六年级数学圆柱与圆锥复习课
小学数学六年级下册寒假预习课程6圆柱与圆锥单元整理复习教师版
例 8. 在一个底面半径为 4 厘米,高 10 厘米的圆柱形量杯内放入水,水面高 8 厘米,把一个小铁球放入水中,水满后还溢 出 15.7 克,求小铁球的体积是多少?(1 立方厘米的水重 1 克)
6. 一个圆锥形稻谷堆,底面周长是 18.84 米,高 1 米。如果每立方米稻谷重 0.8 吨,这堆稻谷重多少吨?
知识点讲解 3:圆柱与圆锥的表面积与体积的应用
问题(1)导入:把一块长 10 厘米,宽 15.7 厘米,高 10 厘米的长方体橡皮泥,捏成直径是 2 厘米的圆柱形橡皮泥条,橡 皮 泥条长多少厘米? 解答:根据橡皮泥前后质量没变化,只是外形变了,由长方体捏成圆柱体,所以长方体的体积等于圆柱体的体积。 V 柱=V 长=10×15.7×10=1570(立方厘米), r=d÷2=2÷2=1(厘米) 橡皮泥的长即是圆柱体的高,h=V 柱÷πr² =1570÷3.14÷1²=500(厘米) 答:橡皮泥条长 500 厘米。 ★ 小结:等积变形,即形状变了,体积不变。先算出其中一个物体的体积,再算另一个物体的部分量。
问题(3)导入:有一个圆柱形水桶,底面直径 2 分米,盛水未满,放入一个铁球,当铁球完全沉入水中之后,水面升高 3 厘米,求铁球的体积是多少?
解答:2 分米=20 厘米, r=d÷2=20÷2=10(厘米) V 铁球=V 上升=πr² h 升=3.14×10²×3=942(立方厘 米) 答:铁球的体积是 942 立方厘米。 ★ 小结:解决立体图形容积的实际问题(运用转化法和排水法): 上升(下降、溢出)水的体积=物体的体积
圆柱与圆锥复习课
圆柱与圆锥复习课
学习目标:通过复习,使学生比较系统地掌握立体图形圆柱圆锥的相关知识,再次认识圆柱、圆锥的特征和它们的体积之间的联系与区别;掌握圆柱表面积、体积、圆锥体积的计算公式;并能正确计算、解决有关圆柱与圆锥的问题。
学习重点、难点:掌握圆柱表面积、体积、圆锥体积的计算公式;并能正确计算、解决有关圆柱与圆锥的问题。
学习过程:
一、回忆圆柱与圆锥的相关知识:
1.独立思考,写出你所学会到的有关圆柱的知识,并准备汇报自己的观点:
2. 独立思考,写出你所学会到的有关圆柱的知识,并准备汇报自己的观点:
二、计算:(学生独立完成,个别学生展台展示结果并讲解自己的做法)1.计算圆柱的侧面积与体积。
2.计算圆锥的体积。
三、圆柱圆锥知识的应用。
(先独立完成,然后个别学生展示、讲解)
1.大厅里有8根圆柱形木桩要刷油漆,木桩底面周长
2.5米,高4.2米,1千克的油漆可以漆6平方米,那么刷这些木桩要多少油漆?
2.将长为4cm,宽2cm的长方形旋转后,得到一个立体圆形,求该文体圆形的体积。
3.一个圆锥形沙堆,高是1.5米,底面半径是4米,每立方米沙约重1.7吨。
这堆沙约重多少吨?(得数保留整吨数)
4.一个谷仓如右图所示,底部由一个圆柱与顶部的圆锥组合而成,测得谷仓底面圆柱的周长为12.56m,底部由一个圆柱高2m,顶部的圆锥高1m。
(1)求该谷仓的占地面积?(2)如果谷仓壁的厚度忽略不
计,则该谷仓空间有多大?。
六年级下册数学教案《 第3单元 圆柱与圆锥 整理和复习 》 人教版
六年级下册数学教案《第3单元圆柱与圆锥整理和复习》人教版一. 教材分析本节课为人教版六年级下册数学第3单元“圆柱与圆锥”的整理和复习。
本单元的主要内容是圆柱和圆锥的特征、体积计算以及应用。
教材通过复习和整理,使学生对圆柱和圆锥的概念、性质、计算方法等有一个清晰、系统的认识,提高学生的空间想象能力和解决问题的能力。
二. 学情分析六年级的学生已经学习了圆柱和圆锥的基本知识,对圆柱和圆锥的特征、体积计算有一定的了解。
但部分学生对一些概念和公式的理解不够深入,应用能力有待提高。
此外,学生的空间想象能力和解决问题的能力参差不齐,需要在教学中加以关注和培养。
三. 教学目标1.知识与技能:通过对圆柱和圆锥的复习,使学生掌握圆柱和圆锥的基本概念、性质和体积计算方法,提高空间想象能力和解决问题的能力。
2.过程与方法:通过自主学习、合作交流、探究发现等方法,培养学生的动手操作能力和思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的创新意识和团队协作精神,使学生感受到数学与生活的密切联系。
四. 教学重难点1.重点:圆柱和圆锥的基本概念、性质和体积计算方法的掌握。
2.难点:对圆柱和圆锥体积公式的理解与应用,以及空间想象能力的培养。
五. 教学方法1.自主学习:引导学生独立思考,自主探究,发现和总结圆柱和圆锥的特点和规律。
2.合作交流:鼓励学生与他人分享学习心得,互相讨论,共同解决问题。
3.探究发现:引导学生动手操作,观察分析,发现圆柱和圆锥的体积计算方法。
4.启发引导:教师通过提问、设疑,引导学生思考,激发学生的学习兴趣。
六. 教学准备1.教具:圆柱和圆锥模型、图片、课件等。
2.学具:学生每人准备一个圆柱和圆锥模型,以及相关计算工具。
七. 教学过程1.导入(5分钟)利用课件展示生活中的圆柱和圆锥物体,引导学生回顾已学的知识,为新课的复习打下基础。
2.呈现(10分钟)教师通过讲解和示范,呈现圆柱和圆锥的基本概念、性质和体积计算方法。
六年级数学圆柱和圆锥复习课 (2)
口答 1、一个圆柱体积是27立方 分米,与它等底等高的圆 锥体积是( 9 )立方分米. 2、一个圆锥体积是150立 方厘米,与它等底等高的 圆柱体积是( 450立方厘米 )。
1、圆柱体积是圆锥体积的
3倍。 (× ) 2 、把一个圆柱削成一个最 大的圆锥,削去了圆柱体积 2 √ 的 。 ( )
3
判断题:
2、求下列钢材的体 积。(单位:厘米) 20
15
15
20 12
修建一个圆柱形的沼气池, 底面直径是3m,深2m。在池 的四壁与下底面抹上水泥, 抹水泥部分的面积是多少?
一个粮仓,上面是圆锥形,下面是与 圆锥同底的圆柱形,已知底面半径是2 米,圆柱高是3米,圆锥高是1.2米,这个 粮仓可以盛多少立方米的粮食?(结果 保留两位小数)
A. 8
B. 36
C. 48
D . 72
5、一个圆锥形铁块的体积是200立 方厘米,比与它等底等高的圆柱的 体积少 400 立方厘米;把它熔炼 成一个正方体,这个正方体的体积 是 200 立方厘米。
1.一铁制圆锥底面直径是12cm,高 为6cm,它的体积是多少?将其熔铸 成一个与它等底的圆柱体,这个圆柱 的高是多少?
2、一个圆柱体,如果底面半径扩大2 倍,高不变,那么它的侧面积扩大 (C )倍。 S侧面积=πr2h
A.2 B.6 C.4 D.8 3、两个圆柱的高相等,底面半径的 比是2:3,体积比是(B )
A.2:3 B. 4:9 C. 9:4 D. 8:27
2 V=∏r h
4、等底等高的圆柱和圆锥,圆柱的 体积比圆锥的体积多24立方分米,圆 柱的体积是(B )立方分米。
6、如果两个圆柱的体积相等,它们的表 面积也一定相等。 ( ) 7、从圆锥的顶点沿着高将它切成两半所 得的横截面是一个等腰三角形。 ( )
小学数学六年级下册《圆柱与圆锥》整理与复习教案
第三单元圆柱与圆锥第9课时整理与复习【学习目标】1.能够系统清晰地梳理本单元所学知识,正确理解知识间的联系与区别。
2.正确灵活地运用所学知识解决简单实际问题。
【学习过程】一、知识梳理在本单元我们都学习了哪些知识?用你喜欢的方法整理出来吧!我的问题:。
二、专项训练1.计算下面个图形的体积。
2.解决问题。
三、课堂达标1.填空。
你可以采用画图,列表格等不同方法哦!整理过程中你有什么问题吗?记录下来吧!计算中用到了哪些知识?说说你的思路!(1)一个圆柱和一个圆锥等底等高,圆锥的体积是24立方米,圆柱的体积是(),如果圆柱的体积比圆锥的体积大18立方米,圆柱的体积是(),圆锥的体积是()。
(2)用一张长15厘米,宽12厘米的长方形纸围成一个圆柱,这个圆柱的侧面积是()平方厘米。
(3)一个圆柱体削成一个与它等底等高的圆锥体, 削去的部分是圆锥体的( )%.2.同学们用彩纸制作了20个圆柱形灯罩,每个灯罩高35cm,底面圆的周长是47.1cm 。
至少需要用多少彩纸?想一想是要求圆柱的什么呀?3.一个圆锥形沙堆,底面积是28.26㎡,高是2.5m。
用这堆沙在10m宽的公路上铺2cm厚的路面,能铺多少米?计算时要注意单位哦!4.一块蜂窝煤大约需要用煤多少立方分米?(得数保留整数)四、课外拓展压路机的前轮是圆柱形,轮宽1.5米,直径1.2米,前轮每分钟转动10周,每分钟前进多少米?每分钟压路多少平方米?为什么要规定“先乘除后加减”?对于这个问题,我们分两层来谈。
第一层先谈谈规定运算顺序的必要性,第二层再谈谈为什么要规定“先乘除后加减”。
(1)规定运算顺序的必要性。
先举两个例子予以说明。
例1 小勇买了一块橡皮,价18分,又买了3支铅笔,每支12分,一共多少钱?综合算式18+12×3=18+36=54(分)=5角4分根据题意,这道题先算乘法后算加法是合情合理的。
例2 小春有18分钱,小敏有12分钱,小冬的钱数是他们俩人钱数之和的3倍,问小冬有多少钱?解答这道题的时候应该先求出小春与小敏两人钱数之和,即求出(18+12=)30分,然后再求出30分的3倍,即(30×3=)90分。
圆柱与圆锥复习课评课稿
各位领导,老师大家好。
就朱老师这节课谈谈我的一些浅显的看法,有哪些不足和欠缺的地方,希望在坐的各位专家和老师积极提出来,以便以后我们更好的学习,研究。
这节《圆柱与圆锥复习课》是一堂实效性强的、结构完整的复习课。
体现了复习课的特点,以练为主。
练习的设计具有启发性和思维的价值。
练习题也非常具有层次性,从基础练习到拔高练习,具体有以下几个特点:1.突出沟通整理,建构完整的“知识链”数学复习课的主要任务就是建构完整的“知识链”。
让学生在原来学习的基础上,进一步调整和明晰数学认知结构,优化数学知识在头脑里的组织方式,从而清晰地把握知识间的内在联系,有条理地储存和记忆数学知识,并达到对知识理解的融会贯通。
以往复习课教师总是带着学生进行复习整理,就算是放手也是在教师的提示下进行的,学生的自主性、个性被压抑着。
为此,在集体备课过程中老师们力求突破传统复习课的教学方式,尝试运用“课前自主整理——集体交流点评——复习综合提高”的步骤,通过学生之间、组与组之间、师生之间的集体讨论,相互交流、补充、完善,相互质疑、辩论、评价,使每一个学生都能取长补短,张扬个性。
通过这样的交流,帮助学生建构知识间的联系,使知识的理解更精当,知识条理更清晰,形成知识的网状结构。
2、重视学生学习方式的指导。
朱老师在本节课对知识梳理过程中,鼓励学生用合理、简洁、清晰、有特色的形式进行整理,借此培养学生独特的个性品质和创新意识(如孩子们用表格法,大括号法,知识树等方法);在相互评价整理情况中,引导学生比较归纳总结出根据知识之间的相互联系进行整理的方法,并鼓励学生今后用这种方法去整理其他知识。
这样从整理和复习圆柱和圆锥的过程中,让学生体验获取知识的方法、步骤,有利于培养学生的学习能力。
3、体现了教师主导作用、学生主体作用。
数学教学改革,决不仅仅是教材教法的改革,同时也包括师生关系的变革。
在课堂教学中,改变单纯的教师讲、学生听的“注入式”教学模式,教师应成为学生学习数学的引导者、组织者和合作者。
部编版六年级数学下册第三单元《圆锥》(复习课件)
得到的是圆锥。 (1)以6 cm长的边所在直线为轴旋转一周时, d=16 cm,h=6 cm。 (2)以8 cm长的边所在直线为轴旋转一周时, d=12 cm,h=8 cm。
8.用如图所示的扇形纸片和圆形纸片能否制作成一个圆 锥?请通过计算说明理由。
扇形圆弧的长:3.14×2×2×34=9.42(cm) 圆的周长:3.14×3=9.42(cm) 扇形圆弧的长和圆的周长相等,所以能制作成一个圆锥。
3 圆柱与圆锥
圆锥 整理复习
圆柱和圆锥的关系
当圆柱的上底面的面积等于0时,就变成了圆锥。
圆锥体积的推导
圆锥的体积等于与它等底 等高圆柱体积的三分之一。
圆锥的体积= 13× 底面积×高
Ⅴ 圆锥 =
13Ⅴ
圆柱=
1 Sh 3
填一填。
(1)一个圆柱的体积是75.36m³,与它等底等高的圆锥的体积 是(25.12)m³。
一定时间内,降落在水平地面上的水,在未经蒸发、渗漏、流失情况下, 所及的深度称为降水量(通常以毫米为单位)。测定降水量常用雨量器 和量筒。我国气象上规定按24小时的降水量为标准,降水级别如下表:
级别 降水量/mm
小雨 10以下
中雨
大雨
暴雨
大暴雨
10-24.9 25-49.9 50-99.9 100-199.9
知识点 2 运用圆锥的体积公式计算
2.计算下面各圆锥的体积。
(1) 13×36×5=60(cm3)
(2)
3.14×42×12×31=200.96(cm3)
(3)
3.14×(4÷2)2×5.4×13=22.608(cm3)
易错辨析
3.判断。(对的画“√”,错的画“×”) (1)圆柱的体积是圆锥体积的3倍。
六年级数学圆柱与圆锥复习课
圆柱体积
圆锥体积
753.6×500=376800(千克)=376.8(吨)
答:————————————。
一个圆柱体水桶,底面半径为20厘米, 里面盛有80厘米深的水,现将一个底面周长 为62.8厘米的圆锥体铁块完全沉入水桶里, 水比原来上升了1/16。问圆锥体铁块的高 是多少厘米?
解:分析题可知,上升的水的体积等于铁块 体积。
一个装满稻谷的粮囤,上面是圆锥形,下面是 圆柱形,量得圆柱底面的周长是62.8米,高是 2米,圆锥的高是1.2米。这个粮囤能装稻谷多少
立方米?如果每立方米稻谷重500千克,这个粮 囤能装稻谷多少吨?
解:圆柱的底面半径为:62.8÷3.14÷2=10(m) 3.14×10²×2+3.14×10²×1.2÷3=628+125.6=753.6(m³)
• 1 圆柱与圆锥各有哪些特征? • 2 怎样求圆柱的侧面积.表面积.体积? 计算公式各是什么?
• 3怎样求圆锥的体积?计算公式是什么? • 4圆柱与圆锥的体积之间有什么系?
圆柱的特征:
1.两个底面是半径相等的两个圆 2.圆柱有一个曲面叫做侧面,展 开后是一个长方形。 3.圆柱有无数条高,且高的 长度都相等
解:每小段木料的长: 6÷3=2(m)=200(cm)
15÷4 × 200=750(cm³) 答:———————。
圆柱与圆锥等底等高,圆柱体积比 圆锥体积大36立方分米,圆柱与圆锥 体积各是多少?
解:圆锥体积:36÷2=18(dm³) 圆柱体积:18 × 3=54( dm³) 答:——————。
一个圆锥形的沙堆,底面周长是31.4m, 高是7.2m,每立方米沙重1.5吨,如果用 一辆载重6吨的汽车来运,几次可以运完?
人教版六年级数学下册第三单元第11课《整理和复习》课件
6.乐乐先用橡皮泥做了一个圆柱,再在圆柱中凿了四 个相同的圆柱形孔,剩余部分的体积是多少立方厘 米?(大圆柱的底面直径为24 cm,小圆柱的底面直径 为 38.1c4m×,(2高4÷都2是)2×151c5m-)3.14×(8÷2)2×15×4=3768(cm3) 答:剩余部分的体积是3768 cm3。
(1)这个进料漏斗大约能装多少千克稻谷? (稻谷不超出漏斗上沿,得数保留整数。)
先求这个进料漏斗的体积 × 每立方分米稻谷质量
圆锥的体积 圆柱的体积
3.14×(4÷2)2×4.2×
1 3
+
3.14×(4÷2)2×2
一种水稻磨米机的进料漏斗由圆柱和圆锥两部分组成。 圆柱和圆锥的底面直径都是4dm,圆柱高2dm,圆锥高 4.2dm。每立方分米稻谷大约重0.65kg。
×2
S表= 2πrh+2πr2
V=πr2h
图形 圆柱
底面半径 底面直径
5dm
10dm
1m
2m
20cm
40cm
高 4dm 0.7m 5cm
表面积 282.6dm2 10.676m2
3140cm2
体积 314dm3 2.198m3 6280cm3
想一想:圆柱的侧面积、表面积怎样计算?圆柱、圆锥 的体积公式是怎样导出的?再填写下表。
7.一管鞋油的出口直径为5 mm,爸爸每天挤出 20 mm长的鞋油擦鞋,这管鞋油可用36天。这 管鞋油有多少立方毫米? 3.14×(5÷2)2×20×36=14130(mm3) 答:这管鞋油有14130 mm3。
《圆柱与圆锥》复习课教案
圆柱与圆锥整理与复习复习目标:1.通过复习掌握圆柱和圆锥的特征及体积计算上的联系与区别。
2.在整理归纳中,培养学生综合概括和解决实际问题的能力。
3.通过复习,培养学生主动学习的良好品质,发展创造性思维。
【复习重点:】回顾整理圆柱和圆锥的体积、表面积的计算。
【复习难点:】解决实际问题时,圆柱和圆锥计算的相关细节。
【教学准备:】多媒体课件教学过程:教学过程:一、提示课题,明确目标今天我们上一节《圆柱和圆锥的》复习课,首先让我们明确本节课的复习目标。
——(课件出示复习目标,指名读。
)明确了学习目标,这节课我们将根据圆柱与圆锥这一结构图(课件出示结构图),详尽地进行每个知识点的复习。
二、回顾与整理(一)圆柱和圆锥的特征:师:首先让我们看圆柱与圆锥有哪些特征。
(1(22、在学生说完后,课件再展示一下以加深学生的印象。
3、师:回忆过两个立体图形的特点,我们来思考一下,两者有哪些相同点和不同点呢。
学生先说,再比较(课件展示:圆柱和圆锥的特征有哪些异同点呢?)4、小练习(二)圆柱的侧面积、表面积、体积和圆锥的体积1、师:解决了圆柱和圆锥特征的复习,接下来我们要回忆一些计算公式。
(出示结构图)圆柱的计算:(1)圆柱的侧面积=底面周长×高(2)圆柱的表面积=两个底面积+侧面积指名说,课件加深印象。
(3)圆柱的体积=底面积×高师:有没有印象,圆柱和体积是由哪个立体图形的体积推导而来的。
指名说,。
后课件展示。
师:学过了圆柱的体积之后,我们又通过实验推导出圆锥的体积公式是:(4)圆锥的体积=31×底面积×高2、区分圆柱与圆锥的关系。
自由回答,指名,生生互动。
(课件展示)师:经过大家的回忆与再现,我们将圆柱与圆锥这部分知识点进行了复习,下面,我们将在练习中加以巩固。
二、课堂练习1.教师课件出示题要求:请回答下面问题,只列式不计算 有一个圆形水杯(水杯图),底面半径10厘米,高20厘米(1)给这个水杯加个盖,是求哪部分?列示为:(2)给这个水杯加个箍,是求哪部分?列示为:(3)给这个水杯外面图上漆,是求哪部分?列示为:(4)这个水杯能装多少水?是求哪部分?列示为:2.三、课堂总结这节课你有什么新的收获?你对自己哪些表现比较满意?你的哪些地方有待改进?板书设计圆柱和圆锥基本特征基本公式圆柱两个底面,侧面积=底面周长×高一个侧面表面积=侧面积+底面积×2体积=底面积×高圆锥一个底面,一个侧面体积=底面积×高÷3。
2022春六年级数学下册一圆柱和圆锥复习课件北师大版
典型例题分析
分析:圆锥沿底面直径经过顶点切开后表面积比原来增加了两个三角形的面
积,这两个三角形的底是圆锥的底面直径,高是圆锥的高。先求出每个三角形的面
积,已知三角形的高是6cm,根据三角形的面积公式求出底,继而求出圆 锥的底面半径。
第三十页,编辑于星期六:三点 三十五分。
第十八页,编辑于星期六:三点 三十五分。
典型例题分析
解答:圆①的周长:3.14×4=12.56(cm) 圆②的周长:3.14×5=15.7(cm) 圆③的周长:3.14×6=18.84(cm)
比较:圆②的周长等于长方形的长。
答:选择圆②作底合适。
第十九页,编辑于星期六:三点 三十五分。
典型例题分析
2
2
(2)圆锥的体积
圆锥体积的计算公式为:圆锥的体积=底面积×高× =1 Sh1,因为S
=πr ,所以V=πr h。
2
2
33
第十二页,编辑于星期六:三点 三十五分。
复习驿站
(3)如何区分是求圆柱的体积、容积还是求表面积
求做圆柱形状的物体需要的材料、圆柱形状的墙壁抹水泥面积的多少,或贴墙需 要多少瓷砖等,这样的表述是求表面积。还有一个判定方法就是看所求问题的单位,所 求问题的单位是平方的,则求表面积;所求问题的单位是立方、升、毫升的,则求体积 。求圆柱能装下多少的问题,就是求容积,用体积公式。
2
3
答:这个粮囤大约能装稻3 谷7.95立方米。
第十五页,编辑于星期六:三点 三十五分。
复习驿站
8.圆锥、圆柱的体积关系
(1)等底(面积)等高时,圆锥的体积是圆柱体积的 ,1 即圆锥的体积=
圆柱的体积× 。1
圆柱和圆锥教案(优秀6篇)
圆柱和圆锥教案(优秀6篇)圆柱和圆锥教案篇一单元教学要求:1、使学生认识圆柱和圆锥,掌握它们的特征,知道圆柱是由两个完全一样的圆和一个曲面围成的,圆锥是由一个圆和一个曲面围成的;认识圆柱的底面、侧面和高;认识圆锥的底面和高。
进一步培养学生的空间观念,使学生能举例说明。
圆柱和圆锥,能判断一个立体图形或物体是不是圆柱或圆锥。
2、使学生知道圆柱侧面展开的图形,理解求圆柱的侧面积、表面积的计算方法,会计算圆柱体的侧面积和表面积,能根据实际情况灵活应用计算方法,并认识取近似数的进一法。
3、使学生理解求圆柱、圆锥体积的计算公式,能说明体积公式的推导过程,会运用公式计算体积、容积,解决有关的简单实际问题。
单元教学重点:圆柱体积计算公式的推导和应用。
单元教学难点:灵活运用知识,解决实际问题。
(一)圆柱的认识教学内容:教材第3~4页圆柱和圆柱的侧面积、“练一练”,练习一第1—3题。
教学要求:1、使学生认识圆柱的特征,能正确判断圆柱体,培养学生观察、比较和判断等思维能力。
2、使学生认识圆柱的侧面,理解和掌握圆柱侧面积的计算方法。
进一步培养学生的空间观念。
教具学具准备:教师准备一个长方体模型,大小不同的圆柱实物(如铅笔、饮料罐、茶叶筒等)若干,圆柱模型;学生准备圆柱实物(要有一个侧面贴有商标纸或纸的圆柱体),剪下教材第127页图形、糨糊。
教学重点:认识圆柱的特征,掌握圆柱侧面积的计算方法。
教学难点:认识圆柱的侧面。
教学过程:一、复习旧知1、提问:我们学习过哪些立体图形?(板书:立体图形)长方体和正方体有什么特征?2、引入新课。
出示事先准备的圆柱形的一些物体。
提问学生:这些形体是长方体或正方体吗?说明:这些形体就是我们今天要学习的新的立体图形圆柱体。
通过学习要认识它的特征。
(板书课题)二、教学新课1、认识圆柱的特征。
请同学们拿出自己准备的圆柱形物体,仔细观察一下,再和讲台上的圆柱比一比,看看它有哪些特征。
提问:谁来说一说圆柱有哪些特征?2、认识圆柱各部分名称。
圆柱和圆锥(全部整合)
D
5
B4 C
13.把一个棱长是2分米的正方体削
成一个最大的圆柱体,它的侧面积 是( B )平方分米。 A.6.28 B.12.56 C.18.84 D. 25.12
2
2
2
2×3.14×2
14.把一个棱长是10厘米的正方体削
成一个最大的圆柱体,它的体积是 ( C )立方厘米。 A.3140 B.392.5 C.785 D. 314
10 8
2号题
计算图形的表面积(单位:厘米 )
6
上面圆柱的侧面积
5 下面圆柱的表面积
5 10
3号题
如图,想想办法,你能否求 它的体积?( 单位:厘米)
4
2
6
[3.14×1×1×(6+4)] ÷2=15.7( 立方厘米)
4号题 用塑料绳捆扎一个圆柱形的蛋糕
盒(如下图),打结处正好是底面圆心, 打结去20厘米绳长。
18.84
A
4
B
2
12.56
C
20
D
6
3.下雨时,给打谷场上的
圆锥形谷堆盖上塑料防 雨布,所需防雨布的最小 面积是指圆锥的( C ). A. 表面积 B.体积 C. 侧面积
4.一根圆柱形木材长2米,把截成4 个相等的圆柱体. 表面积增加了 18平方分米.截后每段圆柱体积 是( 660ddmm33 ).
P
B
A
P
Q
Q
P
C
(1)以长方形的一边 为轴旋转一周,扫过的 空间是什么形状?你可 以求出它的体积吗?
(2)以三角形的一条 直角边为轴旋转一周, 扫过的空间是什么形 状?你可以求出它的 B 体积吗?
5 4
六年级下册数学教案-2.3《“圆柱和圆锥”整理与复习》︳西师大版
《“圆柱和圆锥”整理与复习》教学设计教学内容:西南师大版小学数学六年级下册“圆柱与圆锥整理与复习”内容分析:《“圆柱和圆锥”整理与复习》是西南师大版小学数学六年级下册第二单元的教学内容,本节课是在学生已经掌握了圆柱和圆锥的有关知识的基础上进行知识巩固与应用的。
备课中,思考如何处理既能达到巩固与应用,又能调动学生练习的热情?我做了深入的思考,首先思考知识的整理,如何引导学生通过自主回顾梳理,交流互补,使学生将零散的知识在头脑中串成线,联成片,结成网,加深各个图形之间的内在联系,使之形成一个较完整的知识体系,并进一步深入理解每一个概念、计算公式和算理的本质,以达到综合运用有关知识灵活解决实际问题,其次思考如何让学生更有效的、有兴趣的进行巩固练习。
深思之后,决定抛开书中的练习,换一种新的方式来教学。
整理知识这块,课下先让学生自主整理,课堂上交流补充,这样既培养学生自主获取知识的能力和整理、分析、综合概括的能力,又能使整理成为知识的唤醒、积累和升华的过程。
练习中,为了更好的调动学生学习的热情,借助一根圆柱形的木头,让学生发挥想象,提出用本单元知识解决的问题,并分析再解答,从而巩固本单元的知识。
总之,学生学好这部分的内容,不仅扩大了对形体的范围的认识,增加了形体的知识,更有利于进一步发展空间观念。
学情分析:学生经过六年的学习,已经积累了丰富的知识和一定的学习方法,为他们进行自主学习拓宽了路径。
他们的思维正在由形象思维向抽象思维转变,本单元立体图形的学习利于发展学生的空间观念。
我校孩子见多识广、个性张扬,具有较强的思维能力和自我表现能力,他们喜欢探索,敢想敢做。
在教学中,孩子们会的不教,孩子们能学会的不讲,让他们通过回忆、整理、交流、拓展等实践活动等拓宽他们的探索空间,让其将所学知识应用到生活实际之中。
教学目标:1.知识与技能:引导学生通过回忆、整理、拓展等实践活动,掌握圆柱与圆锥的相关特点与特征,并能熟练地运用公式进行圆柱、圆锥表面积或体积的计算。
全国优质课小学数学优质课一等奖《复习圆柱与圆锥》教学案例
旧知识新面孔学以致用回归生活——《复习圆柱与圆锥》教学案例【设计背景】复习课是教学过程一种非常重要的课型,对夯实学生的基础、培养和提高学生运用知识、解决问题的能力起着举足轻重的作用。
然而,复习课又是最难上的一种课,难就难在学生对复习课的学习激情下降,没有了学习新课程的新鲜感,复习中切忌喧宾主,不要以教师的教代替学生的学,应该把学习的主动权交给学生,发挥学生的主体作用,使学生由被动变为主动,由配角变为主角,真正做学习的主人。
无论形式怎样,关键是调动学生的积极性和主动性。
平时教学像“栽活一棵树”,总复习似“育好一片林”。
栽活一棵树容易,育好一片林要花功夫。
在整理与复习本单元之前学生已经学习了圆柱和圆锥两部分内容,包括圆柱的认识,圆柱的表面积,圆柱的体积、圆锥的认识和圆锥的体积。
教材每一节内容都按照“特征——表面积——体积”的基本模式,从图形的基本认识深入到相关面积及体积的计算,由浅入深,循序渐进,学生对圆柱和圆锥的理解逐步深入。
而本课就是在此基础上要使学生通过整理与复习对所学知识得到进一步的巩固,培养学生归纳和整理的能力,并能运用所学的知识解决生活中的实际问题。
【教学片段】片段一:火眼金睛、找错误:师:这几份作业给你的整体感觉怎样?生:字很整齐,师:咱们今后都要向这些同学学习,把作业写得整整齐齐的。
可惜的是在这么整齐的作业当中隐藏着一个小小的遗憾。
请同学用你的火眼金睛去发现这个遗憾。
看出来就抢答。
不用举手,直接站起来告诉大家。
课件出示作业:生1:通风管计算三个面。
圆柱表面积不一定都计算三个面,通风管只算侧面积,无盖油桶只算一个底面和侧面,计算几个面要根据实际情况来定。
生2:圆柱体积用底面周长乘高。
圆的面积和周长公式要分清,不要混。
生3:圆锥体积不乘三分之一。
上下粗细一样的立体图形用V=SH来计算,而圆锥不是,它的体积需乘三分之一。
生4:直径当半径用。
看清题目要求,根据需要选择条件。
生5:单位用错。
根据所解决问题的需要正确使用长度、面积、体积单位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。