中考数学复习新定义题型压轴题专项练习汇总

合集下载

数学专题1——新定义问题---(吴---翔)

数学专题1——新定义问题---(吴---翔)

数学专题1——新定义问题【专题诠释】所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.【经典例题】 类型一:规律题型中的新定义例1.(2009山东枣庄,18,4分)定义:a 是不为1的有理数,我们把11a -称为a 的差倒数.如:2的差倒数是1112=--,-1的差倒数是111(1)2=--.已知a 1=-13,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2009= .【分析】:理解差倒数的概念,要根据定义去做.通过计算,寻找差倒数出现的规律,依据规律解答即可.【解】:解:根据差倒数定义可得:2111311413a a ===-+, 321143114a a ===-- 431111143a a ===---. 显然每三个循环一次,又2009÷3=669余2,故a 2009和a 2的值相等.【评注】:此类题型要严格根据定义做,这也是近几年出现的新类型题之一,同时注意分析循环的规律. 类型二:运算题型中的新定义例2.(2011毕节地区,18,3分)对于两个不相等的实数a 、b ,定义一种新的运算如下,*0a b a b a b +=+(>),如:323*2532+==﹣, 那么6*(5*4)= .【分析】:本题需先根据已知条件求出5*4的值,再求出6*(5*4)的值即可求出结果.【评注】:本题主要考查了实数的运算,在解题时要先明确新的运算表示的含义是本题的关键.例3.(2010重庆江津区,15,4分)我们定义ab ad bc cd=-,例如2345=2×5﹣3×4=10﹣12=﹣2,若x ,y 均为整数,且满足1<14xy <3,则x+y 的值是 .【分析】:先根据题意列出不等式,根据x 的取值范围及x 为整数求出x 的值,再把x 的值代入求出y 的值即可.【评注】:此题比较简单,解答此题的关键是根据题意列出不等式,根据x ,y 均为整数求出x 、y 的值即可.类型三:探索题型中的新定义例4.(2009 台州,23, 分)定义:到凸四边形一组对边距离相等,到另一组对边距离也相等的点叫凸四边形的准内点.如图1,PH=PJ ,PI=PG ,则点P 就是四边形ABCD 的准内点.(1)如图2,∠AFD 与∠DEC 的角平分线FP ,EP 相交于点P .求证:点P 是四边形ABCD的准内点.(2)分别画出图3平行四边形和图4梯形的准内点.(作图工具不限,不写作法,但要有必要的说明)(3)判断下列命题的真假,在括号内填“真”或“假”.①任意凸四边形一定存在准内点.( )②任意凸四边形一定只有一个准内点.( )③若P 是任意凸四边形ABCD 的准内点,则PA+PB=PC+PD 或PA+PC=PB+PD .( )【分析】:(1)过点P 作PG ⊥AB ,PH ⊥BC ,PI ⊥CD ,PJ ⊥AD ,由角平分线的性质可知PJ=PH ,PG=PI ;(2)平行四边形对角线的交点,即为平行四边形的准内点;梯形两腰夹角的平分线与梯形中位线的交点,即为梯形的准内点;(3)①当凸四边形为平行四边形时,易知其对角线交点即为其准内点;②当凸四边形不为平。

中考数学压轴题之新定义经典题型

中考数学压轴题之新定义经典题型

中考数学压轴题之新定义经典题型【01】.在平面直角坐标系xOy 中,C 的半径为r ,P 是与圆心C 不重合的点,点P 关于O 的反称点的定义如下:若在射线CP 上存在一点P ¢,满足2CP CP r ¢+=,则称P ¢为点P 关于C 的反称点,下图为点P 及其关于C 的反称点P ¢的示意图。

的示意图。

(1)(1)当当O 的半径为1时。

时。

①分别判断点(2,1)M ,3(,0)2N ,(1(1,,3)T 关于O 的反称点是否存在,若存在?在?求其坐标;求其坐标;②点P 在直线2y x =-+上,若点P 关于O 的反称点P ¢存在,且点P ¢不在x 轴上,求点P 的横坐标的取值范围;的横坐标的取值范围; (2)(2)当当C 的圆心在x 轴上,轴上,半径为半径为1,直线3233y x =-+与x 轴,轴,y y 轴分别交于点A ,B ,若线段AB 上存在点P ,使得点P 关于C 的反称点P ¢在C 的内部,求圆心C 的横坐标的取值范围。

的横坐标的取值范围。

yPOCx1 1【02】.在平面直角坐标系xOy 中,点P 的坐标为()11,x y ,点Q 的坐标为()22,x y ,且12x x ¹,12y y ¹,若,P Q 为某个矩形的两个顶点,为某个矩形的两个顶点,且该矩形的边均与某条坐标轴且该矩形的边均与某条坐标轴垂直,则称该矩形为点P Q ,的“相关矩形”的“相关矩形”..下图为点,P Q 的“相关矩形”的示意图意图. .(1)已知点A 的坐标为()10,,①若点B 的坐标为()31,,求点,A B 的“相关矩形”的面积;的“相关矩形”的面积;②点C 在直线3x =上,若点,A C 的“相关矩形”为正方形,求直线AC 的表达式;式;(2)O ⊙的半径为2,点M 的坐标为(),3m .若在O ⊙上存在一点N ,使得点,M N的“相关矩形”为正方形,求m 的取值范围的取值范围. .【03】对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:若存在过点P 的直线l 交⊙C 于异于点P 的A ,B 两点,在P ,A ,B 三点中,位于中间的点恰为以另外两点为端点的线段的中点时,则称点P 为⊙C 的相邻点,直线l 为⊙C 关于点P 的相邻线的相邻线. . (1)当⊙O 的半径为1时,时, ○1分别判断在点D (,14),E (0,-3),F (4,0)中,是⊙O 的相邻点有____________________;;○2请从○1中的答案中,任选一个相邻点,在图1中做出⊙O 关于它的一条相邻线,并说明你的作图过程相邻线,并说明你的作图过程. .○3点P 在直线3y x =-+上,若点P 为⊙O 的相邻点,求点P 横坐标的取值范围;范围;(2)⊙C 的圆心在x 轴上,半径为1,直线3233y x =-+与x 轴,y 轴分别交于点M ,N ,若线段..MN 上存在⊙C 的相邻点P ,直接写出圆心C 的横坐标的取值范围.范围.21备用图1备用图2 图1【04】定义:y 是一个关于x 的函数,若对于每个实数x ,函数y 的值为三数2+x ,12+x ,205+-x 中的最小值,则函数y 叫做这三数的最小值函数.(1)画出这个最小值函数的图象,并判断点A (1, 3)是否为这个)是否为这个最小值函数图象上的点;图象上的点;(2)设这个最小值函数图象的最高点为B ,点A (1, 3),动点M (m ,m ).①直接写出△ABM 的面积,其面积是的面积,其面积是 ; ②若以M 为圆心的圆经过B A ,两点,写出点M 的坐标;的坐标;③以②中的点M 为圆心,以2为半径作圆为半径作圆. . 在此圆上找一点P ,使22PA PB +的值最小,直接写出此最小值的值最小,直接写出此最小值. .【05】在平面直角坐标系xOy 中,对于点P 和图形W ,如果线段OP 与图形W 无公共点,则称点P 为关于图形W 的“阳光点”;如果线段OP 与图形W 有公共点,则称点P 为关于图形W 的“阴影点”. (1)如图1,已知点()13A ,,()11B ,,连接AB①在()11,4P ,()21,2P ,()32,3P ,()42,1P 这四个点中,关于线段AB 的“阳光点”是;是;②线段11A B AB P ;11A B 上的所有点都是关于线段AB 的“阴影点”,且当线段11A B 向上或向下平移时,都会有11A B 上的点成为关于线段AB 的“阳光点”.若11A B 的长为4,且点1A 在1B 的上方,则点1A 的坐标为的坐标为_________________________________________________________;; (2)如图2,已知点()13C ,,C e 与y 轴相切于点D .若E e 的半径为32,圆心E 在直线343l y x =-+:上,且E e 上的所有点都是关于C e 的“阴影点”,求圆心E 的横坐标的取值范围;的横坐标的取值范围;(3)如图3,M e 的半径是3,点M 到原点的距离为5.点N 是M e 上到原点距离最近的点,点Q 和T 是坐标平面内的两个动点,且M e 上的所有点都是关于NQT D 的“阴影点”,直接写出NQT D 的周长的最小值.的周长的最小值.图1 图2 图3yxB A OyxCOD yx11O【06】给出如下规定:在平面直角坐标系xOy 中,对于点P (x ,y ),以及两个无公共点的图形1W 和2W ,若在图形1W 和2W 上分别存在点M (1x ,1y )和N (2x ,2y ),使得P 是线段MN 的中点,则称点M 和N 被点P “关联”,并称点P 为图形1W 和2W 的一个“中位点”,此时P ,M ,N 三个点的坐标满足122x x x +=,122y yy +=.(1)已知点(0,1),(4,1),(3,1),(3,2)A B C D --,连接AB ,CD .①对于线段AB 和线段CD ,若点A 和C 被点P “关联”,则点P 的坐标为____________________;; ②线段AB 和线段CD 的一个“中位点”是1(2,)2Q -,求这两条线段上被点Q “关联”的两个点的坐标;“关联”的两个点的坐标;(2)如图1,已知点R (-(-2,02,02,0)和抛物线)和抛物线1W :22y x x =-,对于抛物线1W 上的每一个点M ,在抛物线2W 上都存在点N ,使得点N 和M 被点R “关联”,请在图1中画出符合条件的抛物线2W ;(3)正方形EFGH 的顶点分别是(4,1),(4,1),(2,1),(2,1)E F G H ------,⊙T 的圆心为(3,0)T ,半径为1.请在图2中画出由正方形EFGH 和⊙T 的所有“中位点”组成的图形(若涉及平面中某个区域时可以用阴影表示),并直接写出该图形的面积.并直接写出该图形的面积.图1 图2R【06】在平面直角坐标系中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P 关于⊙C 的限距点的定义如下:若为直线PC 与⊙C 的一个交点,满足,则称为点P 关于⊙C 的限距点,右图为点P 及其关于⊙C 的限距点的示意图.的示意图. (1)当⊙O 的半径为1时.时.①分别判断点M ,N ,T 关于⊙O 的限距点是否存在?若存在,求其坐标;在?若存在,求其坐标;②点D 的坐标为(的坐标为(2,02,02,0)),DE ,DF 分别切⊙O 于点E ,点F ,点P 在△DEF 的边上的边上..若点P 关于⊙O 的限距点存在,求点的横坐标的取值范围;取值范围;(2)保持()保持(11)中D ,E ,F 三点不变,点P 在△DEF 的边上沿E →F →D →E的方向的方向运动,⊙C 的圆心C 的坐标为(1,01,0)),半径为r .请从下面两个问题中任选一个作答一个作答. .温馨提示:答对问题1得2分,答对问题2得1分,两题均答不重复计分.问题1问题2若点P 关于⊙C 的限距点存在,且随点P 的运动所形成的路径长为,则r 的最小值为的最小值为______________________________.. 若点P 关于⊙C 的限距点不存在,则r 的取值范围为的取值范围为________. ________.xOy P ¢2r PP r ¢££P ¢P¢(3,4)5(,0)2(1,2)P ¢P ¢P ¢P ¢r p P¢【07】对于某一函数给出如下定义:若存在实数p ,当其自变量的值为p 时,其函数值等于p ,则称p 为这个函数的不变值. 在函数存在不变值时,该函数的最大不变值与最小不变值之差q 称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q 为零为零..例如,下图中的函数有0,1两个不变值,其不变长度q 等于1.(1)分别判断函数1y x =-,1y x=,2y x =有没有不变值?如果有,直接写出其不变长度;其不变长度;(2)函数22y x bx =-.①若其不变长度为零,求b 的值;的值;②若13b ££,求其不变长度q 的取值范围;的取值范围;(3)记函数22()y x x x m =-³的图象为1G ,将1G 沿x=m 翻折后得到的函数图象记为2G .函数G 的图象由 1G 和2G 两部分组成,若其不变长度q 满足03q ££,则m 的取值范围为的取值范围为 . .【08】P 是⊙O 内一点,过点P 作⊙O 的任意一条弦AB ,我们把P A PB ×的值称为点P 关于⊙O 的“幂值”.(1)⊙O 的半径为5,OP = 3.①如图1,若点P 恰为弦AB 的中点,则点P 关于⊙O 的“幂值”为________________;; ②判断当弦AB 的位置改变时,点P 关于⊙O 的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P 关于⊙O 的“幂值”的取值范围.的取值范围.(2)若⊙O 的半径为r ,OP = d ,请参考(,请参考(11)的思路,用含r 、d 的式子表示点P 关于⊙O 的“幂值”或“幂值”的取值范围的“幂值”或“幂值”的取值范围________________________;; (3)在平面直角坐标系xOy 中,⊙O 的半径为4,若在直线33y x b =+上存在点P ,使得点P 关于⊙O 的“幂值”为1313,,请写出b 的取值范围的取值范围________________________..图1POBAO备用图备用图【09】在平面直角坐标系xOy 中,中,图形图形W 在坐标轴上的投影长度定义如下:设点),(11y x P ,),(22y x Q 是图形W 上的任意两点.若21x x -的最大值为m ,则图形W 在x 轴上的投影长度m l x =;若21y y -的最大值为n ,则图形W 在y 轴上的投影长度n l y =.如图,图形W 在x 轴上的投影长度213=-=xl ;在y 轴上的投影长度404=-=y l .(1)已知点)3,3(A ,)1,4(B .如图1所示,若图形W 为△OAB ,则=xl ,=y l .(2)已知点)0,4(C ,点D 在直线26y x =-+上,若图形W 为△OCD .当y x l l =时,求点D 的坐标.的坐标.(3)若图形W 为函数2x y =)(b x a ££的图象,其中0a b £<.当该图形.当该图形满足1£=y x l l 时,请直接写出a 的取值范围.的取值范围.x yO BA 1234123x y O 1231234图1【10】.在平面直角坐标系xOy 中,对图形W 给出如下定义:若图形W 上的所有点都在以原点为顶点的角的内部或边界上,在所有满足条件的角中,其度数的最小值称为图形的坐标角度,例如,下图中的矩形ABCD 的坐标角度是9090°.°.°.(1)已知点)3,0(-A ,)1,1(--B ,在点)0,2(C ,)0,1(-D ,)2,2(-E 中,选一点,使得以该点及点A ,B 为顶点的三角形的坐标角度为9090°,则满足条件°,则满足条件的点为的点为 ; (2)将函数2ax y =)31(££a 的图象在直线1=y 下方的部分沿直线1=y 向上翻折,求所得图形坐标角度m 的取值范围;的取值范围;(3)记某个圆的半径为r ,圆心到原点的距离为l ,且)1(3-=r l ,若该圆的,若该圆的坐标角度°££°9060m .直接写出满足条件的r 的取值范围.的取值范围. O xy D C B A –1–2–312312345。

2024年九年级中考数学压轴题-圆中的新定义问题(解析版)

2024年九年级中考数学压轴题-圆中的新定义问题(解析版)

圆中的新定义问题1(2023•淮安模拟)在平面直角坐标系xOy 中,对于点P 和线段AB ,若线段PA 或PB 的垂直平分线与线段AB 有公共点,则称点P 为线段AB 的融合点.(1)已知A (3,0),B (5,0),①在点P 1(6,0),P 2(1,-2),P 3(3,2)中,线段AB 的融合点是 P 1,P 3 ;②若直线y =t 上存在线段AB 的融合点,求t 的取值范围;(2)已知⊙O 的半径为4,A (a ,0),B (a +1,0),直线l 过点T (0,-1),记线段AB 关于l 的对称线段为A B .若对于实数a ,存在直线l ,使得⊙O 上有A B 的融合点,直接写出a 的取值范围.【解答】解:(1)①∵P 1(6,0),A (3,0),∴P 1A 的线段垂直平分线与x 轴的交点为92,0,∴P 1是线段AB 的融合点;∵P 2(1,-2),B (5,0),设直线P 2B 的垂直平分线与x 轴的交点为(a ,0),∴(a -1)2+4=(5-a )2,解得a =52,∴直线P 2B 的垂直平分线与x 轴的交点为52,0,∴P 2不是线段AB 的融合点;∵P 3(3,2),B (5,0),设直线P 3B 的垂直平分线与x 轴的交点为(b ,0),∴(b -3)2+4=(5-b )2,解得b =3,∴直线P 3B 的垂直平分线与x 轴的交点为(3,0),∴P 3是线段AB 的融合点;故答案为:P 1,P 3;②线段AB 的融合点在以A 、B 为圆心,AB 为半径的圆及内部,∵A (3,0),B (5,0),∴AB =2,当y =t 与圆相切时,t =2或t =-2,∴-2≤t ≤2时,直线y =t 上存在线段AB 的融合点;(2)由(1)可知,A B 的融合点在以A 、B 为圆心,A B 为圆心的圆及内部,∵A (a ,0),B (a +1,0),∴AB =A B =1,∵⊙O 上有A B 的融合点,∴圆O 与圆A 、B 有交点,∴圆O 与圆A 、圆B 的公共区域为以O 为圆心2为半径,以O 为圆心6为半径的圆环及内部区域,当a >0时,a 的最大值为62-12=35,最小值为22-12-1=3-1,∴3-1≤a ≤35;当a <0时,a 的最大值为-22-12=-3,最小值为-62-12-1=-35-1,∴-35-1≤a ≤-3;综上所述:a 的取值范围为3-1≤a ≤35或-35-1≤a ≤-3.2(2023•西城区校级模拟)在平面内,C 为线段AB 外的一点,若以点A ,B ,C 为顶点的三角形为直角三角形,则称C 为线段AB 的直角点.特别地,当该三角形为等腰直角三角形时,称C 为线段AB 的等腰直角点.(1)如图1,在平面直角坐标系xOy 中,点M 的坐标为(-1,0),点N 的坐标为(1,0),在点P 1(2,1),P 2(-1,2),P 332,12 中,线段MN 的直角点是 P 2、P 3 ;(2)在平面直角坐标系xOy 中,点A ,B 的坐标分别为(t ,0),(0,4).①若t =4,如图2所示,若C 是线段AB 的直角点,且点C 在直线y =-x +8上,求点C 的坐标;②如图3,点D 的坐标为(m ,-2),⊙D 的半径为1,若⊙D 上存在线段AB 的等腰直角点,求出m 的取值范围.【解答】解:(1)∵P 2(-1,2),M (-1,0),∴P 2M ⊥MN ,∴P 2是线段MN 的直角点;∵M (-1,0),N (1,0),∴MN =2,∵P 332,12,∴P 3O =1,∴P 3在以O 为圆心,MN 为直径的圆上,∴∠MP 3N =90°,∴P 3是线段MN 的直角点;故答案为:P 2、P 3;(2)①∵A (4,0),B (0,4),∴OA =OB =4,∴∠OAB =∠OBA =45°.根据题意,若点C 为线段AB 的直角点,则需要分三种情况:当点B 为直角顶点,过点B 作BC 1⊥AB 于点C 1,过点C 1作C 1M ⊥y 轴于点M ,∴∠C 1BM =45°,∴C 1M =BM ,设C 1M =BM =a ,∴C 1(a ,a +4),∴-a +8=a +4,解得a =2,∴C 1(2,6);当点A 为直角顶点,过点A 作AC 2⊥AB 于点C 2,过点C 2作C 2N ⊥x 轴于点N ,∴∠C 2AN =45°,∴C 2N =AN ,设C 2N =AN =b ,∴C 2(b +4,b ),∴-(b +4)+8=b ,解得b =2,∴C 2(6,2);当点C 为直角顶点,取AB 的中点P ,则P (2,2),设C 3的横坐标为t ,则C 3(t ,-t +8),由直角三角形的性质可知,C 3P =BP =AP =22,∴(t -2)2+(-t +6)2=(22)2,解得t =4,∴C3(4,4),综上,点C的坐标为(2,6)或(6,2)或(4,4).②如图,以AB为边向下作正方形ABC1C2,连接AC1,BC2交于点C3,则C1,C2,C3是线段AB的等腰直角点.根据点A的运动可知,点C1在直线l1:x=-4上运动,C2在直线l2:y=-x-4上运动,C3在直线l3:y=-x上运动.设l2与y=-2相交于点K,l3与y=-2相交于点L,∴K(2,-2),L(2,-2).由此可得出临界情况如图:如图3(1)中,当⊙D与l1相切时,m=-5;如图3(2)中,当⊙D与l2相切时,点F为切点,连接DF,则ΔDFK为等腰直角三角形,且DF=1,∴DK=2;∴D(-2+2,-2),即m=-2+2;如图3(3)中,当⊙D与l3相切时,点G为切点,连接DG,则ΔDGL为等腰直角三角形,且DG=1,∴DL=2;∴D(2-2,-2),即m=2-2;如图3(4)中,当⊙D与l3相切时,点H为切点,连接DH,则ΔDHL为等腰直角三角形,且DH=1,∴DL=2;∴D(2+2,-2),即m=2+2;综上,符合题意的m的取值范围:-5≤m≤-2+2或2-2≤m≤2+2.3(2023•秀洲区校级二模)婆罗摩芨多是公元7世纪古印度伟大的数学家,他在三角形、四边形、零和负数的运算规则,二次方程等方面均有建树,他也研究过对角线互相垂直的圆内接四边形,我们把这类对角线互相垂直的圆内接四边形称为“婆氏四边形”;(1)若平行四边形ABCD是“婆氏四边形”,则四边形ABCD是③.(填序号)①矩形②菱形③正方形(2)如图1,RtΔABC中,∠BAC=90°,以AB为弦的⊙O交AC于D,交BC于E,连接DE、AE、BD,AB=6,sin C=35,若四边形ABED是“婆氏四边形”,求DE的长;(3)如图2,四边形ABCD为⊙O的内接四边形,连接AC,BD,OA,OB,OC,OD,已知∠BOC+∠AOD= 180°,①求证:四边形ABCD是“婆氏四边形”;②当AD+BC=4时,求⊙O半径的最小值.【解答】(1)解:∵平行四边形ABCD为⊙O的内接四边形,∴∠ABC=∠ADC,∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴平行四边形ABCD是矩形,∵四边形ABCD是“婆氏四边形”,∴AC⊥BD,∴矩形ABCD是正方形,故答案为:③;(2)解:∵∠BAC=90°,AB=6,sin C=35,∴BC=10,AC=8,∴BD为直径,∴∠BED =∠DEC =90°,∵四边形ABED 是“婆氏四边形”,∴AE ⊥BD ,∴AD =DE ,AB =BE =6,设AD =DE =m ,则CD =8-m ,EC =4,在Rt ΔEDC 中,m 2+42=(8-m )2,解得m =3,∴DE =3;(3)①证明:如图2,设AC ,BD 相交于点E ,∵∠DCA =12∠AOD ,∠BDC =12∠BOC ,∠BOC +∠AOD =180°,∴∠DCA +∠BDC =12(∠AOD +∠BOC )=12×180°=90°,∴∠CED =90°,∴AC ⊥BD ,∵四边形ABCD 是⊙O 的内接四边形,∴四边形ABCD 是“婆氏四边形”;②解:过点O 作OM ⊥AD 交于M ,过O 作ON ⊥BC 交于N ,∴AM =12AD ,BN =12BC ,∠AMO =∠BNO =90°,∴∠AOM +∠OAM =90°,∵OA =BO =CO =DO ,∴∠AOM =12∠AOD ,∠BON =12∠BOC ,∵∠BOC +∠AOD =180°,∴∠AOM =∠OBN ,∴ΔOAM ≅ΔBON (AAS ),∴ON =AM =12AD ,∵AD +BC =4,设ON =AM =n ,则AD =2n ,BC =4-2n ,BN =2-n ,在Rt ΔBON 中,BO =n 2+(2-n )2=2(n -1)2+2,当n =1时,BO 有最小值2,∴⊙O 半径的最小值为2.4(2022秋•西城区期末)给定图形W 和点P ,Q ,若图形W 上存在两个不重合的点M ,N ,使得点P 关于点M 的对称点与点Q 关于点N 的对称点重合,则称点P 与点Q 关于图形W 双对合.在平面直角坐标系xOy 中,已知点A (-1,-2),B (5,-2),C (-1,4).(1)在点D (-4,0),E (2,2),F (6,0)中,与点O 关于线段AB 双对合的点是 D ,F ;(2)点K 是x 轴上一动点,⊙K 的直径为1,①若点A 与点T (0,t )关于⊙K 双对合,求t 的取值范围;②当点K 运动时,若ΔABC 上存在一点与⊙K 上任意一点关于⊙K 双对合,直接写出点K 的横坐标k 的取值范围.【解答】解:(1)当A 点是D 点的中点时,对应点为(2,-4);当B 点是D 点的中点时,对应点为(14,-4);当A 点是E 点的中点时,对应点为(-4,-6);当B 点是E 点的中点时,对应点为(8,-6);当A 点是F 点的中点时,对应点为(-8,-4);当B 点是F 点的中点时,对应点为(4,-4);当A 点是O 点的中点时,对应点为(-2,-4);当B 点是O 点的中点时,对应点为(10,-4);∴D 、F 与点O 关于线段AB 双对合,故答案为:D 、F ;(2)①设K(k,0),∵A(-1,-2),T(0,t),∴A点关于K点对称点G为(2k+1,2),T点关于K点对称点H为(2k,-t),∵点A与点T(0,t)关于⊙K双对合,∴A点关于点K的对称点在以G为圆心,∵⊙K的直径为1,∴点A关于点K的对称点在以G点为圆心,1为半径的圆上,点T关于点K的对称点在以H为圆心,1为半径的圆上,如图所示,∵点A与点T(0,t)关于⊙K双对合,∴当圆G与圆H有交点,∵GH=1+(t+2)2,∴1+(t+2)2≤2,解得-2-3≤t≤-2+3;②∵A(-1,-2),B(5,-2),C(-1,4),K(k,0),∴A点关于K点的对称点F(2k+1,2),B点关于K点的对称点E(2k-5,2),C点关于K点的对称点G(2k+1, -4),∴ΔABC上任意一点关于K点对称点在阴影区域,∵ΔABC上存在一点与⊙K上任意一点关于⊙K双对合,∴阴影区域与圆K有公共交点,∵阴影部分是由ΔEGF边上任意一点为圆心,1为半径的圆构成的区域,如图1时,k-(2k+1)=12+1,解得k=-52;如图2时,2k+1-k=12+1,解得k=12;∴-52≤k≤12时,ΔABC上存在一点与⊙K上任意一点关于⊙K双对合;过点K作KN⊥EG交于N,直线EG交x轴于点M,设直线EG的解析式为y=k x+b,∴(2k-5)k +b=2 (2k+1)k +b=-4 ,解得k =-1b=2k-3 ,∴y=-x+2k-3,∴M(2k-3,0),∵直线y=-x与y=-x+2k-3平行,∴∠KMN=45°,∴KM=2KN=322,如图3时,k-(2k-3)=322,解得k=3-322,如图4时,2k-3-k=322,解得k=3+322,∴3-322≤k≤3+322时,ΔABC上存在一点与⊙K上任意一点关于⊙K双对合;综上所述:-52≤k≤12或3-322≤k≤3+322时,ΔABC上存在一点与⊙K上任意一点关于⊙K双对合.5(2022•钟楼区模拟)概念认识:平面内,M为图形T上任意一点,N为⊙O上任意一点,将M、N两点间距离的最小值称为图形T到⊙O的“最近距离”,记作d(T-⊙O).例:如图1,在直线l上有A、C、O三点,以AC为对角线作正方形ABCD,以点O为圆心作圆,与l交于E、F两点,若将正方形ABCD记为图形T,则C、E两点间的距离称为图形T到⊙的“最近距离”.数学理解:(1)在平面内有A、B两点,以点A为圆心,5为半径作⊙A,将点B记为图形T,若d(T-⊙A)=2,则AB= 3或7.(2)如图2,在平面直角坐标系中,以O(0,0)为圆心,半径为2作圆.①将点C(4,3)记为图形T,则d(T-⊙O)=.②将一次函数y=kx+22的图记为图形T,若d(T-⊙)>0,求k的取值范围.推广运用:(3)在平面直角坐标系中,P的坐标为(t,0),⊙P的半径为2,D、E两点的坐标分别为(5,5)、(5,-5),将ΔDOE记为图形T,若d(T-⊙P)=1,则t=.【解答】解:(1)如图1中,∵d(T-⊙A)=2,∴CB=CB′=2,∵AC=5,∴AB′=5-2=3,AB=5+2=7.故答案为:3或7.(2)①如图2中,连接OC交⊙O于E.∵C(4,3),∴OC=42+32=5,∵OE=2,∴EC=3,∴d(T-⊙O)=3.故答案为:3.②如图,设直线y=kx+22与⊙O相切于E,K.连接OK,OE.∵OE⊥DE,OK⊥DK,OD=22,OE=OK=2,∴DK=OD2?OK2=(22)2-22=2,DE=OD2?OE2=(22)2-22=2,∴DE=OE=DK=OK,∴四边形DEOK是菱形,∵∠DKO=∠DEO=90°,∴四边形DEOK是正方形,∴∠ODE=∠ODK=45°,∴直线DE的解析式为y=-x+22,直线DK的解析式为y=x+22,∵d(T-⊙O)>0,∴观察图象可知满足条件的k的值为-1<k<1且k≠0.(3)如图3-1中,当点P在DE的右边时.∵D(5,5),∴∠DOP=45°,∵d(T-⊙P)=1,∴OP=5+1+2=8∴t=8.如图3-2中,当点P在∠DOE的外侧时,由题意可知OM=1,OP=1+2=3,t=-3.综上所述,满足条件的t的值为8或-3.6(2022秋•昌平区期末)已知:对于平面直角坐标系xOy中的点P和⊙O,⊙O的半径为4,交x轴于点A,B,对于点P给出如下定义:过点C的直线与⊙O交于点M,N,点P为线段MN的中点,我们把这样的点P叫做关于MN的“折弦点”.(1)若C(-2,0).①点P1(0,0),P2(-1,1),P3(2,2)中是关于MN的“折弦点”的是 P1,P2 ;②若直线y=kx+3(k≠0).上只存在一个关于MN的“折弦点”,求k的值;(2)点C在线段AB上,直线y=x+b上存在关于MN的“折弦点”,直接写出b的取值范围.【解答】解:(1)①连接OP,∵P点是弦MN的中点,∴OP⊥MN,∴∠CPO=90°,∴P点在以CO为直径的圆上,∵C(-2,0),∴P点在以(-1,0)为圆心,1为半径的圆上,∵点P1(0,0),P2(-1,1)在该圆上,∴点P1(0,0),P2(-1,1)是关于MN的“折弦点”,故答案为:P1,P2;②由①可知,P点在以(-1,0)为圆心,1为半径的圆上,设圆心D(-1,0),∵直线y=kx+3(k≠0)上只存在一个关于MN的“折弦点”,∴直线y=kx+3(k≠0)与圆D相切,过点D作DF垂直直线y=kx+3交于点F,∵直线y=kx+3与x轴交于点E-3k,0,与y轴交于点G(0,3),∴DE=-1+3k,OF=3k,OG=3,∵∠DFE=∠EOG=90°,∴ΔEGO∽ΔEFD,∴DF GO =ED EG,∴13=3k-13+3k2,解得k=3 3;(2)由(1)可知,P点在以OC为直径的圆上,∵直线y=x+b上存在关于MN的“折弦点”,∴直线y=x+b与圆D相交或相切,过D点作DF垂直直线y=x+b交于点F,∵直线y=x+b与x轴交于点(-b,0),与y轴交于点(0,b),当C点与A点重合时,b有最大值,此时D(-2,0),∴(-2+b)2=8,解得b=22+2或b=22+2(舍);当C点与B点重合时,b有最小值,此时D(2,0),∴(-b-2)2=8,解得b=22-2(舍)或b=-22-2;∴-22-2≤b≤22+2时,直线y=x+b上存在关于MN的“折弦点”.7(2022秋•东城区校级月考)如图,在平面直角坐标系xOy中,过⊙T外一点P引它的两条切线,切点分别为M,N,若60°<∠MPN<180°,则称P为⊙T的环绕点.(1)当⊙O半径为1时,①在P1(2,2),P2(2,0),P3(2,1)中,⊙O的环绕点是 P1 ;②直线y=3x+b与x轴交于点A,y轴交于点B,若线段AB上存在⊙O的环绕点,求b的取值范围;(2)⊙T的半径为2,圆心为(0,t),以-m,33m(m>0)为圆心,33m为半径的所有圆构成图形H,若在图形H上存在⊙T的环绕点,直接写出t的取值范围.【解答】解:(1)①如图,PM,PN是⊙T的两条切线,M,N为切点,连接TM,TN,当∠MPN=60°时,∵PT平分∠MPN,∴∠TPN=∠MPT=30°,∵TM⊥PM,TN⊥PN,∴∠TNP=∠PMT=90°,∴TP =2TM =2,以T 为圆心,TP 为半径作⊙T .观察图象可知:当60°<∠MPN <180°时,⊙T 的环绕点在图中的圆环内部(包括大圆上的点不包括小圆上的点),故答案为:P 1;②如图中,设小圆交y 轴的正半轴于F ,当直线y =3x +b 经过点F 时,b =1,当直线y =3x +b 与大圆相切于K (在第二象限)时,连接OK ,由题意B (0,b ),A -b 3,0,所以OB =b ,OA =b 3,AB =103b ,∵OK =2,12×AB ×OK =12×OA ×OB ,∴b =210,观察图象可知,当1<b <210时,线段AB 上存在⊙的环绕点,根据对称怀可知:当-210<b <-1时,线段AB 上存在⊙的环绕点,综上所述,满足条件的b 的值为1<b <210或-210<b <-1;(2)如图中,不妨设E -m ,33m (m >0),则点E 直线y =-33x 上,∵m >0,∴点E 在射线OE 上运动,作EM ⊥x 轴;∵E -m ,33m (m >0),∴OM =m ,EM =33m ,以E -m ,33m (m >0)为圆心,33m 为半径的⊙E 与x 轴相切,作⊙E 的切线ON ,观察图象可知:以E -m ,33m (m >0)为圆心,33m 为半径的所有圆构成图形H ,图形H 即为∠MON 的内部,包括射线OM ,ON 上,当⊙T 的圆心在y 轴的正半轴上时,假设以T 为圆心,4为半径的圆与射线ON 相切于D ,连接TD ,∵tan ∠EOM =EM OM=33,∴∠EOM =30°,∵OM ,ON 是⊙E 的切线,∴∠EON =∠EOM =30°.∴∠TOD =30°,∴OT =2DT =8,∴T (0,8),当⊙T 的圆心在y 轴的负半轴上时,且经过点O (0.0)时,T (0,-4),观察图象可知,当-4<t <8时,在图象上存在⊙T 的环绕点.8(2022秋•海淀区校级月考)对于平面直角坐标系中的线段AB 和点P (点P 不在线段AB 上),给出如下定义:当PA =PB 时,过点A (或点B )向直线PB (或PA )作垂线段,则称此垂线段为点P 关于线段AB 的“测度线段”,垂足称为点P 关于线段AB 的“测度点”.如图所示,线段AD 和BC 为点P 关于线段AB 的“测度线段”,点C 与点D为点P关于线段AB的“测度点”.(1)如图,点M(0,4)、N(2,0),①点P的坐标为(5,4),直接写出点P关于线段MN的“测度线段”的长度4;②点H为平面直角坐标系中的一点,且HM=HN,则下列四个点:Q1(0,0),Q2(3,3),Q3(1,0),Q4(0,4)中,是点H 关于线段MN的“测度点”的是;(2)直线y=-34x+6与x轴、y轴分别交于点A与点B,①点G为平面直角坐标系中一点,且GA=GB,若一次函数y=kx-14k+3上存在点G关于线段AB的“测度点”,直接写出k的取值范围为;②⊙O的半径为r,点C与点D均在⊙O上,且线段CD=65r.点K与点O位于线段CD的异侧,且KC=KD,若在线段AB上存在点K关于线段CD的“测度点”,直接写出r的取值范围为.【解答】解:(1)①∵M(0,4)、P(5,4),∴MP⎳x轴,∴点P关于线段MN的“测度线段”的长度为4,故答案为:4;②∵过点N作NF⊥MH交于F点,过点M作MG⊥NH交于点G,∵∠MFN=∠MGN=90°,∴F、G点在以MN为直径的圆上,设MN的中点为E,∵点M(0,4)、N(2,0),∴E(1,2),MN=25,∴点H关于线段MN的“测度点”在以E为圆心,5为半径的圆上,且不与M、N重合,∵Q1(0,0),Q2(3,3),Q3(1,0),Q4(0,4)中,Q1E=5,Q2E=5,Q3E=2,Q4E=5,∴Q1,Q2是点H关于线段MN的“测度点”,故答案为:Q1,Q2;(2)①当x=0时,y=6,∴B(0,6),当y=0时,x=8,∴A(8,0),∴AB的中点F(4,3),AB=10,由(1)可知,点G关于线段AB的“测度点”在以F为圆心,5为半径的圆上,且不与A、B点重合,∵一次函数y=kx-14k+3上存在点G关于线段AB的“测度点”,∴直线y=kx-14k+3与圆F相切或相交,过点F作FK垂直直线y=kx-14k+3交于点K,直线与y轴的交点为T,过点F作FL⎳KT交于交y轴于点L,过点L作SL⊥KT交于点S,∴LS =FK =5,∴LF 的直线解析式为y =kx -4k +3,∴L (0,-4k +3),T (0,-14k +3),∴TL =-10k ,∵sin ∠LTS =5-10k =11+k 2,∴k =±33,∴-33≤k ≤33时,一次函数y =kx -14k +3上存在点G 关于线段AB 的“测度点”,故答案为:-33≤k ≤33;②由(1)可知,K 点关于线段CD 的“测度点”在以CD 为直角的半圆上,且不与C 、D 重合,当CD ⎳AB ,且AB 与圆P 相切时,r 有最小值,由①可得,45=35r 6-r ,解得r =247,当CD 在AB 上时,r 有最大值,r =6,∴247≤r <6时,线段AB 上存在点K 关于线段CD 的“测度点”,故答案为:247≤r <6.9(2022•盐城一模)对于平面内的两点K 、L ,作出如下定义:若点Q 是点L 绕点K 旋转所得到的点,则称点Q 是点L 关于点K 的旋转点;若旋转角小于90°,则称点Q 是点L 关于点K 的锐角旋转点.如图1,点Q 是点L 关于点K 的锐角旋转点.(1)已知点A (4,0),在点Q 1(0,4),Q 2(2,23),Q 3(-2,23),Q 4(22,-22)中,是点A 关于点O 的锐角旋转点的是 Q 2,Q 4 .(2)已知点B (5,0),点C 在直线y =2x +b 上,若点C 是点B 关于点O 的锐角旋转点,求实数b 的取值范围.(3)点D 是x 轴上的动点,D (t ,0),E (t -3,0),点F (m ,n )是以D 为圆心,3为半径的圆上一个动点,且满足n ≥0.若直线y =2x +6上存在点F 关于点E 的锐角旋转点,请直接写出t 的取值范围.【解答】解:(1)如图,∵A (4,0),Q 1(0,4),∴OA =OQ 1=4,∠AOQ 1=90°,∴点Q 1不是点A 关于点O 的锐角旋转点;∵Q 2(2,23),作Q 2F ⊥x 轴于点F ,∴OQ 2=OF 2+Q 2F 2=22+(23)2=4=OA ,∵tan ∠Q 2OF =232=3,∴∠Q 2OF =60°,∴点Q 2是点A 关于点O 的锐角旋转点;∵Q 3(-2,23),作Q 3G ⊥x 轴于点G ,则tan ∠Q 3OG =Q 3G OG=232=3,∴∠Q3OG =60°,∴OQ 3=OG cos ∠Q 3OG =2cos60°=4=OA ,∵∠AOQ 3=180°-60°=120°,∴Q 3不是点A 关于点O 的锐角旋转点;∵Q 4(22,-22),作Q 4H ⊥x 轴于点H ,则tan ∠Q 4OH =Q 4H OH =2222=1,∴∠Q 4OH =45°,∵OQ 4=OH cos ∠Q 4OH =22cos45°=4=OA ,∴Q 4是点A 关于点O 的锐角旋转点;综上所述,在点Q 1,Q 2,Q 3,Q 4中,是点A 关于点O 的锐角旋转点的是Q 2,Q 4,故答案为:Q 2,Q 4.(2)在y 轴上取点P (0,5),当直线y =2x +b 经过点P 时,可得b =5,当直线y =2x +b 经过点B 时,则2×5+b =0,解得:b =-10,∴当-10<b <5时,OB 绕点O 逆时针旋转锐角时,点C 一定可以落在某条直线y =2x +b 上,过点O 作OG ⊥直线y =2x +b ,垂足G 在第四象限时,如图,则OT =-b ,OS =-12b ,∴ST =OS 2+OT 2=-12b 2+(-b )2=-52b ,当OG =5时,b 取得最小值,∵5×-52b =-b ×-12b ,∴b =-55,∴-55≤b <5.(3)根据题意,点F 关于点E 的锐角旋转点在半圆E 上,设点P 在半圆S 上,点Q 在半圆T 上(将半圆D 绕点E 旋转),如图3(1),半圆扫过的区域为图3(1)中阴影部分,如图3(2)中,阴影部分与直线y =2x +6相切于点G ,tan ∠EMG =2,SG =3,过点G 作GI ⊥x 轴于点I ,过点S 作SJ ⊥GI 于点J ,∴∠SGJ =∠EMG ,∴tan ∠SGJ =tan ∠EMG =2,∴GJ =355,SJ =655,∴GI =GJ +JI =3+355,∴MI =12GI =32+3510,∴OE =IE +MI -OM =352-32,即x E =t -3=352-32,解得t =352+32,如图3(3)中,阴影部分与HK 相切于点G ,tan ∠OMK =tan ∠EMH =2,EH =6,则MH =3,EM =35,∴x E =t -3=-3-35,解得t =-35,观察图象可知,-35≤t <3+352+32.10(2022秋•姜堰区期中)如图1,在平面内,过⊙T 外一点P 画它的两条切线,切点分别为M 、N ,若∠MPN ≥90°,则称点P 为⊙T 的“限角点”.(1)在平面直角坐标系xOy 中,当⊙O 半径为1时,在①P 1(1,0),②P 2-1,12,③P 3(-1,-1),④P 4(2,-1)中,⊙O 的“限角点”是②④;(填写序号)(2)如图2,⊙A 的半径为2,圆心为(0,2),直线l :y =-34x +b 交坐标轴于点B 、C ,若直线l 上有且只有一个⊙A 的“限角点”,求b 的值.(3)如图3,E (2,3)、F (1,2)、G (3,2),⊙D 的半径为2,圆心D 从原点O 出发,以2个单位/s 的速度沿直线l :y =x 向上运动,若ΔEFG 三边上存在⊙D 的“限角点”,请直接写出运动的时间t (s )的取值范围.【解答】解:(1)∵⊙O 半径为1,∴当P 为圆O 的“限角点”时,1<OP ≤2,∵OP 1=1,OP 2=52,OP 3=2,OP 4=5,∴⊙O 的“限角点”是P 2,P 3,故答案为:②③;(2)∵⊙A 的半径为2,∴当P 为圆A 的“限角点”时,2<AP ≤2,设直线l 上有且只有一个⊙O 的“限角点”P m ,-34m +b ,∴PA =2,此时AP ⊥BC ,令x =0,则y =b ,∴C (0,b ),令y =0,则x =43b ,∴B 43b ,0 ,∴tan ∠OCB =OB OC =43=AP CP ,∴CP =32,∴AC =52,∴|b -2|=52,∴b =92或b =-12;(3)∵圆心D 从原点O 出发,以2个单位/s 的速度沿直线l 移动,∴圆沿x 轴正方向移动t 个单位,沿y 轴正方向移动t 个单位,∴移动后D 点坐标为(t ,t ),设ΔEFG 边上的点P 是圆D 的“限角点”,则2<PD ≤2,在圆D 移动的过程中,当DF =2时,(t -1)2+(t -2)2=4,解得t =3-72或t =3+72,当t =3-72时,ΔEFG 边上开始出现⊙D 的“限角点”,当圆D 移动到E 点在圆上时,DE =2,(t -2)2+(t -3)2=2,解得t =5+32或t =5-32,∴3-72≤t <5-32时,ΔEFG 边上存在⊙D 的“限角点”,当圆D 再次移动到点F 在圆上时,DF =2,(t -2)2+(t -1)2=2,解得t =3+32或t 3-32,当t =3+32时,ΔEFG 三边上开始又要出现⊙D 的“限角点”;设直线EG 的解析式为y =kx +b ,直线y =x 与直线EG 的交点设为点H ,∴2k +b =33k +b=2 ,解得k =-1b =5 ,解得y =-x +5,联立方程组y =-x +5y =x,解得x =52y =52,∴H 52,52,当DH =2时,2t -52 2=4,解得t =2+52或t =-2+52,∴当t =2+52,ΔEFG 边上存在⊙D 的“限角点”,∴3+32<t ≤2+52时,ΔEFG 边上存在⊙D 的“限角点”;综上所述:3-72≤t <5-32或3+32<t ≤2+52时,ΔEFG 边上存在⊙D 的“限角点”.11(2022秋•西城区校级期中)在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P绕点M逆时针旋转90°,得到点P ,点P 关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图1,若点M在坐标原点,点N(1,1),①点P(-2,0)的“对应点”Q的坐标为 (2,0) ;②若点P的“对应点”Q的坐标为(-1,3),则点P的坐标为;(2)如图2,已知⊙O的半径为1,M是⊙O上一点,点N(0,2),若P(m,0)(m>1)为⊙O外一点,点Q为点P的“对应点”,连接PQ.①当点M(a,b)在第一象限时,求点Q的坐标(用含a,b,m的式子表示);②当点M在⊙O 上运动时,直接写出PQ长的最大值与最小值的积为.(用含m的式子表示)【解答】解:(1)①∵P(-2,0),∴P点绕点M逆时针旋转90°得到点P (0,-2),∵点P 关于点N的对称点为Q,∴Q(2,0);故答案为:(2,0);②∵Q的坐标为(-1,3),∴Q点关于N(1,1)的对称点为P (3,-1),将P 绕M点顺时针旋转90°得到点P,过P 作P F⊥x轴于点F,过点P作PE⊥x轴于点E,∵∠P OP=90°,∴∠POE+∠FOP =90°,∵∠EPO+∠EOP=90°,∴∠FOP =∠EPO,∵OP=OP ,∴ΔPOE≅△OP F(AAS),∴EO=P F=1,PE=OF=3,∴P(-1.-3),故答案为:(-1,-3);(2)①过点M作EF⊥x轴于点F,过点P 作P E⊥EF交于点E,由(1)可得ΔMPF≅△P ME(AAS),∴MF=EP ,FP=ME,∵M(a,b),P(m,0),∴EF=b+m-a,EP =b,∴P (a+b,b+m-a),∵点N(0,2),∴Q(-a-b,4-b-m+a);②P点绕O点逆时针旋转90°后得到点G,∴G(0,m),∵P (a+b,b+m-a),∴GP =2(a 2+b 2),∵M (a ,b )在圆O 上,∴a 2+b 2=1,∴GP =2,∴P 在以G 为圆心,2为半径的圆上,设G 点关于N 点的对称点为H ,则H (0,4-m ),∴QH =2(a 2+b 2)=2,∴Q 点在以H 为圆心2为半径的圆上,∴PQ 的最大值为PH +2,PQ 的最小值为PH -2,∴PQ 长的最大值与最小值的积为(PH +2)(PH -2)=2m 2-8m +14,故答案为:2m 2-8m +14.12(2022•秦淮区二模)【概念认识】与矩形一边相切(切点不是顶点)且经过矩形的两个顶点的圆叫做矩形的第Ⅰ类圆;与矩形两边相切(切点都不是顶点)且经过矩形的一个顶点的圆叫做矩形的第Ⅱ类圆.【初步理解】(1)如图①~③,四边形ABCD 是矩形,⊙O 1和⊙O 2都与边AD 相切,⊙O 2与边AB 相切,⊙O 1和⊙O 3都经过点B ,⊙O 3经过点D ,3个圆都经过点C .在这3个圆中,是矩形ABCD 的第Ⅰ类圆的是①,是矩形ABCD 的第Ⅱ类圆的是.【计算求解】(2)已知一个矩形的相邻两边的长分别为4和6,直接写出它的第Ⅰ类圆和第Ⅱ类圆的半径长.【深入研究】(3)如图④,已知矩形ABCD ,用直尺和圆规作图.(保留作图痕迹,并写出必要的文字说明)①作它的1个第Ⅰ类圆;②作它的1个第Ⅱ类圆.【解答】解:(1)由定义可得,①的矩形有一条边AD 与⊙O 1相切,点B 、C 在圆上,∴①是第Ⅰ类圆;②的矩形有两条边AD 、AB 与⊙O 2相切,点C 在圆上,∴②是第Ⅱ类圆;故答案为:①,②;(2)如图1,设AD =6,AB =4,切点为E ,过点O 作EF ⊥BC 交BC 于F ,交AD 于E ,连接BO ,设BO =r ,则OE =r ,OF =4-r ,由垂径定理可得,BF =CF =3,在Rt ΔBOF 中,r 2=(4-r )2+32,解得r =258;如图2,设AD =4,BC =6,切点为E ,过点O 作EF ⊥BC 交BC 于F ,交AD 于E ,连接BO ,设BO =r ,则OE =r ,OF =6-r ,由垂径定理可得,BF =CF =2,在Rt ΔBOF 中,r 2=(6-r )2+22,解得r =103;综上所述:第Ⅰ类圆的半径是258或103;如图3,AD =6,AB =4,过点O 作MN ⊥AD 交于点M ,交BC 于点N ,连接OC ,设AB 边与⊙O 的切点为G ,连接OG ,∴GO ⊥AB ,设OM =r ,则OC =r ,则ON =4-r ,∵OG =r ,∴BN =r ,∴NC =6-r ,在Rt ΔOCN 中,r 2=(4-r )2+(6-r )2,解得r =10-43,∴第Ⅱ类圆的半径是10-43;(3)①如图4,第一步,作线段AD 的垂直平分线交AD 于点E ,第二步,连接EC ,第三步,作EC 的垂直平分线交EF 于点O ,第四步,以O 为圆心,EO 为半径作圆,∴⊙O 即为所求第Ⅰ类圆;②如图5,第一步:作∠BAD 的平分线;第二步:在角平分线上任取点E ,过点E 作EF ⊥AD ,垂足为点F ;第三步:以点E 为圆心,EF 为半径作圆E ,交AC 于点G ,连接FG ;第四步:过点C 作CH ⎳FG ,CH 交AD 于点H ;第五步:过点H 作AD 的垂线,交∠BAD 的平分线于点O ;第六步:以点O 为圆心,OH 为半径的圆,⊙O 即为所求第Ⅱ类圆.13(2021秋•海淀区校级期末)新定义:在平面直角坐标系xOy 中,若几何图形G 与⊙A 有公共点,则称几何图形G 的叫⊙A 的关联图形,特别地,若⊙A 的关联图形G 为直线,则称该直线为⊙A 的关联直线.如图,∠M 为⊙A 的关联图形,直线l 为⊙A 的关联直线.(1)已知⊙O 是以原点为圆心,2为半径的圆,下列图形:①直线y =2x +2;②直线y =-x +3;③双曲线y =2x,是⊙O 的关联图形的是①③(请直接写出正确的序号).(2)如图1,⊙T 的圆心为T (1,0),半径为1,直线l :y =-x +b 与x 轴交于点N ,若直线l 是⊙T 的关联直线,求点N 的横坐标的取值范围.(3)如图2,已知点B (0,2),C (2,0),D (0,-2),⊙I 经过点C ,⊙I 的关联直线HB 经过点B ,与⊙I 的一个交点为P ;⊙I 的关联直线HD 经过点D ,与⊙I 的一个交点为Q ;直线HB ,HD 交于点H ,若线段PQ 在直线x =6上且恰为⊙I 的直径,请直接写出点H 横坐标h 的取值范围.【解答】解:(1)由题意①③是⊙O的关联图形,故答案为①③.(2)如图1中,∵直线l1y=-x+b是⊙T的关联直线,∴直线l的临界状态是和⊙T相切的两条直线l1和l2,当临界状态为l1时,连接TM(M为切点),∴TM=1,TM⊥MB,且∠MNO=45°,∴ΔTMN是等腰直角三角形,∴TN=2,OT=1,∴N(1+2,0),把N(1+2,0)代入y=-x+b中,得到b=1+2,同法可得当直线l2是临界状态时,b=-2+1,∴点N的横坐标的取值范围为-2+1≤N x≤2+1.(3)如图3-1中,当点Q在点P是上方时,连接BQ,PD交于点H,当圆心I在x轴上时,点H与点C重合,此时H(2,0),得到h的最大值为2,如图3-2中,当点P在点Q是上方时,直线PB,QD交于点H,当圆心I在x轴上时,点H(-6,0)得到h的最小值为-6,综上所述,-6≤h<0,0<h≤2.14(2022春•海淀区校级月考)定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段a与线段b的“冰雪距离”.已知O(0,0),A(1,1),B(m,n),C(m,n+2)是平面直角坐标系中四点.(1)根据上述定义,完成下面的问题:①当m=2,n=1时,如图1,线段BC与线段OA的“冰雪距离”是1.②当m=2时,线段BC与线段OA的“冰雪距离”是1,则n的取值范围是.(2)如图2,若点B落在圆心为A,半径为1的圆上,当n≥1时,线段BC与线段OA的“冰雪距离”记为d,结合图象,求d的最小值;(3)当m的值变化时,动线段BC与线段OA的“冰雪距离”始终为1,线段BC的中点为M.求点M随线段BC运动所走过的路径长.【解答】解:(1)①当m=2,n=1时,B(2,1),C(2,3).线段BC与线段OA的冰雪距离为AB=1.故答案为:1.②当m=2时,点A到直线BC的距离为1.若线段BC与线段OA的冰雪距离是1,则点A到BC的垂线的垂足在线段BC上,∴n≤1≤n+2,即-1≤n≤1.故答案为:-1≤n ≤1.(2)如图,B 2(0,1)为圆A 与y 轴的切点,B 11-22,1+22满足∠B 1AO =90°.当B 在B 1右侧时,冰雪距离d ≥B 1A =22.当B 在弧B 1B 2上时,冰雪距离d 为点B 到OA 的距离,结合图象可知,当且仅当B 处在点B 2时,d 取最小值22.(3)如图,当点B 位于图中弧DI 、线段IH 、弧HG 时,线段BC 与线段OA 的“冰雪距离”始终为1.当点C 位于图中弧DE 、线段EF 、弧FG 时,线段BC 与线段OA 的“冰雪距离”始终为1.当线段BC 由图中B 1D 向上平移到DC 3时,或由B 2G 向上平移到GC 4时,线段BC 与线段OA 的“冰雪距离”始终为1.对应中点M 所走过的路线长为:2π+4+22.15(2022•东城区校级开学)对于⊙C 和⊙C 上的一点A ,若平面内的点P 满足:射线AP 与⊙C 交于点Q (点Q 可以与点P 重合),且1≤PAQA ≤2,则点P 称为点A 关于⊙C 的“生长点”.已知点O 为坐标原点,⊙O 的半径为1,点A (-1,0).(1)若点P 是点A 关于⊙O 的“生长点”,且点P 在x 轴上,请写出一个符合条件的点P 的坐标 (2,0)(答案不唯一);(2)若点B 是点A 关于⊙O 的“生长点”,且满足∠BAO =30°,求点B 的纵坐标t 的取值范围;(3)直线y =3x +b 与x 轴交于点M ,且与y 轴交于点N ,若线段MN 上存在点A 关于⊙O 的“生长点”,直接写出b 的取值范围是.【解答】解:(1)根据“生长点”定义,点P 的坐标可以是(2,0),故答案为:(2,0)(答案不唯一);(2)如图,在x 轴上方作射线AM ,与⊙O 交于M ,使得∠OAM =30°,并在射线AM 上取点N ,使AM =MN ,并由对称性,将MN 关于x 轴对称,得M N ,则由题意,线段MN 和M N 上的点是满足条件的点B .作MH ⊥x 轴于H ,连接MC ,∴∠MHA =90°,即∠OAM +∠AMH =90°.∵AC 是⊙O 的直径,∴∠AMC =90°,即∠AMH +∠HMC =90°.∴∠OAM =∠HMC =30°.∴tan30°=MH AH=HC MH =33,设MH=y,则AH=3y,CH=33y,∴AC=AH+CH=433y=2,解得y=32,即点M的纵坐标为32.又由AN=2AM,A为(-1,0),可得点N的纵坐标为3,故在线段MN上,点B的纵坐标t满足:32≤t≤3,由对称性,在线段M N 上,点B的纵坐标t满足:?3≤t≤?3 2,∴点B的纵坐标t的取值范围是:32≤t≤3或?3≤t≤?32.(3)如图,Q是⊙O上异于点A的任意一点,延长AQ到P,使得PA=2AQ,∵Q的轨迹是以O为圆心,1为半径的圆,∴点P的运动轨迹是以K(1,0)为圆心,2为半径的圆,当直线MN与⊙K相切于点R时,连接KR,在RtΔKMR中,∠KRM=90°,∵直线y=3x+b与x轴夹角为60°,∴∠KMR=60°,KR=2,∴KM=2÷sin60°=433,∴OM=1+433,∴ON=3OM=4+3,∴b=-4-3,当直线MN经过G(0,-1)时,满足条件,此时b=-1,观察图象可知:当-4-3≤b≤-1时,线段MN上存在点A关于⊙O的“生长点”,根据对称性,同法可得当1≤b≤4-3时,也满足条件.故答案为:-4-3≤b≤-1或1≤b≤4-3.16(2022•东城区校级开学)在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N 上,称线段PQ长度的最小值为图形M,N的“近距离”,记为d(M,N).特别地,若图形M,N有公共点,规定d(M,N)=0,如图,点A(-23,0),B(0,2).(1)如果⊙O的半径为2,那么d(A,⊙O)= 23-2 ,d(B,⊙O)=;(2)如果⊙O的半径为r,且d(⊙O,AB)>0,求r的取值范围;(3)如果C(0,m)是y轴上的动点,⊙C的半径为1,使d(⊙C,AB)<1,直接写出m的取值范围为.【解答】解:(1)∵⊙O的半径为2,A(-23,0),B(0,2),∴OB=2,OA=23>2,∴点A在⊙O外,点B在⊙O上,∴d(A,⊙O)=23-2,d(B,⊙O)=0,故答案为:23-2;0;(2)如图1,过点O 作OD ⊥AB 于点D ,在Rt ΔAOB 中,∵tan ∠BAO =OB OA =223=33,∴∠BAO =30°.在Rt ΔADO 中,sin ∠BAO =DO OA =12=DO23,∴DO =3,∵d (⊙O ,AB )=0,∴r 的取值范围是0<r <3或r >23;(3)如图2,过点C 作CN ⊥AB 于点N ,由(2)知,∠BAO =30°.∵C (m ,0),当点C 在点B 的上边时,m >2,此时,d (⊙C ,AB )=BC ,∴BC ≤1,即m -2≤1,解得m ≤3;当点C 与点B 重合时,m =2,此时d (⊙C ,AB )=0,当点C 在点B 的下边时,m <2,∴BC =2-m ,∴CN =BC ⋅sin ∠OBA =32(2-m ).∵d (⊙C ,AB )<1,⊙C 的半径为1,∴0<32(2-m )<1.∴2-233<m <2.综上所述:2-233<m ≤3.故答案为:2-233<m ≤3.17(2021秋•润州区校级月考)在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P 关于⊙C 的反称点的定义如下:若在射线CP 上存在一点P ′,满足CP +CP ′=2r ,则称P ′为点P 关于⊙C 的反称点,如图为点P 及其关于⊙C 的反称点P ′的示意图.(1)当⊙O 的半径为1时,①分别判断点M (3,1),N 32,0,T (-1,3)关于⊙O 的反称点是否存在?若存在,直接求其坐标;②将⊙O 沿x 轴水平向右平移1个单位为⊙O ′,点P 在直线y =-x +1上,若点P 关于⊙O ′的反称点P ′存在,且点P ′不在坐标轴上,则点P 的横坐标的取值范围 1-2≤x ≤1+2且x ≠2-2 ;(2)⊙C 的圆心在x 轴上,半径为1,直线y =-x +12与x 轴,y 轴分别交于点A 、B ,点E 与点D 分别在点A 与点B 的右侧2个单位,线段AE 、线段BD 都是水平的,若四边形ABDE 四边上存在点P ,使得点P 关于⊙C 的反称点P ′在⊙C 的内部,直接写出圆心C 的横坐标的取值范围.。

中考数学28道压轴题含答案解析

中考数学28道压轴题含答案解析

中考数学选填压轴题练习一.根的判别式(共1小题)1.(2023•广州)已知关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,则的化简结果是()A.﹣1B.1C.﹣1﹣2k D.2k﹣3【分析】首先根据关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,得判别式Δ=[﹣(2k﹣2)]2﹣4×1×(k2﹣1)≥0,由此可得k≤1,据此可对进行化简.【解答】解:∵关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,∴判别式Δ=[﹣(2k﹣2)]2﹣4×1×(k2﹣1)≥0,整理得:﹣8k+8≥0,∴k≤1,∴k﹣1≤0,2﹣k>0,∴=﹣(k﹣1)﹣(2﹣k)=﹣1.故选:A.二.函数的图象(共1小题)2.(2023•温州)【素材1】某景区游览路线及方向如图1所示,①④⑥各路段路程相等,⑤⑦⑧各路段路程相等,②③两路段路程相等.【素材2】设游玩行走速度恒定,经过每个景点都停留20分钟,小温游路线①④⑤⑥⑦⑧用时3小时25分钟;小州游路线①②⑧,他离入口的路程s与时间t的关系(部分数据)如图2所示,在2100米处,他到出口还要走10分钟.【问题】路线①③⑥⑦⑧各路段路程之和为()A.4200米B.4800米C.5200米D.5400米【分析】设①④⑥各路段路程为x米,⑤⑦⑧各路段路程为y米,②③各路段路程为z米,由题意及图象可知,然后根据“游玩行走速度恒定,经过每个景点都停留20分钟,小温游路线①④⑤⑥⑦⑧用时3小时25分钟”可进行求解.【解答】解:由图象可知:小州游玩行走的时间为75+10﹣40=45(分钟),小温游玩行走的时间为205﹣100=105(分钟),设①④⑥各路段路程为x米,⑤⑦⑧各路段路程为y米,②③各路段路程为z米由图象可得:,解得:x+y+z=2700,∴游玩行走的速度为:(2700﹣2100)÷10=60 (米/分),由于游玩行走速度恒定,则小温游路线①④⑤⑥⑦⑧的路程为:3x+3y=105×60=6300,∴x+y=2100,∴路线①③⑥⑦⑧各路段路程之和为:2x+2y+z=x+y+z+x+y=2700+2100=4800(米).故选:B.三.动点问题的函数图象(共1小题)3.(2023•河南)如图1,点P从等边三角形ABC的顶点A出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B.设点P运动的路程为,图2是点P运动时y随x变化的关系图象,则等边三角形ABC的边长为()A.6B.3C.D.【分析】如图,令点P从顶点A出发,沿直线运动到三角形内部一点O,再从点O沿直线运动到顶点B,结合图象可知,当点P在AO上运动时,PB=PC,AO=,易知∠BAO=∠CAO=30°,当点P在OB上运动时,可知点P到达点B时的路程为,可知AO=OB=,过点O作OD⊥AB,解直角三角形可得AD=AO•cos30°,进而得出等边三角形ABC的边长.【解答】解:如图,令点P从顶点A出发,沿直线运动到三角形内部一点O,再从点O沿直线运动到顶点B,\结合图象可知,当点P在AO上运动时,,∴PB=PC,,又∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∴△APB≌△APC(SSS),∴∠BAO=∠CAO=30°,当点P在OB上运动时,可知点P到达点B时的路程为,∴OB=,即AO=OB=,∴∠BAO=∠ABO=30°,过点O作OD⊥AB,垂足为D,∴AD=BD,则AD=AO•cos30°=3,∴AB=AD+BD=6,即等边三角形ABC的边长为6.故选:A.四.反比例函数系数k的几何意义(共1小题)4.(2023•宁波)如图,点A,B分别在函数y=(a>0)图象的两支上(A在第一象限),连结AB交x 轴于点C.点D,E在函数y=(b<0,x<0)图象上,AE∥x轴,BD∥y轴,连结DE,BE.若AC =2BC,△ABE的面积为9,四边形ABDE的面积为14,则a﹣b的值为12,a的值为9.【分析】依据题意,设A(m,),再由AE∥x轴,BD∥y轴,AC=2BC,可得B(﹣2m,﹣),D (﹣2m,﹣),E(,),再结合△ABE的面积为9,四边形ABDE的面积为14,即可得解.【解答】解:设A(m,),∵AE∥x轴,且点E在函数y=上,∴E(,).∵AC=2BC,且点B在函数y=上,∴B(﹣2m,﹣).∵BD∥y轴,点D在函数y=上,∴D(﹣2m,﹣).∵△ABE的面积为9,∴S△ABE=AE×(+)=(m﹣)(+)=m••==9.∴a﹣b=12.∵△ABE的面积为9,四边形ABDE的面积为14,∴S△BDE=DB•(+2m)=(﹣+)()m=(a﹣b)••()•m=3()=5.∴a=﹣3b.又a﹣b=12.∴a=9.故答案为:12,9.五.反比例函数图象上点的坐标特征(共2小题)5.(2023•德州)如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(6,3),D是OA的中点,AC,BD交于点E,函数的图象过点B.E.且经过平移后可得到一个反比例函数的图象,则该反比例函数的解析式()A.y=﹣B.C.D.【分析】先根据函数图象经过点B和点E,求出a和b,再由所得函数解析式即可解决问题.【解答】解:由题知,A(6,0),B(6,3),C(0,3),令直线AC的函数表达式为y1=k1x+b1,则,解得,所以.又因为点D为OA的中点,所以D(3,0),同理可得,直线BD的函数解析式为y2=x﹣3,由得,x=4,则y=4﹣3=1,所以点E坐标为(4,1).将B,E两点坐标代入函数解析式得,,解得.所以,则,将此函数图象向左平移3个单位长度,再向下平移4个单位长度,所得图象的函数解析式为:.故选:D.6.如图,O是坐标原点,Rt△OAB的直角顶点A在x轴的正半轴上,AB=2,∠AOB=30°,反比例函数y=(k>0)的图象经过斜边OB的中点C.(1)k=;(2)D为该反比例函数图象上的一点,若DB∥AC,则OB2﹣BD2的值为4.【分析】(1)根据直角三角形的性质,求出A、B两点坐标,作出辅助线,证得△OPC≌△APC(HL),利用勾股定理及待定系数法求函数解析式即可解答.(2)求出AC、BD的解析式,再联立方程组,求得点D的坐标,分两种情况讨论即可求解.【解答】解:(1)在Rt△OAB中,AB=2,∠AOB=30°,∴,∴,∵C是OB的中点,∴OC=BC=AC=2,如图,过点C作CP⊥OA于P,∴△OPC≌△APC(HL),∴,在Rt△OPC中,PC=,∴C(,1).∵反比例函数y=(k>0)的图象经过斜边OB的中点C,∴,解得k=.故答案为:.(2)设直线AC的解析式为y=k1x+b(k≠0),则,解得,∴AC的解析式为y=﹣x+2,∵AC∥BD,∴直线BD的解析式为y=﹣x+4,∵点D既在反比例函数图象上,又在直线BD上,∴联立得,解得,,当D的坐标为(2+3,)时,BD2==9+3=12,∴OB2﹣BD2=16﹣12=4;当D的坐标为(2﹣3,)时,BD2=+=9+3=12,∴OB2﹣BD2=16﹣12=4;综上,OB2﹣BD2=4.故答案为:4.六.反比例函数与一次函数的交点问题(共1小题)7.(2023•湖州)已知在平面直角坐标系中,正比例函数y=k1x(k1>0)的图象与反比例函数(k2>0)的图象的两个交点中,有一个交点的横坐标为1,点A(t,p)和点B(t+2,q)在函数y=k1x的图象上(t≠0且t≠﹣2),点C(t,m)和点D(t+2,n)在函数的图象上.当p﹣m与q﹣n的积为负数时,t的取值范围是()A.或B.或C.﹣3<t<﹣2或﹣1<t<0D.﹣3<t<﹣2或0<t<1【分析】将交点的横坐标1代入两个函数,令二者函数值相等,得k1=k2.令k1=k2=k,代入两个函数表达式,并分别将点A、B的坐标和点C、D的坐标代入对应函数,进而分别求出p﹣m与q﹣n的表达式,代入解不等式(p﹣m)(q﹣n)<0并求出t的取值范围即可.【解答】解:∵y=k1x(k1>0)的图象与反比例函数(k2>0)的图象的两个交点中,有一个交点的横坐标为1,∴k1=k2.令k1=k2=k(k>0),则y=k1x=kx,=.将点A(t,p)和点B(t+2,q)代入y=kx,得;将点C(t,m)和点D(t+2,n)代入y=,得.∴p﹣m=kt﹣=k(t﹣),q﹣n=k(t+2)﹣=k(t+2﹣),∴(p﹣m)(q﹣n)=k2(t﹣)(t+2﹣)<0,∴(t﹣)(t+2﹣)<0.∵(t﹣)(t+2﹣)=•=<0,∴<0,∴t(t﹣1)(t+2)(t+3)<0.①当t<﹣3时,t(t﹣1)(t+2)(t+3)>0,∴t<﹣3不符合要求,应舍去.②当﹣3<t<﹣2时,t(t﹣1)(t+2)(t+3)<0,∴﹣3<t<﹣2符合要求.③当﹣2<t<0时,t(t﹣1)(t+2)(t+3)>0,∴﹣2<t<0不符合要求,应舍去.④当0<t<1时,t(t﹣1)(t+2)(t+3)<0,∴0<t<1符合要求.⑤当t>1时,t(t﹣1)(t+2)(t+3)>0,∴t>1不符合要求,应舍去.综上,t的取值范围是﹣3<t<﹣2或0<t<1.故选:D.七.二次函数图象与系数的关系(共3小题)8.(2023•乐至县)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,且过点(1,0).现有以下结论:①abc<0;②5a+c=0;③对于任意实数m,都有2b+bm≤4a﹣am2;④若点A(x1,y1)、B(x2,y2)是图象上任意两点,且|x1+2|<|x2+2|,则y1<y2,其中正确的结论是()A.①②B.②③④C.①②④D.①②③④【分析】根据题意和函数图象,利用二次函数的性质,可以判断各个小题中的结论是否正确,从而可以解答本题.【解答】解:由图象可得,a>0,b>0,c<0,∴abc<0,故①正确,∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,且过点(1,0).∴﹣=﹣2,a+b+c=0,∴b=4a,∴a+b+c=a+4a+c=0,故5a+c=0,故②正确,∵当x=﹣2时,y=4a﹣2b+c取得最小值,∴am2+bm+c≥4a﹣2b+c,即2b+bm≥4a﹣am2(m为任意实数),故③错误,∵抛物线开口向上,对称轴为直线x=﹣2,若点A(x1,y1)、B(x2,y2)是图象上任意两点,且|x1+2|<|x2+2|,∴y1<y2,故④正确;故选:C.9.(2023•丹东)抛物线y=ax2+bx+c(a≠0)与x轴的一个交点为A(﹣3,0),与y轴交于点C,点D是抛物线的顶点,对称轴为直线x=﹣1,其部分图象如图所示,则以下4个结论:①abc>0;②E(x1,y1),F(x2,y2)是抛物线y=ax2+bx(a≠0)上的两个点,若x1<x2,且x1+x2<﹣2,则y1<y2;③在x轴上有一动点P,当PC+PD的值最小时,则点P的坐标为;④若关于x的方程ax2+b(x﹣2)+c =﹣4(a≠0)无实数根,则b的取值范围是b<1.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】根据所给函数图象可得出a,b,c的正负,再结合抛物线的对称性和增减性即可解决问题.【解答】解:根据所给函数图象可知,a>0,b>0,c<0,所以abc<0,故①错误.因为抛物线y=ax2+bx的图象可由抛物线y=ax2+bx+c的图象沿y轴向上平移|c|个单位长度得到,所以抛物线y=ax2+bx的增减性与抛物线y=ax2+bx+c的增减性一致.则当x<﹣1时,y随x的增大而减小,又x1<x2,且x1+x2<﹣2,若x2<﹣1,则E,F两点都在对称轴的左侧,此时y1>y2.故②错误.作点C关于x轴的对称点C′,连接C′D与x轴交于点P,连接PC,此时PC+PD的值最小.将A(﹣3,0)代入二次函数解析式得,9a﹣3b+c=0,又,即b=2a,所以9a﹣6a+c=0,则c=﹣3a.又抛物线与y轴的交点坐标为C(0,c),则点C坐标为(0,﹣3a),所以点C′坐标为(0,3a).又当x=﹣1时,y=﹣4a,即D(﹣1,﹣4a).设直线C′D的函数表达式为y=kx+3a,将点D坐标代入得,﹣k+3a=﹣4a,则k=7a,所以直线C′D的函数表达式为y=7ax+3a.将y=0代入得,x=.所以点P的坐标为(,0).故③正确.将方程ax2+b(x﹣2)+c=﹣4整理得,ax2+bx+c=2b﹣4,因为方程没有实数根,所以抛物线y=ax2+bx+c与直线y=2b﹣4没有公共点,所以2b﹣4<﹣4a,则2b﹣4<﹣2b,解得b<1,又b>0,所以0<b<1.故④错误.所以正确的有③.故选:A.10.(2023•河北)已知二次函数y=﹣x2+m2x和y=x2﹣m2(m是常数)的图象与x轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为()A.2B.m2C.4D.2m2【分析】求出三个交点的坐标,再构建方程求解.【解答】解:令y=0,则﹣x2+m2x=0和x2﹣m2=0,∴x=0或x=m2或x=﹣m或x=m,∵这四个交点中每相邻两点间的距离都相等,若m>0,则m2=2m,∴m=2,若m<0时,则m2=﹣2m,∴m=﹣2.∵抛物线y=x2﹣m2的对称轴为直线x=0,抛物线y=﹣x2+m2x的对称轴为直线x=,∴这两个函数图象对称轴之间的距离==2.故选:A.八.二次函数图象上点的坐标特征(共1小题)11.(2023•广东)如图,抛物线y=ax2+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac 的值为()A.﹣1B.﹣2C.﹣3D.﹣4【分析】过A作AH⊥x轴于H,根据正方形的性质得到∠AOB=45°,得到AH=OH,利用待定系数法求得a、c的值,即可求得结论.【解答】解:过A作AH⊥x轴于H,∵四边形ABCO是正方形,∴∠AOB=45°,∴∠AOH=45°,∴AH=OH,设A(m,m),则B(0,2m),∴,解得am=﹣1,m=,∴ac的值为﹣2,故选:B.九.二次函数与不等式(组)(共1小题)12.(2023•西宁)直线y1=ax+b和抛物线(a,b是常数,且a≠0)在同一平面直角坐标系中,直线y1=ax+b经过点(﹣4,0).下列结论:①抛物线的对称轴是直线x=﹣2;②抛物线与x轴一定有两个交点;③关于x的方程ax2+bx=ax+b有两个根x1=﹣4,x2=1;④若a >0,当x<﹣4或x>1时,y1>y2.其中正确的结论是()A.①②③④B.①②③C.②③D.①④【分析】根据直线y1=ax+b经过点(﹣4,0).得到b=4a,于是得到=ax2+4ax,求得抛物线的对称轴是直线x=﹣﹣=2;故①正确;根据Δ=16a2>0,得到抛物线与x轴一定有两个交点,故②正确;把b=4a,代入ax2+bx=ax+b得到x2+3x﹣4=0,求得x1=﹣4,x2=1;故③正确;根据a>0,得到抛物线的开口向上,直线y1=ax+b和抛物线交点横坐标为﹣4,1,于是得到结论.【解答】解:∵直线y1=ax+b经过点(﹣4,0).∴﹣4a+b=0,∴b=4a,∴=ax2+4ax,∴抛物线的对称轴是直线x=﹣﹣=2;故①正确;∵=ax2+4ax,∴Δ=16a2>0,∴抛物线与x轴一定有两个交点,故②正确;∵b=4a,∴方程ax2+bx=ax+b为ax2+4ax=ax+4a得,整理得x2+3x﹣4=0,解得x1=﹣4,x2=1;故③正确;∵a>0,抛物线的开口向上,直线y1=ax+b和抛物线交点横坐标为﹣4,1,∴当x<﹣4或x>1时,y1<y2.故④错误,故选:B.一十.三角形中位线定理(共1小题)13.(2023•广州)如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,点M是边AC上一动点,点D,E分别是AB,MB的中点,当AM=2.4时,DE的长是 1.2.若点N在边BC上,且CN=AM,点F,G分别是MN,AN的中点,当AM>2.4时,四边形DEFG面积S的取值范围是3≤S≤4.【分析】依据题意,根据三角形中位线定理可得DE=AM=1.2;设AM=x,从而DE=x,由DE∥AM,且DE=AM,又FG∥AM,FG=AM,进而DE∥FG,DE=FG,从而四边形DEFG是平行四边形,结合题意可得DE边上的高为(4﹣x),故四边形DEFG面积S=4x﹣x2,进而利用二次函数的性质可得S的取值范围.【解答】解:由题意,点D,E分别是AB,MB的中点,∴DE是三角形ABM的中位线.∴DE=AM=1.2.如图,设AM=x,∴DE=AM=x.由题意得,DE∥AM,且DE=AM,又FG∥AM,FG=AM,∴DE∥FG,DE=FG.∴四边形DEFG是平行四边形.由题意,GF到AC的距离是x,BC==8,∴DE边上的高为(4﹣x).∴四边形DEFG面积S=2x﹣x2,=﹣(x﹣4)2+4.∵2.4<x≤6,∴3≤S≤4.故答案为:1.2;3≤S≤4.一十一.矩形的性质(共2小题)14.(2023•宁波)如图,以钝角三角形ABC的最长边BC为边向外作矩形BCDE,连结AE,AD,设△AED,△ABE,△ACD的面积分别为S,S1,S2,若要求出S﹣S1﹣S2的值,只需知道()A.△ABE的面积B.△ACD的面积C.△ABC的面积D.矩形BCDE的面积【分析】作AG⊥ED于点G,交BC于点F,可证明四边形BFGE是矩形,AF⊥BC,可推导出S﹣S1﹣S2=ED•AG﹣BE•EG﹣CD•DG=ED•AG﹣FG•ED=BC•AF=S△ABC,所以只需知道S△ABC,就可求出S﹣S1﹣S2的值,于是得到问题的答案.【解答】解:作AG⊥ED于点G,交BC于点F,∵四边形BCDE是矩形,∴∠FBE=∠BEG=∠FGE=90°,BC∥ED,BC=ED,BE=CD,∴四边形BFGE是矩形,∠AFB=∠FGE=90°,∴FG=BE=CD,AF⊥BC,∴S﹣S1﹣S2=ED•AG﹣BE•EG﹣CD•DG=ED•AG﹣FG•ED=BC•AF=S△ABC,∴只需知道S△ABC,就可求出S﹣S1﹣S2的值,故选:C.15.(2023•河南)矩形ABCD中,M为对角线BD的中点,点N在边AD上,且AN=AB=1.当以点D,M,N为顶点的三角形是直角三角形时,AD的长为2或1+.【分析】以点D,M,N为顶点的三角形是直角三角形时,分两种情况:如图1,当∠MND=90°时,如图2,当∠NMD=90°时,根据矩形的性质和等腰直角三角形的性质即可得到结论.【解答】解:以点D,M,N为顶点的三角形是直角三角形时,分两种情况:①如图1,当∠MND=90°时,则MN⊥AD,∵四边形ABCD是矩形,∴∠A=90°,∴MN∥AB,∵M为对角线BD的中点,∴AN=DN,∵AN=AB=1,∴AD=2AN=2;如图2,当∠NMD=90°时,则MN⊥BD,∵M为对角线BD的中点,∴BM=DM,∴MN垂直平分BD,∴BN=DN,∵∠A=90°,AB=AN=1,∴BN=AB=,∴AD=AN+DN=1+,综上所述,AD的长为2或1+.故答案为:2或1+.一十二.正方形的性质(共2小题)16.如图,在边长为4的正方形ABCD中,点G是BC上的一点,且BG=3GC,DE⊥AG于点E,BF∥DE,且交AG于点F,则tan∠EDF的值为()A.B.C.D.【分析】由正方形ABCD的边长为4及BG=3CG,可求出BG的长,进而求出AG的长,证△ADE∽△GAB,利用相似三角形对应边成比例可求得AE、DE的长,证△ABF≌△DAE,得AF=DE,根据线段的和差求得EF的长即可.【解答】解:∵四边形ABCD是正方形,AB=4,∴BC=CD=DA=AB=4,∠BAD=∠ABC=90°,AD∥BC,∴∠DAE=∠AGB,∵BG=3CG,∴BG=3,∴在Rt△ABG中,AB2+BG2=AG2,∴AG=,∵DE⊥AG,∴∠DEA=∠DEF=∠ABC=90°,∴△ADE∽△GAB,∴AD:GA=AE:GB=DE:AB,∴4:5=AE:3=DE:4,∴AE=,DE=,又∵BF∥DE,∴∠AFB=∠DEF=90°,又∵AB=AD,∠DAE=∠ABF(同角的余角相等),∴△ABF≌△DAE,∴AF=DE=,∴EF=AF﹣AE=,∴tan∠EDF=,故选:A.17.(2023•湖州)如图,标号为①,②,③,④的四个直角三角形和标号为⑤的正方形恰好拼成对角互补的四边形ABCD,相邻图形之间互不重叠也无缝隙,①和②分别是等腰Rt△ABE和等腰Rt△BCF,③和④分别是Rt△CDG和Rt△DAH,⑤是正方形EFGH,直角顶点E,F,G,H分别在边BF,CG,DH,AE上.(1)若EF=3cm,AE+FC=11cm,则BE的长是4cm.(2)若,则tan∠DAH的值是3.【分析】(1)将AE和FC用BE表示出来,再代入AE+FC=11cm,即可求出BE的长;(2)由已知条件可以证明∠DAH=∠CDG,从而得到tan∠DAH=tan∠CDG,设AH=x,DG=5k,GH =4k,用x和k的式子表示出CG,再利用tan∠DAH=tan∠CDG列方程,解出x,从而求出tan∠DAH 的值.【解答】解:(1)∵Rt△ABE和Rt△BCF都是等腰直角三角形,∴AE=BE,BF=CF,∵AE+FC=11cm,∴BE+BF=11cm,即BE+BE+EF=11cm,即2BE+EF=11cm,∵EF=3cm,∴2BE+3cm=11cm,∴BE=4cm,故答案为:4;(2)设AH=x,∵,∴可设DG=5k,GH=4k,∵四边形EFGH是正方形,∴HE=EF=FG=GH=4k,∵Rt△ABE和Rt△BCF都是等腰直角三角形,∴AE=BE,BF=CF,∠ABE=∠CBF=45°,∴CG=CF+GF=BF+4k=BE+8k=AH+12k=x+12k,∠ABC=∠ABE+∠CBF=45°+45°=90°,∵四边形ABCD对角互补,∴∠ADC=90°,∴∠ADH+∠CDG=90°,∵四边形EFGH是正方形,∴∠AHD=∠CGD=90°,∴∠ADH+∠DAH=90°,∴∠DAH=∠CDG,∴tan∠DAH=tan∠CDG,∴,即,整理得:x2+12kx﹣45k2=0,解得x1=3k,x2=﹣15k(舍去),∴tan∠DAH===3.故答案为:3.一十三.正多边形和圆(共1小题)18.(2023•河北)将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l上.两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l平行,有两边分别经过两侧正六边形的一个顶点.则图2中:(1)∠α=30度;(2)中间正六边形的中心到直线l的距离为2(结果保留根号).【分析】(1)作图后,结合正多边形的外角的求法即可得到结论;(2)把问题转化为图形问题,首先作出图形,标出相应的字母,把正六边形的中心到直线l的距离转化为求ON=OM+BE,再根据正六边形的性质以及三角函数的定义,分别求出OM,BE即可.【解答】解:(1)作图如图所示,∵多边形是正六边形,∴∠ACB=60°,∵BC∥直线l,∴∠ABC=90°,∴α=30°;故答案为:30°;(2)取中间正六边形的中心为O,作图如图所示,由题意得,AG∥BF,AB∥GF,BF⊥AB,∴四边形ABFG为矩形,∴AB=GF,∵∠BAC=∠FGH,∠ABC=∠GFH=90°,∴△ABC≌△GFH(SAS),∴BC=FH,在Rt△PDE中,DE=1,PE=,由图1知AG=BF=2PE=2,OM=PE=,∵,∴,∴,∵,∴,∴.∴中间正六边形的中心到直线l的距离为2,故答案为:2.一十四.扇形面积的计算(共1小题)19.(2023•温州)图1是4×4方格绘成的七巧板图案,每个小方格的边长为,现将它剪拼成一个“房子”造型(如图2),过左侧的三个端点作圆,并在圆内右侧部分留出矩形CDEF作为题字区域(点A,E,D,B在圆上,点C,F在AB上),形成一幅装饰画,则圆的半径为5.若点A,N,M在同一直线上,AB∥PN,DE=EF,则题字区域的面积为.【分析】根据不共线三点确定一个圆,根据对称性得出圆心的位置,进而垂径定理、勾股定理求得r,连接OE,取ED的中点T,连接OT,在Rt△OET中,根据勾股定理即可求解.【解答】解:如图所示,依题意,GH=2=GQ,∵过左侧的三个端点Q,K,L作圆,QH=HL=4,又NK⊥QL,∴O在KN上,连接OQ,则OQ为半径,∵OH=r﹣KH=r﹣2,在Rt△OHQ中,OH2+QH2=QO2,∴(r﹣2)2+42=r2,解得:r=5;连接OE,取ED的中点T,连接OT,交AB于点S,连接PB,AM,过点O作OU⊥AM于点U.连接OA.由△OUN∽△NPM,可得==,∴OU=.MN=2,∴NU=,∴AU==,∴AN=AU﹣NU=2,∴AN=MN,∵AB∥PN,∴AB⊥OT,∴AS=SB,∴NS∥BM,∴NS∥MP,∴M,P,B共线,又NB=NA,∴∠ABM=90°,∵MN=NB,NP⊥MP,∴MP=PB=2,∴NS=MB=2,∵KH+HN=2+4=6,∴ON=6﹣5=1,∴OS=3,∵,设EF=ST=a,则,在Rt△OET中,OE2=OT2+TE2,即,整理得5a2+12a﹣32=0,即(a+4)(5a﹣8)=0,解得:或a=﹣4,∴题字区域的面积为.故答案为:.一十五.轴对称-最短路线问题(共1小题)20.(2023•安徽)如图,E是线段AB上一点,△ADE和△BCE是位于直线AB同侧的两个等边三角形,点P,F分别是CD,AB的中点.若AB=4,则下列结论错误的是()A.P A+PB的最小值为3B.PE+PF的最小值为2C.△CDE周长的最小值为6D.四边形ABCD面积的最小值为3【分析】延长AD,BC交于M,过P作直线l∥AB,由△ADE和△BCE是等边三角形,可得四边形DECM 是平行四边形,而P为CD中点,知P为EM中点,故P在直线l上运动,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B共线时,P A+PB=P A'+PB最小,即可得P A+PB 最小值A'B==2,判断选项A错误;由PM=PE,即可得当M,P,F共线时,PE+PF 最小,最小值为MF的长度,此时PE+PF的最小值为2,判断选项B正确;过D作DK⊥AB于K,过C作CT⊥AB于T,由△ADE和△BCE是等边三角形,得KT=KE+TE=AB=2,有CD≥2,故△CDE周长的最小值为6,判断选项C正确;设AE=2m,可得S四边形ABCD=(m﹣1)2+3,即知四边形ABCD面积的最小值为3,判断选项D正确.【解答】解:延长AD,BC交于M,过P作直线l∥AB,如图:∵△ADE和△BCE是等边三角形,∴∠DEA=∠MBA=60°,∠CEB=∠MAB=60°,∴DE∥BM,CE∥AM,∴四边形DECM是平行四边形,∵P为CD中点,∴P为EM中点,∵E在线段AB上运动,∴P在直线l上运动,由AB=4知等边三角形ABM的高为2,∴M到直线l的距离,P到直线AB的距离都为,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B共线时,P A+PB =P A'+PB最小,此时P A+PB最小值A'B===2,故选项A错误,符合题意;∵PM=PE,∴PE+PF=PM+PF,∴当M,P,F共线时,PE+PF最小,最小值为MF的长度,∵F为AB的中点,∴MF⊥AB,∴MF为等边三角形ABM的高,∴PE+PF的最小值为2,故选项B正确,不符合题意;过D作DK⊥AB于K,过C作CT⊥AB于T,如图,∵△ADE和△BCE是等边三角形,∴KE=AE,TE=BE,∴KT=KE+TE=AB=2,∴CD≥2,∴DE+CE+CD≥AE+BE+2,即DE+CE+CD≥AB+2,∴DE+CE+CD≥6,∴△CDE周长的最小值为6,故选项C正确,不符合题意;设AE=2m,则BE=4﹣2m,∴AK=KE=m,BT=ET=2﹣m,DK=AK=m,CT=BT=2﹣m,∴S△ADK=m•m=m2,S△BCT=(2﹣m)(2﹣m)=m2﹣2m+2,S梯形DKTC =(m+2﹣m)•2=2,∴S四边形ABCD=m2+m2﹣2m+2+2=m2﹣2m+4=(m﹣1)2+3,∴当m=1时,四边形ABCD面积的最小值为3,故选项D正确,不符合题意;故选:A.一十六.翻折变换(折叠问题)(共2小题)21.(2023•乐至县)如图,在平面直角坐标系xOy中,边长为2的等边△ABC的顶点A、B分别在x轴、y 轴的正半轴上移动,将△ABC沿BC所在直线翻折得到△DBC,则OD的最大值为+1.【分析】过点D作DF⊥AB,交AB延长线于点F,取AB的中点E,连接DE,OE,OD,在Rt△ABO 中利用斜边中线性质求出OE,根据OE+DE≥OD确定当D、O、E三点共线时OD最大,最大值为OD =OE+DE.【解答】解:如图,过点D作DF⊥AB,交AB延长线于点F,取AB的中点E,连接DE,OE,OD,∵等边三角形ABC的边长为2,∴AB=2,∠ABC=60°,由翻折可知:∠DBC=∠ABC=60°,DB=AB=2,∴∠DBF=60°,∵DF⊥AB,∴∠DFB=90°,∴∠BDF=30°,∴BF=BD=1,∴DF=BF=,∵E是AB的中点,∴AE=BE=OE=AB=1,∴EF=BE+BF=2,∴DE===,∴OD≤DE+OE=+1,∴当D、E、O三点共线时OD最大,最大值为+1.故答案为:+1.22.(2023•南京)如图,在菱形纸片ABCD中,点E在边AB上,将纸片沿CE折叠,点B落在B′处,CB′⊥AD,垂足为F.若CF=4cm,FB′=1cm,则BE=cm.【分析】作EH⊥BC于点H,由CF=4cm,FB′=1cm,求得B′C=5cm,由折叠得BC=B′C=5cm,由菱形的性质得BC∥AD,DC=BC=5cm,∠B=∠D,因为CB′⊥AD于点F,所以∠BCB′=∠CFD =90°,则∠BCE=∠B′CE=45°,DF==3cm,所以∠HEC=∠BCE=45°,则CH=EH,由=sin B=sin D=,=cos B=cos D=,得CH=EH=BE,BH=BE,于是得BE+BE =5,则BE=cm.【解答】解:作EH⊥BC于点H,则∠BHE=∠CHE=90°,∵CF=4cm,FB′=1cm,∴B′C=CF+FB′=4+1=5(cm),由折叠得BC=B′C=5cm,∠BCE=∠B′CE,∵四边形ABCD是菱形,∴BC∥AD,DC=BC=5cm,∠B=∠D,∵CB′⊥AD于点F,∴∠BCB′=∠CFD=90°,∴∠BCE=∠B′CE=∠BCB′=×90°=45°,DF===3(cm),∴∠HEC=∠BCE=45°,∴CH=EH,∵=sin B=sin D==,=cos B=cos D==,∴CH=EH=BE,BH=BE,∴BE+BE=5,∴BE=cm,故答案为:.一十七.旋转的性质(共1小题)23.(2023•西宁)如图,在矩形ABCD中,点P在BC边上,连接P A,将P A绕点P顺时针旋转90°得到P A′,连接CA′,若AD=9,AB=5,CA′=2,则BP=2.【分析】过A′点作A′H⊥BC于H点,如图,根据旋转的性质得到P A=P A′,再证明△ABP≌△PHA′得到PB=A′H,PH=AB=5,设PB=x,则A′H=x,CH=4﹣x,然后在Rt△A′CH中利用勾股定理得到x2+(4﹣x)2=(2)2,于是解方程求出x即可.【解答】解:过A′点作A′H⊥BC于H点,如图,∵四边形ABCD为矩形,∴BC=AD=9,∠B=90°,∵将P A绕点P顺时针旋转90°得到P A′,∴P A=P A′,∵∠P AB+∠APB=90°,∠APB+∠A′PH=90°,∴∠P AB=∠A′PH,在△ABP和△PHA′中,,∴△ABP≌△PHA′(AAS),∴PB=A′H,PH=AB=5,设PB=x,则A′H=x,CH=9﹣x﹣5=4﹣x,在Rt△A′CH中,x2+(4﹣x)2=(2)2,解得x1=x2=2,即BP的长为2.故答案为:2.一十八.相似三角形的判定与性质(共2小题)24.(2023•杭州)如图,在△ABC中,AB=AC,∠A<90°,点D,E,F分别在边AB,BC,CA上,连接DE,EF,FD,已知点B和点F关于直线DE对称.设=k,若AD=DF,则=(结果用含k的代数式表示).【分析】方法一:先根据轴对称的性质和已知条件证明DE∥AC,再证△BDE∽△BAC,推出EC=k•AB,通过证明△ABC∽△ECF,推出CF=k2•AB,即可求出的值.方法二:证明AD=DF=BD,可得BF⊥AC,设AB=AC=1,BC=k,CF=x,则AF=1﹣x,利用勾股定理列方程求出x的值,进而可以解决问题.【解答】解:方法一:∵点B和点F关于直线DE对称,∴DB=DF,∵AD=DF,∴AD=DB,∵AD=DF,∴∠A=∠DF A,∵点B和点F关于直线DE对称,∴∠BDE=∠FDE,∵∠BDE+∠FDE=∠BDF=∠A+∠DF A,∴∠FDE=∠DF A,∴DE∥AC,∴∠C=∠DEB,∠DEF=∠EFC,∵点B和点F关于直线DE对称,∴∠DEB=∠DEF,∴∠C=∠EFC,∵AB=AC,∴∠C=∠B,∵∠ACB=∠EFC,∴△ABC∽△ECF,∴=,∵DE∥AC,∴∠BDE=∠A,∠BED=∠C,∴△BDE∽△BAC,∴==,∴EC=BC,∵=k,∴BC=k•AB,∴EC=k•AB,∴=,∴CF=k2•AB,∴====.方法二:如图,连接BF,∵点B和点F关于直线DE对称,∴DB=DF,∵AD=DF,∴AD=DB=DF,∴BF⊥AC,设AB=AC=1,则BC=k,设CF=x,则AF=1﹣x,由勾股定理得,AB2﹣AF2=BC2﹣CF2,∴12﹣(1﹣x)2=k2﹣x2,∴x=,∴AF=1﹣x=,∴=.故答案为:.25.(2023•广东)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为15.【分析】根据相似三角形的性质,利用相似比求出梯形的上底和下底,用面积公式计算即可.【解答】解:如图,∵BF∥DE,∴△ABF∽△ADE,∴=,∵AB=4,AD=4+6+10=20,DE=10,∴=,∴BF=2,∴GF=6﹣2=4,∵CK∥DE,∴△ACK∽△ADE,∴=,∵AC=4+6=10,AD=20,DE=10,∴=,∴CK=5,∴HK=6﹣5=1,∴阴影梯形的面积=(HK+GF)•GH=(1+4)×6=15.故答案为:15.一十九.相似三角形的应用(共1小题)26.(2023•南京)如图,不等臂跷跷板AB的一端A碰到地面时,另一端B到地面的高度为60cm;当AB 的一端B碰到地面时,另一端A到地面的高度为90cm,则跷跷板AB的支撑点O到地面的高度OH是()A.36cm B.40cm C.42cm D.45cm【分析】过点B作BC⊥AH,垂足为C,再证明A字模型相似△AOH∽△ABC,从而可得=,过点A作AD⊥BH,垂足为D,然后证明A字模型相似△ABD∽△OBH,从而可得=,最后进行计算即可解答.【解答】解:如图:过点B作BC⊥AH,垂足为C,∵OH⊥AC,BC⊥AC,∴∠AHO=∠ACB=90°,∵∠BAC=∠OAH,∴△AOH∽△ABC,∴=,∴=,如图:过点A作AD⊥BH,垂足为D,∵OH⊥BD,AD⊥BD,∴∠OHB=∠ADB=90°,∵∠ABD=∠OBH,∴△ABD∽△OBH,∴=,∴=,∴+=+,∴+=,∴+=1,解得:OH=36,∴跷跷板AB的支撑点O到地面的高度OH是36cm,故选:A.二十.解直角三角形(共1小题)27.(2023•丹东)如图,在平面直角坐标系中,点O是坐标原点,已知点A(3,0),B(0,4),点C在x 轴负半轴上,连接AB,BC,若tan∠ABC=2,以BC为边作等边三角形BCD,则点C的坐标为(﹣2,0);点D的坐标为(﹣1﹣2,2+)或(﹣1+2,2﹣).【分析】过点C作CE⊥AB于E,先求处AB=5,再设BE=t,由tan∠ABC=2得CE=2t,进而得BC =,由三角形的面积公式得S△ABC=AC•OB=AB•CE,即5×2t=4×(3+OC),则OC=﹣3,然后在Rt△BOC中由勾股定理得,由此解出t1=2,t2=10(不合题意,舍去),此时OC=﹣3=2,故此可得点C的坐标;设点D的坐标为(m,n),由两点间的距离公式得:BC2=20,BD2=(m﹣0)2+(n﹣4)2,CD2=(m+2)2+(n﹣0)2,由△BCD为等边三角形得,整理:,②﹣①整理得m=3﹣2n,将m=3﹣2n代入①整理得n2﹣4n+1=0,解得n=,进而再求出m即可得点D的坐标.【解答】解:过点C作CE⊥AB于E,如图:∵点A(3,0),B(0,4),由两点间的距离公式得:AB==5,设BE=t,∵tan∠ABC=2,在Rt△BCE中,tan∠ABC=,∴=2,∴CE=2t,由勾股定理得:BC==t,∵CE⊥AB,OB⊥AC,AC=OC+OA=3+OC,∴S△ABC=AC•OB=AB•CE,即:5×2t=4×(3+OC),∴OC=﹣3,在Rt△BOC中,由勾股定理得:BC2﹣OB2=OC2,即,整理得:t2﹣12t+20=0,解得:t1=2,t2=10(不合题意,舍去),∴t=2,此时OC=﹣3=2,∴点C的坐标为(﹣2,0),设点D的坐标为(m,n),由两点间的距离公式得:BC2=(﹣2﹣0)2+(0﹣4)2=20,BD2=(m﹣0)2+(n﹣4)2,CD2=(m+2)2+(n﹣0)2,∵△BCD为等边三角形,∵BD=CD=BC,∴,整理得:,②﹣①得:4m+8n=12,∴m=3﹣2n,将m=3﹣2n代入①得:(3﹣2n)2+n2﹣8n=4,整理得:n2﹣4n+1=0,解得:n=,当n=时,m=3﹣2n=,当n=时,m=3﹣2n=,∴点D的坐标为或.故答案为:(﹣2,0);或.二十一.解直角三角形的应用(共1小题)28.(2023•杭州)第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(△DAE,△ABF,△BCG,△CDH)和中间一个小正方形EFGH 拼成的大正方形ABCD中,∠ABF>∠BAF,连接BE.设∠BAF=α,∠BEF=β,若正方形EFGH与正方形ABCD的面积之比为1:n,tanα=tan2β,则n=()A.5B.4C.3D.2【分析】设AE=a,DE=b,则BF=a,AF=b,解直角三角形可得,化简可得(b﹣a)2=ab,a2+b2=3ab,结合勾股定理及正方形的面积公式可求得S正方形EFGH;S正方形ABCD=1:3,进而可求解n的值.【解答】解:设AE=a,DE=b,则BF=a,AF=b,∵tanα=,tanβ=,tanα=tan2β,∴,∴(b﹣a)2=ab,∴a2+b2=3ab,∵a2+b2=AD2=S正方形ABCD,(b﹣a)2=S正方形EFGH,∴S正方形EFGH:S正方形ABCD=ab:3ab=1:3,∵S正方形EFGH:S正方形ABCD=1:n,∴n=3.故选:C.。

2023年中考数学压轴题专题32 四边形与新定义综合问题【含答案】

2023年中考数学压轴题专题32 四边形与新定义综合问题【含答案】

专题32四边形与新定义综合问题【例1】(2022•汇川区模拟)定义:有一组对角互补的四边形叫做“对补四边形”,例如:四边形ABCD中,若∠A+∠C=180°或∠B+∠D=180°,则四边形ABCD是“对补四边形”.【概念理解】(1)如图1,四边形ABCD是“对补四边形”.①若∠A:∠B:∠C=3:2:1,则∠D=度.②若∠B=90°.且AB=3,AD=2时.则CD2﹣CB2=.【类比应用】(2)如图2,在四边形ABCD中,AB=CB,BD平分∠ADC.求证:四边形ABCD是“对补四边形”.【例2】.(2022•赣州模拟)我们定义:有一组邻角相等的凸四边形做“等邻角四边形”,例如:如图1,∠B=∠C,则四边形ABCD为等邻角四边形.(1)定义理解:已知四边形ABCD为等邻角四边形,且∠A=130°,∠B=120°,则∠D =度.(2)变式应用:如图2,在五边形ABCDE中,ED∥BC,对角线BD平分∠ABC.①求证:四边形ABDE为等邻角四边形;②若∠A+∠C+∠E=300°,∠BDC=∠C,请判断△BCD的形状,并明理由.(3)深入探究:如图3,在等邻角四边形ABCD中,∠B=∠BCD,CE⊥AB,垂足为E,点P为边BC上的一动点,过点P作PM⊥AB,PN⊥CD,垂足分别为M,N.在点P的运动过程中,判断PM+PN与CE的数量关系?请说明理由.(4)迁移拓展:如图4,是一个航模的截面示意图.四边形ABCD是等邻角四边形,∠A =∠ABC,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,AB=2dm,AD=3dm,BD=dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.【例3】(2022•常州二模)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图I,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形;(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上;(3)如图3,已知四边形ABCD是以AB为邻余线的邻余四边形,AB=15,AD=6,BC=3,∠ADC=135°,求CD的长度.【例4】(2022•工业园区模拟)【理解概念】如果一个矩形的一条边与一个三角形的一条边能够重合,且三角形的这条边所对的顶点恰好落在矩形这条边的对边上,则称这样的矩形为这个三角形的“矩形框”.如图①,矩形ABDE 即为△ABC的“矩形框”.(1)三角形面积等于它的“矩形框”面积的;(2)钝角三角形的“矩形框”有个;【巩固新知】(3)如图①,△ABC的“矩形框”ABDE的边AB=6cm,AE=2cm,则△ABC周长的最小值为cm;(4)如图②,已知△ABC中,∠C=90°,AC=4cm,BC=3cm,求△ABC的“矩形框”的周长;【解决问题】(5)如图③,锐角三角形木板ABC的边AB=14cm,AC=15cm,BC=13cm,求出该木板的“矩形框”周长的最小值.一.解答题(共20题)1.(2022•罗湖区模拟)定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形.根据以上定义,解决下列问题:(1)如图1,正方形ABCD中E是CD上的点,将△BCE绕B点旋转,使BC与BA重合,此时点E的对应点F在DA的延长线上,则四边形BEDF(填“是”或“不是”)“直等补”四边形;(2)如图2,已知四边形ABCD是“直等补”四边形,AB=BC=10,CD=2,AD>AB,过点B作BE⊥AD于E.①过C作CF⊥BF于点F,试证明:BE=DE,并求BE的长;②若M是AD边上的动点,求△BCM周长的最小值.2.(2022•越秀区校级模拟)有一组对边平行,一个内角是它对角的两倍的四边形叫做倍角梯形.(1)已知四边形ABCD是倍角梯形,AD∥BC,∠A=100°,请直接写出所有满足条件的∠D的度数;(2)如图1,在四边形ABCD中,∠BAD+∠B=180°,BC=AD+CD.求证:四边形ABCD 是倍角梯形;(3)如图2,在(2)的条件下,连结AC,当AB=AC=AD=2时,求BC的长.3.(2022•嘉祥县一模)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在(1)的条件下,取EF中点M,连接DM并延长交AB于点Q,延长EF 交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.4.(2021•任城区校级三模)我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子:;(2)问题探究;如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展;如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD 绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.5.(2022春•曾都区期末)定义:我们把对角线相等的凸四边形叫做“等角线四边形”.(1)在已经学过的“①平行四边形;②矩形;③菱形;④正方形”中,一定是“等角线四边形”的是(填序号);(2)如图1,在正方形ABCD中,点E,F分别在边BC,CD上,且EC=DF,连接EF,AF,求证:四边形ABEF是等角线四边形;(3)如图2,已知在△ABC中,∠ABC=90°,AB=4,BC=3,D为线段AB的垂直平分线上一点,若以点A,B,C,D为顶点的四边形是等角线四边形,求这个等角线四边形的面积.6.(2022春•南浔区期末)定义:我们把一组对边平行另一组对边相等且不平行的四边形叫做等腰梯形.【性质初探】如图1,已知,▱ABCD,∠B=80°,点E是边AD上一点,连结CE,四边形ABCE恰为等腰梯形.求∠BCE的度数;【性质再探】如图2,已知四边形ABCD是矩形,以BC为一边作等腰梯形BCEF,BF=CE,连结BE、CF.求证:BE=CF;【拓展应用】如图3,▱ABCD的对角线AC、BD交于点O,AB=2,∠ABC=45°,过点O作AC的垂线交BC的延长线于点G,连结DG.若∠CDG=90°,求BC的长.7.(2022春•长汀县期末)在平面直角坐标系中,如果点p(a,b)满足a+1>b且b+1>a,则称点p为“自大点”:如果一个图形的边界及其内部的所有点都不是“自大点”,则称这个图形为“自大忘形”.(1)判断下列点中,哪些点是“自大点”,直接写出点名称;p 1(1,0),,.(2)如果点N(2x+3,2)不是“自大点”,求出x的取值范围.(3)如图,正方形ABCD的初始位置是A(0,6),B(0,4),C(2,4),D(2,6),现在正方形开始以每秒1个单位长的速度向下(y轴负方向)平移,设运动时间为t秒(t>0),当正方形成为“自大忘形”时,求t的取值范围.8.(2022春•江北区期末)定义:对于一个四边形,我们把依次连结它的各边中点得到的新四边形叫做原四边形的“中点四边形”.如果原四边形的中点四边形是个正方形,我们把这个原四边形叫做“中方四边形”.概念理解:下列四边形中一定是“中方四边形”的是.A.平行四边形B.矩形C.菱形D.正方形性质探究:如图1,四边形ABCD是“中方四边形”,观察图形,写出关于四边形ABCD的两条结论:;.问题解决:如图2,以锐角△ABC的两边AB,AC为边长,分别向外侧作正方形ABDE和正方形ACFG,连结BE,EG,GC.求证:四边形BCGE是“中方四边形”;拓展应用:如图3,已知四边形ABCD是“中方四边形”,M,N分别是AB,CD的中点,(1)试探索AC与MN的数量关系,并说明理由.(2)若AC=2,求AB+CD的最小值.9.(2022春•铜山区期末)新定义;若四边形的一组对角均为直角,则称该四边形为对直四边形.(1)下列四边形为对直四边形的是(写出所有正确的序号);①平行四边形;②矩形;③菱形,④正方形.(2)如图,在对直四边形ABCD中,已知∠ABC=90°,O为AC的中点.①求证:BD的垂直平分线经过点O;②若AB=6,BC=8,请在备用图中补全四边形ABCD,使四边形ABCD的面积取得最大值,并求此时BD的长度.10.(2022春•盐田区校级期末)给出如下定义:有两个相邻内角互余的四边形称为“邻余四边形”,这两个角的夹边称为“邻余线”.(1)如图1,格点四边形ABCD是“邻余四边形”,指出它的“邻余线”;(2)如图2,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是“邻余四边形”;(3)如图3,四边形ABCD是“邻余四边形”,AB为“邻余线”,E,F分别是AB,CD的中点,连接EF,AD=4,BC=6.求EF的长.11.(2022春•玄武区期末)【概念认识】在四边形ABCD中,∠A=∠B.如果在四边形ABCD内部或边AB上存在一点P,满足∠DPC=∠A,那么称点P是四边形ABCD的“映角点”.【初步思考】(1)如图①,在四边形ABCD中,∠A=∠B,点P在边AB上且是四边形ABCD的“映角点”.若DA∥CP,DP∥CB,则∠DPC的度数为°;(2)如图②,在四边形ABCD中,∠A=∠B,点P在四边形ABCD内部且是四边形ABCD 的“映角点”,延长CP交边AB于点E.求证:∠ADP=∠CEB.【综合运用】在四边形ABCD中,∠A=∠B=α,点P是四边形ABCD的“映角点”,DE、CF分别平分∠ADP、∠BCP,当DE和CF所在直线相交于点Q时,请直接写出∠CQD与α满足的关系及对应α的取值范围.12.(2022春•北仑区期末)定义:对角线相等的四边形称为对美四边形.(1)我们学过的对美四边形有、.(写出两个)(2)如图1,D为等腰△ABC底边AB上的一点,连结CD,过C作CF∥AB,以B为顶点作∠CBE=∠ACD交CF于点E,求证:四边形CDBE为对美四边形.(3)如图2,对美四边形ABCD中,对角线AC、BD交于点O,AC=BD,DC∥AB.①若∠AOB=120°,AB+CD=6,求四边形ABCD的面积.②若AB⋅CD=6,设AD=x,BD=y,试求出y与x的关系式.13.(2022春•玄武区校级期中)如图1,∠A=∠B=∠C=∠D=∠E=∠F=90°,AB、EF、CD为铅直方向的边,AF、DE、BC为水平方向的边,点E在AB、CD之间,且在AF、BC之间,我们称这样的图形为“L图形”,若一条直线将该图形的面积分为面积相等的两部分,则称此直线为该“L图形”的等积线.(1)如图2所示四幅图中,直线L是该“L图形”等积线的是(填写序号).(2)如图3,直线m是该“L图形”的等积线,与边BC、AF分别交于点M、N,过MN 中点O的直线分别交边BC、AF于点P、Q,则直线PQ(填“是”或“不是”)该图形的等积线.(3)在图4所示的“L图形”中,AB=6,BC=10,AF=2.①若CD=2,在图中画出与AB平行的等积线l(在图中标明数据);②在①的条件下,该图形的等积线与水平的两条边DE、BC分别交于P、Q,求PQ的最大值;③如果存在与水平方向的两条边DE、BC相交的等积线,则CD的取值范围为.14.(2022•姑苏区一模)定义:有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图1,在半对角四边形ABCD中,∠B=∠D,∠C=∠A,则∠B+∠C=°;(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO,在OA上取点E,使得DE=OE,连接DE并延长交AC于点F,∠AED=3∠EAF.求证:四边形BCFD 是半对角四边形;(3)如图3,在(2)的条件下,过点D作DG⊥OB于点H,交BC于点G,OH=2,DH =6.①连接OC,若将扇形OBC围成一个圆锥的侧面,则该圆锥的底面半径为;②求△ABC的面积.15.(2022•江北区开学)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连接DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,CD=3BE,QB=6,求邻余线AB的长.16.(2022春•西城区校级期中)平面直角坐标系xOy中,正方形ABCD的四个顶点坐标分别为:A(﹣,),B(﹣,﹣),C(,﹣),D(,),P、Q是这个正方形外两点,且PQ=1.给出如下定义:记线段PQ的中点为T,平移线段PQ得到线段P'Q'(其中P',Q'分别是点P,Q的对应点),记线段P'Q'的中点为T.若点P'和Q'分别落在正方形ABCD的一组邻边上,或线段P'Q'与正方形ABCD的一边重合,则称线段TT'长度的最小值为线段PQ到正方形ABCD的“回归距离”,称此时的点T'为线段PQ到正方形ABCD 的“回归点”.(1)如图1,平移线段PQ,得到正方形ABCD内两条长度为1的线段P1Q1和P2Q2,这两条线段的位置关系为;若T1,T2分别为P1Q1和P2Q2的中点,则点(填T1或T2)为线段PQ到正方形ABCD的“回归点”;(2)若线段PQ的中点T的坐标为(1,1),记线段PQ到正方形ABCD的“回归距离”为d1,请直接写出d1的最小值:,并在图2中画出此时线段PQ到正方形ABCD的“回归点”T'(画出一种情况即可);(3)请在图3中画出所有符合题意的线段PQ到正方形ABCD的“回归点”组成的图形.17.(2022秋•福田区期中)定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.如图1,∠ABC=∠ADC=90°,四边形ABCD 是损矩形,则该损矩形的直径是线段AC.同时我们还发现损矩形中有公共边的两个三角形角的特点:在公共边的同侧的两个角是相等的.如图1中:△ABC和△ABD有公共边AB,在AB同侧有∠ADB和∠ACB,此时∠ADB=∠ACB;再比如△ABC和△BCD有公共边BC,在CB同侧有∠BAC和∠BDC,此时∠BAC=∠BDC.(1)请在图1中再找出一对这样的角来:=;(2)如图2,△ABC中,∠ABC=90°,以AC为一边向外作菱形ACEF,D为菱形ACEF 对角线的交点,连接BD.①四边形ABCD损矩形(填“是”或“不是”);②当BD平分∠ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由;③若∠ACE=60°,AB=4,BD=5,求BC的长.18.(2022春•江阴市校级月考)定义:长宽比为:1(n为正整数)的矩形称为矩形.下面,我们通过折叠的方式折出一个矩形,如图a所示.操作1:将正方形ABEF沿过点A的直线折叠,使折叠后的点B落在对角线AE上的点G处,折痕为AH.操作2:将FE沿过点G的直线折叠,使点F、点E分别落在边AF,BE上,折痕为CD.则四边形ABCD为矩形.(1)证明:四边形ABCD为矩形;(2)在题(1)的矩形ABCD中,点M是边AB上一动点.①如图b,O是对角线AC的中点,若点N在边BC上,OM⊥ON,连接MN.求tan∠OMN 的值;②若AM=AD,点N在边BC上,当△DMN的周长最小时,求的值;③连接CM,作BR⊥CM,垂足为R.若AB=4,则DR的最小值=.19.(2022春•柯桥区月考)定义:有一组邻边相等且对角互补的四边形叫做等补四边形.(1)阅读与理解:如图1,四边形内接于⊙O,点A为弧BD的中点.四边形ABCD(填“是”或“不是”)等补四边形.(2)探究与运用:①如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由;②如图3,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F,若CD=10,AF=5,求DF的长.(3)思考与延伸:在等补四边形ABCD中,AB=AD=3,∠BAD=120°,当对角线AC长度最大时,以AC 为斜边作等腰直角三角形ACP,直接写出线段DP的长度.20.(2021秋•荔湾区期末)如图,共顶点的两个三角形△ABC,△AB′C′,若AB=AB',AC=AC',且∠BAC+∠B′AC′=180°,我们称△ABC与△AB′C'互为“顶补三角形”.(1)如图2,△ABC是等腰三角形,△ABE,△ACD是等腰直角三角形,连接DE;求证:△ABC与△ADE互为顶补三角形.(2)在(1)的条件下,BE与CD交于点F,连接AF并延长交BC于点G.判断DE与AG 的数量关系,并证明你的结论.(3)如图3,四边形ABCD中,∠B=40°,∠C=50°.在平面内是否存在点P,使△PAD 与△PBC互为顶补三角形,若存在,请画出图形,并证明;若不存在,请说明理由.【例1】2022•汇川区模拟)定义:有一组对角互补的四边形叫做“对补四边形”,例如:四边形ABCD中,若∠A+∠C=180°或∠B+∠D=180°,则四边形ABCD是“对补四边形”.【概念理解】(1)如图1,四边形ABCD是“对补四边形”.①若∠A:∠B:∠C=3:2:1,则∠D=90度.②若∠B=90°.且AB=3,AD=2时.则CD2﹣CB2=5.【类比应用】(2)如图2,在四边形ABCD中,AB=CB,BD平分∠ADC.求证:四边形ABCD是“对补四边形”.【分析】(1)①设∠A=3x°,则∠B=2x°,∠C=x°,利用“对补四边形”的定义列出方程,解方程即可求得结论;②连接AC,利用“对补四边形”的定义和勾股定理解答即可得出结论;(2)在DC上截取DE=DA,连接BE,利用全等三角形的判定与性质,等腰三角形的性质和“对补四边形”的定义解答即可.【解答】(1)解:①∵∠A:∠B:∠C=3:2:1,∴设∠A=3x°,则∠B=2x°,∠C=x°,∵四边形ABCD是“对补四边形”,∴∠A+∠C=180°,∴3x+x=180,∴x=45°.∴∠B=2x=90°.∵四边形ABCD是“对补四边形”,∴∠B+∠D=180°,∴∠D=90°.故答案为:90;②连接AC,如图,∵∠B=90°,∴AB2+BC2=AC2.∵四边形ABCD是“对补四边形”,∴∠B+∠D=180°.∴∠D=90°.∴AD2+CD2=AC2.∴AB2+BC2=AD2+CD2,∴CD2﹣CB2=AB2﹣AD2,∵AB=3,AD=2,∴CD2﹣CB2=32﹣22=5.故答案为:5;(2)证明:在DC上截取DE=DA,连接BE,如图,∵BD平分∠ADC,∴∠ADB=∠EDB.在△ADB和△EDB中,,∴△ADB≌△EDB(SAS),∴∠A=∠DEB,AB=BE,∵AB=CB,∴BE=BC,∴∠BEC=∠C.∵∠DEB+∠BEC=180°,∴∠DEB+∠C=180°,∴∠A+∠C=180°,∴四边形ABCD是“对补四边形”.【例2】(2022•赣州模拟)我们定义:有一组邻角相等的凸四边形做“等邻角四边形”,例如:如图1,∠B=∠C,则四边形ABCD为等邻角四边形.(1)定义理解:已知四边形ABCD为等邻角四边形,且∠A=130°,∠B=120°,则∠D =55度.(2)变式应用:如图2,在五边形ABCDE中,ED∥BC,对角线BD平分∠ABC.①求证:四边形ABDE为等邻角四边形;②若∠A+∠C+∠E=300°,∠BDC=∠C,请判断△BCD的形状,并明理由.(3)深入探究:如图3,在等邻角四边形ABCD中,∠B=∠BCD,CE⊥AB,垂足为E,点P为边BC上的一动点,过点P作PM⊥AB,PN⊥CD,垂足分别为M,N.在点P的运动过程中,判断PM+PN与CE的数量关系?请说明理由.(4)迁移拓展:如图4,是一个航模的截面示意图.四边形ABCD是等邻角四边形,∠A =∠ABC,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,AB=2dm,AD=3dm,BD=dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.【分析】(1)由等邻角四边形的定义和四边形内角和定理可求解;(2)①由角平分线的性质和平行线的性质可得∠EDB=∠ABD,可得结论;②由三角形内角和定理和四边形内角和定理可求∠C=60°,即可求解;(3)由面积关系可求解;(4)由直角三角形的性质可得AM=DM=ME,EN=NB=CN,由勾股定理可求DG=1,BG=6,即可求解.【解答】(1)解:∵四边形ABCD为等邻角四边形,∠A=130°,∠B=120°,∴∠C=∠D,∴∠D=55°,故答案为:55;(2)①证明:∵BD平分∠ABC,∴∠ABD=∠DBC,∵ED∥BC,∴∠EDB=∠DBC,∴∠EDB=∠ABD,∴四边形ABDE为等邻角四边形;②解:△BDC是等边三角形,理由如下:∵∠BDC=∠C,∴BD=BC,∠DBC=180°﹣2∠C,∵∠A+∠E+∠ABD+∠BDE=360°,∴∠A+∠E=360°﹣2∠ABD,∵∠A+∠C+∠E=300°,∴300°﹣∠C=360°﹣2(180°﹣2∠C),∴∠C=60°,又∵BD=BC,∴△BDC是等边三角形;(3)解:PM+PN=CE,理由如下:如图,延长BA,CD交于点H,连接HP,∵∠B=∠BCD,∴HB=HC,=S△BPH+S△CPH,∵S△BCH∴×BH×CE=×BH×PM+×CH×PN,∴CE=PM+PN;(4)解:如图,延长AD,BC交于点H,过点B作BG⊥AH于G,∵ED⊥AD,EC⊥CB,M、N分别为AE、BE的中点,∴AM=DM=ME,EN=NB=CN,∵AB2=BG2+AG2,BD2=BG2+DG2,∴52﹣(3+DG)2=37﹣DG2,∴DG=1,∴BG==6,由(3)可得DE+EC=BG=6,∴△DEM与△CEN的周长之和=ME+DM+DE+EC+EN+CN=AE+BE+BG=AB+BG=(6+2)dm.【例3】(2022•常州二模)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图I,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形;(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上;(3)如图3,已知四边形ABCD是以AB为邻余线的邻余四边形,AB=15,AD=6,BC=3,∠ADC=135°,求CD的长度.【分析】(1)根据邻余四边形的定义证明结论即可;(2)连接AB,在∠A+∠B=90°的基础上选择合适的E点和F点连接作图即可;(3)邻余四边形的定义可得∠H=90°,由勾股定理可求解.【解答】(1)证明:∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠FAB与∠EBA互余,∴四边形ABEF是邻余四边形;(2)解:如图所示(答案不唯一),(3)解:如图3,延长AD,CB交于点H,∵四边形ABCD是以AB为邻余线的邻余四边形,∴∠A+∠B=90°,∵∠ADC=135°,∴∠HDC=45°,∴∠HDC=∠HCD=45°,∴CH=DH,∵AB2=AH2+BH2,∴225=(6+DH)2+(3+DH)2,∴DH=6(负值舍去),∴CD=6.【例4】(2022•工业园区模拟)【理解概念】如果一个矩形的一条边与一个三角形的一条边能够重合,且三角形的这条边所对的顶点恰好落在矩形这条边的对边上,则称这样的矩形为这个三角形的“矩形框”.如图①,矩形ABDE 即为△ABC的“矩形框”.(1)三角形面积等于它的“矩形框”面积的;(2)钝角三角形的“矩形框”有1个;【巩固新知】(3)如图①,△ABC的“矩形框”ABDE的边AB=6cm,AE=2cm,则△ABC周长的最小值为(6+2)cm;(4)如图②,已知△ABC中,∠C=90°,AC=4cm,BC=3cm,求△ABC的“矩形框”的周长;【解决问题】(5)如图③,锐角三角形木板ABC的边AB=14cm,AC=15cm,BC=13cm,求出该木板的“矩形框”周长的最小值.【分析】(1)利用同底等高的面积关系求解即可;(2)根据钝角三角形垂线的特点进行判断即可;(3)作A点关于DE的对称点F,连接BF,则△ABC周长≥AC+BF,求出BF+AC即可求解;(4)以三角形三边分别为矩形的一边作“矩形框”,分别求出周长即可;(5)以三角形三边分别为矩形的一边作“矩形框”,分别求出周长,取最小值即可.=×AB×AE,S矩形ABDE=AB×AE,【解答】解:(1)∵S△ABC=S矩形ABDE,∴S△ABC故答案为:;(2)由定义可知,钝角三角形以钝角所对的边为矩形一边,能够构造出一个“矩形框”,故答案为:1;(3)如图①,作A点关于DE的对称点F,连接BF,∴CF=AC,∴AC+BC≥BF,∴△ABC周长=AB+AC+BC≥AC+BF,∵AB=6cm,AE=2cm,在Rt△ABF中,BF=2,∴△ABC周长的最小值(6+2)cm,故答案为:(6+2);(4)如图②﹣1,以AB边为矩形一边时,作“矩形框”ABDE,∵∠C=90°,AC=4cm,BC=3cm,∴AB=5cm,=×3×4=×5×AE,∵S△ABC∴AE=,∴矩形ABDE的周长=2×(5+)=(cm);如图②﹣2,以BC边为矩形一边时,作“矩形框”BCAF,∴矩形BCAF的周长=2×(3+4)=14(cm);同理,以AB为矩形一边时,“矩形框”的周长为14cm;综上所述:△ABC的“矩形框”的周长为cm或14cm;(5)如图③﹣1,以AB为一边作“矩形框”ABDE,过点C作CG⊥AB交于G,∴CG2=AC2﹣AG2=BC2﹣BG2,AG+BG=AB,又∵AB=14cm,AC=15cm,BC=13cm,∴AG=9cm,BG=5cm,∴CG=12cm,∴“矩形框”ABDE的周长=2×(14+12)=52cm;如图③﹣2,以BC为一边作“矩形框”BCNM,过点A作AH⊥CB交于H,=×CG×AB=×12×14=×AH×BC,∵S△ABC∴AH=cm,∴“矩形框”BCNM的周长=2×(13+)=cm;如图③﹣3,以AC为矩形一边,作“矩形框”ACTS,过点B作BK⊥AC交于点K,=×CG×AB=×12×14=×BK×AC,∵S△ABC∴BK=cm,∴“矩形框”ACTS的周长=2×(15+)=cm;∵<52<,∴该木板的“矩形框”周长的最小值为cm.一.解答题(共20题)1.(2022•罗湖区模拟)定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形.根据以上定义,解决下列问题:(1)如图1,正方形ABCD中E是CD上的点,将△BCE绕B点旋转,使BC与BA重合,此时点E的对应点F在DA的延长线上,则四边形BEDF是(填“是”或“不是”)“直等补”四边形;(2)如图2,已知四边形ABCD是“直等补”四边形,AB=BC=10,CD=2,AD>AB,过点B作BE⊥AD于E.①过C作CF⊥BF于点F,试证明:BE=DE,并求BE的长;②若M是AD边上的动点,求△BCM周长的最小值.【分析】(1)由旋转的性质可得∠ABF=∠CBE,BF=BE,根据正方形的性质得∠ABC=∠D=90°,可得出∠EBF=∠D=90°,即可得出答案;(2)①首先证明四边形CDEF是矩形,则DE=CF,EF=CD=2,再证△ABE≌△BCF,根据全等三角形的判定和性质可得BE=CF,AE=BF,等量代换即可得BE=DE;由AE=BF,EF=CD=2可得AE=BE﹣2,设BE=x,根据勾股定理求出x的值即可;②延长CD到点G,使DG=CD,连接BG交AD于点M′,过点G作GH⊥BC,交BC的延长线于点H,证明△ABE∽△CGH,根据相似三角形的性质求出CH、HG的值,在Rt△BHG中,根据勾股定理求出BG,即可求解.【解答】解:(1)∵将△BCE绕B点旋转,BC与BA重合,点E的对应点F在DA的延长线上,∴∠ABF=∠CBE,BF=BE,∵四边形ABCD是正方形,∴∠ABC=∠D=90°,∴∠ABE+∠CBE=90°,∴∠ABE+∠ABF=90°,即∠EBF=∠D=90°,∴∠EBF+∠D=180°,∵∠EBF=90°,BF=BE,∴四边形BEDF是“直等补”四边形.故答案为:是;(2)①证明:∵四边形ABCD是“直等补”四边形,AB=BC=10,CD=2,AD>AB,∴∠ABC=90°,∠ABC+∠D=180°,∴∠D=90°,∵BE⊥AD,CF⊥BE,∴∠DEF=90°,∠CFE=90°,∴四边形CDEF是矩形,∴DE=CF,EF=CD=2,∵∠ABE+∠A=90°,∠ABE+∠CBE=90°,∴∠A=∠CBF,∵∠AEB=∠BFC=90°,AB=BC,∴△ABE≌△BCF(AAS),∴BE=CF,AE=BF,∵DE=CF,∴BE=DE;∵四边形CDEF是矩形,∴EF=CD=2,∵△ABE≌△BCF,∴AE=BF,∴AE=BE﹣2,设BE=x,则AE=x﹣2,在Rt△ABE中,x2+(x﹣2)2=102,解得:x=8或x=﹣6(舍去),∴BE的长是8;②∵△BCM周长=BC+BM+CM,∴当BM+CM的值最小时,△BCM的周长最小,如图,延长CD到点G,使DG=CD,连接BG交AD于点M′,过点G作GH⊥BC,交BC的延长线于点H,∵∠ADC=90°,∴点C与点G关于AD对称,∴BM+CM=BM+MG≥BG,即BM+CM≥BM′+M′C,∴当点M与M′重合时,BM′+M′C的值最小,即△BCM的周长最小,在Rt△ABE中,AE===6,∵四边形ABCD是“直等补”四边形,∴∠A+∠BCD=180°,∵∠BCD+∠GCH=180°,∴∠A=∠GCH,∵∠AEB=∠H=90°,∴△ABE∽△CGH,∴===,即=,∴GH=,CH=,∴BH=BC+CH=10+=,∴BG===2,∴△BCM周长的最小值为2+10.2.(2022•越秀区校级模拟)有一组对边平行,一个内角是它对角的两倍的四边形叫做倍角梯形.(1)已知四边形ABCD是倍角梯形,AD∥BC,∠A=100°,请直接写出所有满足条件的∠D的度数;(2)如图1,在四边形ABCD中,∠BAD+∠B=180°,BC=AD+CD.求证:四边形ABCD 是倍角梯形;(3)如图2,在(2)的条件下,连结AC,当AB=AC=AD=2时,求BC的长.【分析】(1)由题意得出∠D=2∠B或∠B=2∠D或∠A=2∠C,根据梯形的性质可得出答案;(2)过点D作DE∥AB,交BC于点E,证明四边形ABED为平行四边形,得出AD=BE,∠B=∠DEC=∠ADE,证出∠ADC=2∠B,则可得出结论;(3)过点E作AE∥DC交BC于点E,由等腰三角形的性质求出∠B=∠ACB=36°,证明△ABE∽△CBA,由相似三角形的性质得出,设AE=BE=CD=x,得出方程22=x (x+2),求出x=﹣1,则可得出答案.【解答】解:(1)∵AD∥BC,∴∠A+∠B=180°,∵∠A=100°,∴∠B=80°,∵四边形ABCD是倍角梯形,∴∠D=2∠B或∠B=2∠D或∠A=2∠C,若∠D=2∠B,则∠D=160°;若∠B=2∠D,则∠D=40°,若∠A=2∠C,则∠C=50°,∴∠D=130°,故所有满足条件的∠D的度数为160°或40°或130°;(2)证明:过点D作DE∥AB,交BC于点E,∵∠BAD+∠B=180°,∴AD∥BC,∵DE∥AB,∴四边形ABED为平行四边形,∴AD=BE,∠B=∠DEC=∠ADE,∵BC=BE+CE,∴BC=AD+CE,又∵BC=AD+CD,∴CE=CD,BC>AD,∴∠CDE=∠DEC,∴∠ADC=∠ADE+∠CDE=2∠B,∴四边形ABCD是倍角梯形;(3)过点E作AE∥DC交BC于点E,∵AB=AC,∴∠B=∠ACB,∵AD=AC,∴∠ACD=∠D,∵AD∥BC,∴∠ACB=∠DAC,设∠B=α,则∠D=2α,∵∠DAC+∠D+∠ACD=180°,∴α+2α+2α=180°,∴α=36°,∴∠B=∠ACB=36°,∴∠BAC=∠AEB=108°,∵∠B=∠B,∴△ABE∽△CBA,∴,设AE=BE=CD=x,则BC=2+x,∴22=x(x+2),∴x=﹣1(负值舍去),∴CD=﹣1.∴BC=AD+CD=2+﹣1=+1.3.(2022•嘉祥县一模)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在(1)的条件下,取EF中点M,连接DM并延长交AB于点Q,延长EF 交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.【分析】(1)由等腰三角形的三线合一定理先证AD⊥BC,再证∠DAB+∠DBA=90°,由邻余四边形定义即可判定;(2)由等腰三角形的三线合一定理先证BD=CD,推出CE=5BE,再证明△DBQ∽△ECN,推出==,即可求出NC,AC,AB的长度.【解答】(1)证明:∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠FBA与∠EBA互余,∴四边形ABEF是邻余四边形;(2)解:∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE,∵∠EDF=90°,点M是EF的中点,∴DM=ME,∴∠MDE=∠MED,∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴==,∵QB =3,∴NC =5,∵AN =CN ,∴AC =2CN =10,∴AB =AC =10.4.(2021•任城区校级三模)我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子:矩形或正方形;(2)问题探究;如图1,在等邻角四边形ABCD 中,∠DAB =∠ABC ,AD ,BC 的中垂线恰好交于AB 边上一点P ,连结AC ,BD ,试探究AC 与BD 的数量关系,并说明理由;(3)应用拓展;如图2,在Rt △ABC 与Rt △ABD 中,∠C =∠D =90°,BC =BD =3,AB =5,将Rt △ABD 绕着点A 顺时针旋转角α(0°<∠α<∠BAC )得到Rt △AB ′D ′(如图3),当凸四边形AD ′BC 为等邻角四边形时,求出它的面积.【分析】(1)矩形或正方形邻角相等,满足“等邻角四边形”条件;(2)结论:AC =BD ,证明△APC ≌△DPB (SAS );(3)分两种情况考虑:Ⅰ、当∠AD ′B =∠D ′BC 时,延长AD ′,CB 交于点E ,如图1,由S 四边形ACBD ′=S △ACE ﹣S △BED ′,求出四边形ACBD ′面积;Ⅱ、当∠D ′BC =∠ACB =90°时,过点D ′作D ′E ⊥AC 于点E ,如图2,由S 四边形ACBD ′=S △AED ′+S 矩形ECBD ′,求出四边形ACBD ′面积即可.【解答】解:(1)矩形或正方形是一个等邻角四边形.故答案为:矩形,正方形;(2)结论:AC=BD,理由:连接PD,PC,如图1所示:∵PE是AD的垂直平分线,PF是BC的垂直平分线,∴PA=PD,PC=PB,∴∠PAD=∠PDA,∠PBC=∠PCB,∴∠DPB=2∠PAD,∠APC=2∠PBC,即∠PAD=∠PBC,∴∠APC=∠DPB,∴△APC≌△DPB(SAS),∴AC=BD;(3)分两种情况考虑:(i)当∠AD′B=∠D′BC时,延长AD′,CB交于点E,如图3(i)所示,∴∠ED′B=∠EBD′,∴EB=ED′,设EB=ED′=x,由勾股定理得:42+(3+x)2=(4+x)2,解得:x=4.5,过点D′作D′F⊥CE于F,∴D′F∥AC,∴△ED′F∽△EAC,∴=,即=,解得:D′F=,∴S △ACE =AC ×EC =×4×(3+4.5)=15;S △BED ′=×BE ×D ′F =××4.5×=,则S 四边形ACBD ′=S △ACE ﹣S △BED ′=15﹣=;(ii )当∠D ′BC =∠ACB =90°时,过点D ′作D ′E ⊥AC 于点E ,如图3(ii )所示,∴四边形ECBD ′是矩形,∴ED ′=BC =3,在Rt △AED ′中,根据勾股定理得:AE ==,∴S △AED ′=×AE ×ED ′=××3=,S 矩形ECBD ′=CE ×CB =(4﹣)×3=12﹣3,则S 四边形ACBD ′=S △AED ′+S 矩形ECBD ′=+12﹣3=12﹣.5.(2022春•曾都区期末)定义:我们把对角线相等的凸四边形叫做“等角线四边形”.(1)在已经学过的“①平行四边形;②矩形;③菱形;④正方形”中,一定是“等角线四边形”的是②④(填序号);(2)如图1,在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,且EC =DF ,连接EF ,AF ,求证:四边形ABEF 是等角线四边形;(3)如图2,已知在△ABC 中,∠ABC =90°,AB =4,BC =3,D 为线段AB 的垂直平分线上一点,若以点A ,B ,C ,D 为顶点的四边形是等角线四边形,求这个等角线四边形的面积.。

中考数学定义新概念压轴题以及答案

中考数学定义新概念压轴题以及答案

1.(2013•安徽)我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD即为“准等腰梯形”.其中∠B=∠C.(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)如图2,在“准等腰梯形”ABCD中∠B=∠C.E为边BC上一点,若AB∥DE,AE∥DC,求证:=;(3)在由不平行于BC的直线AD截△PBC所得的四边形ABCD中,∠BAD与∠ADC的平分线交于点E.若EB=EC,请问当点E在四边形ABCD内部时(即图3所示情形),四边形ABCD是不是“准等腰梯形”,为什么?若点E不在四边形ABCD内部时,情况又将如何?写出你的结论.(不必说明理由)考点:四边形综合题.专题:压轴题.分析:(1)根据条件∠B=∠C和梯形的定义就可以画出图形;(2)根据平行线的性质就可以得出∠DEC=∠B,∠AEC=∠C,就可以得出△ABE∽△DEC,由相似三角形的性质就可以求出结论;(3)根据角平分线的性质可以得出△EFB≌△EHC,就可以得出∠3=∠4,再有条件就可以得出∠ABC=∠DCB,从而得出结论,当点E不在四边形内部时分两种情况讨论就可以求出结论.解答:解:(1)如图1,过点D作DE∥BC交PB于点E,则四边形ABCD 分割成一个等腰梯形BCDE和一个三角形ADE;(2)∵AB∥DE,∴∠B=∠DEC,∵AE∥DC,∴∠AEB=∠C,∵∠B=∠C,∴∠B=∠AEB,∴AB=AE.∵在△ABE和△DEC中,,∴△ABE∽△DEC,∴,∴;(3)作EF⊥AB于F,EG⊥AD于G,EH⊥CD于H,∴∠BFE=∠CHE=90°.∵AE平分∠BAD,DE平分∠ADC,∴EF=EG=EH,在Rt△EFB和Rt△EHC中,∴Rt△EFB≌Rt△EHC(HL),∴∠3=∠4.∵BE=CE,∴∠1=∠2.∴∠1+∠3=∠2+∠4即∠ABC=∠DCB,∵ABCD为AD截某三角形所得,且AD不平行BC,∴ABCD是“准等腰梯形”.当点E不在四边形ABCD的内部时,有两种情况:如图4,当点E在BC边上时,同理可以证明△EFB≌△EHC,∴∠B=∠C,∴ABCD是“准等腰梯形”.当点E在四边形ABCD的外部时,四边形ABCD不一定是“准等腰梯形”.分两种情况:情况一:当∠BED的角平分线与线段BC的垂直平分线重合时,四边形ABCD为“准等腰梯形”;情况二:当∠BED的角平分线与线段BC的垂直平分线相交时,四边形ABCD不是“准等腰梯形”.点评:本题考查了平行线的性质的运用,相似三角形的判定及性质的运用,角平分线的性质的运用,全等三角形的判定及性质的运用,解答时多次运用角平分线的性质是关键.2.(2013•安徽)我们把正六边形的顶点及其对称中心称作如图1所示基本图的特征点,显然这样的基本图共有7个特征点,将此基本图不断复制并平移,使得相邻两个基本图的一边重合,这样得到图2,图3,…(1)观察以上图形并完成下表:图形的名称基本图的个数特征点的个数图117图2212图3317图44 22 ………猜想:在图(n)中,特征点的个数为 5n+2 (用n表示);(2)如图,将图(n)放在直角坐标系中,设其中第一个基本图的对称中心O1的坐标为(x1,2),则x1=  ;图(2013)的对称中心的横坐标为 2013 .考点:规律型:图形的变化类;规律型:点的坐标.菁优网版权所有专题:压轴题.分析:(1)观察图形,结合已知条件,得出将基本图每复制并平移一次,特征点增加5个,由此得出图4中特征点的个数为17+5=22个,进一步猜想出:在图(n)中,特征点的个数为:7+5(n﹣1)=5n+2;(2)过点O1作O1M⊥y轴于点M,根据正六边形、等腰三角形的性质得出∠BO1M=30°,再由余弦函数的定义求出O1M=,即x1=;然后结合图形分别得出图(2)、图(3)、图(4)的对称中心的横坐标,找到规律,进而得出图(2013)的对称中心的横坐标.解答:解:(1)由题意,可知图1中特征点有7个;图2中特征点有12个,12=7+5×1;图3中特征点有17个,17=7+5×2;所以图4中特征点有7+5×3=22个;由以上猜想:在图(n)中,特征点的个数为:7+5(n﹣1)=5n+2;(2)如图,过点O1作O1M⊥y轴于点M,又∵正六边形的中心角=60°,O1C=O1B=O1A=2,∴∠BO1M=30°,∴O1M=O1B•cos∠BO1M=2×=,∴x1=;由题意,可得图(2)的对称中心的横坐标为(2×2)=2,图(3)的对称中心的横坐标为(2×3)=3,图(4)的对称中心的横坐标为(2×4)=4,…∴图(2013)的对称中心的横坐标为(2×2013)=2013.故答案为22,5n+2;,2013.点评:本题借助正六边形考查了规律型:图形的变化类问题,难度适中.关键是通过观察、归纳与总结,得到其中的规律;(2)要注意求的是整个图形的对称中心的横坐标,而不是第2013个正六边形的对称中心的横坐标,这也是本题容易出错的地方.3.我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD即为“准等腰梯形”.其中∠B=∠C.(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)如图2,在“准等腰梯形”ABCD中,∠B=∠C.E为边BC上一点,若AB∥DE,AE∥DC,求证:=;(3)如图3,在由不平行于BC的直线AD截△PBC所得的四边形ABCD 中,∠BAD与∠ADC的平分线交于点E.若EB=EC,则四边形ABCD是不是“准等腰梯形”?请说明理由.考点:四边形综合题.分析:(1)过点A作AE∥CD交BC于点E,则△ABE和四边形AECD就是所求作的图形;(2)由AB∥DE,AE∥DC,就可以得出∠B=∠DEC,∠AEB=∠C,就可以得出△ABE∽△DEC,就可以得出结论;(3)作EF⊥AB于F,EG⊥AD于G,EH⊥CD于H,由角平分线的性质就可以得出EF=EG=EH,就可以得出△BEF≌△BEH,就可以得出∠FBE=∠HCE,从而得出∠ABC=∠DCB而得出结论.解答:解:(1)如图,过点A作AE∥CD交BC于点E,∴∠AEB=∠C.∵∠B=∠C∴∠AEB=∠B,∴AB=AE,∴△ABE是等腰三角形;∵AE∥CD,AD≠CD,∴四边形AECD是梯形.∴△ABE和四边形AECD就是所求作的图形;(2)∵AB∥DE,AE∥DC,∴∠B=∠DEC,∠AEB=∠C.∵∠B=∠C,∴∠AEB=∠DEC∴△ABE∽△DCE,∴;(3)四边形ABCD是“准等腰梯形”.理由:作EF⊥AB于F,EG⊥AD于G,EH⊥CD于H,∵AE平分∠BAD,DE平分∠ADC,∴∠EFB=∠EHC=90°,EF=EG=EH.在Rt△BEF和Rt△CEH中,∴Rt△BEF≌Rt△CEH(HL);∴∠FBE=∠HCE.∵BE=BC,∴∠EBC=∠ECB,∴∠EBC+∠FBE=∠ECB+∠HCE,∴∠ABC=∠HCB.∴四边形ABCD是“准等腰梯形”.点评:本题考查了等腰三角形的性质的运用,平行线的性质的运用角平分线的性质的运用,全等三角形的判定及性质的运用,解答时运用等腰三角形的性质求解是关键.4.(2012•保定一模)四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如图,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD的准等距点.(1)如图2,画出菱形ABCD的一个准等距点.(2)如图3,作出四边形ABCD的一个准等距点(尺规作图,保留作图痕迹,不要求写作法).(3)如图4,在四边形ABCD中,P是AC上的点,PA≠PC,延长BP交CD于点E,延长DP交BC于点F,且∠CDF=∠CBE,CE=CF.求证:点P是四边形ABCD的准等距点.考点:作图—复杂作图;全等三角形的判定与性质.专题:作图题.分析:(1)根据菱形的性质,在菱形对角线上找出除中心外的任意一点即可;(2)作对角线BD的垂直平分线于与另一对角线AC相交于点P,根据线段垂直平分线上的点到线段两端点的距离相等可得点P即为所求的准等距点;(3)连接BD,先利用“角角边”证明△DCF和△BCE全等,根据全等三角形对应边相等可得CD=CB,再根据等边对等角的性质可得∠CDB=∠CBD,从而得到∠PDB=∠PBD,然后根据等角对等边的性质可得PD=PB,根据准等距点的定义即可得证.解答:解:(1)如图2,点P即为所画点.…(1分)(答案不唯一)(2)如图3,点P即为所作点.…(2分)(答案不唯一.)(3)证明:连接DB,在△DCF与△BCE中,,∴△DCF≌△BCE(AAS),∴CD=CB,∴∠CDB=∠CBD.∴∠PDB=∠PBD,∴PD=PB,∵PA≠PC∴点P是四边形ABCD的准等距点.点评:本题考查了复杂作图,主要利用了线段垂直平分线的作法,全等三角形的判定与性质,读懂题意,理解准等距点的定义是解题的关键.5.(2006•福州)对于任意两个二次函数:y1=a1x2+b1x+c1,y2=a2x2+b2x+c2,(a1a2≠0),当|a1|=|a2|时,我们称这两个二次函数的图象为全等抛物线.现有△ABM,A(﹣1,0),B(1,0).记过三点的二次函数抛物线为“C□□□”(“□□□”中填写相应三个点的字母)(1)若已知M(0,1),△ABM≌△ABN(0,﹣1).请通过计算判断C ABM与C ABN是否为全等抛物线;(2)在图2中,以A、B、M三点为顶点,画出平行四边形.①若已知M(0,n),求抛物线C ABM的解析式,并直接写出所有过平行四边形中三个顶点且能与C ABM全等的抛物线解析式.②若已知M(m,n),当m,n满足什么条件时,存在抛物线C ABM根据以上的探究结果,判断是否存在过平行四边形中三个顶点且能与C ABM全等的抛物线?若存在,请列出所有满足条件的抛物线“C□□□”;若不存在,请说明理由.二次函数综合题.考点:专压轴题;新定义.题:分析:(1)应该是全等抛物线,由于这两个抛物线虽然开口方向不同,但是开口大小一样,因此二次项的绝对值也应该相等.可用待定系数法求出两抛物线的解析式,然后进行判断即可.(2)与(1)相同都是通过构建平行四边形来得出与△ABM全等的三角形,那么过与△ABM全等的三角形的三个顶点的抛物线都是与C ABM全等的抛物线.解答:解:(1)设抛物线C ABM的解析式为y=ax2+bx+c,∵抛物线C ABM过点A(﹣1,0),B(1,0),M(0,1),∴抛物线C ABM的解析式为y=﹣x2+1,同理可得抛物线C ABN的解析式为y=x2+1,∵|﹣1|=|1|,∴C ABM与C ABN是全等抛物线.(2)①设抛物线C ABM的解析式为y=ax2+bx+c,∵抛物线C ABM过点A(﹣1,0),B(1,0),M(0,n),抛物线C ABM的解析式为y=﹣nx2+n,与C ABM全等的抛物线有:y=nx2﹣n,y=n(x﹣1)2,y=n(x+1)2②当n≠0且m≠±1时,存在抛物线C ABM,与C ABM全等的抛物线有:C ABN,C AME,C BMF.点评:本题是函数与几何结合的综合题,解题关键是善于利用几何图形的性质以及函数的性质和定理等知识,主要考查学生数形结合的数学思想方法.6.(2013•沈阳)定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF与BE交于点O.(1)求证:△AOB和△AOE是“友好三角形”;(2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积.探究:在△ABC中,∠A=30°,AB=4,点D在线段AB上,连接CD,△ACD和△BCD是“友好三角形”,将△ACD沿CD所在直线翻折,得到△A′CD,若△A′CD与△ABC重合部分的面积等于△ABC面积的,请直接写出△ABC的面积.考点:四边形综合题.专题:压轴题.分析:(1)利用一组对边平行且相等的四边形是平行四边形,得到四边形ABFE是平行四边形,然后根据平行四边形的性质证得OE=OB,即可证得△AOE和△AOB是友好三角形;(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中点,则可以求得△ABE、△ABF的面积,根据S四边形CDOF=S矩形ABCD﹣2S△ABF即可求解.探究:画出符合条件的两种情况:①求出四边形A′DCB是平行四边形,求出BC和A′D推出∠ACB=90°,根据三角形面积公式求出即可;②求出高CQ,求出△A′DC的面积.即可求出△ABC的面积.解答:(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∵AE=BF,∴四边形ABFE是平行四边形,∴OE=OB,∴△AOE和△AOB是友好三角形.(2)解:∵△AOE和△DOE是友好三角形,∴S△AOE=S△DOE,AE=ED=AD=3,∵△AOB与△AOE是友好三角形,∴S△AOB=S△AOE,∵△AOE≌△FOB,∴S△AOE=S△FOB,∴S△AOD=S△ABF,∴S四边形CDOF=S矩形ABCD﹣2S△ABF=4×6﹣2××4×3=12.探究:解:分为两种情况:①如图1,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OB,A′O=CO,∴四边形A′DCB是平行四边形,∴BC=A′D=2,过B作BM⊥AC于M,∵AB=4,∠BAC=30°,∴BM=AB=2=BC,即C和M重合,∴∠ACB=90°,由勾股定理得:AC==2,∴△ABC的面积是×BC×AC=×2×2=2;②如图2,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴CO=OA′,BO=DO,∴四边形A′BDC是平行四边形,∴BD=A′C=2,过C作CQ⊥A′D于Q,∵A′C=2,∠DA′C=∠BAC=30°,∴CQ=A′C=1,∴S△ABC=2S△ADC=2S△A′DC=2××A′D×CQ=2××2×1=2;即△ABC的面积是2或2.点评:本题考查了平行四边形性质和判定,三角形的面积,勾股定理的应用,解这个题的关键是能根据已知题意和所学的定理进行推理.题目比较好,但是有一定的难度.7.(2012•贵阳模拟)如果一个三角形和一个矩形满足下列条件:三角形的一边与矩形的一边完全重合,并且三角形的这条边所对的角的顶点落在矩形与三角形重合的边的对边上,则称这样的矩形为三角形的“友好矩形”.如图①所示,矩形ABEF即为△ABC的“友好矩形”.我们发现:当△ABC是钝角三角形时,其“友好矩形”只有一个.(1)仿照以上叙述,请你说明什么是一个三角形的“友好平行四边形”;(2)如图②,若△ABC为直角三角形,且∠C=90°,在图②中画出△ABC的所有“友好矩形”;(3)若△ABC是锐角三角形,且AB=5cm,AC=7cm,BC=8cm,在图③中画出△ABC的所有“友好矩形”,指出其中周长最大的矩形并说明理由.考点:四边形综合题.分析:(1)仿照友好矩形的定义即可得出友好平行四边形的定义;(2)根据友好矩形的定义得出分别以AB为边和对角线得出△ABC的所有“友好矩形”即可;(3)利用勾股定理得出BD,AD的长,进而分别求出以BC、AB、AC为边的“友好矩形”周长比较即可.解答:解:(1)三角形的一边与平行四边形的一边完全重合,并且三角形的这条边所对的角的顶点落在平行四边形与三角形重合的边的对边上,则称这样的平行四边形为三角形的“友好平行四边形”.(2)如图②所示:(3)如图③,过A做AD⊥BC于D设BD长为x cm,则DC长为(8﹣x)在Rt△ABD和Rt△ADC中AD2=AB2﹣BD2=52﹣x2,AD2=AC2﹣DC2=72﹣(8﹣x)2则52﹣x2=72﹣(8﹣x)2解得:x=2.5,过A做AD⊥BC于D,则有,则以BC为边的“友好矩形”周长为:,以AB为边的“友好矩形”周长为:,以AC为边的“友好矩形”周长为:,∴以BC为边的“友好矩形”周长最大.点评:此题主要考查了四边形综合题以及勾股定理等知识,考查学生的阅读理解、综合分析及分类讨论能力,难度较大.8.(2012•常州)平面上有两条直线AB、CD相交于点O,且∠BOD=150°(如图),现按如下要求规定此平面上点的“距离坐标”:(1)点O的“距离坐标”为(0,0);(2)在直线CD上,且到直线AB的距离为p(p>0)的点的“距离坐标”为(p,0);在直线AB上,且到直线CD的距离为q(q>0)的点的“距离坐标”为(0,q);(3)到直线AB、CD的距离分别为p,q(p>0,q>0)的点的“距离坐标”为(p,q).设M为此平面上的点,其“距离坐标”为(m,n),根据上述对点的“距离坐标”的规定,解决下列问题:(1)画出图形(保留画图痕迹):①满足m=1,且n=0的点M的集合;②满足m=n的点M的集合;(2)若点M在过点O且与直线CD垂直的直线l上,求m与n所满足的关系式.(说明:图中OI长为一个单位长)考点:一次函数综合题;角平分线的性质;含30度角的直角三角形;锐角三角函数的定义.专题:计算题;作图题.分析:(1)①以O为圆心,以2为半径作圆,交CD于两点,则此两点为所求;②分别作∠BOC和∠BOD的角平分线并且反向延长,即可求出答案;(2)过M作MN⊥AB于N,根据已知得出OM=n,MN=m,求出∠NOM=60°,根据锐角三角函数得出sin60°==,求出即可.解答:解:(1)①如图所示:点M1和M2为所求;②如图所示:直线MN和直线EF为所求;(2)如图:过M作MN⊥AB于N,∵M的“距离坐标”为(m,n),∴OM=n,MN=m,∵∠BOD=150°,直线l⊥CD,∴∠MON=150°﹣90°=60°,在Rt△MON中,sin60°==,即m与n所满足的关系式是:m=n.点评:本题考查了锐角三角函数值,角平分线性质,含30度角的直角三角形的应用,主要考查学生的动手操作能力和计算能力,注意:角平分线上的点到角两边的距离相等.9.(2012•无锡)对于平面直角坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把|x1﹣x2|+|y1﹣y2|叫做P1、P2两点间的直角距离,记作d(P1,P2).(1)已知O为坐标原点,动点P(x,y)满足d(O,P)=1,请写出x与y之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P 所组成的图形;(2)设P0(x0,y0)是一定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的直角距离.试求点M(2,1)到直线y=x+2的直角距离.考点:一次函数综合题.专题:压轴题.分析:(1)根据新的运算规则知|x|+|y|=1,据此可以画出符合题意的图形;(2)根据新的运算规则知d(M,Q)=|x﹣2|+|y﹣1|=|x﹣2|+|x+2﹣1|=|x﹣2|+|x+1|,然后由绝对值与数轴的关系可知,|x﹣2|+|x+1|表示数轴上实数x所对应的点到数2和﹣1所对应的点的距离之和,其最小值为3.解答:解:(1)由题意,得|x|+|y|=1,∵d(O,P)=1,O(0,0),P(x,y)∴d(0,P)=|x|+|y|∴|x|+|y|=1①x≥0,y≥0∴x+y=1y=1﹣x②x≤0,y≤0∴﹣x﹣y=1y=﹣x﹣1③x≥0,y≤0∴x﹣y=1y=x﹣1④x≤0,y≥0∴﹣x+y=1y=1+x将四个函数关系式表示在数轴上,所有符合条件的点P组成的图形如图所示:(2)∵d(M,Q)=|x﹣2|+|y﹣1|=|x﹣2|+|x+2﹣1|=|x﹣2|+|x+1|,又∵x可取一切实数,|x﹣2|+|x+1|表示数轴上实数x所对应的点到数2和﹣1所对应的点的距离之和,其最小值为3.∴点M(2,1)到直线y=x+2的直角距离为3.点评:本题考查了一次函数综合题.正确理解新定义运算法则是解题的关键.10.(2012•厦门)如图,在平面直角坐标系中,已知点A(2,3)、B(6,3),连接AB.如果点P在直线y=x﹣1上,且点P到直线AB的距离小于1,那么称点P是线段AB的“临近点”.(1)判断点C()是否是线段AB的“临近点”,并说明理由;(2)若点Q(m,n)是线段AB的“临近点”,求m的取值范围.考点:一次函数综合题.专题:计算题.分析:(1)根据A、B的坐标得出AB∥x轴,根据点P到直线AB的距离小于1,求出当纵坐标y在2<y<4范围内时,点是线段AB的“临近点”,看点的纵坐标是否在y的范围内即可;(2)根据线段AB的“临近点”的纵坐标的范围是2<n<4,把n=2和n=4分别代入n=m﹣1,求出相应的m值,即可得出点的横坐标m的范围.解答:解:(1)点C()是线段AB的“临近点”.理由是:∵点P到直线AB的距离小于1,A、B的纵坐标都是3,∴AB∥x轴,3﹣1=2,3+1=4,∴当纵坐标y在2<y<4范围内时,点是线段AB的“临近点”,点C的坐标是(),∴y=>2,且小于4,∵C(,)在直线y=x﹣1上,∴点C()是线段AB的“临近点”.(2)∵点Q(m,n)是线段AB的“临近点”,由(1)可以得出:线段AB的“临近点”的纵坐标的范围是2<n<4,把n=2代入y=x﹣1(即n=m﹣1)得:m=3,n=4代入y=x﹣1(即n=m﹣1)得:m=5,∴3<m<5,即m的取值范围是3<m<5.点评:本题考查了有关一次函数的应用,通过做此题培养了学生的阅读能力和计算能力,此题是一道非常好、比较典型的题目.11.(2012•台州)定义:P、Q分别是两条线段a和b上任意一点,线段PQ的长度的最小值叫做线段a与线段b的距离.已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐标系中四点.(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是 2 ;当m=5,n=2时,如图2,线段BC与线段OA的距离为  ;(2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.(3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M,①求出点M随线段BC运动所围成的封闭图形的周长;②点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m的值使以A、M、H为顶点的三角形与△AOD相似?若存在,求出m 的值;若不存在,请说明理由.考点:圆的综合题;勾股定理;相似三角形的判定与性质.专题:代数几何综合题;压轴题.分析:(1)理解新定义,按照新定义的要求求出两个距离值;(2)如答图2所示,当点B落在⊙A上时,m的取值范围为2≤m≤6:当4≤m≤6,显然线段BC与线段OA的距离等于⊙A半径,即d=2;当2≤m<4时,作BN⊥x轴于点N,线段BC与线段OA的距离等于BN长;(3)①在准确理解点M运动轨迹的基础上,画出草图,如答图3所示.由图形可以直观求出封闭图形的周长;②如答图4所示,符合题意的相似三角形有三个,需要进行分类讨论,分别利用点的坐标关系以及相似三角形比例线段关系求出m的值.解答:解:(1)当m=2,n=2时,如题图1,线段BC与线段OA的距离(即线段BN的长)=2;当m=5,n=2时,B点坐标为(5,2),线段BC与线段OA的距离,即为线段AB的长,如答图1,过点B作BN⊥x轴于点N,则AN=1,BN=2,在Rt△ABN中,由勾股定理得:AB===.(2)如答图2所示,当点B落在⊙A上时,m的取值范围为2≤m≤6:当4≤m≤6,显然线段BC与线段OA的距离等于⊙A半径,即d=2;当2≤m<4时,作BN⊥x轴于点N,线段BC与线段OA的距离等于BN长,ON=m,AN=OA﹣ON=4﹣m,在Rt△ABN中,由勾股定理得:∴d===.(3)①依题意画出图形,点M的运动轨迹如答图3中粗体实线所示:由图可见,封闭图形由上下两段长度为8的线段,以及左右两侧半径为2的半圆所组成,其周长为:2×8+2×π×2=16+4π,∴点M随线段BC运动所围成的封闭图形的周长为:16+4π.②结论:存在.∵m≥0,n≥0,∴点M位于第一象限.∵A(4,0),D(0,2),∴OA=2OD.如答图4所示,相似三角形有三种情形:(I)△AM1H1,此时点M纵坐标为2,点H在A点左侧.如图,OH1=m+2,M1H1=2,AH1=OA﹣OH1=2﹣m,由相似关系可知,M1H1=2AH1,即2=2(2﹣m),∴m=1;(II)△AM2H2,此时点M纵坐标为2,点H在A点右侧.如图,OH2=m+2,M2H2=2,AH2=OH2﹣OA=m﹣2,由相似关系可知,M2H2=2AH2,即2=2(m﹣2),∴m=3;(III)△AM3H3,此时点B落在⊙A上.如图,OH3=m+2,AH3=OH3﹣OA=m﹣2,过点B作BN⊥x轴于点N,则BN=M3H3=n,AN=m﹣4,由相似关系可知,AH3=2M3H3,即m﹣2=2n (1)在Rt△ABN中,由勾股定理得:22=(m﹣4)2+n2(2)由(1)、(2)式解得:m1=,m2=2,当m=2时,点M与点A横坐标相同,点H与点A重合,故舍去,∴m=.综上所述,存在m的值使以A、M、H为顶点的三角形与△AOD相似,m的取值为:1、3或.点评:本题是以圆为基础的运动型压轴题,综合考查了圆的相关性质、相似三角形、点的坐标、勾股定理、解方程等重要知识点,难度较大.本题涉及动线与动点,运动过程比较复杂,准确理解运动过程是解决本题的关键.第(3)①问中,关键是画出点M运动轨迹的图形,结合图形求解一目了然;第(3)②问中,注意分类讨论思想的运用,避免漏解.12.(2012•绍兴)联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图1,若PA=PB,则点P为△ABC的准外心.应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=AB,求∠APB的度数.探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.考点:线段垂直平分线的性质;等腰三角形的性质;等边三角形的性质;勾股定理.专题:新定义.分析:应用:连接PA、PB,根据准外心的定义,分①PB=PC,②PA=PC,③PA=PB三种情况利用等边三角形的性质求出PD与AB 的关系,然后判断出只有情况③是合适的,再根据等腰直角三角形的性质求出∠APB=45°,然后即可求出∠APB的度数;探究:先根据勾股定理求出AC的长度,根据准外心的定义,分①PB=PC,②PA=PC,③PA=PB三种情况,根据三角形的性质计算即可得解.解答:应用:解:①若PB=PC,连接PB,则∠PCB=∠PBC,∵CD为等边三角形的高,∴AD=BD,∠PCB=30°,∴∠PBD=∠PBC=30°,∴PD=DB=AB,与已知PD=AB矛盾,∴PB≠PC,②若PA=PC,连接PA,同理可得PA≠PC,③若PA=PB,由PD=AB,得PD=BD,∴∠APD=45°,故∠APB=90°;探究:解:∵BC=5,AB=3,∴AC===4,①若PB=PC,设PA=x,则x2+32=(4﹣x)2,∴x=,即PA=,②若PA=PC,则PA=2,③若PA=PB,由图知,在Rt△PAB中,不可能.故PA=2或.点评:本题考查了线段垂直平分线的性质,等腰三角形的性质,勾股定理,读懂题意,弄清楚准外心的定义是解题的关键,根据准外心的定义,要注意分三种情况进行讨论.。

2022北京中考数学题型专练:新定义压轴题

2022北京中考数学题型专练:新定义压轴题

2022北京中考数学题型专练:新定义压轴题一、解答题1.在平面直角坐标系中,的半径为1,对于点和线段,给出如下定义:若将线段绕点旋转可xOy O A BC BC A 以得到的弦(分别是的对应点),则称线段是的以点为中心的“关联线段”.O B C '',B C '',B C BC O A(1)如图,点的横、纵坐标都是整数.在线段中,的以点为中心的“关联112233,,,,,,A B C B C B C 112233,,B C B C B C O A 线段”是______________;(2)是边长为1的等边三角形,点,其中.若是的以点为中心的“关联线段”,求的ABC ()0,A t 0t ≠BC O A t 值;(3)在中,.若是的以点为中心的“关联线段”,直接写出的最小值和最大值,以ABC 1,2AB AC ==BC O A OA 及相应的长.BC 2.在平面直角坐标系中,⊙O 的半径为1,A ,B 为⊙O 外两点,AB=1.给出如下定义:平移线段AB ,得到xOy ⊙O 的弦(分别为点A ,B 的对应点),线段长度的最小值称为线段AB 到⊙O 的“平移距离”.A B '',A B ''AA '(1)如图,平移线段AB 到⊙O 的长度为1的弦和,则这两条弦的位置关系是 ;在点中,12PP 34PP 1234,,,P P P P 连接点A 与点 的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线上,记线段AB 到⊙O 的“平移距离”为,求的最小值;y =+1d 1d (3)若点A 的坐标为,记线段AB 到⊙O 的“平移距离”为,直接写出的取值范围. 32,2⎛⎫ ⎪⎝⎭2d 2d 3.在△ABC 中,,分别是两边的中点,如果上的所有点都在△ABC 的内部或边上,则称为△D E ABC DEDE ABC 的中内弧.例如,下图中是△ABC 的一条中内弧. DE(1)如图,在Rt △ABC 中,分别是的中点.画出△ABC 的最长的中内弧AB AC D E ==,AB AC ,,并直接写出此时的长; DEDE(2)在平面直角坐标系中,已知点,在△ABC 中,分别是的()()()()0,20,04,00A B C t t >,,D E ,AB AC ,中点.①若,求△ABC 的中内弧所在圆的圆心的纵坐标的取值范围; 12t = DE P ②若在△ABC 中存在一条中内弧,使得所在圆的圆心P 在△ABC 的内部或边上,直接写出t 的取值范围. DEDE4.对于平面直角坐标系中的图形,,给出如下定义:为图形上任意一点,为图形上任意一xOy M N P M Q N 点,如果,两点间的距离有最小值,那么称这个最小值为图形,间的“闭距离”,记作(,). P Q M N d M N 已知点(,6),(,),(6,).A 2-B 2-2-C 2-(1)求(点,);d O ABC (2)记函数(,)的图象为图形,若(,),直接写出的取值范围; y kx =11x -≤≤0k ≠G d G ABC 1=k (3)的圆心为(t ,0),半径为1.若(,),直接写出t 的取值范围.T T d T ABC 1=5.如图,平面上存在点P 、点M 与线段AB .若线段AB 上存在一点Q ,使得点M 在以PQ 为直径的圆上,则称点M 为点P 与线段AB 的共圆点.已知点P (0,1),点A (﹣2,﹣1),点B (2,﹣1).(1)在点O (0,0),C (﹣2,1),D (3,0)中,可以成为点P 与线段AB 的共圆点的是 ;(2)点K 为x 轴上一点,若点K 为点P 与线段AB 的共圆点,请求出点K 横坐标x K 的取值范围;(3)已知点M (m ,﹣1),若直线y =x +3上存在点P 与线段AM 的共圆点,请直接写出m 的取值范围. 126. A ,B 是⊙C 上的两个点,点P 在⊙C 的内部.若∠APB 为直角,则称∠APB 为AB 关于⊙C 的内直角,特别地,当圆心C 在∠APB 边(含顶点)上时,称∠APB 为AB 关于⊙C 的最佳内直角.如图1,∠AMB 是AB 关于⊙C 的内直角,∠ANB 是AB 关于⊙C 的最佳内直角.在平面直角坐标系xOy 中.(1)如图2,⊙O 的半径为5,A (0,﹣5),B (4,3)是⊙O 上两点.①已知P 1(1,0),P 2(0,3),P 3(﹣2,1),在∠AP 1B ,∠AP 2B ,∠AP 3B ,中,是AB 关于⊙O 的内直角的是 ;②若在直线y =2x +b 上存在一点P ,使得∠APB 是AB 关于⊙O 的内直角,求b 的取值范围.(2)点E 是以T (t ,0)为圆心,4为半径的圆上一个动点,⊙T 与x 轴交于点D (点D 在点T 的右边).现有点M (1,0),N (0,n ),对于线段MN 上每一点H ,都存在点T ,使∠DHE 是DE 关于⊙T 的最佳内直角,请直接写出n 的最大值,以及n 取得最大值时t 的取值范围.7.对于平面直角坐标系xOy中的图形W1和图形W2.给出如下定义:在图形W1上存在两点A,B(点A,B可以重合),在图形W2上存在两点M,N,(点M于点N可以重合)使得AM=2BN,则称图形W1和图形W2满足限距关系(1)如图1,点C(1,0),D(-1,0),E(0,点P在线段DE上运动(点P可以与点D,E重合),连接OP,CP.①线段OP的最小值为_______,最大值为_______;线段CP的取值范直范围是_____;②在点O,点C中,点____________与线段DE满足限距关系;(2)如图2,⊙O的半径为1,直线(b>0)与x轴、y轴分别交于点F,G.若线段FG与⊙O满足限距关y b=+系,求b的取值范围;(3)⊙O 的半径为r(r>0),点H ,K 是⊙O 上的两个点,分别以H ,K 为圆心,1为半径作圆得到⊙H 和 K ,若对于任意点H ,K ,⊙H 和⊙K 都满足限距关系,直接写出r 的取值范围.8.对于平面直角坐标系中的线段,给出如下定义:若存在使得,则称为线段xOy PQ PQR 2PQR S PQ = PQR PQ的“等幂三角形”,点R 称为线段的“等幂点”.PQ (1)已知.(3,0)A ①在点中,是线段的“等幂点”的是_____________;1234(1,3),(2,6),(5,1),(3,6)P P P P --OA ②若存在等腰是线段的“等幂三角形”,求点B 的坐标;OAB OA (2)已知点C 的坐标为,点D 在直线上,记图形M 为以点为圆心,2为半径的位于x (2,1)C -3y x =-(1,0)T T 轴上方的部分,若图形M 上存在点E ,使得线段的“等幂三角形”为锐角三角形,直接写出点D 的横坐标CD CDE △的取值范围.D x9.在平面直角坐标系中,已知正方形,其中,M ,N 为该xOy ABCD ,,,0,A B C D ⎛⎫⎛⎫⎛ ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝正方形外两点,.给出如下定义:记线段MN 的中点为P ,平移线段MN 得到线段,使点分别1MN =M N '',M N ''落在正方形的相邻两边上,或线段与正方形的边重合(分别为点M ,N ,P 的对应点),线段ABCD M N '',,M N P '''长度的最小值称为线段MN 到正方形的“平移距离”.PP 'ABCD (1)如下图,平移线段MN ,得到正方形内两条长度为1的线段,则这两条线段的位置关系是ABCD 1122,M N M N _______;若分别为的中点,在点中,连接点P 与点_______的线段的长度等于线段MN 到正12,P P 1122,M N M N 12,P P 方形的“平移距离”; ABCD(2)如图,已知点,若M ,N 都在直线BE 上,记线段MN 到正方形的“平移距离”为,求1,0E ⎫+⎪⎪⎭ABCD 1d 1d 的最小值;(3)若线段MN 的中点P 的坐标为,记线段MN 到正方形的“平移距离”为,直接写出的取值范(2)2,ABCD 2d 2d 围.10.对于平面直角坐标系中的图形M 和点P ,给出如下定义:将图形M 绕点P 顺时针旋转得到图形N ,图xOy 90︒形N 称为图形M 关于点P 的“垂直图形”.例如,图1中点D 为点C 关于点P 的“垂直图形”.(1)点A 关于原点O 的“垂直图形”为点B .①若点A 的坐标为,则点B 的坐标为_______;(0,2)②若点B 的坐标为,则点A 的坐标为_______.(2,1)(2).线段关于点G 的“垂直图形”记为,点E 的对应点为,点F 的对应点为(3,3),(2,3),(,0)E F G a --EF E F ''E '.F '①求点的坐标(用含a 的式子表示);E '②若的半径为,上任意一点都在内部或圆上,直接写出满足条件的的长度的最大值.O 2E F ''O EE '11.在平面直角坐标系中,对于两个点,和图形,如果在图形上存在点,(,可以重合)xOy P Q W W M N M N 使得,那么称点与点是图形的一对平衡点.PM QN =P Q W (1)如图1,已知点,;(0,3)A ()2,3B ①设点与线段上一点的距离为,则的最小值是 ,最大值是 ;O AB d d ②在,,这三个点中,与点是线段的一对平衡点的是 ; 13,02P ⎛⎫ ⎪⎝⎭2(1,4)P 3(3,0)P -O AB (2)如图2,已知的半径为1,点的坐标为.若点在第一象限,且点与点是的一对平O D (5,0)(,2)E x D E O 衡点,求的取值范围;x (3)如图3,已知点,以点为圆心,长为半径画弧交的正半轴于点.点(其中)是(3,0)H -O OH x K (,)C a b 0b ≥坐标平面内一个动点,且,是以点为圆心,半径为2的圆,若上的任意两个点都是的一对平5OC =C C HK C 衡点,直接写出的取值范围. b12.在△ABM 中,∠ABM =90°,以AB 为一边向△ABM 的异侧作正方形ABCD ,以A 为圆心,AM 为半径作⊙A ,我们称正方形ABCD 为⊙A 的“关于△ABM 的友好正方形”,如果正方形ABCD 恰好落在⊙A 的内部(或圆上),我们称正方形ABCD 为⊙A 的“关于△ABM 的绝对友好正方形”,例如,图1中正方形ABCD 是⊙A 的“关于△ABM 的友好正方形”.(1)图2中,△ABM 中,BA =BM ,∠ABM =90°,在图中画出⊙A 的“关于△ABM 的友好正方形ABCD ”.(2)若点A 在反比例函数y =(k >0,x >0)上,它的横坐标是2,过点A 作AB ⊥y 轴于B ,若正方形ABCD 为k x⊙A 的“关于△ABO 的绝对友好正方形”,求k 的取值范围.(3)若点A 是直线y =﹣x +2上的一个动点,过点A 作AB ⊥y 轴于B ,若正方形ABCD 为⊙A 的“关于△ABO 的绝对友好正方形”,求出点A 的横坐标m 的取值范围.13.在△ABC 中,以AB 边上的中线CD 为直径作圆,如果与边AB 有交点E (不与点D 重合),那么称为△ DEABC 的C ﹣中线弧.例如,如图中是△ABC 的C ﹣中线弧.在平面直角坐标系xOy 中,已知△ABC 存在C ﹣中线 DE弧,其中点A 与坐标原点O 重合,点B 的坐标为(2t ,0)(t >0).(1)当t =2时,①在点C 1(﹣3,2),C 2(0,C 3(2,4),C 4(4,2)中,满足条件的点C 是 ;②若在直线y =kx (k >0)上存在点P 是△ABC 的C ﹣中线弧所在圆的圆心,其中CD =4,求k 的取值范围; DE(2)若△ABC 的C ﹣中线弧所在圆的圆心为定点P (2,2),直接写出t 的取值范围. DE14.在△ABC 中,点P 是∠BAC 的角平分线AD 上的一点,若以点P 为圆心,PA 为半径的⊙P 与△ABC 的交点不少于4个,点P 称为△ABC 关于∠BAC 的“劲度点”,线段 PA 的长度称为△ABC 关于∠BAC 的“劲度距离”. (1)如图,在∠BAC 平分线AD 上的四个点、、、中,连接点A 和点 的线段长度是△ABC 关于∠1P 2P 3P4P BAC 的“劲度距离”.(2)在平面直角坐标系中,已知点M (0,t ),N (4,0).①当t =时,求出△MON 关于∠MON 的“劲度距离”的最大值.51dMON 关于∠MON 的“劲度距离”,请直接写出t 的取值范围.d ≤15.对于平面内的图形G 1和图形G 2,记平面内一点P 到图形G 1上各点的最短距离为d 1,点P 到图形G 2上各点的最短距离为d 2,若d 1=d 2,就称点P 是图形G 1和图形G 2的一个“等距点”.在平面直角坐标系 xOy 中,已知点 A(6,0),B (0,(1)在C (4,0),D (2,0),E (1,3)三点中,点A 和点B 的等距点是 ;(2)已知直线 y =2.①若点A 和直线y =2的等距点在x 轴上,则该等距点的坐标为 ;②若直线y =b 上存在点A 和直线y =2的等距点,求实数b 的取值范围;(3)记直线AB 为直线l 1,直线l 2: ,以原点O 为圆心作半径为r 的⊙O .若⊙O 上有m 个直线l 1和直y =线l 2的等距点,以及n 个直线l 1和y 轴的等距点(m ≠0,n ≠0),当 m ≠n 时,求r 的取值范围.16.对于平面内的点M ,如果点P ,点Q 与点M 所构成的是边长为1的等边三角形,则称点P ,点Q 为点MPQ M 的一对“关联点”,进一步地,在中,若顶点M ,P ,Q 按顺时针排列,则称点P ,点Q 为点M 的一对“顺MPQ 关联点”;若顶点M ,P ,Q 按逆时针排列,则称点P ,点Q 为点M 的一对“逆关联点”.已知,(1,0)A(1)在中,点A 的一对关联点是____,它们为点A 的一对___关联点(填“顺”或3(0,0),(0,1),(2,0),,2O B C D ⎛ ⎝“逆”);(2)以原点O 为圆心作半径为1的圆,已知直线.:l y b =+①若点P 在⊙O 上,点Q 在直线l 上,点P ,点Q 为点A 的一对关联点,求b 的值;②若在⊙O 上存在点R ,在直线l 上存在两点和,其中,且点T ,点S 为点R 的一对顺关联()11,T x y ()22,S x y 12x x >点,求b 的取值范围.17.在平面直角坐标系中,对于任意两点,若(k 为常数且),则xOy ()()1122,,,M x y N x y 1212x x y y k -+-=0k ≠称点M 为点N 的k 倍直角点.根据以上定义,解决下列问题:(1)已知点(1,1)A ①若点是点A 的k 倍直角点,则k 的值是___________;(2,3)B -②在点中是点A 的2倍直角点的是_______;(2,3),(1,1),(0,2),(0,0)C D E O --③若直线上存在点A 的2倍直角点,求b 的取值范围;2y x b =-+(2)的圆心T 的坐标为,半径为r ,若上存在点O 的2倍直角点,直接写出r 的取值范围. T (1,0)T 18.在平面直角坐标系中,任意两点,,定义线段的“直角长度”为O x y ()11,P x y ()22,Q x y PQ .2121PQ d x x y y =-+-(1)已知点.(3,2)A ① ________;OA d =② 已知点,若,求m 的值;(,0)B m 6AB d =(2)在三角形中,若存在两条边“直角长度”之和等于第三条边的“直角长度”,则称该三角形为“和距三角形”.已知点.(3,3)M ① 点.如果为“和距三角形”,求d 的取值范围;(0,)(0)D d d ≠OMD ② 在平面直角坐标系中,点C 为直线上一点,点K 是坐标系中的一点,且满足,当点C 在直xOy 4y x =--1CK =线上运动时,点K 均满足使为“和距三角形”,请你直接写出点C 的横坐标的取值范围.OMK △C x 19.如图,直线l 和直线l 外一点P ,过点P 作于点H 任取直线l 上点Q ,点H 关于直线的对称点为点PH l ⊥PQ ,标点为点P 关于直线l 的垂对点.在平面直角坐标系中,H 'H 'xOy(1)已知点,则点中是点P 关于x 轴的垂对点的是_______;(0,2)P (0,0),(2,2),(0,4)O A B (2)已知点,且,直线上存在点M 关于x 轴的垂对点,求m 的取值范围; (0,)M m 0m >443y x =-+(3)已知点,若直线上存在两个点N 关于x 轴的垂对点,直接写出n 的取值范围,(,2)N n y x n =+20.在平面直角坐标系xOy 中,对于图形Q 和∠P ,给出如下定义:若图形Q 上的所有的点都在∠P 的内部或∠P 的边上,则∠P 的最小值称为点P 对图形Q 的可视度.如图1,∠AOB 的度数为点O 对线段AB 的可视度.(1)已知点N (2,0),在点,,中,对线段ON 的可视度为60º的点是______. 1M 2M 3(2,3)M (2)如图2,已知点A (-2,2),B (-2,-2),C (2,-2),D (2,2),E (0,4).①直接写出点E 对四边形ABCD 的可视度为______°;②已知点F (a ,4),若点F 对四边形ABCD 的可视度为45°,求a 的值.21.在平面直角坐标系中,对于点A 和线段,如果点A ,O ,M ,N 按逆时针方向排列构成菱形,xOy MN AOMN 且,则称线段是点A 的“相关线段”.例如,图1中线段是点A 的“-相关线段”.AOM α∠=MN α-MN 30︒(1)已知点A 的坐标是.(0,2)①在图2中画出点A 的“-相关线段”,并直接写出点M 和点N 的坐标;30︒MN②若点A 的“-相关线段”经过点,求的值; αα(2)若存在使得点P 的“-相关线段”和“-相关线段”都经过点,记,直接写出t 的取值,()αβαβ≠αβ(0,4)PO t =范围.参考答案1.(1);(2)3)当时,此时;当时,此时. 22B C t =min 1OA =BC =max 2OA =BC =【分析】(1)以点A 为圆心,分别以为半径画圆,进而观察是否与有交点即可; 112233,,,,,AB AC AB AC AB AC O (2)由旋转的性质可得是等边三角形,且是的弦,进而画出图象,则根据等边三角形的性质可进AB C ''△B C ''O 行求解;(3)由是的以点为中心的“关联线段”,则可知都在上,且,然后由BC O A ,B C ''O 1,2AB AB AC AC ''====题意可根据图象来进行求解即可.【详解】解:(1)由题意得:通过观察图象可得:线段能绕点A 旋转90°得到的“关联线段”,都不能绕点A 进行旋转得到; 22B C O 1133,B C B C 故答案为;22B C (2)由题意可得:当是的以点为中心的“关联线段”时,则有是等边三角形,且边长也为1,当BC O A AB C ''△点A 在y 轴的正半轴上时,如图所示:设与y 轴的交点为D ,连接,易得轴,B C ''OB 'B C y ''⊥∴, 12B D DC ''==∴ OD ==AD ==∴OA =∴t =当点A 在y 轴的正半轴上时,如图所示:同理可得此时的OA =∴;t =(3)由是的以点为中心的“关联线段”,则可知都在上,且,则有当BC O A ,B C ''O 1,2AB AB AC AC ''====以为圆心,1为半径作圆,然后以点A 为圆心,2为半径作圆,即可得到点A 的运动轨迹,如图所示:B '由运动轨迹可得当点A 也在上时为最小,最小值为1,此时为的直径,O AC 'O ∴,90AB C ''∠=︒∴,30AC B ''∠=︒∴;cos30BC B C AC '''==⋅︒=由以上情况可知当点三点共线时,OA 的值为最大,最大值为2,如图所示:,,A B O '连接,过点作于点P ,,OC B C '''C 'C P OA '⊥∴,1,2OC AC OA ''===设,则有,OP x =2AP x =-∴由勾股定理可得:,即, 22222C P AC AP OC OP '''=-=-()222221x x --=-解得:, 14x =∴ C P '=∴, 34B P OB OP ''=-=在中, Rt B PC '' B C ''=∴ BC =综上所述:当时,此时;当时,此时 min 1OA =BC max 2OA =BC =【点睛】本题主要考查旋转的综合、圆的基本性质、三角函数及等边三角形的性质,熟练掌握旋转的性质、圆的基本性质、三角函数及等边三角形的性质是解题的关键.2.(1)平行,P 3;(23)232d ≤≤【分析】(1)根据圆的性质及“平移距离”的定义填空即可;(2)过点O 作OE ⊥AB 于点E ,交弦CD 于点F ,分别求出OE 、OF 的长,由得到的最小值;1d OE OF =-1d (3)线段AB 的位置变换,可以看作是以点A 为圆心,半径为1的圆,只需在⊙O 内找到与之平行,且长度32,2⎛⎫ ⎪⎝⎭为1的弦即可.平移距离的最大值即点A ,B 点的位置,由此得出的取值范围.2d 2d 【详解】解:(1)平行;P 3;(2)如图,线段AB 在直线上,平移之后与圆相交,得到的弦为CD ,CD ∥AB ,过点O 作OE ⊥AB y =+于点E ,交弦CD 于点F ,OF ⊥CD ,令,直线与x 轴交点为(-2,0),直线与x 轴夹角为60°,∴0y =.2sin 60OE ︒==由垂径定理得: OF ==∴; 1d OE OF =-=(3)线段AB 的位置变换,可以看作是以点A 为圆心,半径为1的圆,只需在⊙O 内找到与之平行,且长度32,2⎛⎫ ⎪⎝⎭为1的弦即可;点A 到O 的距离为. 52AO ==如图,平移距离的最小值即点A 到⊙O 的最小值:; 2d 53122-=平移距离的最大值线段是下图AB 的情况,即当A 1,A 2关于OA 对称,且A 1B 2⊥A 1A 2且A 1B 2=1时.∠2d B 2A 2A 1=60°,则∠OA 2A 1=30°,∵OA 2=1,∴OM=, A 2, 12∴MA=3,AA 2∴的取值范围为: 2d 232d ≤【点睛】本题考查圆的基本性质及与一次函数的综合运用,熟练掌握圆的基本性质、点与圆的位置关系、直线与圆的位置关系是解题的关键.3.(1);(2)①P 的纵坐标或;②π1p y ≥12P y ≤0t <≤【分析】 (1)由三角函数值及等腰直角三角形性质可求得DE=2,最长中内弧即以DE 为直径的半圆,的长即以DE 为 DE直径的圆周长的一半;(2)根据三角形中内弧定义可知,圆心一定在DE 的中垂线上,,①当时,要注意圆心P 在DE 上方的中垂12t =线上均符合要求,在DE 下方时必须AC 与半径PE 的夹角∠AEP 满足90°≤∠AEP <135°;②根据题意,t 的最大值即圆心P 在AC 上时求得的t 值.【详解】解:(1)如图2,以DE 为直径的半圆弧,就是△ABC 的最长的中内弧,连接DE ,∵∠A=90°,D ,E 分别 DEDE是AB ,AC 的中点,, 114,42sin 22∴=====⨯=AC BC DE BC B ∴弧; DE 122ππ=⨯=(2)如图3,由垂径定理可知,圆心一定在线段DE 的垂直平分线上,连接DE ,作DE 垂直平分线FP ,作EG ⊥AC 交FP 于G ,①当时,C (2,0),∴D (0,1),E (1,1),, 12t =1,12⎛⎫ ⎪⎝⎭F 设由三角形中内弧定义可知,圆心线段DE 上方射线FP 上均可,∴m≥1, 1,2P m ⎛⎫ ⎪⎝⎭∵OA=OC ,∠AOC=90°∴∠ACO=45°,∵DE ∥OC∴∠AED=∠ACO=45°作EG ⊥AC 交直线FP 于G ,FG=EF=12根据三角形中内弧的定义可知,圆心在点G 的下方(含点G )直线FP 上时也符合要求;12∴m 综上所述,或m≥1. 12m②图4,设圆心P 在AC 上,∵P 在DE 中垂线上,∴P 为AE 中点,作PM ⊥OC 于M ,则PM= 32, 3,2⎛⎫∴ ⎪⎝⎭P t ∵DE ∥BC∴∠ADE=∠AOB=90°,∴==AE ∵PD=PE ,∴∠AED=∠PDE∵∠AED+∠DAE=∠PDE+∠ADP=90°,∴∠DAE=∠ADP12∴===AP PD PE AE 由三角形中内弧定义知,PD≤PM ,AE≤3,解得:1322∴AE3t0>∴< t t 【点睛】 此题是一道圆的综合题,考查了圆的性质,弧长计算,直角三角形性质等,给出了“三角形中内弧”新定义,要求学生能够正确理解新概念,并应用新概念解题.4.(1)2;(2)或;(3)或10k -≤<01k <≤4t =-04t -≤≤4t =+【详解】分析:(1)画出图形,根据“闭距离”的概念结合图形进行求解即可.(2)分和两种情况,画出示意图,即可解决问题.0k <0k >(3)画出图形,直接写出t 的取值范围.详解:(1)如下图所示:∵(,),(6,)B 2-2-C 2-∴(0,)D 2-∴(,)d O ABC 2OD ==(2)或10k -≤<01k <≤(3)或或 4t =-04t ≤≤-4t =+点睛:属于新定义问题,考查点到直线的距离,圆的切线的性质,认真分析材料,读懂“闭距离”的概念是解题的关键.5.(1)C ;(2)≤x k ﹣1≤x k 3)或【分析】(1)由题意可知当Q 与A 重合时,点C 在以AP 为直径的圆上,所以可以成为点P 与线段AB 的共圆点的是C ;(2)根据题意由两点的距离公式可得,分别画以AP 和BP 为直径的圆交x 轴于4个点:K 1、K 2、K 3、K 4,结合图形2可得4个点的坐标,从而得结论;(3)由题意先根据直线y=x+3,当x=0和y=0计算与x 轴和y 轴的交点坐标,分两种情况:M 在A 的左侧和右12侧,先计算圆E 与直线y=x+3相切时m 的值,从而根据图形可得结论.12【详解】解:(1)如图1,可以成为点P 与线段AB 的共圆点的是C ,故答案为:C ;(2)∵P (0,1),点A (﹣2,﹣1),点B (2,﹣1).∴AP =BP =,如图2,分别以PA 、PB 为直径作圆,交x 轴于点K 1、K 2、K 3、K 4,∵OP =OG =1,OE ∥AB ,∴PE =AE∴OE =AG =1,12∴K 1(0),k 2(,0),k 3﹣1,0),k 4(0),∵点K 为点P 与线段AB 的共圆点,∴≤x k ﹣1≤x k(3)分两种情况:①如图3,当M 在点A 的左侧时,Q 为线段AM 上一动点,以PQ 为直径的圆E 与直线y =x+3相切于点F ,连12接EF ,则EF ⊥FH ,当x =0时,y =3,当y =0时,y =x+3=0,x =﹣6,12∴ON =3,OH =6,∵tan ∠EHF ===, ON EF OH FH 3612设EF =a ,则FH =2a ,EH ,∴OE =,Rt △OEP 中,OP =1,EP =a ,由勾股定理得:EP 2=OP 2+OE 2,∴,2221(6)a =+解得:a ,∴QG =2OE =2()=,∴②如图4,当M 在点A 的右侧时,Q 为线段AM 上一动点,以PQ 为直径的圆E 与直线y =x+3相切于点F ,连12接EF ,则EF ⊥FH ,同理得QG =,∴,综上,m 的取值范围是或.【点睛】本题属于圆和一次函数综合题,考查一次函数的应用,新定义:M 为点P 与线段AB 的共圆点,圆的切线的性质等知识,解题的关键是理解题意,学会利用图象法解决问题,学会利用特殊点解决取值范围问题.6.(1)①∠AP 2B ,∠AP 3B ;②﹣5<b ≤5;(2)n 的最大值为2;t 的取值范围是t <5【分析】(1)判断点P 1,P 2,P 3是否在以AB 为直径的圆弧上即可得出答案;(2)求得直线AB 的解析式,当直线y =2x +b 与弧AB 相切时为临界情况,证明△OAH ∽△BAD ,可求出此时b =5,则答案可求出;(3)可知线段MN 上任意一点(不包含点M )都必须在以TD 为直径的圆上,该圆的半径为2,则当点N 在该圆的最高点时,n 有最大值2,再分点H 不与点M 重合,点M 与点H 重合两种情况求出临界位置时的t 值即可得解.【详解】解:(1)如图1,,,,1(1,0)P (0,5)A -(4,3)B,AB \1P A 1P B 不在以为直径的圆弧上,1P ∴AB 故不是关于的内直角,1APB ∠AB O ,,,2(0,3)P (0,5)A -(4,3)B,,,28P A \=AB =24P B =,22222P A P B AB \+=,290AP B \Ð=°是关于的内直角,2AP B \ÐAB O 同理可得,,22233P B P A AB +=是关于的内直角,3AP B \ÐAB O 故答案为:,;2AP B Ð3AP B Ð(2)是关于的内直角,APB ∠ AB O,且点在的内部,90APB ∴∠=︒P O 满足条件的点形成的图形为如图2中的半圆(点,均不能取到),∴P H A B过点作轴于点,B BD y ⊥D ,,(0,5)A - (4,3)B ,,4BD ∴=8AD =并可求出直线的解析式为,AB 25y x =-当直线过直径时,,∴2y x b =+AB 5b =-连接,作直线交半圆于点,过点作直线,交轴于点,OB OH E E //EF AB y F ,,OA OB = AH BH =,EH AB ∴⊥,EH EF ∴⊥是半圆的切线.EF ∴H ,,OAH OAH Ð=Ð 90OHB BDA Ð=Ð=°,OAH BAD \D D ∽,∴4182OH BD AH AD ===, 1122OH AH EH \==,OH EO \=,,EOF AOH Ð=Ð 90FEO AHO Ð=Ð=°,()EOF HOA ASA \D @D ,5OF OA \==,直线的解析式为,//EF AB AB 25y x =-直线的解析式为,此时,∴EF 25y x =+5b =的取值范围是.b ∴55b -< (3)对于线段上每一个点,都存在点,使是关于的最佳内直角,MN H T DHE ∠DE T 点一定在的边上,∴T DHE ∠,,线段上任意一点(不包含点都必须在以为直径的圆上,该圆的半径为2, 4TD = 90DHT ∠=︒MN )M TD 当点在该圆的最高点时,有最大值,∴N n 即的最大值为2.n 分两种情况:①若点不与点重合,那么点必须在边上,此时,H M T HE 90DHT ∠=︒点在以为直径的圆上,∴H DT 如图3,当与相切时,,G MN GH MN ⊥,,1OM = 2ON =MN \,,,GMH OMN Ð=Ð GHM NOM Ð=Ð2ON GH ==,()GHM NOM ASA \D @DMN GM \==,1OG \=,1OT \=当与重合时,,T M 1t =此时的取值范围是,∴t 11t < ②若点与点重合时,临界位置有两个,一个是当点与重合时,,另一个是当时,, H M T M 1t =4TM =5t =此时的取值范围是,∴t 15t <综合以上可得,的取值范围是.t 15t < 【点睛】本题是圆的综合题,考查了一次函数图象上点的坐标特征,直角三角形的性质,圆周角定理,勾股定理,相似三角形的判定与性质,全等三角形的判定与性质等知识,利用数形结合的思想,正确理解最佳内直角的意义是解本题的关键.7.(1,②O ;(2);(3)0<r≤3. 2CP ≤≤13b ≥【分析】(1)①根据垂线段最短以及已知条件,确定OP ,CP 的最大值,最小值即可解决问题.②根据限距关系的定义判断即可.(2)直线与x 轴、y 轴分别交于点F ,G (0,b ),分三种情形:①线段FG 在⊙O 内部,②线段FG 与y b =+⊙O 有交点,③线段FG 与⊙O 没有交点,分别构建不等式求解即可.(3)如图3中,不妨设⊙K ,⊙H 的圆心在x 轴上位于y 轴的两侧,根据⊙H 和⊙K 都满足限距关系,构建不等式求解即可.【详解】(1)①如图1中,∵D (-1,0),E(0,∴OD=1,OE =∴ OE tan EDO OD∠==∴∠EDO=60°,当OP ⊥DE 时,,此时OP 的值最小, •60OP OD sin =︒=当点P 与E 重合时,OP当CP ⊥DE 时,CP 的值最小,最小值•60CD cos =︒=当点P 与D 或E 重合时,PC 的值最大,最大值为2,. 2CP ≤≤②根据限距关系的定义可知,线段DE 上存在两点M ,N ,满足OM=2ON ,故点O 与线段DE 满足限距关系.故答案为O .(2)直线与x 轴、y 轴分别交于点F ,G (0,b ),y b =+当0<b <1时,线段FG 在⊙O 内部,与⊙O 无公共点,此时⊙O 上的点到线段FG 的最小距离为1-b ,最大距离为1+b ,∵线段FG 与⊙O 满足限距关系,∴1+b≥2(1-b ),解得, 13b ≥∴b 的取值范围为. 131b ≤<当1≤b≤2时,线段FG 与⊙O 有公共点,线段FG 与⊙O 满足限距关系,当b >2时,线段FG 在⊙O 的外部,与⊙O 没有公共点,此时⊙O 上的点到线段FG 的最小距离为,最大距离为b+1, 121b -∵线段FG 与⊙O 满足限距关系,∴, 11212b b ⎛⎫+≥- ⎪⎝⎭而总成立, 11212b b ⎛⎫+≥- ⎪⎝⎭∴b >2时,线段FG 与⊙O 满足限距关系,综上所述,b 的取值范围为. 13b ≥(3)如图3中,不妨设⊙K ,⊙H 的圆心在x 轴上位于y 轴的两侧,两圆的距离的最小值为2r-2,最大值为2r+2,∵⊙H 和⊙K 都满足限距关系,∴2r+2≥2(2r-2),解得r≤3,故r 的取值范围为0<r≤3.【点睛】本题属于圆综合题,考查了解直角三角形,垂线段最短,直线与圆的位置关系,限距关系的定义等知识,解题的关键是理解题意,学会利用参数构建不等式解决问题,属于中考创新题型.8.(1)①:②或;(2或24,P P 362⎛⎫ ⎪⎝⎭,362⎛⎫ ⎪⎝⎭,-1D x <<3D x <<【分析】(1)①根据定义求出三角形面积与OA 2进行比较即可确定线段的“等幂点”;②如图,由是线段OA 的“等OA OAB 幂三角形”,可得.由点A 的坐标为,若记中边上的高为h ,可得, 求出2OAB S OA = ()3,0A OAB OA 392OAB S h == .由是等腰三角形,点B 在线段OA 的垂直平分线上即可求点B 的坐标为(,6)或(,-6); 6h =OAB 3232(2)设半圆与x 轴交于G ,H 两点,过T 作CH 的平行线与半圆交于R ,作CH 的垂线交半圆于Q ,直线y =x -3与y 轴交于N ,设D (x ,x -3),过D 作y 轴平行线,与过C 作x 轴平行线交于F ,求出N (0,-3), H (3,0),可证△ONH 为等腰直角三角形,∠OHN =∠ONH =45°,点D 运动分两种情况,第一种情况点D 在射线CH ,去掉线段CH部分运动,在Rt △TCH 中TH =2,TC =CH =TH ×sin45°=2,QC=2,又因为△ECD 为锐角三角形,点E 在上运动,点E 到CD 的距离h h =2CD , 第二种 QR 2h ≤≤3D x <<情况点D 在射线CU 上,去掉线段CU 部分运动,点E 在上运动,求出GU =GH ×cos45°= QG,可求. 2h ≤≤)22x ≤-≤1D x <<【详解】 (1)①=,P 1不是线段OA 的“等幂点”. 1OP A S 1211933222P OA y OA ⨯⋅=⨯⨯=<=, P 2是线段OA 的“等幂点”. 2OP A S 2211369=22P OA y OA ⨯⋅=⨯⨯==,P 3不是线段OA 的“等幂点”. 3OP A S 3211331222P OA y OA ⨯⋅=⨯⨯=<=, P 4是线段OA 的“等幂点”. 4OP A S 421136922P OA y OA ⨯⋅=⨯⨯==是线段的“等幂点”的是,OA 24,P P 故答案为::24,P P②如图,∵是线段OA 的“等幂三角形”,OAB ∴.2OAB S OA = ∵点A 的坐标为,若记中边上的高为h ,()3,0A OAB OA 则有. 13922OAB S OA h h =⨯⨯== 解得.6h =∴点B 在直线或上.6y =6y =-∵是等腰三角形,OAB ∴点B 在线段OA 的垂直平分线上.OA 的垂直平分线为x =,与直线或的交点为B 1(,6),B 2(,-6), 326y =6y =-3232综上所述,点B 的坐标为(,6)或(,-6), 3232(2)设半圆与x 轴交于G ,H 两点,过T 作CH 的平行线与半圆交于R ,作CH 的垂线交半圆于Q ,直线y =x -3与y 轴交于N ,设D (x ,x -3),过D 作y 轴平行线,与过C 作x 轴平行线交于F ,当x =0时,y =-3,N (0,-3),当y =0时,x -3=0,x =3,H (3,0),∴ON =3=OH ,△ONH 为等腰直角三角形,∠OHN =∠ONH =45°,点D 运动分两种情况,第一种情况点D 在射线CH ,去掉线段CH 部分运动,∵TC ⊥NH ,∠OHN =45°,∴△TCH 为等腰直角三角形,在Rt △TCH 中TH =2,TC =CH =TH ×sin45°=2QC=2 又因为△ECD 为锐角三角形,点E 在上运动, QR点E 到CD 的距离h 2h ≤≤(x-2), ∵线段的“等幂三角形”,CD S △CDE ==CD 2, 12h CD ⋅∴h =2CD (x -2),)22x <-<解得 52x <点D 在H 右侧,x>3,∴ 3D x <<第二种情况点D 在射线CU 上,去掉线段CU 部分运动,点E 在上运动, QG又因为△ECD 为锐角三角形,GU=GH×cos45°=∴2h ≤≤∵线段的“等幂三角形”,CD S △CDE ==CD 2, 12h CD ⋅∴h =2CD (2-x ),则)22x ≤-≤, 1D x <<D 的横坐标或 D x 1D x <<3D x <<【点睛】本题考查新定义问题,仔细阅读新定义,抓住三角形的高为底的二倍,涉及三角形面积,等腰三角形,等腰直角三角形,线段垂直平分线,一次函数的性质,圆的性质,直线与圆的位置关系,锐角三角函数,锐角三角形,列双边不等式,解不等式等知识,难度较大,综合较强,熟练掌握多方面知识才是解题关键.9.(1)平行,P 1;(2)3). 1d 212d -≤【分析】(1)根据图形,比较PP 1,PP 2的长度即可求解;(2)根据已知条件求得∠P 1BE =45,过P 1作P 1Q ⊥BE 于Q ,则△P 1QB 为等腰直角三角形,利用特殊角三角函数︒值即可求解;(3)先找到最值点,再利用两点之间的距离公式即可求解.【详解】(1)解:由图可得MN ∥M 1N 1,MN ∥M 2N 2,∴M 1N 1∥M 2N 2,而PP 1<PP 2,故线段MN 到正方形ABCD 的“平移距离”为PP 1;故答案为:平行,P 1;(2)∵B (0),C ,0),四边形ABCD 为正方形,。

人教版2023中考专题复习 解答题压轴题新定义题型

人教版2023中考专题复习 解答题压轴题新定义题型

专题17 解答题压轴题新定义题型(原卷版)模块一 2022中考真题集训类型一 函数中的新定义问题1.(2022•南通)定义:函数图象上到两坐标轴的距离都不大于n (n ≥0)的点叫做这个函数图象的“n 阶方点”.例如,点(13,13)是函数y =x 图象的“12阶方点”;点(2,1)是函数y =2x 图象的“2阶方点”. (1)在①(﹣2,−12);②(﹣1,﹣1);③(1,1)三点中,是反比例函数y =1x 图象的“1阶方点”的有 (填序号);(2)若y 关于x 的一次函数y =ax ﹣3a +1图象的“2阶方点”有且只有一个,求a 的值;(3)若y 关于x 的二次函数y =﹣(x ﹣n )2﹣2n +1图象的“n 阶方点”一定存在,请直接写出n 的取值范围.2.(2022•湘西州)定义:由两条与x 轴有着相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”,如图①,抛物线C 1:y =x 2+2x ﹣3与抛物线C 2:y =ax 2+2ax +c 组成一个开口向上的“月牙线”,抛物线C 1和抛物线C 2与x 轴有着相同的交点A (﹣3,0)、B (点B 在点A 右侧),与y 轴的交点分别为G 、H (0,﹣1).(1)求抛物线C 2的解析式和点G 的坐标.(2)点M 是x 轴下方抛物线C 1上的点,过点M 作MN ⊥x 轴于点N ,交抛物线C 2于点D ,求线段MN 与线段DM 的长度的比值.(3)如图②,点E 是点H 关于抛物线对称轴的对称点,连接EG ,在x 轴上是否存在点F ,使得△EFG 是以EG 为腰的等腰三角形?若存在,请求出点F 的坐标;若不存在,请说明理由.3.(2022•兰州)在平面直角坐标系中,P(a,b)是第一象限内一点,给出如下定义:k1=ab和k2=ba两个值中的最大值叫做点P的“倾斜系数”k.(1)求点P(6,2)的“倾斜系数”k的值;(2)①若点P(a,b)的“倾斜系数”k=2,请写出a和b的数量关系,并说明理由;②若点P(a,b)的“倾斜系数”k=2,且a+b=3,求OP的长;(3)如图,边长为2的正方形ABCD沿直线AC:y=x运动,P(a,b)是正方形ABCD上任意一点,且点P的“倾斜系数”k<√3,请直接写出a的取值范围.4.(2022•遵义)新定义:我们把抛物线y=ax2+bx+c(其中ab≠0)与抛物线y=bx2+ax+c称为“关联抛物线”.例如:抛物线y=2x2+3x+1的“关联抛物线”为:y=3x2+2x+1.已知抛物线C1:y=4ax2+ax+4a﹣3(a≠0)的“关联抛物线”为C2.(1)写出C2的解析式(用含a的式子表示)及顶点坐标;(2)若a>0,过x轴上一点P,作x轴的垂线分别交抛物线C1,C2于点M,N.①当MN=6a时,求点P的坐标;②当a﹣4≤x≤a﹣2时,C2的最大值与最小值的差为2a,求a的值.5.(2022•赤峰)阅读下列材料定义运算:min|a,b|,当a≥b时,min|a,b|=b;当a<b时,min|a,b|=a.例如:min|﹣1,3|=﹣1;min|﹣1,﹣2|=﹣2.完成下列任务(1)①min|(﹣3)0,2|=;②min|−√14,﹣4|=.(2)如图,已知反比例函数y1=kx和一次函数y2=﹣2x+b的图象交于A、B两点.当﹣2<x<0时,min|kx,﹣2x+b|=(x+1)(x﹣3)﹣x2,求这两个函数的解析式.6.(2022•泰州)定义:对于一次函数y1=ax+b、y2=cx+d,我们称函数y=m(ax+b)+n(cx+d)(ma+nc ≠0)为函数y1、y2的“组合函数”.(1)若m=3,n=1,试判断函数y=5x+2是否为函数y1=x+1、y2=2x﹣1的“组合函数”,并说明理由;(2)设函数y1=x﹣p﹣2与y2=﹣x+3p的图象相交于点P.①若m+n>1,点P在函数y1、y2的“组合函数”图象的上方,求p的取值范围;②若p≠1,函数y1、y2的“组合函数”图象经过点P.是否存在大小确定的m值,对于不等于1的任意实数p,都有“组合函数”图象与x轴交点Q的位置不变?若存在,请求出m的值及此时点Q的坐标;若不存在,请说明理由.类型二几何图形中的新定义问题7.(2022•青岛)【图形定义】有一条高线相等的两个三角形称为等高三角形、例如:如图①,在△ABC和△A'B'C'中,AD,A'D'分别是BC和B'C'边上的高线,且AD=A'D'、则△ABC 和△A'B'C'是等高三角形.【性质探究】如图①,用S△ABC,S△A'B'C′分别表示△ABC和△A′B′C′的面积,则S△ABC=12BC•AD,S△A'B'C′=12B′C′•A′D′,∵AD=A′D′∴S△ABC:S△A'B'C′=BC:B'C'.【性质应用】(1)如图②,D是△ABC的边BC上的一点.若BD=3,DC=4,则S△ABD:S△ADC=;(2)如图③,在△ABC中,D,E分别是BC和AB边上的点.若BE:AB=1:2,CD:BC=1:3,S△ABC=1,则S△BEC=,S△CDE=;(3)如图③,在△ABC中,D,E分别是BC和AB边上的点.若BE:AB=1:m,CD:BC=1:n,S△ABC=a,则S△CDE=.8.(2022•北京)在平面直角坐标系xOy 中,已知点M (a ,b ),N .对于点P 给出如下定义:将点P 向右(a ≥0)或向左(a <0)平移|a |个单位长度,再向上(b ≥0)或向下(b <0)平移|b |个单位长度,得到点P ′,点P ′关于点N 的对称点为Q ,称点Q 为点P 的“对应点”.(1)如图,点M (1,1),点N 在线段OM 的延长线上.若点P (﹣2,0),点Q 为点P 的“对应点”. ①在图中画出点Q ;②连接PQ ,交线段ON 于点T ,求证:NT =12OM ;(2)⊙O 的半径为1,M 是⊙O 上一点,点N 在线段OM 上,且ON =t (12<t <1),若P 为⊙O 外一点,点Q 为点P 的“对应点”,连接PQ .当点M 在⊙O 上运动时,直接写出PQ 长的最大值与最小值的差(用含t 的式子表示).模块二 2023中考押题预测9.(2023•义乌市校级模拟)定义:在平面直角坐标系中,有一条直线x =m ,对于任意一个函数,作该函数自变量大于m 的部分关于直线x =m 的轴对称图形,与原函数中自变量大于或等于m 的部分共同构成一个新的函数图象,则这个新函数叫做原函数关于直线x =m 的“镜面函数”.例如:图①是函数y =x +1的图象,则它关于直线x =0的“镜面函数”的图象如图②所示,且它的“镜面函数”的解析式为y ={x +1(x ≥0)−x +1(x <0),也可以写成y =|x |+1.(1)在图③中画出函数y =﹣2x +1关于直线x =1的“镜面函数”的图象.(2)函数y =x 2﹣2x +2关于直线x =﹣1的“镜面函数”与直线y =﹣x +m 有三个公共点,求m 的值.(3)已知A (﹣1,0),B (3,0),C (3,﹣2),D (﹣1,﹣2),函数y =x 2﹣2nx +2(n >0)关于直线x =0的“镜面函数”图象与矩形ABCD 的边恰好有4个交点,求n 的取值范围.10.(2023•秦皇岛一模)定义:如果二次函数y=a1x2+b1x+c1,(a1≠0,a1、b1、c1是常数)与y=a2x2+ b2x+c2a2≠0,a2、b2、c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函致互为“旋转函数”.例如:求函数y=2x2﹣3x+1的“旋转函数”,由函数y=2x2﹣3x+1可知,a1=2,b1=3,c1=1.根据a1+a2=0,b1=b2,c1+c2=0求出a2、b2、c2就能确定这个函数的“旋转函数”.请思考并解决下面问题:(1)写出函数y=x2﹣4x+3的“旋转函数”;(2)若函数y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为“旋转函数”,求(m+n)2023的值;(3)已知函数y=2(x﹣1)(x+3)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,试求证:经过点A1、B1、C1的二次函数与y=2(x﹣1)(x+3)互为“旋转函数”.11.(2022•滨海县校级三模)定义:若一个函数的图象上存在横、纵坐标之和为零的点,则称该点为这个函数图象的“好点”,例如,点(﹣1,1)是函数y=x+2的图象的“好点”.(1)在函数①y=﹣x+5,②y=6x,③y=x2+2x+1的图象上,存在“好点”的函数是(填序号).(2)设函数y=4x(x<0)与y=kx﹣1的图象的“好点”分别为点A、B,过点A作AC⊥y轴,垂足为C.当△ABC为等腰三角形时,求k的值;(3)若将函数y=2x2+4x的图象在直线y=m下方的部分沿直线y=m翻折,翻折后的部分与图象的其余部分组成了一个新的图象.当该图象上恰有3个“好点”时,求m的值.12.(2022•婺城区模拟)定义:在平面直角坐标系中,对于任意一个函数,作该函数y轴右侧部分关于y 轴的轴对称图形,与原函数y轴的交点及y轴右侧部分共同构成一个新函数的图象,则这个新函数叫做原函数的“新生函数“例如:图①是函数y=x+l的图象,则它的“新生函数“的图象如图②所示,且它的“新生函数“的解析式为y={x+1(x≥0)−x+1(x<0),也可以写成y=|x|+1.(1)在图③中画出函数y=﹣2x+l的“新生函数“的图象.(2)函数y=x2﹣2x+2的“新生函数“与直线y=﹣x+m有三个公共点,求m的值.(3)已知A(﹣1,0),B(3,0),C(3,﹣2),D(﹣1,﹣2),函数y=x2﹣2nx+2(n>0)的“新生函数“图象与矩形ABCD的边恰好有4个交点,求n的取值范围.13.(2022•宁南县模拟)新定义:在平面直角坐标系xOy中,若一条直线与二次函数图象抛物线有且仅有一个公共点,且抛物线位于这条直线同侧,则称该直线与此抛物线相切,公共点为切点.现有一次函数y=﹣4x﹣1与二次函数y=x2+mx图象相切于第二象限的点A.(1)求二次函数的解析式及切点A的坐标;(2)当0<x<3时,求二次函数函数值的取值范围;(3)记二次函数图象与x轴正半轴交于点B,问在抛物线上是否存在点C(异于A)使∠OBC=∠OBA,若有则求出C坐标,若无则说明理由.14.(2022•天宁区校级二模)如图,在平面直角坐标系xOy中,点A与点B的坐标分别是(t,0)与(t+6,0).对于坐标平面内的一动点P,给出如下定义:若∠APB=45°,则称点P为线段AB的“等角点”.(1)当t=1时,①若点P为线段AB在第一象限的“等角点”,且在直线x=4上,则点P的坐标为;②若点P为线段AB的“等角点”,并且在y轴上,则点P的坐标为;(2)已知直线y=﹣0.5x+4上总存在线段AB的“等角点”,则t的范围是.15.(2022•零陵区模拟)九年级数学兴趣小组在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函数互为“旋转函数”.求函数y=2x2﹣3x+1的“旋转函数”.小组同学是这样思考的,由函数y=2x2﹣3x+1可知,a1=2,b1=﹣3,c1=1,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能确定这个函数的“旋转函数”.请参照小组同学的方法解决下面问题:(1)函数y=x2﹣4x+3的“旋转函数”是;(2)若函数y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为“旋转函数”,求(m+n)2022的值;(3)已知函数y=2(x﹣1)(x+3)的图象与x轴交于A,B两点,与y轴交于点C,点A,B,C关于原点的对称点分别是A1,B1,C1,试求证:经过点A1,B1,C1的二次函数与y=2(x﹣1)(x+3)互为“旋转函数”.16.(2022•甘井子区校级模拟)定义:将函数C1的图象绕点P(m,0)旋转180o,得到新的函数C2的图象,我们称函数C2是函数C1关于点P的相关函数.例如:当m=1时,函数y=(x﹣3)2+9关于点P(1,0)的相关函数为y=﹣(x+1)2﹣9.(1)当m=0时,①一次函数y=﹣x+7关于点P的相关函数为.②点A(5,﹣6)在二次函数y=ax2﹣2ax+a(a≠0)关于点P的相关函数的图象上,求a的值.(2)函数y=(x﹣2)2+6关于点P的相关函数是y=﹣(x﹣10)2﹣6,则m=.(3)当m﹣1≤x≤m+2时,函数y=x2﹣6mx+4m2关于点P(m,0)的相关函数的最大值为8,求m的值.17.(2022•庐阳区校级三模)定义:对于给定的两个函数,任取自变量x的一个值;当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为关联函数.例如:一次函数y=x﹣1,它的关联函数为y={−x+1(x<0)x−1(x≥0).已知二次函数y=﹣x2+4x−12.(1)当第二象限点B(m,32)在这个函数的关联函数的图象上时,求m的值;(2)当﹣3≤x≤﹣1时求函数y=﹣x2+4x−12的关联函数的最大值和最小值.18.(2022•江都区二模)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“梅岭点”.(1)若点P (3,p )是一次函数y =mx +6的图象上的“梅岭点”,则m = ; 若点P (m ,m )是函数y =3x−2的图象上的“梅岭点”,则m = ;(2)若点P (p ,﹣2)是二次函数y =x 2+bx +c 的图象上唯一的“梅岭点”,求这个二次函数的表达式; (3)若二次函数y =ax 2+bx +c (a ,b 是常数,a >0)的图象过点(0,2),且图象上存在两个不同的“梅岭点”A (x 1,x 1),B (x 2,x 2),且满足﹣1<x 1<1,|x 1﹣x 2|=2,如果k =﹣b 2+2b +2,请直接写出k 的取值范围.19.(2022•海淀区校级模拟)在平面直角坐标系xOy 中,⊙O 的半径为1,对于线段AB ,给出如下定义:若将线段AB 沿着某条直线l 对称可以得到⊙O 的弦A ′B ′(A ′,B ′分别为A ,B 的对应点),则称线段AB 是⊙O 的以直线l 为对称轴的对称的“反射线段”,直线l 称为“反射轴”.(1)如图1,线段CD 、EF 、GH 中是⊙O 的以直线l 为对称轴的“反射线段”有 ;(2)已知A 点的坐标为(0,2),B 点坐标为(1,1).①如图2,若线段AB 是⊙O 的以直线l 为对称轴的“反射线段”,画出图形,反射轴l 与y 轴的交点M 的坐标是 .②若将“反射线段”AB 沿直线y =x 的方向向上平移一段距离S ,其反射轴l 与y 轴的交点的纵坐标y M 的取值范围为12≤y M ≤136,求S 的取值范围.(3)已知点M 、N 是在以(2,0)为圆心,半径为√13的圆上的两个动点,且满足MN =√2,若MN 是⊙O 的以直线l 为对称轴的“反射线段”,当M 点在圆上运动一周时,反射轴l 与y 轴的交点的纵坐标的取值范围是 .20.(2022•亭湖区校级三模)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB 是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连接DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=4BE,QB=6,求邻余线AB的长.21.(2022•寻乌县二模)我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”.例如:如图①,∠B=∠C,则四边形ABCD为“等邻角四边形”.(1)定义理解:以下平面图形中,是等邻角四边形得是.①平行四边形②矩形③菱形④等腰梯形(2)深入探究:①已知四边形ABCD为“等邻角四边形”,且∠A=120°,∠B=100°,则∠D=°.②如图②,在五边形ABCDE中,ED∥BC,对角线BD平分∠ABC,求证:四边形ABDE为等邻角四边形.(3)拓展应用:如图③,在等邻角四边形ABCD中,∠B=∠C,点P为边BC上的一动点,过点P作PM⊥AB,PN⊥CD,垂足分别为M,N.在点P的运动过程中,PM+PN的值是否会发生变化?请说明理由.22.(2022•东胜区二模)【概念理解】定义:我们把对角线互相垂直的四边形叫做垂美四边形如图①.我们学习过的四边形中是垂美四边形的是;(写出一种即可)【性质探究】利用图①,垂美四边形ABCD两组对边AB,CD的平方和与BC,AD的平方和之间的数量关系是;【性质应用】(1)如图②,在△ABC中,BC=6,AC=8,D,E分别是AB,BC的中点,连接AE,CD,若AE⊥CD,则AB的长为;(2)如图③,等腰Rt△BCE和等腰Rt△ADE中,∠BEC=∠AED=90°,AC与BD交于O点,BD与CE交于点F,AC与DE交于点G.若BE=6,AE=8,AB=12,求CD的长;【拓展应用】如图④,在▱ABCD中,点E、F、G分别是AD、AB、CD的中点,EF⊥CF,AD=6,AB =8,求BG的长.23.(2022•修水县一模)定义:有一组对角互补的四边形叫做“对补四边形”.例如:在四边形ABCD中,若∠A+∠C=180°或∠B+∠D=180°,则四边形ABCD是“对补四边形”.概念理解.(1)如图1,已知四边形ABCD是“对补四边形”.①若∠A:∠B:∠C=3:2:1,则∠D的度数为;②若∠B=90°,且AB=3,AD=2,则CD2﹣CB2=.拓展延伸.(2)如图2,已知四边形ABCD是“对补四边形”.当AB=CB,且∠EBF=12∠ABC时,试猜想AE,CF,EF之间的数量关系,并证明.24.(2022•盐城一模)对于平面内的两点K、L,作出如下定义:若点Q是点L绕点K旋转所得到的点,则称点Q是点L关于点K的旋转点;若旋转角小于90°,则称点Q是点L关于点K的锐角旋转点.如图1,点Q是点L关于点K的锐角旋转点.(1)已知点A(4,0),在点Q1(0,4),Q2(2,2√3),Q3(﹣2,2√3),Q4(2√2,﹣2√2)中,是点A关于点O的锐角旋转点的是.(2)已知点B(5,0),点C在直线y=2x+b上,若点C是点B关于点O的锐角旋转点,求实数b的取值范围.(3)点D是x轴上的动点,D(t,0),E(t﹣3,0),点F(m,n)是以D为圆心,3为半径的圆上一个动点,且满足n≥0.若直线y=2x+6上存在点F关于点E的锐角旋转点,请直接写出t的取值范围.25.(2022•寿阳县模拟)所谓“新定义”试题指给出一个从未接触过的新规定,源于中学数学内容但又是学生没有遇到过的新信息,它可以是新的概念、新的运算、新的符号、新的图形、新的定理或新的操作规则与程序等.在解决它们的过程中又可产生了许多新方法、新观念,增强了学生创新意识.主要包括以下类型:①概念的“新定义”;②运算的“新定义”;③新规则的“新定义”;④实验操作的“新定义”;⑤几何图形的新定义.如果我们新定义一种四边形:有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图1,在半对角四边形ABCD中,∠B=12∠D,∠C=12∠A,请你利用所学知识求出∠B与∠C的度数之和;(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO.∠OBA的平分线交OA 于点E,连接DE并延长交AC于点F,若∠AFE=2∠EAF.请你判断四边形DBCF是不是半对角四边形?并说明理由.26.(2022•泗洪三模)定义:若一个圆内接四边形的两条对角线互相垂直,则称这个四边形为圆美四边形.(1)选择:下列四边形中,一定是圆美四边形的是A.平行四边形B.矩形C.菱形D.正方形(2)如图1,在等腰Rt△ABC中,∠BAC=90°,AB=1,经过点A,B的⊙O交AC边于点D,交BC 于点E,连接DE,若四边形ABED为圆美四边形,求DE的长;(3)如图2,AD是△ABC外接圆⊙O的直径,交BC于点E,点P在AD上,延长BP交⊙O于点F,已知PB2=PE•P A.问四边形ABFC是圆美四边形吗?为什么?27.(2022•淮阴区校级一模)定义:在平行四边形中,若有一条对角线长是一边长的两倍,则称这个平行四边形叫做和谐四边形,其中这条对角线叫做和谐对角线,这条边叫做和谐边.【概念理解】(1)如图1,四边形ABCD是和谐四边形,对角线AC与BD交于点G,BD是和谐对角线,AD是和谐边.①△ADG与△BCG的形状是三角形.②若AD=4,则BD=.【问题探究】(2)如图2,四边形ABCD是矩形,过点B作BE∥AC交DC的延长线于点E,连接AE交BC于点F,AD=4,AB=k.①当k=2时,请说明四边形ABEC是和谐四边形;②是否存在值k,使得四边形ABCD是和谐四边形,若存在,求出k的值,若不存在,请说明理由.【应用拓展】(3)如图3,四边形ABCD与四边形ABEC都是和谐四边形,其中BD与AE分别是和谐对角线,AD与AC分别是和谐边,AB=4,AD=k,请直接写出k的值.28.(2022•亭湖区校级模拟)问题:A4纸给我们矩形的印象,这个矩形是特殊矩形吗?思考:通过度量、上网查阅资料,小丽同学发现A4纸的长与宽的比是一个特殊值“√2”定义:如图1,点C把线段AB分成两部分,如果ACBC=√2,那么点C为线段AB的“白银分割点”如图2,矩形ABCD中,BCAB=√2,那么矩形ABCD叫做白银矩形.应用:(1)如图3,矩形ABCD是白银矩形,AD>AB,将矩形沿着EF对折,求证:矩形ABFE也是白银矩形.(2)如图4,矩形ABCD中,AB=1,BC=√2,E为CD上一点,将矩形ABCD沿BE折叠,使得点C 落在AD边上的点F处,延长BF交CD的延长线于点G,说明点E为线段GC的”白银分制点”.(3)已知线段AB(如图5),作线段AB的一个“白银分割点”.(要求:尺规作图,保留作图痕迹,不写作法)29.(2022•盐田区二模)定义:将图形M绕点P顺时针旋转90°得到图形N,则图形N称为图形M关于点P的“垂直图形”.例如:在图中,点D为点C关于点P的“垂直图形”.(1)点A关于原点O的“垂直图形”为点B.①若点A的坐标为(0,2),直接写出点B的坐标;②若点B的坐标为(2,1),直接写出点A的坐标;(2)已知E(﹣3,3),F(﹣2,3),G(a,0).线段EF关于点G的“垂直图形”记为E'F',点E的对应点为E',点F的对应点为F'.①求点E'的坐标;②当点G运动时,求FF'的最小值.30.(2022•高新区校级二模)在数学课上,当老师讲到直线与圆的位置关系时,张明同学突发奇想,特殊线与圆在不同的位置情况下会有怎样的数量关系呢?于是在课下他查阅了老师推荐他的《几何原本》,这本书是古希腊数学家欧几里得所著的一部数学著作.它是欧洲数学的基础,总结了平面几何五大公设,被广泛地认为是历史上学习数学几何部分最成功的教科书.其中第三卷命题36﹣2圆幂定理(切割线定理)内容如下:切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.(比例中项的定义:如果a、b、c三个量成连比例即a:b=b:c,则b叫做a和c的比例中项)(1)为了说明材料中定理的正确性,需要对其进行证明,下面已经写了不完整的“已知”和“求证”,请补充完整,并写出证明过程.已知:如图,A是圆O外一点,AB是圆O的切线,直线ACD为圆O的割线.求证:证明:(2)如图,已知AC=2,CD=4,则AB的长度是.31.(2022•江北区模拟)定义:若连结三角形一个顶点及其对边上一点的线段将该三角形分割成的两个小三角形中,有一个与原三角形相似,则称该线段为三角形的相似分割线;若分割成的两个小三角形都与原三角形相似,则称该线段为全相似分割线.(1)如图1,在△ABC中,∠ABC为钝角,相似分割线AD是BC边上的中线,求证:BC=√2AB.(2)如图2,在△ABC中,AD是△ABC的全相似分割线,求证:1AD2=1AB2+1AC2;(3)在△ABC中,AD是△ABC的全相似分割线,将△BAD绕B点顺时针旋转,D点旋转到E点,A点旋转到F点,当旋转到如图3的位置时,E,F,C三点共线,BF恰好是△BEC的相似分割线,求CDBD值.32.(2022•巢湖市二模)定义:如果一个三角形中有一个角是另一个角的2倍,那么我们称这样的三角形为倍角三角形.根据上述定义可知倍角三角形中有一个角是另一个角的2倍,所以我们就可以通过作出其中的2倍角的角平分线,得出一对相似三角形,再利用我们学过的相似三角形的性质解决相关问题.请通过这种方法解答下列问题:(1)如图1,△ABC中,AD是角平分线,且AB2=BD•BC,求证:△ABC是倍角三角形;(2)如图2,已知△ABC是倍角三角形,且∠A=2∠C,AB=8,BC=10,求AC的长;(3)如图3,已知△ABC中,∠A=3∠C,AB=8,BC=10,求AC的长.。

中考数学复习重难点与压轴题专题12 新定义型几何图形综合问题(重点突围)(原卷版)

中考数学复习重难点与压轴题专题12 新定义型几何图形综合问题(重点突围)(原卷版)

专题12 新定义型几何图形综合问题【中考考向导航】目录【直击中考】 (1)【考向一 与三角形有关的新定义型问题】..................................................................................................... 1 【考向二 与四角形有关的新定义型问题】..................................................................................................... 5 【考向三 三角形与圆综合的新定义型问题】 ................................................................................................. 8 【考向四 四角形与圆综合的新定义型问题】 .. (10)【直击中考】【考向一 与三角形有关的新定义型问题】例题:(2022·江西抚州·统考一模)定义:从三角形(不是等腰三角形)的一个顶点引出一条射线与对边相交,顶点与交点所连线段把这个三角形分割成两个小三角形,如果其中一个为等腰三角形,另一个与原三角形相似,我么就把这条线段叫做这个三角形的“华丽分割线”.例如:如图1,AD 把△ABC 分成△ABD 和△ADC ,若△ABD 是等腰三角形,且△ADC ∽△BAC ,那么AD 就是△ABC 的“华丽分割线”. 【定义感知】(1)如图1,在ABC 中,40B ∠=︒,110BAC ∠=︒,AB=BD .求证:AD 是ABC 的“华丽分割线”. 【问题解决】(2)①如图2,在ABC 中,46B ∠=︒,AD 是ABC 的“华丽分割线”,且ABD △是等腰三角形,则C ∠的度数是________;②如图3,在ABC 中,AB =2,AC =3,AD 是ABC 的“华丽分割线”,且ABD △是以AD 为底边的等腰三角形,求华丽分割线AD 的长.【变式训练】1.(2022·山东济宁·三模)我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad ).如图,在ABC 中,AB =AC ,顶角A 的正对记作sad A ,这时sad BCA AB==底边腰,容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解答下列问题:(1)sad60︒=___________,sad90︒=___________;(2)如图,已知3sin 5A =,其中A ∠为锐角,试求sad A 的值.2.(2022春·福建龙岩·九年级校考期中)在一个三角形中,如果有两个内角α与β满足290αβ+=︒,那么我们称这样的三角形为“亚直角三角形”.根据这个定义,显然90αβ+<︒,则这个三角形的第三个角为()18090αβ︒-+>︒,这就是说“亚直角三角形”是特殊的钝角三角形.(1)【尝试运用】:若某三角形是“亚直角三角形”,且一个内角为100︒,请求出它的两个锐角的度数; (2)【尝试运用】:如图1,在Rt ABC 中,90ACB ∠=︒,4AC =,8BC =,点D 在边BC 上,连接AD ,且AD 不平分BAC ∠.若ABD △是“亚直角三角形”,求线段AD 的长;(3)【素养提升】:如图2,在钝角ABC 中,90ABC ∠>︒,5AB =,35BC =,ABC 的面积为15,求证:ABC 是“亚直角三角形”.3.(2022秋·江苏常州·九年级校考期中)【理解概念】定义:如果三角形有两个内角的差为90︒,那么这样的三角形叫做“准直角三角形”. (1)已知△ABC 是“准直角三角形”,且90C ∠>︒. ①若60A ∠=︒,则B ∠=______︒; ②若40A ∠=︒,则B ∠=______︒; 【巩固新知】(2)如图①,在Rt ABC △中,9062ACB AB BC ∠=︒==,,,点D 在AC 边上,若ABD △是“准直角三角形”,求CD 的长;【解决问题】(3)如图②,在四边形ABCD 中,58CD CB ABD BCD AB BD =∠=∠==,,,,且ABC 是“准直角三角形”,求BCD △的面积.4.(2022·山东青岛·统考中考真题)【图形定义】 有一条高线相等的两个三角形称为等高三角形.例如:如图①.在ABC 和A B C '''中,,AD A D ''分别是BC 和B C ''边上的高线,且AD A D ''=,则ABC 和A B C '''是等高三角形.【性质探究】 如图①,用ABCS ,A B C S'''分别表示ABC 和A B C '''的面积.则11,22ABC A B C S BC AD S B C A D '''=⋅=''⋅''△△, ∽AD A D ''=∽::ABC A B C S S BC B C ''=''△△. 【性质应用】(1)如图②,D 是ABC 的边BC 上的一点.若3,4BD DC ==,则:ABD ADC S S =△△__________;(2)如图③,在ABC 中,D ,E 分别是BC 和AB 边上的点.若:1:2BE AB =,:1:3CD BC =,1ABC S =△,则BEC S =△__________,CDE S =△_________;(3)如图③,在ABC 中,D ,E 分别是BC 和AB 边上的点,若:1:BE AB m =,:1:CD BC n =,ABCS a =,则CDE S =△__________.【考向二 与四角形有关的新定义型问题】例题:(2022·陕西西安·校考三模)定义:两组邻边分别相等的四边形叫做筝形.(1)问题发现:如图1,筝形ABCD 中,AD CD =,AB CB =,若12AC BD +=,求筝形ABCD 的面积的最大值;(2)问题解决:如图2是一块矩形铁片ABCD ,其中60AB =厘米,90BC厘米,李优想从这块铁片中裁出一个筝形EFGH ,要求点E 是AB 边的中点,点F 、G 、H 分别在BC 、CD 、AD 上(含端点),是否存在一种裁剪方案,使得筝形EFGH 的面积最大?若存在,求出筝形EFGH 的面积最大值,若不存在,请说明理由.【变式训练】1.(2022·吉林长春·校考模拟预测)定义:如果一个四边形的一组对角互余,我们称这个四边形为对角互余四边形.(1)问题1.利用下面哪组图形可以得到一个对角互余四边形( )①两个等腰三角形;②两个等边三角形;③两个直角三角形;④两个全等三角形.(2)如图①,在对角互余四边形ABCD 中,30D ∠=︒,且AC BC ⊥,AC AD ⊥.若1BC =,求四边形ABCD 的面积和周长.(3)问题2.如图②,在对角互余四边形ABCD 中,AB BC =,13BD =,90ABC ADC ∠+∠=︒,8AD =,6CD =,求四边形ABCD 的面积和周长.(4)问题3.如图③,在对角互余四边形ABCD 中,2BC AB =,3sin 5ABC ∠=,90ABC ADC ∠+∠=︒,10BD =,求ACD 面积的最大值.2.(2023春·江西抚州·九年级金溪一中校考阶段练习)【图形定义】有一组邻边相等的凸四边形叫做“等邻边四边形”.【问题探究】(1)如图①,已知矩形ABCD 是“等邻边四边形”,则矩形ABCD ___________(填“一定”或“不一定”)是正方形;(2)如图②,在菱形ABCD 中,120ABC ∠=︒,4AB =,动点M 、N 分别在AD 、CD 上(不含端点),若60MBN ∠=︒,试判断四边形BMDN 是否为“等邻边四边形”?如果是“等邻边四边形”,请证明;如果不是,请说明理由;此时,四边形BMDN 的周长的最小值为___________; 【尝试应用】(3)现有一个平行四边形材料ABCD ,如图③,在ABCD 中,17AB =,6BC =,tan 4B =,点E 在BC 上,且4BE =,在ABCD 边AD 上有一点P ,使四边形ABEP 为“等邻边四边形”,请直接写出此时四边形ABEP的面积可能为的值___________.3.(2022·江西赣州·统考二模)我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”.例如:如图①,B C ∠=∠,则四边形ABCD 为“等邻角四边形”.(1)定义理解:以下平面图形中,是等邻角四边形的是___________. ①平行四边形;②矩形;③菱形;④等腰梯形. (2)深入探究:①已知四边形ABCD 为“等邻角四边形”,且120100A B ∠=︒∠=︒,,则D ∠=________.②如图②,在五边形ABCDE 中, DE BC ∥,对角线BD 平分ABC ∠,求证:四边形ABDE 为等邻角四边形.(3)拓展应用:如图③,在等邻角四边形ABCD 中,B C ∠=∠,点P 为边BC 上的一动点,过点P 作PM AB PN CD ⊥⊥,,垂足分别为M ,N .在点P 的运动过程中,PM PN +的值是否会发生变化?请说明理由.【考向三 三角形与圆综合的新定义型问题】例题:(2022·江西上饶·统考一模)定义:如果一个三角形有一个内角的平分线与这个角的对边的夹角是60︒,那么称该三角形为“特异角平分三角形”,这条角平分线称为“特异角平分线”.(1)如图1,ABC 是一个“特异角平分三角形”,AD 是一条“特异角平分线” ①当90C ∠=︒时,试求:AD BD 的值.②在ABC 中,过点D 作DE AB ⊥于点E ,延长至点H ,HE DE =,若:3:3DE AE =,证明:AHE ADC ≌. (2)如图2.BD 是O 的直径,AC 是O 的切线,点C 为切点,AB AC ⊥于点A 且交O 于点H ,连接DH 交BC 于点E ,4BD =,3AB =.试证明DBH △是一个“特异角平分三角形”.【变式训练】1.(2022春·九年级课时练习)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的“好角”.(1)如图1,∽E 是ABC 中∽A 的“好角”,若A α∠=,则E ∠=______;(用含α的代数式表示)(2)如图2,四边形ABCD 内接于O ,点D 是优弧ACB 的中点,直径BF ⊥弦AC ,BF 、CD 的延长线于点G ,延长BC 到点E .求证:∽BGC 是ABC 中∽BAC 的“好角”.(3)如图3,ABC 内接于O ,∽BGC 是ABC 中∽A 的“好角”,BG 过圆心O 交O 于点F ,O 的直径为8,45A ∠=︒,求FG .2.(2022·湖南长沙·长沙市开福区青竹湖湘一外国语学校校考一模)我们不妨定义:有两边之比为1:3的三角形叫敬“勤业三角形”.(1)下列各三角形中,一定是“勤业三角形”的是________;(填序号)①等边三角形;②等腰直角三角形;③含30︒角的直角三角形;④含120︒角的等腰三角形.(2)如图1,∽ABC 是∽O 的内接三角形,AC 为直径,D 为AB 上一点,且2BD AD =,作DE OA ⊥,交线段OA 于点F ,交∽O 于点E ,连接BE 交AC 于点G .试判断∽AED 和∽ABE 是否是“勤业三角形”?如果是,请给出证明,并求出EDBE的值;如果不是,请说明理由; (3)如图2,在(2)的条件下,当AF :FG =2:3时,求BED ∠的余弦值.【考向四 四角形与圆综合的新定义型问题】例题:(2022秋·九年级课时练习)定义:有一个角为45°的平行四边形称为半矩形.(1)如图1,若∽ABCD 的一组邻边AB =4,AD =7,且它的面积为142.求证:∽ABCD 为半矩形. (2)如图2,半矩形ABCD 中,∽ABD 的外心O (外心O 在∽ABD 内)到AB 的距离为1,∽O 的半径=5,求AD 的长.(3)如图3,半矩形ABCD 中,∽A =45° ①求证:CD 是∽ABD 外接圆的切线; ②求出图中阴影部分的面积.【变式训练】1.(2022·浙江宁波·校考模拟预测)定义:如果一个四边形的一组对角互余,那么我们称这个四边形为“对角互余四边形”.(1)如图1,在“对角互余四边形” ABCD 中, 6.5AD CD BD ==,,9043ABC ADC AB CB ∠+∠=︒==,,,求四边形ABCD 的面积.(2)如图2,在四边形ABCD 中,连接AC ,90BAC ∠=︒,点O 是ACD 外接圆的圆心,连接OA ,OAC ABC ∠∠=.求证:四边形ABCD 是“对角互余四边形”;(3)在(2)的条件下,如图3,已知3AD a DC b AB AC ===,,,连接BD ,求2BD 的值.(结果用带有a ,b 的代数式表示)2.(2022·江苏淮安·统考一模)定义:若一个圆内接四边形的两条对角线互相垂直,则称这个四边形为圆美四边形.(1)请在特殊四边形中找出一个圆美四边形,该四边形的名称是 ;(2)如图1,在等腰Rt ∽ABC 中,∽BAC =90°,经过点A 、B 的∽O 交AC 边于点D ,交BC 于点E ,连接DE ,若四边形ABED 为圆美四边形,则AB DE的值是 (3)如图2,在∽ABC 中,经过点A 、B 的∽O 交AC 边于点D ,交BC 于点E ,连接AE 、BD 交于点F ,若在四边形ABED 的内部存在一点P ,使得∽PBC =∽ADP =α,连接PE 交BD 于点G ,连接P A ,若P A ∽PD ,PB ∽PE . ①试说明:四边形ABED 为圆美四边形;②若2tan 3α=,8PA PE +=,33CD BC =,求DE 的最小值.。

以四边形新定义为背景的阅读材料压轴题-2023年中考数学压轴题专项训练(学生版)

以四边形新定义为背景的阅读材料压轴题-2023年中考数学压轴题专项训练(学生版)

2023年中考数学压轴题专项训练1.压轴题22以四边形新定义为背景的阅读材料压轴题01考向分析1(2022春•玄武区期末)【概念认识】在四边形ABCD中,∠A=∠B.如果在四边形ABCD内部或边AB上存在一点P,满足∠DPC=∠A,那么称点P是四边形ABCD的“映角点”.【初步思考】(1)如图①,在四边形ABCD中,∠A=∠B,点P在边AB上且是四边形ABCD的“映角点”.若DA∥CP,DP∥CB,则∠DPC的度数为°;(2)如图②,在四边形ABCD中,∠A=∠B,点P在四边形ABCD内部且是四边形ABCD的“映角点”,延长CP交边AB于点E.求证:∠ADP=∠CEB.【综合运用】在四边形ABCD中,∠A=∠B=α,点P是四边形ABCD的“映角点”,DE、CF分别平分∠ADP、∠BCP,当DE和CF所在直线相交于点Q时,请直接写出∠CQD与α满足的关系及对应α的取值范围.2(2022•长沙模拟)有一组对角相等的凸四边形称为“对等四边形”,连接这两个相等对角的顶点的线段称为“对等线”.(1)如图1,已知四边形ABCD是“对等四边形”,AC是“对等线”,且AB=BC.求证:AD=CD;(2)如图2,四边形ABCD中,∠ADC=120°,∠ABC=150°.且AD⊥BD,BC=22,BD=4.①求证:四边形ABCD是“对等四边形”;②试求AC2.(3)如图3,对等四边形ABCD内接于⊙O,∠A=90°,AD上存在点E,满足AE=CD,连结BE并延长交CD的延长线于点F,BE与AD交于点G,连结CE,CE=BG.若AD=2,tan∠ADB=32,求:①cos∠F的值;②△DEF的周长,(请选择一个进行解答).3(2023•秦都区校级三模)【了解概念】定义提出:有一组邻边相等的凸四边形叫做“等邻边四边形”.【理解运用】(1)如图1,在3×3的正方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1,线段AB、BC的端点均在格点上,在图1的方格纸中画出一个等邻边四边形ABCD,要求:点D在格点上;(2)如图2,在等邻边四边形ABCD中,AB=AD=4,∠A=60°,∠ABC=90°,BC=33,求CD的长;【拓展提升】(3)如图3,在平面直角坐标系中,矩形OABC的顶点A、C分别在x、y轴正半轴上,已知OC=4,OA= 6,D是OA的中点.在矩形OABC内或边上,是否存在点E,使四边形OCED为面积最大的“等邻边四边形”,若存在,请求出四边形OCED的最大面积及此时点E的坐标;若不存在,请说明理由.02压轴题速练1(2022秋•开江县校级期末)在平面直角坐标系中,P (a ,b )是第一象限内一点,给出如下定义:k 1=a b和k 2=b a 两个值中的最大值叫做点P 的“倾斜系数”k .(1)求点P (6,2)的“倾斜系数”k 的值;(2)①若点P (a ,b )的“倾斜系数”k =2,请写出a 和b 的数量关系,并说明理由;②若点P (a ,b )的“倾斜系数”k =2,且a +b =3,求OP 的长;(3)如图,已知点A (2,2),B (4,2),C (4,4),D (2,4),P (a ,b )是四边形ABCD 上任意一点.试说明是否存在使点P 的“倾斜系数”k 为32的点.若存在,请自己写出这样的点P 的坐标;若不存在,请说明理由.2(2023•定远县校级一模)定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.(1)如图1,△ABC的三个顶点均在正方形网格中的格点上,若四边形ABCD是以AC为“相似对角线”的四边形,请只用无刻度的直尺,就可以在网格中画出点D,请你在图1中找出满足条件的点D,保留画图痕迹(找出2个即可)(2)①如图2,在四边形ABCD中,∠DAB=90°,∠DCB=135°,对角线AC平分∠DAB.请问AC是四边形ABCD的“相似对角线”吗?请说明理由;②若AC=10,求AD•AB的值.(3)如图3,在(2)的条件下,若∠D=∠ACB=90°时,将△ADC以A为位似中心,位似比为5:2缩小得到△AEF,连接CE、BF,在△AEF绕点A旋转的过程中,当CE所在的直线垂直于AF时,请你直接写出BF的长.3(2022秋•镇海区校级期末)如图,四边形ACDE是证明勾股定理时用到的一个图形,a,b,c是Rt△ABC和Rt△BED边长,易知AE=2c,这时我们把关于x的形如ax2+2cx+b=0的一元二次方程称为“勾系一元二次方程”.请解决下列问题:(1)判断下列方程是否是“勾系一元二次方程”:①2x2+5x+1=0(填“是”或“不是”);②3x2+52x+4=0(填“是”或“不是”)(2)求证:关于x的“勾系一元二次方程”ax2+2cx+b=0必有实数根;(3)若x=-1是“勾系一元二次方程”ax2+2cx+b=0的一个根,且四边形ACDE的周长是12,求△ABC面积.4(2022秋•龙岗区校级期末)定义:有一组邻边相等的凸四边形叫做“等邻边四边形”,回答下列问题.(1)如图1,四边形ABCD中,∠A=90°,AB=1,CD=2,∠BCD=∠DBC,判断四边形ABCD是不是“等邻边四边形”,并说明理由;(2)如图2,Rt△ABC中,∠ABC=90°,AB=2,BC=1,现将Rt△ABC沿∠ABC的平分线BB′方向平移得到△A′B′C′,连接AA′,BC′,若平移后的四边形ABC′A′是“等邻边四边形”,求BB'的长.5(2023春•义乌市校级期中)类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做等邻边四边形.【概念理解】如图1,在四边形ABCD中,添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件.(只写一个即可)【问题探究】如图2,Rt△ABC中,∠ABC=90°,AB=2,BC=1,将△ABC沿∠ABC的平分线BB′的方向平移,得到△A′B′C′,连接AA′、BC′,若平移后的四边形ABC′A′是等邻边四边形,求平移的距离(直接写出答案).【拓展应用】如图3,等邻边四边形ABCD中,AB=AD,∠BAD+∠BCD=90°,AC,BD为对角线,△BCD为等边三角形,试给出AC和AB的数量关系,并说明理由.6(2023春•江油市月考)定义:我们把一组对边平行另一组对边相等且不平行的四边形叫做等腰梯形.【性质初探】如图1,已知,▱ABCD,∠B=80°,点E是边AD上一点,连结CE,四边形ABCE恰为等腰梯形.求∠BCE的度数;【性质再探】如图2,已知四边形ABCD是矩形,以BC为一边作等腰梯形BCEF,BF=CE,连结BE、CF.求证:BE=CF;【拓展应用】如图3,▱ABCD的对角线AC、BD交于点O,AB=2,∠ABC=45°,过点O作AC的垂线交BC的延长线于点G,连结DG.若∠CDG=90°,求BC的长.7(2023春•西城区校级期中)平面直角坐标系xOy 中,正方形ABCD 的四个顶点坐标分别为:A -12,12 ,B -12,-12 ,C 12,-12 ,D 12,12,P 、Q 是这个正方形外两点,且PQ =1.给出如下定义:记线段PQ 的中点为T ,平移线段PQ 得到线段P 'Q '(其中P ',Q '分别是点P ,Q 的对应点),记线段P 'Q '的中点为T .若点P '和Q '分别落在正方形ABCD 的一组邻边上,或线段P 'Q '与正方形ABCD 的一边重合,则称线段TT '长度的最小值为线段PQ 到正方形ABCD 的“回归距离”,称此时的点T '为线段PQ 到正方形ABCD 的“回归点”.(1)如图1,平移线段PQ ,得到正方形ABCD 内两条长度为1的线段P 1Q 1和P 2Q 2,这两条线段的位置关系为1Q 1∥P 2Q 2 ;若T 1,T 2分别为P 1Q 1和P 2Q 2的中点,则点1 (填T 1或T 2)为线段PQ 到正方形ABCD 的“回归点”;(2)若线段PQ 的中点T 的坐标为(1,1),记线段PQ 到正方形ABCD 的“回归距离”为d 1,请直接写出d 1的最小值:,并在图2中画出此时线段PQ 到正方形ABCD 的“回归点”T '(画出一种情况即可);(3)请在图3中画出所有符合题意的线段PQ 到正方形ABCD 的“回归点”组成的图形.8(2022秋•兴化市校级期末)我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称;(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你画出以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB;(3)如图2,将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连接AD,DC,∠DCB=30°.求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.9(2021秋•永丰县期末)定义:我们把两条对角线互相垂直的四边形称为“垂美四边形”.特例感知:(1)如图1,四边形ABCD是“垂美四边形,如果OA=OD=13OB,OB=2,∠OBC=60°,则AD2+BC2=,AB2+CD2=.猜想论证(2)如图1,如果四边形ABCD是“垂美四边形”,猜想它的两组对边AB,CD与BC,AD之间的数量关系并给予证明.拓展应用:(3)如图2,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,∠BAC=60°,求GE长.(4)如图3,∠AOB=∠COD=90°,∠ABO=∠CDO=30°,∠BOC=120°,OA=OD,OC=3,连接AC,BC,BD,请直接写出BC的长.10(2022秋•东城区校级月考)点P(x 1,y1),Q(x2,y2)是平面直角坐标系中不同的两个点,且x1≠x2,若存在一个正数k ,使点P ,Q 的坐标满足|y 1-y 2|=k |x 1-x 2|,则称P ,Q 为一对“限斜点”,k 叫做点P ,Q 的“限斜系数”,记作k (P ,Q ).由定义可知,k (P ,Q )=k (Q ,P ).例:若P (1,0),Q 3,12 ,有0-12 =14|1-3|,所以点P ,Q 为一对“限斜点”,且“限斜系数”为14.已知点A (1,0),B (2,0),C (2,-2),D 2,12.(1)在点A ,B ,C ,D 中,找出一对“限斜点”:,它们的“限斜系数”为;(2)若存在点E ,使得点E ,A 是一对“限斜点”,点E ,B 也是一对“限斜点”,且它们的“限斜系数”均为1.求点E 的坐标;(3)正方形对角线的交点叫做中心,已知正方形EFGH 的各边与坐标轴平行,边长为2,中心为点M (0,m ).点T 为正方形上任意一点,若所有点T 都与点C 是一对“限斜点”,且都满足k (T ,C )≥1,直接写出点M 的纵坐标m 的取值范围.11(2022•南京模拟)对于平面直角坐标系xOy 中的图形M ,N ,给出如下定义:P 为图形M 上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“邻近距离”,记为d(图形M,图形N),已知点A(-2,-2),B(3,-2),C(3,3),D(-2,3).(1)d(点O,线段AB)=;(2)若点G在轴上,且d(点G,线段AB)>2,求点G的横坐标a的取值范围;(3)依次连接A,B,C,D四点,得到正方形ABCD(不含图形内部),记为图形M,点E(t,0),点 均不与点O重合,线段EO,OF组成的图形记为图形N,若1<d(图形M,图形N)<2,直接F0,12-t写出t的取值范围.12(2022春•海淀区校级期中)对于平面直角坐标系xOy中的图形W1和图形W2.给出如下定义:在图形W1上存在两点A,B(点A,B可以重合),在图形W2上存在两点M,N(点M、N可以重合)使得AM =2BN,则称图形W1和图形W2满足限距关系.(1)如图1,点C(1,0),D(-1,0),E(0,3),点F在CE上运动(点F可以与C,E重合),连接OF,DF.①线段OF的最小值为,最大值为;线段DF的取值范围是.②在点O,D中,点与线段CE满足限距关系.(2)如图2,正方形ABMN的边长为2,直线PQ分别与x轴,y轴交于点Q,P,且与x轴正方向的夹角始终是30°,若线段PQ与正方形ABMN满足限距关系,求点P的纵坐标a(a>0)的取值范围;(3)如图3,正方形ABMN的顶点均在坐标轴上,A(0,b)(b>0),G,H是正方形边上两点,分别以G,H为中心作边长为1的正方形,与正方形ABMN的四边分别平行.若对于任意的点G,H,以G,H为中心的正方形都满足限距关系,直接写出b的取值范围.13(2022•汇川区模拟)定义:有一组对角互补的四边形叫做“对补四边形”,例如:四边形ABCD中,若∠A+∠C=180°或∠B+∠D=180°,则四边形ABCD是“对补四边形”.【概念理解】(1)如图1,四边形ABCD是“对补四边形”.①若∠A:∠B:∠C=3:2:1,则∠D=度.②若∠B=90°.且AB=3,AD=2时.则CD2-CB2=.【类比应用】(2)如图2,在四边形ABCD中,AB=CB,BD平分∠ADC.求证:四边形ABCD是“对补四边形”.14(2022春•曾都区期末)定义:我们把对角线相等的凸四边形叫做“等角线四边形”.(1)在已经学过的“①平行四边形;②矩形;③菱形;④正方形”中,一定是“等角线四边形”的是(填序号);(2)如图1,在正方形ABCD中,点E,F分别在边BC,CD上,且EC=DF,连接EF,AF,求证:四边形ABEF是等角线四边形;(3)如图2,已知在△ABC中,∠ABC=90°,AB=4,BC=3,D为线段AB的垂直平分线上一点,若以点A,B,C,D为顶点的四边形是等角线四边形,求这个等角线四边形的面积.15(2022春•长汀县期末)在平面直角坐标系中,如果点p(a,b)满足a+1>b且b+1>a,则称点p为“自大点”:如果一个图形的边界及其内部的所有点都不是“自大点”,则称这个图形为“自大忘形”.(1)判断下列点中,哪些点是“自大点”,直接写出点名称;p1(1,0),p2(2,3),p3(-1,-5).(2)如果点N(2x+3,2)不是“自大点”,求出x的取值范围.(3)如图,正方形ABCD的初始位置是A(0,6),B(0,4),C(2,4),D(2,6),现在正方形开始以每秒1个单位长的速度向下(y轴负方向)平移,设运动时间为t秒(t>0),当正方形成为“自大忘形”时,求t的取值范围.16(2022春•北仑区期末)定义:对角线相等的四边形称为对美四边形.(1)我们学过的对美四边形有、.(写出两个)(2)如图1,D为等腰△ABC底边AB上的一点,连结CD,过C作CF∥AB,以B为顶点作∠CBE=∠ACD交CF于点E,求证:四边形CDBE为对美四边形.(3)如图2,对美四边形ABCD中,对角线AC、BD交于点O,AC=BD,DC∥AB.①若∠AOB=120°,AB+CD=6,求四边形ABCD的面积.②若AB⋅CD=6,设AD=x,BD=y,试求出y与x的关系式.17(2022春•江北区期末)定义:对于一个四边形,我们把依次连结它的各边中点得到的新四边形叫做原四边形的“中点四边形”.如果原四边形的中点四边形是个正方形,我们把这个原四边形叫做“中方四边形”.概念理解:下列四边形中一定是“中方四边形”的是.A.平行四边形B.矩形C.菱形D.正方形性质探究:如图1,四边形ABCD是“中方四边形”,观察图形,写出关于四边形ABCD的两条结论:;.问题解决:如图2,以锐角△ABC的两边AB,AC为边长,分别向外侧作正方形ABDE和正方形ACFG,连结BE,EG,GC.求证:四边形BCGE是“中方四边形”;拓展应用:如图3,已知四边形ABCD是“中方四边形”,M,N分别是AB,CD的中点,(1)试探索AC与MN的数量关系,并说明理由.(2)若AC=2,求AB+CD的最小值.18(2022春•铜山区期末)新定义:若四边形的一组对角均为直角,则称该四边形为对直四边形.(1)下列四边形为对直四边形的是(写出所有正确的序号);①平行四边形;②矩形;③菱形,④正方形.(2)如图,在对直四边形ABCD中,已知∠ABC=90°,O为AC的中点.①求证:BD的垂直平分线经过点O;②若AB=6,BC=8,请在备用图中补全四边形ABCD,使四边形ABCD的面积取得最大值,并求此时BD的长度.19(2022•赣州模拟)我们定义:有一组邻角相等的凸四边形做“等邻角四边形”,例如:如图1,∠B=∠C,则四边形ABCD为等邻角四边形.(1)定义理解:已知四边形ABCD为等邻角四边形,且∠A=130°,∠B=120°,则∠D=度.(2)变式应用:如图2,在五边形ABCDE中,ED∥BC,对角线BD平分∠ABC.①求证:四边形ABDE为等邻角四边形;②若∠A+∠C+∠E=300°,∠BDC=∠C,请判断△BCD的形状,并明理由.(3)深入探究:如图3,在等邻角四边形ABCD中,∠B=∠BCD,CE⊥AB,垂足为E,点P为边BC上的一动点,过点P作PM⊥AB,PN⊥CD,垂足分别为M,N.在点P的运动过程中,判断PM+PN与CE的数量关系?请说明理由.(4)迁移拓展:如图4,是一个航模的截面示意图.四边形ABCD是等邻角四边形,∠A=∠ABC,E为AB 边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,AB=213dm,AD=3dm,BD=37dm.M、N 分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.20(2022春•盐田区校级期末)给出如下定义:有两个相邻内角互余的四边形称为“邻余四边形”,这两个角的夹边称为“邻余线”.(1)如图1,格点四边形ABCD是“邻余四边形”,指出它的“邻余线”;(2)如图2,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是“邻余四边形”;(3)如图3,四边形ABCD是“邻余四边形”,AB为“邻余线”,E,F分别是AB,CD的中点,连接EF,AD =4,BC=6.求EF的长.。

中考数学必刷题压轴题专题:抛物线之新定义之整点专题

中考数学必刷题压轴题专题:抛物线之新定义之整点专题

中考数学抛物线压轴题之新定义(整点问题)1.在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+3a(a>0)与y轴交于点A.(1)求点A和抛物线顶点的坐标(用含a的式子表示);(2)直线y=﹣ax+3a与抛物线y=ax2﹣4ax+3a围成的区域(不包括边界)记作G.横、纵坐标都为整数的点叫做整点.①当a=1时,结合函数图象,求区域G中整点的个数;②当区域G中恰有6个整点时,直接写出a的取值范围.2.在平面直角坐标系xOy中,抛物线y=ax2+bx+3与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)①直接写出抛物线的对称轴是;②用含a的代数式表示b;(2)横、纵坐标都是整数的点叫做整点.若抛物线与x轴交于P、Q两点,该抛物线在P、Q之间的部分与线段PQ所围成的区域(不包括边界)恰有七个整点,结合函数图象,求a的取值范围.3.在平面直角坐标系xOy中,抛物线y=ax2+bx+a+1(a<0)的对称轴为直线x=1.(1)用含有a的代数式表示b;(2)求抛物线顶点M的坐标;(3)横、纵坐标都是整数的点叫整点.过点P(0,a)作x轴的平行线交抛物线于A,B两点.记抛物线在点A,B之间的部分与线段AB围成的区域(不含边界)为W.①当a=﹣1时,直接写出区域W内整点的个数;②若区域W内恰有3个整点,结合函数图象,求a的取值范围.4.如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长的速度运动t(t>0)秒,抛物线y=x2+bx+c经过点O和点P.已知矩形ABCD的三个顶点为A(1,0),B(1,﹣5),D(4,0).(1)求c、b(用含t的代数式表示);(2)嘉琪认为:“当这条抛物线经过点B时,一定不会经过点C”请你通过计算说明他的说法对吗?(3)当4<t<5时,设抛物线分别与线段AB、CD交于点M、N.①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;②在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围.5.在平面直角坐标系中,y=ax2﹣bx﹣c与y轴交于点A,将点A向右平移两个单位长度,得到点B,点B 在抛物线上.(1)①直接写出抛物线的对称轴是;②用含a的代数式表示b;(2)横、纵坐标都是整数的点叫做整点.点A恰好为整点,若抛物线在点A、B之间的部分与线段AB所围成的区域内(不含边界)恰有两个整点,结合函数图象,求a的取值范围.6.如图,在平面直角坐标系中,正方形ABCD的各边与坐标轴平行,其中A(﹣4,2),B(2,2),反比例函数y=的图象过B点,抛物线y=﹣(x+m)2+2顶点在线段AB上.(1)若该抛物线与反比例函数y=的交点在正方形的边AD上,求m的值.(2)若抛物线过原点O,判断抛物线与双曲线的交点能否在正方形的边上,试通过计算说明.(3)我们把横纵坐标都是整数的点称为整点(如A点),已知正方形,二次函数下方和反比例函数图象所形成的封闭区域(如图中阴影区域,包括边界)中的整点恰好有13个,求m的取值范围.7.在平面直角坐标系xOy中,抛物线y=mx2+2mx﹣3m+2.(1)求抛物线的对称轴;(2)①过点P(0,2)作与x轴平行的直线,交抛物线于点M,N.求点M,N的坐标;②横、纵坐标都是整数的点叫做整点.如果抛物线和线段MN围成的封闭区域内(不包括边界)恰有3个整点,求m的取值范围.8.已知点P(2,﹣3)在抛物线L:y=ax2﹣2ax+a+k(a,k均为常数,且a≠0)上,L交y轴于点C,连接CP.(1)用a表示k,并求L的对称轴及L与y轴的交点坐标;(2)当L经过(3,3)时,求此时L的表达式及其顶点坐标;(3)横、纵坐标都是整数的点叫做整点.如图,当a<0时,若L在点C,P之间的部分与线段CP所围成的区域内(不含边界)恰有4个整点,求a的取值范围;(4)点M(x1,y1),N(x2,y2)是L上的两点,若t≤x1≤t+1,当x2≥3时,均有y1≥y2,直接写出t的取值范围.9.在平面直角坐标系xOy中,抛物线y=x2﹣2ax+a2的顶点为A,直线y=x+3与抛物线交于点B,C(点B 在点C的左侧).(1)求点A坐标;(2)横、纵坐标都是整数的点叫做整点.记线段BC及抛物线在B,C两点之间的部分围成的封闭区域(不含边界)记为W.①当a=0时,结合函数图象,直接写出区域W内的整点个数;②如果区域W内有2个整点,请求出a的取值范围.10.定义:关于x轴对称且对称轴相同的两条抛物线叫作“同轴对称抛物线”.例如:y=(x﹣1)2﹣2的“同轴对称抛物线”为y=﹣(x﹣1)2+2.(1)满足什么条件的抛物线与其“同轴对称抛物线”的顶点重合:.(2)求抛物线y=﹣x2+x+1的“同轴对称抛物线”.(3)如图,在平面直角坐标系中,点B是抛物线L:y=ax2﹣4ax+1上一点,点B的横坐标为1,过点B作x轴的垂线,交抛物线L的“同轴对称抛物线”于点C,分别作点B、C关于抛物线对称轴对称的点B′、C′,连接BC、CC′、B′C′、BB′.①当四边形BB′C′C为正方形时,求a的值.②当抛物线L与其“同轴对称抛物线”围成的封闭区域内(不包括边界)共有11个横、纵坐标均为整数的点时,直接写出a的取值范围.11.如图,直线l:y=﹣m与y轴交于点A,直线a:y=x+m与y轴交于点B,抛物线y=x2+mx的顶点为C,且与x轴左交点为D(其中m>0).(1)当AB=12时,在抛物线的对称轴上求一点P使得△BOP的周长最小;(2)当点C在直线l上方时,求点C到直线l距离的最大值;(3)若把横坐标、纵坐标都是整数的点称为“整点”.当m=2020时,求出在抛物线和直线a所围成的封闭图形的边界上的“整点”的个数.12.在平面直角坐标系xOy中,抛物线y=(x﹣1)2﹣1与x轴的交点为A,B(点A在点B的左侧).(1)求点A,B的坐标;(2)横、纵坐标都是整数的点叫整点.①直接写出线段AB上整点的个数;②将抛物线y=(x﹣1)2﹣1沿x翻折,得到新抛物线,直接写出新抛物线在x轴上方的部分与线段AB 所围成的区域内(包括边界)整点的个数.13.在平面直角坐标系xOy中,抛物线C1:y=mx2+2mx+m﹣1沿x轴翻折得到抛物线C2.(1)求抛物线C2的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求抛物线C1和C2围成的封闭区域内(包括边界)整点的个数;②如果抛物线C1和C2围成的封闭区域内(包括边界)恰有7个整点,求出m的取值范围.14.如图,已知二次函数y=x2+2x﹣1的图象经过点P(1,m).(1)求m的值和图象的顶点A的坐标;(2)点Q(n,t)在该二次函数图象上.①将点Q向左平移6单位得点Q′,若Q′恰好也在抛物线上,求n,t的值.②将横、纵坐标均为整数的点称为整点,在直线y=t下方的抛物线上(包括边界)恰好存在7个整点,则t的取值范围是.15.在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+m(a≠0)与x轴的交点为A、B,(点A在点B的左侧),且AB=2.(1)求抛物线的对称轴及m的值(用含字母a的代数式表示);(2)当a>0时,抛物线a=aa2﹣4aa+a的顶点为C,若△ABC为等边三角形,则求抛物线的解析式;(3)横、纵坐标都是整数的点叫做整点.若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有5个整点,结合函数的图象,直接写出a的取值范围.16.在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a≠0)的顶点为D,与x轴交于A,B两点(A在B的左侧).(1)当a=1时,求点A,B,D的坐标;(2)横,纵坐标都是整数的点叫做整点.若抛物线在点A,B之间的部分与线段AB所围成的区域内(不含边界)恰有7个整点,结合函数图象,求a的取值范围.17.在平面直角坐标系xOy中,直线y=kx+b(k≠0)与抛物线y=ax2﹣4ax+3a的对称轴交于点A(m,﹣1),点A关于x轴的对称点恰为抛物线的顶点.(1)求抛物线的对称轴及a的值;(2)横、纵坐标都是整数的点叫做整点.记直线y=kx+b(k≠0)与抛物线围成的封闭区域(不含边界)为W.①当k=1时,直接写出区域W内的整点个数;②若区域W内恰有3个整点,结合函数图象,求b的取值范围.18.在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+m(a≠0)与x轴的交点为A、B,(点A在点B的左侧),且AB=2.(1)求抛物线的对称轴及m的值(用含字母a的代数式表示);(2)若抛物线y=ax2﹣4ax+m(a≠0)与y轴的交点在(0,﹣1)和(0,0)之间,求a的取值范围;(3)横、纵坐标都是整数的点叫做整点.若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有5个整点,结合函数的图象,直接写出a的取值范围.19.在平面直角坐标系xOy中,抛物线y=mx2﹣4mx+4m﹣2的顶点为M.(1)顶点M的坐标为.(2)横、纵坐标都是整数的点叫做整点.若MN∥y轴且MN=2.①点N的坐标为;②过点N作y轴的垂线l,若直线l与抛物线交于P、Q两点,该抛物线在P、Q之间的部分与线段PQ所围成的区域(包括边界)恰有七个整点,结合函数图象,求m的取值范围.20.如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长的速度运动t秒(t>0),抛物线y=x2+bx+c经过点O和点P已知矩形ABCD的三个顶点为A(1,0),B(1,﹣5),D(4,0).(1)求c,b(用含t的代数式表示)(2)当4<t<5时,设抛物线分别与线段AB,CD交于点M,N设△MPN的面积S,求S的取值范围;(3)在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点,称为“整点”若抛物线将这些“整点”分成数量相等的两部分,请直接写出t的取值范围.。

中考数学定义新概念压轴题以及答案

中考数学定义新概念压轴题以及答案

1.(2013•安徽)我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD即为“准等腰梯形”.其中∠B=∠C.(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)如图2,在“准等腰梯形”ABCD中∠B=∠C.E为边BC上一点,若AB∥DE,AE∥DC,求证:=;(3)在由不平行于BC的直线AD截△PBC所得的四边形ABCD中,∠BAD与∠ADC的平分线交于点E.若EB=EC,请问当点E在四边形ABCD内部时(即图3所示情形),四边形ABCD是不是“准等腰梯形”,为什么?若点E不在四边形ABCD内部时,情况又将如何?写出你的结论.(不必说明理由)考点:四边形综合题.专题:压轴题.分析:(1)根据条件∠B=∠C和梯形的定义就可以画出图形;(2)根据平行线的性质就可以得出∠DEC=∠B,∠AEC=∠C,就可以得出△ABE∽△DEC,由相似三角形的性质就可以求出结论;(3)根据角平分线的性质可以得出△EFB≌△EHC,就可以得出∠3=∠4,再有条件就可以得出∠ABC=∠DCB,从而得出结论,当点E不在四边形内部时分两种情况讨论就可以求出结论.解答:解:(1)如图1,过点D作DE∥BC交PB于点E,则四边形ABCD分割成一个等腰梯形BCDE和一个三角形ADE;(2)∵AB∥DE,∴∠B=∠DEC,∵AE∥DC,∴∠AEB=∠C,∵∠B=∠C,∴∠B=∠AEB,∴AB=AE.∵在△ABE和△DEC中,,∴△ABE∽△DEC,∴,∴;(3)作EF⊥AB于F,EG⊥AD于G,EH⊥CD于H,∴∠BFE=∠CHE=90°.∵AE平分∠BAD,DE平分∠ADC,∴EF=EG=EH,在Rt△EFB和Rt△EHC中,∴Rt△EFB≌Rt△EHC(HL),∴∠3=∠4.∵BE=CE,∴∠1=∠2.∴∠1+∠3=∠2+∠4即∠ABC=∠DCB,∵ABCD为AD截某三角形所得,且AD不平行BC,∴ABCD是“准等腰梯形”.当点E不在四边形ABCD的内部时,有两种情况:如图4,当点E在BC边上时,同理可以证明△EFB≌△EHC,∴∠B=∠C,∴ABCD是“准等腰梯形”.当点E在四边形ABCD的外部时,四边形ABCD不一定是“准等腰梯形”.分两种情况:情况一:当∠BED的角平分线与线段BC的垂直平分线重合时,四边形ABCD为“准等腰梯形”;情况二:当∠BED的角平分线与线段BC的垂直平分线相交时,四边形ABCD不是“准等腰梯形”.点评:本题考查了平行线的性质的运用,相似三角形的判定及性质的运用,角平分线的性质的运用,全等三角形的判定及性质的运用,解答时多次运用角平分线的性质是关键.2.(2013•安徽)我们把正六边形的顶点及其对称中心称作如图1所示基本图的特征点,显然这样的基本图共有7个特征点,将此基本图不断复制并平移,使得相邻两个基本图的一边重合,这样得到图2,图3,…(1)观察以上图形并完成下表:图形的名称基本图的个数特征点的个数图1 1 7图2 2 12图3 3 17图4 4 22………猜想:在图(n)中,特征点的个数为5n+2(用n表示);(2)如图,将图(n)放在直角坐标系中,设其中第一个基本图的对称中心O1的坐标为(x1,2),则x1=;图(2013)的对称中心的横坐标为2013.考点:规律型:图形的变化类;规律型:点的坐标.专题:压轴题.分析:(1)观察图形,结合已知条件,得出将基本图每复制并平移一次,特征点增加5个,由此得出图4中特征点的个数为17+5=22个,进一步猜想出:在图(n)中,特征点的个数为:7+5(n﹣1)=5n+2;(2)过点O1作O1M⊥y轴于点M,根据正六边形、等腰三角形的性质得出∠BO1M=30°,再由余弦函数的定义求出O1M=,即x1=;然后结合图形分别得出图(2)、图(3)、图(4)的对称中心的横坐标,找到规律,进而得出图(2013)的对称中心的横坐标.解答:解:(1)由题意,可知图1中特征点有7个;图2中特征点有12个,12=7+5×1;图3中特征点有17个,17=7+5×2;所以图4中特征点有7+5×3=22个;由以上猜想:在图(n)中,特征点的个数为:7+5(n﹣1)=5n+2;(2)如图,过点O1作O1M⊥y轴于点M,又∵正六边形的中心角=60°,O1C=O1B=O1A=2,∴∠BO1M=30°,∴O1M=O1B•cos∠BO1M=2×=,∴x1=;由题意,可得图(2)的对称中心的横坐标为(2×2)=2,图(3)的对称中心的横坐标为(2×3)=3,图(4)的对称中心的横坐标为(2×4)=4,…∴图(2013)的对称中心的横坐标为(2×2013)=2013.故答案为22,5n+2;,2013.点评:本题借助正六边形考查了规律型:图形的变化类问题,难度适中.关键是通过观察、归纳与总结,得到其中的规律;(2)要注意求的是整个图形的对称中心的横坐标,而不是第2013个正六边形的对称中心的横坐标,这也是本题容易出错的地方.3.我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD即为“准等腰梯形”.其中∠B=∠C.(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)如图2,在“准等腰梯形”ABCD中,∠B=∠C.E为边BC上一点,若AB∥DE,AE∥DC,求证:=;(3)如图3,在由不平行于BC的直线AD截△PBC所得的四边形ABCD中,∠BAD与∠ADC的平分线交于点E.若EB=EC,则四边形ABCD是不是“准等腰梯形”?请说明理由.考点:四边形综合题.分析:(1)过点A作AE∥CD交BC于点E,则△ABE和四边形AECD就是所求作的图形;(2)由AB∥DE,AE∥DC,就可以得出∠B=∠DEC,∠AEB=∠C,就可以得出△ABE∽△DEC,就可以得出结论;(3)作EF⊥AB于F,EG⊥AD于G,EH⊥CD于H,由角平分线的性质就可以得出EF=EG=EH,就可以得出△BEF≌△BEH,就可以得出∠FBE=∠HCE,从而得出∠ABC=∠DCB而得出结论.解答:解:(1)如图,过点A作AE∥CD交BC于点E,∴∠AEB=∠C.∵∠B=∠C∴∠AEB=∠B,∴AB=AE,∴△ABE是等腰三角形;∵AE∥CD,AD≠CD,∴四边形AECD是梯形.∴△ABE和四边形AECD就是所求作的图形;(2)∵AB∥DE,AE∥DC,∴∠B=∠DEC,∠AEB=∠C.∵∠B=∠C,∴∠AEB=∠DEC∴△ABE∽△DCE,∴;(3)四边形ABCD是“准等腰梯形”.理由:作EF⊥AB于F,EG⊥AD于G,EH⊥CD于H,∵AE平分∠BAD,DE平分∠ADC,∴∠EFB=∠EHC=90°,EF=EG=EH.在Rt△BEF和Rt△CEH中,∴Rt△BEF≌Rt△CEH(HL);∴∠FBE=∠HCE.∵BE=BC,∴∠EBC=∠ECB,∴∠EBC+∠FBE=∠ECB+∠HCE,∴∠ABC=∠HCB.∴四边形ABCD是“准等腰梯形”.点评:本题考查了等腰三角形的性质的运用,平行线的性质的运用角平分线的性质的运用,全等三角形的判定及性质的运用,解答时运用等腰三角形的性质求解是关键.4.(2012•保定一模)四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如图,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD的准等距点.(1)如图2,画出菱形ABCD的一个准等距点.(2)如图3,作出四边形ABCD的一个准等距点(尺规作图,保留作图痕迹,不要求写作法).(3)如图4,在四边形ABCD中,P是AC上的点,PA≠PC,延长BP交CD于点E,延长DP交BC于点F,且∠CDF=∠CBE,CE=CF.求证:点P是四边形ABCD的准等距点.考点:作图—复杂作图;全等三角形的判定与性质.专题:作图题.分析:(1)根据菱形的性质,在菱形对角线上找出除中心外的任意一点即可;(2)作对角线BD的垂直平分线于与另一对角线AC相交于点P,根据线段垂直平分线上的点到线段两端点的距离相等可得点P即为所求的准等距点;(3)连接BD,先利用“角角边”证明△DCF和△BCE全等,根据全等三角形对应边相等可得CD=CB,再根据等边对等角的性质可得∠CDB=∠CBD,从而得到∠PDB=∠PBD,然后根据等角对等边的性质可得PD=PB,根据准等距点的定义即可得证.解答:解:(1)如图2,点P即为所画点.…(1分)(答案不唯一)(2)如图3,点P即为所作点.…(2分)(答案不唯一.)(3)证明:连接DB,在△DCF与△BCE中,,∴△DCF≌△BCE(AAS),∴CD=CB,∴∠CDB=∠CBD.∴∠PDB=∠PBD,∴PD=PB,∵PA≠PC∴点P是四边形ABCD的准等距点.点评:本题考查了复杂作图,主要利用了线段垂直平分线的作法,全等三角形的判定与性质,读懂题意,理解准等距点的定义是解题的关键.5.(2006•福州)对于任意两个二次函数:y1=a1x2+b1x+c1,y2=a2x2+b2x+c2,(a1a2≠0),当|a1|=|a2|时,我们称这两个二次函数的图象为全等抛物线.现有△ABM,A(﹣1,0),B(1,0).记过三点的二次函数抛物线为“C□□□”(“□□□”中填写相应三个点的字母)(1)若已知M(0,1),△ABM≌△ABN(0,﹣1).请通过计算判断C ABM与C ABN是否为全等抛物线;(2)在图2中,以A、B、M三点为顶点,画出平行四边形.①若已知M(0,n),求抛物线C ABM的解析式,并直接写出所有过平行四边形中三个顶点且能与C ABM全等的抛物线解析式.②若已知M(m,n),当m,n满足什么条件时,存在抛物线C ABM根据以上的探究结果,判断是否存在过平行四边形中三个顶点且能与C ABM全等的抛物线?若存在,请列出所有满足条件的抛物线“C□□□”;若不存在,请说明理由.考点:二次函数综合题.专题:压轴题;新定义.分析:(1)应该是全等抛物线,由于这两个抛物线虽然开口方向不同,但是开口大小一样,因此二次项的绝对值也应该相等.可用待定系数法求出两抛物线的解析式,然后进行判断即可.(2)与(1)相同都是通过构建平行四边形来得出与△ABM全等的三角形,那么过与△ABM全等的三角形的三个顶点的抛物线都是与C ABM全等的抛物线.解答:解:(1)设抛物线C ABM的解析式为y=ax2+bx+c,∵抛物线C ABM过点A(﹣1,0),B(1,0),M(0,1),∴抛物线C ABM的解析式为y=﹣x2+1,同理可得抛物线C ABN的解析式为y=x2+1,∵|﹣1|=|1|,∴C ABM与C ABN是全等抛物线.(2)①设抛物线C ABM的解析式为y=ax2+bx+c,∵抛物线C ABM过点A(﹣1,0),B(1,0),M(0,n),抛物线C ABM的解析式为y=﹣nx2+n,与C ABM全等的抛物线有:y=nx2﹣n,y=n(x﹣1)2,y=n(x+1)2②当n≠0且m≠±1时,存在抛物线C ABM,与C ABM全等的抛物线有:C ABN,C AME,C BMF.点评:本题是函数与几何结合的综合题,解题关键是善于利用几何图形的性质以及函数的性质和定理等知识,主要考查学生数形结合的数学思想方法.6.(2013•沈阳)定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF与BE交于点O.(1)求证:△AOB和△AOE是“友好三角形”;(2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积.探究:在△ABC中,∠A=30°,AB=4,点D在线段AB上,连接CD,△ACD和△BCD是“友好三角形”,将△ACD 沿CD所在直线翻折,得到△A′CD,若△A′CD与△ABC重合部分的面积等于△ABC面积的,请直接写出△ABC 的面积.考点:四边形综合题.专题:压轴题.分析:(1)利用一组对边平行且相等的四边形是平行四边形,得到四边形ABFE是平行四边形,然后根据平行四边形的性质证得OE=OB,即可证得△AOE和△AOB是友好三角形;(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中点,则可以求得△ABE、△ABF的面积,根据S四边形CDOF=S矩形ABCD﹣2S△ABF即可求解.探究:画出符合条件的两种情况:①求出四边形A′DCB是平行四边形,求出BC和A′D推出∠ACB=90°,根据三角形面积公式求出即可;②求出高CQ,求出△A′DC的面积.即可求出△ABC的面积.解答:(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∵AE=BF,∴四边形ABFE是平行四边形,∴OE=OB,∴△AOE和△AOB是友好三角形.(2)解:∵△AOE和△DOE是友好三角形,∴S△AOE=S△DOE,AE=ED=AD=3,∵△AOB与△AOE是友好三角形,∴S△AOB=S△AOE,∵△AOE≌△FOB,∴S△AOE=S△FOB,∴S△AOD=S△ABF,∴S四边形CDOF=S矩形ABCD﹣2S△ABF=4×6﹣2××4×3=12.探究:解:分为两种情况:①如图1,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OB,A′O=CO,∴四边形A′DCB是平行四边形,∴BC=A′D=2,过B作BM⊥AC于M,∵AB=4,∠BAC=30°,∴BM=AB=2=BC,即C和M重合,∴∠ACB=90°,由勾股定理得:AC==2,∴△ABC的面积是×BC×AC=×2×2=2;②如图2,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴CO=OA′,BO=DO,∴四边形A′BDC是平行四边形,∴BD=A′C=2,过C作CQ⊥A′D于Q,∵A′C=2,∠DA′C=∠BAC=30°,∴CQ=A′C=1,∴S△ABC=2S△ADC=2S△A′DC=2××A′D×CQ=2××2×1=2;即△ABC的面积是2或2.点评:本题考查了平行四边形性质和判定,三角形的面积,勾股定理的应用,解这个题的关键是能根据已知题意和所学的定理进行推理.题目比较好,但是有一定的难度.7.(2012•贵阳模拟)如果一个三角形和一个矩形满足下列条件:三角形的一边与矩形的一边完全重合,并且三角形的这条边所对的角的顶点落在矩形与三角形重合的边的对边上,则称这样的矩形为三角形的“友好矩形”.如图①所示,矩形ABEF即为△ABC的“友好矩形”.我们发现:当△ABC是钝角三角形时,其“友好矩形”只有一个.(1)仿照以上叙述,请你说明什么是一个三角形的“友好平行四边形”;(2)如图②,若△ABC为直角三角形,且∠C=90°,在图②中画出△ABC的所有“友好矩形”;(3)若△ABC是锐角三角形,且AB=5cm,AC=7cm,BC=8cm,在图③中画出△ABC的所有“友好矩形”,指出其中周长最大的矩形并说明理由.考点:四边形综合题.分析:(1)仿照友好矩形的定义即可得出友好平行四边形的定义;(2)根据友好矩形的定义得出分别以AB为边和对角线得出△ABC的所有“友好矩形”即可;(3)利用勾股定理得出BD,AD的长,进而分别求出以BC、AB、AC为边的“友好矩形”周长比较即可.解答:解:(1)三角形的一边与平行四边形的一边完全重合,并且三角形的这条边所对的角的顶点落在平行四边形与三角形重合的边的对边上,则称这样的平行四边形为三角形的“友好平行四边形”.(2)如图②所示:(3)如图③,过A做AD⊥BC于D设BD长为x cm,则DC长为(8﹣x)在Rt△ABD和Rt△ADC中AD2=AB2﹣BD2=52﹣x2,AD2=AC2﹣DC2=72﹣(8﹣x)2则52﹣x2=72﹣(8﹣x)2解得:x=2.5,过A做AD⊥BC于D,则有,则以BC为边的“友好矩形”周长为:,以AB为边的“友好矩形”周长为:,以AC为边的“友好矩形”周长为:,∴以BC为边的“友好矩形”周长最大.点评:此题主要考查了四边形综合题以及勾股定理等知识,考查学生的阅读理解、综合分析及分类讨论能力,难度较大.8.(2012•常州)平面上有两条直线AB、CD相交于点O,且∠BOD=150°(如图),现按如下要求规定此平面上点的“距离坐标”:(1)点O的“距离坐标”为(0,0);(2)在直线CD上,且到直线AB的距离为p(p>0)的点的“距离坐标”为(p,0);在直线AB上,且到直线CD 的距离为q(q>0)的点的“距离坐标”为(0,q);(3)到直线AB、CD的距离分别为p,q(p>0,q>0)的点的“距离坐标”为(p,q).设M为此平面上的点,其“距离坐标”为(m,n),根据上述对点的“距离坐标”的规定,解决下列问题:(1)画出图形(保留画图痕迹):①满足m=1,且n=0的点M的集合;②满足m=n的点M的集合;(2)若点M在过点O且与直线CD垂直的直线l上,求m与n所满足的关系式.(说明:图中OI长为一个单位长)考点:一次函数综合题;角平分线的性质;含30度角的直角三角形;锐角三角函数的定义.专题:计算题;作图题.分析:(1)①以O为圆心,以2为半径作圆,交CD于两点,则此两点为所求;②分别作∠BOC和∠BOD的角平分线并且反向延长,即可求出答案;(2)过M作MN⊥AB于N,根据已知得出OM=n,MN=m,求出∠NOM=60°,根据锐角三角函数得出sin60°==,求出即可.解答:解:(1)①如图所示:点M1和M2为所求;②如图所示:直线MN和直线EF为所求;(2)如图:过M作MN⊥AB于N,∵M的“距离坐标”为(m,n),∴OM=n,MN=m,∵∠BOD=150°,直线l⊥CD,∴∠MON=150°﹣90°=60°,在Rt△MON中,sin60°==,即m与n所满足的关系式是:m=n.点评:本题考查了锐角三角函数值,角平分线性质,含30度角的直角三角形的应用,主要考查学生的动手操作能力和计算能力,注意:角平分线上的点到角两边的距离相等.9.(2012•无锡)对于平面直角坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把|x1﹣x2|+|y1﹣y2|叫做P1、P2两点间的直角距离,记作d(P1,P2).(1)已知O为坐标原点,动点P(x,y)满足d(O,P)=1,请写出x与y之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P所组成的图形;(2)设P0(x0,y0)是一定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的直角距离.试求点M(2,1)到直线y=x+2的直角距离.考点:一次函数综合题.专题:压轴题.分析:(1)根据新的运算规则知|x|+|y|=1,据此可以画出符合题意的图形;(2)根据新的运算规则知d(M,Q)=|x﹣2|+|y﹣1|=|x﹣2|+|x+2﹣1|=|x﹣2|+|x+1|,然后由绝对值与数轴的关系可知,|x﹣2|+|x+1|表示数轴上实数x所对应的点到数2和﹣1所对应的点的距离之和,其最小值为3.解答:解:(1)由题意,得|x|+|y|=1,∵d(O,P)=1,O(0,0),P(x,y)∴d(0,P)=|x|+|y|∴|x|+|y|=1①x≥0,y≥0∴x+y=1y=1﹣x②x≤0,y≤0∴﹣x﹣y=1y=﹣x﹣1③x≥0,y≤0∴x﹣y=1y=x﹣1④x≤0,y≥0∴﹣x+y=1y=1+x将四个函数关系式表示在数轴上,所有符合条件的点P组成的图形如图所示:(2)∵d(M,Q)=|x﹣2|+|y﹣1|=|x﹣2|+|x+2﹣1|=|x﹣2|+|x+1|,又∵x可取一切实数,|x﹣2|+|x+1|表示数轴上实数x所对应的点到数2和﹣1所对应的点的距离之和,其最小值为3.∴点M(2,1)到直线y=x+2的直角距离为3.点评:本题考查了一次函数综合题.正确理解新定义运算法则是解题的关键.10.(2012•厦门)如图,在平面直角坐标系中,已知点A(2,3)、B(6,3),连接AB.如果点P在直线y=x﹣1上,且点P到直线AB的距离小于1,那么称点P是线段AB的“临近点”.(1)判断点C()是否是线段AB的“临近点”,并说明理由;(2)若点Q(m,n)是线段AB的“临近点”,求m的取值范围.考点:一次函数综合题.专题:计算题.分析:(1)根据A、B的坐标得出AB∥x轴,根据点P到直线AB的距离小于1,求出当纵坐标y在2<y<4范围内时,点是线段AB的“临近点”,看点的纵坐标是否在y的范围内即可;(2)根据线段AB的“临近点”的纵坐标的范围是2<n<4,把n=2和n=4分别代入n=m﹣1,求出相应的m 值,即可得出点的横坐标m的范围.解答:解:(1)点C()是线段AB的“临近点”.理由是:∵点P到直线AB的距离小于1,A、B的纵坐标都是3,∴AB∥x轴,3﹣1=2,3+1=4,∴当纵坐标y在2<y<4范围内时,点是线段AB的“临近点”,点C的坐标是(),∴y=>2,且小于4,∵C(,)在直线y=x﹣1上,∴点C()是线段AB的“临近点”.(2)∵点Q(m,n)是线段AB的“临近点”,由(1)可以得出:线段AB的“临近点”的纵坐标的范围是2<n<4,把n=2代入y=x﹣1(即n=m﹣1)得:m=3,n=4代入y=x﹣1(即n=m﹣1)得:m=5,∴3<m<5,即m的取值范围是3<m<5.点评:本题考查了有关一次函数的应用,通过做此题培养了学生的阅读能力和计算能力,此题是一道非常好、比较典型的题目.11.(2012•台州)定义:P、Q分别是两条线段a和b上任意一点,线段PQ的长度的最小值叫做线段a与线段b的距离.已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐标系中四点.(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是2;当m=5,n=2时,如图2,线段BC与线段OA的距离为;(2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.(3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M,①求出点M随线段BC运动所围成的封闭图形的周长;②点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m的值使以A、M、H为顶点的三角形与△AOD相似?若存在,求出m的值;若不存在,请说明理由.考点:圆的综合题;勾股定理;相似三角形的判定与性质.专题:代数几何综合题;压轴题.分析:(1)理解新定义,按照新定义的要求求出两个距离值;(2)如答图2所示,当点B落在⊙A上时,m的取值范围为2≤m≤6:当4≤m≤6,显然线段BC与线段OA的距离等于⊙A半径,即d=2;当2≤m<4时,作BN⊥x轴于点N,线段BC与线段OA的距离等于BN长;(3)①在准确理解点M运动轨迹的基础上,画出草图,如答图3所示.由图形可以直观求出封闭图形的周长;②如答图4所示,符合题意的相似三角形有三个,需要进行分类讨论,分别利用点的坐标关系以及相似三角形比例线段关系求出m的值.解答:解:(1)当m=2,n=2时,如题图1,线段BC与线段OA的距离(即线段BN的长)=2;当m=5,n=2时,B点坐标为(5,2),线段BC与线段OA的距离,即为线段AB的长,如答图1,过点B作BN⊥x轴于点N,则AN=1,BN=2,在Rt△ABN中,由勾股定理得:AB===.(2)如答图2所示,当点B落在⊙A上时,m的取值范围为2≤m≤6:当4≤m≤6,显然线段BC与线段OA的距离等于⊙A半径,即d=2;当2≤m<4时,作BN⊥x轴于点N,线段BC与线段OA的距离等于BN长,ON=m,AN=OA﹣ON=4﹣m,在Rt△ABN中,由勾股定理得:∴d===.(3)①依题意画出图形,点M的运动轨迹如答图3中粗体实线所示:由图可见,封闭图形由上下两段长度为8的线段,以及左右两侧半径为2的半圆所组成,其周长为:2×8+2×π×2=16+4π,∴点M随线段BC运动所围成的封闭图形的周长为:16+4π.②结论:存在.∵m≥0,n≥0,∴点M位于第一象限.∵A(4,0),D(0,2),∴OA=2OD.如答图4所示,相似三角形有三种情形:(I)△AM1H1,此时点M纵坐标为2,点H在A点左侧.如图,OH1=m+2,M1H1=2,AH1=OA﹣OH1=2﹣m,由相似关系可知,M1H1=2AH1,即2=2(2﹣m),∴m=1;(II)△AM2H2,此时点M纵坐标为2,点H在A点右侧.如图,OH2=m+2,M2H2=2,AH2=OH2﹣OA=m﹣2,由相似关系可知,M2H2=2AH2,即2=2(m﹣2),∴m=3;(III)△AM3H3,此时点B落在⊙A上.如图,OH3=m+2,AH3=OH3﹣OA=m﹣2,过点B作BN⊥x轴于点N,则BN=M3H3=n,AN=m﹣4,由相似关系可知,AH3=2M3H3,即m﹣2=2n (1)在Rt△ABN中,由勾股定理得:22=(m﹣4)2+n2(2)由(1)、(2)式解得:m1=,m2=2,当m=2时,点M与点A横坐标相同,点H与点A重合,故舍去,∴m=.综上所述,存在m的值使以A、M、H为顶点的三角形与△AOD相似,m的取值为:1、3或.点评:本题是以圆为基础的运动型压轴题,综合考查了圆的相关性质、相似三角形、点的坐标、勾股定理、解方程等重要知识点,难度较大.本题涉及动线与动点,运动过程比较复杂,准确理解运动过程是解决本题的关键.第(3)①问中,关键是画出点M运动轨迹的图形,结合图形求解一目了然;第(3)②问中,注意分类讨论思想的运用,避免漏解.12.(2012•绍兴)联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图1,若PA=PB,则点P为△ABC的准外心.应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=AB,求∠APB的度数.探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.考点:线段垂直平分线的性质;等腰三角形的性质;等边三角形的性质;勾股定理.专题:新定义.分析:应用:连接PA、PB,根据准外心的定义,分①PB=PC,②PA=PC,③PA=PB三种情况利用等边三角形的性质求出PD与AB的关系,然后判断出只有情况③是合适的,再根据等腰直角三角形的性质求出∠APB=45°,然后即可求出∠APB的度数;探究:先根据勾股定理求出AC的长度,根据准外心的定义,分①PB=PC,②PA=PC,③PA=PB三种情况,根据三角形的性质计算即可得解.解答:应用:解:①若PB=PC,连接PB,则∠PCB=∠PBC,∵CD为等边三角形的高,∴AD=BD,∠PCB=30°,∴∠PBD=∠PBC=30°,∴PD=DB=AB,与已知PD=AB矛盾,∴PB≠PC,②若PA=PC,连接PA,同理可得PA≠PC,③若PA=PB,由PD=AB,得PD=BD,∴∠APD=45°,故∠APB=90°;探究:解:∵BC=5,AB=3,∴AC===4,①若PB=PC,设PA=x,则x2+32=(4﹣x)2,∴x=,即PA=,②若PA=PC,则PA=2,③若PA=PB,由图知,在Rt△PAB中,不可能.故PA=2或.点评:本题考查了线段垂直平分线的性质,等腰三角形的性质,勾股定理,读懂题意,弄清楚准外心的定义是解题的关键,根据准外心的定义,要注意分三种情况进行讨论.。

以函数新定义为背景阅读材料压轴题-2023年中考数学压轴题专项训练(学生版)

以函数新定义为背景阅读材料压轴题-2023年中考数学压轴题专项训练(学生版)

以函数新定义为背景阅读材料压轴题1.考向分析1(2023•义乌市校级模拟)定义:函数图象上到两坐标轴的距离都不大于n (n ≥0)的点叫做这个函数图象的“n 阶方点”.例如,点13,13 是函数y =x 图象的“12阶方点”;点(2,1)是函数y =2x图象的“2阶方点”.(1)在①-2,-12 ;②(-1,-1);③(1,1)三点中,是反比例函数y =1x图象的“1阶方点”的有 ②③ (填序号);(2)若y 关于x 的一次函数y =ax -3a +1图象的“2阶方点”有且只有一个,求a 的值;(3)若y 关于x 的二次函数y =-(x -n )2-2n +1图象的“n 阶方点”一定存在,请直接写出n 的取值范围.2(2023•西城区校级模拟)在平面直角坐标系xOy 中,我们给出如下定义:将图形M 绕直线x =3上某一点P 顺时针旋转90°,再关于直线x =3对称,得到图形N ,我们称图形N 为图形M 关于点P 的二次关联图形.已知点A (0,1).(1)若点P 的坐标是(3,0),直接写出点A 关于点P 的二次关联图形的坐标;(2)若点A 关于点P 的二次关联图形与点A 重合,求点P 的坐标(直接写出结果即可);(3)已知⊙O 的半径为1,点A 关于点P 的二次关联图形在⊙O 上且不与点A 重合.若线段AB =1,其关于点P 的二次关联图形上的任意一点都在⊙O 及其内部,求此时P 点坐标及点B 的纵坐标y B 的取值范围.3(2022•婺城区模拟)定义:在平面直角坐标系中,对于任意一个函数,作该函数y轴右侧部分关于y轴的轴对称图形,与原函数y轴的交点及y轴右侧部分共同构成一个新函数的图象,则这个新函数叫做原函数的“新生函数“例如:图①是函数y=x+1的图象,则它的“新生函数“的图象如图②所示,且它的“新生函数“的解析式为y=x+1(x≥0)-x+1(x<0),也可以写成y=|x|+1.(1)在图③中画出函数y=-2x+l的“新生函数“的图象.(2)函数y=x2-2x+2的“新生函数“与直线y=-x+m有三个公共点,求m的值.(3)已知A(-1,0),B(3,0),C(3,-2),D(-1,-2),函数y=x2-2nx+2(n>0)的“新生函数“图象与矩形ABCD的边恰好有4个交点,求n的取值范围.2.压轴题速练1(2023•信阳模拟)定义:在平面直角坐标系中,有一条直线x=m,对于任意一个函数,作该函数自变量大于m的部分关于直线x=m的轴对称图形,与原函数中自变量大于或等于m的部分共同构成一个新的函数图象,则这个新函数叫做原函数关于直线x=m的“镜面函数”.例如:图①是函数y=x+1的图象,则它关于直线x=0的“镜面函数”的图象如图②所示,且它的“镜面函数”的解析式为y=x+1(x≥0),也可以写成y=|x|+1.-x+1(x<0)(1)在图③中画出函数y=-2x+1关于直线x=1的“镜面函数”的图象.(2)函数y=x2-2x+2关于直线x=-1的“镜面函数”与直线y=-x+m有三个公共点,求m的值.(3)已知抛物线y=ax2-4ax+2(a<0),关于直线x=0的“镜面函数”图象上的两点P(x1,y1),Q(x2,y2 ),当t-1≤x1≤t+1,x2≥4时,均满足y1≥y2,直接写出t的取值范围.2(2022•零陵区模拟)九年级数学兴趣小组在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函数互为“旋转函数”.求函数y=2x2-3x+1的“旋转函数”.小组同学是这样思考的,由函数y=2x2-3x+1可知,a1=2,b1=-3,c1=1,根据a1+a2=0,b1=b2,c1+c2 =0,求出a2,b2,c2就能确定这个函数的“旋转函数”.请参照小组同学的方法解决下面问题:(1)函数y=x2-4x+3的“旋转函数”是2;(2)若函数y=5x2+(m-1)x+n与y=-5x2-nx-3互为“旋转函数”,求(m+n)2022的值;(3)已知函数y=2(x-1)(x+3)的图象与x轴交于A,B两点,与y轴交于点C,点A,B,C关于原点的对称点分别是A1,B1,C1,试求证:经过点A1,B1,C1的二次函数与y=2(x-1)(x+3)互为“旋转函数”.3(2022•长沙县校级三模)规定:如果两个函数图象上至少存在一组点是关于原点对称的,我们则称这两个函数互为“O-函数”.这组点称为“XC点”.例如:点P(1,1)在函数y=x2上,点Q(-1,-1)在函数y=-x-2上,点P与点Q关于原点对称,此时函数y=x2和y=-x-2互为“O-函数”,点P与点Q则为一组“XC点”.(1)已知函数y=-2x-1和y=-6x互为“O-函数”,请求出它们的“XC点”;(2)已知函数y=x2+2x+4和y=4x+n-2022互为“O-函数”,求n的最大值并写出“XC点”;(3)已知二次函数y=ax2+bx+c(a>0)与y=2bx+1互为“O-函数”有且仅存在一组“XC点”,如图,若二次函数的顶点为M,与x轴交于A(x1,0),B(x2,0)其中0<x1<x2,AB=c2-2c+6c,过顶点M作x轴的平行线l,点P在直线l上,记P的横坐标为-t,连接OP,AP,BP.若∠OPA=∠OBP,求t 的最小值.4(2022•顺德区校级三模)我们把一个函数图象上横坐标与纵坐标相等的点称为这个函数的不动点.(1)请直接写出函数y=2-x的不动点M的坐标;(2)若函数y=3x+8x+a有两个关于原点对称的不动点A,B,求a的值;(3)已知函数y=ax2+(b+1)x+(b-1),若对任意实数b,函数恒有两个相异的不动点,请直接写出a的取值范围.5(2022•长沙二模)如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“CJ 三角形”.(1)判断下列三角形是否为“CJ 三角形”?如果是,请在对应横线上画“√”,如果不是,请在对应横线上画“×”;①其中有两内角分别为30°,60°的三角形;②其中有两内角分别为50°,60°的三角形;③其中有两内角分别为70°,100°的三角形;(2)如图1,点A 在双曲线y =k x(k >0)上且横坐标为1,点B (4,0),C 为OB 中点,D 为y 轴负半轴上一点,若∠OAB =90°.①求k 的值,并求证:△ABC 为“CJ 三角形”;②若△OAB 与△OBD 相似,直接写出D 的坐标;(3)如图2,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,E 为BC 边上一点,BE >CE 且△ABE 是“CJ 三角形”,已知A (-6,0),记BE =t ,过A ,E 作抛物线y =ax 2+bx +c (a >0),B 在A 右侧,且在x 轴上,点Q 在抛物线上,使得tan ∠ABQ =1t -3,若符合条件的Q 点个数为3个,求抛物线y =ax 2+bx +c 的解析式.6(2022•滨海县模拟)如图1,直线l:y=kx+b(k<0,b>0)与x、y轴分别相交于A、B两点,将△AOB绕点O逆时针旋转90°得到△COD,过点A、B、D的抛物线W叫做直线l的关联抛物线,而直线l 叫做抛物线W的关联直线.(1)已知直线l1:y=-3x+3,求直线l1的关联抛物线W1的表达式;(2)若抛物线W2:y=-x2-x+2,求它的关联直线l2的表达式;(3)如图2,若直线l3:y=kx+4(k<0),G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=102,求直线l3的关联抛物线W3的表达式;(4)在(3)的条件下,将直线CD绕着C点旋转得到新的直线l4:y=mx+n,若点P(x1,y1)与点Q(x2,y2)分别是抛物线W3与直线l4上的点,当0≤x≤2时,|y1-y2|≤4,请直接写出m的取值范围.7(2022•淮安二模)我们把函数图象上横坐标与纵坐标互为相反数的点定义为这个函数图象上的“互反点”.例如在二次函数y=x2的图象上,存在一点P(-1,1),则P为二次函数y=x2图象上的“互反点”.(1)分别判断y=-x+3、y=x2+x的图象上是否存在“互反点”?如果存在,求出“互反点”的坐标;如果不存在,说明理由.(2)如图①,设函数y=-5x(x<0),y=x+b的图象上的“互反点”分别为点A,B,过点B作BC⊥x轴,垂足为C.当△ABC的面积为5时,求b的值;(3)如图②,Q(m,0)为x轴上的动点,过Q作直线l⊥x轴,若函数y=-x2+2(x≥m)的图象记为W1,将W1沿直线l翻折后的图象记为W2,当W1,W2两部分组成的图象上恰有2个“互反点”时,直接写出m的取值范围.8(2022•石家庄三模)抛物线L:y=x2-2bx+c与直线a:y=kx+2交于A、B两点,且A(2,0).(1)求k和c的值(用含b的代数式表示c);(2)当b=0时,抛物线L与x轴的另一个交点为C.①求△ABC的面积;②当1≤x≤5时,则y的取值范围是.(3)抛物线L:y=x2-2bx+c的顶点M(b,n),求出n与b的函数关系式;当b为何值时,点M达到最高.(4)在抛物线L和直线a所围成的封闭图形的边界上把横、纵坐标都是整数的点称为“美点”,当b=-20时,直接写出“美点”的个数;若这些美点平均分布在直线y=kx的两侧,k的取值范围: -22 21<k<-4543<4341 .9(2023春•雨花区期中)约定:如果函数的图象经过点(m,n),我们就把此函数称作“(m,n)族函数”.比如:正比例函数y=2x的图象经过点(1,2),所以正比例函数y=2x就是“(1,2)族函数”.(1)①以下数量关系中,y不是x的函数的是(填选项)②以下是“(-1,1)族函数”的是(填选项)A.y=-1xB.|y|=xC.y=x2+2x-4D.y=|x|+1E.y2=-xF.y=2x+3(2)已知一次函数y=kx-k+1(k为常数,k≠0).①若该函数是“-1 2,4族函数”,求k的值.②无论k取何值,该函数必经过一定点,请写出该定点的坐标.(3)已知一次函数y=2x+4和y=-x+1都是“(m,n)族函数”.当m≤x≤1时,一次函数y=kx+b的函数值y恰好有12n≤1y≤-12m,求该一次函数的解析式.10(2022秋•海门市期末)定义:平面直角坐标系xOy中,若点M绕原点顺时针旋转90°,恰好落在函数图象W上,则称点M为函数图象W的“直旋点”.例如,点-1 3,13是函数y=x图象的“直旋点”.(1)在①(3,0),②(-1,0),③(0,3)三点中,是一次函数y=-13x+1图象的“直旋点”的有(填序号);(2)若点N(3,1)为反比例函数y=k x图象的“直旋点”,求k的值;(3)二次函数y=-x2+2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,点D是二次函数y =-x2+2x+3图象的“直旋点”且在直线AC上,求D点坐标.11(2022秋•大兴区校级期末)在平面直角坐标系xOy中,对于线段AB和点C,若△ABC是以AB 为一条直角边,且满足AC>AB的直角三角形,则称点C为线段AB的“从属点”.已知点A的坐标为(0,1).(1)如图1,若点B为(2,1),在点C1(0,-2),C2(2,2).C3(1,0),C4(0,3)中,线段AB的“从属点”是,C2 ;1(2)如图2,若点B为(1,0),点P在直线y=-2x-3上,且点P为线段AB的“从属点”,求点P的坐标;(3)点B为x轴上的动点,直线y=4x+b(b≠0)与x轴,y轴分别交于M,N两点,若存在某个点B,使得线段MN上恰有2个线段AB的“从属点”,直接写出b的取值范围.12(2023春•鄱阳县期中)对于平面直角坐标系xOy中的任意一点P(x,y),给出如下定义:记a=-x,b=x-y,那么我们把点M(a,b)与点N(b,a)称为点P的一对“和美点”.例如:点P(-1,2)的一对“和美点”是点(1,-3)与点(-3,1).(1)点A(4,1)的一对“和美点”坐标是与;(2)若点B(2,y)的一对“和美点”重合,则y的值为;(3)若点C的一个“和美点”坐标为(-2,7),求点C的坐标.13(2022秋•石景山区校级期末)在平面直角坐标系xOy中,已知矩形OABC,其中点A(5,0),B (5,4),C(0,4).给出如下定义:若点P关于直线l:x=t的对称点P'在矩形OABC的内部或边上,则称点P为矩形OABC关于直线l的“关联点”.例如,图1中的点D,点E都是矩形OABC关于直线l:x=3的“关联点”.(1)如图2,在点P1(4,1),P2(-3,3),P3(-2,0),P4(-6,-2)中,是矩形OABC关于直线l:x=-1的“关联点”的为2,P3 ;(2)如图3,点P(-2,3)是矩形OABC关于直线l:x=t的“关联点”,且△OAP'是等腰三角形,求t的值;(3)若在直线y=12x+b上存在点Q,使得点Q是矩形OABC关于直线l:x=-1的“关联点”,请直接写出b的取值范围.14(2023春•崇川区校级月考)我们定义:若点P在一次函数y=ax+b(a≠0)图象上,点Q在反比例函数y=cx(c≠0)图象上,且满足点P与点Q关于y轴对称,则称二次函数y=ax2+bx+c为一次函数y=ax+b与反比例函数y=cx的“衍生函数”,点P称为“基点”,点Q称为“靶点”.(1)若二次函数y=x2+2x+1是一次函数y=ax+b与反比例函数y=c x的“衍生函数”,则a=,b=,c=;(2)若一次函数y=x+b和反比例函数y=c x的“衍生函数”的顶点在x轴上,且“基点”P的横坐标为1,求“靶点”的坐标;(3)若一次函数y=ax+2b(a>b>0)和反比例函数y=-2x的“衍生函数”经过点(2,6).①试说明一次函数y=ax+2b图象上存在两个不同的“基点”;②设一次函数y=ax+2b图象上两个不同的“基点”的横坐标为x1、x2,求|x1-x2|的取值范围.15(2023•定远县校级一模)已知一系列具备负整数系数形式规律的“负倍数二次函数”:y1=-x2-2x,y2=-2x2-4x,y3=-3x2-6x,⋯(1)探索发现,所有“负倍数二次函数”都有同一条对称轴直线x=.(2)求二次函数y n的解析式及其顶点坐标.(3)点(-1,10)是否是“负倍数二次函数”中某一抛物线的顶点,若是,请求出它所在的抛物线解析式,并求出-2≤x≤1对应的y的取值范围;若不是,请说明理由.16(2023春•兰溪市月考)阅读材料:一般地,对于某个函数,如果自变量x在取值范围内任取x=a与x=-a时,函数值相等,那么这个函数是“对称函数”.例如:y=x2,在实数范围内任取x=a时,y=a2;当x=-a时,y=(-a)2=a2,所以y=x2是“对称函数”.(1)函数y=2|x|+1对称函数(填“是”或“不是”).当x≥0时,y=2|x|+1的图象如图1所示,请在图1中画出x<0时,y=2|x|+1的图象.(2)函数y=x2-2|x|+1的图象如图2所示,当它与直线y=-x+n恰有3个交点时,求n的值.(3)如图3,在平面直角坐标系中,矩形ABCD的顶点坐标分别是A(-3,0),B(2,0),C(2,-3),D(-3,-3),当二次函数y=x2-b|x|+1(b>0)的图象与矩形的边恰有4个交点时,求b的取值范围.17(2023春•东台市校级期中)定义:若两个函数的图象关于某一点P中心对称,则称这两个函数关于点P互为“伴随函数”.例如,函数y=x2与y=-x2关于原点O互为“伴随函数”.(1)函数y=x+1关于原点O的“伴随函数”的函数解析式为,函数y=(x-2)2+1关于原点O的“伴随函数”的函数解析式为2;(2)已知函数y=x2-2x与函数G关于点P(m,3)互为“伴随函数”.若当m<x<7时,函数y=x2-2x 与函数G的函数值y都随自变量x的增大而增大,求m的取值范围;(3)已知点A(0,1),点B(4,1),点C(2,0),二次函数y=ax2-2ax-3a(a>0)与函数N关于点C互为“伴随函数”,将二次函数y=ax2-2ax-3a(a>0)与函数N的图象组成的图形记为W,若图形W与线段AB恰有2个公共点,直接写出a的取值范围.18(2023春•北京月考)在平面直角坐标系xOy中.⊙O的半径为1,对于直线l和线段AB,给出如下定义:若将线段AB关于直线l对称,可以得到⊙O的弦A′B′(A′,B′分别为A,B的对应点),则称线段AB是⊙O的关于直线l对称的“关联线段”.例如:在图1中,线段AB是⊙O的关于直线l对称的“关联线段”.(1)如图2,点A1,B1,A2,B2,A3,B3的横、纵坐标都是整数.①在线段A1B1,A2B2,A3B3中,⊙O的关于直线y=x+2对称的“关联线段”是1B1 ;②若线段A1B1,A2B2,A3B3中,存在⊙O的关于直线y=-x+m对称的“关联线段”,则m=;(2)已知直线y=-33x+b(b>0)交x轴于点C,在△ABC中,AC=3,AB=1.若线段AB是⊙O的关于直线y=-33x+b(b>0)对称的“关联线段”,直接写出b的最大值和最小值,以及相应的BC长.。

专题31 中考热点新定义问题专项训练-2023年中考数学二轮复习核心考点拓展训练(解析版)

专题31 中考热点新定义问题专项训练-2023年中考数学二轮复习核心考点拓展训练(解析版)

专题31 中考热点新定义问题专项训练(解析版)专题诠释:新定义题型是近几年来中考的热点问题。

它常集合数形结合思想,类比思想,转化思想,分类讨论思想,方程思想,函数思想于一体。

常以压轴题身份出现。

本专题精选新定义问题共20条,欢迎下载使用。

一.选择题1.(2021•河北模拟)对于实数x,y,我们定义符号max{x,y}的意义:当x≥y时,max{x,y}=x,当x<y时,max{x,y}=y.例如max{﹣1,﹣2}=﹣1,max{3,π}=π,则关于x的函数y=max{3x,x+2}的图象为( )A.B.C.D.思路引领:令3x=x+2,解得x=1,画出直线y=3x和直线y=x+2的图象即可判断.解:令3x=x+2,解得x=1,直线y=3x和直线y=x+2的图象如图所示,它们的交点坐标为(1,3),由图象可知,x<1时,x+2>3x;当x>1时,3x>x+2,故关于x的函数y=max{3x,x+2}的图象是选项C中的图象.故选:C.总结提升:本题主要考查了函数的图象,正确画出函数图象并得出交点坐标是解答本题的关键.二.填空题2.(2021•深圳模拟)用“●”“□”定义新运算:对于数a,b,都有a●b=a和a□b=b.例如3●2=3,3□2=2,则(2020□2021)●(2021□2020)= .思路引领:根据“●”“□”的运算法则进行计算即可得解.解:∵a●b=a,a□b=b,∴(2020□2021)●(2021□2020)=2021●2020=2021.故答案为:2021.总结提升:本题考查了有理数的混合运算,读懂题目信息,理清新定义的运算方法是解题的关键.3.(2021•碑林区校级模拟)(正多边形的每个内角都相等)如图,在正八边形ABCDEFGH中,对角线BF 的延长线与边DE的延长线交于点M,则∠M的大小为 .思路引领:根据正求出多边形的内角和公式∠DEF,根据等腰三角形的性质、三角形内角和定理求出∠BFE,计算即可.解:∵八边形ABCDEFGH是正八边形,∴∠DEF=(8﹣2)×180°÷8=135°,∴∠FEM=45°,∴∠DEF=∠EFG,∵BF平分∠EFG,∴∠EFB=∠BFG=12∠EFG=67.5°,∵∠BFE=∠FEM+∠M,∴∠M=∠BFE﹣∠FEM,∴∠M=22.5°.故答案为:22.5°.总结提升:本题考查的是正多边形和圆的有关计算,掌握正多边形的内角的求法是解题的关键.4.(2019•福田区三模)对于m,n(n≥m)我们定义运算A n m=n(n﹣1)(n﹣2)(n﹣3)…(n﹣(m﹣1)),A73=7×6×5=210,请你计算A42= .思路引领:将n=4,m=2代入公式求解可得.解:A42=4×(4﹣1)=12,故答案为:12.总结提升:本题主要考查数字的变化规律,解题的关键是掌握新定义规定的运算法则.5.(2022春•塔城地区期末)在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4>0的解集为 .思路引领:根据新定义规定的运算规则列出不等式,解不等式即可求得.解:不等式x⊕4>0化为:2x+12>0,2x>﹣12,x>﹣6,故答案为:x>﹣6.总结提升:本题主要考查解一元一次不等式,解题的关键是根据新定义列出关于x的不等式及解不等式的步骤.6.(2022秋•魏县期中)若x是不等于1的实数,我们把11―x称为x的差倒数,如2的差倒数是11―2=―1,﹣1的差倒数为11―(―1)=12,现已知x1=13,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2022的值为 .思路引领:根据差倒数的定义,通过计算发现每3次运算结果循环出现一次,由此可得x2022=x3=﹣2.解:∵x1=1 3,∴x2=11―13=32,x3=11―32=―2,x4=11―(―2)=13,……,∴每3次运算结果循环出现一次,∵2022÷3=674,∴x2022=x3=﹣2,∴x2022的值为﹣2,故答案为:﹣2.总结提升:本题考查数字的变化规律,通过计算探索出运算结果的循环规律是解题的关键.三.解答题7.(2021秋•汉阳区期中)对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出两个“极数” , ;(2)猜想任意一个“极数”是否是99的倍数,请说明理由;(3)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若四位数m为“极数”,记D(m)=m33,则满足D(m)是完全平方数的所有m的值是 .思路引领:(1)根据“极数”的定义,任意写出两个“极数”即可;(2)由“极数”的定义可得出n=99(10a+b+1),进而可得出任意一个“极数”都是99的倍数;(3)由(2)可得出D(m)=3(10x+y+1),由D(m)为完全平方数,可得出10x+y+1=12,10x+y+1=27,10x+y+1=48,10x+y+1=75,解之可得出x,y的值,进而可得出m的值,即可得出结论.解:(1)由“极数”的定义得,1287,2376,故答案为1287,2376;(2)任意一个“极数”都是99的倍数,理由如下:设任意一个“极数”为ab(9―a)(9―b)(1≤a≤9,0≤b≤9,且a、b为整数),则ab(9―a)(9―b)=1000a+100b+10(9﹣a)+(9﹣b)=990a+99b+99=99(10a+b+1),∵1≤a≤9,0≤b≤9,且a、b为整数,∴10a+b+1是整数,∴任意一个“极数”都是99的倍数.(3)设四位数m为xy(9―x)(9―y)(1≤x≤9,0≤y≤9,且x、y为整数),∵四位数m为“极数”,D(m)=m 33,∴D(m)=99(10x+y+1)33=3(10x+y+1).∵D(m)是完全平方数,1≤x≤9,0≤y≤9,且x、y为整数,∴10x+y+1=3×4=12,10x+y+1=3×9=27,10x+y+1=3×16=48,10x+y+1=3×25=75,∴x=1y=1或x=2y=6或x=4y=7或x=7y=4,∴m可以为1188或2673或4752或7425.总结提升:本题考查了完全平方数以及倍数,解题的关键是:(1)根据“极数”的定义,任意写出两个“极数”;(2)根据“极数”的定义,找出n=99(10a+b+1);(3)根据D(m)是完全平方数,找出10x+y+1的值.8.(2022秋•胶州市期末)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特殊的自然数——“纯数”.定义:对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”.例如:32是“纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2022是否是“纯数”?请说明理由;(2)请直接写出2023到2050之间的“纯数”;(3)不大于100的“纯数”的个数为 .思路引领:(1)根据“纯数”的定义判断;(2)根据“纯数”的定义求解;(3)根据“纯数”的定义写出数,再查个数.解:(1)∵计算2022+2023+2024时,各数位都不产生进位,∴2022是“纯数”;(2)2023到2050之间的“纯数”有:2030,2031,2032,;(3)不大于100的“纯数”有:0,1,2,10,11,12,20,21,22,30,30,32,100共13个,故答案为:13.总结提升:本题考查了整式的加减,理解新定义是解题的关键.9.(2021•任城区二模)如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做“半高三角形”.这条高称为“半高”.如图1,对于△ABC,BC边上的高AD等于BC的一半,△ABC就是“半高三角形”.此时,称△ABC是“BC边半高三角形”,AD是“BC边半高”;如图2,对于△EFG,EF边上的高GH等于EF的一半,△EFG就是半高三角形,此时,称△EFG是EF边半高三角形,GH是“EF边半高”.(1)在Rt△ABC中,∠ACB=90°,AB=10cm,若ABC是“BC边半高三角形”,则AC= cm;(2)若一个三角形既是等腰三角形又是半高三角形,且“半高”长为2cm,则该等腰三角形底边长的所有可能值为 .(3)如图3,平面直角坐标系内,直线y=x+2与抛物线y=x2交于R,S两点,点P是抛物线y=x2上的一个动点,点Q是坐标系内一点,且使得△RSQ为“RS边半高三角形”.当点P介于点R与点S之间,且PQ取得最小值时,求点P的坐标.思路引领:(1)设AC=h,则BC=2AC=2h,由勾股定理即可求解;(2)分“半高”是底边上的高、“半高”是腰上的高两种情况,分别求解即可;(3)当点P介于点R与点S之间时,与RS平行且与抛物线只有一个交点P′时,PQ取得最小值,即可求解.解:(1)设AC=h,则BC=2AC=2h,由勾股定理得:h2+(2h)2=102,解得:h=25,故答案为25;(2)①当“半高”是底边上的高时,如图1,AD是“半高”,AB、AC为等腰三角形的腰,由题意得:AD =2,BC =4;②当“半高”是腰上的高时,如下图,底边为BC 、“半高”CD 为腰上的高,如图2,当△ABC 为锐角三角形时,CD =2,AB =AC =4,在Rt △ADC 中,AD =AC 2―CD 2=23,在Rt △BCD 中,BC =BD 2+CD 2=(4―23)2+22=26―22;如图3,当△ABC 为钝角三角形时,CD =2,AB =AC =4,同理可得:BC =26+22;故答案为:4或26+22或26―22;(3)将抛物线的表达式y =x 2与直线方程y =x +2联立并解得:x =﹣1或2,即:点R 、S 的坐标分别为(﹣1,1)、(2,4),则RS =32,则RS 边上的高为:12×32=322,则点Q 在于RS 平行的上下两条直线上,如下图,设直线RS 与y 轴交于点N ,故点N 作NQ ⊥TQ 于点Q ,则NQ =322,则QT =QH sin45°=3,点T (0,5),则点M (0,5),点M 于点T 重合,则点Q 的直线方程为:y =x +5,当该直线在直线RS 的下方时,y =x ﹣1,故点Q 所在的直线方程为:y =x +5或y =x ﹣1;如图4,当点P 介于点R 与点S 之间时,设与RS 平行且与抛物线只有一个交点P ′的直线方程为:y =x +d ,将该方程与抛物线方程联立并整理得:x 2﹣x ﹣d =0,△=1+4d =0,解得:d =―14,此时,x 2﹣x +14=0,解得:x =12,点P ′(12,14),此时,P (P ′)Q 取得最小值.总结提升:本题主要考查的是二次函数综合运用,涉及到一次函数、根的判别式、三角形有关计算等,此类新定义型题目,通常按题设顺序逐次求解.10.(2022春•梁平区期末)在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =a +c 3,y =b +d 3那么称点T 是点A ,B 的融合点.例如:A =(﹣1,8),B =(4,﹣2),当点T (x ,y )满足x =―1+43=1,y =8+(―2)3=2时,则点T (1,2)是点A ,B 的融合点.(1)已知点A (﹣1,5),B (7,7),C (2,4),请说明其中一个点是另外两个点的融合点.(2)如图,点D (3,0),点E (t ,2t +3)是直线l :y =2x +3上任意一点,点T (x ,y )是点D ,E 的融合点.①试确定y与x的关系式.②若直线ET交x轴于点H,当∠TDH为直角时,求直线ET的解析式.思路引领:(1)根据点T是点A,B的融合点的定义判断即可;(2)①根据融合点的定义,构建关系式,可得结论;②图中,当∠TDH=90°时,点T、D横坐标相同,再根据①中得到的横纵坐标关系即可求出点T坐标,再根据融合点定义求出点E坐标,求一次函数解析式即可.解:(1)∵A(﹣1,5),B(7,7),C(2,4),∴x=13×(﹣1+7)=2,y=13×(5+7)=4,∴点C是点A、B的融合点;(2)①∵点T(x,y)是点D,E的融合点,∴x=13(3+t),y=13(0+2t+3),∴y=2x﹣1;②如图,当∠TDH=90°时,∴点T、D横坐标相同,x T=x D=3,∴y T=2x﹣1=2×3﹣1=5,即T(3,5),∵点E(t,2t+3),点T(3,5),点D(3,0),且点T(x,y)是点D,E的融合点.∴3=13(3+t),∴t=6,∴点E(6,15),设直线ET的解析式为:y=kx+b,把E(6,15),T(3,5),代入得:6k+b=153k+b=5,解得:k=103b=―5,∴直线ET的解析式为:y=103x﹣5.总结提升:本题属于三角形综合题,考查了直角三角形的判定和性质,融合点的定义,一次函数的性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考压轴题.11.(2019•浙江)如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y轴的正半轴上,把正方形OABC的内部及边上,横、纵坐标均为整数的点称为好点.点P为抛物线y=﹣(x ﹣m)2+m+2的顶点.(1)当m=0时,求该抛物线下方(包括边界)的好点个数.(2)当m=3时,求该抛物线上的好点坐标.(3)若点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点,求m的取值范围.思路引领:(1)如图1中,当m=0时,二次函数的表达式y=﹣x2+2,画出函数图象,利用图象法解决问题即可.(2)如图2中,当m=3时,二次函数解析式为y=﹣(x﹣3)2+5,如图2,结合图象即可解决问题.(3)如图3中,∵抛物线的顶点P(m,m+2),推出抛物线的顶点P在直线y=x+2上,由点P在正方形内部,则0<m<2,如图3中,E(2,1),F(2,2),观察图象可知,当点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点时,抛物线与线段EF有交点(点F除外),求出抛物线经过点E或点F时m的值,即可判断.解:(1)如图1中,当m=0时,二次函数的表达式y=﹣x2+2,函数图象如图1所示.∵当x=0时,y=2,当x=1时,y=1,∴抛物线经过点(0,2)和(1,1),观察图象可知:好点有:(0,0),(0,1),(0,2),(1,0),(1,1),共5个.(2)如图2中,当m=3时,二次函数解析式为y=﹣(x﹣3)2+5.如图2.∵当x=1时,y=1,当x=2时,y=4,当x=4时,y=4,∴抛物线经过(1,1),(2,4),(4,4),根据图象可知,抛物线上存在好点,坐标分别为(1,1),(2,4),(4,4).(3)由于0<m<2,取m=1开始,发现抛物线内有10个好点,不符合意思,所以抛物线向下并向左移动,可得如图3中,∵抛物线的顶点P(m,m+2),∴抛物线的顶点P在直线y=x+2上,∵点P在正方形内部,则0<m<2,如图3中,E(2,1),F(2,2),观察图象可知,当点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点时,抛物线与线段EF有交点(点F除外),当抛物线经过点E时,﹣(2﹣m)2+m+2=1,解得m=5―132或5+132(舍弃),当抛物线经过点F时,﹣(2﹣m)2+m+2=2,解得m=1或4(舍弃),∴当5―132≤m<1时,顶点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点.总结提升:本题属于二次函数综合题,考查了正方形的性质,二次函数的性质,好点的定义等知识,解题的关键是理解题意,学会正确画出图象,利用图象法解决问题,学会利用特殊点解决问题,属于中考压轴题.12.(2022•亭湖区校级三模)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连接DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=4BE,QB=6,求邻余线AB的长.思路引领:(1)由等腰三角形的“三线合一“性质可得AD⊥BC,则可得∠DAB与∠DBA互余,即∠FAB 与∠EBA互余,从而可得答案;(2)画出图形即可.(3)先由等腰三角形的“三线合一“性质可得BD=CD、DM=ME,再判定△DBQ∽△ECN,从而列出比例式,将已知线段的长代入即可得解.解:(1)∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠FAB与∠EBA互余,∴四边形ABEF是邻余四边形;(2)如图所示(答案不唯一),四边形AFEB为所求;(3)∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=4BE,∴BD=CD=5BE,∴CE=CD+DE=9BE,∵∠EDF=90°,点M是EF的中点,∴DM=ME,∴∠MDE=∠MED,∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴QBNC=BDCE=59,∵QB=6,∴NC=54 5,∵AN=CN,∴AC=2CN=108 5,∴AB=AC=108 5.总结提升:本题考查了四边形的新定义,综合考查了等腰三角形的“三线合一“性质、相似三角形的判定与性质等知识点,读懂定义并明确相关性质及定理是解题的关键.13.(2021•南丰县模拟)如果一个四边形的对角线把四边形分成两个三角形,一个是等边三角形,另一个是该对角线所对的角为60°的三角形,我们把这条对角线叫做这个四边形的理想对角线,这个四边形称为理想四边形.(1)如图1,在Rt△ABC中,∠ACB=90°,∠B=30°,CD⊥AB,E为BC中点,连接DE.求证:四边形ADEC为理想四边形;(2)如图2,△ABD是等边三角形,若BD为理想对角线,为使四边形ABCD为理想四边形,小明同学给出了他的设计图(见设计后的图),其中圆心角∠BOD=120°;请你解释他这样设计的合理性.(3)在(2)的条件下,①若△BCD为直角三角形,BC=3,求AC的长度;②如图3,若CD=x,BC=y,AC=z,请直接写出x,y,z之间的数量关系.思路引领:(1)证明△ACB∽△ADC,推出∠ADC=∠ACB=90°,再证明△CDE是等边三角形即可.(2)如设计后的图中,△ABD是等边三角形,当点C在BCD上时,∠DCB=12∠DOB=60°,满足条件.(3)①分两种情形:如图3中,当∠CDB=90°时,如图4中,当∠CBD=90°时,分别利用勾股定理求解即可.②以CD为边作等边△ECD,连接BE,作EF⊥BC交BC的延长线于F.利用全等三角形的性质以及勾股定理可得结论.解:(1)如图1,∵∠ACB=90°,∠B=30°,∴∠A=60°,∵CD⊥AB,∴∠BDC=90°,∴∠BCD=°﹣∠B=90°﹣30°=60°,∵E为BC中点,∴DE=CE,∴△CDE是等边三角形,∴四边形ADEC为理想四边形;(2)如设计后的图中,△ABD是等边三角形,OD=OB,∠BOD=120°,当点C 在BCD 上时,∠DCB =12∠DOB =60°,故四边形ABCD 为理想四边形.(3)①当∠CDB =90°时,如图3中,∵∠CDB =90°,∠BCD =60°,BC =3,∴BD =BC •sin60=332,∠CBD =30°,∵△ABD 是等边三角形,∴AB =BD =332,∠ABD =60°,∴∠ABC =90°,∴AC =AB 2+BC 2=(332)2+32=372;当∠CBD =90°时,如图4中,同法可得AC =AD 2+CD 2=(33)2+62=37;综上所述,AC 的值为372或37.②如图5中,结论:x 2+xy +y 2=z 2.理由如下:以CD 为边作等边△ECD ,连接BE ,作EF ⊥BC 交BC 的延长线于F .∵∠EDC =∠ADB =60°,∴∠EDB =∠CDA ,∵ED =CD ,BD =AD ,∴△EDB ≌△CDA (SAS ),∴AC =BE =z ,∵∠ECD =∠DCB =60°,CD =CE =x ,∴∠ECF =60°,∠CEF =30°,∴CF=12EC=12x.EF=3CF=32x.在Rt△EFB中,∵BE2=EF2+BF2,∴z2=(32x)2+(y+12x)2,整理得:x2+xy+y2=z2.总结提升:本题属于四边形综合题,考查了理想四边形的定义,解直角三角形,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确理解并运用新定义“理想四边形”和“理想对角线”,学会用分类讨论的思想思考问题.14.(2020•朝阳区一模)在平面直角坐标系xOy中,点A(t,0),B(t+2,0),C(n,1),若射线OC上存在点P,使得△ABP是以AB为腰的等腰三角形,就称点P为线段AB关于射线OC的等腰点.(1)如图,t=0,①若n=0,则线段AB关于射线OC的等腰点的坐标是 ;②若n<0,且线段AB关于射线OC的等腰点的纵坐标小于1,求n的取值范围;(2)若n=33,且射线OC上只存在一个线段AB关于射线OC的等腰点,则t的取值范围是 .思路引领:(1)①根据线段AB关于射线OC的等腰点的定义可知OP=AB=2,由此即可解决问题.②如图2中,当OP=AB时,作PH⊥x轴于H.求出点P的横坐标,利用图象法即可解决问题.(2)如图3﹣1中,作CH⊥y轴于H.分别以A,B为圆心,AB为半径作⊙A,⊙B.首先证明∠COH=30°,∵由射线OC上只存在一个线段AB关于射线OC的等腰点,推出射线OC与⊙A,⊙B只有一个交点,求出几种特殊位置t的值,利用数形结合的思想解决问题即可.解:(1)①如图1中,由题意A(0,0),B(2,0),C(0,1),∵点P是线段AB关于射线OC的等腰点,∴OP=AB=2,∴P(0,2).故答案为(0,2).②如图2中,当OP=AB时,作PH⊥x轴于H.在Rt△POH中,∵PH=OC=1,OP=AB=2∴OH=OP2―PH2=22―12=3,观察图象可知:若n<0,且线段AB关于射线OC的等腰点的纵坐标小于1时,n<―3.(3)如图3﹣1中,作CH⊥y轴于H.分别以A,B为圆心,AB为半径作⊙A,⊙B.由题意C(33,1),∴CH=33,OH=1,∴tan∠COH=CHOH=33,∴∠COH=30°,当⊙B经过原点时,B(﹣2,0),此时t=﹣4,∵射线OC上只存在一个线段AB关于射线OC的等腰点,∴射线OC与⊙A,⊙B只有一个交点,观察图象可知当﹣4<t≤﹣2时,满足条件,如图3﹣2中,当点A在原点时,∵∠POB=60°,此时两圆的交点P在射线OC上,满足条件,此时t=0,如图3﹣3中,当⊙B与OC相切于P时,连接BP.∴OC是⊙B的切线,∴OP⊥BP,∴∠OPB=90°,∵BP=2,∠POB=60°,∴OB=PBcos60°=433,此时t=433―2,如图3﹣4中,当⊙A与OC相切时,同法可得OA=433,此时t=433,此时符合题意.如图3﹣5中,当⊙A 经过原点时,A (2,0),此时t =2,观察图形可知,满足条件的t 的值为:433―2<t ≤2,综上所述,满足条件t 的值为﹣4<t ≤﹣2或t =0或433―2<t ≤2或t =433故答案为:﹣4<t ≤﹣2或t =0或433―2<t ≤2或t =433.总结提升:本题属于三角形综合题,考查了等腰三角形的判定和性质,线段AB 关于射线OC 的等腰点的定义,解直角三角形等知识,解题的关键是学会利用辅助圆解决问题,学会用转化的思想思考问题,属于中考压轴题.15.(2022•房山区模拟)对于平面直角坐标系xOy 中的图形W 1和图形W 2,给出如下定义:在图形W 1上存在两点A ,B (点A ,B 可以重合),在图形W 2上存在两点M ,N (点M ,N 可以重合)使得AM =2BN ,则称图形W 1和图形W 2满足限距关系.(1)如图1,点C (3,0),D (0,﹣1),E (0,1),点P 在线段CE 上运动(点P 可以与点C ,E 重合),连接OP ,DP .①线段OP 的最小值为 ,最大值为 ;线段DP 的取值范围是 ;②在点O ,点D 中,点 与线段DE 满足限距关系;(2)在(1)的条件下,如图2,⊙O 的半径为1,线段FG 与x 轴、y 轴正半轴分别交于点F ,G ,且FG ∥EC ,若线段FG 与⊙O 满足限距关系,求点F 横坐标的取值范围;(3)⊙O 的半径为r (r >0),点H ,K 是⊙O 上的两个点,分别以H ,K 为圆心,2为半径作圆得到⊙H 和⊙K ,若对于任意点H ,K ,⊙H 和⊙K 都满足限距关系,直接写出r 的取值范围.思路引领:(1)①根据垂线段最短以及已知条件,确定OP ,DP 的最大值,最小值即可解决问题;②根据限距关系的定义判断即可;(2)根据两直线平行k 相等计算设FG 的解析式为:y =―33x +b ,得G (0,b ),F (3b ,0),分三种情形:①线段FG 在⊙O 内部,②线段FG 与⊙O 有交点,③线段FG 与⊙O 没有交点,分别构建不等式求解即可;(3)如图3﹣1中,不妨设⊙K ,⊙H 的圆心在x 轴上位于y 轴的两侧,根据⊙H 和⊙K 都满足限距关系,构建不等式求解即可.解:(1)①如图1中,∵点C(3,0),E(0,1),∴OE=1,OC=3,∴EC=2,∠ECO=30°,当OP⊥EC时,OP的值最小,当P与C重合时,OP的值最大是3,Rt△OPC中,OP=12OC=32,即OP的最小值是32;如图2,当DP⊥EC时,DP的值最小,Rt△DEP中,∠OEC=60°,∴∠EDP=30°,∵DE=2,∴cos30°=DP DE,∴DP2=32,∴DP=3,当P与E重合时,DP的值最大,DP的最大值是2,∴线段DP的取值范围是:3≤DP≤2;故答案为:32,3,3≤DP≤2;②根据限距关系的定义可知,线段DE上存在两点M,N,满足OM=2ON,如图3,故点O与线段DE满足限距关系;根据限距关系的定义可知,线段DE上存在两点M,N,满足DM=2DN,如图3,故点D与线段DE满足限距关系;故答案为:O和D;(2)∵点C(3,0),E(0,1),∴设直线CE的解析式为:y=kx+m,+m=01,解得:k=―33m=1,∴直线CE的解析式为:y=―33x+1,∵FG∥EC,∴设FG的解析式为:y=―33x+b,∴G(0,b),F(3b,0),∴OG=b,OF=3b,当0<3b<1时,如图5,线段FG在⊙O内部,与⊙O无公共点,此时⊙O上的点到线段FG的最小距离为1―3b,最大距离为1+3b,∵线段FG与⊙O满足限距关系,∴1+3b≥2(1―3b),解得3b≥1 3,∴b的取值范围为13≤3b<1;当1≤3b≤6时,线段FG与⊙O有公共点,线段FG与⊙O满足限距关系,当3b>6时,如图6,线段FG在⊙O的外部,与⊙O没有公共点,此时⊙O上的点到线段FG的最小距离为3b﹣1,最大距离为3b+1,∵线段FG与⊙O满足限距关系,∴3b+1≥2(3b﹣1),而3b+1≥2(3b﹣1)总成立,∴3b>6时,线段FG与⊙O满足限距关系,综上所述,点F横坐标的取值范围是:3b≥1 3;(3)如图3﹣1中,不妨设⊙K ,⊙H 的圆心在x 轴上位于y 轴的两侧,两圆的距离的最小值为2r ﹣4,最大值为2r +4,∵⊙H 和⊙K 都满足限距关系,∴2r +4≥2(2r ﹣4),解得r ≤6,故r 的取值范围为0<r ≤6.总结提升:本题属于圆综合题,考查了解直角三角形,垂线段最短,直线与圆的位置关系,限距关系的定义等知识,解题的关键是理解题意,学会利用参数构建不等式解决问题,属于中考创新题型.16.(2022•西城区校级模拟)点P (x 1,y 1),Q (x 2,y 2)是平面直角坐标系中不同的两个点,且x 1≠x 2.若存在一个正数k ,使点P ,Q 的坐标满足|y 1﹣y 2|=k |x 1﹣x 2|,则称P ,Q 为一对“限斜点”,k 叫做点P ,Q 的“限斜系数”,记作k (P ,Q ).由定义可知,k (P ,Q )=k (Q ,P ).例:若P (1,0),Q (3,12),有|0―12|=14|1﹣3|,所以点P ,Q 为一对“限斜点”,且“限斜系数”为14.已知点A (1,0),B (2,0),C (2,﹣2),D (2,12).(1)在点A ,B ,C ,D 中,找出一对“限斜点”: ,它们的“限斜系数”为 ;(2)若存在点E ,使得点E ,A 是一对“限斜点”,点E ,B 也是一对“限斜点”,且它们的“限斜系数”均为1.求点E 的坐标;(3)⊙O 半径为3,点M 为⊙O 上一点,满足MT =1的所有点T ,都与点C 是一对“限斜点”,且都满足k (T ,C )≥1,直接写出点M 的横坐标x M 的取值范围.思路引领:(1)根据定义通过计算求解即可;(2)设E (x ,y ),由题意可得|y |=|x ﹣1|,|y |=|x ﹣2|,求解方程即可求点E 的坐标;(3)由题意可知C 点在直线y =﹣x 上,T 点在以M 为圆心1为半径的圆上,M 点在以O 为圆心3为半径的圆上,则T 点在以O 为圆心2为半径的圆上或以O 为圆心4为半径的圆上,当T 点在直线y =﹣x 上时,k =1,再由k (T ,C )≥1,可知T 点在直线y =﹣x 的上方,T 点在直线y =﹣x 的上方,直线y =x ﹣4的上方,半径为2的圆和半径为4的圆构成的圆环内部.解:(1)A (1,0),C (2,﹣2),有|0+2|=2|1﹣2|,∴A 、C 为一对“限斜点”,且“限斜系数”为2;A (1,0),D (2,12),有|0―12|=12|1﹣2|,∴A 、D 为一对“限斜点”,且“限斜系数”为12;故答案为:A 、C 或A 、D ,2或12;(2)设E (x ,y ),∴|y |=|x ﹣1|,|y |=|x ﹣2|,∴|x ﹣1|=|x ﹣2|,解得x =32,∴y =±12,∴E (32,12)或(32,―12);(3)∵C (2,﹣2),∴C 点在直线y =﹣x 上,∵MT =1,∴T点在以M为圆心1为半径的圆上,∵M点在以O为圆心3为半径的圆上,∴T的轨迹是半径为2的圆和半径为4的圆构成的圆环,当T点在直线y=﹣x上时,设T(m,﹣m),∴|﹣m+2|=k|m﹣2|,∴k=1,∵k(T,C)≥1,∴T点在直线y=﹣x的上方,直线y=x﹣4的上方,半径为2的圆和半径为4的圆构成的圆环内部,如图所示,∴―322≤x M≤4.总结提升:本题考查圆的综合应用,弄清定义,熟练掌握圆与直线的关系,绝对值方程的解法,数形结合解题是关键.17.(2020•密云区一模)对于平面直角坐标系xOy中的任意一点P,给出如下定义:经过点P且平行于两坐标轴夹角平分线的直线,叫做点P的“特征线”.例如:点M(1,3)的特征线是y=x+2和y=﹣x+4;(1)若点D的其中一条特征线是y=x+1,则在D1(2,2)、D2(﹣1,0)、D3(﹣3,4)三个点中,可能是点D的点有 D2 ;(2)已知点P(﹣1,2)的平行于第二、四象限夹角平分线的特征线与x轴相交于点A,直线y=kx+b (k≠0)经过点P,且与x轴交于点B.若使△BPA的面积不小于6,求k的取值范围;(3)已知点C(2,0),T(t,0),且⊙T的半径为1.当⊙T与点C的特征线存在交点时,直接写出t 的取值范围.思路引领:(1)画出图形,根据点的特征线的定义解决问题即可.(2)过点P平行于第二四象限角平分线的特征线的解析式为y=﹣x+b,求出△PAB的面积为6时点B 的坐标,再利用待定系数法求直线PB的解析式,结合图形即可解决问题.(3)如图3中,由题意点C的特征线的解析式为y=x﹣2或y=﹣x+2,设当⊙T与直线y=﹣x+2相切于点M时,当⊙T′与直线y=x﹣2相切于点N时,分别求出OT,OT′结合图象即可解决问题.解:(1)如图1中,观察图象可知,点D2的特征线是y=x+1.故答案为D2.(2)如图2中,设过点P平行于第二四象限角平分线的特征线的解析式为y=﹣x+b,∴1+b=2,∴b=1,∴过点P平行于第二四象限角平分线的特征线的解析式为y=﹣x+1,∴A(1,0),当△BPA的面积=6时,12•AB•2=6,∴AB=6,∴B(﹣5,0)或(7,0),当y=kx+b′经过P(﹣1,2),B(﹣5,0)时,―k+b′=2―5k+b′=0解得k=1 2,当直线y=kx+b′经过P(﹣1,2),B(7,0)时,―k+b′=27k+b′=0,解得k=―1 4,观察图形可知满足条件的k的值为―14≤k≤12且k≠0.(3)如图3中,由题意点C的特征线的解析式为y=x﹣2或y=﹣x+2,当⊙T与直线y=﹣x+2相切于点M时,连接TM,在Rt△TCM中,∵∠TMC=90°,∠MCT=45°,∴MT=MC=1,∴TC=2TM=2,∴OT=2―2,此时t=2―2.当⊙T′与直线y=x﹣2相切于点N时,同理可得OT′=2+2,此时t=2+2,结合图象可知满足条件的t的值为:2―2≤t≤2+2.总结提升:本题属于圆综合题,考查了直线与圆的位置关系,一次函数的性质,三角形的面积,点P的“特征线”的定义,解直角三角形等知识,解题的关键是理解题意,学会利用特殊位置解决问题,属于中考压轴题.18.(2022秋•西城区校级期中)已知函数y=x2+bx+c(x≥2)的图象过点A(2,1),B(5,4).(1)直接写出y=x2+bx+c(x≥2)的解析式;(2)如图,请补全分段函数y=―x2+2x+1(x<2)x2+bx+c(x≥2)的图象(不要求列表).并回答以下问题:①写出此分段函数的一条性质: ;②若此分段函数的图象与直线y=m有三个公共点,请结合函数图象直接写出实数m的取值范围;(3)横、纵坐标都是整数的点叫做整点,记(2)中函数的图象与直线y=12x―1围成的封闭区域(不含边界)为“W区域”,请直接写出区域内所有整点的坐标.思路引领:(1)用待定系数法求函数解析式即可;(2)①根据函数图象写出性质即可;②由图象可求出m的取值范围;(3)根据图象求整点坐标即可.解:(1)把A(2,1),B(5,4)代入解析式得:4+2b+c=125+5b+c=4,解得b=―6 c=9,∴y=x2+bx+c(x≥2)的解析式为y=x2﹣6x+9;(2)如图所示:①性质:抛物线关于点(2,1)成中心对称,故答案为:抛物线关于点(2,1)成中心对称;②由图象可得:实数m的取值范围为0<m<2;(3)如图:由函数图象可得:“W区域“内所有整点的坐标为(0,0),(1,1).总结提升:本题考查了待定系数法求函数解析式,二次函数的性质,关键是对函数性质的掌握和运用.19.(2021春•丰台区校级月考)在平面直角坐标系xOy中,过⊙T(半径为r)外一点P引它的一条切线,切点为Q,若0<PQ≤2r,则称点P为⊙T的伴随点.(1)当⊙O的半径为1时,①在点A(﹣3,0),B(﹣1,3),C(2,﹣1)中,⊙O的伴随点是 ;②点D在直线y=﹣x+3上,且点D是⊙O的伴随点,求点D的横坐标d的取值范围;(2)⊙M的圆心为M(m,0),半径为3,直线y=2x+3与x轴,y轴分别交于点E,F.若线段EF上的所有点都是⊙M的伴随点,直接写出m的取值范围.思路引领:(1)①画出图形,求出切线长,根据⊙O的伴随点的定义判断即可.②如图2中,设点D的坐标为(d,﹣d+3),构建方程求出两种特殊位置时点D的坐标即可解决问。

2023年中考数学压轴题专题31 三角形与新定义综合问题【含答案】

2023年中考数学压轴题专题31 三角形与新定义综合问题【含答案】

专题31三角形与新定义综合问题【例1】(2022•淮安区模拟)我们定义:等腰三角形中底边与腰的比叫做底角的邻对(can),如图1,在△ABC中,AB=AC,底角∠B的邻对记作canB,这时canB==.容易知道一个角的大小与这个角的邻对值是一一对应的,根据上述角的邻对的定义,解下列问题:(1)can30°=,若canB=1,则∠B=°.=48,求△ABC的周长.(2)如图2,在△ABC中,AB=AC,canB=,S△ABC【例2】(2022•柯城区校级三模)定义:若三角形的一条边上的高线与这条边相等,则称这个三角形为“标准三角形”.如:在△ABC,CD⊥AB于点D,AB=CD,则△ABC为标准三角形.【概念感知】判断:对的打“√”,错的打“×”.(1)等腰直角三角形是标准三角形.(2)顶角为30°的等腰三角形是标准三角形.【概念理解】若一个等腰三角形为标准三角形,则此三角形的三边长之比为.【概念应用】(1)如图,若△ABC为标准三角形,CD⊥AB于点D,AB=CD=1,求CA+CB的最小值.(2)若一个标准三角形的其中一边是另一边的倍,求最小角的正弦值.【例3】(2020•五华区校级三模)爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AM、BN是ABC的中线,AM⊥BN于点P,像ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.【特例探究】(1)如图1,当∠PAB=45°,c=时,a=,b=;如图2,当∠PAB =30°,c=2时,a2+b2=;【归纳证明】(2)请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.【拓展证明】(3)如图4,在▱ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3,AB=3,求AF的长.【例4】(2020•岳麓区校级二模)定义:在△ABC中,若有两条中线互相垂直,则称△ABC 为中垂三角形,并且把AB2+BC2+CA2叫做△ABC的方周长,记作L,即L=AB2+BC2+CA2.(1)如图1,已知△ABC是中垂三角形,BD,AE分别是AC,BC边上的中线,若AC=BC,求证:△AOB是等腰直角三角形;(2)如图2,在中垂三角形ABC中,AE,BD分别是边BC,AC上的中线,且AE⊥BD于点O,试探究△ABC的方周长L与AB2之间的数量关系,并加以证明;(3)如图3,已知抛物线y=与x轴正半轴相交于点A,与y轴相交于点B,经过点B的直线与该抛物线相交于点C,与x轴负半轴相交于点D,且BD=CD,连接AC交y轴于点E.①求证:△ABC是中垂三角形;②若△ABC为直角三角形,求△ABC的方周长L的值.【例5】(2020•安徽模拟)通过学习锐角三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值是一一对应的,因此,两条边长的比值与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做底角的邻对(can),如图(1)在△ABC中,AB=AC,底角B的邻对记作canB,这时canB=,容易知道一个角的大小与这个角的邻对值也是一一对应的.根据上述角的邻对的定义,解下列问题:(1)can30°=;=24,求△ABC的周长.(2)如图(2),已知在△ABC中,AB=AC,canB=,S△ABC一.解答题(共20题)1.(2022秋•如皋市期中)定义:一个内角等于另一个内角两倍的三角形,叫做“倍角三角形”.(1)下列三角形一定是“倍角三角形”的有(只填写序号).①顶角是30°的等腰三角形;②等腰直角三角形;③有一个角是30°的直角三角形.(2)如图1,在△ABC中,AB=AC,∠BAC≥90°,将△ABC沿边AB所在的直线翻折180°得到△ABD,延长DA到点E,连接BE.①若BC=BE,求证:△ABE是“倍角三角形”;②点P在线段AE上,连接BP.若∠C=30°,BP分△ABE所得的两三角形中,一个是等腰三角形,一个是“倍角三角形”,请直接写出∠E的度数.2.(2022秋•义乌市校级月考)【概念认识】如图①所示,在∠ABC中,若∠ABD=∠DBE =∠EBC,则BD,BE叫做∠ABC的“三分线”,其中,BD是“邻AB三分线“,BE是“邻BC三分线”.【问题解决】(1)如图②所示.在△ABC中.∠A=80°,∠ABC=45°.若∠ABC的三分线BD交AC于点D.求∠BDC的度数.(2)如图③所示,在△ABC中.BP,CP分别是∠ABC的邻BC三分线和∠ACB的邻BC 三分线,且∠BPC=140°.求∠A的度数.【延伸推广】(3)在△ABC中,∠ACD是△ABC的外角,∠ABC的三分线所在的直线与∠ACD的三分线所在的直线交于点P,若∠A=m°(m>54),∠ABC=54°.求出∠BPC的度数.(用含m的式子表示)3.(2022春•石嘴山校级期末)[问题情境]我们知道:在平面直角坐标系中有不重合的两点A(x1,y1)和点B(x2,y2),若x1=x2,则AB∥y轴,且线段AB的长度为|y1﹣y2|;若y1=y2,则AB∥x轴,且线段AB的长度为|x1﹣x2|.[拓展]现在,若规定:平面直角坐标系中任意不重合的两点M(x1,y1)、N(x2,y2)之间的折线距离为d(M,N)=|x1﹣x2|+|y1﹣y2|.例如:图中,点M(﹣1,1)与点N(1,﹣2).之间的折线距离d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5,[应用]解决下列问题:(1)已知点E(3,2),点F(1.﹣2),求d(E,F)的值;(2)已知点E(3,1),H(﹣1,n),若d(E,H)=6,求n的值;(3)已知点P(3,4),点Q在y轴上,O为坐标系原点,且△OPQ的面积是4.5,求d(P,Q)的值.4.(2022春•镇江期末)定义:在一个三角形中,如果有一个角是另一个角的2倍,我们称这两个角互为“开心角”,这个三角形叫做“开心三角形”.例如:在△ABC中,∠A=70°,∠B=35°,则∠A与∠B互为“开心角”,△ABC为“开心三角形”.【理解】(1)若△ABC为开心三角形,∠A=144°,则这个三角形中最小的内角为°;(2)若△ABC为开心三角形,∠A=70°,则这个三角形中最小的内角为°;(3)已知∠A是开心△ABC中最小的内角,并且是其中的一个开心角,试确定∠A的取值范围,并说明理由;【应用】如图,AD平分△ABC的内角∠BAC,交BC于点E,CD平分△ABC的外角∠BCF,延长BA和DC交于点P,已知∠P=30°,若∠BAE是开心△ABE中的一个开心角,设∠BAE=∠α,求∠α的度数.5.(2022春•崇川区期末)定义:如果三角形的两个内角α与β满足α+2β=100°,那么我们称这样的三角形为“奇妙三角形”.(1)如图1,△ABC中,∠ACB=80°,BD平分∠ABC.求证:△ABD为“奇妙三角形”(2)若△ABC为“奇妙三角形”,且∠C=80°.求证:△ABC是直角三角形;(3)如图2,△ABC中,BD平分∠ABC,若△ABD为“奇妙三角形”,且∠A=40°,直接写出∠C的度数.6.(2022春•亭湖区校级月考)定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到这边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,△ABC中,点D是BC边上一点,连接AD,若AD2=BD•CD,则称点D是△ABC中BC边上的“好点”.(1)如图2,△ABC的顶点是4×3网格图的格点,请仅用直尺画出(或在图中直接描出)AB边上的所有“好点”点D;(2)△ABC中,BC=7,,tan C=1,点D是BC边上的“好点”,求线段BD的长;(3)如图3,△ABC是⊙O的内接三角形,点H在AB上,连结CH并延长交⊙O于点D.若点H是△BCD中CD边上的“好点”.①求证:OH⊥AB;②若OH∥BD,⊙O的半径为r,且r=3OH,求的值.7.(2021秋•如皋市期末)【了解概念】定义:如果一个三角形一边上的中线等于这个三角形其中一边的一半,则称这个三角形为半线三角形,这条中线叫这条边的半线.【理解运用】(1)如图1,在△ABC中,AB=AC,∠BAC=120°,试判断△ABC是否为半线三角形,并说明理由;【拓展提升】(2)如图2,在△ABC中,AB=AC,D为BC的中点,M为△ABC外一点,连接MB,MC,若△ABC和△MBC均为半线三角形,且AD和MD分别为这两个三角形BC边的半线,求∠AMC的度数;(3)在(2)的条件下,若MD=,AM=1,直接写出BM的长.8.(2021秋•顺义区期末)我们定义:在等腰三角形中,腰与底的比值叫做等腰三角形的正度.如图1,在△ABC中,AB=AC,的值为△ABC的正度.已知:在△ABC中,AB=AC,若D是△ABC边上的动点(D与A,B,C不重合).(1)若∠A=90°,则△ABC的正度为;(2)在图1,当点D在腰AB上(D与A、B不重合)时,请用尺规作出等腰△ACD,保留作图痕迹;若△ACD的正度是,求∠A的度数.(3)若∠A是钝角,如图2,△ABC的正度为,△ABC的周长为22,是否存在点D,使△ACD具有正度?若存在,求出△ACD的正度;若不存在,说明理由.9.(2021秋•丹阳市期末)梅涅劳斯(Menelaus)是古希腊数学家,他首先证明了梅涅劳斯定理,定理的内容是:如图(1),如果一条直线与△ABC的三边AB,BC,CA或它们的延长线交于F、D、E三点,那么一定有=1.下面是利用相似三角形的有关知识证明该定理的部分过程:证明:如图(2),过点A作AG∥BC,交DF的延长线于点G,则有,,∴=1.请用上述定理的证明方法解决以下问题:(1)如图(3),△ABC三边CB,AB,AC的延长线分别交直线l于X,Y,Z三点,证明:=1.请用上述定理的证明方法或结论解决以下问题:(2)如图(4),等边△ABC的边长为2,点D为BC的中点,点F在AB上,且BF=2AF,CF与AD交于点E,则AE的长为.(3)如图(5),△ABC的面积为2,F为AB中点,延长BC至D,使CD=BC,连接FD 交AC于E,则四边形BCEF的面积为.10.(2021秋•洪江市期末)从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,∠A=44°,CD是△ABC的完美分割线,且AD=CD,求∠ACB 的度数;(2)如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC 的完美分割线;(3)如图3,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.11.(2021秋•石景山区期末)在Rt△ACB中,∠ACB=90°,CA=CB=6,点P是线段CB 上的一个动点(不与点B,C重合),过点P作直线l⊥CB交AB于点Q.给出如下定义:若在AC边上存在一点M,使得点M关于直线l的对称点N恰好在△ACB的边上,则称点M是△ACB的关于直线l的“反称点”.例如,图1中的点M是△ACB的关于直线l的“反称点”.(1)如图2,若CP=1,点M1,M2,M3,M4在AC边上且AM1=1,AM2=2,AM3=4,AM4=6.在点M1,M2,M3,M4中,是△ACB的关于直线l的“反称点”为;(2)若点M是△ACB的关于直线l的“反称点”,恰好使得△ACN是等腰三角形,求AM 的长;(3)存在直线l及点M,使得点M是△ACB的关于直线l的“反称点”,直接写出线段CP 的取值范围.12.(2021秋•鄞州区期末)【问题提出】如图1,△ABC中,线段DE的端点D,E分别在边AB和AC上,若位于DE上方的两条线段AD和AE之积等于DE下方的两条线段BD和CE之积,即AD×AE=BD×CE,则称DE 是△ABC的“友好分割”线段.(1)如图1,若DE是△ABC的“友好分割”线段,AD=2CE,AB=8,求AC的长;【发现证明】(2)如图2,△ABC中,点F在BC边上,FD∥AC交AB于D,FE∥AB交AC于E,连结DE,求证:DE是△ABC的“友好分割”线段;【综合运用】(3)如图3,DE是△ABC的“友好分割”线段,连结DE并延长交BC的延长线于F,过点A画AG∥DE交△ADE的外接圆于点G,连结GE,设=x,=y.①求y关于x的函数表达式;②连结BG,CG,当y=时,求的值.13.(2021秋•鼓楼区校级期末)定义1:如图1,若点H在直线l上,在l的同侧有两条以H为端点的线段MH、NH,满足∠1=∠2,则称MH和NH关于直线l满足“光学性质”;定义2:如图2,在△ABC中,△PQR的三个顶点P、Q、R分别在BC,AC、AB上,若RP 和QP关于BC满足“光学性质”,PQ和RQ关于AC满足“光学性质”,PR和QR关于AB 满足“光学性质”,则称△PQR为△ABC的光线三角形.阅读以上定义,并探究问题:在△ABC中,∠A=30°,AB=AC,△DEF三个顶点D、E、F分别在BC、AC,AB上.(1)如图3,若FE∥BC,DE和FE关于AC满足“光学性质”,求∠EDC的度数;(2)如图4,在△ABC中,作CF⊥AB于F,以AB为直径的圆分别交AC,BC于点E,D.①证明:△DEF为△ABC的光线三角形;②证明:△ABC的光线三角形是唯一的.14.(2021秋•丰台区期末)对于平面直角坐标系xOy中的线段AB及点P,给出如下定义:若点P满足PA=PB,则称P为线段AB的“轴点”,其中,当0°<∠APB<60°时,称P 为线段AB的“远轴点”;当60°≤∠APB<180°时,称P为线段AB的“近轴点”.(1)如图1,点A,B的坐标分别为(﹣2,0),(2,0),则在P1(﹣1,3),P2(0,2),P3(0,﹣1),P4(0,4)中,线段AB的“轴点”是;线段AB的“近轴点”是.(2)如图2,点A的坐标为(3,0),点B在y轴正半轴上,∠OAB=30°.若P为线段AB的“远轴点”,请直接写出点P的横坐标t的取值范围.15.(2022秋•长沙期中)概念学习规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角开中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.理解概念:(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,请写出图中两对“等角三角形”.概念应用:(2)如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°.求证:CD为△ABC 的等角分割线.动手操作:(3)在△ABC中,若∠A=50°,CD是△ABC的等角分割线,请求出所有可能的∠ACB 的度数.16.(2022春•华州区期末)阅读下面的材料,然后解答问题:我们新定义一种三角形,两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形.(1)理解并填空:①根据奇异三角形的定义,请你判断:等边三角形一定是奇异三角形吗?(填“是”或“不是”)②若某三角形的三边长分别为1、、2,则该三角形(填“是”或“不是”)奇异三角形.(2)探究:在Rt△ABC,两边长分别是a、c,且a2=50,c2=100,则这个三角形是否是奇异三角形?请说明理由.17.(2022•任城区三模)我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图①在△ABC中,AB=AC,顶角A的正对记作sadA,这时sadA=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad60°=.(2)sad90°=.(3)如图②,已知sin A=,其中∠A为锐角,试求sadA的值.18.(2021•柯城区模拟)定义:若三角形的一条边上的高线与这条边相等,则称这个三角形为“等底高三角形”,这条边叫做等底线,这条边上的高叫做等高线.如图:在△ABC,CD ⊥AB于点D,且AB=CD,则△ABC为等底高三角形,AB叫等底线,CD叫等高线.【概念感知】判断:对的打“√”,错的打“×”.(1)等边三角形不可能是等底高三角形.(2)等底高三角形不可能是钝角三角形.【概念理解】若一个等腰三角形为等底高三角形,则此三角形的三边长之比为.【概念应用】(1)若△ABC为等底高三角形,等底线长为2,求三角形的周长的最小值.(2)若一个等底高三角形的其中一边是另一边的倍,求最小角的正弦值.19.(2021•宁波模拟)在三角形的三边中,若其中两条边的积恰好等于第三边的平方,我们把这样的三角形叫做有趣三角形,这两条边的商叫正度,记为k(0<k≤1).(1)求证:正度为1的有趣三角形必是等边三角形.(2)如图①,四边形ABCD中,AD∥BC,BD平分∠ABC,∠ACD=∠ABC,求证:△ABC 是有趣三角形.(3)如图②,菱形ABCD中,点E,F是对角线BD的三等分点,DE=DC.延长BD到P,使DP=BE.求证:△BCE,△FCP,△BCP是具有相同正度的有趣三角形.20.(2021•临海市一模)在三角形中,一个角两夹边的平方和减去它对边的平方所得的差,叫做这个角的勾股差.(1)概念理解:在直角三角形中,直角的勾股差为;在底边长为2的等腰三角形中,底角的勾股差为;(2)性质探究:如图1,CD是△ABC的中线,AC=b,BC=a,AB=2c,CD=d,记△ACD 中∠ADC的勾股差为m,△BCD中∠BDC的勾股差为n;①求m,n的值(用含a,b,c,d的代数式表示);②试说明m与n互为相反数;(3)性质应用:如图2,在四边形ABCD中,点E与F分别是AB与BC的中点,连接BD,DE,DF,若=,且CD⊥BD,CD=AD,求的值.【例1】(2022•淮安区模拟)我们定义:等腰三角形中底边与腰的比叫做底角的邻对(can),如图1,在△ABC中,AB=AC,底角∠B的邻对记作canB,这时canB==.容易知道一个角的大小与这个角的邻对值是一一对应的,根据上述角的邻对的定义,解下列问题:(1)can30°=,若canB=1,则∠B=60°.=48,求△ABC的周长.(2)如图2,在△ABC中,AB=AC,canB=,S△ABC【分析】(1)根据定义,要求can30°的值,想利用等腰三角形的三线合一性质,想到过点A作AD⊥BC,垂足为D,根据∠B=30°,可得:BD=AB,再利用等腰三角形的三线合一性质,求出BC即可解答,根据定义,canB=1,可得底边与腰相等,所以这个等腰三角形是等边三角形,从而得∠B =60°;(2)根据定义,想利用等腰三角形的三线合一性质,想到过点A作AD⊥BC,垂足为D,canB=,所以设BC=8x,AB=5x,然后利用勾股定理表示出三角形的高,再利用S△ABC =48,列出关于x的方程即可解答.【解答】解:(1)如图:过点A作AD⊥BC,垂足为D,∵AB=AC,AD⊥BC,∴BC=2BD,∵∠B=30°,∴BD=AB cos30°=AB,∴BC=2BD=AB,∴can30°===,若canB=1,∴canB==1,∴BC=AB,∵AB=AC,∴AB=BC=AC,∴△ABC是等边三角形,∴∠B=60°,故答案为:,60;(2)过点A作AD⊥BC,垂足为D,∵canB=,∴=,∴设BC=8x,AB=5x,∵AB=AC,AD⊥BC,∴BD=BC=4x,∴AD==3x,=48,∵S△ABC∴BC•AD=48,∴•8x•3x=48,∴x2=4,∴x=±2(负值舍去),∴x=2,∴AB=AC=10,BC=16,∴△ABC的周长为36,答:△ABC的周长为36.【例2】(2022•柯城区校级三模)定义:若三角形的一条边上的高线与这条边相等,则称这个三角形为“标准三角形”.如:在△ABC,CD⊥AB于点D,AB=CD,则△ABC为标准三角形.【概念感知】判断:对的打“√”,错的打“×”.(1)等腰直角三角形是标准三角形.√(2)顶角为30°的等腰三角形是标准三角形.×【概念理解】若一个等腰三角形为标准三角形,则此三角形的三边长之比为1:1:或::2.【概念应用】(1)如图,若△ABC为标准三角形,CD⊥AB于点D,AB=CD=1,求CA+CB的最小值.(2)若一个标准三角形的其中一边是另一边的倍,求最小角的正弦值.【分析】【概念感知】(1)根据等腰直角三角形的两条直角边互相垂直且相等,即可判断;(2)作出图形,分别对底边上的高和腰上的高进行讨论,即可求解;【概念理解】当△ABC是等腰直角三角形时,AC:AB:BC=1:1:;当△ABC是等腰三角形,AB=AC,AE⊥BC,AE=BC,设BE=x,则AE=2x,求出AB=x,则AB:AC:BC=::2;【概念应用】(1)过C点作AB的平行线,作A点关于该平行线的对称点A',连接A'B,当A'、B、C三点共线时,AC+BC=A'B,此时AC+BC的值最小,求出A'B即可;(2)分两种情况讨论:①当AC=AB时,AC=CD,过点B作BE⊥AC交于E,设CD=AB=a,则AC=a,由等积法求出BE=a,用勾股定理分别求出AD=2a,BD=a,BC=a,则可求sin∠BCE=;②当BC=AB时,BC=DC,过点B作BE⊥AC交于E,设CD=AB=a,则BC=a,由勾股定理分别求出BD=2a,AD=3a,AC=a,再由等积法求出BE=a,即可求sin∠BCE=.【解答】解:【概念感知】(1)如图1:等腰直角三角形ABC中,AB⊥AC,∵AB=AC,∴等腰直角三角形是标准三角形,故答案为:√;(2)如图2,在等腰三角形ABC中,∠BAC=30°,AB=AC,CD⊥AB,∵∠A=30°,∴CD=AC,∵CA=AB,∴CD=AB,∴△ABC不是标准三角形;如图3,在等腰三角形ABC中,∠BAC=30°,AB=AC,AE⊥BC,此时AE>BC,∴△ABC不是标准三角形;故答案为:×;【概念理解】如图1,当△ABC是等腰直角三角形时,AC:AB:BC=1:1:;如图4,当△ABC是等腰三角形,AB=AC,AE⊥BC,AE=BC,∴BE=EC=BC=AE,设BE=x,则AE=2x,在Rt△ABE中,AB=x,∴AB:AC:BC=::2;故答案为:1:1:或::2;【概念应用】(1)如图5,过C点作AB的平行线,作A点关于该平行线的对称点A',连接A'B,当A'、B、C三点共线时,AC+BC=A'B,此时AC+BC的值最小,∵AB=CD=1,∴AA'=2,在Rt△ABA'中,A'B=,∴AC+BC的最小值为;(2)在△ABC中,AB=CD,AB⊥CD,∴AC>CD,BC>CD,∴AC>AB,BC>AB,∴△ABC的最小角为∠ACB,①如图6,当AC=AB时,AC=CD,过点B作BE⊥AC交于E,设CD=AB=a,则AC=a,=×AB×CD=×AC×BE,∵S△ABC∴BE=a,在Rt△ACD中,AD=2a,∴BD=AD﹣AB=a,在Rt△BCD中,BC=a,在Rt△BCE中,sin∠BCE=;②如图7,当BC=AB时,BC=DC,过点B作BE⊥AC交于E,设CD=AB=a,则BC=a,在Rt△BCD中,BD=2a,∴AD=3a,在Rt△ACD中,AC=a,=×AB×CD=×AC×BE,∵S△ABC∴BE=a,在Rt△BCE中,sin∠BCE=;综上所述:最小角的正弦值为或.【例3】(2020•五华区校级三模)爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AM、BN是ABC的中线,AM⊥BN于点P,像ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.【特例探究】(1)如图1,当∠PAB=45°,c=时,a=4,b=4;如图2,当∠PAB =30°,c=2时,a2+b2=20;【归纳证明】(2)请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.【拓展证明】(3)如图4,在▱ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3,AB=3,求AF的长.【分析】(1)根据等腰直角三角形的性质分别求出PA、PB,根据三角形中位线定理得到MN∥AB,根据相似三角形的性质分别求出PM、PN,根据勾股定理计算即可;(2)连接MN,设PN=x,PM=y,利用勾股定理分别用x、y表示出a、b、c,得到答案;(3)取AB的中点H,连接FH并延长交DA的延长线于点P,证明△ABF为“中垂三角形”,根据(2)中结论计算即可.【解答】解:(1)在Rt△APB中,∠PAB=45°,c=,则PA=PB=c=4,∵M、N分别为CB、CA的中点,∴MN=AB=2,MN∥AB,∴△APB∽△MPN,∴===,∴PM=PN=2,∴BM==2,∴a=2BM=4,同理:b=2AN=4,如图2,连接MN,在Rt△APB中,∠PAB=30°,c=2,∴PB=c=1,∴PA==,∴PN=,PM=,∴BM==,AN==,∴a=,b=,∴a2+b2=20,故答案为:4;4;20;(2)a2+b2=5c2,理由如下:如图3,连接MN,设PN=x,PM=y,则PB=2PN=2x,PA=2PM=2y,∴BM==,AN==,∴a=2,b=2,∴a2+b2=20(x2+y2),∵c2=PA2+PB2=4(x2+y2),∴a2+b2=5c2;(3)取AB的中点H,连接FH并延长交DA的延长线于点P,∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,∴△AHP∽△BHF,∴==1,∴AP=BF,∵AD=3AE,BC=3BF,AD=3,∴AE=BF=,∴PE=FC,∴四边形PFCE为平行四边形,∵BE⊥CE,∴BG⊥FH,∵AE∥BF,AE=BF,∴AG=GF,∴△ABF为“中垂三角形”,∴AB2+AF2=5BF2,即32+AF2=5×()2,解得:AF=4.【例4】(2020•岳麓区校级二模)定义:在△ABC中,若有两条中线互相垂直,则称△ABC 为中垂三角形,并且把AB2+BC2+CA2叫做△ABC的方周长,记作L,即L=AB2+BC2+CA2.(1)如图1,已知△ABC是中垂三角形,BD,AE分别是AC,BC边上的中线,若AC=BC,求证:△AOB是等腰直角三角形;(2)如图2,在中垂三角形ABC中,AE,BD分别是边BC,AC上的中线,且AE⊥BD于点O,试探究△ABC的方周长L与AB2之间的数量关系,并加以证明;(3)如图3,已知抛物线y=与x轴正半轴相交于点A,与y轴相交于点B,经过点B的直线与该抛物线相交于点C,与x轴负半轴相交于点D,且BD=CD,连接AC交y轴于点E.①求证:△ABC是中垂三角形;②若△ABC为直角三角形,求△ABC的方周长L的值.【分析】(1)先利用“SAS“证明△BAD≌△ABE,然后根据△ABC是中垂三角形即可证明;(2)先判断出AC=2AD,BC=2BE,再利用勾股定理,即可得出结论;(3)①利用二次函数先求出点B、点A和点C的坐标,然后根据点A和点C的坐标确定E 是AC的中点,最后根据中垂三角形的定义即可证明;②先由点A(4,0),B(0,﹣2a),C(﹣4,2a)的坐标得到k AB=a,k AC=﹣a,k BC =﹣a,然后分情况讨论即可求解;或结合射影定理分情况讨论进行求解即可.【解答】(1)证明:AC=BC,BD,AE分别是AC,BC边上的中线,∴AD=BE,∠BAD=∠ABE,∴△BAD≌△ABE(SAS),∴∠ABD=∠BAE,∴OA=OB.∵△ABC是中垂三角形,且AC=BC,∴∠AOB=90°,∴△AOB是等腰直角三角形.(2)L=6AB2.证明:如图,连接DE.∵AE,BD分别是边BC,AC上的中线,∴AC=2AD,BC=2BE,DE=AB,∴AC2=4AD2,BC2=4BE2,DE2=AB2.在Rt△AOD中,AD2=OA2+OD2,在Rt△BOE中,BE2=OB2+OE2,∴AC2+BC2=4(AD2+BE2)=4(OA2+OD2+OB2+OE2)=4(AB2+DE2)=4(AB2+AB2)=5AB2,∴L=AB2+AC2+BC2=AB2+5AB2=6AB2.(3)①证明:在y=中,当x=0时,y=﹣2a,∴点B(0,﹣2a).y=0时,=0,整理得3x2﹣4x﹣32=0,解得x1=﹣(舍),x2=4,∴点A(4,0).∵BD=CD,y C=﹣y B=2a,将y=2a代人y=,解得x1=(舍),x2=﹣4,∴C(﹣4,2a).由点A(4,0),C(﹣4,2a)可知,E是AC的中点.又∵BD=CD,∴AD,BE都是△ABC的中线.又∵∠AOB=90°,∴AD⊥BE,∴△ABC是中垂三角形.②解法一:由点A(4,0),B(0,﹣2a),C(﹣4,2a)可得k AB=a,k AC=﹣a,k BC =﹣a,∵∠C<∠AOB,∴∠C≠90°.当∠ABC=90°时,k AB•k BC=﹣1,解得a=(负值舍去),∴点B(0,﹣2),∴L=6AB2=6×24=144.当∠BAC=90°时,k AB•k CA=﹣1,解得a=2(负值舍去),∴点B(0,﹣4),∴L=6AB2=6×48=288.综上所述,△ABC的方周长L的值为144或288.解法二:由点A(4,0),B(0,﹣2a),C(﹣4,2a),∵点D是BC的中点,点E是AC的中点,∴点D(﹣2,0),E(0,a).∵∠C<∠AOB,∴∠C≠90°.当∠ABC=90°时,在△ABD中,由射影定理得OB2=OA•OD,∴4a2=8,解得α=(负值舍去),∴点B(0,﹣2),∴L=6AB2=6×24=144.当∠BAC=90°时,在△ABE中,由射影定理得OA2=OB•OE,∴16=2a2,解得a=2(负值舍去),∴点B(0,﹣4),∴L=6AB2=6×48=288.综上所述,△ABC的方周长L的值为144或288.【例5】(2020•安徽模拟)通过学习锐角三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值是一一对应的,因此,两条边长的比值与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做底角的邻对(can),如图(1)在△ABC中,AB=AC,底角B的邻对记作canB,这时canB=,容易知道一个角的大小与这个角的邻对值也是一一对应的.根据上述角的邻对的定义,解下列问题:(1)can30°=;=24,求△ABC的周长.(2)如图(2),已知在△ABC中,AB=AC,canB=,S△ABC【分析】(1)过点A作AD⊥BC于点D,根据∠B=30°,可得出BD=AB,结合等腰三角形的性质可得出BC=AB,继而得出canB;=24,(2)过点A作AE⊥BC于点E,根据canB=,设BC=8x,AB=5x,再由S△ABC可得出x的值,继而求出周长.【解答】解:(1)过点A作AD⊥BC于点D,∵∠B=30°,∴cos∠B==,∴BD=AB,∵△ABC是等腰三角形,∴BC=2BD=AB,故can30°==;(2)过点A作AE⊥BC于点E,∵canB=,则可设BC=8x,AB=5x,∴AE==3x,=24,∵S△ABC∴BC×AE=12x2=24,解得:x=,故AB=AC=5,BC=8,从而可得△ABC的周长为18.一.解答题(共20题)1.(2022秋•如皋市期中)定义:一个内角等于另一个内角两倍的三角形,叫做“倍角三角形”.(1)下列三角形一定是“倍角三角形”的有②③(只填写序号).①顶角是30°的等腰三角形;②等腰直角三角形;③有一个角是30°的直角三角形.(2)如图1,在△ABC中,AB=AC,∠BAC≥90°,将△ABC沿边AB所在的直线翻折180°得到△ABD,延长DA到点E,连接BE.①若BC=BE,求证:△ABE是“倍角三角形”;②点P在线段AE上,连接BP.若∠C=30°,BP分△ABE所得的两三角形中,一个是等腰三角形,一个是“倍角三角形”,请直接写出∠E的度数.【分析】(1)利用“倍角三角形”的定义依次判断可求解;(2)①由折叠的性质和等腰三角形的性质可求∠BAE=2∠ADB,由等腰三角形的性质可得∠BDE=∠E,可得结论;②分两种情况讨论,由三角形内角和定理和“倍角三角形”的定义可求解.【解答】(1)解:若顶角是30°的等腰三角形,∴两个底角分别为75°,75°,∴顶角是30°的等腰三角形不是“倍角三角形”,若等腰直角三角形,∴三个角分别为45°,45°,90°,∵90°=2×45°,∴等腰直角三角形是“倍角三角形”,若有一个是30°的直角三角形,∴另两个角分别为60°,90°,∵60°=2×30°,∴有一个30°的直角三角形是“倍角三角形”,故答案为:②③;(2)①证明:∵AB=AC,∴∠ABC=∠ACB,∵将△ABC沿边AB所在的直线翻折180°得到△ABD,∴∠ABC=∠ABD,∠ACB=∠ADB,BC=BD,∴∠BAE=2∠ADB,∵BE=BC,∴BD=BE,∴∠E=∠ADB,∴∠BAE=2∠E,∴△ABE是“倍角三角形”;②解:由①可得∠BAE=2∠BDA=2∠C=60°,如图,若△ABP是等腰三角形,则△BPE是“倍角三角形”,∴△ABP是等边三角形,∴∠APB=60°,∴∠BPE=120°,∵△BPE是“倍角三角形”,∴∠BEP=2∠EBP或∠PBE=2∠BEP,∴∠BEP=20°或40°;若△BPE是等腰三角形,则△ABP是“倍角三角形”,∴∠ABP=∠BAP=30°或∠APB=∠BAE=30°或∠ABP=2∠APB或∠APB=2∠ABP,∴∠APB=90°或30°或40°或80°,∴∠BPE=90°或150°或140°或100°,∵△BPE是等腰三角形,∴∠BEP=45°或15°或20°或40°,综上所述:∠BPE的度数为45°或15°或20°或40°.2.(2022秋•义乌市校级月考)【概念认识】如图①所示,在∠ABC中,若∠ABD=∠DBE =∠EBC,则BD,BE叫做∠ABC的“三分线”,其中,BD是“邻AB三分线“,BE是“邻BC三分线”.【问题解决】(1)如图②所示.在△ABC中.∠A=80°,∠ABC=45°.若∠ABC的三分线BD交AC于点D.求∠BDC的度数.(2)如图③所示,在△ABC中.BP,CP分别是∠ABC的邻BC三分线和∠ACB的邻BC 三分线,且∠BPC=140°.求∠A的度数.【延伸推广】(3)在△ABC中,∠ACD是△ABC的外角,∠ABC的三分线所在的直线与∠ACD的三分线所在的直线交于点P,若∠A=m°(m>54),∠ABC=54°.求出∠BPC的度数.(用含m的式子表示)【分析】(1)分BD是邻AB的三分线和BD是邻BC的三分线两种情况解答即可;(2)由∠BPC=140°,得∠PBC+∠PCB=40°,故∠ABC+∠ACB=40°,可得∠ABC+∠ACB=120°,从而∠A=60°;(3)分四种情况分别解答即可.【解答】解:(1)当BD是“邻AB三分线”时,∠ABD=∠ABC=15°,则∠BDC=∠ABD+∠A=15°+80°=95°,当BD′是“邻BC三分线”时,∠ABD′=∠ABC=30°,则∠BD′C=∠ABD′+∠A=30°+80°=110°,综上所述,∠BDC的度数为95°或110°;(2)∵∠BPC=140°,∴∠PBC+∠PCB=40°,∵BP,CP分别是∠ABC的邻BC三分线和∠ACB的邻BC三分线,∴∠PBC=∠ABC,∠PCB=∠ACB,∴∠ABC+∠ACB=40°,∴∠ABC+∠ACB=120°,∴∠A=60°;(3)如图:。

2020年中考数学压轴题型专练:数学新定义题型(含答案)

2020年中考数学压轴题型专练:数学新定义题型(含答案)

2020中考数学 压轴题型专练:数学新定义题型(含答案)1.我们规定:若m u r =(a ,b ),n r =(c ,d ),则m u r •n r =ac +bd .如m u r =(1,2),n r =(3,5),则m u r •nr=1×3+2×5=13.(1)已知m u r =(2,4),n r =(2,-3),求m u r •n r ;(2)已知m u r =(x -a ,1),n r =(x -a ,x +1),求y =m u r •n r ,问y =m u r •n r的函数图象与一次函数y =x -1的图象是否有交点,请说明理由.解:(1)∵m u r =(2,4),n r=(2,-3), ∵m u r •n r=2×2+4×(-3)=-8;(2)无交点.理由:∵m u r =(x -a ,1),n r=(x -a ,x +1),∵y =m u r •n r=(x -a )2+(x +1)=x 2-(2a -1)x +a 2+1 ∵y =x 2-(2a -1)x +a 2+1联立方程:x 2-(2a -1)x +a 2+1=x -1, 化简得:x 2-2ax +a 2+2=0, ∵∵=b 2-4ac =-8<0,∵方程无实数根,两函数图象无交点.2,T (4,2)=1. (1)求a ,b 的值;(2)若T (m ,m +3)=-1,求m 的值.解:(1)(1,1)2,21a bT --==--即a -b =-2, T (4,2)=42182a b+=+,即2a +b =5,解得a =1,b =3;(2) 根据题意得3(3)12(3)m m m m ++=-++,解得127m =-,经检验,127m =-是方程的解. 3.一个三位正整数M ,其各位数字均不为零且互不相等.若将M 的十位数字与百位数字交换位置,得到一个新的三位数,我们称这个三位数为M 的“友谊数”,如:168的“友谊数”为“618”;若从M 的百位数字、十位数字、个位数字中任选两个组成一个新的两位数,并将得到的所有两位数求和,我们称这个和为M 的“团结数”,如:123的“团结数”为12+13+21+23+31+32=132. (1)求证:M 与其“友谊数”的差能被15整除;(2)若一个三位正整数N ,其百位数字为2,十位数字为a 、个位数字为b ,且各位数字互不相等(a ≠0,b ≠0),若N 的“团结数”与N 之差为24,求N 的值. 解:(1)由题意可得,设M 为100a +10b +c ,则它的友谊数为:100b +10a +c , (100a +10b +c )-(100b +10a +c )=100a +10b +c -100b -10a -c∵M 与其“友谊数”的差能被15整除;(2)由题意可得,N =2×100+10a +b =200+10a +b ,N 的团结数是:10×2+a +10a +2+10×2+b +10×b +2+10a +b + 10b +a =22a +22b +44,∵22a +22b +44-(200+10a +b )=24,已知a、b为整数,且a≠0,b≠0,a≠b,解得84ab⎧⎨⎩==或18ab⎧⎨⎩==,即N是284或218.4.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0.那么我们称这个方程为“凤凰”方程.(1)已知ax2+bx+c=0(a≠0)是“凤凰”方程.且有两个相等的实数根.试求a与c 的关系;(2)已知关于x的方程m(x2+1)-3x2+nx=0是“凤凰”方程,且两个实数根都是整数.求整数m的值.解:(1)由题意得:a+b+c=0,b=-a-c,∵ax2+bx+c=0(a≠0)有两个相等的实数根,∵∵=b2-4ac=0,把b=-a-c代入到b2-4ac=0中得:(-a-c)2-4ac=0,(a-c)2=0,∵a=c;(2)m(x2+1)-3x2+nx=0,(m-3)x2+nx+m=0,当x=1时,2m-3+n=0,n=3-2m,解得因为方程两个实数根都是整数,∵整数m为0或2或4或6.5. 设三个内角的度数分别为α、β、γ,如果其中一个角的度数是另一个角度数的3倍,那么“和谐”,并把满足条件的α、β、γ(β≤γ)称为“和谐”的一组值.例如α=30°,β=60°,γ=90°是“和谐”的一组值.(1)当α=48°,写出以α=48°为其中一个内角的“和谐”的一组值;(2)当α≥135°时,符合条件的“和谐”的值是否只有一组,写出你的判断并用含α的代数式表示β、γ;(3)α为何值时,符合条件的“和谐”的值分别有一组、二组、三组值?请你分别写出对应α的值或范围(直接填在下表中).解:(1)α=48°,β=33°,γ=99°或α=48°,β=16°,γ=116°.(3)α≥135°,45°≤α<135°,0°<α<45°.【解法提示】α≥135°时,只有一组;45°≤α<135°时,有二组;0°<α<45°时,有三组.6. 观察下表:我们把某格中字母相加所得到的多项式称为特征多项式,例如第1格的“特征多项式”为4x+y,回答下列问题:征多项式”为 ;(2)若第1格的“特征多项式”的值为-10,第2格的“特征多项式”的值为-16. ∵求x ,y 的值;∵在∵的条件下,第n 格的“特征多项式”是否有最小值?若有,求出最小值和相应的n 值;若没有,请说明理由.解:(1):16x +9y ;25x +16y ;(n +1)2x +n 2y ;【解法提示】第3格的“特征多项式”为:16x +9y ;第4格的“特征多项式”为:25x +16y ;第n 格的“特征多项式”为:(n +1)2x +n 2y ;(2)∵∵第1格的“特征多项式”的值为-10,第2格的“特征多项式”的值为-16,∵根据题意可得:4109416x y x y +-+-⎧⎨⎩==,∵有最小值,7.在平面直角坐标系xOy中,定义一种变换:使平面内的点P(x,y)对应的像为P′(ax +by,bx-ay),其中a、b为常数.已知点(2,1)经变换后的像为(1,-8).(1)求a,b的值;(2)已知线段OP=2,求经变换后线段O′P′的长度(其中O′、P′分别是O、P经变换后的像,点O为坐标原点).解:(1)根据题意,得21 28a bb a+--⎧⎨⎩==,解得23 ab-⎧⎨⎩==;(2)∵OP=2,点P的坐标是(x,y),∵根据勾股定理知,x2+y2=4.∵O′、P′分别是O、P经变换后的像,点O为坐标原点,∵O′(0,0),P′(2x-3y,-3x-2y),8.定义新运算:(a,b)∵(c,d)=(ac,bd),(a,b)∵(c,d)=(a+c,b+d),(a,b)*(c,d)=a2+c2-bd .(1)已知(1,2)∵(p,q)=(2,-4),分别求出p与q的值;(2)在(1)的条件下,求(1,2)∵(p,q)的结果.解:(1)∵(a,b)∵(c,d)=(ac,bd),∵(1,2)∵(p ,q )=(1×p ,2×q ), ∵(1,2)∵(p ,q )=(2,-4), ∵p =2,2q =-4, ∵q =-2;(2)∵p =2,q =-2,(a ,b )∵(c ,d )=(a +c ,b +d ), ∵(1,2)∵(p ,q ) =(1,2)∵(2,-2) =(3,0).9.已知抛物线21111y a x b x c =++,22222y a x b x c =++,且满足111222(0,1)a b c k k a b c ===≠,则抛物线12,y y 互为“友好抛物线”. (1)若y 2有最大值8,则y 1也有最大值,这样的说法对吗,为什么? (2)结合二次函数的特点和你对“友好抛物线”的理解,写出至少2条结论. 解:(1)不对.当k >0时,y 1有最大值为8k ; 当k <0时,y 1有最小值为8k .(2)①当a 1与a 2符号相反时其开口方向相反,当| a 1|≠| a 2|时,两抛物线开口大小不同; ②y 1与y 2的对称轴相同;③如果1y 与x 轴有两个不同的交点,则y 2与x 轴也有两个不同的交点(写出2条合理结论即可)10. 在直角坐标系中,如果二次函数y =ax 2+bx +2(a ≠0)的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,2),且AB =OC ,那么我们称这个二次函数为“和合二次函数”.理由;(2)“和合二次函数”y=ax2+bx+2的图象经过点(-6,2).∵求a与b的值;∵此函数图象可由抛物线y=ax2经过怎样的平移得到?与x轴的交点坐标为A(-4,0),B(-2,0),AB=2,∵AB=OC,(2)∵y=ax2+bx+2与x轴交点的横坐标为x1,x2,11.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图①,在∵ABC中,AB=AC,顶角A的正对记作sad A,这时sad A=BCAB=底边腰,容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解答下列问题:(1)sad60°= ,sad90°= ;(2)如图②,已知sin A=35,其中∵A为锐角,试求sad A的值.第11题图解(2)设AB =5a ,BC =3a ,则AC =4a ,如解图,在AB 上取AD =AC =4a ,作DE ∵AC 于点E ,则DE =AD ·sin A =4a ·35,AE =AD ·cos A =4a ·45,CE =4a 165-a =45a ,CD 5==,∵sad A =5CD AC =.第11题解图12.阅读材料,解答下面问题:如果一个三角形能被经过其顶点的一条线段分割成两个等腰三角形,那么称这个三角形为特异三角形,这条线段为这个三角形的特异线.如图∵,∵ABC 中,∵A =36°,∵ABC =∵C =72°,BD 平分∵ABC ,∵ABC 被分成了两个等腰三角形,即∵ABD、∵BDC.我们称BD为∵ABC的特异线,∵ABC为特异三角形.(1)如图∵,∵ABC中,∵B=2∵C,线段AC的垂直平分线交AC于点D,交BC于点E.求证:AE是∵ABC的一条特异线.(2)若∵ABC是特异三角形,∵A=30°,∵B为钝角,请在图∵、图∵中尝试画出∵ABC 的两条特异线,并标出∵C的度数,(说明:图形为示意图,只需画出图形,标出角度即可).第12题图解:(1)∵DE是线段AC的垂直平分线,∵EA=EC,即∵EAC是等腰三角形,∵∵EAC=∵C,∵∵AEB=∵EAC+∵C=2∵C,∵∵B=2∵C,∵∵AEB=∵B,即∵EAB是等腰三角形,∵AE是∵ABC是一条特异线;(2)如解图∵,BD是特异线时,如果AB=BD=DC,则∵BDA=∵A=30°,∵∵BDC=150°,∵∵C=15°,如解图∵,AD=AB,DB=DC,则∵ADB=∵ABD=75°,∵∵C=37.5°.第12题解图13. 定义,如果一个锐角等腰三角形满足一个角度数是另一个角度数的2倍,那么我们称这个三角形为“智慧三角形”.(1)“智慧三角形”顶角的度数为;(2)如图∵,正五边形ABCDE中,对角线AC,BE交于点P.求证:∵APE是“智慧三角形”;(3)如图∵,六边形ABCDEF中,AB∵DE,BC∵EF,CD∵AF,且∵A=108°,∵B=144°,∵求∵D的度数;∵求证:AB+BC=DE+EF.第13题图(1)解:36°;【解法提示】分两种情况:∵底角度数是顶角度数的2倍时,设顶角度数为x,则底角度数为2x,由三角形内角和定理得:x+2x+2x=180°,解得x=36°,即顶角度数为36°;∵顶角度数是底角度数的2倍时,设底角度数为x,则顶角度数为2x,由三角形内角和定理得:x+x+2x=180°,解得x=45°,2x=90°(不合题意);综上所述:“智慧三角形”顶角的度数为36°;(2)证明:∵五边形ABCDE是正五边形,∵AB=AE=BC,∵ABC=∵BAE=108°,∵∵ABE=∵AEB=∵ACB=36°,∵∵PAE=108°-36°=72°,∵∵APE=72°,∵∵APE=∵PAE=2∵AEB,∵AE=PE,∵∵APE为智慧三角形;(3)∵解:延长FA、CB交于点G,延长AB、DC交于点H,延长CD、FE交于M,如解图所示,∵∵BAF=108°,∵ABC=144°,∵∵BAG=72°,∵ABG=36°,∵∵G=72°,同理:∵H=72°,∵AB∵DE,∵∵CDE=180°-72°=108°;∵证明:∵∵G=∵BAG,∵BG=AB,同理:EM=DE,∵BC∵EF,CD∵AF,∵四边形GCMF是平行四边形,∵GC=FM,即BG+BC=EM+EF,∵AB+BC=DE+EF.第13题解图14. 定义:如果三角形有一条边上的中线恰好等于这条边的边长,那么称这个三角形为“匀称三角形”,这条中线为“匀称中线”.(1)请根据定义判断下列命题的真假(请在真命题后的横线内打“√”,假命题后的横线内打“∵”)∵等腰直角三角形一定不存在匀称中线.∵如果直角三角形是匀称三角形,那么匀称中线一定是较长直角边上的中线.(2)已知:如图∵,在Rt∵ABC中,∵C=90°,AC>BC,若∵ABC是“匀称三角形”,求BC:AC:AB的值;(3)拓展应用:如图∵,∵ABC是∵O的内接三角形,AB>AC,∵BAC=45°,将∵ABC绕点A逆时针旋转45°得∵ADE,点B的对应点为D,连接CD 交∵O于M,连接AM.∵请根据题意用实线在图∵中补全图形;∵若∵ADC是“匀称三角形”,求tan∵AMC的值.第14题图解:(1)√,√;(2)如解图∵,∵∵C=90°,AC>BC由(1)可知∵ABC的匀称中线是AC边上的中线,设D为AC中点,则BD为匀称中线,设AC=2a,则CD=a,BD=2a,∵∵C=90°,(3)∵补全图形如解图∵;∵如解图∵,∵∵ABC绕点A逆时针旋转45°得∵ADE,∵∵DAE=∵BAC=45°,AD=AB,∵∵DAC=90°,AD>AC,∵∵ADC是匀称三角形,过点C作CH∵AB于H,则∵AHC=∵BHC=90°,第14题解图解:由p2-p-1=0及1-q-q2=0,可知p≠0,q≠0,根据以上阅读材料所提供的方法,完成下面的解答:根据2m2-5m-1=0和2n2-5n-1=0的特征,∵m、n是方程2x2-5x-1=0的两个不相等的实数根,。

中考数学压轴题新定义和阅读理解型问题17个填空题解析版

中考数学压轴题新定义和阅读理解型问题17个填空题解析版

01.对于实数a,b,定义运算“◆”:a◆b=,例如4◆3,因为4>3.所以4◆3==5.若x,y满足方程组,则x◆y=_____________.【答案】60【解析】由题意可知:,解得:.∵x<y,∴原式=5×12=60.故答案为:60.【关键点拨】本题考查了二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法以及正确理解新定义运算法则,本题属于基础题型.02.观察下列运算过程:S=1+3+32+33+…+32017+32018 ①,①×3得3S=3+32+33+…+32018+32019 ②,②﹣①得2S=32019﹣1,S=.运用上面计算方法计算:1+5+52+53+…+52018=____.【答案】【解析】设S=1+5+52+53+…+52018 ①,则5S=5+52+53+54…+52019②,②﹣①得:4S=52019﹣1,所以S=,故答案为:.【关键点拨】本题考查了规律型——数字的变化类,涉及了有理数的乘方,读懂题目信息,理解求和的运算方法是解题的关键.03.对于任意实数a、b,定义:a◆b=a2+ab+b2.若方程(x◆2)﹣5=0的两根记为m、n,则m2+n2= .【答案】6.【解析】∵(x◆2)﹣5=x2+2x+4﹣5,∴m、n为方程x2+2x﹣1=0的两个根,∴m+n=﹣2,mn=﹣1,∴m2+n2=(m+n)2﹣2mn=6.故答案为:6.【关键点拨】本题考查了根与系数的关系,牢记两根之和等于﹣、两根之积等于是解题的关键.04.规定:,如:,若,则=__.【答案】1或-3【解析】依题意得:(2+x)x=3,整理,得x2+2x=3,所以(x+1)2=4,所以x+1=±2,所以x=1或x=-3.故答案是:1或-3.【关键点拨】用配方法解一元二次方程的步骤:①把原方程化为ax2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.05.对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1)※(x﹣2)=6,则x的值为_____.【答案】1【解析】由题意得,(x+1)2﹣(x+1)(x﹣2)=6,整理得,3x+3=6,解得,x=1,故答案为:1.【关键点拨】本题考查了解方程,涉及到完全平方公式、多项式乘法的运算等,根据题意正确得到方程是解题的关键.06.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=.现已知△ABC的三边长分别为1,2,,则△ABC的面积为______.【答案】1【解析】∵S=,∴△ABC的三边长分别为1,2,,则△ABC的面积为:S==1,故答案为:1.【关键点拨】本题考查二次根式的应用,解答本题的关键是明确题意,利用题目中的面积公式解答.07.对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形的每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长称为该图形的宽,铅锤方向的边长称为该矩形的高.如图2,菱形ABCD的边长为1,边AB水平放置.如果该菱形的高是宽的,那么它的宽的值是_____.【答案】【解析】在菱形上建立如图所示的矩形EAFC,设AF=x,则CF=x,在Rt△CBF中,CB=1,BF=x﹣1,由勾股定理得:BC2=BF2+CF2,即:12=(x-1)2+(x)2,解得:x=或0(舍),即它的宽的值是,故答案为:.【关键点拨】本题考查了新定义题,矩形的性质、勾股定理等,根据题意正确画出图形,熟练应用相关的知识进行解答是关键.08.对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是_____.【答案】1【解析】∵3※x=3x﹣3+x﹣2<2,∴x<,∵x为正整数,∴x=1,故答案为:1.【关键点拨】本题考查一元一次不等式的整数解以及实数的运算,通过解不等式找出x<是解题的关键.09.如图,把平面内一条数轴x绕原点O逆时针旋转角θ(0°<θ<90°)得到另一条数轴y,x轴和y轴构成一个平面斜坐标系.规定:过点P作y轴的平行线,交x轴于点A,过点P 作x轴的平行线,交y轴于点B,若点A在x轴上对应的实数为a,点B在y轴上对应的实数为b,则称有序实数对(a,b)为点P的斜坐标,在某平面斜坐标系中,已知θ=60°,点M′的斜坐标为(3,2),点N与点M关于y轴对称,则点N的斜坐标为_____.【答案】(﹣2,5)【解析】如图作ND∥x轴交y轴于D,作NC∥y轴交x轴于C.MN交y轴于K.∵NK=MK,∠DNK=∠BMK,∠NKD=∠MKB,∴△NDK≌△MBK,∴DN=BM=OC=2,DK=BK,在Rt△KBM中,BM=2,∠MBK=60°,∴∠BMK=30°,∴DK=BK=BM=1,∴OD=5,∴N(-2,5),故答案为(-2,5)【关键点拨】本题考查坐标与图形变化,轴对称等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.10.如图1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而=45是360°(多边形外角和)的,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是_____;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是_____.【答案】14 21【解析】图2中的图案外轮廓周长是:8﹣2+2+8﹣2=14;设∠BPC=2x,∴以∠BPC为内角的正多边形的边数为:,以∠APB为内角的正多边形的边数为:,∴图案外轮廓周长是=﹣2+﹣2+﹣2=+﹣6,根据题意可知:2x的值只能为60°,90°,120°,144°,当x越小时,周长越大,∴当x=30时,周长最大,此时图案定为会标,则则会标的外轮廓周长是=﹣6=21,故答案为:14,21.【关键点拨】本题考查了阅读理解问题和正多边形的边数与内角、外角的关系,明确正多边形的各内角相等,各外角相等,且外角和为360°是关键,并利用数形结合的思想解决问题.11.若为实数,则表示不大于的最大整数,例如,,等.是大于的最小整数,对任意的实数都满足不等式. ①,利用这个不等式①,求出满足的所有解,其所有解为__________.【答案】或1.【解析】∵对任意的实数x都满足不等式[x]≤x<[x]+1,[x]=2x-1,∴2x-1≤x<2x-1+1,解得,0<x≤1,∵2x-1是整数,∴x=0.5或x=1,故答案为:x=0.5或x=1.【关键点拨】本题考查了解一元一次不等式组,解答本题的关键是明确题意,会解答一元一次不等式.12.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是______步.【答案】.【解析】如图,∵四边形CDEF是正方形,∴CD=ED,DE∥C F,设ED=x,则CD=x,AD=12-x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴=,∴=,∴x=,故答案为:.【关键点拨】本题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.13.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的而积为5.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是_____(不包括5).【答案】9或13或49.【解析】①当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为13.②当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为49;③当DG=7,CG=4时,满足DG2+CG2=CD2,此时HG=3,可得正方形EFGH的面积为9. 故答案为:9或13或49.【关键点拨】本题考查作图-应用与设计、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.14.刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O的半径为1,若用圆O的外切正六边形的面积来近似估计圆O的面积,则S=_____.(结果保留根号)【答案】【解析】依照题意画出图象,如图所示.∵六边形ABCDEF为正六边形,∴△ABO为等边三角形,∵⊙O的半径为1,∴OM=1,∴BM=AM=,∴AB=,∴S=6S△ABO=6×××1=2.故答案为:2.【关键点拨】本题考查了正多边形和圆、三角形的面积以及数学常识,根据等边三角形的性质求出正六边形的边长是解题的关键.15.定义新运算:a※b=a2+b,例如3※2=32+2=11,已知4※x=20,则x=_____.【答案】4【解析】∵4※x=42+x=20,∴x=4.故答案为:4.【关键点拨】本题考查了有理数的混合运算以及解一元一次方程,依照新运算的定义找出关于x的一元一次方程是解题的关键.16.设双曲线与直线交于,两点(点在第三象限),将双曲线在第一象限的一支沿射线的方向平移,使其经过点,将双曲线在第三象限的一支沿射线的方向平移,使其经过点,平移后的两条曲线相交于点,两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,为双曲线的“眸径”.当双曲线的眸径为6时,的值为__________.【答案】【解析】以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,如图所示.联立直线AB及双曲线解析式成方程组,,解得:,,∴点A的坐标为(-,-),点B的坐标为(,).∵PQ=6,∴OP=3,点P的坐标为(-,).根据图形的对称性可知:AB=OO′=PP′,∴点P′的坐标为(-+2,+2).又∵点P′在双曲线y=上,∴(-+2)•(+2)=k,解得:k=.故答案为:.【关键点拨】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、矩形的性质以及解一元一次方程,利用矩形的性质结合函数图象找出点P′的坐标是解题的关键.17.如图,若△ABC内一点P满足∠PAC=∠PCB=∠PBA,则称点P为△ABC的布罗卡尔点,三角形的布罗卡尔点是法国数学家和数学教育家克雷尔首次发现,后来被数学爱好者法国军官布罗卡尔重新发现,并用他的名字命名,布罗卡尔点的再次发现,引发了研究“三角形几何”的热潮.已知△ABC中,CA=CB,∠ACB=120°,P为△ABC的布罗卡尔点,若PA=,则PB+PC=_____.【答案】1+.【解析】作CH⊥AB于H.∵CA=CB,CH⊥AB,∠ACB=120°,∴AH=BH,∠ACH=∠BCH=60°,∠CAB=∠CBA=30°,∴AB=2BH=2•BC•cos30°=BC,∵∠PAC=∠PCB=∠PBA,∴∠PAB=∠PBC,∴△PAB∽△PBC,∴,∵PA=,∴PB=1,PC=,∴PB+PC=1+.故答案为1+.【关键点拨】本题考查等腰三角形的性质、相似三角形的判定和性质、等腰三角形的性质、锐角三角函数等知识,解题的关键是准确寻找相似三角形解决问题.。

以圆的新定义为背景阅读材料压轴题-2023年中考数学压轴题(学生版)

以圆的新定义为背景阅读材料压轴题-2023年中考数学压轴题(学生版)

以圆的新定义为背景阅读材料压轴题1.考向分析1(2023春•兴化市月考)如图,已知⊙O 的半径为1,P 是平面内一点.(1)如图①,若OP =2,过点P 作⊙O 的两条切线PE 、PF ,切点分别为E 、F ,连接EF .则∠EPO =°,EF = 3 .(2)若点M 、N 是⊙O 上两点,且存在∠MPN =90°,则规定点P 为⊙O 的“直角点”.①如图②,已知平面内有一点D ,OD =2,试说明点D 是⊙O 的“直角点”.②如图③,直线y =23x -2分别与x 轴、y 轴相交于点A 、B ,若线段AB 上所有点都是半径为r 的圆的“直角点”,求r 的最小值与该圆心的坐标.2(2022秋•姜堰区期中)如图1,在平面内,过⊙T外一点P画它的两条切线,切点分别为M、N,若∠MPN≥90°,则称点P为⊙T的“限角点”.,③P3(-1,-1),④P4(2,(1)在平面直角坐标系xOy中,当⊙O半径为1时,在①P1(1,0),②P2-1,12-1)中,⊙O的“限角点”是;(填写序号)(2)如图2,⊙A的半径为2,圆心为(0,2),直线l:y=-34x+b交坐标轴于点B、C,若直线l上有且只有一个⊙A的“限角点”,求b的值.(3)如图3,E(2,3)、F(1,2)、G(3,2),⊙D的半径为2,圆心D从原点O出发,以2个单位/s的速度沿直线l:y=x向上运动,若△EFG三边上存在⊙D的“限角点”,请直接写出运动的时间t(s)的取值范围.3(2023•海淀区校级开学)在平面直角坐标系xOy中,对于点P和图形M,若图形M上存在点Q,使得直线PQ经过第四象限,则称点P是图形M的“四象点”.已知点A(-2,4),B(2,1).(1)在点P1(-4,-2),P2(-1,-2),P3(1,-2)中,2,P3 是线段AB的四象点;(2)已知点C(t,0),D(t+4,0),若等边△CDE(C,D,E顺时针排列)上的点均不是线段AB的四象点,求t的取值范围;为圆心且半径为2的⊙T,若线段AB上的点P是⊙T的四象点,请直接写出点P (3)已知以T-52,0的横坐标x P的取值范围.2.压轴题速练1(2022秋•泗阳县期末)概念生成:定义:我们把经过三角形的一个顶点并与其对边所在直线相切的圆叫做三角形的“切接圆”,如图1,△ABC,⊙O经过点A,并与点A的对边BC相切于点D,则该⊙O就叫做△ABC的切接圆.根据上述定义解决下列问题:理解应用(1)已知,Rt△ABC中,∠BAC=90°,AB=6,BC=10.①如图2,若点D在边BC上,CD=254,以D为圆心,BD长为半径作圆,则⊙D是△ABC的“切接圆”吗?请说明理由.②在图3中,若点D在△ABC的边上,以D为圆心,CD长为半径作圆,当⊙D是Rt△ABC的“切接圆”时,求⊙D的半径(直接写出答案).思维拓展(2)如图4,△ABC中,AB=12.AC=BC=10,把△ABC放在平面直角坐标系中,使点C落在y轴上,边AB落在x轴上.试说明:以抛物线y=116x2+4图象上任意一点为圆心都可以作过点C的△ABC的“切接圆”.2(2022秋•平谷区期末)如图,平面直角坐标系中,矩形ABCD,其中A(1,0)、B(4,0)、C(4,2)、D (1,2),定义如下:若点P关于直线l的对称点P'在矩形ABCD的边上,则称点P为矩形ABCD关于直线l的“关联点”,(1)已知点P1(-1,2)、点P2(-2,1)、点P3(-4,1),点P2(-3,-1)中是矩形ABCD关于y轴的关联点的是,P3 ;1半径为32,若⊙O上至少存在一个点是矩形ABCD关于直线x=t的关联点,(2)⊙O的圆心O-72,1求t的取值范围;(3)⊙O的圆心O(m,1)(m<0)半径为r,若存在t值使⊙O上恰好存在四个点是矩形ABCD关于直线x=t的关联点,写出r的取值范围,并写出当r取最小值时t的取值范围(用含m的式子表示).3(2022秋•西城区期末)给定图形W和点P,Q,若图形W上存在两个不重合的点M,N,使得点P 关于点M的对称点与点Q关于点N的对称点重合,则称点P与点Q关于图形W双对合.在平面直角坐标系xOy中,已知点A(-1,-2),B(5,-2),C(-1,4).(1)在点D(-4,0),E(2,2),F(6,0)中,与点O关于线段AB双对合的点是;(2)点K是x轴上一动点,⊙K的直径为1,①若点A与点T(0,t)关于⊙K双对合,求t的取值范围;②当点K运动时,若△ABC上存在一点与⊙K上任意一点关于⊙K双对合,直接写出点K的横坐标k的取值范围.4(2022秋•丰台区期末)对于平面直角坐标系xOy内的点P和图形M,给出如下定义:如果点P绕原点O顺时针旋转90°得到点P',点P'落在图形M上或图形M围成的区域内,那么称点P是图形M关于原点O的“伴随点”.(1)已知点A(1,1),B(3,1),C(3,2).①在点P1(-1,0),P2(-1,1),P3(-1,2)中,点2,P3 是线段AB关于原点O的“伴随点”;②如果点D(m,2)是△ABC关于原点O的“伴随点”,求m的取值范围;(2)⊙E的圆心坐标为(1,n),半径为1,如果直线y=-x+2n上存在⊙E关于原点O的“伴随点”,直接写出n的取值范围.5(2022秋•石景山区期末)在平面直角坐标系xOy中,图形W上任意两点间的距离若有最大值,将这个最大值记为d.对于点P和图形W给出如下定义:点Q是图形W上任意一点,若P,Q两点间的距离有最小值,且最小值恰好为d,则称点P为图形W的“关联点”.(1)如图1,图形W是矩形AOBC,其中点A的坐标为(0,3),点C的坐标为(4,3),则d=.在点P1(-1,0),P2(2,8),P3(3,1),P4(-21,-2)中,矩形AOBC的“关联点”是2,P4 ;(2)如图2,图形W是中心在原点的正方形DEFG,其中D点的坐标为(1,1).若直线y=x+b上存在点P,使点P为正方形DEFG的“关联点”,求b的取值范围;(3)已知点M(1,0),N(0,3).图形W是以T(t,0)为圆心,1为半径的⊙T,若线段MN上存在点P,使点P为⊙T的“关联点”,直接写出t的取值范围.6(2022秋•东城区校级月考)如图,在平面直角坐标系xOy中,过⊙T外一点P引它的两条切线,切点分别为M,N,若60°<∠MPN<180°,则称P为⊙T的环绕点.(1)当⊙O半径为1时,①在P1(2,2),P2(2,0),P3(2,1)中,⊙O的环绕点是1 ;②直线y=3x+b与x轴交于点A,y轴交于点B,若线段AB上存在⊙O的环绕点,求b的取值范围;(m>0)为圆心,33m为半径的所有圆构成图形H,(2)⊙T的半径为2,圆心为(0,t),以-m,33m若在图形H上存在⊙T的环绕点,直接写出t的取值范围.7(2022秋•海淀区期末)在平面直角坐标系xOy中,对于点P和线段AB,若线段PA或PB的垂直平分线与线段AB有公共点,则称点P为线段AB的融合点.(1)已知A(3,0),B(5,0),①在点P1(6,0),P2(1,-2),P3(3,2)中,线段AB的融合点是1,P3 ;②若直线y=t上存在线段AB的融合点,求t的取值范围;(2)已知⊙O的半径为4,A(a,0),B(a+1,0),直线l过点T(0,-1),记线段AB关于l的对称线段为A'B'.若对于实数a,存在直线l,使得⊙O上有A'B'的融合点,直接写出a的取值范围.8(2022秋•北京期末)对于平面直角坐标系xOy中的点M,N和图形W,给出如下定义:若图形W 上存在一点P,使得∠PMN=90°,且MP=MN,则称点M为点N关于图形W的一个“旋垂点”.(1)已知点A(0,4),B(4,4),①在点M1(-2,2),M2(0,2),M3(2,2)中,是点O关于点A的“旋垂点”的是1,M3 ;②若点M(m,n)是点O关于线段AB的“旋垂点”,求m的取值范围;(2)直线y=-x+2与x轴,y轴分别交于C,D两点,⊙T的半径为10,圆心为T(t,0).若在⊙T上存在点P,线段CD上存在点Q,使得点Q是点P关于⊙T的一个“旋垂点”,且PQ=2,直接写出t的取值范围.9(2022秋•朝阳区校级期中)在平面直角坐标系xOy中的⊙W上,有弦MN,取MN的中点P,将点P绕原点O顺时针旋转90°得到点Q,称点Q为弦MN的“中点对应点”.设⊙W是以W(-3,0)为圆心,半径为2的圆.(1)已知弦MN长度为2,点Q为弦MN的“中点对应点”.①如图1:当MN∥x轴时,在图1中画出点Q,并且直接写出线段OQ的长度;②当MN在圆上运动时,直接写出线段WQ的取值范围.(2)已知点M(-5,0),点N为⊙W上的一动点,设直线y=x+b与x轴、y轴分别交于点A、点B,若线段AB上存在弦MN的“中点对应点”点Q,求出b的取值范围.10(2022秋•昌平区期末)已知:对于平面直角坐标系xOy中的点P和⊙O,⊙O的半径为4,交x轴于点A,B,对于点P给出如下定义:过点C的直线与⊙O交于点M,N,点P为线段MN的中点,我们把这样的点P叫做关于MN的“折弦点”.(1)若C(-2,0).①点P1(0,0),P2(-1,1),P3(2,2)中是关于MN的“折弦点”的是1,P2 ;②若直线y=kx+3(k≠0).上只存在一个关于MN的“折弦点”,求k的值;(2)点C在线段AB上,直线y=x+b上存在关于MN的“折弦点”,直接写出b的取值范围.11(2022春•海淀区校级月考)△ABC中,D、E分别是△ABC两边AB、AC的中点,若经过D、E的⊙M与△ABC有n个公共点(相切算一个公共点),则称⊙M为△ABC关于D、E的“中n点圆”.例如,图1中的圆是△ABC关于D、E的“中4点圆”.(1)①如图1,则△ABC的“中n点圆”中n可以取的值为(写所有可能的值);②在所给图1中画出一个“中3点圆”;(2)如图2,在平面直角坐标系xOy中,已知点A(a,6),点B(0,0),C(4,0),⊙M为△ABC的“中n点圆”.①当a=0,n=4时,求圆心M纵坐标的取值范围.②若n=3时,圆心M总在△ABC外,直接写出a的取值范围.12(2022•盐城一模)对于平面内的两点K、L,作出如下定义:若点Q是点L绕点K旋转所得到的点,则称点Q是点L关于点K的旋转点;若旋转角小于90°,则称点Q是点L关于点K的锐角旋转点.如图1,点Q是点L关于点K的锐角旋转点.(1)已知点A(4,0),在点Q1(0,4),Q2(2,23),Q3(-2,23),Q4(22,-22)中,是点A关于点O的锐角旋转点的是2,Q4 .(2)已知点B(5,0),点C在直线y=2x+b上,若点C是点B关于点O的锐角旋转点,求实数b的取值范围.(3)点D是x轴上的动点,D(t,0),E(t-3,0),点F(m,n)是以D为圆心,3为半径的圆上一个动点,且满足n≥0.若直线y=2x+6上存在点F关于点E的锐角旋转点,请直接写出t的取值范围.13(2022秋•盐都区期中)【了解概念】我们知道,折线段是由两条不在同一直线上且有公共端点的线段组成的图形.如图1,线段MQ、QN组成折线段MQN.若点P在折线段MQN上,MP=PQ+QN,则称点P是折线段MQN的中点.【理解应用】(1)如图2,⊙O的半径为2,PA是⊙O的切线,A为切点,点B是折线段POA的中点.若∠APO=30°,则PB=;【定理证明】(2)阿基米德折弦定理:如图3,AB和BC是⊙O的两条弦(即折线段ABC是圆的一条折弦),BC>AB,点M是ABC的中点,从M向BC作垂线,垂足为D,求证:D是折弦ABC的中点;【变式探究】(3)如图4,若点M是AC的中点,【定理证明】中的其他条件不变,则CD、DB、BA之间存在怎样的数量关系?请直接写出结论.【灵活应用】(4)如图5,BC是⊙O的直径,点A为⊙O上一定点,点D为⊙O上一动点,且满足∠DAB=45°,若AB =8,BC=10,则AD=2或2 .14(2022秋•慈溪市期中)如图1,C,D是半圆ACB上的两点,若直径AB上存在一点P,满足∠APC=∠BPD,则称∠CPD是CD的“幸运角”.(1)如图2,AB是⊙O的直径,弦CE⊥AB,D是BC上一点,连结ED交AB于点P,连结CP,∠CPD 是CD的“幸运角”吗?请说明理由;(2)设CD的度数为n,请用含n的式子表示CD的“幸运角”度数;(3)在(1)的条件下,直径AB=10,CD的“幸运角”为90°.①如图3,连结CD,求弦CD的长;②当DE=72时,求CE的长.15(2022秋•西城区校级期中)在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P绕点M逆时针旋转90°,得到点P',点P'关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图1,若点M在坐标原点,点N(1,1),①点P(-2,0)的“对应点”Q的坐标为;②若点P的“对应点”Q的坐标为(-1,3),则点P的坐标为;(2)如图2,已知⊙O的半径为1,M是⊙O上一点,点N(0,2),若P(m,0)(m>1)为⊙O外一点,点Q 为点P的“对应点”,连接PQ.①当点M(a,b)在第一象限时,求点Q的坐标(用含a,b,m的式子表示);②当点M在⊙O上运动时,直接写出PQ长的最大值与最小值的积为2.(用含m的式子表示)16(2022•长沙县校级三模)约定:若三角形一边上的中线将三角形分得的两个小三角形中有一个三角形与原三角形相似,我们则称原三角形为关于该边的“优美三角形”.例如:如图1,在△ABC中,AD为边BC上的中线,△ABD与△ABC相似,那么称△ABC为关于边BC的“优美三角形”.(1)如图2,在△ABC中,BC=2AB,求证:△ABC为关于边BC的“优美三角形”;(2)如图3,已知△ABC为关于边BC的“优美三角形”,点D是△ABC边BC的中点,以BD为直径的⊙O恰好经过点A.①求证:直线CA与⊙O相切;②若⊙O的直径为26,求线段AB的长;(3)已知三角形ABC为关于边BC的“优美三角形”,BC=4,∠B=30°,求△ABC的面积.17(2022秋•海淀区校级月考)在平面直角坐标系xOy中,已知⊙O的半径为2,对于点P,直线l和⊙O,给出如下定义:若点P关于直线l对称的点在⊙O上或⊙O的内部,则称点P为⊙O关于l的反射点.(1)已知直线l为x=3,①在点P1(4,0),P2(4,1),P3(5,1)中,是⊙O关于l的反射点有1、P3 ;②若点P为x轴上的动点,且点P为⊙O关于l的反射点,则点P的横坐标的最大值为.(2)已知直线l的解析式为y=kx+2(k≠0),①当k=-1时,若点P为直线x=72上的动点,且点P为⊙O关于l的反射点,则点P的纵坐标t的取值范围是-72≤+72 ;②点B(2,2),C(3,1),若线段BC的任意一点都为⊙O关于l的反射点,则k的取值范围是3≤k≤-33 .18(2022•钟楼区校级模拟)在平面直角坐标系xOy中,正方形ABCD的顶点分别为A(0,1),B(-1,0),C(0,-1),D(1,0).对于图形M,给出如下定义:P为图形M上任意一点,Q为正方形ABCD边上任意一点,如果P,Q两点间的距离有最大值,那么称这个最大值为图形M的“正方距”,记作d(M).已知点E(3,0).①直接写出d(点E)的值;②过点E画直线y=kx-3k与y轴交于点F,当d(线段EF)取最小值时,求k的取值范围;③设T是直线y=-x+3上的一点,以T为圆心,2长为半径作⊙T.若d(⊙T)满足d(⊙T)>3 210+2,直接写出圆心T的横坐标x的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档