题意,若事件A与事件B为互斥事件,则P(A+B)=P(A)+P(B)=43>1,与0≤P(A+B)≤1矛盾,∴P(A+B)≠P(A)+P(B),∴事件A与B一定不互斥,故B正确,A错误;没有条件判断P(AB)=P(A)P(B)是否成立,故不能判断AB是否互相独立,故CD错误.故选:B.根据互斥事件和独立事件的概率的定义即可判断.本题考查了互斥事件和独立事件的概率,属于基础题.6.【答案】A【解析】解:∵y=cos(2x−π6)=sin[(2x−π6)+π2]=sin(2x+π3)=sin[2(x+π12)+π6],∴要得到函数y=sin(2x+π6)的图象,可以将函数y=cos(2x−π6)的图象向右平移π12个单位长度,故选:A.利用诱导公式可得:y=cos(2x−π6)=sin(2x+π3),再由函数y=Asin(ωx+φ)的图象变换可得答案.本题考查函数y=Asin(ωx+φ)的图象变换,考查转化思想与运算能力,属于中档题.7.【答案】A【解析】解:根据处理前后的图片变化可知,相对于原图的灰度值,处理后图像上每个像素的灰度值值增加,所以图象在y=x上方.故选:A.相对于原图的灰度值,处理后图像上每个像素的灰度值值增加,所以图象在y=x上方.本题以灰度值为背景考查函数的图象特征,属于基础题.8.【答案】B【解析】解:由题意知,a=1,b=√3,c=2,∴A(−1,0),F1(−2,0),F2(2,0),设|NA|=x,∵NA//MF2,∴|NA||MF2|=|NF1||MF1|=|F1A||F1F2|=14,∴|MF2|=4|NA|=4x,由双曲线的定义知,|MF1|−|MF2|=2a=2,|NF2|−|NF1|=2a=2,∴|MF1|=4x+2,|NF1|=14|MF1|=x+12,|NF2|=x+52,在△ANF1中,由余弦定理知,cos∠AF1N=|AF1|2+|NF1|2−|NA|22|AF1|⋅|NF1|=1+(x+12)2−x22×1×(x+12),在△NF1F2中,由余弦定理知,cos∠AF1N=|NF1|2+|F1F2|2−|NF2|22|NF1|⋅|F1F2|=(x+12)2+16−(x+52)22(x+12)⋅4,∴1+(x+12)2−x22×1×(x+12)=(x+12)2+16−(x+52)22(x+12)⋅4,解得x=58,∴|MF2|=4x=4×58=52.设|NA|=x,结合平行线的性质和双曲线的定义,求得|MF1|=4x+2,|NF2|=x+5,2再在△ANF1和△NF1F2中,均利用余弦定理表示出cos∠AF1N,从而建立关于x的方程,解之即可.本题主要考查双曲线的定义与几何性质,还运用了余弦定理,考查数形结合思想、逻辑推理能力和运算能力,属于中档题.9.【答案】BCD【解析】解:⌀⊆⌀或⌀=⌀,故选项A错误,选项B正确;⌀是集合{⌀}的元素,⌀也是任何集合的子集,即⌀∈{⌀},⌀⊆{⌀},故选项C、D正确;故选:BCD.根据集合与空集的定义依次对四个选项判断即可.本题考查了元素与集合、集合与集合的关系的判断与应用,属于基础题.10.【答案】BCD【解析】解:假设调整前总利润为100,那么调整后总利润为200,对于A,调整前房地产业利润占45%,利润为45,调整后利润占比25%,利润为50,应该是有所上升的,故选项A错误;对于B,调整前医疗器械利润为20,调整后利润为80,房地产业调整前利润为45,调整后利润为50,金融调整前利润为25,调整后利润为20,生物制药调整前利润为10,调整后利润为50,故选项B正确;对于C,医疗器械利润增长率为300%,生物制药利润增长率为400%,故选项C正确;对于D,由扇形图可知,金融产业利润占比为10%,所以调整后金融产业的利润占比最低,故选项D正确.利用题中折线图中的数据信息以及变化趋势,对四个选项逐一分析判断即可.本题考查了扇形图的应用,读懂统计图并能从统计图得到必要的信息是解决问题的关键,属于基础题.11.【答案】ACD【解析】解:由题意知, 当0<n ≤1时,a n =1, 当1<n ≤4时,a n =13, 当4<n ≤9时,a n =15,……,当k 2<n ≤(k +1)2时,a n =12 k+1,(k ∈N) ∵100=102,∴a 100=12×9+1=119,故A 正确;对任意正整数k ,不妨设m 2<k ≤(m +1)2,则a k =12m+1, ∵a k 为定值,2√ k−1随着k 变大而变小, ∴(2√ k−1)min=2√(m+1)2−1=12m+1,故a k ≤2√ k−1恒成立,故B 错误; C :若k 2≤n <(k +1)2,k ,n ∈N ∗, 则S n =S k 2+m =k +m2k+1,0≤m <2k +1, 而k +m2k+1−√n , 若n =k 2,则m =0,故k +m 2k+1−√n =k −√n =0, 若k 2<n <(k +1)2,k ,n ∈N ∗, 则0<m <2k +1,故(k +m2k+1)2−(√k 2+m)2=k 2+(m2k+1)2+2km2k+1−k 2−m =m[m−(2k+1)](2k+1)2<0,即(k +m 2k+1)2<(√k 2+m)2, 因为k +m 2k+1>0,√k 2+m >0, 故k +m 2k+1<√k 2+m ,即S n −√n <0, 即S n <√n ,综上,S n ≤√n ,故C 正确;D :因为k 2≤n <(k +1)2,k ,n ∈N ∗, 则S n =S k 2+m =k +m2k+1,0≤m <2k +1, 所以S n n=S k 2+m k 2+m=k+m 2k+1k 2+m=2k 2+k+m(2k+1)(k 2+m),则S n n−Sn+1n+1=2k 2+k+m (2k+1)(k 2+m)−2k 2+k+m+1(2k+1)(k 2+m+1)=(2k 2+k+m)[(k 2+m)+1]−[(2k 2+k+m)+1](k 2+m)(2k+1)(k 2+m)(k 2+m+1)=(2k 2+k+m)(k 2+m)+(2k 2+k+m)−(2k 2+k+m)(k 2+m)−(k 2+m)(2k+1)(k 2+m)(k 2+m+1)=k 2+k(2k+1)(k 2+m)(k 2+m+1)>0,所以Snn>S n+1n+1,故数列{Snn}是递减数列,故D 正确; 故选:ACD .根据数列的规律即可求出a 100,即可判断A 选项; 求出数列的通项公式,做差法推出矛盾即可说明B 选项; 求出数列的前n 项和公式,做差法即可说明C 选项;根据数列单调性的概念,比较S nn,Sn+1n+1,即可判断D 选项. 本题考查了归纳推理,数列的函数特性,属于难题.12.【答案】ABD【解析】解;A.当k =0时,f(x)=e x +1e 2x,f′(x)=−e x −2e 2x<0,∴f(x)在R 上单调递减,因此正确. B .当k =1时,f(x)=e x +1e 2x +1,f′(x)=−e x (e x +1+√2)(e x +1−√2)(e 2x +1)2,可得:e x =√2−1时,函数f(x)取得极大值为:√2−1+1(√2−1)2+1=1+√22,因此正确.C .f(x)=e x +1e 2x +k,f′(x)=−e x (e 2x +2e x −k)(e 2x +k)2,k =0,1时,由AB 可知,函数f(x)不可能有两个极值点.k <0时,函数f(x)在(−∞,12ln(−k))上单调递减,在(12ln(−k),+∞)上单调递减; k >0时,f′(x)=−e x (e x +1+√1+k)(e x +1−√1+k)(e 2x +k)2,此时函数f(x)也只有一个极值点,综上可得函数f(x)最多只有一个极值点,因此不正确.D .k =−1时,f(x)=e x +1e 2x −1=1e x −1,取a =0,b =12,则g(x)=1e x −1+12为奇函数;k ≠−1时,结合C 中的f(x)的图象及其单调性即可判断出: 不存在实数a ,b ,使得g(x)=f(x +a)+b 为奇函数.因此正确.可以理解成函数g(x)有对称中心就可以平移变成奇函数,因此只要g(x)+g(m −x)=c 恒成立就行, 得到k =−1. 故选:ABD . A .当k =0时,f(x)=e x +1e 2x,求导即可判断出单调性. B .当k =1时,f(x)=e x +1e 2x +1,求导即可判断出单调性与极值.C .f(x)=e x +1e 2x +k,f′(x)=−e x (e 2x +2e x −k)(e 2x +k)2,利用导数研究函数的单调性即可判断出结论.D .k =−1时,f(x)=e x +1e 2x −1=1e x −1,取a =0,b =12,可得g(x)=1e x −1+12为奇函数;k ≠−1时,结合C 中的f(x)的图象及其单调性即可判断出结论.本题考查了利用导数研究函数的单调性极值、方程与不等式的解法,考查了推理能力与计算能力,属于难题.13.【答案】4√3【解析】解:由抛物线的对称性可得A ,B 关于x 轴对称, 设A(n 22,n),则B(n 22,−n),可得|AB|=2n ,因为两点A ,B 与坐标原点O 构成等边三角形 所以可得O 到直线AB 的距离为√32⋅2n ,则√32⋅2n =n 22,解得:n =2√3,所以三角形的边长为2n =4√3, 故答案为:4√3.由题意设A 的坐标,由题意可得B 的坐标,求出|AB|的值,即三角形的边长,再求O 到直线AB 的距离,由等边三角形可得它们的关系,求出A 的坐标,进而可得等边三角形的边长.本题考查抛物线的对称性,及等边三角形的性质,属于基础题.14.【答案】−15【解析】解:根据二项展开式的应用:T r+1=C 5r x 5−r(−y)r , 所以当r =4时,x 2y 4的系数为C 54=5. 当r =3时,x 2y 4的系数为−2C 53=−20,所以展开式中x 2y 4的系数为5−20=−15. 故答案为:−15.直接利用二项式的展开式的应用和配对问题的应用求出结果.本题考查的知识要点:二项式展开式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.15.【答案】3【解析】解:∵四边形ABCD 为平行四边形, ∴PA⃗⃗⃗⃗⃗ =PB ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ =PB ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ , PC ⃗⃗⃗⃗⃗ =PD ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ =PD ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ , ∵AB ⃗⃗⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗⃗ =5,PB ⃗⃗⃗⃗⃗ ⋅PD ⃗⃗⃗⃗⃗ =8,∴PA ⃗⃗⃗⃗⃗ ⋅PC ⃗⃗⃗⃗⃗ =(PB ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )(PD ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )=PB ⃗⃗⃗⃗⃗ ⋅PD ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ⋅PD ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ 2=8+AB⃗⃗⃗⃗⃗ ⋅(PB ⃗⃗⃗⃗⃗ −PD ⃗⃗⃗⃗⃗ )−AB ⃗⃗⃗⃗⃗ 2=8+AB ⃗⃗⃗⃗⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ 2=8+AB ⃗⃗⃗⃗⃗ ⋅(DB ⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ) =8+AB ⃗⃗⃗⃗⃗ ⋅DA ⃗⃗⃗⃗⃗ =8−5=3. 故答案为:3.先利用平面向量的线性运算得到PA ⃗⃗⃗⃗⃗ =PB ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ,PC ⃗⃗⃗⃗⃗ =PD ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ ,再利用数量积运算即可求解.本题考查了平面向量的线性运算和数量积运算,属于中档题.16.【答案】4√23【解析】解:如图,在△ABC中,由AB=2,BC=2√3,AC=4,可得AB2+BC2=AC2,则△ABC是以AC为斜边的直角三角形,同理△ADC是以AC为斜边的直角三角形.过B作BE⊥AC,垂足为E,求得BE=√3,AE=1,过D作DF⊥AC,垂足为F,可得DF=√3,CF=1,在平面ABC中,过B作BG//EF且BG=EF,连接DG、FG,则四边形BEFG为平行四边形,得FG⊥AC,即BG⊥FG,又DF⊥AC,AC//BG,∴BG⊥DF,而DF∩FG=F,∴BG⊥平面DFG.∴BG⊥DG,在Rt△DGB中,BG=EF=2,∠DBG为直线BD与AC所成的角为45°,可得DG=2,∵BG⊥平面DFG,BG⊂平面ABC,∴平面ABC⊥平面DFG,在平面DFG中,过D作DH⊥FG,垂足为H,则DH⊥平面ABC.∵DF=FG=√3,DG=2,∴cos∠DFG=2×√3×√3=13,则sin∠DFG=2√23,∴DH=DF⋅sin∠DFG=√3×2√23=2√63.∴四面体ABCD的体积为V=13×12×2×2√3×2√63=4√23.故答案为:4√23.由题意画出图形,由已知求D到平面ABC的距离,再由棱锥体积公式求解.本题考查多面体体积的求法,考查空间想象能力与思维能力,考查推理论证及运算求解能力,属难题.17.【答案】解:(1)∵S n=1−na n(n∈N∗),∴n≥2时,S n−1=1−(n−1)a n−1,相减可得:a n=(n−1)a n−1−na n,∴a na n−1=n−1n+1,n=1时,a1=1−a1,解得a1=12.∴a n=a na n−1⋅a n−1a n−2⋅…⋅a3a2⋅a2a1⋅a1=n−1n+1⋅n−2n⋅n−3n−1⋅ (2)4⋅13×12=1n(n+1).(2)∵(−1)2n−1a2n−1+(−1)2na2n=−(2n−1)⋅2n+2n(2n+1)=4n,∴数列{(−1)na n}的前2n项和T2n=−1×2+2×3−3×4+4×5+⋯−(2n−1)⋅2n+2n(2n+1)=4×(1+2+⋯+n)=4×n(n+1)2=2n2+2n.【解析】(1)由S n=1−na n(n∈N∗),n≥2时,S n−1=1−(n−1)a n−1,相减可得a na n−1=n−1n+1,利用累乘求积即得出.(2)利用(−1)2n−1a2n−1+(−1)2na2n=−(2n−1)⋅2n+2n(2n+1)=4n,即可得出数列{(−1)na n}的前2n项和T2n.本题考查了数列递推关系、等差数列的通项公式与求和公式、分组求和方法、累乘求积方法,考查了推理能力与计算能力,属于中档题.18.【答案】(1)证明:如图所示,连接DF,取线段DF的中点G,分别连接AG,GH,因为G,H分别为线段DF,CF的中点,则GH是△CDF的中位线,所以GH//DC,GH=12DC,由已知可得,AB//CD且AB=12CD,所以GH//AB且GH=AB,故四边形ABHG为平行四边形,所以AG//BH,又AG⊂平面ADEF,BH⊄平面ADEF,所以BH//平面ADEF;(2)解:因为四边形ADEF是矩形,则ED⊥AD,又平面ADEF ⊥平面ABCD ,平面ADEF ∩平面ABCD =AD ,ED ⊂平面ADEF , 则ED ⊥平面ABCD ,又CD ⊂平面ABCD , 所以ED ⊥CD ,又CD ⊥AD , 所以ED ,CD ,AD 两两垂直,则以点D 为坐标原点,建立空间直角坐标系如图所示,所以D(0,0,0),A(1,0,0),B(1,1,0),F(1,0,1),C(0,2,0),E(0,0,1), 设平面BCF 的法向量为n⃗ =(x,y,z), 因为BF ⃗⃗⃗⃗⃗ =(0,−1,1),BC ⃗⃗⃗⃗⃗ =(−1,1,0), 所以{BF ⃗⃗⃗⃗⃗ ⋅n ⃗ =−y +z =0BC ⃗⃗⃗⃗⃗ ⋅n ⃗ =−x +y =0,令x =1,则y =1,z =1, 故n⃗ =(1,1,1), 设平面CFE 的法向量为m⃗⃗⃗ =(a,b,c), 因为EF ⃗⃗⃗⃗⃗ =(1,0,0),EC ⃗⃗⃗⃗⃗ =(0,2,−1), 所以{m ⃗⃗⃗ ⋅EF ⃗⃗⃗⃗⃗ =a =0m ⃗⃗⃗ ⋅EC ⃗⃗⃗⃗⃗ =2b −c =0,令b =1,则a =0,c =2, 故m⃗⃗⃗ =(0,1,2), 则|cos <m ⃗⃗⃗ ,n ⃗ >|=|m ⃗⃗⃗ ⋅n ⃗⃗ ||m ⃗⃗⃗ ||n ⃗⃗ |=√1+1+1×√1+4=√155, 故二面角B −CF −E 大小的正弦值为√1−(√155)2=√105.【解析】(1)连接DF ,取线段DF 的中点G ,分别连接AG ,GH ,利用中位线定理证明四边形ABHG 为平行四边形,得到AG//BH ,根据线面平行的判定定理证明即可; (2)建立合适的空间直角坐标系,求出所需点的坐标和向量的坐标,然后利用待定系数法求出平面BCF 和平面CEF 的法向量,由向量的夹角公式以及同角三角函数关系式求解即可.本题考查了线面平行的判定定理的应用,二面角的求解,在求解有关空间角问题的时候,一般会建立合适的空间直角坐标系,将空间角问题转化为空间向量问题进行研究,属于中档题.19.【答案】解:(1)在平面凸四边形ABCD 中,∠BAD =30°,∠ABC =135°,AD =6,BD =5,BC =3√2. 如图所示:在△ABD 中,利用正弦定理:BD sin∠A =ADsin∠ABD , 故:512=6sin∠DBA ,整理得:sin∠DBA =35,所以:cos∠DBA =±√1−sin 2∠DBA =±45. 当cos∠DBA =45时,AD >BD ,满足条件,当cos∠DBA =−45时,∠ABD 接近135°,故根据,∠ABC =135°,AD =6,BD =5,与三角形内角和定理矛盾,故舍去; 故:cos∠DBA =45(2)根据(1)的结论,cos∠DBA =45,故:cos∠DBC =cos(135°−∠DBA)=(−√22)×45+√22×35=−√210.利用余弦定理:CD 2=BC 2+BD 2−2⋅BC ⋅BD ⋅cos∠DBC =18+25+2×3√2×5×√210=49,解得:CD =7.【解析】(1)直接利用正弦定理和同角三角函数关系式的变换求出结果; (2)利用(1)的结论和余弦定理的应用求出结果.本题考查的知识要点:正弦定理,余弦定理的应用,三角函数关系式的变换,主要考查学生的运算能力和数学思维能力,属于中档题.20.【答案】解:(1)因为是有放回的抽取,所以每位同学都有四种选择,故共有4×4×4×4=256种,其中最后的结果中没有“建”“党”两字,共有2×2×2×2=16种,只有“建”或者只有“党”字,共有2×(C 41×2×2×2+C 42×2×2+C 43×2+1)=130种,所以最后的结果中同时有“建”“党”两字的概率为256−16−130256=55128;(2)由题意,X的可能取值为4,3,2,1,所以P(X=4)=4256=164,P(X=3)=C43C41C31256=316,P(X=2)=C42C42+C41C42A32256=4564,P(X=1)=A44256=332,所以E(X)=4×164+3×316+2×4564+1×332=178.【解析】(1)利用两个计数原理以及古典概型的概率公式分析求解,即可得到答案;(2)先求出随机变量X的可能取值,然后求出其对应的概率,由数学期望的计算公式求解即可.本题考查了两个计数原理以及古典概型的概率公式的应用,排列组合知识的应用,离散型随机变量及其分布列和离散型随机变量期望的求解与应用,考查了逻辑推理能力与化简运算能力,属于中档题.21.【答案】解:(1)函数f(x)=2(x−2)lnx−1的导数为f′(x)=2(lnx+x−2x),可得曲线y=f(x)在点(1,f(1))处的切线的斜率为−2,由f(1)=−1,可得切线的方程为y+1=−2(x−1),即为y=1−2x;(2)由2(x−2)lnx+ax2−1≥0可得a≥1−2(x−2)lnxx2,设g(x)=1−2(x−2)lnxx2,可得g′(x)=2(xlnx−x+1−4lnx)x3,设ℎ(x)=xlnx−x+1−4lnx,ℎ′(x)=lnx−4x,ℎ′(x)在(0,+∞)递增,当0<x<1时,ℎ′(x)<0,ℎ(x)在(0,1)递减,即有ℎ(x)>ℎ(1)=0,此时g(x)递增;当x>1时,ℎ′(x)>ln1−4=−4,由lnx−4x<0,可设1<x<x0,若−4<ℎ′(x)<0,可得ℎ(x)在(1,x0)递减,可得ℎ(x)<ℎ(1)=0,所以g(x)在(1,x0)递减,即g(x)<g(1)=1,当x>x0,且3<x0<4,1−2(x−2)lnx<0,g(x)<0,所以g(x)的最大值为1,所以a ≥1,即a 的取值范围是[1,+∞).【解析】(1)求得f(x)的导数,可得切线的斜率、切点,由直线的点斜式方程可得切线的方程;(2)由参数分离和构造函数,求得导数和单调性、极值和最值,可得所求范围. 本题考查导数的运用:求切线的方程和单调性、极值和最值,以及不等式恒成立问题解法,考查方程思想和运算能力、推理能力,属于难题.22.【答案】解:(1)由题意可得e =c a =√22,−b2=−1,又a 2=b 2+c 2,解得:a 2=8,b 2=4, 所以椭圆E 的标准方程为:x 28+y 24=1;(2)方法一:设M(x 1,y 1),N(x 2,y 2),Q(x Q ,y Q ),直线MN 方程为y =k 1x −1, 则直线BM 方程为y =y 1−2x 1x +2,与x 2+(y −1)2=1联立,得(x 12+(y 1−2)2)x 2+2x 1(y 1−2)x =0,由x P ≠0,解得x P =−2x 1(y 1−2)x 12+(y 1−2)2,又x 128+y 124=1,即x 12=8−2y 12,代入上式,得x P =−2x 1(y 1−2)2(4−y 12)+(y 1−2)2=2x1y 1+6, 所以y P =y 1−2x 1x P +2=4−16y 1+6,即P(2x 1y1+6,4−16y 1+6),同理Q(2x 2y 2+6,4−16y 2+6),所以k 2=y P −y QxP −x Q=(4−16y 1+16)−(4−16y 2+16)2x 1y 1+6−2x2y 2+6=8(y 1−y 2)x1y 2−x 2y 1+6(x 1−x 2),将y 1=k 1x 1−1,y 2=k 1x 2−1,代入上式, 则k 2=8k(x 1−x 2)x1(k 1x 2−1)−x 2(kx 1−1)+6(x 1−x 2)=8k 1(x 1−x 2)5(x 1−x 2)=85k 1,所以k 2=85k 1,即λ=85,所以,实数λ=85,使得k 2=85k 1恒成立.方法二:设M(x 1,y 1),N(x 2,y 2),Q(x Q ,y Q ),直线MN 方程为y =k 1x −1, 将直线y =k 1x −1与x 28+y 24=1联立得,(2k 12+1)x 2−4k 1x −6=0, 则x 1+x 2=4k12k 12+1,x 1x 2=−62k 12+1,所以k BM +k BN =y 1−2x 1+y 2−2x 2=k 1x 1−3x 1+k 1x 2−3x 2=2k 1−3(x 1+x 2)x 1x 2=4k 1, 所以k BM ⋅k BN =y 1−2x 1⋅y 2−2x 2=(k 1x 1−3)(k 1x 2−3)x 1x 2=k 12x 1x 2−3k 1(x 1+x 2)+9x 1x 2=−6k 12−12k 12+9(2k 12+1)−6=−32所以直线PQ 方程y =k 2x +t ,与x 2+(y −1)2=1联立得(k 22+1)x 2+2k 2(t −1)x +t(t −2)=0, 则x P +x Q =−2k 2(t−1)k 22+1,x P ⋅x Q =t(t−2)k 22+1, 所以k BP +k BQ =y P −2x P+y Q −2x Q=k 2x P +t−2x P+k 2x Q +t−2x Q=2k 2+(t−2)(x P +x Q )x P ⋅x Q=2k 2−2k 2(t−2)(t−1)t(t−2)=2k 2t则k BP ⋅k BQ =y P −2x P⋅y Q −2x Q=k 22x P x Q +k 2(t−2)(x P +x Q)+(t−2)2x P ⋅x Q=k 22t(t−2)−2k 22(t−2)(t−1)+(k 22+1)(t−2)2t(t−2)=k 22t−2k 22(t−1)+(k 22+1)(t−2)t=t−2t,由k BM +k BN =k BP +k BQ 及k BM ⋅k BN =k BP ⋅k BQ , 即{4k 1=2k2t−32=t−2t,解得{t =45k 2=85k 1,所以λ=85, 所以,实数λ=85,使得k 2=85k 1恒成立.方法三:BM 与BN 两直线地位对等,P ,Q 两点地位对等, 设直线BM 的方程为:y =k 3x +2,BN 的方程为y =k 4x +2, 联立{y =k 3x +2x 2+(y −1)2=1,{x =−2k31+k 32y =21+k 32,同理Q(−2k 41+k 42,21+k 42), 所以k 2=y Q −y PxQ −x P=21+k 42−21+k 42−2k 41+k 42−−2k 31+k 32=k 3+k 41−k3k 4,将B 点向下平移两个单位,椭圆方程变为x 28+(y+2)24=1,即x 2+2y 2+8y =0,①平移后,MN 方程:y =k 1x −3,即13(k 1x −y)=1,② 将①式中8y 是一次式通过乘以②式中的13(k 1x −y),可将①式化为全是二次x 2+2y 2+83y(k 1x −y)=0,即2y 2−8k 1xy −3x 2=0同除以x 2,所以2(y x )2−8k 1yx −3=0,由于平移,即BM ,BN 的斜率(平移不改变斜率),2k 2−8k 1k −3=0, 由韦达定理可知,k 3+k 4=4k 1,k 3⋅k 4=−32,所以k 2=k 3+k 41−k 3k 4=4k 11−(−32)=85k 1,所以λ=85,所以,实数λ=85,使得k2=85k1恒成立.【解析】(1)根据椭圆的离心率公式及−b2=−1,即可求得a和b值,求得椭圆E的方程;(2)方法一:联立直线方程与圆的方程和椭圆的方程,即可求得P和Q点坐标,因此可以求得k2,化简即可求得λ的值;方法二:分别联立直线与椭圆方程和圆的方程,分别表示出k BM+k BN,k BM⋅k BN及k BP+ k BQ,k BP⋅k BQ,根据其关系,即可求得λ的值;方法三:由题意,设直线BM和BN的方程,联立分别求得P和Q的方程,即可表示出k2,平移坐标系,然后齐次式化简,利用韦达定理,联立即可求得λ的值;本题考查椭圆的标准方程,直线与椭圆及圆的位置关系,考查韦达定理,平移与齐次式化简,考查计算能力,尤其是方法三,虽然不常用,但是可以简化计算,也是应该要掌握的,属于难题.。
2021年武汉市四月调考化学试题(附答案)
![2021年武汉市四月调考化学试题(附答案)](https://img.taocdn.com/s3/m/3199c50c974bcf84b9d528ea81c758f5f61f29b9.png)
2021~2022学年度武汉市部分学校九年级调研考试化学试卷武汉市教育科学研究院命制2022.4.21可能用到的相对原子质量:H-1 C-12 O-16 Al-27 P-31 S-32 C1-35.5 K-39 Ca-40Mn-55 Fe-56 Cu-64 Zn-65一、选择题1.空气中含量最多的气体是()A.O2B.H2 C.N2D.CO22.下列图示实验操作中,正确的是()A.测溶液pH B.读液体体积.C.稀释浓硫酸D.闻气体气味3.“西气东输”极大地促进了东部、中部和西部经济的共同发展。
“西气东输”输送的是天然气,其主要成分是甲烷。
以下属于甲烷化学性质的是()A.可燃性B.无色无味C.难溶于水D.密度比空气小4.下列各图中和分别表示不同元素的原子,其中表示混合物的是()A B C D5.化学概念在逻辑上存在并列、交叉和包含关系,可用下图表示这三种关系。
并列关系交叉关系包含关系以下关系界定正确的是()A.化合物和纯净物属于交叉关系B.分解反应和化合反应属于并列关系C.物理变化和化学变化属于包含关系D.非金属元素和稀有气体元素属于包含关系6.下图中“一”表示两物质间的转化关系,根据初中所学知识判断下列转化错误的是()A B C D7.已知X能与Y反应生成Z,该反应的化学方程式可表示为,下列说法错误的是()A.该反应中元素的化合价不一定发生改变B.该反应中X、Y、Z三种物质的化学计量数之比为m∶n∶gC.若Z为氧化物,则该反应一定是放热反应D.若a gX完全反应生成b gZ,则同时消耗Y的质量一定为(b - a)g8.下列图像能正确反映对应关系的是()A.图1表示加热氯酸钾和二氧化锰的混合物B.图2表示过量红磷在盛有空气的密闭容器中燃烧C.图3表示向一定质量的大理石中加入稀盐酸D.图4表示向等质量铝、锌中分别加入浓度相同的硫酸铜溶液二、非选择题28.(4分)实验室有三瓶未贴标签的无色溶液,分别是稀盐酸、氢氧化钠溶液和氯化钠溶液中的一种。
2021-2022学年湖北省咸宁市通山县振新学校九年级(上)第二次月考数学试卷(附答案详解)
![2021-2022学年湖北省咸宁市通山县振新学校九年级(上)第二次月考数学试卷(附答案详解)](https://img.taocdn.com/s3/m/1f317c40302b3169a45177232f60ddccdb38e656.png)
2021-2022学年湖北省咸宁市通山县振新学校九年级(上)第二次月考数学试卷1.在下列平面图形中,是中心对称图形的是( )A. B. C. D.2.方程x2−16=0的根是( )A. 0B. ±4C. 4D. −43.若关于x的一元二次方程x2+4x+m=0有两个不相等的实数根,则m的取值范围是( )A. m>−4B. m>4C. m≤−4D. m<44.如图,将△ABC绕点A逆时针旋转100∘,得到△ADE.若点D在线段BC的延长线上,则∠B的大小为( )A. 30∘B. 40∘C. 50∘D. 60∘5.抛物线y=−13(x−1)2向右平移2个单位后,得到的抛物线解析式为( )A. y=−13(x−1)2+2 B. y=−13(x−1)2−2C. y=−13(x−3)2 D. y=−13(x+1)26.如图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5cm,水面宽AB为8cm,则水的最大深度CD为( )A. 4cmB. 3cmC. 2cmD. 1cm7.如图,抛物线y=x2−4x+3与x轴交于A,B两点,将抛物线向上平移m个单位长度后,点A,B在新抛物线上的对应点分别为点C,D,若图中阴影部分的面积为8,则平移后新抛物线的解析式为( )A. y=x2−4x+3B. y=x2−4x+5C. y=x2−4x+7D. y=x2−4x+118.如图,正方形ABCD的边长为2m,点P,点Q同时从点A出发,速度均2cm/s,点P沿A−D−C向点C运动,点Q沿A−B−C向点C运动,则△APQ的面积S(cm2)与运动时间t(s)之间函数关系的大致图象是( )A. B.C. D.9.抛物线y=(x−1)2+4的顶点坐标是______.10.点A(−3,1)关于原点对称的点的坐标为______ .11.如图,AB是⊙O的直径,点C、D在AB的异侧,连接AD、OD、OC,若∠AOC=70∘,且AD//OC,则∠AOD的度数为______ .12.一个三角形的两边分别为3,5,另一边是x2−6x+8=0的解,则此三角形的面积为______.13.我国南宋数学家杨辉在1275年提出了一个问题:直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步).问阔及长各几步?若设阔(宽)为x步,则所列方程为______.14.在学校运动会上,九年级(5)班的运动员掷铅球,铅球的高y(m)与水平距离x(m)之间的函数解析式为y=−0.2x2+1.6x+1.8.则此运动员的成绩是______.15.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处.点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去……,若点A(3,0),B(0,4),则点B2021的横坐标为______.16.对称轴为x=1的抛物线y=ax2+bx+c(a≠0)如图所示,与x轴分别交于点(m,0),(n,0),m<n,有下列五个结论:①abc<0;②2a+b+c<0;③at2+bt≤a+b(t为实数);④当x<3时,y随x增大而增大;⑤2若方程ax2+bx+c−1=0的两个实数根分别为x1,x2,且x1<x2,则x1>m,x2<n.其中结论正确的是______.17.用适当的方法解下列方程.(1)(2x+1)2=4x+2;(2)x2−4x−1=0.18.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1,并写出点C1的坐标;(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2,并写出点C2的坐标;(3)在x轴上找一点P,使PA+PB的值最小,求点P的坐标.19.已知关于x的一元二次方程x2+(2m−3)x+m2=0有两个实数根x1,x2.(1)求实数m的取值范围;(2)若x1+x2=6−x1x2,求m的值.20.某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每次下降的百分率相同(1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?21.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答:(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c<0的解集;(3)写出y随x的增大而增大时自变量x的取值范围;(4)若方程ax2+bx+c=k有实数根,求k的取值范围.22.某公司经过市场调查,整理出某种商品在某个月的第x天的售价与销量的相关信息如下表:第x天售价(元/件)日销售量(件)1≤x≤30x+60300−10x已知该商品的进价为40元/件,设销售该商品的日销售利润为w元.(1)求w与x的函数关系式;(2)问销售该商品第几天时,日销售利润最大?最大日销售利润为多少元?(3)问在当月有多少天的日销售利润不低于6160元,请直接写出结果.23.如图,两个等腰直角△ABC和△CDE中,∠ACB=∠DCE=90∘.(1)观察猜想如图1,点E在BC上,线段AE与BD的数量关系是______,位置关系是______.(2)探究证明把△CDE绕直角顶点C旋转到图2的位置,(1)中的结论还成立吗?说明理由;(3)拓展延伸:把△CDE绕点C在平面内自由旋转,若AC=BC=13,DE=10,当A、E、D三点在同一直线上时,请直接写出AD的长.24.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,−3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.(3)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(4)在直线BC上找一点Q,使得△QOC为等腰三角形,请直接写出Q点坐标.答案和解析1.【答案】B【解析】解:A.不是中心对称图形,故本选项不合题意;B.是中心对称图形,故本选项符合题意;C.不是中心对称图形,故本选项不合题意;D.不是中心对称图形,故本选项不合题意;故选:B.根据中心对称图形的定义判断即可.本题考查的是中心对称图形的定义,把一个图形绕某一点旋转180∘,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.2.【答案】B【解析】解:x2−16=0,x2=16,∴x=±4.故选:B.利用直接开平方法求解即可.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法是解题的关键.3.【答案】D【解析】解:根据题意得Δ=42−4m>0,解得m<4.故选:D.根据判别式的意义得到Δ=42−4m>0,然后解不等式即可.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2−4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.4.【答案】B【解析】【分析】本题考查了旋转的性质以及等腰三角形的性质,根据旋转的性质结合等腰三角形的性质求出∠B的度数是解题的关键.根据旋转的性质可得出AB=AD、∠BAD=100∘,再根据等腰三角形的性质可求出∠B的度数.【解答】解:根据旋转的性质,可得:AB=AD,∠BAD=100∘,∴∠B=∠ADB=12×(180∘−100∘)=40∘.故选B.5.【答案】C【解析】解:抛物线y=−13(x−1)2向右平移2个单位后,得到的抛物线解析式为:y=−13(x−1−2)2,即y=−13(x−3)2;故选:C.根据“左加右减”的原则进行解答即可.此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.6.【答案】C【解析】解:如图所示:∵输水管的半径为5cm,水面宽AB为8cm,水的最大深度为CD,∴DO⊥AB,∴AO=5cm,AC=4cm,∴CO=√52−42=3(cm),∴水的最大深度CD为:2cm.故选:C.根据题意可得出AO=5cm,AC=4cm,进而得出CO的长,即可得出答案.本题考查的是垂径定理的应用及勾股定理,根据构造出直角三角形是解答此题的关键.7.【答案】C【解析】解:当y=0时,有x2−4x+3=0,解得:x1=1,x2=3,∴AB=2.∵S阴影=AC⋅AB=8,∴AC=4,∴平移后新抛物线的解析式为y=x2−4x+3+4=x2−4x+7.故选:C.利用二次函数图象上点的坐标特征求出抛物线与x轴交点的横坐标,由阴影部分的面积等于矩形ABCD的面积可求出AC的长度,再利用平移的性质“左加右减,上加下减”,即可求出平移后新抛物线的解析式.本题考查了抛物线与x轴的交点、矩形的面积以及二次函数图形与几何变换,观察图形,找出阴影部分的面积等于矩形ABCD的面积是解题的关键.8.【答案】C【解析】解:根据两个动点的运动状态可知(1)当0≤t≤1时,S=12×2t×2t=2t2,此时抛物线开口向上;(2)当1≤t≤2时,S=2×2−2×12×2×(2t−2)−12(4−2t)2=−2t2+4t,此时抛物线的开口向下.故选:C.研究两个动点到正方形各顶点时的相对位置,分段讨论函数解析式,根据函数图象即可得出结论.本题考查了动点问题的函数图象、正方形的性质、三角形面积公式以及分类讨论的数学思想,根据题意求出函数关系式是关键,注意分类讨论.9.【答案】(1,4)【解析】解:∵y=(x−1)2+4为抛物线的顶点式,∴根据顶点式的坐标特点可知,抛物线的顶点坐标为(1,4).故答案为:(1,4).已知抛物线解析式为顶点式,可直接写出顶点坐标.考查二次函数的性质,将解析式化为顶点式y=a(x−ℎ)2+k,顶点坐标是(ℎ,k),对称轴是x=ℎ.10.【答案】(3,−1)【解析】解:点A(−3,1)关于原点对称的点的坐标为(3,−1),故答案为:(3,−1).根据两个点关于原点对称时,它们的坐标符号相反可得答案.此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.11.【答案】40∘【解析】解:∵AD//OC,∴∠AOC=∠DAO=70∘,又∵OD=OA,∴∠ADO=∠DAO=70∘,∴∠AOD=180−70∘−70∘=40∘.故答案为:40∘.首先由AD//OC可以得到∠AOC=∠DAO,又由OD=OA得到∠ADO=∠DAO,由此即可求出∠AOD 的度数.此题比较简单,主要考查了平行线的性质、等腰三角形的性质,综合利用它们即可解决问题.12.【答案】6【解析】解:∵x2−6x+8=0,∴(x−2)(x−4)=0,则x−2=0或x−4=0,解得x1=2,x2=4,当x=2时,三角形三边分别为2、3、5,不能构成三角形,舍去;当x=4时,三角形三边为3、4、5,符合直角三角形三边关系,×3×4=6,此时三角形面积为12故答案为:6.因式分解法解方程得出x的值,再根据三角形三边关系及勾股定理逆定理求解可得答案.本题主要考查三角形三边关系、勾股定理逆定理、解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.13.【答案】x(x+12)=864【解析】【分析】此题主要考查了由实际问题抽象出一元一次方程,正确表示出矩形的长是解题关键.利用长乘以宽=864,进而得出答案.【解答】解:设阔(宽)为x步,则所列方程为:x(x+12)=864.故答案为:x(x+12)=864.14.【答案】9m【解析】解:由题意知,当y=0时,−0.2x2+1.6x+1.8=0,整理,得:x2−8x−9=0,解得:x1=−1,x2=9,故此运动员的成绩是9m,故答案为:9m.根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x的值即可.本题考查了二次函数的应用中函数式中自变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解是解题关键.15.【答案】12128【解析】解:∵点A(3,0),B(0,4),∴OA=3,OB=4,∴AB=√32+42=5,∴OA+AB1+B1C2=3+5+4=12,观察图象可知,点B2020的纵坐标为4,∵2020÷2=1010,∴点B2020的横坐标为1010×12=12120,12120+3+5=12128∴点B2021的坐标为(12128,0).故答案为12128.然后通过旋转发现,B、B2、B4…每偶数之间的B相差12个单位长度,根据这个规律可以求得B2020的横坐标,进而可得点B2021的坐标.本题考查坐标与图形变化-旋转,规律型:点的坐标,解题的关键是循环探究规律,利用规律解决问题,属于中考常考题型.16.【答案】┐【解析】解:∵抛物线开口向下、对称轴在y轴的右侧、与y轴的交于正半轴,∴a<0,b>0,c>0,∴abc<0,故①正确;∵对称轴为x=1,=1,即b=−2a,∴−b2a∴2a+b+c=2a−2a+c=c>0,故②错误;∵对称轴为x=1,顶点坐标为(1,2),∴当x=1时,函数y由最大值,此时y=a+b+c=2,∴当x=t时,y=at2+bt+c,∴at2+bt+c≤a+b+c,即at2+bt≤a+b,故③错误;由图象可知:当1<x<32时,y随x增大而减小,当x<1时,y随x的增大而增大,故④错误;方程ax2+bx+c−1=0的两个实数根分别为x1,x2,且x1<x2,即为直线y=1与抛物线的两个交点横坐标分别为x1,x2,∴x1>m,x2<n,故⑤正确,故答案为:①⑤.由图象可得a<0,b>0,c>0,由此判断①正确;根据对称轴x=1,得出b=−2a,计算2a+b+c=2a−2a+c=c>0,判断②错误;利用对称轴为x=1,顶点坐标为(1,2),确定函数y由最大值,此时y=a+b+c=2,当x=t时,y=at2+bt+c,由此得到at2+bt+c≤a+b+c,由此判断③错误;根据函数的性质判断④错误;利用方程与抛物线的关系判断⑤正确.此题考查抛物线的性质,会看函数图象,利用系数与图象的关系,抛物线的对称轴的关系式,方程与抛物线的关系,函数图象的增减性,正确理解函数图象与函数的性质是解题的关键.17.【答案】解:(1)(2x+1)2=4x+2,(2x+1)2−2(2x+1)=0,(2x+1)(2x+1−2)=0,2x+1=0或2x+1−2=0,所以x1=−12,x2=12;(2)x2−4x−1=0,x2−4x+4=5,(x−2)2=5,x−2=±√5,所以x1=2+√5,x2=2−√5.【解析】(1)先移项得到(2x+1)2−2(2x+1)=0,然后利用因式分解法解方程;(2)利用配方法得到(x−2)2=5,然后利用直接开平方法解方程.本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了配方法.18.【答案】解:(1)如图,△A 1B 1C 1为所作,点C 1的坐标为(−1,4);(2)如图,△A 2B 2C 2为所作,点C 2的坐标为(−3,−4);(3)作A 点关于x 轴的对称点A′,连接BA′交x 轴于点P ,如图,则A′(1,−1),∵PA =PA′,∴PA +PB =PA′+PB =A′B ,∴此时PA +PB 的值最小,设直线A′B 的解析式为y =kx +b ,把A′(1,−1),B(4,2)分别代入得{k +b =−14k +b =2, 解得{k =1b =−2, ∴直线A′B 的解析式为y =x −2,当y =0时,x −2=0,解得x =2,∴P 点坐标为(2,0).【解析】(1)利用点平移的坐标变换规律得到A 1、B 1、C 1的坐标,然后描点即可;(2)利用关于原点对称的点特征得到A 2、B 2、C 2的坐标,然后描点即可;(3)作A 点关于x 轴的对称点A′,连接BA′交x 轴于点P ,如图,则A′(1,−1),根据两点之间线段最短可判断此时PA +PB 的值最小,再利用待定系数法求出直线A′B 的解析式为y =x −2,然后利用x 轴上点的坐标特征确定P 点坐标.本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换和最短路径问题.19.【答案】解:(1)△=(2m−3)2−4m2=4m2−12m+9−4m2=−12m+9,∵△≥0∴−12m+9≥0,∴m≤3;4(2)由题意可得x1+x2=−(2m−3)=3−2m,x1x2=m2,又∵x1+x2=6−x1x2,∴3−2m=6−m2,∴m2−2m−3=0,解得m1=3,m2=−1,,又∵m≤34∴m=−1.【解析】(1)由一元二次方程x2+(2m−3)x+m2=0的两个实数根,根据根的判别式的意义得到△=b2−4ac≥0,即4m2−12m+9−4m2≥0,解关于m的不等式即可;(2)根据根与系数的关系x1+x2=−(2m−3),x1x2=m2,代入代数式求出m的值即可.此题主要考查了一元二次方程根与系数的关系以及根的判别式,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.20.【答案】解:(1)设每次下降的百分率为a,根据题意,得:50(1−a)2=32,解得:a=1.8(舍)或a=0.2,答:每次下降的百分率为20%;(2)设每千克应涨价x元,由题意,得(10+x)(500−20x)=6000,整理,得x2−15x+50=0,解得:x1=5,x2=10,因为要尽快减少库存,所以x=5符合题意.答:该商场要保证每天盈利6000元,那么每千克应涨价5元.【解析】此题主要考查了一元二次方程应用,关键是根据题意找到隐含的相等关系,列出方程,解答即可.(1)设每次降价的百分率为a,(1−a)2为两次降价的百分率,50降至32就是方程的平衡条件,列出方程求解即可;(2)根据题意列出一元二次方程,然后求出其解,最后根据题意确定其值.21.【答案】解:(1)由图象得:方程ax2+bx+c=0的两个根是1或3;(2)由图象得:不等式ax2+bx+c<0的解集是:x<0或x>3;(3)当x<2时,y随x的增大而增大;(4)∵方程ax2+bx+c=k有实数根,∴k≤2.【解析】(1)根据图象可知x=1和3是方程的两根;(2)找出函数值小于0时x的取值范围即可;(3)首先找出对称轴,然后根据图象写出y随x的增大而增大的自变量x的取值范围;(4)若方程ax2+bx+c=k有实数根,则k不超过y=ax2+bx+c(a≠0)的最大值,据此求出k 的取值范围.本题主要考查了二次函数与不等式以及抛物线与x轴的交点的知识,解答本题的关键是熟练掌握二次函数的性质以及图象的特点,此题难度不大.22.【答案】解:(1)由题意得:w=(x+60−40)(300−10x)=−10x2+100x+6000;(2)w=−10x2+100x+6000=−10(x−5)2+6250,∵−10<0,∴抛物线开口向下,当x=5时,y取得最大值为6250(元).∴销售该商品第5天时,日销售利润最大,最大日销售利润6250元;(3)令w=−10x2+100x+6000=6160,解得x=2或x=8,故当月有7天的日销售利润不低于6160元.【解析】(1)根据日销售利润等于单件利润乘以销售量即可求解;(2)由w=−10x2+100x+6000=−10(x−5)2+6250,即可求解;(3)令w=−10x2+100x+6000=6160,解得x=2或x=8,即可求解.本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利用函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.23.【答案】解:(1)AE=BD;AE⊥BD;(2)成立;理由:如图2中,延长AE交BD于H,交BC于O.∵∠ACB=∠ECD=90∘,∴∠ACE=∠BCD,∵AC=CB,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD,∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AOC=90∘,∠AOC=∠BOH,∴∠BOH+∠OBH=90∘,∴∠OHB=90∘,即AE⊥BD.(3)满足条件的AD的值为17或7.【解析】【分析】本题考查几何变换综合题、等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是准确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.(1)延长AE交BD于H.只要证明△ACE≌△BCD即可;(2)结论不变.延长AE交BD于H,交BC于O.只要证明△ACE≌△BCD即可;(3)分两种情形分别求解即可解决问题.【解答】解:(1)如图1中,延长AE交BD于H.∵AC=CB,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD,∴AE=BD,∠EAC=∠CBD,∵∠EAC +∠AEC =90∘,∠AEC =∠BEH ,∴∠BEH +∠EBH =90∘,∴∠EHB =90∘,即AE ⊥BD ,故答案为AE =BD ,AE ⊥BD.(2)见答案;(3)①当射线AD 在直线AC 的上方时,作CH ⊥AD 于H.∵CE =CD ,∠ECD =90∘,CH ⊥DE ,∴EH =DH ,CH =12DE =5, 在Rt △ACH 中,∵AC =13,CH =5,∴AH =√132−52=12,∴AD =AH +DH =12+5=17.②当射线AD 在直线AC 的下方时,作CH ⊥AD 于H.同法可得:AH =12,故AD =AH −DH =12−5=7,综上所述,满足条件的AD 的值为17或7.24.【答案】解:(1)将B 、C 两点的坐标代入得{9+3b +c =0c =−3, 解得:{b =−2c =−3; 所以二次函数的表达式为:y =x 2−2x −3;(2)如图,过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F ,设P(x,x 2−2x −3),设直线BC 的解析式为:y =kx +d ,则{3k +d =0d =−3, 解得:{k =1d =−3, ∴直线BC 的解析式为y =x −3,则Q 点的坐标为(x,x −3);当0=x 2−2x −3,解得:x 1=−1,x 2=3,∴AO =1,AB =4,S 四边形ABPC =S △ABC +S △BPQ +S △CPQ =12AB ⋅OC +12QP ⋅BF +12QP ⋅OF =12×4×3+12(−x 2+3x)×3 =−32(x −32)2+758. 当x =32时,四边形ABPC 的面积最大此时P 点的坐标为(32,−154),四边形ABPC 的面积的最大值为758;(3)存在点P ,使四边形POP′C 为菱形;如图,设P 点坐标为(x,x 2−2x −3),PP′交CO 于E ,若四边形POP′C 是菱形,则有PC =PO ;连接PP′,则PE ⊥CO 于E ,∵C(0,−3),∴CO =3,又∵OE =EC ,∴OE =EC =32,∴y =−32;∴x 2−2x −3=−32,解得x 1=2+√102,x 2=2−√102(不合题意,舍去), ∴P 点的坐标为(2+√102,−32);(4)设点Q 的坐标为(m,m −3),∵O(0,0),C(0,−3),∴OC =3,QC =√(m −0)2+[m −3−(−3)]2=√2|m|,QO =√m 2+(m −3)2.△QOC 为等腰三角形分三种情况:①当OC =QC 时,3=√2|m|,解得:m =±3√22, 此时点Q 的坐标为(3√22,3√22−3)或(−3√22,−3√22−3);②当OC =QO 时,3=√m 2+(m −3)2,解得:m =3或m =0(舍去),此时点Q 的坐标为(3,0);③当QC =QO 时,有√2|m|=√m 2+(m −3)2,解得:m =32, 此时点Q 的坐标为(32,−32). 综上可知:Q 点坐标为(3√22,3√22−3)、(−3√22,−3√22−3)、(3,0)或(32,−32). 【解析】(1)将B 、C 的坐标代入抛物线的解析式中即可求得待定系数的值;(2)由于△ABC 的面积为定值,当四边形ABPC 的面积最大时,△BPC 的面积最大;过P 作y 轴的平行线,交直线BC 于Q ,交x 轴于F ,易求得直线BC 的解析式,可设出P 点的横坐标,然后根据抛物线和直线BC 的解析式求出Q 、P 的纵坐标,即可得到PQ 的长,以PQ 为底,B 点横坐标的绝对值为高即可求得△BPC 的面积,由此可得到关于四边形ACPB 的面积与P 点横坐标的函数关系式,根据函数的性质即可求出四边形ABPC 的最大面积及对应的P 点坐标;(3)由于菱形的对角线互相垂直平分,若四边形POP′C 为菱形,那么P 点必在OC 的垂直平分线上,据此可求出P 点的纵坐标,代入抛物线的解析式中即可求出P 点的坐标;(4)设点Q 的坐标为(m,m −3),结合点O 、C 的坐标即可得出OC 、OQ 、QC 的长度,分OC =OQ 、OC =QC 以及OQ =QC 三种情况考虑,由此即可得出关于m 的方程,解方程求出m 的值,将其代入点Q的坐标中即可得出结论.此题考查了二次函数综合题,涉及到了二次函数解析式的确定、菱形的判定和性质以及图形面积的求法等知识,当所求图形不规则时通常要将其转换为其他规则图形面积的和差关系来求解.。
2021年湖北省武汉市中考数学试卷(附答案详解)
![2021年湖北省武汉市中考数学试卷(附答案详解)](https://img.taocdn.com/s3/m/a071528048d7c1c708a145f9.png)
2021年湖北省武汉市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.实数3的相反数是()A. 3B. −3C. 13D. −132.下列事件中是必然事件的是()A. 抛掷一枚质地均匀的硬币,正面朝上B. 随意翻到一本书的某页,这一页的页码是偶数C. 打开电视机,正在播放广告D. 从两个班级中任选三名学生,至少有两名学生来自同一个班级3.下列图形都是由一个圆和两个相等的半圆组合而成的,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.4.计算(−a2)3的结果是()A. a6B. −a6C. −a5D. a55.如图是由4个相同的小正方体组成的几何体,它的主视图是()A.B.C.D.6.学校招募运动会广播员,从两名男生和两名女生共四名候选人中随机选取两人,则两人恰好是一男一女的概率是()A. 13B. 12C. 23D. 347.我国古代数学名著《九章算术》中记载“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:现有几个人共买一件物品,每人出8钱,多出3钱;每人出7钱,还差4钱.问人数,物价各是多少?若设共有x人,物价是y 钱,则下列方程正确的是()A. 8(x−3)=7(x+4)B. 8x+3=7x−4C. y−38=y+47D. y+38=y−478.一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变,两车离甲地的距离y(单位:km)与慢车行驶时间t(单位:ℎ)的函数关系如图,则两车先后两次相遇的间隔时间是()A. 53ℎ B. 32ℎ C. 75ℎ D. 43ℎ9.如图,AB是⊙O的直径,BC是⊙O的弦,先将BC⏜沿BC翻折交AB于点D,再将BD⏜沿AB翻折交BC于点E.若BE⏜=DE⏜,设∠ABC=α,则α所在的范围是()A. 21.9°<α<22.3°B. 22.3°<α<22.7°C. 22.7°<α<23.1°D. 23.1°<α<23.5°10.已知a,b是方程x2−3x−5=0的两根,则代数式2a3−6a2+b2+7b+1的值是()A. −25B. −24C. 35D. 36二、填空题(本大题共6小题,共18.0分)11.化简√(−5)2的结果是______.12.我国是一个人口资源大国.第七次全国人口普查结果显示,北京等五大城市的常住人口数如下表,这组数据的中位数是______ .城市 北京 上海 广州 重庆 成都 常住人口数万 2189248718683205209413. 已知点A(a,y 1),B(a +1,y 2)在反比例函数y =m 2+1x(m 是常数)的图象上,且y 1<y 2,则a 的取值范围是______ .14. 如图,海中有一个小岛A.一艘轮船由西向东航行,在B点测得小岛A 在北偏东60°方向上;航行12nmile 到达C 点,这时测得小岛A 在北偏东30°方向上.小岛A 到航线BC 的距离是______ nmile(√3≈1.73,结果用四舍五入法精确到0.1).15. 已知抛物线y =ax 2+bx +c(a,b ,c 是常数),a +b +c =0.下列四个结论:①若抛物线经过点(−3,0),则b =2a ;②若b =c ,则方程cx 2+bx +a =0一定有根x =−2; ③抛物线与x 轴一定有两个不同的公共点;④点A(x 1,y 1),B(x 2,y 2)在抛物线上,若0<a <c ,则当x 1<x 2<1时,y 1>y 2. 其中正确的是______ (填写序号).16. 如图(1),在△ABC 中,AB =AC ,∠BAC =90°,边AB 上的点D 从顶点A 出发,向顶点B 运动,同时,边BC 上的点E 从顶点B 出发,向顶点C 运动,D ,E 两点运动速度的大小相等,设x =AD ,y =AE +CD ,y 关于x 的函数图象如图(2),图象过点(0,2),则图象最低点的横坐标是______ .三、解答题(本大题共8小题,共72.0分)17. 解不等式组{2x ≥x −1,①4x +10>x +1.②请按下列步骤完成解答.(1)解不等式①,得______ ; (2)解不等式②,得______ ;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是______ .18.如图,AB//CD,∠B=∠D,直线EF与AD,BC的延长线分别交于点E,F,求证:∠DEF=∠F.19.为了解落实国家《关于全面加强新时代大中小学劳动教育的意见》的实施情况,某校从全体学生中随机抽取部分学生,调查他们平均每周劳动时间t(单位:ℎ),按劳动时间分为四组:A组“t<5”,B组“5≤t<7”,C组“7≤t<9”,D组“t≥9”.将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次抽样调查的样本容量是______ ,C组所在扇形的圆心角的大小是______ ;(2)将条形统计图补充完整;(3)该校共有1500名学生,请你估计该校平均每周劳动时间不少于7h的学生人数.20.如图是由小正方形组成的5×7网格,每个小正方形的顶点叫做格点,矩形ABCD的四个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,先在边AB上画点E,使AE=2BE,再过点E画直线EF,使EF平分矩形ABCD的面积;(2)在图(2)中,先画△BCD的高CG,再在边AB上画点H,使BH=DH.21.如图,AB是⊙O的直径,C,D是⊙O上两点,C是BD⏜的中点,过点C作AD的垂线,垂足是E.连接AC交BD于点F.(1)求证:CE是⊙O的切线;=√6,求cos∠ABD的值.(2)若DCDF22.在“乡村振兴”行动中,某村办企业以A,B两种农作物为原料开发了一种有机产品.A原料的单价是B原料单价的1.5倍,若用900元收购A原料会比用900元收购B原料少100kg.生产该产品每盒需要A原料2kg和B原料4kg,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.(1)求每盒产品的成本(成本=原料费+其他成本);(2)设每盒产品的售价是x元(x是整数),每天的利润是w元,求w关于x的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过a元(a是大于60的常数,且是整数),直接写出每天的最大利润.23.问题提出如图(1),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=AC,EC=DC,点E 在△ABC内部,直线AD与BE于点F.线段AF,BF,CF之间存在怎样的数量关系?问题探究(1)先将问题特殊化如图(2),当点D,F重合时,直接写出一个等式,表示AF,BF,CF之间的数量关系;(2)再探究一般情形如图(1),当点D,F不重合时,证明(1)中的结论仍然成立.问题拓展如图(3),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=kAC,EC=kDC(k是常数),点E在△ABC内部,直线AD与BE交于点F.直接写出一个等式,表示线段AF,BF,CF之间的数量关系.24.抛物线y=x2−1交x轴于A,B两点(A在B的左边).(1)▱ACDE的顶点C在y轴的正半轴上,顶点E在y轴右侧的抛物线上;①如图(1),若点C的坐标是(0,3),点E的横坐标是3,直接写出点A,D的坐标.2②如图(2),若点D在抛物线上,且▱ACDE的面积是12,求点E的坐标.(2)如图(3),F是原点O关于抛物线顶点的对称点,不平行y轴的直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线只有一个公共点,求证:FG+ FH的值是定值.答案和解析1.【答案】B【知识点】实数的性质、相反数【解析】解:实数3的相反数是:−3.故选:B.直接利用相反数的定义分析得出答案.此题主要考查了实数的性质,正确掌握相反数的定义是解题关键.2.【答案】D【知识点】随机事件【解析】解:A、抛掷一枚质地均匀的硬币,正面朝上,是随机事件;B、随意翻到一本书的某页,这一页的页码是偶数,是随机事件;C、打开电视机,正在播放广告,是随机事件;D、从两个班级中任选三名学生,至少有两名学生来自同一个班级,是必然事件;故选:D.根据事件发生的可能性大小判断即可.本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.【答案】A【知识点】利用轴对称设计图案、利用旋转设计图案【解析】解:A.既是轴对称图形又是中心对称图形,故此选项符合题意;B.不是轴对称图形,是中心对称图形,故此选项不合题意;C.不是轴对称图形,是中心对称图形,故此选项不合题意;D.是轴对称图形,不是中心对称图形,故此选项不合题意;故选:A.根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.此题主要考查了利用轴对称设计图案和利用旋转设计图案,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.【答案】B【知识点】幂的乘方与积的乘方【解析】解:(−a2)3=−a6,故选:B.根据幂的乘方的运算法则计算可得.本题主要考查幂的乘方与积的乘方,解题的关键是掌握幂的乘方法则:底数不变,指数相乘与积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.5.【答案】C【知识点】简单组合体的三视图【解析】解:从正面看易得有两层,底层三个正方形,上层中间是一个正方形.故选:C.找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6.【答案】C【知识点】用列举法求概率(列表法与树状图法)【解析】解:画树状图如图:共有12种等可能的结果,抽取的两人恰好是一男一女的结果有8种,∴两人恰好是一男一女的概率为812=23,故选:C.画树状图,共有12种等可能的结果,抽取的两人恰好是一男一女的结果有8种,再由概率公式求解即可.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.7.【答案】D【知识点】由实际问题抽象出一元一次方程【解析】解:设物价是y钱,根据题意可得:y+3 8=y−47.故选:D.根据人数=总钱数÷每人所出钱数,得出等式即可.此题主要考查了由实际问题抽象出一元一次方程,正确找出等量关系是解题关键.8.【答案】B【知识点】一次函数的应用【解析】解:根据图象可知,慢车的速度为a6 km/ℎ.对于快车,由于往返速度大小不变,总共行驶时间是4ℎ,因此单程所花时间为2h,故其速度为a2 km/ℎ.所以对于慢车,y与t的函数表达式为y=a6t (0≤t≤6)⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅①.对于快车,y与t的函数表达式为y={a2(t−2)(2≤t<4)⋅⋅⋅⋅⋅⋅⋅②,−a2(t−6)4≤t≤6)⋅⋅⋅⋅⋅⋅⋅③,联立①②,可解得交点横坐标为t=3,联立①③,可解得交点横坐标为t=4.5,因此,两车先后两次相遇的间隔时间是1.5,故选:B.根据图象得出,慢车的速度为a6 km/ℎ,快车的速度为a2 km/ℎ.从而得出快车和慢车对应的y与t的函数关系式.联立两个函数关系式,求解出图象对应两个交点的坐标,即可得出间隔时间.本题主要考查根据函数图象求一次函数表达式,以及求两个一次函数的交点坐标.解题的关键是利用图象信息得出快车和慢车的速度,进而写出y与t的关系.9.【答案】B【知识点】翻折变换(折叠问题)、圆周角定理、圆心角、弧、弦的关系【解析】解:如图,连接AC,CD,DE.∵ED⏜=EB⏜,∴ED=EB,∴∠EDB=∠EBD=α,∵AC⏜=CD⏜=DE⏜,∴AD=CD=DE,∴∠DCE=∠DEC=∠EDB+∠EBD=2α,∴∠CAD=∠CDA=∠DCE+∠EBD=3α,∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°,∴4α=90°,∴α=22.5°,故选:B.如图,连接AC,CD,DE.证明∠CAB=3α,利用三角形内角和定理求出α,可得结论.本题考查翻折变换,圆周角定理,等腰三角形的判定和性质,三角形内角和定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.10.【答案】D【知识点】代数式求值、一元二次方程的根与系数的关系*【解析】解:∵a,b是方程x2−3x−5=0的两根,∴a2−3a−5=0,b2−3b−5=0,a+b=3,∴a2−3a=5,b2=3b+5,∴2a3−6a2+b2+7b+1=2a(a2−3a)+3b+5+7b+1=10a+10b+6=10(a+b)+6=10×3+6=36.故选:D.根据一元二次方程解的定义得到a2−3a−5=0,b2−3b−5=0,即a2=3a+5,b2= 3b+5,根据根与系数的关系得到a+b=3,然后整体代入变形后的代数式即可求得.本题考查了根与系数的关系的知识,解答本题要掌握若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba ,x1⋅x2=ca.也考查了一元二次方程解的定义.11.【答案】5【知识点】二次根式的性质【解析】解:√(−5)2=|−5|=5.根据二次根式的性质解答.解答此题,要弄清二次根式的性质:√a2=|a|的运用.12.【答案】2189【知识点】中位数【解析】解:将这组数据重新排列为1868,2094,2189,2487,3205,所以这组数据的中位数为2189,故答案为:2189.将这组数据从小到大重新排列,再根据中位数的定义求解即可.本题主要考查中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.【答案】−1<a<0【知识点】反比例函数图象上点的坐标特征【解析】解:∵k=m2+1>0,∴反比例函数y=m2+1(m是常数)的图象在一、三象限,在每个象限,y随x的增大而减x小,①当A(a,y1),B(a+1,y2)在同一象限,∵y1<y2,∴a>a+1,此不等式无解;②当点A(a,y1)、B(a+1,y2)在不同象限,∵y1<y2,∴a<0,a+1>0,解得:−1<a<0,故答案为−1<a<0.根据反比例函数的性质分两种情况进行讨论,①当点A(a,y1),B(a+1,y2)在同一象限时,②当点A(a,y1),B(a+1,y2)在不同象限时.此题主要考查了反比例函数图象上点的坐标特征,分类讨论是解题的关键.14.【答案】10.4【知识点】解直角三角形的应用【解析】解:过点A作AE⊥BD交BD的延长线于点E,由题意得,∠CBA=60°,∠EAD=30°,∴∠ABD=30°,∠ADE=60°,∴∠BAD=∠ADE−∠ABD=30°,∴∠BAD=∠ABD,∴AD=AB=12nmile,,在Rt△ADE中,sin∠ADE=AEAD∴AE=AD⋅sin∠ADE=6√3≈10.4(nmile),故小岛A到航线BC的距离是10.4nmile,故答案为10.4.过点A作AE⊥BD交BD的延长线于点E,根据三角形的外角性质得到∠BAD=∠ABD,根据等腰三角形的判定定理得到AD=AB,根据正弦的定义求出AE即可.本题考查的是解直角三角形的应用−方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.15.【答案】①②④【知识点】二次函数与一元二次方程、二次函数图象上点的坐标特征、二次函数图象与系数的关系、一元二次方程的根与系数的关系*、根的判别式【解析】解:∵抛物线y=ax2+bx+c(a,b,c是常数),a+b+c=0,∴(1,0)是抛物线与x轴的一个交点.①∵抛物线经过点(−3,0),∴抛物线的对称轴为直线x=1+(−3)2=−1,∴−b2a=−1,即b=2a,即①正确;②若b=c,则二次函数y=cx2+bx+a的对称轴为直线:x=−b2c =−12,且二次函数y=cx2+bx+a过点(1,0),∴1+m2=−12,解得m=−2,∴y=cx2+bx+a与x轴的另一个交点为(−2,0),即方程cx2+bx+a=0一定有根x=−2;故②正确;③△=b2−4ac=(a+c)2−4ac=(a−c)2≥0,∴抛物线与x轴一定有两个公共点,且当a≠c时,抛物线与x轴一定有两个不同的公共点.故③不正确;④由题意可知,抛物线开口向上,且ca>1,∴(1,0)在对称轴的左侧,∴当x<1时,y随x的增大而减小,∴当x1<x2<1时,y1>y2.故④正确.故答案为:①②④.①由题意可得,抛物线的对称轴为直线x=b2a =1+(−3)2=−1,即b=2a,即①正确;②若b=c,则二次函数y=cx2+bx+a的对称轴为直线:x=−b2c =−12,则1+m2=−12,解得m=−2,即方程cx2+bx+a=0一定有根x=−2;故②正确;③△=b2−4ac=(a+c)2−4ac=(a−c)2≥0,则当a≠c时,抛物线与x轴一定有两个不同的公共点.故③不正确;④由题意可知,抛物线开口向上,且ca>1,则当x<1时,y随x的增大而减小,则当x1<x2<1时,y1>y2.故④正确.本题考查了二次函数图象与系数的关系,根与系数的关系,二次函数图象与x轴的交点等问题,掌握相关知识是解题基础..16.【答案】√2−1【知识点】动点问题的函数图象【解析】解:∵图象过点(0,2),即当x=AD=0时,点D与A重合,点E与B重合,此时y=AE+CD=AB+AC=2,∵△ABC为等腰直角三角形,∴AB=AC=1,过点A作AF⊥BC于点F,过点B作NB⊥BC,并使得BN=AC,如图所示:∵AD=BE,∠NBE=∠CAD,∴△NBE≌△CAD(SAS),∴NE=CD,又∵y=AE+CD,∴y=AE+CD=AE+NE,当A、E、N三点共线时,y取得最小值,如图所示,此时:AD=BE=x,AC=BN=1,∴AF=AC⋅sin45°=√2,2∖又∵∠BEN=∠FEA,∠NBE=∠AFE∴△NBE∽△AFE∴NBAF =BEFE,即1√22=x√22−x,解得:x=√2−1,∴图象最低点的横坐标为:√2−1.故答案为:√2−1.观察函数图象,根据图象经过点(0,2)即可推出AB和AC的长,构造△NBE≌△CAD,当A、E、N三点共线时,y取得最小值,利用三角形相似求出此时的x值即可.本题考查动点问题的函数图象,通过分析动点位置结合函数图象推出AB、AC的长再通过构造三角形全等找到最小值是解决本题的关键.17.【答案】x≥−1x>−3x≥−1【知识点】在数轴上表示不等式的解集、一元一次不等式组的解法【解析】解:{2x≥x−1,①4x+10>x+1.②(1)解不等式①,得x≥−1;(2)解不等式②,得x>−3;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是x≥−1.故答案为:x≥−1;x>−3;x≥−1.先解出两个不等式,然后在数轴上表示出它们的解集,即可写出不等式组的解集.本题考查解一元一次不等式组、在数轴上表示不等式组的解集,解答本题的关键是明确解一元一次不等式组的方法.18.【答案】证明:∵AB//CD,∴∠DCF=∠B,∵∠B=∠D,∴∠DCF=∠D,∴AD//BC,∴∠DEF=∠F.【知识点】平行线的性质【解析】由平行线的性质得到∠DCF=∠B,进而推出∠DCF=∠D,根据平行线的判定得到AD//BC,根据平行线的性质即可得到结论.本题主要考查了平行线的性质和判定,熟练掌握平行线的性质和判定是解决问题的关键.19.【答案】100 108°【知识点】加权平均数、扇形统计图、总体、个体、样本、样本容量、用样本估计总体、条形统计图【解析】解:(1)这次抽样调查的样本容量是10÷10%=100,=108°,C组所在扇形的圆心角的大小是360°×30100故答案为:100,108°;(2)B组的人数=100−15−30−10=45(名),条形统计图如图所示,(3)1500×30+10=600(名).100答:估计该校平均每周劳动时间不少于7h的学生人数为600.(1)用D组的人数÷所占百分比计算即可,计算C组的百分比,用C组的百分数乘以360°即可得出C组所在扇形的圆心角的大小;(2)求出B组人数,画出条形图即可;(3)用C,D两组的百分数之和乘以1500即可.本题考查条形统计图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.20.【答案】解:(1)如图,直线EF即为所求.(2)如图,线段CG,点H即为所求.【知识点】尺规作图与一般作图、矩形的性质【解析】(1)如图取格点T,连接DT交AB于点E,连接BD,取BD的中点F,作直线EF即可.(2)取格点E,F,连接EF交格线于P,连接CP交BD于点G,线段CG即为所求.取格点M,N,T,K,连接MN,TK交于点J,取BD的中点O,作直线OJ交AB于H,连接DH,点H即为所求.本题考查作图−应用与设计作图,矩形的性质,平行线分线段成比例定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.21.【答案】(1)证明:连接OC交BD于点G,∵点C是BD⏜的中点,∴由圆的对称性得OC垂直平分BD,∴∠DGC=90°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠EDB=90°,∵CE⊥AE,∴∠E=90°,∴四边形EDGC是矩形,∴∠ECG=90°,∴CE⊥OC,∴CE是⊙O的切线;(2)解:连接BC,设FG=x,OB=r,∵DC=√6,DF设DF=t,DC=√6t,由(1)得,BC=CD=√6t,BG=GD=x+t,∵AB是⊙O的直径,∴∠ACB=90°,∴∠BCG+∠FCG=90°,∵∠DGC=90°,∴∠CFB+∠FCG=90°,∴∠BCG=∠CFB,∴Rt△BCG∽Rt△BFC,∴BC2=BG⋅BF,∴(√6t)2=(x+t)(x+2t)解得x1=t,x2=−52t(不符合题意,舍去),∴CG=√BC2−BG2=√(√6)2−(2t)2=√2t,∴OG=r−√2t,在Rt△OBG中,由勾股定理得OG2+BG2=OB2,∴(r−√2t)2+(2r)2=r2,解得r=3√22t,∴cos∠ABD=BGOB =3√22t=2√23.【知识点】解直角三角形、切线的判定与性质、圆周角定理、相似三角形的判定与性质【解析】(1)连接OC交BD于点G,可证明四边形EDGC是矩形,可求得∠ECG=90°,进而可求CE是⊙O的切线;(2)连接BC,设FG=x,OB=r,利用DCDF=√6,设DF=t,DC=√6t,利用Rt△BCG∽Rt△BFC的性质求出CG,OG,利用勾股定理求出半径,进而求解.本题综合考查了圆周角定理,勾股定理,切线的性质等知识,解决本题的关键是能够利用圆的对称性,得到垂直平分,利用相似与勾股定理的性质求出边,即可解答.22.【答案】解:(1)设B原料单价为m元,则A原料单价为1.5m元,根据题意,得900m −9001.5m=100,解得m=3,∴1.5m=4.5,∴每盒产品的成本是:4.5×2+4×3+9=30(元),答:每盒产品的成本为30元;(2)根据题意,得w=(x−30)[500−10(x−60)]=−10x2+1400x−33000,∴w关于x的函数解析式为:w=−10x2+1400x−33000;(3)由(2)知w=−10x2+1400x−33000=−10(x−70)2+16000,∴当a≥70时,每天最大利润为16000元,当60<a<70时,每天的最大利润为(−10a2+1400a−33000)元.【知识点】分式方程的应用、二次函数的应用【解析】(1)根据题意列方程先求出两种原料的单价,再根据成本=原料费+其他成本计算每盒产品的成本即可;(2)根据利润等于售价减去成本列出函数关系式即可;(3)根据(2)中的函数关系式,利用函数的性质求最值即可.本题主要考查二次函数的性质和分式方程,熟练应用二次函数求最值是解题的关键.23.【答案】解:(1)如图(2),∵∠ACD+∠ACE=90°,∠ACE+∠BCE=90°,∴∠BCE=∠ACD,∵BC=AC,EC=DC,∴△ACD≌△BCE(SAS),∴BE=AD=AF,∠EBC=∠CAD,故△CDE为等腰直角三角形,故DE=EF=√2CF,则BF=BD=BE+ED=AF+√2CF;即BF−AF=√2CF;(2)如图(1),由(1)知,△ACD≌△BCE(SAS),∴∠CAF=∠CBE,BE=AF,过点C作CG⊥CF交BF于点G,∵∠FCE+∠ECG=90°,∠ECG+∠GCB=90°,∴∠ACF=∠GCB,∵∠CAF=∠CBE,BC=AC,∴△BCG≌△ACF(AAS),∴GC=FC,BG=AF,故△GCF为等腰直角三角形,则GF=√2CF,则BF=BG+GF=AF+√2CF,即BF−AF=√2CF;(3)由(2)知,∠BCE=∠ACD,而BC=kAC,EC=kDC,即BCAC =ECCD=k,∴△BCE∽△CAD,∴∠CAD=∠CBE,过点C作CG⊥CF交BF于点G,由(2)知,∠BCG=∠ACF,∴△BGC∽△AFC,∴BGAF =BCAC=k=GCCF,则BG=kAF,GC=kFC,在Rt△CGF中,GF=√GC2+FC2=√(kFC)2+FC2=√k2+1⋅FC,则BF=BG+GF=kAF+√k2+1⋅FC,即BF−kAF=√k2+1⋅FC.【知识点】相似形综合【解析】(1)证明△ACD≌△BCE(SAS),则△CDE为等腰直角三角形,故DE=EF=√2CF,进而求解;(2)由(1)知,△ACD≌△BCE(SAS),再证明△BCG≌△ACF(AAS),得到△GCF 为等腰直角三角形,则GF =√2CF ,即可求解; (3)证明△BCE∽△CAD 和△BGC∽△AFC ,得到BG AF =BC AC =k =GC CF ,则BG =kAF ,GC =kFC ,进而求解.本题是相似形综合题,主要考查了三角形全等和相似、勾股定理的运用等,综合性强,难度适中. 24.【答案】解:(1)对于y =x 2−1,令y =x 2−1=0,解得x =±1,令x =0,则y =−1, 故点A 、B 的坐标分别为(−1,0)、(1,0),顶点坐标为(0,−1),①当x =32时,y =x 2−1=54,由点A 、C 的坐标知,点A 向右平移1个单位向上平移3个单位得到点C ,∵四边形ACDE 为平行四边形,故点E 向右平移1个单位向上平移3个单位得到点D ,则32+1=52,54+3=174,故点D 的坐标为(52,174);②设点C(0,n),点E 的坐标为(m,m 2−1),同理可得,点D 的坐标为(m +1,m 2−1+n),将点D 的坐标代入抛物线表达式得:m 2−1+n =(m +1)2−1,解得n =2m +1,故点C 的坐标为(0,2m +1);连接CE ,过点E 作y 轴的平行线交x 轴于点M ,交过点C 与x 轴的平行线与点N ,则S △ACE =S 梯形CNMA −S △CEN −S △AEM =12(m +1+m)(2m +1)−12×(m +1)(m 2−1)−12m[2m +1−(m2−1)]=12S ▱ACED =6,解得m=−5(舍去)或2,故点E的坐标为(2,3);(2)∵F是原点O关于抛物线顶点的对称点,故点F的坐标为(0,−2),由点B、F的坐标得,直线BF的表达式为y=2x−2①,同理可得,直线AF的表达式为y=−2x−2②,设直线l的表达式为y=tx+n,联立y=tx+n和y=x2−1并整理得:x2−tx−n−1=0,∵直线l与抛物线只有一个公共点,故△=(−t)2−4(−n−1)=0,解得n=−14t2−1,故直线l的表达式为y=tx−14t2−1③,联立①③并解得x H=t+24,同理可得,x G=t−24,∵射线FA、FB关于y轴对称,则∠AFO=∠BFO,设∠AFO=∠BFO=α,则sin∠AFO=∠BFO=OBBF =√1+22=√5=sinα,则FG+FH=−x Gsinα+x Hsinα=√5(x H−x G)=√5(t+24−t−24)=√5为常数.【知识点】二次函数综合【解析】(1)①点A向右平移1个单位向上平移3个单位得到点C,而四边形ACDE为平行四边形,故点E向右平移1个单位向上平移3个单位得到点D,即可求解;②利用S△ACE=S梯形CNMA−S△CEN−S△AEM=6,求出m=−5(舍去)或2,即可求解;(2)由FG+FH=−x Gsinα+x Hsinα=√5(x H−x G)=√5(t+24−t−24)=√5,即可求解.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
湖北省武汉市2021-2022学年部分学校九年级元月调考数学试卷及答案解析
![湖北省武汉市2021-2022学年部分学校九年级元月调考数学试卷及答案解析](https://img.taocdn.com/s3/m/7281df8e85868762caaedd3383c4bb4cf7ecb7ae.png)
2022年湖北省武汉市部分学校九年级元月调考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)下列图形中,不是中心对称图形的是()A.B.C.D.2.(3分)有两个事件,事件(1):购买1张福利彩票,中奖;事件(2):掷一枚六个面的点数分别为1,2,3,4,5,6的骰子,向上一面的点数不大于6.下列判断正确的是()A.(1)(2)都是随机事件B.(1)(2)都是必然事件C.(1)是必然事件,(2)是随机事件D.(1)是随机事件,(2)是必然事件3.(3分)已知⊙O的半径等于5,圆心O到直线l的距离为6,那么直线l与⊙O的公共点的个数是()A.0B.1C.2D.无法确定4.(3分)解一元二次方程x2﹣6x﹣4=0,配方后正确的是()A.(x+3)2=13B.(x﹣3)2=5C.(x﹣3)2=4D.(x﹣3)2=13 5.(3分)在平面直角坐标系中,将抛物线y=x2向上平移一个单位长度,再向右平移一个单位长度,得到的抛物线解析式是()A.y=(x﹣1)2﹣1B.y=(x﹣1)2+1C.y=(x+1)2﹣1D.y=(x+1)2+1 6.(3分)已知一元二次方程x2﹣4x﹣1=0的两根分别为m,n,则m+n﹣mn的值是()A.5B.3C.﹣3D.﹣47.(3分)抛掷一枚质地均匀的硬币三次,恰有两次正面向上的概率是()A.B.C.D.8.(3分)已知二次函数y=ax2﹣2ax+1(a为常数,且a>0)的图象上有三点A(﹣2,y1),B(1,y2),C(3,y3),则y1,y2,y3的大小关系是()A.y1<y2<y3B.y1<y3<y2C.y2<y1<y3D.y2<y3<y1 9.(3分)在设计人体雕像时,使雕像上部(腰部以上)与下部(腰部以下)的高度比,等于下部与全部的高度比,可以增加视觉美感.如图,按此比例设计一座高度为2m的雷锋雕像,那么该雕像的下部设计高度约是()(参考数据:≈1.414,≈1.732,≈2.236)A.0.76m B.1.24m C.1.36m D.1.42m10.(3分)如图是一个含有3个正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD =3,EF=5,将它镶嵌在一个圆形的金属框上,使A,G,H三点刚好在金属框上,则该金属框的半径是()A.B.C.D.二、填空题(共6小题,每小题3分,共18分)11.(3分)在平面直角坐标系中,点(3,﹣2)关于原点的对称点的坐标是:.12.(3分)如图是由9个小正方形组成的图案,从图中随机取一点,这点在阴影部分的概率是.13.(3分)如图,PM,PN分别与⊙O相切于A,B两点,C为⊙O上异于A,B的一点,连接AC,BC.若∠P=58°,则∠ACB的大小是.14.(3分)“降次”是解一元二次方程的基本思想,用这种思想解高次方程x3﹣x=0,它的解是.15.(3分)如图,已知圆锥的母线AB长为40cm,底面半径OB长为10cm,若将绳子一端固定在点B,绕圆锥侧面一周,另一端与点B重合,则这根绳子的最短长度是.16.(3分)下列关于二次函数y=x2﹣2mx+2m﹣3(m为常数)的结论:①该函数的图象与x轴总有两个公共点;②若x>1时,y随x的增大而增大,则m=1;③无论m为何值,该函数的图象必经过一个定点;④该函数图象的顶点一定不在直线y=﹣2的上方.其中正确的是(填写序号).三、解答题(共8小题,共72分)17.(8分)若关于x的一元二次方程x2+bx﹣2=0有一个根是x=2,求b的值及方程的另一个根.18.(8分)如图,将△ABC绕点A逆时针旋转得到△ADE,点D在BC上,已知∠B=70°,求∠CDE的大小.19.(8分)一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.甲从口袋中随机摸取一个小球,记下标号m,然后放回,再由乙从口袋中随机摸取一个小球,记下标号n,组成一个数对(m,n).(1)用列表法或画树状图法,写出(m,n)所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各摸取一个小球,小球上标号之和为奇数则甲赢,小球上标号之和为偶数则乙赢.你认为这个游戏规则公平吗?请说明理由.20.(8分)如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)判断△ABC的形状,并证明你的结论.(2)证明:PA+PB=PC.21.(8分)如图是由小正方形组成的9×7网格,每个小正方形的顶点叫做格点,A,B,C 三个格点都在圆上.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)画出该圆的圆心O,并画出劣弧的中点D;(2)画出格点E,使EA为⊙O的一条切线,并画出过点E的另一条切线EF,切点为F.22.(10分)跳绳是大家喜爱的一项体育运动,当绳子甩到最高处时,其形状视为一条抛物线.如图是小涵与小军将绳子甩到最高处时的示意图,已知两人拿绳子的手离地面的高度都为1m,并且相距4m,现以两人的站立点所在的直线为x轴,建立如图所示的平面直角坐标系,其中小涵拿绳子的手的坐标是(0,1).身高1.50m的小丽站在绳子的正下方,且距小涵拿绳子的手1m时,绳子刚好经过她的头顶.(1)求绳子所对应的抛物线的解析式(不要求写自变量的取值范围);(2)身高1.70m的小兵,能否站在绳子的正下方,让绳子通过他的头顶?(3)身高1.64m的小伟,站在绳子的正下方,他距小涵拿绳子的手sm,为确保绳子通过他的头顶,请直接写出s的取值范围.23.(10分)问题背景如图1,在△ABC与△ADE中,若AB=AC,AD=AE,∠BAC=∠DAE,则存在一对全等三角形,请直接写出这对全等三角形.尝试运用如图2,在等边△ABC中,BC=12,点D在BC上,以AD为边在其右侧作等边△ADE,F是DE的中点,连接BF,若BD=4,求BF的长.拓展创新如图3,在等腰Rt△ABC中,∠BAC=90°,BC=12,点D在BC上,以AD为斜边在其右侧作等腰Rt△ADE,连接BE.设BD=x,BE2=y,直接写出y关于x的函数关系式(不要求写自变量的取值范围).24.(12分)如图,抛物线y=﹣x2+x+2与x轴负半轴交于点A,与y轴交于点B.(1)求A,B两点的坐标;(2)如图1,点C在y轴右侧的抛物线上,且AC=BC,求点C的坐标;(3)如图2,将△ABO绕平面内点P顺时针旋转90°后,得到△DEF(点A,B,O的对应点分别是点D,E,F),D,E两点刚好在抛物线上.①求点F的坐标;②直接写出点P的坐标.2022年湖北省武汉市部分学校九年级元月调考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.【解答】解:选项C不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,选项A、B、D均能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形,故选:C.【点评】本题主要考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.【分析】根据随机事件,必然事件,不可能事件的特点判断即可.【解答】解:事件(1):购买1张福利彩票,中奖,这是随机事件;事件(2):掷一枚六个面的点数分别为1,2,3,4,5,6的骰子,向上一面的点数不大于6,这是必然事件;故选:D.【点评】本题考查了随机事件,熟练掌握随机事件,必然事件,不可能事件的特点是解题的关键.3.【分析】利用直线与圆的位置关系的判断方法得到直线l和⊙O相离,然后根据相离的定义对各选项进行判断.【解答】解:∵⊙O的半径等于5,圆心O到直线l的距离为6,即圆心O到直线l的距离大于圆的半径,∴直线l和⊙O相离,∴直线l与⊙O没有公共点.故选:A.【点评】本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,则当直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.4.【分析】先把常数项移到等号的另一边,再配方得结论.【解答】解:方程移项,得x2﹣6x=4,方程两边都加9,得x2﹣6x+9=13,∴(x﹣3)2=13.故选:D.【点评】本题考查了一元二次方程的解法,掌握配方法的一般步骤是解决本题的关键.5.【分析】根据图象的平移规律,可得答案.【解答】解:将将抛物线y=x2向上平移一个单位长度,再向右平移一个单位长度,得到的抛物线解析式是y=(x﹣1)2+1.故选:B.【点评】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.6.【分析】先根据根与系数的关系得到m+n=4,mn=﹣1,然后利用整体代入的方法求m+n ﹣mn的值.【解答】解:根据题意得m+n=4,mn=﹣1,所以m+n﹣mn=4﹣(﹣1)=5.故选:A.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.7.【分析】画出树状图,再根据概率公式计算即可得.【解答】解:画树状图如下:由树状图可知共有8种等可能结果,其中恰有两次正面向上的有3种,所以恰有两次正面向上的概率为,故选:C.【点评】本题主要考查画树状图或列表法求概率,用到的知识点为:概率=所求情况数与总情况数之比.得到所求的情况数是解决本题的关键.8.【分析】分别计算出自变量为﹣2、1、3对应的函数值,根据a>0即可得到y1、y2、y3的大小关系.【解答】解:当x=﹣2时,y1=4a+4a+1=8a+1,当x=1时,y2=a﹣2a+1=﹣a+1,当x=3时,y3=9a﹣6a+1=3a+1,∵a>0,∴8a>3a>﹣a,∴8a+1>3a+1>﹣a+1,∴y1>y3>y2,故选:D.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.9.【分析】设雕像的下部高为x m,由黄金分割的定义得=,求解即可.【解答】解:设雕像的下部高为x m,则上部长为(2﹣x)m,∵雕像上部(腰部以上)与下部(腰部以下)的高度比,等于下部与全部的高度比,雷锋雕像为2m,∴=,∴x=﹣1≈1.24,即该雕像的下部设计高度约是1.24m,故选:B.【点评】本题考查了黄金分割的定义,熟练掌握黄金分割的定义及黄金比值是解题的关键.10.【分析】连接AG,作线段AG的中垂线和线段HG的中垂线交于点O,连接OG,则点A、G、H三点刚好在以点O为圆心,OG为半径的圆上,然后由等腰直角三角形的性质求得OM的长,再结合勾股定理求得半径的长.【解答】解:连接AG,作线段AG的中垂线和线段HG的中垂线交于点O,交HG于点K,交EF于点M,连接OG,则点A、G、H三点刚好在以点O为圆心,OG为半径的圆上,∵∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,∴AC=2,EC=3,EG=5,∴AG=10,∴点E为线段AG的中点,∵∠GEF=45°,OE⊥AG,∴∠OEF=45°,∴△OEM是等腰直角三角形,∵EF=5,CD=3,∴OK=5+=,KG=,∴OG===.故选:A.【点评】本题考查了正方形的性质、等腰直角三角形的判定与性质、圆的内接三角形,解题的关键是利用勾股定理求得三个正方形的对角线的长度.二、填空题(共6小题,每小题3分,共18分)11.【分析】根据两个点关于原点对称时,它们的坐标符号相反可直接得到答案.【解答】解:点(3,﹣2)关于原点的对称点的坐标是(﹣3,2),故答案为:(﹣3,2).【点评】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.12.【分析】根据几何概率的求法:这点在阴影部分的概率是就是阴影部分的面积与总面积的比值.【解答】解:由题意可知:由9个小正方形组成的图案,阴影部分有5个小正方形,所以,从图中随机取一点,这点在阴影部分的概率是.故答案为:.【点评】此题主要考查了几何概率问题,用到的知识点为:概率=相应的面积与总面积之比.13.【分析】连接OA、OB,根据切线的性质得到OA⊥PA,OB⊥PB,进而求出∠AOB,分点C在优弧AB上、点C′在劣弧AB上两种情况,根据圆周角定理计算即可.【解答】解:连接OA、OB,∵PM,PN分别与⊙O相切于A,B两点,,∴OA⊥PA,OB⊥PB,∴∠AOB=360°﹣90°﹣90°﹣58°=122°,当点C在优弧AB上时,∠ACB=∠AOB=×122°=61°,当点C′在劣弧AB上时,∠AC′B=180°﹣61°=119°,故答案为:61°或119°.【点评】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.14.【分析】利用因式分解法求解即可.【解答】解:x3﹣x=0,∴x(x2﹣1)=0.∴x(x+1)(x﹣1)=0.∴x=0或x+1=0或x﹣1=0.∴x1=0,x2=﹣1,x3=1.故答案为:0或﹣1或1.【点评】本题考查了解高次方程,掌握整式的因式分解是解决本题的关键.15.【分析】首先求出BD的长,再利用勾股定理求出AD以及AC的长即可.【解答】解:将圆锥沿经过点B的母线展开,连接BC′,设圆锥侧面展开图的圆心角为n°,圆锥底面圆周长为2×10π=20π,∴=20π,解得:n=90,∵BA=AC′=40,∠BAC′=90°,∴BC′==40,即这根绳子的最短长度是40,故答案为:40cm.【点评】此题考查了圆锥的计算;得到圆锥的底面圆的周长和扇形弧长相等是解决本题的突破点.16.【分析】根据Δ>0可以判断①;求出函数对称轴为x=m,抛物线开口向上,当x>m 时y随x的增大而增大,可以判断②;把抛物线解析式化为y=x2﹣2m(x﹣1)﹣3,可以判断③;求出抛物线的顶点纵坐标﹣m2+2m﹣3+2≤0,可以判断④.【解答】解:∵Δ=(﹣2m)2﹣4(2m﹣3)=4m2﹣8m+12=4(m﹣1)2+8>0,∴该函数的图象与x轴总有两个公共点,故①正确;∵二次函数图象的对称轴为x=m,∴当x>m时,y随x的增大而增大,∴m≤1,故②错误;∵y=x2﹣2mx+2m﹣3=x2﹣2m(x﹣1)﹣3,当x=1时,y=1﹣3=﹣2,∴无论m为何值,该函数的图象必经过定点(1,﹣2),故③正确;当x=m时,y=m2﹣2m2+2m﹣3=﹣m2+2m﹣3,∴二次函数图象的顶点为(m,﹣m2+2m﹣3),∵﹣m2+2m﹣3+2=﹣m2+2m﹣1=﹣(m﹣1)2≤0,∴﹣m2+2m﹣3≤﹣2,故④正确.故答案为:①③④.【点评】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.三、解答题(共8小题,共72分)17.【分析】设方程的另一个根为t,,根据根与系数的关系得2+t=﹣b,2t=﹣2,然后解方程组即可.【解答】解:设方程的另一个根为t,根据根与系数的关系得2+t=﹣b,2t=﹣2,解得t=﹣1,b=﹣1,即b的值为﹣1,方程的另一个根为﹣1.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,则x1+x2=﹣,x1x2=.18.【分析】由旋转的性质可得AD=AB,∠B=∠ADE=70°,由等腰三角形的性质可求∴∠ABD=∠ADB=70°,即可求解.【解答】解:∵将△ABC绕点A逆时针旋转得到△ADE,∴AD=AB,∠B=∠ADE=70°,∴∠ABD=∠ADB=70°,∴∠CDE=40°.【点评】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是解题的关键.19.【分析】(1)画树状图列出所有等可能结果;(2)从所有的等可能结果中找到标号之和为奇数和偶数的结果数,计算出甲、乙获胜的概率,比较大小即可得出答案.【解答】解:(1)画树状图如下:由树状图知共有9种等可能结果,分别为(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3);(2)不公平,由树状图知,两个标号之和为奇数的有5种结果,标号之和为偶数的有4种结果,∴甲赢的概率为,乙赢的概率为,∵≠,∴此游戏规则不公平.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.20.【分析】(1)根据圆周角定理得到∠ABC=∠CPB=60°,∠BAC=∠CPB=60°,根据等边三角形的判定定理证明;(2)在PC上截取PH=PA,得到△APH为等边三角形,证明△APB≌△AHC,根据全等三角形的性质,结合图形证明即可.【解答】(1)解:△ABC是等边三角形,理由如下:由圆周角定理得,∠ABC=∠CPB=60°,∠BAC=∠CPB=60°,∴△ABC是等边三角形;(2)证明:在PC上截取PH=PA,∵∠APC=60°,∴△APH为等边三角形,∴AP=AH,∠AHP=60°,在△APB和△AHC中,,∴△APB≌△AHC(AAS)∴PB=HC,∴PC=PH+HC=PA+PB.【点评】本题考查的是圆周角定理,全等三角形的判定和性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.21.【分析】(1)连接AC,AC的中点O即为所,取格点M,N,连接MN交格线于等J,连接OJ,延长OJ交⊙O于点D,点D即为所求;(2)取格点E,作直线AE即可,取格点P,Q交格线于点K,连接AK交⊙O于点F,作直线EF,直线EF即为所求.【解答】解:(1)如图,点O,点D即为所求;(2)如图,直线AE,EF即为所求.【点评】本题考查作图﹣应用与设计作图.圆周角定理,切线的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.22.【分析】(1)因为抛物线过原点,可设抛物线的解析式为:y=ax2+bx+c(a≠0),把(0,1),(4,1),(1,1.5)代入,得到三元一次方程组,解方程组即可;(2)由自变量的值求出函数值,再比较便可;(3)由y=1.64时求出其自变量的值,便可确定s的取值范围.【解答】解:(1)设抛物线的解析式为:y=ax2+bx+c(a≠0),∴抛物线经过点(0,1),(4,1),(1,1.5),∴,解得,∴绳子对应的抛物线的解析式为:y=−x2+x+1;(2)不能,理由:∵y=−x2+x+1=﹣(x﹣2)2+,∵a=﹣<0,∴y有最大值=m,∵1.70m>m,∴身高1.70m的小兵,站在绳子的正下方,绳子不能通过他的头顶;(3)当y=1.64时,−x2+x+1=1.64,解得x1=2.4,x2=1.6,∴1.6<s<2.4.故s的取值范围为1.6<s<2.4.【点评】本题是二次函数的应用,主要考查了待定系数法求二次函数的解析式,应用二次函数的解析式由自变量求函数值,由函数值确定自变量等知识判定实际问题,关键是确定抛物线上点的坐标,和应用二次函数解析式解决实际问题.23.【分析】问题背景:由“SAS”可证△BAD≌△CAE;尝试运用:由“SAS”可证△ABD≌△ACE,可得BD=CE=4,∠ABD=∠ACE=60°,由三角形中位线定理可求FH=2,FH∥EC,由勾股定理可求解;拓展创新:通过证明△ABD∽△AHE,可得∠AHE=∠ABD=45°,,可得HE=x,由等腰直角三角形的性质可求EN,HN的长,由勾股定理可求解.【解答】解:问题背景:△BAD≌△CAE,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS);尝试运用:如图2,连接CE,取DC中点H,连接FH,过点F作FN⊥CD于N,∵△ABC和△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°=∠ABC,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴BD=CE=4,∠ABD=∠ACE=60°,∴∠BCE=120°,∵BC=12,BD=4,∴CD=8,∵点H是CD中点,∴DH=CH=4,又∵点F是DE的中点,∴FH=CE=2,FH∥EC,∴∠DHF=∠BCE=120°,∴∠FHC=60°,∵FN⊥CD,∴∠HFN=30°,∴HN=FH=1,FN=HN=,∴BN=9,∴BF===2;拓展创新:如图3,过点A作AH⊥BC于点H,连接HE,过点E作EN⊥BC于点N,在等腰Rt△ABC中,∠BAC=90°,BC=12,AH⊥BC,∴BH=CH=AH=6,∠BAH=∠ABH=45°,∴AB=AH,∵△ADE是等腰直角三角形,∴AE=DE,∠DAE=45°,AD=AE,∴∠DAE=∠BAH,∴∠BAD=∠HAE,又∵=,∴△ABD∽△AHE,∴∠AHE=∠ABD=45°,,∴∠EHN=45°,HE=x,∵EN⊥BC,∴∠HEN=∠EHN=45°,∴EN=HN,∴EH=EN,∴EN=x=HN,∵BE2=EN2+BN2,∴y=x2+(6+x)2=x2+6x+36.【点评】本题是三角形综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,等边三角形的性质,等腰直角三角形的性质,三角形中位线定理等知识,添加恰当辅助线构造全等三角形或相似三角形是解题的关键.24.【分析】(1)令y=0,可求A点坐标,令x=0,可求B点坐标;(2)由题意可知C点在AB的垂直平分线与抛物线的交点处,证明∠ABO=∠HGA,再由三角函数sin∠ABO==,可求G点坐标,进而求出直线HC的解析式y=﹣x+,联立即可求C点坐标;(3)①设E(t,﹣t2+t+2),则F(t﹣2,﹣t2+t+2),D(t﹣2,﹣t2+t+3),再由D点在抛物线上,可求t=3,则F(1,2);②过点P作PN⊥x轴交于点N,交EF于点M,证明△FMP≌△PNO(AAS),则PM+PN =2,设P(m,2﹣m),OP2=2m2﹣4m+4,再由OF2=2OP2,可得5=2(2m2﹣4m+4),即可求P(,).【解答】解:(1)令y=0,0=﹣x2+x+2,∴x=﹣1或x=4,∴A(﹣1,0),令x=0,则y=2,∴B(0,2);(2)∵AC=BC,∴C点在AB的垂直平分线上,∵A(﹣1,0),B(0,2),∴AB的中点H(﹣,1),∵∠AHG=90°,∴∠HAG+∠HGA=90°,∠BAG+∠ABO=90°,∴∠ABO=∠HGA,∵AB=,∴AH=,∵sin∠ABO==,∴sin∠AGH==,∴AG=,∴OG=,∴G(,0),设直线HC的解析式为y=kx+b,∴,∴,∴y=﹣x+,联立,解得x=2±,∵C点在y轴右侧,∴x=2+,∴C(2+,﹣﹣);(3)①如图2,设E(t,﹣t2+t+2),∵OA=1,OB=2,∴F(t﹣2,﹣t2+t+2),D(t﹣2,﹣t2+t+3),∵D点在抛物线上,∴﹣t2+t+3=﹣(t﹣2)2+(t﹣2)+2,∴t=3,∴F(1,2);②过点P作PN⊥x轴交于点N,交EF于点M,∵∠OPF=90°,∴∠FPM+∠OPN=90°,∵∠FPM+∠MFP=90°,FP=OP,∴△FMP≌△PNO(AAS),∴FM=PN,PM=ON,∵F(1,2),∴PM+PN=2,设P(m,2﹣m),∴OP2=m2+(2﹣m)2=2m2﹣4m+4,∵PO=FP,∴OF2=2OP2,∴5=2(2m2﹣4m+4),∴m=或m=﹣(舍),∴P(,).【点评】本题是二次函数的综合题,熟练掌握二次函数的图象及性质,旋转的性质,线段垂直平分线的性质,数形结合解题是关键.。
2020武汉元调数学试卷及答案(Word精校版)
![2020武汉元调数学试卷及答案(Word精校版)](https://img.taocdn.com/s3/m/67e600d40029bd64783e2caf.png)
第1页 / 共12页2019-2020学年度武汉市部分学校九年级元月调考数学试卷一、选择题(共10小题,每小题3分,共30分)1.将一元二次方程2514x x 化成一般形式后,二次项系数和一次项系数分别是( ) A .5,-1 B .5,4 C .5,-4 D .5,12.下列四张扑克牌的牌面,不是中心对称图形的是( )A .B .C .D .3.抛物线22y x 与22yx 相同的性质是( ) A .开口向下 B .对称轴是y 轴 C .有最低点 D .对称轴是x 轴4.一个不透明的袋子中只有4个黑球,2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是( )A .至少有1个球是黑球B .至少有1个球是白球C .至少有2个球是黑球D .至少有2个球是白球5.已知O 的半径等于3cm ,圆心O 到点P 的距离为5cm ,那么点P 与O 的位置关系是( ) A .点P 在O 内 B . 点P 在O 外 C .点P 在O 上 D .无法确定6.要将抛物线2y x 平移后得到抛物线223y x x ,下列平移方法正确的是( ) A .向左平移1个单位,再向上平移2个单位 B .向左平移1个单位,再向下平移2个单位 C .向右平移1个单位,再向上平移2个单位 D .向右平移1个单位,再向下平移2个单位7.如图,将△ABC 绕顶点C 逆时针旋转角度得到A B C ,且点B 刚好落在A B 上,若∠A =28°,BCA =43°,则等于( )A .36°B .37°C .38°D .39°8.小明上学要经过三个十字路口,每个路口遇到红灯、绿灯的可能性都相等,小明上学经过三个路口时,不全是红灯的概率是( )A .38 B . 12 C . 58 D . 789.如果m 、n 是一元二次方程24x x +=的两个实数根,那么多项式222n mn m --的值是( )A .16B .14C .10D .610.如图,△ABC 的两个顶点A ,B的O 上,∠A =60°,∠B =30°.若固定点A ,点B 在O 上运动,则OC 的最小值是( )A第2页 / 共12页A .B .C .D .二、填空题(本大题共6个小题,每小题3分,共18分)11.在平面直角坐标系中,点P (1,2)关于原点对称的点坐标是________. 12. 一个盒子中有10枚黑棋子和若干枚白棋子,这些棋子除颜色外无其他差别,从盒中随机取出一枚棋子,记下颜色,再放回盒子中,不断重复上述过程,一共取了300次,其中有100次取到黑棋子,由此估计盒中约有________枚白棋子.13.如图,四边形ABCD 是⊙O 的内接四边形,∠BOD =100°,∠BCD 的大小是 .14.为响应全民阅读活动,某校面向社会开放图书馆,自开放以来,进馆人次逐月增加,第一个月进馆200人次,前三个月累计进馆872人次,若进馆人次的月增长率相同,为求进馆人次的月增长率,设进馆人次的月增长率为x ,依题意可列方程为 .15.已知二次函数()20y ax bx c c =++<的图像开口向上,对称轴为直线1x =,下列结论中,一定正确的 是 (填序号即可).①0b <; ②420a b c ++<; ③a c b +>; ④()a b t at b +≤+(t 是一个常数).16.我国魏晋时期的数学家刘徽首创“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的周长,进而确定圆周率,某圆半径为R ,其内接正十二边形的周长为C . 若R ,则C = ,2CR≈ ,(结果精确到0.01 2.449≈ 1.414≈).三、解答题(共8题,共72分)17.(本题8分)若关于x 的一元二次方程x 2+2x +m =0有两个相等的实数根,求m 的值及此时方程的根.B第3页 / 共12页18. (本题8分)如图,A .B .C 三点在半径为1的O 上,四边形ABCD 是菱形,求的长.19. (本题8分)在5种同型号的产品中,有1件不合格品和4件合格品. (1)从这5件产品中随机选取1件,直接写出抽到合格品的概率; (2)从这5件产品中随机选取2件,求抽到都是合格品的概率.20.(本题8分)请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹(用虚线表示画图过程,实线表示画图结果). (1)如图(1),P 是平行四边形ABCD 边AD 上一点,过点P 画一条直线把这个四边形分成面积相等的两部分; (2)如图(2),五边形ABCDE 是正五边形,画一条直线把这个五边形分成面积相等的两部分; (3)如图(3),△ABC 的外接圆的圆心是点O ,D 是的中点,画一条直线把△ABC 分成面积相等的两部分.(1)(2)(3)AED CBAD21.(如图8分)如图,P A,PB 分别与O相切于A,B两点,AC 是O的直径,AC=AP,连接OP交AB于点D,连接PC 交O于点E,连接DE.(1)求证:△ABC≌△PDA;(2)求BDDE的值.22.(本题10分)某公司经过市场调查,整理出来某种商品在某个月的第x天的销售价与销售量的相关信息如(1)求y与x的函数关系式;(2)问销售该商品第几天时,日销售利润为2250元?(3)问在当月有多少天的日销售利润不低于2400元,请直接写出结果.第4页 / 共12页23.(本题10分)问题背景:如图(1),在四边形ABCD中,若BC=CD,∠BAD=∠BCD=90°,则AC平分∠BAD,小明为了证明这个结论,将△ABC绕点C顺时针旋转90°,请帮助小明完成他的作图.迁移应用:如图(2),在五边形ABCDE中,∠A=∠C=90°,AB=BC,AE+CD=DE,求证:BD平分∠CDE.联系拓展:如图(3),在Rt△ABC中,AC=BC,若点D满足1013AD AB,BD=AB,点P是AD的中点,直接写出PCAB的值.(1) (2) (3)BB第5页 / 共12页24.(本题12分)如图,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(m,2m+4)(m>-2),且与x轴相切于点B.y与x之间存在一种确定的函数关系,其图象是一条常见的曲线,记做曲线F.(1)如图(1),①当y=32时,直接写出P的半径;②当m=-1,x=-2时,直接写出P的半径.(2)求曲线F最低点的坐标(用含有m的式子表示);(3)如图(2),若曲线F最低点总在直线y=12x+3的下方,点C(-2,y1),D(1,y2)都在曲线F上,试比较y1与y2的大小.3第6页 / 共12页第7页 / 共12页2019-2020学年度武汉市部分学校九年级元月调考数学试卷参考答案9.答案:B 解析:∵m ,n 为方程x ²+x =4的解∴m +n =-1;mn =-4,且代n 到原式,得n ²=4-n∴原式=2(4-n )-mn -2m =8-2n -2m -mn =8-2(m +n )-mn =8+2+4 =1410.答案:A 解析:延长BC 交圆O 与D ,连O D .取AD 的中点E ,连OE ,连CE ∵ ∠B =30°,∴∠DOA =60°,∴△DAO 为等边三角形 ∵3OA ,∴3AD∵∠DCA =90°,∴点C 在以点E为半径的圆上运动∵OC OE CE ,∴3322OC ,故答案选A二、填空题(本大题共6个小题,每小题3分,共18分) 11. ()1,2-- 12.20 13.130°14.()()220020012001872x x ++++=15.①②④16.答案:24; 3.1116.解析:过C 作CD ⊥AB 于D , 正十二边形中心角∠CAD =30°B第8页 / 共12页∴12CD AC ==AD ==,BD AB AD =- 在Rt △CDB中,2CB =,∴24C =, 3.112CR≈三、解答题(共8题,共72分) 17. m =1,方程的根为x 1=x 2=-118. 23π19.(1)45;(2)3520. (1)(2)(作法不唯一)(3)21. 证明:(1)∵P A 为O 切线,∴∠P AO =90° ∵AC 为O 直径,∴∠ABC =90°∴∠BAC +∠ACB =∠BAC +∠P AD ,∴ ∠ACB =∠P ADBE第9页 / 共12页∵P A ,PB 为O 切线,∴P A =PB∵OA =OB ,P A =PB ,∴OP ⊥AB ,∴∠ADP =90° 在△ABC 和△PDA 中 ∠=∠=⎧⎪⎨⎪⎩=∠∠ACB PAD AC PA ABC PDA ∴△ABC ≌△PDA (AAS )解:(2)连接AE ,连接BE 交DP 于点F ∵∠ADO =∠ABC =90°,∴OP ∥BC ,∴∠BCE =∠FPE ,∵AC 为直径,∴∠AEC =90°, ∵∠P AO =90°,AC =AP ,∴∠ACE =45°,CE =PE 在△CEB 和△PEF 中 ∠=∠=∠⎧⎪⎨⎩=∠⎪BCE FPE CE PECEB PEF ∴△CEB ≌△PEF (ASA ) ∴BE =FE∵∠ABE =∠ACE =45°,∠BDP =∠ADP =90°,∴BD =DF 在Rt △BDF 中,222+=BD DF BF ,∴222=BD BF ,∴BF∵BE =EF ,∴BDDE22. 解:(1)y =[(x +40)-20](100-2x ) ,∴y =-2x 2+60x +2000 (2)由(1)知y =-2x 2+60x +2000当日销售利润为2250元时,有-2x 2+60x +2000=2250 解得:x 1=5; x 2=25故该销售商品第5天或第25天时,日销售利润为2250元. (3)11天当销售利润为2400时,有-2x 2+60x +2000=2400 解得:x 1=10; x 2=20 由二次函数图像性质可知:共有11天(第10天到第20天),销售利润不低于2400元.23. (1) 解:第10页 / 共12页(2) 证明:延长DC 至点F ,使CF =AE ,连接BE ,BF在△ABE 和△CBF 中 ==BCF =AB BC A AE CF ⎧⎪⎨⎪⎩∠∠ ∴△ABE ≌△CBF (SAS ),∴BE =BF 又∵DE =AE +CD 且AE =CF ,∴DE =DF 在△BDE 和△BDF 中 BE BF DE DF BD BD =⎧⎪=⎨⎪=⎩∴△BDE ≌△BDF (SSS )∴∠BDE =∠BDF ,∴BD 平分∠CDE (3)①当D 在AB 左侧时连接CP ,过点C 作CE ⊥CP ,交DA 的延长线于E 点∵AB =BD ,且P 是AD 的中点,∴BP ⊥AD ,即∠CBP =∠CAE∵AD =1013AB ,∴AP =12AD =513AB ,BP1213AB∵=ACE PCB ∠∠,在△BCP 和△ACE 中第11页 / 共12页CBP CAE BC ACBCP ACE =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△BCP ≌△ACE (ASA )∴AE =PB =1213AB ,PE =AP +AE =1713AB ∵PC =CE ,PC ⊥CE ,∴△PCE 为等腰直角三角形PCPE,即PC AB ②当D 在AB 右侧时连接CP ,过点C 作CQ ⊥CP 交BP 于点Q由①可知:∠APB =∠ACB =90°,AP =513AB ,PB =1213AB ∵PC ⊥CQ ,∴∠PCQ =∠ACB =90°,∴∠ACP =∠BCQ ∵∠APB =∠ACB ,∴∠CAP =∠CBQ在△ACP 和△BCQ 中CAP CBQ AC BCACP BCQ =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△ACP ≌△BCQ (ASA )∴BQ =AP =513AB PQ =BP -BQ =713AB ,PC =PQ ∵PC ⊥CQ ,∴△PCQ 为等腰直角三角形∴PCPQAB ,即PC = 综上所述:PC AB =24.解:(1)①32②54(2)依题意得:PB =P Ay = B D第12页 / 共12页 ()()22224y y m x m ---=-,∴()()21242y x m m m =-+++, 即顶点(m ,m +2)(3)方法一:顶点(m ,m +2)在直线y =x +2运动 又∵最低点一直在132y x =+下方,x +2<132x +,即m <2,∴-2<m <2 ∵C (-2,y 1),D (1,y 2),∴()()212242m y m m +=+++,()()221242m y m m =+++- ()()()()()2212213214242m m m y y m m +--+-==++,令y 1=y 2,解得12m =- ①当-2<m <12-时,()()32142m m ++<0 ,即y 1-y 2<0,故y 1<y 2; ②当12m =-时,()()32142m m ++=0,y 1=y 2; ③当-12<m <2时,()()32142m m ++>0,y 1>y 2. 综上①当-2<m <12-时,y 1<y 2;②当12m =-时,y 1=y 2;③当-12<m <2时,y 1>y 2. 方法二:(3)函数值的大小可以比较点到对称轴的距离当m =12-时,y 1=y 2 ;当-2<m <12-时,y 1<y 2 ;当-12<m <2时,y 1>y 2.。
2021学年度武汉市九年级元月调考英语试卷
![2021学年度武汉市九年级元月调考英语试卷](https://img.taocdn.com/s3/m/243c60ab8e9951e79a892729.png)
2021学年度武汉市九年级元月调考英语试卷2021-2021学年度武汉市部分学校九年级调研测试英语试卷武汉市教育科学研究院命制 2021.1.13第I卷(选择题共85分)第一部分听力部分一、听力测试(共三节)第一节 (共5小题,每小题1分, 满分5分)听下面5个问题。
每个问题后有三个答语,从题中所给的A、B、C三个选项中选出最佳选项。
听完每个问题后, 你都有5秒钟的时间来作答和阅读下一小题。
每个问题仅读一遍。
1. A. He’s my brother. B. He’s outgoing. C. He’s sixteen. 2. A. A lovely toy. B. Quite cheap. C. It’s a blue one. 3. A. Just a few. B. The new one. C. It’s for Brown. 4. A. Very soon. B. With Mr. Black. C. On the wall.5. A. In the meeting hall. B. At two thirty. C. Half an hour. 第二节(共7小题,每小题1分, 满分7分)听下面7段对话。
每段对话后有一个小题, 从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后, 你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
6. When will the woman leave?A. At 7:15.B. At 7:30.C. At 7:45. 7. What are they most probably doing?A. Planning a party.B. Having a party.C. Cleaning the room. 8. What can we learn about the man? A. He sells flowers in winter. B. He likes his flowers a lot.C. He helps the woman plant flowers. 9. Where was Bob yesterday afternoon?A. At home.B. At school.C. At the cinema. 10. Who are most probably these two people?A. Husband and wife.B. Teacher and student.C. Boss and secretary.11. What is the woman looking for?A. Her keys.B. Her handbag.C. Both. 12. Why is Smith so successful?A. He never makes any mistakes.B. He can quickly solve problems.C. He is always thinking of others.第三节(共13小题,每小题1分,满分13分)听下面4段对话或独白。
2021-2022学年湖北省武汉市东西湖区九年级(上)期中数学试卷-附答案详解
![2021-2022学年湖北省武汉市东西湖区九年级(上)期中数学试卷-附答案详解](https://img.taocdn.com/s3/m/d669e0d4647d27284a7351e5.png)
2021-2022学年湖北省武汉市东西湖区九年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.一元二次方程3x2−1=6x化成一般形式后,其中一次项系数是()A. 6B. −6C. 2D. −22.二次函数y=4(x−3)2+7的顶点为()A. (−3,−7)B. (3,7)C. (−3,7)D. (3,−7)3.在平面直角坐标系中,点(−3,−1)关于原点的对称点的坐标为()A. (3,1)B. (3,−1)C. (−3,−1)D. (−3,1)4.下面有4个汽车标致图案,其中是中心对称图形的是()A. B.C. D.5.已知关于x的一元二次方程(k−2)x2+2x−1=0有两个不相等的实数根,则k的取值范围为()A. k>1B. k>−1且k≠0C. k>1且k≠2D. k<16.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是()A. 57°B. 60°C. 67°D. 77°7.某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x,那么x满足的方程是()A. 100(1+x)2=81B. 100(1−x)2=81C. 100(1−x%)2=81D. 100x2=818.将抛物线向上平移3个单位,再向左平移2个单位,得到的新抛物线的解析式为y=3x2,则平移前的抛物线解析式为()A. y=3(x+2)2+3B. y=3(x−2)2+3C. y=3(x−2)2−3D. y=3(x+2)2−39.点P1(−1,y1),P2(3,y2),P3(5,y3)均在二次函数y=−x2+2x+c的图象上,则y1,y2,y3的大小关系是()A. y1=y2>y3B. y1>y2>y3C. y3>y2>y1D. y3>y1=y210.当−2≤x≤1时,二次函数y=−(x−m)2+m2+1有最大值4,则实数m的值为()A. −74B. √3或−√3 C. 2或−√3 D. 2或√3或−74二、填空题(本大题共6小题,共18.0分)11.方程x2=4的解为______.12.设x1,x2是一元二次方程x2−5x−1=0的两实数根,则x1+x2的值为______.13.如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC与点E,将△BCE绕点C顺时针旋转90°得到△DCF,若CE=1cm,则BF=______cm.14.用一条长40cm的绳子围成一个面积为64cm2的矩形.设矩形的一边长为xcm,则可列方程为______.15.抛物线y=ax2+bx+c的顶点为D(−1,2),与x轴的一个交点A在点(−3,0)和(−2,0)之间,其部分图象如图,则以下结论:①b2−4ac<0;②a+b+c<0;③c−a=2;④方程ax2+bx+c−2=0有两个相等的实数根,其中正确结论的个数为______个.16.如图(1)在等边三角形△ABC中,边AB上的点D从顶点A出发,向顶点B运动,同时,边BC上的点E从顶点B出发,向顶点C运动,D,E两点运动速度的大小相等,设x= AD,y=AE+CD,y关于x的函数图象如图(2),图象过点(0,4),则图象最低点的纵坐标是______.三、解答题(本大题共8小题,共72.0分)17.已知二次函数y=−12x2+x+32,一次函数y=kx+6的图象与二次函数的图象都经过点A(−3,m),求m与k的值.18.如图,已知Rt△ABC中,∠A=90°,∠ABC=60°,将△ABC绕点B顺时针旋转60°得到△EBD,求证:CD= 2AB.19.如图,利用函数y=x2−4x+3的图象,直接回答:(1)方程x2−4x+3=0的解是______.(2)当x满足______时,y随x的增大而增大.(3)当x满足______时,函数值大于0.(4)当0<x<5时,y的取值范围是______.20.如图是由边长为1的小正方形组成的网格,每个小正方形的顶点叫做格点,正方形ABCD的四个顶点都是格点,点E也是格点.仅用无刻度的直尺在给定网格中完成画图,按步骤完成下列问题.(1)将线段BE绕B点逆时针旋转90°,点E的对应点为F,画出线段BF;(2)画线段EF的中点G;(3)连接BG,并延长交CD于点H,直接写出CH的长.21.如图,在四边形ABCD中,BC=CD,∠BCD=α°,∠ABC+∠ADC=180°,AC、BD交于点E,将△CBA绕点C顺时针α°旋转得到△CDF.(1)求证:∠CAB=∠CAD.(2)若∠ABD=90°,AB=3,BD=4,△BCE的面积为S1,△CDE的面积为S2,求S1:S2的值.22.某服装店购进一批秋衣,价格为每件30元.物价部门规定其销售单价不高于每件60元,经市场调查发现:日销售量y(件)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围;(2)求该服装店销售这批秋衣日获利W(元)与销售单价x(元)之间的函数关系式;(3)当销售单价为多少元时,该服装店日获利最大?最大获利是多少元?23.(1)如图1,正方形ABCD中以AB为边在正方形内构造等边△ABE,等边△ABE边AE=√3.交正方形对角线BD于F点,求证:BFFD(2)将等腰Rt△BEF绕B点旋转至如图2的位置,连接DE,M点为DE的中点,连接AM、MF,求MA与MF的关系;(3)如图3,将△BEF绕B点旋转一周,若EF=4,AB=1,请直接写出点M在这个过程中的运动路径长为______.24.抛物线y=ax2−4ax+3a(a>0)交x轴正半轴于A,B两点(A在B的左边),交y轴正半轴于C;(1)如图①,连接AC,BC,若△ABC的面积为3,①求抛物线的解析式;②抛物线上是否存在点P,使∠PCB+∠ACB≤45°?若存在,求出P点横坐标的取值范围;(2)如图②,若Q为B点右侧抛物线上的动点,直线QA、QB分别交y轴于点D,E,判断CD:DE的值是否为定值.说明理由.答案和解析1.【答案】B【解析】解:化为一般式为:3x2−6x+1=0∴故一次项系数为−6,故选:B.根据一元二次方程的一般式即可求出答案.本题考查一元二次方程的一般式,解题的关键是熟练运用一元二次方程的一般式,本题属于基础题型.2.【答案】B【解析】【分析】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−ℎ)2+k中,对称轴为x=ℎ,顶点坐标为(ℎ,k).由二次函数的解析式直接可求得答案.【解答】解:∵y=4(x−3)2+7,∴顶点坐标为(3,7),故选:B.3.【答案】A【解析】解:点(−3,−1)关于原点的对称点的坐标为:(3,1).故选:A.根据两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(−x,−y),进而得出答案.此题主要考查了原点对称点的性质,正确掌握横纵坐标的符号关系是解题关键.4.【答案】A【解析】解:A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:A.根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.此题主要考查了中心对称图形,关键是掌握中心对称图形定义.5.【答案】C【解析】解:∵关于x的一元二次方程(k−2)x2+2x−1=0有两个不相等的实数根,∴Δ=4+4(k−2)>0,解得k>1,∵k−2≠0,∴k≠2,∴k的取值范围k>1且k≠2,故选:C.根据关于x的一元二次方程(k−2)x2+2x−1=0有两个不相等的实数根,可得出判别式大于0,再求得k的取值范围.本题考查了根的判别式,总结:一元二次方程根的情况与判别式Δ的关系:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.6.【答案】D【解析】解:∵将△ABC绕点A顺时针旋转90°后得到的△AB′C′,∴AC=AC′,∠CAC′=90°,∠B=∠AB′C′,∴△ACC′是等腰直角三角形,∴∠ACC′=45°,∴∠AB′C′=∠ACC′+∠B′C′C=45°+32°=77°,∴∠B=77°,故选:D.由旋转的性质可知△ACC′是等腰直角三角形,再利用三角形外角的性质可得.本题主要考查了旋转的性质,等腰直角三角形的判定与性质,三角形外角的性质等知识,证明△ACC′是等腰直角三角形是解题的关键.7.【答案】B【解析】解:设两次降价的百分率均是x,由题意得:x满足方程为100(1−x)2=81.故选:B.若两次降价的百分率均是x,则第一次降价后价格为100(1−x)元,第二次降价后价格为100(1−x)(1−x)=100(1−x)2元,根据题意找出等量关系:第二次降价后的价格=81元,由此等量关系列出方程即可.本题主要考查列一元二次方程,关键在于读清楚题意,找出合适的等量关系列出方程.8.【答案】C【解析】解:y=3x2,此抛物线的顶点坐标为(0,0),把点(0,0)向下平移3个单位再向右平移2个单位所得对应点的坐标为(2,−3),所以原抛物线解析式为y=3(x−2)2−3.故选:C.利用反向平移解决问题,先确定y=x2+4x+4的顶点坐标为(−2,0),在把把点(−2,0)反向平移得到(0,−4),然后根据顶点式写出原抛物线解析式.本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.9.【答案】A=1,【解析】解:二次函数y=−x2+2x+c的图象的对称轴为直线x=−22×(−1)而P1(−1,y1)和P2(3,y2)到直线x=1的距离都为2,P3(5,y3)到直线x=1的距离为4,所以y1=y2>y3.故选:A.先求出抛物线的对称轴方程,然后根据二次函数的性质,通过比较三个点到对称轴的距离大小可得到y1,y2,y3的大小关系.本题考查了二次函数图象上点的坐标特征:熟练掌握二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.10.【答案】C【解析】解:二次函数的对称轴为直线x=m,①m<−2时,x=−2时二次函数有最大值,此时−(−2−m)2+m2+1=4,,与m<−2矛盾,故m值不存在;解得m=−74②当−2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=−√3,m=√3(舍去);③当m>1时,x=1时二次函数有最大值,此时,−(1−m)2+m2+1=4,解得m=2,综上所述,m的值为2或−√3.故选:C.根据对称轴的位置,分三种情况讨论求解即可.本题考查了二次函数的最值问题,难点在于分情况讨论.11.【答案】x1=2,x2=−2【解析】【分析】本题考查了一元二次方程的解法−直接开平方法,比较简单.利用直接开平方法,求解即可.【解答】解:开方得,x=±2,即x1=2,x2=−2.故答案为x1=2,x2=−2.12.【答案】5【解析】解:∵x1、x2是一元二次方程x2−5x−1=0的两实数根,∴x1+x2=5,故答案为5.由根与系数的关系可直接求得x1+x2的值.本题主要考查根与系数的关系,掌握一元二次方程的两根之和等于−ba 、两根之积等于ca是解题的关键.13.【答案】(2+√2)【解析】【分析】本题考查了旋转的性质、正方形的性质以及角平分线的性质,解题的关键是求出线段BC 以及CF的长度.本题属于基础题,难度不大,解决该题型题目时,结合角平分线以及等腰直角三角形的性质求出线段的长度是关键.过点E作EM⊥BD于点M,则△DEM为等腰直角三角形,根据角平分线以及等腰直角三角形的性质即可得出DE的长度,再根据正方形以及旋转的性质即可得出线段BF的长.【解得】解:过点E作EM⊥BD于点M,如图所示.∵四边形ABCD为正方形,∴∠BDC=45°,∠BCD=90°,∴△DEM为等腰直角三角形.∵BE平分∠DBC,EM⊥BD,∴EM=EC=1cm,∴DE=√2EM=√2cm.由旋转的性质可知:CF=CE=1cm,∴BF=BC+CF=CE+DE+CF=1+√2+1=(2+√2)cm.故答案为(2+√2).14.【答案】x(20−x)=64【解析】解:设矩形的一边长为xcm,∵长方形的周长为40cm,∴宽为(20−x)cm,得x(20−x)=64.故答案为:x(20−x)=64.本题可根据长方形的周长,用x表示宽的值,然后根据面积公式即可列出方程.本题考查了由实际问题抽象出一元二次方程,要掌握运用长方形的面积计算公式S=ab 来解题的方法.15.【答案】3【解析】解:∵抛物线与x轴有两个交点,∴b2−4ac>0,所以①错误;∵顶点为D(−1,2),∴抛物线的对称轴为直线x=−1,∵抛物线与x轴的一个交点A在点(−3,0)和(−2,0)之间,∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,∴当x=1时,y<0,∴a+b+c<0,所以②正确;∵抛物线的顶点为D(−1,2),∴a−b+c=2,=−1,∵抛物线的对称轴为直线x=−b2a∴b=2a,∴a−2a+c=2,即c−a=2,所以③正确;∵当x=−1时,二次函数有最大值为2,即只有x=−1时,ax2+bx+c=2,∴方程ax2+bx+c−2=0有两个相等的实数根,所以④正确.综上所述,共有3个正确结论,故答案为:3.由抛物线与x轴有两个交点得到b2−4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=−1,则根据抛物线的对称性得抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,则a+b+c<0;由抛物线的顶点为D(−1,2)得a−b+c=2,=−1得b=2a,所以c−a=2;根据二次函数的最由抛物线的对称轴为直线x=−b2a大值问题,当x=−1时,二次函数有最大值为2,即只有x=−1时,ax2+bx+c=2,所以说方程ax2+bx+c−2=0有两个相等的实数根.本题考查了二次函数的图象与系数的关系,关键是掌握以下性质:二次函数y=ax2+ bx+c(a≠0)的图象为抛物线;对称轴为直线x=−b;抛物线与y轴的交点坐标为(0,c);2a当b2−4ac>0,抛物线与x轴有两个交点;当b2−4ac=0,抛物线与x轴有一个交点;当b2−4ac<0,抛物线与x轴没有交点16.【答案】2√2−2【解析】解:∵图象过点(0,4),即当x=AD=BE=0时,点D与A重合,点E与B重合,此时y=AE+CD=AB+AC=4,∵△ABC为等腰直角三角形,∴AB=AC=2,过点A作AF⊥BC于点F,过点B作NB⊥BC,并使得BN=AC,如图所示:∵AD=BE,∠NBE=∠CAD,∴△NBE≌△CAD(SAS),∴NE=CD,又∵y=AE+CD,∴y=AE+CD=AE+NE,当A、E、N三点共线时,y取得最小值,如图所示,此时:AD=BE=x,AC=BN=2,∴AF=AC⋅sin45°=√2,又∵∠BEN=∠FEA,∠NBE=∠AFE∴△NBE∽△AFE,∴NBAF =BEFE,即√2=√2−x,解得:x=2√2−2,∴图象最低点的横坐标为:2√2−2.故答案为:2√2−2.观察函数图象,根据图象经过点(0,4)即可推出AB和AC的长,构造△NBE≌△CAD,当A、E、N三点共线时,y取得最小值,利用三角形相似求出此时的x值即可.本题考查动点问题的函数图象,通过分析动点位置结合函数图象推出AB、AC的长再通过构造三角形全等找到最小值是解决本题的关键.17.【答案】解:∵二次函数y=−12x2+x+32经过点A(−3,m),∴m=−12×9+(−3)+32=−6.又∵一次函数y=kx+6的图象经过点A(−3,m),∴m=−3k+6,即−6=−3k+6,解得,k=4.∴m和k的值分别是−6、4.【解析】把点A的坐标代入二次函数解析式,利用方程可以求得m的值;然后把点A的坐标代入一次函数解析式,也是利用方程来求k的值.本题考查了二次函数图象上点的坐标特征,待定系数法求一次函数的解析式,图象上点的坐标适合解析式是解题的关键.18.【答案】证明:在Rt△ABC中,∠A=90°,∠ABC=60°,∴∠ACB=30°,∴BC=2AB,∵将△ABC绕点B顺时针旋转60°得到△EBD,∴BC=BD,∠CBD=60°,∴△CBD是等边三角形,∴CD=BD,∴CD=2AB.【解析】由特殊角的性质可得BC=2AB,再由旋转的性质可得△CBD是等边三角形,即可推出结论.本题考查了旋转的性质,含30°角的直角三角形,等边三角形的判定与性质,证明△CBD 是等边三角形是解题的关键.19.【答案】x1=1,x2=3>2x<1或x>3−1≤y<8【解析】解:(1)由图象可得,当y=0时,x=1或x=3,故方程x2−4x+3=0的解是x1=1,x2=3,故答案为:x1=1,x2=3;(2)由图象可得,=2时,y随x的增大而增大,当y=0时,x>1+32故答案为:>2;(3)由图象可得,当x<1或x>3时,函数值大于0,故答案为:x<1或x>3;(4)由图象可得,=2,当x=2时,该函数取得最小值−1,函数y=x2−4x+3的对称轴是直线x=1+32∴当0<x<5时,x=2取得最小值−1,x=5时y的值为8,即当0<x<5时,y的取值范围是−1≤y<8,故答案为:−1≤y<8.(1)根据函数图象,可以得到方程x2−4x+3=0的解;(2)根据函数图象,可以写出当x为何值时y随x的增大而增大;(3)根据函数图象可以写出,当x为何值时,函数值大于0;(4)根据函数图象和二次函数的性质,可以得到当0<x<5时,y的取值范围.本题考查抛物线与x轴的交点、二次函数的性质、二次函数的图象、二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用数形结合的思想解答.20.【答案】解:(1)如图所示,线段BF即为所求;(2)如图所示,连接EF,根据矩形的性质可知对角线的交点即为点G;(3)如图,在Rt△FED中,EF=√DE2+DF2=√32+52=√34,∵G是EF的中点,∴FG=12EF=√342,∵∠FGH=∠D=90°,∠GFH=∠DFE,∴△GFH∽△DFE,∴GFDF =FHEF,∴√3425=√34,∴FH=175,∴CH=HF−CF=175−1=125,∴CH的长为125.【解析】(1)根据旋转的性质,作出点F的位置即可;(2)连接EF,根据矩形的性质可知对角线的交点即为点G;(3)利用△GFH∽△DFE,可求得FH=175,即可解决问题.本题主要考查了作图−旋转变换,矩形的性质,相似三角形的判定与性质等知识,证明△GFH∽△DFE得出FH的长是解题的关键.21.【答案】(1)证明:∵将△CBA绕点C顺时针α°旋转得到△CDF.∴∠CAB=∠CFD,∠ABC=∠CDF,AC=CF,∵∠ABC+∠ADC=180°,∴∠ADC+∠CDF=180°,∴点A,点D,点F三点共线,∵AC=CF,∴∠CFD=∠CAD,∴∠BAC=∠CAD;(2)解:∵∠ABD=90°,AB=3,BD=4,∴AD=√AB2+BD2=√9+16=5,如图,过点D作DH//AB交AC的延长线于H,∴∠H=∠BAC,∴∠DAC=∠H,∴AD=DH=5,∵AB//DH,∴△ABE∽△HDE,∴BEDE =ABDH=35,∴S1:S2=BEDE =35.【解析】(1)由旋转的性质可得∠CAB=∠CFD,∠ABC=∠CDF,AC=CF,由等腰三角形的性质可得∠CFD=∠CAD=∠BAC;(2)由勾股定理可求AD=5,过点D作DH//AB交AC的延长线于H,可证△ABE∽△HDE,可得BEDE =ABDH=35,即可求解.本题考查了相似三角形的判定和性质,旋转的性质,等腰三角形的性质等知识,添加恰当辅助线构造相似三角形是解题的关键.22.【答案】解:(1)设y=kx+b,根据题意得:{60k+b=8050k+b=100,解得:k=−2,b=200,∵球衣进价为30元,销售单价不高于每件60元,∴30≤x≤60,∴y与x的函数关系式为y=−2x+200(30≤x≤60);(2)由题意得:W=(x−30)y−450=(x−30)(−2x+200)−450=−2x2+260x−6450,∴W与x之间的函数关系式为W=−2x2+260x−6450;(3)W=−2x2+260x−6450=−2(x−65)2+2000,∵−2<0,∴x<65时,W随x的增大而增大,∵30≤x≤60,∴当x=60时,w有最大值,最大值为1950,∴当销售单价为60元时,该服装店日获利最大,最大值为1950元.【解析】(1)根据y与x成一次函数解析式,设为y=kx+b,把x与y的两对值代入求出k 与b的值,即可确定出y与x的解析式,并求出x的范围即可;(2)根据利润=单价×销售量列出W关于x的二次函数解析式即可;(3)利用二次函数的性质求出W的最大值,以及此时x的值即可.此题考查了二次函数的应用,待定系数法求一次函数解析式,以及二次函数的性质,熟练掌握二次函数性质是解本题的关键.23.【答案】4√2π【解析】(1)证明:如图1中,过点F作FH⊥AB于点H.∵四边形ABCD是正方形,△ABE是等边三角形,∴∠ABD=45°,∠BAF=60°,设AH=m,则FH=BH=√3m,∴AB=m+√3m=(1+√3)m,∴BD=√2AB=(√2+√6)m,BF=√2BH=√6m,∴DF=BD=BF=√2m,∴BFDF =√6m√2m=√3;(2)解:结论:MA=MF,MA⊥MF.理由:如图2中,延长AM到T,使得MT=MA,连接ET,FT,AF,延长TE交AB的延长线于点H,设BF交EH于点J.∵AM=MT,∠AMD=∠TME,MD=ME,∴△AMD≌△TME(SAS),∴∠DAM=∠MTE,AD=ET,∴AD//TH,∵四边形ABCD是正方形,∴∠BAD=90°,AD=AB,∴AB=ET,∴∠H=180°−∠BAD=90°,∵∠H=∠EFJ=90°,∠HJB=∠FJE,∴∠HBJ=∠FEJ,∵∠FET+∠FEJ=180°,∠ABF+∠HBJ=180°,∴∠ABF=∠TEF,∵BF=EF,∴△ABF≌△TEF(SAS),∴AF=ET,∠AFB=∠TFE,∴∠AFT=∠BFE=90°,∵MA=MT,∴MF⊥AT.MF=AM=MT;(3)解:如图3中,连接BD,取BD的中点O,连接OM,∵EF=BF=4,∠BFE=90°,∴BE=√BF2+EF2=√42+42=4√2,∵OD=OB,DM=ME,∴OM=1BE=2√2,2∴点M的运动轨迹是以O为圆心,2√2长为半径的圆,∴点M的运动路径的长=2×π×2√2=4√2π.故答案为:4√2π.(1)如图1中,过点F作FH⊥AB于点H.设AH=m,则FH=BH=√3m,求出DF,BF(用m表示),可得结论;(2)结论:MA=MF,MA⊥MF.如图2中,延长AM到T,使得MT=MA,连接ET,FT,AF,延长TE交AB的延长线于点H,设BF交EH于点J.证明△AFT是等腰直角三角形,可得结论;(3)如图3中,连接BD,取BD的中点O,连接OM,利用勾股定理求出BE,再利用三角形的中位线定理求出OM=2√2,推出点M的运动轨迹是以O为圆心,2√2长为半径的圆,可得结论.本题属于四边形综合题,考查了正方形的性质,解直角三角形,全等三角形的判定和性质,三角形中位线定理,轨迹等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用三角形中位线定理探究轨迹问题,属于中考压轴题.24.【答案】【解答】解:(1)①令y=ax2−4ax+3a=0,解得:x=1或3,令x=0,则y=3a,则点A、B、C的坐标分别为(1,0)、(3,0)、(0,3a),S△ABC=12×AB×OC=12×2×3a=3,解得:a=1,故抛物线的表达式为:y=x2−4x+3…①;②存在,理由:如图②延长CP交x轴于点H,过点H作HG⊥AC交CA的延长线于点G,设∠PCB=∠PCB+∠ACB=45°,tan∠CAO=OCOA=3=tan∠HAG,设:GH=3x,则AG=x,AH=√10x,则GC=GH,即x+√10=3x,x=√102,则AH=5,则点H(6,0),将点C、H的坐标代入一次函数表达式并解得:直线CH的表达式为:y=−12x+3…②,联立①②并解得:x=72;而x ≥2,故:P 点横坐标的取值范围为2≤x ≤72且x ≠3;(2)设点Q(m,am 2−4am +3a),点A(1,0)、B(3,0),把点Q 、A 坐标代入一次函数表达式:y =sx +t 得:{am 2−4am +3a =sm +t 0=s +t ,解得:{k =am −3a b =3a −am, 故函数的表达式为:y =a(m −3)x +a(3−m),即点D 坐标为(0,3a −am),同理可得点E(0,3a −3am),CD DE =3a−3a+am 3a−am−3a+3am =12为定值.【解析】(1)①令y =ax 2−4ax +3a =0,解得:x =1或3,令x =0,则y =3a ,则点A 、B 、C 的坐标分别为(1,0)、(3,0)、(0,3a),即可求解;②tan∠CAO =OC OA =3=tan∠HAG ,设:GH =3x ,则AG =x ,AH =√10x ,则GC =GH ,即2x +√10=3x ,则AH =5,则点H(6,0),将点C 、H 的坐标代入一次函数表达式并解得:直线CH 的表达式为:y =−12+3…②,联立①②并解得:x =72,即可求解;(2)设点P(m,am 2−4am +3a),点A(1,0)、B(3,0),把点P 、A 坐标代入一次函数表达式:y =sx +t 得:{am 2−4am +3a =sm +t 0=s +t ,解得:{k =am −3a b =3a −am ,故函数的表达式为:y =a(m −3)x +a(3−m),即点D 坐标为(0,3a −am),同理可得点E(0,3a −3am),CD DE =3a−3a+3m 3a−am−3a+3am =32a 为定值.本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形等知识,综合性强,难度适中.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年湖北省武汉市部分学校九年级元月调考数学试卷一、选择题(本大题共10小题,共30.0分)1.将一元二次方程2x2−1=3x化成一般形式后,二次项系数和一次项系数分别是()A. 2,−1B. 2,0C. 2,3D. 2,−32.下列垃圾分类标识中,是中心对称图形的是()A. B. C. D.3.下列四个袋子中,都装有除颜色外无其他差别的10个小球,从这四个袋子中分别随机摸出一个球,摸到红球可能性最小的是()A. B. C. D.4.已知⊙O的半径等于3,圆心O到点P的距离为5,那么点P与⊙O的位置关系是()A. 点P在⊙O内B. 点P在⊙O外C. 点P在⊙O上D. 无法确定5.一元二次方程x2−4x−1=0配方后可化为()A. (x+2)2=3B. (x+2)2=5C. (x−2)2=3D. (x−2)2=56.在平面直角坐标系中,抛物线y=(x+2)(x−4)经变换后得到抛物线y=(x−2)(x+4),则下列变换正确的是()A. 向左平移6个单位B. 向右平移6个单位C. 向左平移2个单位D. 向右平移2个单位7.如图,将△ABC绕点C按逆时针方向旋转至△DEC,使点D落在BC的延长线上.已知∠A=33°,∠B=30°,则∠ACE的大小是()A. 63°B. 58°C. 54°D. 52°8.三个不透明的口袋中各有三个相同的乒乓球,将每个口袋中的三个乒乓球分别标号为1,2,3.从这三个口袋中分别摸出一个乒乓球,出现的数字正好是等腰三角形三边长的概率是()A. 49B. 59C. 1727D. 799.如图,PM,PN分别与⊙O相切于A,B两点,C为⊙O上一点,连接AC,BC.若∠P=60°,∠MAC=75°,AC=√3+1,则⊙O的半径是()A. √2B. √3C. 32D. 34√310.已知二次函数y=2020x2+2021x+2022的图象上有两点A(x1,2023)和B(x2,2023),则当x=x1+x2时,二次函数的值是()A. 2020B. 2021C. 2022D. 2023二、填空题(本大题共6小题,共18.0分)11.在直角坐标系中,点(−1,2)关于原点对称点的坐标是______.12.如图,平行四边形ABCD的对角线交于点O,过点O的直线EF分别交边AB,CD于E,F两点,在这个平行四边形上做随机投掷图钉试验,针头落在阴影区域内的概率是______ .13.国家实施“精准扶贫”政策以来,贫困地区经济快速发展,贫困人口大幅度减少.某地区2018年初有贫困人口4万人,通过社会各界的努力,2020年初贫困人口减少至1万人.则2018年初至2020年初该地区贫困人口的年平均下降率是______ .14.已知O,I分别是△ABC的外心和内心,∠BOC=140°,则∠BIC的大小是______ .15.如图,放置在直线l上的扇形OAB,由图①滚动(无滑动)到图②,再由图②滚动到图③,若半径OA=1,∠AOB=90°,则点O所经过的路径长是______ .16.下列关于二次函数y=x2−2mx+1(m为常数)的结论:①该函数的图象与函数y=−x2+2mx的图象的对称轴相同;②该函数的图象与x轴有交点时,m>1;③该函数的图象的顶点在函数y=−x2+1的图象上;④点A(x1,y1)与点B(x2,y2)在该函数的图象上.若x1<x2,x1+x2<2m,则y1<y2.其中正确的结论是______ (填写序号).三、解答题(本大题共8小题,共72.0分)17.若关于x的一元二次方程x2−bx+2=0有一个根是x=1,求b的值及方程的另一个根.18.如图,将△ABC绕点C顺时针旋转得到△DEC,点D落在线段AB上.求证:DC平分∠ADE.19.小刚参加某网店的“翻牌抽奖”活动,如图,四张牌分别对应价值2,5,5,10(单位:元)的四件奖品.(1)如果随机翻一张牌,直接写出抽中5元奖品的概率;(2)如果同时随机翻两张牌,求所获奖品总值不低于10元的概率.20.如图是由小正方形构成的6×6网格,每个小正方形的顶点叫做格点.⊙P经过A,B两个格点,仅用无刻度的直尺在给定网格中按要求画图(画图过程用虚线表示,画图结果用实线表示).(1)在图(1)中,⊙P经过格点C,画圆心P,并画弦BD,使BD平分∠ABC;(2)在图(2)中,⊙P经过格点E,F是⊙P与网格线的交点,画圆心P,并画弦FG,使FG=FA.21.如图,正方形ABCD内接于⊙O,E是BC⏜的中点,连接AE,DE,CE.(1)求证:AE=DE;(2)若CE=1,求四边形AECD的面积.22.疫情期间,按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早晨到校情况,发现学生到校的累计人数y(单位:人)随时间x(单位:分钟)的变化情况如图所示,y可看作是x的二次函数,其图象经过原点,且顶点坐标为(30,900),其中0≤x≤30.校门口有一个体温检测棚,每分钟可检测40人.(1)求y与x之间的函数解析式;(2)校门口排队等待体温检测的学生人数最多时有多少人?(3)检测体温到第4分钟时,为减少排队等候时间,在校门口临时增设一个人工体温检测点.已知人工每分钟可检测12人,人工检测多长时间后,校门口不再出现排队等待的情况(直接写出结果).23.问题背景如图(1),△ABD,△AEC都是等边三角形,△ACD可以由△AEB通过旋转变换得到,请写出旋转中心、旋转方向及旋转角的大小.尝试应用如图(2),在Rt△ABC中,∠ACB=90°,分别以AC,AB为边,作等边△ACD和等的值.边△ABE,连接ED,并延长交BC于点F,连接BD.若BD⊥BC,求DFDE 拓展创新如图(3),在Rt△ABC中,∠ACB=90°,AB=2,将线段AC绕点A顺时针旋转90°得到线段AP,连接PB,直接写出PB的最大值.24.如图,经过定点A的直线y=k(x−2)+1(k<0)交抛物线y=−x2+4x于B,C两点(点C在点B的右侧),D为抛物线的顶点.(1)直接写出点A的坐标;(2)如图(1),若△ACD的面积是△ABD面积的两倍,求k的值;(3)如图(2),以AC为直径作⊙E,若⊙E与直线y=t所截的弦长恒为定值,求t的值.答案和解析1.【答案】D【解析】解:将一元二次方程2x2−1=3x化成一般形式是2x2−3x−1=0,二次项的系数和一次项系数分别是2和−3,故选:D.先化成一般形式,即可得出答案.本题考查了一元二次方程的一般形式,能化成一元二次方程的一般形式是解此题的关键,注意:说项的系数带着前面的符号.2.【答案】B【解析】解:A、不是中心对称图形,故此选项不合题意;B、是中心对称图形,故此选项符合题意;C、不是中心对称图形,故此选项不合题意;D、不是中心对称图形,故此选项不合题意;故选:B.利用中心对称图形的定义进行解答即可.此题主要考查了中心对称图形,关键是掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.3.【答案】A【解析】解:第一个袋子摸到红球的可能性=110;第二个袋子摸到红球的可能性=210=15;第三个袋子摸到红球的可能性=510=12;第四个袋子摸到红球的可能性=610=35.故选:A.要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.本题主要考查了可能性大小的计算,用到的知识点为:可能性等于所求情况数与总情况数之比,难度适中.4.【答案】B【解析】解:∵r=3,d=5,∴d>r,∴点P在⊙O外.故选:B.根据①点P在圆外⇔d>r.②点P在圆上⇔d=r.③点P在圆内⇔d<r,即可判断.本题考查点与圆的位置关系,解题的关键是熟练掌握基本知识,属于中考基础题.5.【答案】D【解析】解:x2−4x−1=0,x2−4x=1,x2−4x+4=1+4,(x−2)2=5,故选:D.移项,配方,即可得出选项.本题考查了解一元二次方程的应用,能正确配方是解此题的关键.6.【答案】C【解析】解:y=(x+2)(x−4)=(x−1)2−9,顶点坐标是(1,9).y=(x−2)(x+4)=(x+1)2−9,顶点坐标是(−1,9).所以将抛物线y=(x+2)(x−4)向左平移2个单位长度得到抛物线y=(x−2)(x+4),故选:C.根据变换前后的两抛物线的顶点坐标找变换规律.此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.7.【答案】C【解析】解:∵∠A=33°,∠B=30°,∴∠ACD=∠A+∠B=33°+30°=63°,∵△ABC绕点C按逆时针方向旋转至△DEC,∴△ABC≌△DEC,∴∠ACB=∠DCE,∴∠BCE=∠ACD,∴∠BCE=63°,∴∠ACE=180°−∠ACD−∠BCE=180°−63°−63°=54°.故选:C.先根据三角形外角的性质求出∠ACD=63°,再由△ABC绕点C按逆时针方向旋转至△DEC,得到△ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到△ABC≌△DEC.8.【答案】B【解析】解:画树状图得:∵共有27种等可能的结果,两次摸出的乒乓球标号相同,并且三个标号符合三角形三边关系的有15种结果,∴出现的数字正好是等腰三角形三边长的概率是1527=59.故选:B.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的乒乓球标号相同,并且三个标号符合三角形三边关系的情况,再利用概率公式即可求得答案.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.9.【答案】A【解析】解:连接OA、OC,过A点作AH⊥OC于H,如图,设⊙O的半径为r,∵PM与⊙O相切于A点,∴OA⊥PM,∴∠OAM=90°,∵∠MAC=75°,∴∠OAC=15°,∵OA=OC,∴∠OAC=∠OCA=15°,∴∠AOH=30°,在Rt△AOH中,AH=12OA=12r,OH=√3AH=√32r,在Rt△ACH中,(12r)2+(r+√32r)2=(√3+1)2,解得r=√2,即⊙O的半径为√2.故选:A.连接OA、OC,过A点作AH⊥OC于H,如图,设⊙O的半径为r,根据切线的性质得到∠OAM=90°,则∠OAC=15°,再计算出∠AOH=30°,则可表示出AH=12r,OH=√32r,利用勾股定理得到(12r)2+(r+√32r)2=(√3+1)2,然后解方程即可.本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了解直角三角形.10.【答案】C【解析】解:∵二次函数y=2020x2+2021x+2022的图象上有两点A(x1,2023)和B(x2,2023),∴x1、x2是方程2020x2+2021x+2022=2023的两个根,∴x1+x2=−20212020,∴当x=x1+x2时,二次函数y=2020x2+2021x+2022=2020(−20212020)2+2021⋅(−20212020)+2022=2022.故选:C.根据题意得出x=x1+x2=−20212020,代入函数的解析式即可求得二次函数的值.本题考查了一元二次方程根与系数的关系以及二次函数图象上点的坐标特征,图象上的点符合解析式.11.【答案】(1,−2)【解析】解:在直角坐标系中,点(−1,2)关于原点对称点的坐标是(1,−2),故答案为:(1,−2).根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(−x,−y),可得答案.本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.12.【答案】14【解析】解:∵四边形是平行四边形,∴对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=14S四边形ABCD,∴点A落在阴影区域内的概率为14,故答案为:14.用阴影部分的面积除以平行四边形的总面积即可求得答案.此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比.13.【答案】50%【解析】解:设2018年初至2020年初该地区贫困人口的年平均下降率为x,依题意得:4(1−x)2=1,解得:x1=0.5=50%,x2=1.5(不合题意,舍去).故答案为:50%.设2018年初至2020年初该地区贫困人口的年平均下降率为x,根据该地区2018年初及2020年初贫困人口的数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.14.【答案】125°或145°【解析】解:∵O是△ABC的外心,∴∠BAC=12∠BOC=12×140°=70°(如图1)或∠BAC=180°−70°=110°,(如图2)∵I是△ABC的内心,∴∠BIC=90°+12∠BAC,当∠BAC=70°时,∠BIC=90°+12×70°=125°;当∠BAC=110°时,∠BIC=90°+12×110°=145°;即∠BIC的度数为125°或145°.故答案为125°或145°.利用圆周角定理得到∠BAC=70°或∠BAC=110°,由于I是△ABC的内心,则∠BIC=90°+12∠BAC,然后把∠BAC的度数代入计算即可.本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了三角形的外心.15.【答案】32π【解析】解:点O所经过的路径长=3×90π⋅1180=32π.故答案为:32π.点O所经过的路径是三个14圆周长.本题考查轨迹,弧长公式等知识,解题的关键是理解题意,灵活运用所学知识解决问题.16.【答案】①③【解析】解:①∵二次函数y=x2−2mx+1的对称轴为直线x=−−2m2×1=m,二次函数y=−x2+2mx的对称轴为直线x=−2m2×(−1)=m,故结论①正确;②∵函数的图象与x轴有交点,则△=(−2m)2−4×1×1=4m2−4≥0,∴m≥1,故结论②错误;③∵y=x2−2mx+1=(x−m)2+1−m2,∴顶点为(m,−m2+1),∴该函数的图象的顶点在函数y=−x2+1的图象上,故结论③正确;④∵x1+x2<2m,∴x1+x22<m,∵二次函数y=x2−2mx+1的对称轴为直线x=m∴点A离对称轴的距离大于点B离对称轴的距离∵x1<x2,且a=1>0∴y1>y2故结论④错误;故答案为①③.利用二次函数的性质一一判断即可.本题考查抛物线与x轴的交点、二次函数的性质,二次函数图象上点的坐标特征,解题的关键是熟练掌握基本知识,属于中考常考题型.17.【答案】解:∵关于x的一元二次方程x2−bx+2=0有一个根是x=1,∴1−b+2=0,解得:b=3,把b=3代入方程得:x2−3x+2=0,设另一根为m,可得1+m=3,解得:m=2,则b的值为3,方程另一根为x=2.【解析】把x=1代入方程计算求出b的值,进而求出另一根即可.此题考查了根与系数的关系,以及一元二次方程的解,熟练掌握根与系数的关系是解本题的关键.18.【答案】证明:由旋转可知,△ABC≌△DEC,∴∠A=∠CDE,AC=DC,∴∠A=∠ADC,∴∠ADC=∠CDE,即DC平分∠ADE.【解析】利用全等三角形的性质以及等腰三角形的性质即可解决问题.本题考查旋转的性质,全等三角形的性质,等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.【答案】解:(1)∵在价值为2,5,5,10(单位:元)的四件奖品,价值为5元的奖品有2张,∴抽中5元奖品的概率为24=12;(2)画树状图如下:由树状图可知共有12种等可能结果,其中所获奖品总值不低于10元的有8种,∴所获奖品总值不低于10元的概率为812=23.【解析】(1)根据概率公式计算可得;(2)画树状图列出所有等可能结果,再从中确定所获奖品总值不低于10元的结果数,利用概率公式计算可得.此题还考查了列举法与树状图法求概率,解答此类问题的关键在于列举出所有可能的结果,画出树形图是解题的关键.20.【答案】解:(1)如图,点P,线段BD即为所求作.(2)如图,点P,线段FG即为所求作.【解析】(1)取格点T,连接AT交BC于点P,连接AC,取AC的中点W,作射线PW 交⊙P于点D,线段BD即为所求作.(2)取格点J,连接AB,AJ延长AJ交⊙P于Q,连接BQ可得圆心P,取格点R,D,连接FR,DR,作DR交⊙P于G,连接FG,可证FA=FR=FG,线段FG即为所求作.本题考查作图−应用与设计垂径定理,圆周角定理,线段的垂直平分线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21.【答案】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴AB⏜=CD⏜,∵E是BC⏜的中点,∴BE⏜=EC⏜,∴AE⏜=DE⏜,∴AE=DE.(2)解:连接BD,过点D作DF⊥DE交EC的延长线于F.∵四边形ABCD是正方形,∴∠DBC=∠DEC=45°,DA=DC,∵∠EDF=90°,∴∠F=90°−45°=45°,∴DE=DF,∵∠ADC=∠EDF=90°,∴∠ADE=∠CDF,在△ADE和△CDF中,{∠ADE=∠CDF ∠AED=∠FDA=DC,∴△ADE≌△CDF(AAS),∴AE=CF,∴S△ADE=S△CDF,∴S四边形AECD=S△DEF,∵EF=√2DE=EC+DE,EC=1,∴1+DE=√2DE,∴DE=√2+1,∴S△DEF=12DE2=√2+32.【解析】(1)欲证明AE=DE,只要证明AE⏜=DE⏜.(2)连接BD,过点D作DF⊥DE交EC的延长线于F.证明△ADE≌△CDF(AAS),推出AE= CF,推出S△ADE=S△CDF,推出S四边形AECD=S△DEF,再利用等腰三角形的性质构建方程求出DE,即可解决问题.本题考查正多边形与圆,正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.22.【答案】解:(1)∵顶点坐标为(30,900),∴设y=a(x−30)2+900,将(0,0)代入,得:900a+900=0,解得a=−1,∴y=−(x−30)2+900;(2)设第x分钟时的排队等待人数为w人,由题意可得:w=y−40x=−(x−30)2+900−40x=−x2+60x−900+900−40x=−x2+20x=−(x−10)2+100,∴当x=10时,w的最大值为100,答:排队等待人数最多时是100人;(3)设人工检测m分钟时间后,校门口不再出现排队等待的情况,由题意得:−(4+m)2+60(4+m)−40×4−(40+12)m=0,整理得:−m2+64=0,解得:m1=8,m2=−8(舍).答:人工检测8分钟时间后,校门口不再出现排队等待的情况.【解析】(1)由顶点坐标为(30,900),可设y=a(x−30)2+900,再将(0,0)代入,求得a的值,则可得y与x之间的函数解析式;(2)设第x分钟时的排队等待人数为w人,根据w=y−40x及(1)中所得的y与x之间的函数解析式,可得w关于x的二次函数,将其写成顶点式,按照二次函数的性质可得答案;(3)设人工检测m分钟时间后,校门口不再出现排队等待的情况,由于检测体温到第4分钟时,在校门口临时增设一个人工体温检测点,则体温检测棚的检测时间为(m+4)分钟,则学生到校的累计人数与人工检测m分钟后两种检测方式的检测人数之和相等时,校门口不再出现排队等待的情况,据此可列出关于m的方程,求解并根据问题的实际意义作出取舍即可.本题主要考查了二次函数在实际问题中的应用,熟练掌握待定系数法求二次函数的解析式及二次函数的性质是解题的关键.23.【答案】问题背景解:∵△ABD,△AEC都是等边三角形,∴∠BAD=60°,∠CAE=60°,AD=AB,AC=AE,∴∠BAD+∠BAC=∠CAE+∠BAC,∴∠DAC=∠BAE,∴△ACD≌△AEB(SAS),∴△ACD可以由△AEB绕点A顺时针旋转60°得到,即旋转中心是点A,旋转方向是顺时针,旋转角是60°;尝试应用∵△ACD和△ABE都是等边三角形,∴AC=AD,AB=AE,∠CAD=∠BAE=60°,∴∠CAB=∠DAE,∴△ADE≌△ACB(SAS),∴∠ADE=∠ACB=90°,DE=CB,∵∠ADE=90°,∴∠ADF=90°,∵∠ADC=∠ACD=60°,∴∠DCF=∠CDF=30°,∴CF=DF,∵BD⊥BC,∴∠BDF=30°,∴BF=12DF,设BF=x,则CF=DF=2x,DE=3x,∴DFDE =2x3x=23;拓展创新∵∠ACB=90°,∴点C在以AB为直径的圆上运动,取AB的中点D,连接CD,∴CD=12AB=1,如图,过点A作AE⊥AB,且使AE=AD,连接PE,BE,∵将线段AC绕点A顺时针旋转90°得到线段AP,∴∠PAC=90°,PA=AC,∵∠EAD=90°,∴∠PAE=∠CAD,∴△CAD≌△PAE(SAS),∴PE=CD=1,∵AB=2,AE=AD=1,∴BE=√AE2+AB2=√12+22=√5,∴BP≤BE+PE=√5+1,∴BP的最大值为√5+1.【解析】问题背景由等边三角形的性质得出∠BAD=60°,∠CAE=60°,AD=AB,AC=AE,证得△ACD≌△AEB(SAS),由旋转的概念可得出答案;尝试应用证明△ADE≌△ACB(SAS),由全等三角形的性质得出∠ADE=∠ACB=90°,DE=CB,DF,则可得出答案;得出∠BDF=30°,由直角三角形的性质得出BF=12拓展创新过点A作AE⊥AB,且使AE=AD,连接PE,BE,由直角三角形的性质求出BE,PE 的长,则可得出答案.本题是几何变换综合题,考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,勾股定理,直角三角形的性质,熟练掌握旋转的性质是解题的关键.24.【答案】解:(1)∵A为直线y=k(x−2)+1上的定点,∴A的坐标与k无关,∴x−2=0,∴x=2,此时y=1,∴点A的坐标为(2,1);(2)∵y=−x2+4x=−(x −2)2+4,∴顶点D 的坐标为(2,4),∵点A 的坐标为(2,1),∴AD ⊥x 轴.如图(1),分别过点B ,C 作直线AD 的垂线,垂足分别为M ,N ,设B ,C 的横坐标分别为x 1,x 2,∵△ACD 的面积是△ABD 面积的两倍,∴CN =2BM ,∴x 2−2=2(2−x 1),∴2x 1+x 2=6.联立{y =−x 2+4x y =kx −2k +1,得x 2+(k −4)x −2k +1=0,① 解得x 1=4−k−√k2+122,x 2=4−k+√k 2+122, ∴2×4−k−√k 2+122+4−k+√k 2+122=6,化简得:√k 2+12=−3k ,解得k =−√62. 另解:接上解,由①得x 1+x 2=4−k ,又由2x 1+x 2=6,得x 1=2+k .∴(2+k)2+(k −4)(2+k)−2k +1=0,解得k =±√62. ∵k <0,∴k =−√62; (3)如图(2),设⊙E 与直线y =t 交于点G ,H ,点C 的坐标为(a,−a 2+4a). ∵E 是AC 的中点,∴将线段AE 沿AC 方向平移与EC 重合,∴x E −x A =x C −x E ,y E −y A =y C −y E ,∴x E =12(x A +x C ),y E =12(y A +y C ).∴E(1+a 2,−a 2+4a +12). 分别过点E ,A 作x 轴,y 轴的平行线交于点F ,在Rt △AEF 中,由勾股定理得:EA 2=(1+a 2−2)2+(−a 2+4a +12−1)2 =(a 2−1)2+(−a 2+4a+12−1)2,过点E 作PE ⊥GH ,垂足为P ,连接EH ,∴GH =2PH ,EP 2=(−a 2+4a+12−t)2,又∵AE =EH ,∴GH 2=4PH 2=4(EH 2−EP 2)=4(EA 2−EP 2)=4[(a 2−1)2+(−a 2+4a +12−1)2−(−a 2+4a +12−t)2] =4[a 24−a +1+(−a 2+4a +12)2−(−a 2+4a +1)+1−(−a 2+4a +12)2+t(−a 2+4a +1)−t 2]=4[(54−t)a 2+(4t −5)a +1+t −t 2]. ∵GH 的长为定值,∴54−t =0,且4t −5=0, ∴t =54.【解析】(1)由A为直线y=k(x−2)+1上的定点,可得k的系数为0,从而求得x值,则点A的坐标可得;(2)先求得顶点D的坐标,可得AD⊥x轴.分别过点B,C作直线AD的垂线,垂足分别为M,N,设B,C的横坐标分别为x1,x2由△ACD的面积是△ABD面积的两倍得出2x1+x2=6.将抛物线解析式与直线y=k(x−2)+1解析式联立,得出关于x的一元二次方程,方法一可以直接解方程,再结合2x1+x2=6求得答案;方法二可以用韦达定理及2x1+x2=6求得答案;(3)设⊙E与直线y=t交于点G,H,点C的坐标为(a,−a2+4a),用含a的式子表示出点E的坐标,再由勾股定理得出关于a的方程;分别过点E,A作x轴,y轴的平行线交于点F,过点E作PE⊥GH,垂足为P,连接EH,用含a的式子表示GH2,根据GH为定值,可得答案.本题属于二次函数综合题,综合考查了一次函数、二次函数、一元二次方程、勾股定理及圆的性质等知识点,数形结合并熟练掌握相关性质定理是解题的关键.。