低通集总参数匹配网络

合集下载

ADS阻抗匹配原理及负载阻抗匹配

ADS阻抗匹配原理及负载阻抗匹配

功率放大器设计的关键:输出匹配电路的性能2008-05-15 17:51:20 作者:未知来源:电子设计技术关键字:功率放大器匹配电路匹配网络s参数串联电阻输出功率Cout耗散功率网络分析仪高Q值对于任何功率放大器(功率放大器)设计,输出匹配电路的性能都是个关键。

但是,在设计过程中,有一个问题常常为人们所忽视,那就是输出匹配电路的功率损耗。

这些功率损耗出现在匹配网络的电容器、电感器,以及其他耗能元件中。

功率损耗会降低功率放大器的工作效率及功率输出能力。

因为输出匹配电路并不是一个50Ω的元件,所以耗散损失与传感器增益有很大的区别。

输出匹配的具体电路不同,损耗也不一样。

对于设计者而言,即使他没有选择不同技术的余地,在带宽和耗散损失之间,在设计方面仍然可以做很多折衷。

匹配网络是用来实现阻抗变化的,就像是功率从一个系统或子系统传送另一个系统或者子系统,RF设计者们在这上面下了很大的功夫。

对于功率放大器,阻抗控制着传送到输出端的功率大小,它的增益,还有它产生的噪声。

因此,功率放大器匹配网络的设计是性能达到最优的关键。

损耗有不同的定义,但是这里我们关心的是在匹配网络中,RF功率以热量的形式耗散掉的损耗。

这些损耗掉的功率是没有任何用途。

依据匹配电路功能的不同,损耗的可接受范围也不同。

对功率放大器来讲,输出匹配损耗一直是人们关注的问题,因为这牵涉到很大的功率。

效率低不仅会缩短通话时间,而且还会在散热和可靠性方面带来很大的问题。

例如,一个GSM功率放大器工作在3.5V电压时,效率是55%,能够输出34dBm的功率。

在输出功率为最大时,功率放大器的电流为1.3A。

匹配的损耗在0.5dB到1dB的数量级,这与输出匹配的具体电路有关。

在没有耗散损失时,功率放大器的效率为62%到69%。

尽管损耗是无法完全避免的,但是这个例子告诉我们,在功率放大器匹配网络中,损耗是首要问题。

耗散损失现在我们来看一个网络,研究一个匹配网络(图1a)中的耗散损失。

微波电路课程设计报告(DOC)

微波电路课程设计报告(DOC)

重庆大学本科学生课程设计指导教师评定成绩表说明:1、学院、专业、年级均填全称。

2、本表除评语、成绩和签名外均可采用计算机打印。

重庆大学本科学生课程设计任务书2、本表除签名外均可采用计算机打印。

本表不够,可另附页,但应在页脚添加页码。

摘要本次主要涉及了低通滤波器,功分器,带通滤波器和放大器,用到了AWR,MATHCAD和ADS 软件。

在低通滤波器的设计中,采用了两种方法:第一种是根据设计要求,选择了合适的低通原型,利用了RICHARDS法则用传输线替代电感和电容,然后用Kuroda规则进行微带线串并联互换,反归一化得出各段微带线的特性阻抗,组后在AWR软件中用Txline算出微带线的长宽,画出原理图并仿真,其中包括S参数仿真,Smith圆图仿真和EM板仿真。

第二种是利用低通原型,设计了高低阻抗低通滤波器,高低阻抗的长度均由公式算得出。

在功分器的设计中,首先根据要求的工作频率和功率分配比K,利用公式求得各段微带线的特性阻抗1,2,3端口所接电阻的阻抗值,再用AWR软件确定各段微带线的长度和宽度,设计出原理图,然后仿真,为了节省材料,又在原来的基础上设计了弯曲的功分器。

同时通过对老师所给论文的学习,掌握到一种大功率比的分配器的设计,其较书上的简单威尔金森功分器有着优越的性能。

对于带通滤波器,首先根据要求选定低通原型,算出耦合传输线的奇模,偶模阻抗,再选定基板,用ADS的LineCalc计算耦合微带线的长和宽,组图后画出原理图并进行仿真。

设计放大器时,一是根据要求,选择合适的管子,需在选定的频率点满足增益,噪声放大系数等要求。

二是设计匹配网络,采用了单项化射界和双边放大器设计两种方法。

具体是用ADS中的Smith圆图工具SmitChaitUtility来辅助设计,得到了微带显得电长度,再选定基板,用ADS中的LineCalc计算微带线的长和宽。

最后在ADS中画出原理图并进行仿真,主要是对S参数的仿真。

为了达到所要求的增益,采用两级放大。

集总参数-低通

集总参数-低通

一、集总参数-低通1 低通滤波器===== 设计具体要求 ======设计一个九级集总参数低通滤波器,电路结构如图所示,要求截止频率为450MHz,通带内增益大于-1dB,阻带内650M以上增益小于-50dB。

通带内反射系数要求小于-15dB。

要求优化参数Cost<0.5(2、5(波长线长为相对值)。

计算线长Z为2.5和3.5两处的输入阻抗、反射系数。

并画出Z为2.5时的阻抗与导纳圆图。

(10)答:第一对:应接入j1.670377,L1=0.414λj1.013561,L2=0.376λ第二对:应接入j0.638077,L1=0.34λj-0.363502,L2=0.194λ3、利用所采用的数值解法的不同,对微波与射频电路EDA软件进行分类。

(10)答:根据所采用的数值解法进行分类基于矩量法仿真的EDA软件主要包括ADS(Advanced Design System)、Sonnet电磁仿真软件、IE3D 和Microwave office基于时域有限差分(FDTD)的仿真软件包括:CST MICROWAVE STUDIO、FIDELITY和IMST Empire 基于有限元的典型仿真软件是:Ansoft HFSS二、集总参数-低通2 低通滤波器===== 设计具体要求 ======通带频率范围:0MHz~300MHz增益参数S21:通带内0MHz~300MHz S21>-0.5dB ;阻带内420MHZ以上 S21<-50dB反射系数S11:通带内0MHz~300MHz S11<-10dB ;2、为了节省成本,计划将该滤波器设计为7级结构。

你能把它设计出来吗?根据你的优化仿真结果,探讨滤波器级数与其性能的关系。

(10)答:不能。

Cost增大,不符合要求。

一般理论上是级别越高、元件越多,滤波器性能便越好。

但是一般电路中元件数越多,成本便相应增加,且系统稳定性降低,也会增加额外的插入损耗。

射频电路设计理论及应用题集

射频电路设计理论及应用题集

射频电路设计理论及应用题集一、选择题1. 以下关于射频信号特点的描述,错误的是()A. 射频信号具有较高的频率,通常在几百kHz到几十GHz范围内B. 射频信号在传输过程中容易受到衰减和干扰C. 射频信号的波长较长,因此其传播特性与低频信号相似D. 射频信号的能量在空间中以电磁波的形式传播答案:C2. 在射频电路中,常用的单位dBm表示()A. 功率的绝对值B. 功率的相对值,相对于1mW的功率C. 电压的绝对值D. 电压的相对值,相对于1mV的电压答案:B3. 射频传输线的特性阻抗主要取决于()A. 传输线的长度B. 传输线的材料C. 传输线的几何形状和填充介质D. 传输线上传输的信号频率答案:C4. 以下哪种射频滤波器在通带内具有最平坦的频率响应?()A. 巴特沃斯滤波器B. 切比雪夫滤波器C. 椭圆滤波器D. 贝塞尔滤波器答案:A5. 射频放大器的增益通常用以下哪种方式表示?()A. 电压增益B. 电流增益C. 功率增益D. 以上都是答案:D6. 射频电路中的噪声主要来源不包括()A. 电阻热噪声B. 晶体管散粒噪声C. 电源噪声D. 光噪声答案:D7. 对于射频混频器,以下描述正确的是()A. 实现信号的频率上变频和下变频B. 只用于将高频信号转换为低频信号C. 输入和输出信号的频率相同D. 不会引入额外的噪声答案:A8. 以下哪种射频振荡器具有较好的频率稳定性?()A. 考毕兹振荡器B. 克拉泼振荡器C. 晶体振荡器D. 哈特莱振荡器答案:C9. 射频系统中的阻抗匹配的目的是()A. 最大化信号传输功率B. 减小信号反射C. 提高系统效率D. 以上都是答案:D10. 在射频电路设计中,史密斯圆图主要用于()A. 计算电路的增益B. 分析电路的噪声性能C. 进行阻抗匹配D. 设计滤波器答案:C11. 以下哪种射频天线具有较宽的带宽?()A. 偶极子天线B. 微带天线C. 喇叭天线D. 对数周期天线答案:D12. 射频信号的波长与频率的关系是()A. 波长等于频率除以光速B. 波长等于光速乘以频率C. 波长等于光速除以频率D. 波长与频率无关答案:C13. 射频收发机中的低噪声放大器通常位于()A. 接收链路的前端B. 接收链路的后端C. 发射链路的前端D. 发射链路的后端答案:A14. 以下哪种因素会导致射频信号的衰减?()A. 自由空间传播损耗B. 障碍物阻挡C. 大气吸收D. 以上都是答案:D15. 射频功率放大器的效率主要取决于()A. 工作电压B. 工作电流C. 工作频率D. 输出功率和输入功率的比值答案:D16. 对于射频开关,以下性能指标最重要的是()A. 插入损耗B. 隔离度C. 开关速度D. 以上都是答案:D17. 以下哪种射频调制方式具有较高的频谱效率?()A. 幅度调制(AM)B. 频率调制(FM)C. 相位调制(PM)D. 正交幅度调制(QAM)答案:D18. 射频电路中的寄生电容和电感主要来源于()A. 元器件的物理结构B. 电路布线C. 电路板的材料D. 以上都是答案:D19. 以下关于射频集成电路(RFIC)的优点,错误的是()A. 尺寸小B. 成本低C. 性能高D. 设计难度小答案:D20. 射频系统中的S参数,S21表示()A. 输入端口的反射系数B. 输出端口的反射系数C. 正向传输系数D. 反向传输系数答案:C21. 以下关于射频功率分配器的描述,错误的是()A. 用于将输入功率等分为多个输出端口的功率B. 常见的有威尔金森功率分配器和定向耦合器型功率分配器C. 其性能主要取决于插入损耗和隔离度D. 不会对输入信号的频率和相位产生影响答案:D22. 在射频低通滤波器的设计中,以下哪种结构常用于实现陡峭的截止特性?()A. 集总参数元件构成的滤波器B. 微带线结构的滤波器C. 声表面波滤波器D. 腔体滤波器答案:D23. 射频压控振荡器(VCO)的输出频率通常由以下哪个因素控制?()A. 输入电压的幅度B. 输入电压的频率C. 输入电压的相位D. 输入电压的直流偏置答案:A24. 对于射频混频器,以下哪种非线性特性是其实现频率变换的关键?()A. 乘法特性B. 平方律特性C. 指数特性D. 对数特性答案:A25. 以下哪种射频放大器具有较高的输出功率和效率,但线性度较差?()A. A 类放大器B. B 类放大器C. C 类放大器D. D 类放大器答案:C26. 射频环形器的主要作用是()A. 实现信号的单向传输,提高系统的隔离度B. 对输入信号进行滤波和放大C. 改变输入信号的频率和相位D. 分配输入信号的功率到多个输出端口答案:A27. 以下关于射频衰减器的描述,正确的是()A. 用于增大输入信号的功率B. 可以通过改变电阻值来调节衰减量C. 对输入信号的频率和相位没有影响D. 以上都是答案:C28. 射频带通滤波器的中心频率和带宽主要由以下哪些元件决定?()A. 电感和电容B. 电阻和电容C. 电感和电阻D. 晶体管和电容答案:A29. 射频锁相环(PLL)中,相位比较器的作用是()A. 比较输入信号和反馈信号的相位差,并产生误差电压B. 放大输入信号的功率C. 对输入信号进行滤波D. 产生稳定的参考频率答案:A30. 以下哪种射频组件常用于实现阻抗匹配和功率分配的功能?()A. 巴伦(Balun)B. 功分器(Power Divider)C. 耦合器(Coupler)D. 以上都是答案:D31. 射频开关二极管在导通状态下,其电阻值通常为()A. 几欧姆到几十欧姆B. 几百欧姆到几千欧姆C. 几兆欧姆到几十兆欧姆D. 无穷大答案:A32. 对于射频滤波器的品质因数(Q 值),以下描述正确的是()A. Q 值越高,滤波器的选择性越好,但带宽越窄B. Q 值越低,滤波器的选择性越好,但带宽越窄C. Q 值与滤波器的选择性和带宽无关D. Q 值只影响滤波器的插入损耗答案:A33. 以下哪种射频放大器的结构适合在高频下工作,并具有较好的噪声性能?()A. 共发射极放大器B. 共基极放大器C. 共集电极放大器D. 差分放大器答案:B34. 射频电感器在高频下,其电感值通常会()A. 增大B. 减小C. 保持不变D. 先增大后减小答案:B35. 以下关于射频电容器的描述,错误的是()A. 在高频下,其电容值可能会偏离标称值B. 寄生电感会影响其在高频下的性能C. 通常使用陶瓷电容和云母电容在射频电路中D. 其耐压值在射频电路中不是重要参数答案:D36. 射频放大器的稳定性主要取决于()A. 输入输出阻抗B. 晶体管的参数和电路结构C. 电源电压和电流D. 工作温度和湿度答案:B37. 以下哪种射频组件常用于检测输入信号的功率大小?()A. 功率探测器(Power Detector)B. 低噪声放大器(LNA)C. 混频器(Mixer)D. 压控振荡器(VCO)答案:A38. 射频集成电路中的电感通常采用以下哪种实现方式?()A. 螺旋电感B. 片上变压器C. 金属氧化物半导体电感D. 以上都是答案:D39. 对于射频滤波器的插入损耗,以下描述正确的是()A. 插入损耗越小,滤波器性能越好B. 插入损耗与滤波器的带宽成正比C. 插入损耗只与滤波器的结构有关,与工作频率无关D. 插入损耗是指输入信号功率与输出信号功率的差值答案:A40. 以下哪种射频组件常用于实现信号的上变频和下变频功能?()A. 乘法器(Multiplier)B. 除法器(Divider)C. 加法器(Adder)D. 减法器(Subtractor)答案:A41. 以下关于射频双工器的描述,错误的是()A. 用于实现收发信号的同时工作B. 通常由滤波器和开关组成C. 对收发信号的隔离度要求不高D. 能有效避免收发信号之间的干扰答案:C42. 射频PIN二极管在射频电路中的主要作用不包括()A. 作为开关控制信号的通断B. 用于衰减器调整信号强度C. 构成放大器放大信号D. 进行相位调制答案:D43. 在射频放大器的设计中,为了提高线性度,可以采用()A. 负反馈技术B. 增加工作电流C. 提高工作电压D. 减少晶体管数量答案:A44. 以下哪种射频组件常用于实现不同频段信号的分离?()A. 分频器B. 合路器C. 滤波器组D. 以上都是答案:D45. 射频放大器中的增益压缩现象主要是由于()A. 输入信号过大B. 电源电压不稳定C. 晶体管的非线性特性D. 负载阻抗不匹配答案:C46. 对于射频限幅器,以下描述正确的是()A. 限制输入信号的功率在一定范围内B. 只对大信号进行限幅,小信号不受影响C. 不会引入额外的噪声D. 对信号的频率和相位没有影响答案:A47. 射频匹配网络的设计目标通常不包括()A. 实现最大功率传输B. 减小反射系数C. 增加噪声系数D. 优化电路的稳定性答案:C48. 以下哪种射频组件常用于提高信号的纯度和稳定性?()A. 锁相放大器B. 预放大器C. 选频放大器D. 以上都是答案:D49. 射频隔离器与环形器的主要区别在于()A. 隔离器是单向传输,环形器是多向传输B. 隔离器的插入损耗更低C. 环形器的工作频率范围更广D. 隔离器能完全阻止反向信号传输答案:D50. 在射频混频器的设计中,为了减少寄生响应,通常会()A. 优化电路布局B. 选择合适的晶体管C. 采用平衡结构D. 以上都是答案:D51. 射频延迟线的主要作用是()A. 调整信号的相位B. 产生定时信号C. 延迟信号的传输D. 以上都是答案:D52. 以下关于射频放大器的噪声系数,描述错误的是()A. 噪声系数越小,放大器的噪声性能越好B. 与放大器的增益无关C. 受输入信号源内阻的影响D. 是衡量放大器内部噪声大小的重要指标答案:B53. 射频检波器通常用于()A. 从射频信号中提取调制信息B. 检测信号的频率C. 放大信号的功率D. 实现阻抗匹配答案:A54. 对于射频耦合器,以下性能指标较为重要的是()A. 耦合度和方向性B. 插入损耗和隔离度C. 带宽和中心频率D. 以上都是答案:D55. 以下哪种射频组件常用于实现频率合成?()A. 直接数字频率合成器(DDS)B. 锁相环频率合成器(PLL)C. 压控振荡器(VCO)D. 以上都是答案:D56. 射频放大器的稳定性判别方法中,常用的是()A. 波特图法B. 奈奎斯特稳定判据C. S 参数法D. 以上都是答案:D57. 以下关于射频滤波器的群延迟特性,描述正确的是()A. 反映信号通过滤波器时的相位延迟B. 群延迟越平坦,信号失真越小C. 对于线性相位滤波器,群延迟为常数D. 以上都是答案:D58. 射频放大器的1dB压缩点是指()A. 输出功率比线性增益下降1dB时的输入功率B. 输出功率比线性增益下降1dB时的输出功率C. 输入功率比线性增益下降1dB时的输入功率D. 输入功率比线性增益下降1dB时的输出功率答案:A59. 以下哪种射频组件常用于实现宽带匹配?()A. T 型匹配网络B. π型匹配网络C. 渐变线匹配D. 以上都是答案:D60. 射频放大器的三阶交调截点越高,表示()A. 线性度越好B. 增益越高C. 噪声系数越小D. 带宽越大答案:A61. 以下关于传输线特性阻抗的描述,错误的是()A. 特性阻抗是传输线的固有属性,与线的长度无关B. 它取决于传输线的几何结构和填充介质的特性C. 对于同轴线,特性阻抗只与内导体和外导体的半径比有关D. 特性阻抗的值可以随着传输信号的频率变化而大幅改变62. 在均匀传输线上,行波状态下的特点是()A. 沿线电压和电流的幅值不变B. 沿线电压和电流的相位不断变化C. 存在反射波,导致信号失真D. 传输线的输入阻抗等于特性阻抗答案:A63. 传输线的输入阻抗与以下哪个因素无关?()A. 传输线的长度B. 传输线的特性阻抗C. 终端负载阻抗D. 传输线的材料答案:D64. 对于无损耗传输线,以下描述正确的是()A. 其电阻和电导都为零B. 信号在传输过程中不会有衰减C. 特性阻抗为纯电阻D. 以上都是答案:D65. 当传输线终端短路时,其输入阻抗为()A. 零B. 无穷大D. 纯电容答案:C66. 传输线的驻波比等于()A. 最大电压与最小电压之比B. 最大电流与最小电流之比C. 输入阻抗与特性阻抗之比D. 反射系数的模答案:A67. 在传输线中,反射系数的模等于()A. 终端负载阻抗与特性阻抗的差值除以它们的和B. 终端负载阻抗与特性阻抗的和除以它们的差值C. 终端负载阻抗除以特性阻抗D. 特性阻抗除以终端负载阻抗答案:A68. 以下哪种传输线常用于高频和微波领域?()A. 双绞线B. 同轴线C. 平行双线D. 微带线答案:D69. 传输线的衰减常数主要取决于()A. 传输线的电阻和电导B. 传输线的电感和电容C. 传输线的特性阻抗D. 传输信号的频率答案:A70. 对于有损传输线,以下说法错误的是()A. 信号在传输过程中会有功率损耗B. 其特性阻抗是复数C. 输入阻抗始终等于特性阻抗D. 衰减常数不为零答案:C71. 当传输线终端开路时,沿线电压和电流的分布特点是()A. 电压和电流均为驻波B. 电压为驻波,电流为行波C. 电压为行波,电流为驻波D. 电压和电流均为行波答案:A72. 传输线的相速度是指()A. 信号在传输线上的传播速度B. 等于光速除以传输线的折射率C. 与传输线的特性阻抗有关D. 以上都是答案:D73. 在传输线的匹配中,常用的匹配方法不包括()A. 串联电感或电容B. 并联电感或电容C. 改变传输线的长度D. 增加传输线的损耗答案:D74. 以下关于传输线的色散特性,描述正确的是()A. 不同频率的信号在传输线上的传播速度不同B. 只存在于有损传输线中C. 对信号的传输没有影响D. 可以通过增加传输线的长度来消除答案:A75. 传输线的特性阻抗为50 欧姆,终端负载为100 欧姆,此时的反射系数为()A. 1/3B. -1/3C. 1/2D. -1/2答案:A76. 当传输线的长度远小于信号波长时,传输线可以近似看作()A. 集总参数电路B. 分布参数电路C. 电感元件D. 电容元件答案:A77. 以下哪种情况会导致传输线上出现严重的反射?()A. 终端负载阻抗等于特性阻抗B. 终端负载阻抗为纯电阻且远大于特性阻抗C. 终端负载阻抗为纯电阻且接近特性阻抗D. 终端负载阻抗为复数且实部等于特性阻抗答案:B78. 传输线的群速度表示()A. 多个频率分量合成信号的传播速度B. 单一频率信号的传播速度C. 信号能量的传播速度D. 以上都是答案:C79. 对于微带线,以下因素对其特性阻抗影响较大的是()A. 线宽和介质厚度B. 线长和介质材料C. 工作频率和终端负载D. 以上都是答案:A80. 传输线的输入阻抗在某一频率下呈现感性,此时可以通过()来实现匹配。

ADS阻抗匹配原理及负载阻抗匹配

ADS阻抗匹配原理及负载阻抗匹配

功率放大器设计的关键:输出匹配电路的性能2008-05-15 17:51:20 作者:未知来源:电子设计技术关键字:功率放大器匹配电路匹配网络s参数串联电阻输出功率Cout耗散功率网络分析仪高Q值对于任何功率放大器(功率放大器)设计,输出匹配电路的性能都是个关键。

但是,在设计过程中,有一个问题常常为人们所忽视,那就是输出匹配电路的功率损耗。

这些功率损耗出现在匹配网络的电容器、电感器,以及其他耗能元件中。

功率损耗会降低功率放大器的工作效率及功率输出能力。

因为输出匹配电路并不是一个50Ω的元件,所以耗散损失与传感器增益有很大的区别。

输出匹配的具体电路不同,损耗也不一样。

对于设计者而言,即使他没有选择不同技术的余地,在带宽和耗散损失之间,在设计方面仍然可以做很多折衷。

匹配网络是用来实现阻抗变化的,就像是功率从一个系统或子系统传送另一个系统或者子系统,RF设计者们在这上面下了很大的功夫。

对于功率放大器,阻抗控制着传送到输出端的功率大小,它的增益,还有它产生的噪声。

因此,功率放大器匹配网络的设计是性能达到最优的关键。

损耗有不同的定义,但是这里我们关心的是在匹配网络中,RF功率以热量的形式耗散掉的损耗。

这些损耗掉的功率是没有任何用途。

依据匹配电路功能的不同,损耗的可接受范围也不同。

对功率放大器来讲,输出匹配损耗一直是人们关注的问题,因为这牵涉到很大的功率。

效率低不仅会缩短通话时间,而且还会在散热和可靠性方面带来很大的问题。

例如,一个GSM功率放大器工作在3.5V电压时,效率是55%,能够输出34dBm的功率。

在输出功率为最大时,功率放大器的电流为1.3A。

匹配的损耗在0.5dB到1dB的数量级,这与输出匹配的具体电路有关。

在没有耗散损失时,功率放大器的效率为62%到69%。

尽管损耗是无法完全避免的,但是这个例子告诉我们,在功率放大器匹配网络中,损耗是首要问题。

耗散损失现在我们来看一个网络,研究一个匹配网络(图1a)中的耗散损失。

第5章 匹配网络

第5章 匹配网络

分布参数元件是在主传输线上串联一 段传输线或并联支节构成。在距负载某处 可以并联一段终端短路或终端开路的传输 线,此并联传输线称为支节(或短截线)。
本节讨论用单支节、双支节及四分之 一波长阻抗变换器实现匹配网络的方法, 这种方法可以适用于微带线、带状线、同 轴线及平行双导线,本节画图时用平行双 导线说明匹配网络的结构。
信源与负载之间的共轭匹配,是使传 输线的输入阻抗与信源的内阻互为共轭复 数,此时信源的功率输出为最大。 电路匹配是通过匹配网络实现的。
匹配关系到系统的传输效率、功率容 量和工作稳定性,其重要性主要表现在3个 方面。
(1)从信源到负载实现最大功率传 输。 (2)减小线路反射,目的是减小噪 声干扰,提高信噪比。 (3)传输相同功率时线上电压驻波 系数最小,功率承受能力最大。
第5章 匹配网络
在射频电路的设计中,阻抗匹配是最 重要的概念之一,是电路和系统设计时必 须考虑的重要问题。
在匹配网络的设计中,解析方法很繁 杂,本章只讨论用史密斯圆图的设计方法。 史密斯圆图在射频电路的分析中是一个必 须的工具,尤其在匹配网络的设计中显得 更为重要。
本章首先讨论匹配网络的目的及选择 准则,然后讨论集总参数元件电路的匹配 网络设计、分布参数元件电路的匹配网络 设计和混合参数元件电路的匹配网络设计。
T形匹配网络如图5.11(a)所示,π形匹 配网络如图5.11(b)所示,这里用例题介绍 按预定Qn值设计T形和π形匹配网络的方法。
图5.11 T形和π形匹配网络
图5.12 例5.5用图
图5.13 例5.6用图
5.3 分布参数元件电路的匹配 网络设计
随着工作频率的提高,波长不断减小, 当波长与元器件尺寸或电路尺寸相当时, 可以采用分布参数元件实现匹配网络。

射频实验报告

射频实验报告

西安交通大学射频专题实验报告姓名:尧文斌学号:2010052074班级:信息03(一)匹配网络的设计与仿真实验目的1.掌握阻抗匹配、共轭匹配的原理2.掌握集总元件L型阻抗抗匹配网络的匹配机理3.掌握并(串)联单支节调配器、λ/4阻抗变换器匹配机理4.了解ADS软件的主要功能特点5.掌握Smith原图的构成及在阻抗匹配中的应用6.了解微带线的基本结构基本阻抗匹配理论信号源的输出功率取决于U s、R s和R L。

在信号源给定的情况下,输出功率取决于负载电阻与信号源内阻之比k 。

当R L=R s时可获得最大输出功率,此时为阻抗匹配状态。

无论负载电阻大于还是小于信号源内阻,都不可能使负载获得最大功率,且两个电阻值偏差越大,输出功率越小。

匹配包括:共轭匹配,阻抗匹配,并(串)联单支节调配器。

练习1.设计L 型阻抗匹配网络,使Zs=(46-j ×124) Ohm 信号源与ZL=(20+j ×100) Ohm 的负载匹配,频率为2400MHz.仿真电路图2. 设计微带单枝短截线线匹配电路,使MAX2660的输出阻抗ZS=(126-j*459)Ohm与ZL=50Ohm的负载匹配,频率为900MHz.微带线板材参数:相对介电常数:2.65相对磁导率:1.0导电率:1.0e20损耗角正切:1e-4基板厚度:1.5mm导带金属厚度:0.01mm仿真电路图仿真结果思考题1.常用的微波/射频EDA 仿真软件有哪些?2.ADS, Ansoft Designer,Ansoft HFSS,Microwave Office, CST MICROWAVE STUDIO2.用ADS软件进行匹配电路设计和仿真的主要步骤有哪些?放置元件,连接电路图,参数设定,计算仿真。

3.给出两种典型微波匹配网络,并简述其工作原理。

L型阻抗匹配网络,π型阻抗匹配网络在RF理论中,微波电路和系统的设计(包括天线,雷达等),不管是无源电路还是有源电路,都必须考虑他们的阻抗匹配(impedance matching)问题。

微波技术与天线实验3利用ADS设计集总参数匹配电路

微波技术与天线实验3利用ADS设计集总参数匹配电路

一、实验目的学会用ADS进行集总参数匹配电路设计。

二、实验步骤1、打开“ADS(Advanced Design System)”软件:点击图标。

2、点击“Close”键,关闭Getting start with ADS窗口(如图1)。

图13、在“Advanced Design System 2009(Main)”窗口中点击“File>New Project”(如图2),图2在“New project”窗口中的“C:\users\default\”后输入“matching”,点击“OK”(如图3)。

图34、默认窗口中的选项(如图4(a)),关闭窗口“Schematic Wizard:1”,进入“[matching-prj]untitled1(Schematic):1”窗口(如图4(b))。

图4(a)图4(b)5、找到“Smith Chart Matching”,并点击(如图5)。

图5点击“Palette”下的“Smith chart”图标,弹出“Place SmartComponent:1”窗口,点击“OK”按钮(如图6(a))。

在操作窗口中点击出一个smith chart,然后点击鼠标右键选择“End Command”(如图6(b))。

图6 (a)图6(b)6、点击“Tools>Smith Chart”(如图7(a)),出现“Smith Chart Utility”以及“SmartComponent Sync”窗口,点击“Smartcomponent Sync”窗口中的“OK”(如图7(b))。

图7 (a)图7(b)7、在“Smith Cahrt Utility”窗口中Zl值为300-j*55,点击Auto 2-Element Match(如图(8)。

图88、选择一种电路方式(如图9)。

图99、回到SmithChart Utility窗口,查看结果(如图10)。

图10 (a)图10(b)10、回到“[matching-prj]untitled1(Schematic):1”窗口,在左侧找到“Simulation-SPAram”并点击(如图11)。

第2讲-匹配理论及匹配网络

第2讲-匹配理论及匹配网络

第3章 匹配理论
3.3 集总参数匹配电路
3.3.1 L型匹配电路
1. 输入阻抗和输出阻抗均为纯电阻 确定工作频率fc、输入阻抗Rs及输出阻抗RL。 将构成匹配电路的两个元件分别与输入阻抗 Rs和输出阻抗RL
结合。

RS
RL

RS
RL
8
第3章 匹配理论
XL
RS VS
串、并联 阻抗变换
XS
RL
RS VS
1 1 1 RLP j X LP RL j X L
XS
X LP
RLP
RLP
X 2 L RL 1 R L
实部相等
虚部相等
X LP
R 2 L X L 1 X L
z
A
L
zS
D
zL
zS zS
zB
zL
zL
zS
zS
zA
zL
B
C
zS zS
zC
zL
zL
zS zS
zD
zL
zL
19
第3章 匹配理论
L网路的局限性:
RS和RL确定 Q值确定
可能会不满足滤波性能的指标
可采用三个电抗元件组成的Π 和T型网络
20
第3章 匹配理论 3.3.2 П型匹配电路
L L1 L2
RS RL
XL, XS
9
第3章 匹配理论
串、并联 阻抗变换
XS
XS
RS VS
XL
RL
RS VS
X LP
RLP
令XS=XLP,电抗抵消(两电抗在工作频率处串联谐振) RLP=RS

第3章 匹配理论

第3章 匹配理论

第3章 匹配理论
2. 输入阻抗和输出阻抗不为纯电阻
如果输入阻抗和输出阻抗不是纯电阻,而是复数阻抗,处理 的方法是只考虑电阻部分,按照上述方法计算L型匹配电路中 的电容和电感值,再扣除两端的虚数部分,就可得到实际的匹 配电路参数。
例2: 已知信号源内阻Rs=12,并串有寄生电感Ls=1.2nH。 负载电阻为RL =58,并带有并联的寄生电容CL=1.8pF,
为了使一根外径一定的空气介质的传输线具有最大的功 率传输能力,我们希望选择使 Z 0 等于30 Ω的尺寸。
第3章 匹配理论
现在考虑损耗
由于电介质损耗引起的每单位长度的衰减实际上与导体
尺寸无关。所以只考虑电阻损耗引起的衰减:
R 2Z 0
R是每单位长度的串联电阻,在足够高的频率时,R主 要是由于趋肤效应引起的。为了减小R,要加大内部导体的
当RL=Rs 时可获得最大输出功率,此时为阻抗匹配状态。
第3章 匹配理论 如下图的交流电路中: 当负载阻抗ZL=RL+jXL与信号源阻抗ZS=RS+jXS共轭时,当 RS=RL 且jXS= - jXL时,即ZL=Z*s,负载能够获得最大的功率, 称作共轭匹配或广义阻抗匹配。
Zs

Po N ZL
1 Cp 2f c X s XL Ls 2f c
Cs Lp
Ls
Cp
(a)
(b)
图3-7 Rs>RL的L型匹配电路 (a) Cp-Ls低通式L型; (b) Lp-Cs高通式L型
第3章 匹配理论 (2) Lp-Cs高通式:
1 Cs 2f c X L Xs Lp 2f c
L G
(3-8)
2 2

第3章---射频功率放大器

第3章---射频功率放大器
RL。另外当传输线从1端到2端有电流i通过时,传输线另 一导体上必然有电流为i,即i=2u/RL。当传输线从1端到 2端有电流i通过时,传输线另一导体上必然有电流i从4端 流向3端,因为4端与1端相连,这个电流相当于从1端到3 端,结果信号源流入传输线输入端的总电流为2i。根据上 述分析可得,传输线变压器的输入阻抗如(3.3.14)所示。
图3.17 阻抗匹配网络的连接 图3.18 功率放大器组成框图
对阻抗匹配网络的基本要求是 1)将负载阻抗变换为与功放电路的要求相匹配的负载
阻抗,以保证射频功放电路能输出最大的功率。 2)能滤除不需要的各次谐波分量,以保证负载上能获
得所需频率的射频功率。 3)网络的功率传输效率要尽可能高,即匹配网络的损
可以采用同轴电缆、带状传输线、双绞线或高强度的 漆包线,磁心采用高频铁氧体磁环(MXO)或镍锌(NXO)。 频率较高时,采用镍锌材料。磁环直径小的只有几毫 米,大的有几十毫米,选择的磁环直径与功率大小有 关,一个15W功率放大器需要采用直径为10~20mm 的磁环。传输线变压器的上限频率可高达几千兆赫, 频率覆盖系数可以达到104。 一个1∶1的倒相传输线变压器的结构示意图如图3.23 所示,采用2根导线(1~2为一根导线,3~4为另一根 导线),内阻为RS的信号源uS连接在1和3始端,负载 RL连接在2和4终端,引脚端2和3接地。
耗要小。 常用的射频功率放大器匹配网络有L形、π形和T形,有
时也采用电感耦合匹配网络。根据匹配网络的性质, 可将功率放大器分为非谐振功率放大器和谐振功率放 大器。非谐振功率放大器匹配网络采用高频变压器、 传输线变压器等非谐振系统,它的负载阻抗呈现纯电 阻性质。而谐振功率放大器的匹配网络是一个谐振系 统,它的负载阻抗呈现电抗性质。

网络匹配和调谐-传输线理论的典型应用

网络匹配和调谐-传输线理论的典型应用
终 端 短 路
6.2 传输线谐振器
——各种长度和各种端接的传输线
终 端 开 路
无耗
Zin jZ0 tan l
无耗 Zin jZ0 cot l
有耗 Zin Z0 tanh j l 有耗 Zin Z0 coth j l
串联谐振电路
并联谐振电路
Zin
R
j2L
R
j 2RQ 0
Zin
1
R
定向耦合器等效成四端口网络
S11 S12 S13 S14
S
S21
S31 S41
S22 S32 S42
S23 S33 S43
S24
S34 S44
——16x2个自由度
26
《微波工程》
* 通过适当选择端口的参考面得到定向耦合器的两种特殊的选择
0 j 0
S
0
0
j
j 0 0
1 2
Zin
I
2
1 2
Zin
V Zin
1 2
I
2
R
jL
j1
C
18
《微波工程》
6.1.2 并联谐振电路
用集总元件表示的输入阻抗和输入功率
➢ 输入阻抗
1
Zin
1 R
1
j L
jC
➢ 输入功率
Pin
1 VI 2
1 2
Zin
I2
1V 2
2
1 Zin
1 2
V
2
1 R
j
L
jC
19
《微波工程》
28
《微波工程》
7.2.2 电阻性分配器 ——等分功率分配器
* 电阻性功率分配器是一个各端口都匹配的互易有耗三端口网络,有一半功 率消耗载电阻上

匹配 理论

匹配 理论

节点Q值与Smith圆图
节点的品质因素可写为: 整理上式,可得圆方程:
1 2 1 (I ) 1 2 Qn Qn
2 R
2 I x Qn r 1 2 2 R I
其中+号对应于正电抗,-号对应于负电抗
注意到ΓI = 0、ΓR = ±1时,Qn圆方程两边恒 等,所以等Qn圆总是通过Smith圆图的(1, 0)点和(-1,0)点。
?f400mhzrs50rl25?rsrlq1xsrlq25xpqrs50?根据如下拓扑计算lxs2f995nhc12fxp796pf精品资料l型匹配网络总结?l型匹配网络的具体拓扑结构存在匹配禁区?所以要根据源和负载电阻的大小选择拓扑?当源和负载电阻确定后l匹配网络支路的q值也就确定?l型匹配网络的总有载品质因素qlqn2?3db带宽bwf0ql?为了克服以上缺陷可以通过增加匹配网络的元件来解决?t型和型精品资料t型匹配网络的设计图2at型匹配电路rsvsrsrlpoutrlxs1xp1xp2xs2r2111smallssprrrqxqrxq??????lsplrqxqrxrrq?????222221rsmallminrsrl精品资料t型匹配网络电路结构12ccfx???2cxlf??元件值计算
Matching Theory4 :Quality Factor 3dB-频宽 品质因素
(3dB Bandwidth Quality Factor, Q3dB)
Q3dB ≡
-3dB
fo
当fo固定时: • BW3dB=0 => Q3dB →∞ • BW3dB →∞ => Q3dB=0 • 理想的电阻 => BW3dB →∞ • 理想的电容或电感 => BW3dB=0 fo BW3dB : 3dB Bandwidth

第三章匹配理论1

第三章匹配理论1
2
行波匹配
3
行波匹配
行波匹配:为使负载吸收全部入射功率而无反射波,应使负载阻抗与传输线的特性阻抗相等 既要求信号源输出最大功率,又要求达到行波匹配,必须保证两个条件 信号源的内阻抗Zg必须为实数且等于传输线的特性阻抗Zc(即信号源为匹配源时); 终端负载ZL也必须等于Zc 实际情况中很难同时满足这两个条件。
得到:
例3.7
得到:
有以下等式成立:
得到:
例3.7
设计一个工作中心频率为600MHz,带宽为200MHz的Π型阻抗变换器,将负载阻抗300Ω变换到150Ω。给出Π型阻抗变换器具体结构和元件的参数值。
解:选用Π型阻抗变换器的具体结构如下:
电路的负载Q值为
负载和信号源均下变换到的电阻值为
有以下等式成立:ຫໍສະໝຸດ 得到:有以下等式成立:
3.1 基本阻抗匹配理论
匹配电路的概念及意义
1
共轭匹配
2
行波匹配
3
共轭匹配
负载ZL获得最大传输功率的条件
基尔霍夫定理得电路中电流
共轭匹配
负载 电压
负载 上的平均功率
取最大值
最大功率传输时, 负载和信号源内阻满足共轭条件
3.1 基本阻抗匹配理论
匹配电路的概念及意义
1
共轭匹配
预备知识
Z0=50Ω,得出Y0=0.02S 首先确定并联电感的电纳
这是一个并联电感,所以我们需要在等电导圆上从A点向上移动到-j到达B点,读出B点处的归一化输入导纳为
得到
预备知识
既含串联又含并联电抗元件电路输入阻抗的求解
预备知识
求如下图所示电路在f=100MHz时的输入阻抗。
Q值越高,匹配电路的带宽越窄;Q值越低,匹配电路的带宽越宽

第讲-匹配理论及匹配网络

第讲-匹配理论及匹配网络


2
13
第3章 匹配理论
2. 输入阻抗和输出阻抗不为纯电阻
如果输入阻抗和输出阻抗不是纯电阻,而是复数
阻抗,处理的方法是只考虑电阻部分,按照上述方法
计算L型匹配电路中的电容和电感值,再扣除两端的
虚数部分,就可得到实际的匹配电路参数。
14
第3章 匹配理论


阻抗变换





1





















20
第3章 匹配理论
L网路的局限性:
RS和RL确定
Q值确定
可能会不满足滤波性能的指标
可采用三个电抗元件组成的Π和T型网络
21
第3章 匹配理论
3.3.2 П型匹配电路



= 1
+ 2
1
1
2
inter
2
=
+
+

LP LP
LP

= 1 +

2
令XS=XLP,电抗抵消(两电抗在工作频率处并联谐振)
RLP=RS
L网络串联支路电抗与并联支路电抗必须异性质

= 1 +

= 1 + 2
2


=
−1

>




= LP =
LP ,
问题:QS ,QL怎样求?
11
第3章 匹配理论
Ls
Cs
Cp
Lp

微带线匹配设计

微带线匹配设计

第3节微带线匹配设计在前面介绍了设计集总参数元件的匹配网络的方法,但是这种匹配网络只适合于频率较低的场合,或者是尺寸远小于工作波长的情况。

随着工作频率的提高和工作波长的缩小,分立元件的寄生参数效应将变得更加明显,设计时相应地就要考虑寄生效应,这将使得问题变得相当复杂。

分立元件的这些问题限制了它在射频微波电路中的应用。

通常在几个GHz频段中,射频工程师常采用分立元件和分布元件混合使用的方法。

相比较于前面的分立元件匹配网络,这种网络避免使用电感,而是用传输线替换了电感。

原因是电感比电容具有更高的电阻性损耗,而且电感绕制起来麻烦,很难做到精确。

这种网络是由几段串联的传输线以及间隔配置的并联电容构成。

在这种匹配网络中的分布元件显示出独特的电特性,明显地不同于低频集总参数元件。

它适合作为手机等移动通信设备功率放大器的匹配网络。

其结构如下图所示。

传输线(TL)和电容元件的混合匹配网络设计实例1:设计一个匹配网络将ZL=(30+j20)ohm的负载阻抗变换到Zin=(60+j80)ohm 的输入阻抗。

要求必须采用两段串联传输线和一个并联电容。

已知两段传输线的特性阻抗均为50ohm,匹配的工作频率为2 GHz。

首先,建立一个工程matching1_prj,弹出窗口如下图点选框内的S_Params,然后点OK。

然后会光标处出现虚框将虚框放在空白窗体内。

出现S参数模板如图示:然后手工将Zin和ZL值键入Term1和Term2的Z参数,如下图示:放置一个smithchart元件,目前这个元件是空的。

然后点击tools,在下拉菜单中找到Smith Chart Utility点击,启动Smith Chart工具视窗。

如下图示:在弹出的对话框中选择Update Smith Chart utility from SmartCoponent,然后点击OK就可以用ADS自带的Smith圆图工具来设计匹配。

先设置匹配的工作频率为2 GHz,默认设置为1 GHz。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

低通集总参数匹配网络和四分之一阻抗匹配网络
低通滤波器:
设计一个微带低通滤波器,滤波器的指标如下:通带截止频率:3GHz。

通带增益:大于-5dB,主要由滤波器的S21参数确定。

阻带增益:在4.5GHz以上小于-48dB,也主要由滤波器的S21参数确定。

通带反射系数:小于-22dB,由滤波器的S11参数确定。

在进行设计时,我们主要是以滤波器的S参数作为优化目标。

S21(S12)是传输参数,滤波器通带、阻带的位置以及增益、衰减全都表现在S21(S12)随频率变化的曲线上。

S11(S22)参数是输入、输出端口的反射系数,如果反射系数过大,就会导致反射损耗增大,影响系统的前后级匹配,使系统性能下降。

滤波器主要原理图
微带线计算工具
设置完变量的原理图
变量设置窗口
微带低通滤波器原理图
S参数仿真电路设置
S21参数曲线图
S11参数曲线图四分之一阻抗匹配网络:。

相关文档
最新文档