《不等式及其基本性质》说课稿设计

合集下载

不等式的性质说课稿范文(精选3篇)

不等式的性质说课稿范文(精选3篇)

不等式的性质说课稿范文(精选3篇)不等式的性质说课稿范文(精选3篇)在教学工作者实际的教学活动中,时常需要用到说课稿,说课稿有助于教学取得成功、提高教学质量。

那么应当如何写说课稿呢?以下是小编为大家收集的不等式的性质说课稿范文(精选3篇),仅供参考,欢迎大家阅读。

不等式的性质说课稿1一、教材分析(说教材):1、教材所处的地位和作用:本节内容在全书和章节中的作用是:《不等式的性质》是人教版初中数学教材七年级下册第9章第1节内容。

在此之前学生已学习了等式的基本性质,这为过渡到本节的学习起着铺垫作用。

本节内容在初中数学中,占据了非常重要的地位,这节内容的学习直接关系到解不等式和不等式组,以及为其他学科和今后的学习打下基础。

2、教育教学目标:根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:知识与技能:(1)理解不等式的性质,会解简单的一元一次不等式,并能在数轴上表示出解集。

过程与方法:(1)经历探究不等式性质的过程,体会不等式与等式的异同,发展学生分析问题和解决问题的能力。

(2)通过经历不等式性质的得出过程,积累数学活动经验。

情感、态度与价值观:(1)认识通过观察、实验、类比可以获得数学结论,体验数学活动中充满探索性和创造性。

(2)通过对不等式性质探索,培养学生的知识迁移能力,加强同学之间的合作与交流。

3、重点,难点以及确定依据:本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点:重点:理解不等式的三个性质。

通过探究规律,交流讨论突出重点。

难点:对不等式的性质3的认识。

通过探索、交流、总结,练习突破难点关键:经历探究不等式性质的过程,用类比的方法使学生体会不等式与等式的异同,掌握不等式的性质。

二、教法分析(说教法)1、教学手段及方法:本课采用多媒体辅助教学。

如何突出重点,突破难点,从而实现教学目标。

在教学过程中拟计划进行如下操作:基于本节课的特点应着重采用类比—实验—交流的教学方法。

七年级数学下册《不等式及其基本性质》优秀教学案例

七年级数学下册《不等式及其基本性质》优秀教学案例
2.让学生用自己的话总结不等式的学习过程,分享学习心得,提高学生的归纳总结能力。
3.针对本节课的重难点,教师进行梳理和强调,确保学生能够扎实掌握。
(五)作业小结
1.设计具有层次性的作业,包括基础题、提高题和拓展题,以满足不同层次学生的学习需求。
2.要求学生在完成作业的过程中,注意不等式的性质和解法的应用,提高解题能力。
(二)讲授新知
1.教师详细讲解不等式的定义、表示方法,并通过举例说明,让学生深刻理解不等式的意义。
2.探讨不等式的基本性质,如加法性质、乘法性质、移项性质等,通过实例演示和证明,让学生掌握这些性质。
3.结合数轴,直观地演示不等式的性质,让学生形象地理解不等式的变形过程。
4.通过讲解一元一次不等式的解法,让学生学会如何求解简单的不等式,并强调注意事项,如变号、乘除法则等。
2.组织学生开展互评活动,让学生在评价他人的过程中,认识到自己的不足,从而促进自身能力的提高。
3.教师应定期对学生的学习情况进行评价,既要关注学生的知识与技能掌握程度,也要关注学生在学习过程中的情感态度与价值观的培养。
4.根据学生的反馈和评价,调整教学策略,优化教学方法,以提高教学效果。
四、教学内容与过程
3.通过不等式的学习,引导学生认识到生活中的不公平现象,现实生活的紧密联系,使学生意识到学习数学不仅仅是为了考试,而是为了解决实际问题,服务社会发展。
5.培养学生的团队合作精神,让他们在合作解决问题的过程中,学会尊重他人,倾听不同的声音,共同成长。
三、教学策略
3.教师在课后及时批改作业,了解学生的学习情况,为下一节课的教学提供参考。
4.鼓励学生进行课后反思,总结自己在解题过程中的优点和不足,不断调整学习方法,提高学习效率。

八年级《不等式及其基本性质》说课稿

八年级《不等式及其基本性质》说课稿

八年级《不等式及其基本性质》说课稿八年级《不等式及其基本性质》说课稿作为一名辛苦耕耘的教育工作者,就不得不需要编写说课稿,写说课稿能有效帮助我们总结和提升讲课技巧。

那么写说课稿需要注意哪些问题呢?下面是小编收集整理的八年级《不等式及其基本性质》说课稿,希望能够帮助到大家。

《不等式的基本性质》它是北师大版八年级下册第二章第二节的内容。

今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法:本节内容不等式的基本性质,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。

同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。

根据《新课程标准》的要求,教材的内容兼顾我班学生的特点,我制定了如下教学目标:知识与技能:1. 感受生活中存在的不等关系,了解不等式的意义。

2. 掌握不等式的基本性质。

过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。

情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。

教学重难点:重点:不等式概念及其基本性质难点:不等式基本性质3教法与学法:1. 教学理念:“ 人人学有用的数学”2. 教学方法:观察法、引导发现法、讨论法.3. 教学手段:多媒体应用教学4. 学法指导:尝试,猜想,归纳,总结根据《数学课程标准》的要求,教材和学生的特点,我制定了以下四个教学环节。

下面我将具体的教学过程阐述一下:一、复习导入新课上课开始,我首先带领学生学习本节课的教学目标,让学生明白本节课学习的目标。

1.探索并掌握不等式的基本性质,并运用它对不等式进行变形.2.理解不等式性质与等式性质的联系与区别.3.提高观察、比较、归纳的.能力,渗透类比的思想方法.二、探求新知,讲授新课第一部分:学前练习1. -7 ≤ -5, 3+4>1+45+3≠12-5, x ≥ 8a+2>a+1, x+3 <6(1)上述式子有哪些表示数量关系的符号?这些符号表示什么关系?(2)这些符号两侧的代数式可随意交换位置吗?(3)什么叫不等式?目的:设计该部分是为了让学生上新课之前先回顾一下上节课学习的内容。

《不等式及其基本性质》教案

《不等式及其基本性质》教案

《不等式及其基本性质》教案第一章:不等式的概念与基本性质1.1 不等式的定义介绍不等式的概念,理解“大于”、“小于”、“大于等于”、“小于等于”等基本不等关系。

举例说明不等式的形式,如a > b、a ≤b 等。

1.2 不等式的基本性质性质1:如果a > b,a + c > b + c(其中c 是任意实数)。

性质2:如果a > b 且c > d,a + c > b + d。

性质3:如果a > b 且c < d,a + c < b + d。

性质4:如果a > b,a c > b c(其中c 是任意实数)。

第二章:不等式的运算2.1 加减法不等式介绍加减法不等式的运算规则,如a > b 且c > 0,a + c > b + c;a > b 且c < 0,a + c < b + c。

举例说明如何解决涉及加减法的不等式问题。

2.2 乘除法不等式介绍乘除法不等式的运算规则,如a > b 且c > 0,ac > bc;a > b 且c < 0,ac < bc。

举例说明如何解决涉及乘除法的不等式问题。

第三章:不等式的解法3.1 简单不等式的解法介绍解简单不等式的方法,如解a > b 的问题,可将b 移至不等式右边,得到a b > 0。

举例说明如何解简单不等式。

3.2 复合不等式的解法介绍解复合不等式的方法,如解a > b 且c > 0 的问题,可将不等式两边乘以c,得到ac > bc。

举例说明如何解复合不等式。

第四章:不等式的应用4.1 实际问题中的应用举例说明如何将实际问题转化为不等式问题,如判断身高、体重等是否符合要求。

引导学生运用不等式解决实际问题。

4.2 线性不等式组的解法介绍线性不等式组的解法,如解a > b 且c > d 的问题,可先解a > b,再解c > d,求交集。

初中数学初一数学下册《不等式及其基本性质》教案、教学设计

初中数学初一数学下册《不等式及其基本性质》教案、教学设计
4.能够运用不等式的性质和解法解决一些简单的实际应用问题,提高学生的数学思维能力。
(二)过程与方法
在教学过程中,注重培养学生的逻辑思维能力和解决问题的能力,采用以下方法:
1.通过引入实际生活中的例子,激发学生对不等式的兴趣,引导学生发现不等式在生活中的广泛应用。
2.采用启发式教学,鼓励学生主动探究不等式的基本性质,培养学生的自主学习能力。
教师提问:“同学们,你们知道什么是比较吗?在生活中,我们经常会比较一些事物的大小,比如身高、体重等。今天,我们就来学习一种新的数学表达方式,用来表示两个数的大小关系。”
2.学生分享:请学生举例说明生活中遇到的大小比较情况,让学生感受到数学与生活的联系。
3.引入概念:教师通过学生分享的例子,引出不等式的定义,并用数学符号表示。
初中数学初一数学下册《不等式及其基本性质》教案、教学设计
一、教学目标
(一)知识与技能
1.了解不等式的定义,理解不等式两边的关系,能够正确书写和识别常见的不等式。
2.熟练掌握不等式的基本性质,如加法、减法、乘法、除法的性质,并能够运用这些性质进行不等式的化简和求解。
3.学会使用数轴和区间表示不等式的解集,掌握求解一元一次不等式的方法,并能够解决实际问题。
难点:运用不等式的基本性质进行复杂不等式的化简和求解,以及在实际问题中灵活运用不等式知识。
2.重点:培养学生利用数轴和区间表示不等式解集的能力,提高学生的直观想象力和逻辑思维能力。
难点:让学生理解并掌握不等式解集的求解方法,特别是在处理多重不等式和区间交、并问题时。
(二Байду номын сангаас教学设想
1.创设情境,导入新课
1.学生在不等式的理解上可能存在一定难度,需要通过具体实例和生活情境,帮助学生建立起不等式的直观感知。

不等式及其基本性质优秀教案

不等式及其基本性质优秀教案

不等式及其基本性质【课时安排】2课时【第一课时】【教学目标】1.通过实际问题中的数量关系的分析,体会到现实世界中有各种各样的数量关系的存在,不等关系是其中的一种。

2.了解不等式及其概念;会用不等式表示数量之间的不等关系。

【教学重难点】重点:了解不等式的意义,用不等式表示具体问题中的数量关系。

难点:正确分析数量关系,列出表示数量关系的不等式。

【教学过程】(一)导入新课在古代,我们的祖先就懂得了翘翘板的工作原理,并且根据这一原理设计出了一些简单机械,并把它们用到了生活实践当中。

由此可见,“不相等”处处可见。

从今天起,我们开始学习一类新的数学知识:不等式。

(二)新课讲解1.提纲:(1)认真看书的内容。

(2)举出生活中一个不等量关系的例子。

(3)注意表示不等关系的词语如“不大于”、“不高于”等等。

2.合作学习:问题1:用适当的符号表示下列关系:(1)2x与3的和不大于6;(2)x的5倍与1的差小于x的3倍;(3)a与b的差是正数。

问题2:雷电的温度大约是28000℃,比太阳表面温度的4.5倍还要高。

设太阳表面温度为t ℃,那么t 应满足这样的关系式?问题3:一种药品每片为0.25g ,说明书上写着“每日用量0.75~2.25g ,分3次服用”。

设某人一次服用x 片,那么x 应满足怎样的关系式?根据题意,我们可以得到下列式子:2x+3≤6 5x -1<3x a-b>0 4.5t<28000 0.75≤3×0.25x ≤2.25像上面那些式子,用不等号(>、≥、<、≤或≠)表示不等关系的式子,就叫做不等式。

注:不大于,即小于或等于,用“≤”表示;不小于,即大于或等于,用“≥”表示。

(三)课堂检测1.用不等式表示下列关系(1)亮亮的年龄(记为x )不到14岁。

_____________(2)七年级(1)班的男生数(记为y )不超过30人。

_____________(3)某饮料中果汁的含量(记为x )不低于20%。

数学教案:不等式和它的基本性质教学案方案

数学教案:不等式和它的基本性质教学案方案

数学教案:不等式和它的基本性质教学案方案一、教学目标1.理解不等式的含义、概念及基本性质。

2.掌握不等式的解法和应用。

3.培养学生解决实际问题的能力和思维能力。

二、教学重难点1.不等式的含义、概念及基本性质。

2.不等式的解法和应用。

三、教学内容及教学方法3.1 教学内容3.1.1 不等式及其概念1.不等式的概念及符号。

2.等式与不等式的区别。

3.正、负数的不等式性质。

3.1.2 不等式的基本性质1.不等式的加减法性质。

2.不等式的乘除法性质。

3.不等式的反号性质。

3.1.3 不等式的应用1.实际问题中不等式的应用。

2.不等式解决实际问题的方法。

3.2 教学方法1.讲授:教师向学生详细讲解每一概念、性质、应用并进行示范。

2.实例演练:根据不同难度和实际情况,用具体实例来演示解决不等式的方法及应用。

3.课堂互动:通过提问、让学生上台讲解和答题等方式提高学生的积极性,增加学生对知识点的记忆和理解。

四、教学流程4.1 导入(约5分钟)1.教师引入不等式的概念,并与之前所学的等式做对比。

2.学生积极参与,讨论不等式与等式之间的区别。

4.2 讲解不等式的基本性质(约20分钟)1.讲解不等式的加减法性质,应注意规则和注意事项。

2.讲解不等式的乘除法性质,应注意规则和注意事项。

3.讲解不等式的反号性质,应注意规则和注意事项。

4.3 实例演练(约30分钟)1.根据年级和学生的实际情况,选择不同难度的例题,并进行详细解析。

2.将例题带入实际问题,引导学生综合运用不等式的方法解决实际问题。

4.4 课堂互动(约10分钟)1.教师提出问题,鼓励学生互相答题,从而促进学生的思维。

2.鼓励优秀学生上台讲解,提高学生的自信心和讲述能力。

4.5 总结(约5分钟)1.教师提出总结性问题并给出结论。

2.整理今日所学知识点,帮助学生进行复习。

五、作业及课外拓展1.布置不等式计算题,并引导学生进行思考和独立完成。

2.引导学生从实际生活中寻找不等式的应用,并向同学提出相关问题,进行探讨。

沪科版数学七年级下册7.1《不等式及其基本性质》教学设计

沪科版数学七年级下册7.1《不等式及其基本性质》教学设计

沪科版数学七年级下册7.1《不等式及其基本性质》教学设计一. 教材分析《不等式及其基本性质》是沪科版数学七年级下册第七章的第一节内容。

本节主要介绍不等式的概念、不等式的性质以及不等式的运算。

教材通过生活实例引入不等式的概念,让学生感受不等式在实际生活中的应用,培养学生的数学应用意识。

同时,通过探究不等式的性质,使学生掌握不等式的基本运算方法,为学生后续学习更高级的数学知识打下基础。

二. 学情分析学生在学习本节内容前,已经掌握了整数、实数的基本概念,具备了一定的逻辑思维能力。

但他们对不等式的认识尚浅,对不等式的性质和运算方法较为陌生。

因此,在教学过程中,教师需要从学生的实际出发,循序渐进地引导学生掌握不等式的基本概念和性质,培养学生解决实际问题的能力。

三. 教学目标1.了解不等式的概念,掌握不等式的基本性质。

2.学会不等式的基本运算方法,能运用不等式解决实际问题。

3.培养学生的数学思维能力,提高学生的数学应用意识。

四. 教学重难点1.不等式的概念及其性质。

2.不等式的基本运算方法。

五. 教学方法1.情境教学法:通过生活实例引入不等式概念,激发学生的学习兴趣。

2.启发式教学法:引导学生探究不等式的性质,培养学生的逻辑思维能力。

3.实践操作法:让学生通过动手操作,掌握不等式的基本运算方法。

六. 教学准备1.教学课件:制作课件,展示不等式的概念、性质和运算方法。

2.练习题:准备适量练习题,巩固所学知识。

3.教学道具:准备一些实物道具,辅助讲解不等式的概念。

七. 教学过程1.导入(5分钟)利用生活实例,如身高、体重等,引导学生认识不等式。

让学生体会不等式在实际生活中的应用,激发学生的学习兴趣。

2.呈现(10分钟)讲解不等式的概念,引导学生理解不等式的含义。

通过示例,让学生了解不等式的基本性质。

3.操练(10分钟)让学生分组讨论,探究不等式的性质。

每组选择一个实例,进行操作验证,总结不等式的性质。

4.巩固(10分钟)出示练习题,让学生运用所学知识解决问题。

人教版不等式的基本性质说课稿5篇

人教版不等式的基本性质说课稿5篇

人教版不等式的基本性质说课稿5篇第一篇:人教版不等式的基本性质说课稿各位老师,同学:大家好!今天我说课的内容是人教版九年义务教育七年级下册第九章第一课时第二小节《不等式的基本性质》。

(板书题目)接下来我将从教材分析,学情分析,学法教法,教学过程,板书设计五个方面来说说我对本节课的理解与教学设计。

不等式的基本性质一、教材分析教材是我们教学活动的主要依据,透彻的了解教材也是上好一节课的关键。

首先来说说本节课的教材。

我将从教材的地位与作用,教学目标,教学重点与难点三个方面对本节课的教材进行说明。

(一)教材的地位与作用。

不等式是初中代数的重要内容之一,而不等式的性质又是重中之重。

一方面,它是初中阶段最基础、最重要的一个转折;而另一方面,学好不等式的性质能帮助学生从整体认识整式性质与不等式性质的区别;在此基础上,可以使学生对生活中的数学问题有新的认识,从而扩大学生的认知结构。

同时,不等式的性质还蕴含着丰富的数学思想和方法。

因此这也是前后数学知识衔接的桥梁和纽带。

因此学好本节课有着非常重要的作用。

教学目标根据新课改的要求及教材的特点,我确定了如下的教学目标:知识目标掌握不等式的三个基本性质并且能正确应用;能力目标经历探索不等式基本性质的过程,体会不等式与等式的异同点,发展学生分析问题、解决问题的能力;情感目标开展研究性学习,使学生初步体会学习不等式基本性质的价值。

情感态度与价值观的培养,是学生全面发展的需要,该目标具体到本节课为通过让学生学习用不等式的基本性质解决相关问题获得成功体验,增强学好数学的信心。

教学重点难点根据教材内容的特点,结合新课程改革的基本要求,我认为本节课的重点是:理解不等式的三个基本性质。

由于在探究的过程中,需要采用类比的方法来得出结论,对学生的抽象思维能力要求较高,但对于七年级的学生而言,其形象思维能力占主导地位,在探究的过程中难免会遇到困难。

根据学生的这一特征,我认为本节课的难点为:对不等式的基本性质3的重点认识。

人教版不等式的基本性质说课稿

人教版不等式的基本性质说课稿

不等式的基本性质各位老师,同学:大家好!今天我说课的内容是人教版九年义务教育七年级下册第九章第一课时第二小节《不等式的基本性质》。

(板书题目)接下来我将从教材分析,学情分析,学法教法,教学过程,板书设计五个方面来说说我对本节课的理解与教学设计。

一、教材分析教材是我们教学活动的主要依据,透彻的了解教材也是上好一节课的关键。

首先来说说本节课的教材。

我将从教材的地位与作用,教学目标,教学重点与难点三个方面对本节课的教材进行说明。

(一)教材的地位与作用。

不等式是初中代数的重要内容之一,而不等式的性质又是重中之重。

一方面,它是初中阶段最基础、最重要的一个转折;而另一方面,学好不等式的性质能帮助学生从整体认识整式性质与不等式性质的区别;在此基础上,可以使学生对生活中的数学问题有新的认识,从而扩大学生的认知结构。

同时,不等式的性质还蕴含着丰富的数学思想和方法。

因此这也是前后数学知识衔接的桥梁和纽带。

因此学好本节课有着非常重要的作用.教学目标根据新课改的要求及教材的特点,我确定了如下的教学目标:知识目标掌握不等式的三个基本性质并且能正确应用;能力目标经历探索不等式基本性质的过程,体会不等式与等式的异同点,发展学生分析问题、解决问题的能力;情感目标开展研究性学习,使学生初步体会学习不等式基本性质的价值.情感态度与价值观的培养,是学生全面发展的需要,该目标具体到本节课为通过让学生学习用不等式的基本性质解决相关问题获得成功体验,增强学好数学的信心。

教学重点难点根据教材内容的特点,结合新课程改革的基本要求,我认为本节课的重点是:理解不等式的三个基本性质。

由于在探究的过程中,需要采用类比的方法来得出结论,对学生的抽象思维能力要求较高,但对于七年级的学生而言,其形象思维能力占主导地位,在探究的过程中难免会遇到困难。

根据学生的这一特征,我认为本节课的难点为:对不等式的基本性质3的重点认识.二、学情分析学生是课堂的主人,只有了解学生才能有针对性的教学。

沪科版数学七年级下册7.1《不等式及其基本性质》教学设计

沪科版数学七年级下册7.1《不等式及其基本性质》教学设计

沪科版数学七年级下册7.1《不等式及其基本性质》教学设计一. 教材分析《不等式及其基本性质》这一节的内容主要涉及不等式的概念、不等式的基本性质以及不等式的解法。

这是初中学段数学的重要内容,对于学生来说,理解并掌握不等式的相关知识,对于后续学习函数、方程等数学概念有着重要的基础作用。

二. 学情分析学生在学习这一节的内容之前,已经学习了有理数、方程等基础知识,对于一些基本的数学运算和概念有一定的了解。

但是,对于不等式的概念和性质,可能还比较陌生,需要通过具体的教学活动来引导学生理解和掌握。

三. 教学目标1.知识与技能:使学生理解不等式的概念,掌握不等式的基本性质,学会解不等式。

2.过程与方法:通过实例的展示和学生的自主探究,培养学生的观察能力、思考能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作意识和自主学习能力。

四. 教学重难点1.重点:不等式的概念、不等式的基本性质。

2.难点:不等式的解法和不等式问题的解决。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,通过引导学生观察、思考和讨论,让学生在实践中学习和掌握不等式的相关知识。

六. 教学准备1.准备相关的教学案例和实例。

2.准备多媒体教学设备,如投影仪、电脑等。

3.准备教学用的黑板和粉笔。

七. 教学过程1.导入(5分钟)通过一个实际问题,引入不等式的概念,激发学生的兴趣。

2.呈现(10分钟)用多媒体展示不等式的相关案例,引导学生观察和思考,从而总结出不等式的基本性质。

3.操练(15分钟)让学生通过具体的例子,运用不等式的基本性质进行计算和解决问题,加深学生对知识的理解。

4.巩固(10分钟)通过一些练习题,让学生独立完成,检验学生对知识的掌握情况。

5.拓展(10分钟)引导学生思考不等式在实际生活中的应用,让学生感受到数学与生活的紧密联系。

6.小结(5分钟)对本节课的内容进行总结,强调不等式的概念和基本性质。

不等式的基本性质 说课稿 教案 教学设计

不等式的基本性质  说课稿  教案 教学设计

不等式的证明方法(一)教学目标:了解证明不等式的最基本的基本方法即比较法、综合法、分析法. 教学重点、难点:分析法 教学过程:一、情景引入:不等式历来是高考的重点内容。

对于本节来讲,复习有关不等式性质的基础知识、基本方法,而且还考察逻辑推理能力、分析问题、解决问题的能力。

要在思想方法上下功夫。

.要比较两个实数的大小,只要考察它们的差的符号即可,即利用不等式的性质:0>-⇔>b a b a0=-⇔=b a b a 0<-⇔<b a b a比较法证明不等式的一般步骤:作差—变形—判断—结论;为了判断作差后的符号,有时要把这个差变形为一个常数,或者变形为一个常数与一个或几个平方和的形式,也可变形为几个因式的积的形式,以便判断其正负。

综合法和分析法是数学中常用的两种直接证明方法,也是不等式证明中的基本方法。

由于两者在证明思路上存在着明显的互逆性,这里将其放在一起加以认识、学习,以便于对比研究两种思路方法的特点。

所谓综合法,即从已知条件出发,根据不等式的性质或已知的不等式,逐步推导出要证的不等式。

而分析法,则是由结果开始,倒过来寻找原因,直至原因成为明显的或者在已知中。

前一种是“由因及果”,后一种是“执果索因”。

打一个比方:张三在山里迷了路,救援人员从驻地出发,逐步寻找,直至找到他,这是“综合法”;而张三自己找路,直至回到驻地,这是“分析法”。

二、精讲精练:例1、 设a>0,b>0,求证:ab b a +≥b a +。

分析:当不等式是代数不等式时,常用比差法,比差法的三步骤即为函数单调性证明的步骤。

解:左-右=abb a )b a ()a1b 1)(b a (aa b b b a b a ab b a --=--=-+-=--+abb a )b a (2+-=≥0∴ 左≥右 即原不等式成立.点评:⑴做差;变形整理;判断差式的正负,该法尤其适用于具有多项式结构特征的不等式的证明.⑵本题中应注意做差后分组的原则,是以提取公因式从而判定差式的结果是大于零还是小于零为目的.变式训练1:课本P24练习第7题.例2:已知,,()lg,3n n na b c a b c n f n ++=为正数,是正整数,且 求证:2()(2).f n f n ≤22222()2lg lg ,33(2)lg .3n n nn n n n n na b c a b c f n a b c f n ⎛⎫++++== ⎪⎝⎭++=分析:由 比较两个真数联想到可用基本不等式来证明.22222222222222222()2lg lg 33222lg .922222222222()lgn n nn n n n n n n n n n n nn n n n n n n n n n n n n n n n n n n n n n n n n n n n n a b ca b c f n a b c a b b c c a a b a b b c b c c a c a a b b c c a a b c a b c a b b c c a f n ⎛⎫++++== ⎪⎝⎭+++++=≤+≤+≤+++≤+++++++∴=证明:又,,,将上面三个不等式相加,得().22222222292lg9lg (2).3n n n n n n n n n na b c a b c a b c f n +++++≤++==()点评:本题采用采用的是把几个不等式相加(或相乘)的方法,这是综合法证明不等式时常用的变形方法.变式训练2:课本P27练习第2题.例3:已知,,,,,.ABC a b c A B C △的三边长为三内角为求证:()()0,,32(2)(2)(2)0.()()()()()()0.()()()()()()0.a c A B C A B C a b c A B C a b c aA bB cC A b c a B a c b C a b c A b a A c a B a b B c b C a c C b c a b B A c a A C b c C B a b π>++=++++++++≤++<+-++-++-≤-+-+-+-+-+-≤--+--+--≤≥因为、b 、欲证原不等式成立,则只需证()()先证前一个不等式,只需证即证即①不妨设,.()()0;()()0;()()0...c A B C a b B A c a A C b c C B ≥≥≥∴--≤--≤--≤∴则①式成立,同理可证第二个不等式成立因此原不等式成立分析:本题是一个连锁不等式,也应该用逐步分析的方法分别证明,但要注意隐含条件.A B C π++=()()0,,32(2)(2)(2)0.()()()()()()0.()()()()()()0.a c A B C A B C a b c A B C a b c aA bB cC A b c a B a c b C a b c A b a A c a B a b B c b C a c C b c a b B A c a A C b c C B π>++=++++++++≤++<+-++-++-≤-+-+-+-+-+-≤--+--+--≤证明:因为、b 、欲证原不等式成立,则只需证()()先证前一个不等式,只需证即证即①不妨设,.()()0;()()0;()()0...a b c A B C a b B A c a A C b c C B ≥≥≥≥∴--≤--≤--≤∴则①式成立,同理可证第二个不等式成立因此原不等式成立 点评:本题出题角度比较新颖,能力要求较高,三角形的边角问题一般用正弦、余弦定理进行转化变形,然而本题并没有三角函数,所以想到.A B C π++=,再利用求差比较法证明。

《不等式及其基本性质》教案

《不等式及其基本性质》教案

《不等式及其基本性质》教案一、教学目标:(1)知识与技能:学生能够理解不等式的概念,掌握不等式的基本性质,能够运用不等式解决实际问题。

(2)过程与方法:通过观察、分析、归纳不等式的基本性质,培养学生逻辑思维能力和抽象概括能力。

(3)情感态度与价值观:培养学生对数学的兴趣,使学生感受到数学在生活中的重要性。

二、教学重点与难点:重点:不等式的概念,不等式的基本性质。

难点:不等式性质的证明和运用。

三、教学方法与手段:采用问题驱动法、案例分析法、小组讨论法等多种教学方法,结合多媒体课件、板书等教学手段,引导学生主动探究、积极参与。

四、教学过程:(1)导入新课:通过生活实例引入不等式的概念,激发学生的学习兴趣。

(2)新课讲解:讲解不等式的概念,引导学生理解不等式的含义。

举例说明不等式的基本性质,引导学生通过观察、分析、归纳不等式的性质。

(3)案例分析:分析实际问题,运用不等式解决问题,巩固所学知识。

(4)小组讨论:组织学生进行小组讨论,分享不等式应用实例,互相学习、交流。

(5)课堂小结:总结不等式的概念和基本性质,强调重点知识。

五、课后作业:布置适量课后作业,巩固所学知识,提高学生运用不等式解决实际问题的能力。

教案设计参考结束,可根据实际教学情况进行调整和优化。

六、教学评估:通过课堂提问、作业批改、小组讨论等方式,了解学生对不等式及其基本性质的理解程度,针对学生的掌握情况,及时调整教学方法和策略。

七、教学反思:本节课结束后,教师应认真反思教学效果,思考如何更好地引导学生理解不等式的概念和基本性质,以及如何在教学中激发学生的学习兴趣和主动性。

八、拓展与延伸:介绍不等式在实际生活中的应用,如优化问题、经济领域等,激发学生学习不等式的兴趣,培养学生的应用意识。

九、教学资源:1. 多媒体课件:用于展示不等式的概念、性质及应用实例。

2. 板书:用于黑板上展示关键知识点和推导过程。

3. 教学案例:用于分析实际问题,引导学生运用不等式解决实际问题。

青岛版数学八年级下册《不等式及其基本性质》教学设计2

青岛版数学八年级下册《不等式及其基本性质》教学设计2

青岛版数学八年级下册《不等式及其基本性质》教学设计2一. 教材分析《不等式及其基本性质》是青岛版数学八年级下册的教学内容,本节课主要介绍了不等式的概念、不等式的基本性质以及不等式的运算。

通过本节课的学习,使学生掌握不等式的基本概念,了解不等式的基本性质,能够运用不等式解决实际问题。

二. 学情分析学生在学习本节课之前,已经掌握了有理数的概念,对数学符号有一定的认识。

但部分学生对不等式的概念和性质可能还比较陌生,需要通过实例来加深理解。

此外,学生可能对不等式的运算存在一定的困难,需要通过大量的练习来熟练掌握。

三. 教学目标1.知识与技能:使学生掌握不等式的概念,了解不等式的基本性质,能够运用不等式解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神,使学生感受到数学与生活的紧密联系。

四. 教学重难点1.教学重点:不等式的概念、不等式的基本性质、不等式的运算。

2.教学难点:不等式的运算,特别是不等式组的解法。

五. 教学方法采用问题驱动法、实例教学法、合作学习法等,引导学生通过观察、思考、交流等活动,掌握不等式的概念和性质,提高不等式的运算能力。

六. 教学准备1.教学PPT:制作包含不等式概念、性质、运算等内容的PPT。

2.实例:准备一些实际问题,用于引导学生运用不等式解决。

3.练习题:准备一些不等式的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,引导学生思考如何用数学工具解决这些问题。

进而引出不等式的概念。

2.呈现(10分钟)通过PPT呈现不等式的定义、性质和运算规则。

在呈现过程中,结合实例进行解释,让学生更好地理解不等式的概念和性质。

3.操练(10分钟)让学生分组合作,解决一些不等式问题。

教师巡回指导,解答学生疑问。

4.巩固(10分钟)让学生独立完成一些不等式练习题,检验学生对不等式的掌握程度。

不等式和它的基本性质教学设计方案(精选4篇)

不等式和它的基本性质教学设计方案(精选4篇)

不等式和它的基本性质教学设计方案(精选4篇)不等式和它的基本性质方案篇1一、素质教育目标(一)知识教学点1.使学生理解掌握不等式的三条基本性质,尤其是不等式的基本性质3.2.灵活运用不等式的基本性质进行不等式形.(二)能力训练点培养学生运用类比方法观察、分析、解决问题的能力及归纳总结概括的能力.(三)德育渗透点培养学生积极主动的参与意识和勇敢尝试、探索的精神.(四)美育渗透点通过不等式基本性质的学习,渗透不等式所具有的内在同解变形的数学美,激发学生探究数学美的兴趣与激情,从而陶治学生的数学情操。

二、学法引导1.教学方法:观察法、探究法、尝试指导法、讨论法.2.学生学法:通过观察、分析、讨论,引导学生归纳小结出不等式的三条基本性质,从具体下升到理论,再由理论指导具体的练习,从而强化学生对知识的理解与掌握.三、重点·难点·疑点及解决办法(一)重点掌握不等式的三条基本性质,尤其是不等式的基本性质3.(二)难点正确应用不等式的三条基本性质进行不等式变形.(三)疑点弄不清“不等号方向不变”与“所得结果仍是不等式”之间的关系是学生学习的疑点.(四)解决办法讲清“不等式的基本性质”与“等式的基本性质”之间的区别与联系是教好本节内容的关键.四、课时安排一课时五、教具学具准备投影仪或电脑、自制胶片.六、师生互动活动设计1.通过设计的一组比较大小问题,让学生观察并归纳出不等式的三条基本性质.2.通过教师的讲解及学生的质疑,让学生在与等式性质的对比中更加深入、准确地理解不等式的三条基本性质.3.通过教师的板书及学生的互动练习,体现出以学生为主体,教师为主导的教学模式能更好地对学生实施素质教育.七、教学步骤(-)明确目标本节课主要学习不等式的三条基本性质并能熟练地加以应用.(二)整体感知通过具体的事例观察并归纳出不等式的三条基本性质,再反复比较三条性质的异同,从而寻找出在实际应用某条性质时应注意的使用条件,同时注意将不等式的三条基本性质与等式的基本性质1、2进行比较:相同点为不管是对等式还是不等式,都可以在它的两边同加(或减)同一个数或同一个整式.不同点是对于等式来说,在等式的两边乘以(或除以)同一个正数(或同一个负数)的情况下等式仍然对立.但对于不等式来说,却不一样,在用同一个正数去乘(或除)不等式两边时,不等号方向不变;而在用同一个负数去乘(或除)不等式两边时,不等号要改变方向.这是在不等式变形时应特别注意的地方.(三)教学过程1.创设情境,复习引入什么是等式?等式的基本性质是什么?学生活动:独立思考,指名回答.教师活动:注意强调等式两边都乘以或除以(除数不为0)同一个数,所得结果仍是等式.请同学们继续观察习题:(1)用“>”或“<”填空.①7+3____4+3 ②7+(-3)____4+(-3)③7×3____4×3 ④7×(-3)____4×(-3)(2)上述不等式中哪题的不等号与7>4一致?学生活动:观察思考,两个(或几个)学生回答问题,由其他学生判断正误.【教法说明】设置上述习题是为了温故而知新,为学习本节内容提供必要的知识准备.不等式有哪些基本性质呢?研究时要与等式的性质进行对比,大家知道,等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式(实质是移项法则),请同学们观察①②题,并猜想出不等式的性质.学生活动:观察思考,猜想出不等式的性质.教师活动:及时纠正学生叙述中出现的问题,特别强调指出:“仍是不等式”包括两种情况,说法不确切,一定要改为“不等号的方向不变或者不等号的方向改变.”师生活动:师生共同叙述不等式的性质,同时教师板书.不等式基本性质1 不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.对比等式两边都乘(或除以)同一个数的性质(强调所乘的数可正、可负、也可为0)请大家思考,不等式类似的性质会怎样?学生活动:观察③④题,并将题中的3换成5,-3换成一5,按题的要求再做一遍,并猜想讨论出结论.【教法说明】观察时,引导学生注意不等号的方向,用彩色粉笔标出来,并设疑“原因何在?”两边都乘(或除以)同一个负数呢?0呢?为什么?师生活动:由学生概括总结不等式的其他性质,同时教师板书.不等式基本性质2 不等式两边都乘(或除以)同一个正数,不等号的方向不变.不等式基本性质3 不等式两边都乘(或除以)同一个负数,不等号的方向改变.师生活动:将不等式-2<6两边都加上7,-9,两边都乘3,-3试一试,进一步验证上面得出的三条结论.学生活动:看课本第57~58页有关不等式性质的叙述,理解字句并默记.强调:要特别注意不等式基本性质3.实质:不等式的三条基本性质实质上是对不等式两边进行“+”、“-”、“×”、“÷”四则运算,当进行“+”、“-”法时,不等号方向不变;当乘(或除以)同一个正数时,不等号方向不变;只有当乘(或除以)同一个负数时,不等号的方向才改变.不等式的基本性质与等式的基本性质有哪些区别、联系?学生活动:思考、同桌讨论.归纳:只有乘(或除以)负数时不同,此外都类似.下面尝试用数学式子表示不等式的三条基本性质.①若,则,;②若,且,则,;③若,且,则, .师生活动:学生思考出答案,教师订正,并强调不等式性质3的应用.注意:不等式除了上述性质外,还有以下性质:①若,则.②若,且,则,这些先不要向学生说明.2.尝试反馈,巩固知识请学生先根据自己的理解,解答下面习题.例1 根据不等式的基本性质,把下列不等式化成或的形式.(1)(2)(3)(4)学生活动:学生独立思考完成,然后一个(或几个)学生回答结果.教师板书(1)(2)题解题过程.(3)(4)题由学生在练习本上完成,指定两个学生板演,然后师生共同判断板演是否正确.解:(l)根据不等式基本性质1,不等式的两边都加上2,不等号的方向不变.所以(2)根据不等式基本性质1,两边都减去,得(3)根据不等式基本性质2,两边都乘以2,得(4)根据不等式基本性质3,两边都除以-4得【教法说明】解题时要引导学生与解一元一次方程的思路进行对比,并将原题与或对照,看用哪条性质能达到题目要求,要强调每步的理论依据,尤其要注意不等式基本性质3与基本性质2的区别,解题时书写要规范.例2 设,用“<”或“>”填空.(1)(2)(3)学生活动:在练习本上完成例2,由3个学生板演完成后,其他学生判断板演是否正确,最后与书中正确解题格式对照.解:(1)因为,两边都减去3,由不等式性质1,得(2)因为,且2>0,由不等式性质2,得(3)因为,且-4<0,由不等式性质3,得教师活动:巡视辅导,了解学生作题的实际情况,及时给予纠正或鼓励.注意问题:例2(3)是根据不等式性质3,不等号方向应改变.这是学生做题时易出错误之处.【教法说明】要让学生明白推理要有依据,以后作类似的练习时,都写出根据,逐步培养学生的逻辑思维能力.3.变式训练,培养能力(1)用“>”或“<”在横线上填空,并在题后括号内填写理由.(不等式基本性质1,2,3分别用A、B、C表示.)①∵ ∴ ()②∵ ∴ ()③∵ ∴()④∵ ∴()⑤∵ ∴ ⑥∵ ∴ ()学生活动:此练习以学生抢答方式完成,目的是训练学生思维能力,表达能力,烘托学习气氛.答案:① (A)② (B)③ (C)④ (C)⑤ (C)⑥ (A)【教法说明】做此练习题时,应启发学生将所做习题与题中已知条件进行对比,观察它们是应用不等式的哪条性质,是怎样由已知变形得到的.注意应用不等式性质3时,不等号要改变方向.(2)单项选择:①由得到的条件是()A. B. C. D.②由由得到的条件是()A. B. C. D.③由得到的条件是()A. B. C. D. 是任意有理数④若,则下列各式中错误的是()A. B. C. D.师生活动:教师选出答案,学生判断正误并说明理由.答案:①A ②D ③C ④D(3)判断正误,正确的打“√”,错误的打“×”①∵ ∴ ( ) ②∵ ∴ ( )③∵ ∴ ( ) ④若,则∴,( )学生活动:一名学生说出答案,其他学生判断正误.答案:①√ ②× ③√ ④×【教法说明】以多种形式处理习题可以激发学生学习热情,提高课堂效率;(2)练习第③④题易出错,教师应讲清楚.(四)总结、扩展1.本节重点:(1)掌握不等式的三条基本性质,尤其是性质3.(2)能正确应用性质对不等式进行变形.2.注意事项:(1)要反复对比不等式性质与等式性质的异同点.(2)当不等式两边同乘(或除以)同一个数时,一定要看清是正数还是负数,对于未给定范围的字母,应分情况讨论.3.考点剖析:不等式的基本性质是历届中考中的重要考点,常见题型是选择题和填空题.八、布置作业(一)必做题:P61 A组4,5.(二)选做题:P62 B组1,2,3.参考答案(一)4.(1)(2)(3)(4)5.(1)(2)(3)(4)(5)(6)(二)1.(1)(2)(3)2.(1)(2)(3)(4)3.(1)(2)(3)九、板书设计6.1 不等式和它的基本性质(二)一、不等式的基本性质1.不等式两边都加上或减去同一个数或同一个整式,不等号的方向不变.若,则, .2.不等式两边都乘(或除以)同一个正数,不等号方向不变,若,,则 .3.不等式两边都乘(或除以)同一个负数,不等号方向改变,若,,则 .二、应用例1 解(1)(2)(3)(4)例2 解(1)(2)(3)三、小结注意不等式性质3的应用.十、背景知识与课外阅读盒子里有红、白、黑三种球,若白球的个数不少于黑球的一半,且不多于红球的,又白球和黑球的和至少是55,问盒中红球的个数最少是多少个?不等式和它的基本性质教学设计方案篇2一、素质教育目标(一)知识教学点1.使学生理解掌握不等式的三条基本性质,尤其是不等式的基本性质3.2.灵活运用不等式的基本性质进行不等式形.(二)能力训练点培养学生运用类比方法观察、分析、解决问题的能力及归纳总结概括的能力.(三)德育渗透点培养学生积极主动的参与意识和勇敢尝试、探索的精神.(四)美育渗透点通过不等式基本性质的学习,渗透不等式所具有的内在同解变形的数学美,激发学生探究数学美的兴趣与激情,从而陶治学生的数学情操。

《不等式的基本性质》说课稿

《不等式的基本性质》说课稿

《不等式的基本性质》说课稿《《不等式的基本性质》说课稿》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!教学目标知识与技能总结不等式的基本性质;能够运用不等式的基本性质解决有关问题。

过程与方法经历不等式基本性质的探索过程,分组活动探索不等式的性质,体会不等式变形和等式变形的区别和联系。

情感态度价值观通过分组活动探索不等式的性质,体会在解决问题过程中与他人合作的重要性;通过不等式基本性质的学习,渗透不等式所具有的内在同解变形的数学美,激发学生探究数学美的兴趣与激情,从而陶冶数学情操。

重点难点重点:不等式的三个性质。

难点:不等式性质3的探索及运用。

解决办法:不等式的基本性质3的导出,采用通过学生自己动手实践、观察、归纳猜想结论、验证等环节来突破的。

并在理解的基础上加强练习,以期达到学生巩固所学知识的目的。

教学方法小组讨论、合作探究、讲练结合教具准备多媒体,或投影仪课时安排1课时教学设计过程问题:等式有哪些性质?学生回答等式的性质:性质1等式两边同时加(或减)同一个数(或式子),结果仍相等。

性质2等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

此次活动中教师应重点关注:(1)学生对已学过的等式性质内容的记忆,及叙述语言的准确性;(2)学生对等式性质得出过程的回顾。

通过回顾等式的性质,帮助学生回顾等式性质的得出过程,为本节课类比等式的性质,探索不等式的性质做好铺垫。

并且从学生已有的数学经验出发,建立新旧知识之间的联系,培养学生梳理知识体系的习惯。

不等式的基本性质是不等式变形的依据。

为了求出不等式的解,我们先来探讨不等式的基本性质。

如果a>b,那么,在数轴上表示a的点A位于表示b的点B的右侧,如图13—2所示。

数轴的单位长度图13—2(一)试着做做1.请你在上面的数轴上画出表示a+3和b+3的点来,哪个点在右侧?并用不等号连接下面的式子:a+3______b+3。

类似地,应有a+c______b+c。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《不等式及其基本性质》说课稿设计
《不等式及其基本性质》说课稿设计
《不等式的基本性质》它是北师大版八年级下册第一章第二节的内容。

今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法:本节内容不等式,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。

同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。

根据《新课程标准》的要求,教材的内容兼顾我校八年级学生的特点,我制定了如下教学目标:
知识与技能:
1.感受生活中存在的不等关系,了解不等式的意义。

2.掌握不等式的基本性质。

过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。

情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。

教学重难点:
重点:不等式概念及其基本性质
难点:不等式基本性质3
教法与学法:
1.教学理念:“人人学有用的数学”
2.教学方法:观察法、引导发现法、讨论法.
3.教学手段:多媒体应用教学
4.学法指导:尝试,猜想,归纳,总结
根据《数学课程标准》的要求,教材和学生的特点,我制定了以下四个教学环节。

一、创设情境,导入新课
上课伊始,我将用一个公园买门票如何才划算的例子导入课题。

世纪公园的票价是:每人5元;一次购票满30张,每张可少收1元。

某班有27名团员去世纪公园进行活动。

当领队王小华准备好了零钱到售票处买27张票时,爱动脑筋的李敏同学喊住了王小华,提议买30张票。

但有的同学不明白,明明我们只有27个人,买30张票,岂不是“浪费”吗?
(此处学生是很容易得出买30张门票需要4X30=120(元),买27张门票需要5X27=135(元),由于120〈135,所以买30张门票比买27张还要划算。

由此建立了一个数与数之间的不等关系式)紧接着进一步提问:若人数是x时,又当如何买票划算?
二、探求新知,讲授新课
引例列出了数与数之间的不等关系和含有未知量120 接下来我用一组例题来巩固一下对不等式概念的认知,把表示不等量关系的
常用关键词提出。

(1)a是负数;
(2)a是非负数;
(3)a与b的和小于5;
(4)x与2的差大于-1;
(5)x的4倍不大于7;
(6)的一半不小于3
关键词:非负数,非正数,不大于,不小于,不超过,至少
回到引入课题时的门票问题120 难点突破:通过上面三组算式,学生已经尝试着归纳出不等式的三条基本性质了。

不等式性质3是本节的难点。

在不等式性质3用数探讨出以后,换一个角度让学生想一想,是否能在数轴上任取两个点,用相反数的相关知识挖掘一下,乘以或除以一个负数时,任意两个数比较是否性质3都成立。

通过“数形结合”的'思想,使数的取值从特殊化到一般化,从对具体数的感知完成到字母代替数的升华。

让学生用实例对一些数学猜想作出检验,从而增加猜想的可信程度。

同时,让学生尝试从不同角度寻求解决问题的方法并能有效地解决问题。

反馈练习:用一个小练习巩固三条性质。

如果a>b,那么
(1)a-3b-3(2)2a2b(3)-3a-3b
提出疑问,我们讨论性质2,3是好象遗忘了一个数0。

引出让学生归纳,等式与不等式的区别与联系
三、拓展训练
根据不等式基本性质,将下列不等式化为“”的形式
(1)x-13
再次回到开头的门票问题,让学生解出相应的x的取值范围四、小结
1.新知识
一个数学概念;两种数学思想;三条基本性质
2.与旧知识的联系
等式性质与不等式性质的异同
五、作业的布置
以上是我对这节课的教学的看法,希望各位专家指正。

谢谢!“让学生主动参与数学教学的全过程,真正成为学习的主人”。

相关文档
最新文档