第七章-平面直角坐标系知识点归纳及典型例题

合集下载

七年级数学下册第七章平面直角坐标系知识汇总笔记

七年级数学下册第七章平面直角坐标系知识汇总笔记

(名师选题)七年级数学下册第七章平面直角坐标系知识汇总笔记单选题1、在平面直角坐标系中,如果过点A(3,2)和B的直线平行于x轴,且AB=4,则点B的坐标为()A.(7,2)B.(1,5)C.(1,5)或(1,−1)D.(7,2)或(−1,2)答案:D分析:根据平行于x轴的直线的纵坐标相同,设点B的坐标为(a,2),利用AB=4得到|a−3|=4,求出a即可求解.解:∵过点A的直线平行于x轴,∴点A和点B的纵坐标相等,∴设点B的坐标为(a,2).∵AB=4,∴|a−3|=4,解得a1=7,a2=−1,∴点B的坐标为(7,2)或(−1,2).故选:D.小提示:本题主要考查坐标与图形的性质,解题的关键是掌握平行于坐标轴的两点的横纵坐标特点:平行于横轴时纵坐标相等,平行于纵轴时横坐标相等.2、在平面直角坐标系中,将点A(m﹣1,n+2)先向右平移3个单位,再向上平移2个单位,得到点A′.若点A′位于第四象限,则m、n的取值范围分别是()A.m>0,n<0B.m>1,n<2C.m>1,n<0D.m>﹣2,n<﹣4答案:D分析:先根据平移得到点A′的坐标,再根据点A′在第四象限构建不等式解决问题.解:由题意,点A′的坐标为(m−1+3,n+2+2),即:(m+2,n+4),∵点A′位于第四象限,∴{m+2>0,n+4<0∴{m>−2,n<−4故选:D.小提示:本题考查坐标与图形变化-平移,解题的关键是构建不等式解决问题,属于中考常考题型.3、若点P(a+1,2−2a)关干x轴的对称点在第四象限,则a的取值范围在数轴上表示为()A.B.C.D.答案:C分析:先根据题意求出点P关于x轴的对称点P′坐标,根据点P′在第四象限列方程组,求解即可.∵P(a+1,2−2a)∴点P关于x轴的对称点P′坐标为P′(a+1,2a−2)∵P′在第四象限∴{a+1>02a−2<0解得:−1<a<1故选:C小提示:本题考查点关于坐标轴对称点求法,以及根据象限点去判断参数的取值范围,能根据题意找见相关的关系是解题关键.4、如图,已知直线l1⊥l2,且在某平面直角坐标系中,x轴∥l1,y轴∥l2,若点A的坐标为(-1,2),点B的坐标为(2,-1),则点C在( )A.第一象限B.第二象限C.第三象限D.第四象限答案:C分析:根据题意作出平面直角坐标系,根据图象可以直接得到答案.解:∵点A的坐标为(−1,2),点B的坐标为(2,−1),如图,依题意可画出直角坐标系,∴点A位于第四象限,点B位于第二象限,∴点C位于第三象限.故选:C.小提示:考查了坐标与图形性质,解题时,利用了“数形结合”的数学思想,比较直观,应用“数形结合”的数学思想是解题的关键.5、若M(x,y)满足2xy=1,点M所在的象限是()A.第一、二象限B.第一、三象限C.第二、四象限D.不能确定分析:由条件可得xy=1>0,则x,y同号,从而可得答案.2解:∵2xy=1,>0,∴xy=12∴x,y同号,∴M(x,y)在第一或第三象限,故选B小提示:本题考查了平面直角坐标系内点的坐标问题,求出x、y同号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).6、在平面直角坐标系xOy中,已知点P在x轴下方,在y轴右侧,且点P到x轴的距离为2,到y轴的距离为1,则点P的坐标为()A.(1,−2)B.(−1,2)C.(2,−1)D.(−2,1)答案:A分析:根据第四象限内点的横坐标是正数,纵坐标是负数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.解:∵点P在x轴下方,在y轴右侧,∴点P在第四象限,∵点P到x轴的距离为2,到y轴的距离为1,∴点P的横坐标为1,纵坐标为-2,∴点P的坐标为(1,-2),故选:A.小提示:本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.7、点P(a,b)在第二象限,若点P到x轴的距离是5,到y轴的距离是2,则点P的坐标为()A.(-2,5)B.(-5,2)C.(2,-5)D.(5,-2)分析:根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.解:∵点P(a,b)在第二象限内,点P到x轴的距离是5,到y轴的距离是2,∴点P的横坐标为a=−2,纵坐标为b=5,∴点P的坐标为(−2,5).故选:A.小提示:本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.8、在平面直角坐标系xoy中,对于点P(x,y),我们把点P′(-y+1,x+1)叫做点P伴随点.已知点A1的伴随点为A2,,点A2的伴随点为A3,,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(2,4),点A2020的坐标为( )A.(-3,3)B.(-2,-2)C.(3,-1)D.(2,4)答案:C分析:根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2020除以4,根据商和余数的情况确定点A2020的坐标即可.∵A1(2,4),∴A2(-3,3),A3(-2,-2),A4(3,-1),A5(2,4),A6(-3,3),…,依此类推,每4个点为一个循环组依次循环,∵2020÷4=505,∴点A2020的坐标与A4的坐标相同,为(3,-1),故选:C.小提示:本题考查点的坐标规律,读懂题目信息,理解“伴随点”的定义,并求出每4个点为一个循环组依次循环是解题的关键.9、如果第二列第一行用有序数对(2,1)表示,那么数对(3,6)和(3,4)表示的位置是()A.同一行B.同一列C.同行同列D.不同行不同列答案:B分析:数对中第一个数字表示列数,第二个数字表示行数,据此可作出判断.解:第二列第一行用数对(2,1)表示,则数对(3,6)表示第三列,第六行,数对(3,4)表示表示第三列,第四行.所以数对(3,6)和(3,4)表示的位置是同一列不同行.故选:B.小提示:本题主要考查了坐标确定位置,一般用数对表示点位置的方法是第一个数字表示列,第二个数字表示行,也有例外,具体题要根据已知条件确定.10、如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)…按这样的运动规律经过第2022次运动后,动点P的坐标是()A.(2021,1)B.(2021,0)C.(2022,0)D.(2022,2)答案:C分析:根据题意可得每4次运动,点的纵坐标不发生变化,第n次运动,横坐标就是n,据此求解即可.解:∵第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次接着运动到点(4,0),第5次接着运动到点(5,1),第6次接着运动到点(6,0),第7次接着运动到点(7,2),第8次接着运动到点(8,0),第9次接着运动到点(9,1),∴由此可知每4次运动,点的纵坐标不发生变化,第n次运动,横坐标就是n,∵2022÷4=505…2,∴第2022次运动后,点P的纵坐标与第二次运动后的纵坐标相同为0,横坐标为2022,∴点P的坐标为(2022,0),故选C.小提示:本题主要考查了点的坐标规律探索,正确理解题意找到点的坐标规律是解题的关键.填空题11、如图,在中国象棋的棋盘上,建立适当的平面直角坐标系,使“帅”的坐标是(2,﹣1),“车”的坐标是(﹣2,0),则该坐标系中“兵”的坐标为 _____.答案:(1,3)分析:先利用帅”的坐标是(2,-1),“车”的坐标是(-2,0),画出直角坐标系,然后写出“兵”位于点的坐标.解:如图,建立直角坐标,“兵”位于点(1,3).所以答案是:(1,3).小提示:本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住直角坐标系中特殊位置点的坐标特征.12、点A(3m﹣1,2m)位于第一、三象限的角平分线上,则m=_____.答案:1分析:根据第一、三象限角平分线上点的坐标特征得到得3m﹣1=2m,然后解关于m的一次方程即可.解:∵点A(3m﹣1,2m)在第一、三象限的角平分线上,∴3m﹣1=2m,解得:m=1.所以答案是:1小提示:此题考查象限及点的坐标的有关性质,解题关键在于掌握其定义列出方程.13、如图,在平面直角坐标系中,一动点沿箭头所示的方向,每次移动一个单位长度,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,−1),P5(2,−1),…,则P2022的坐标是______.答案:(674,0)分析:该点按6次一循环的规律移动,用2022除以6,再确定商和余数即可.解:由题意该点按“上→右→下→下→右→上”的方向每6次一循环移动的规律移动,且每移动一个循环向右移动2个单位长度可得,2022÷6=337,∴点P2022的横坐标为2×336+2=674,点P2022的纵坐标是0,所以答案是:(674,0).小提示:此题考查了点的坐标方面规律问题的解决能力,关键是能准确理解题意确定出点移动的规律.14、如图,在平面直角坐标系xOy中,点A、B、P的坐标分别为(1,0),(2,5),(4,2).若点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,则点C的坐标为______.答案:(7,4)或(6,5)或(1,4).分析:由勾股定理求出PA=PB=√32+22=√13,由点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,得出PC=PA=PB=√13,即可得出点C的坐标.∵点A、B、P的坐标分别为(1,0),(2,5),(4,2),∴PA=PB=√32+22=√13,∵点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,∴PC=PA=PB=√13=√22+32,则点C的坐标为(7,4)或(6,5)或(1,4);故答案为(7,4)或(6,5)或(1,4).15、如图,在平面直角坐标系中,点A从A1(−4,0)依次跳动到A2(−4,1),A3(−3,1),A4(−3,0),A5(−2,0),A6(−2,3),A7(−1,3),A8(−1,0),A9(−1,−3),A10(0,−3),A11(0,0),…,按此规律,则点A2022的坐标是______________答案:(804,1)分析:根据图形可以发现规律,从A1到A11是一个循环,一个循环周期是10,一个循环后又回到x轴上,且一个循环后横坐标增加4个单位,先求出点A2021的坐标(804,0),再求点A2022的坐标即可.解:观察图形可知,n为正整数时,A n的纵坐标为0,1,3,﹣3纵坐标为0的点:A1,A4A5,A8A11,A14⋯⋯纵坐标为1的点:A2,A3A12,A13A22,A23⋯⋯纵坐标为3的点:A6,A7A16,A17A26,A27⋯⋯纵坐标为﹣3的点:A9,A10A19,A20A29,A30⋯⋯可以看出纵坐标为1,3,﹣3时,n取连续的两个数为一组,则10个10个的增加,∵2021=10×202+1,纵坐标为1的规律(A2+10(n−1),A2+10(n−1)+1)∴A2022的纵坐标为1,由2+10(n−1)=2022,解得n=203,∵A2022正好是A2往右循环203次,∴A2022横坐标为﹣4+(203-1)×4=804,∴点A2022的坐标是(804,1),所以答案是:(804,1)小提示:此题主要考查点的规律变化,解题关键是仔细观察图,找出点的变化规律.解答题16、如图,点A、B、C都在方格纸的格点上,若点A的坐标为(0,2),点B的坐标为(2,0),试建立恰当的直角坐标系,写出点C的坐标.答案:图见解析,C(2,1)分析:根据点的坐标建立坐标系,再确定坐标.解:如图所示建立直角坐标系:∴点C的坐标为(2,1).小提示:本题考查了坐标系及其点的坐标,正确建立平面直角坐标系是解题的关键.17、如图,在平面直角坐标系中,点A、B的坐标分别为A(a,0)、B(0,b),且实数a、b满足√a−2b+8+ (2a−b−20)2=0.(1)求A、B两点的坐标;(2)如图1,已知坐标轴上有两动点P,Q同时出发,P点从A点出发沿x轴负方向以每秒2个单位长度的速度向点O匀速移动,Q点从O点出发沿y轴正方向以每秒1个单位长度的速度向点B匀速移动,点P到达O点整个运动随之结束.AB的中点C的坐标是(8,6),设运动时间为t秒.是否存在这样的t,使得△OCP的面积等于△OCQ面积的2倍?若存在,请求出t的值;若不存在,请说明理由;(3)如图2,在(2)的条件下,若∠COA=∠CAO,点G是第二象限中一点,并且y轴平分∠GOC.点E是线段OB上一动点,连接AE交OC于点H,当点E在线段OB上运动的过程中,探究∠GOB,∠OHA,∠BAE之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).答案:(1)A (16,0),B (0,12)(2)存在,t =247(3)2∠GOB +∠BAE =∠OHA ,理由见解析分析:(1)根据算术平方根的非负性列出二元一次方程组,解方程组得到答案;(2)根据题意用t 表示出OP 、OQ ,根据三角形的面积公式列出方程,解方程即可求出t ;(3)过点H 作HF ∥OG 交x 轴于F ,根据平行线的性质得到∠OHF =∠GOH ,证明HF ∥AB ,根据平行线的性质得到∠AHF =∠BAE ,结合图形计算,证明结论.(1)解:∵√a −2b +8+√2a −b −20=0,∴{a −2b +8=02a −b −20=0, 解得:{a =16b =12, ∴A (16,0),B (0,12);(2)解:解:存在t ,使得△OCP 的面积等于△OCQ 面积的2倍由(1)知,A (16,0),B (0,12),∴OA =16,OB =12,∵OQ =t ,PA =2t ,∴OP =16−2t ,∵C (8,6),∴S ΔOCQ =12OQ ×|x C |=12t ×8=4t ,S ΔOCP =12OP ×|y C |=12(16−2t )×6=48−6t ,∵△OCP 的面积等于△OCQ 面积的2倍,∴48−6t =2×4t ,解得:t =247, ∴当t =247时,△OCP 的面积等于△OCQ 面积的2倍;(3)解:2∠GOB +∠BAE =∠OHA ,理由如下:∵∠COA +∠BOC =∠BOA =90°,∴∠OBA +∠BAO =90°,又∵∠COA=∠CAO,∴∠OBA=∠BOC,∵y轴平分∠GOC,∴∠GOB=∠BOC,∴∠GOB=∠OBA,∴OG∥BA,过点H作HF∥OG交x轴于F,∴HF∥BA,∴∠FHA=∠BAE,∵OG∥FH,∴∠GOC=∠FHO,∴∠GOC+∠BAE=∠FHO+∠FHA,即∠GOC+∠BAE=∠OHA,∴2∠GOB+∠BAE=∠OHA.小提示:本题考查的是非负性的性质,三角形的面积公式,角平分线的定义,平行线的性质,正确作出辅助线是解本题的关键.18、如图为某中学新校区分布图的一部分,方格纸中每个小方格都是边长为1个单位长度的正方形,若教学楼的坐标为A(1,2),图书馆的坐标为B(−2,−1),解答下列问题:(1)在图中找到坐标系中的原点,并建立平面直角坐标系;(2)若体育馆的坐标为C(1,−3),食堂的坐标为D(2,0),请在图中标出体育馆和食堂的位置,并求出教学楼到体育馆的距离(1格=150米).答案:(1)见解析(2)体育馆和食堂的位置见解析;教学楼到体育馆的距离为750米分析:(1)根据点A的坐标即可确定原点的位置;(2)由(1)可直接标出C,D的位置,进而即可求解.(1)解:根据点A、B的坐标,确定原点O,建立平面直角坐标系,如图所示:(2)体育馆和食堂的位置如上图所示,教学楼到体育馆的距离为5×150=750(米).小提示:本题主要考查平面直角坐标系的应用,关键是要能根据已知点的坐标确定原点的位置,然后才能标出其他点的坐标.。

东营市胜利第一中学七年级数学下册第七章【平面直角坐标系】知识点总结(含解析)

东营市胜利第一中学七年级数学下册第七章【平面直角坐标系】知识点总结(含解析)

一、选择题1.已知点32,)6(M a a -+.若点M 到两坐标轴的距离相等,则a 的值为( ) A .4 B .6- C .1-或4 D .6-或232.在平面直角坐标系中,将三角形各顶点的纵坐标都加上3,横坐标保持不变,所得图形的位置与原图形相比( )A .向上平移3个单位B .向下平移3个单位C .向右平移3个单位D .向左平移3个单位3.如图,点A 的坐标是()3,1-将四边形ABCD 先向左平移3个单位,再向上平移2个单位,那么点A 的对应点A '的坐标是( )A .()0,1B .()6,1C .()0,3-D .()6,3-4.在平面直角坐标系中,点A 的坐标为(-4,3),AB ∥y 轴,AB=5,则点B 的坐标为( ) A .(1,3)B .(-4,8)C .(-4,8)或(-4,-2)D .(1,3)或(-9,3)5.若点P (x, y )在第二象限,且2,3x y ==,则x + y =( )A .-1B .1C .5D .-56.若实数a ,b 2(2)30a b +-=,则点P(a ,b)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 7.已知点A 坐标为()2,3-,点A 关于x 轴的对称点为A ',则A '关于y 轴对称点的坐标为( )A .()2,3--B .()2,3C .()2,3-D .以上都不对 8.点()P 3,2-在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 9.如图,在直角坐标系中,边长为2的等边三角形12OA A 的一条边2OA 在x 的正半轴上,O 为坐标原点;将12OA A △沿x 轴正方向依次向右移动2个单位,依次得345A A A △,678A A A ……则顶点2019A 的坐标是( )A .()2690,0B .()2692,0C .()2694,0D .无法确定 10.在平面直角坐标中,点()1,2P 平移后的坐标是)3(3,-'P ,按照同样的规律平移其它点,则以下各点的平移变换中( )符合这种要求.A .()3,24(,2)→-B .()(104),5,--→-C .(1.2,5)→(-3.2,6)D .122.5, 1.5,33⎛⎫⎛⎫-→- ⎪ ⎪⎝⎭⎝⎭11.如图所示,某战役缴获敌人防御工事坐标地图碎片,依稀可见,一号暗堡的坐标为(4,2),四号暗堡的坐标为(2,4)-,原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部的位置大约是( )A .A 处B .B 处C .C 处D .D 处二、填空题12.下列四个命题中:①对顶角相等;②如果两条直线被第三条直线所截,那么同位角相等;③如果两个实数的平方相等,那么这两个实数也相等;④当0m ≠时,点()2,P m m -在第四象限内.其中真命题有________(填序号).13.若点A (m +2,﹣3)与点B (﹣4,n +5)在二四象限角平分线上,则m +n =_____. 14.直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),……,按这样的运动规律,动点第2021次运动到的点的坐标为____________.15.在平面直角坐标系中,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a),(b ,3),则a 2-2b 的值为______.16.在平面直角坐标系中,若点3(1)M ,与点()3N x ,的距离是8,则x 的值是________ 17.在平面直角坐标系中,对于任意三点A 、B 、C 的“矩面积”,给出如下定义:水平底a 为任意两点的横坐标差的最大值,铅垂高h 为任意两点的纵坐标差的最大值,则“矩面积”S =ah .若A (1,2),B (﹣2,1),C (0,t )三点的“矩面积”是18,则t 的值为_____. 18.如图,已知点A 的坐标为(−2,2),点C 的坐标为(2,1),则点B 的坐标是____.19.在平面直角坐标系中,对于平面内任一点(),a b ,若规定以下三种变换:①()(),,a b a b ∆=-;②(),a b O (),a b =--;③()(),,a b a b Ω=-按照以上变换例如:()()()1,21,2∆O =-,则()()2,5O Ω等于__________.20.如果点P (a ﹣1,a +2)在x 轴上,则a 的值为_____.21.把所有正整数从小到大排列,并按如下规律分组:(1)、(2,3)、(4,5,6)、(7,8,9,10)、……,若A n =(a ,b )表示正整数n 为第a 组第b 个数(从左往右数),如A 7=(4,1),则A 20=______________. 三、解答题22.如图,在平面直角坐标系中,四边形OABC 各顶点的坐标分别是()0,0O ,()0,12A ,()10,8B -,()14,0C -,求四边形OABC 的面积.23.在平面直角坐标系xOy 中,△ABC 的位置如图所示.(l )分别写出△ABC 各个顶点的坐标.(2)请在图中画出△ABC 关于y 轴对称的图形△A'B'C'.(3)计算出△ABC 的面积.24.平面直角坐标系中有点A (m +6n ,-1),B (-2,2n -m ),连接AB ,将线段AB 先向上平移,再向右平移,得到其对应线段A 'B '(点A '和点A 对应,点B '和点B 对应),两个端点分别为A '(2m +5n ,5),B '(2,m +2n ).分别求出点A '、B '的坐标.25.正方形的边长为220),并写出另外三个顶点的坐标.一、选择题1.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( ) A .()2,0- B .()2,2- C .()2,0 D .()5,12.第24届冬季奥林匹克运动会将于2022年由北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )A .离北京市200千米B .在河北省C .在宁德市北方D .东经114.8°,北纬40.8°3.太原植物园是山西省唯一集科学研究、科普教育、园艺观赏和文化旅游于一体的综合性植物园.其标志性建筑为热带植物馆、沙生植物馆、主题花卉馆三个展览温室,远远望去犹如镶嵌在湖边的3颗大小不一的“露珠”(图1).若利用网格(图2)建立适当的平面直角坐标系,表示东门的点的坐标为()3,2A ,表示热带植物馆入口的点的坐标为()3,3B -,那么儿童游乐园所在的位置C 的坐标应是( )A .()5,1-B .()2,4--C .()8,3--D .()5,1-- 4.在平面直角坐标系中,点A 的坐标为(21a +,3-),则点A 在( )A .第一象限B .第二象限C .第三象限D .第四象限 5.如图,在ABC ∆中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点B 的坐标为()1,4,则点A 的坐标为( )A .()6,3-B .()3,6-C .()4,3-D .()3,4- 6.如图,一个粒子在第一象限内及x 轴,y 轴上运动,第一分钟内从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示的与x 轴,y 轴平行的方向来回运动,且每分钟移动1个长度单位,那么,第2017分钟时,这个粒子所在位置的坐标是( )A .(7,44)B .(8,45)C .(45,8)D .(44,7) 7.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限 8.下列说法正确的是( )A .若0ab =,则点(,)P a b 表示原点B .点(1,)a 在第三象限C .已知点(3,3)A -与点(3,3)B ,则直线//AB x 轴D .若0ab >,则点(,)P a b 在第一或第三象限9.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2) B .(0,4) C .(3,1) D .(﹣3,1) 10.若点P (﹣m ,﹣3)在第四象限,则m 满足( )A .m >3B .0<m≤3C .m <0D .m <0或m >3 11.如图,线段OA ,OB 分别从与x 轴和y 轴重合的位置出发,绕着原点O 顺时针转动,已知OA 每秒转动45︒,OB 的转动速度是每秒转动30,则第2020秒时,OA 与OB 之间的夹角的度数为( )A .90︒B .145︒C .150︒D .165︒二、填空题12.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点(至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若(1,1)P -,(2,3)Q ,则P ,Q 的“实际距离”为5,即5PS SQ +=或5PT TQ +=.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为(2,2)A ,(4,2)B -,(2,4)C --,若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为______.13.如图,将边长为1的正方形OABP 沿x 轴正方向连续翻转,点P 依次落在点1P ,2P ,3P ,4P ,…的位置,那么2016P 的坐标是________.14.如图点 A 、B 的坐标分别为(1,2)、(3,0),将△AOB 沿 x 轴向右平移,得到△CDE . 已知点 D 在的点 B 左侧,且 DB =1,则点 C 的坐标为 ____ .15.已知点M 在y 轴上,纵坐标为4,点P (6,﹣4),则△OMP 的面积是__. 16.在平面直角坐标系中,有点A (a ﹣2,a ),过点A 作AB ⊥x 轴,交x 轴于点B ,且AB =2,则点A 的坐标是___.17.如图,在平面直角坐标系上有点1,0A ,点A 第一次跳动至点()11,1A -,第二次点1A 向右跳到()22,1A ,第三次点2A 跳到()32,2A -,第四次点3A 向右跳动至点()43,2A ,…,依此规律跳动下去,则点2019A 与点2020A 之间的距离是___________.18.已知点 P(b+1,b-2)在x 轴上,则P 的横坐标值为____19.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.那么点A 2020的坐标是________.20.已知点P 在第四象限,且到x 轴的距离是1,到y 轴的距离是3,则P 的坐标是______. 21.如图,直线BC 经过原点O ,点A 在x 轴上,AD BC ⊥于D .若A (4,0),B (m ,3),C (n ,-5),则AD BC =______.三、解答题22.在平面直角坐标系中,有A(﹣2,a +1),B(a ﹣1,4),C(b ﹣2,b )三点.(1)当点C 在y 轴上时,求点C 的坐标;(2)当AB ∥x 轴时,求A ,B 两点间的距离;(3)当CD ⊥x 轴于点D ,且CD =1时,求点C 的坐标.23.正方形的边长为2,建立适当的直角坐标系,使它的一个顶点的坐标为(2,0),并写出另外三个顶点的坐标.24.如图,平面直角坐标系中,已知点A (-3,3),B (-5,1),C (-2,0),P ( )是△ABC 的边AC 上任意一点,△ABC 经过平移后得到△A 1B 1C 1,点P 的对应点为 P 1 ( a +6,b+2 )(1)直接写出点A 1,B 1,C 1的坐标;(2)在图中画出△A 1B 1C 1;(3)求△ABC 的面积.25.已知()4,0A ,点B 在x 轴上,且5AB =.(1)直接写出点B 的坐标;(2)若点C 在y 轴上,且10ABC S =△,求点C 的坐标. (3)若点()3,2D a a -+,且15ABD S =,求点D 的坐标.一、选择题1.第24届冬季奥林匹克运动会将于2022年由北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )A .离北京市200千米B .在河北省C .在宁德市北方D .东经114.8°,北纬40.8°2.在平面直角坐标系中,点()2,1-关于x 轴对称的点的坐标是( )A .()2,1B .()2,1-C .()2,1--D .()2,1- 3.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,……按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,0B .()2020,1C .()2021,1D .()2021,2 4.点A (n+2,1﹣n )不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限 5.点(,)M x y 在第二象限,且230,40x y -=-=,则点M 的坐标是( )A .(3,2)-B .(3,2)-C .(2,3)-D .(2,3)- 6.如图,在直角坐标系中,边长为2的等边三角形12OA A 的一条边2OA 在x 的正半轴上,O 为坐标原点;将12OA A △沿x 轴正方向依次向右移动2个单位,依次得345A A A △,678A A A ……则顶点2019A 的坐标是( )A .()2690,0B .()2692,0C .()2694,0D .无法确定 7.如图,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(0,1),将线段AB 平移,使其一个端点到C (3,2),则平移后另一端点的坐标为( )A .(1,3)B .(5,1)C .(1,3)或(3,5)D .(1,3)或(5,1) 8.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)()()()()()1,01,11,22,13,0....→→→→→→,则2018分钟时粒子所在点的横坐标为( )A .900B .946C .990D .8869.若点(1,)A n -在x 轴上,则点(1,1)B n n +-在( ).A .第一象限B .第二象限C .第三象限D .第四象限 10.已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在x 轴的上方,则点P 的坐标为( )A .(2,3)B .(3,2)C .(2,3)或(-2,3)D .(3,2)或(-3,2)11.如图,△ABC 的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( )A .4B .8C .82D .16二、填空题12.如图所示,点1,0A 、B(-1,1)、()2,2C ,则ABC 的面积是_________.13.若电影票上座位是12排5号可记为(12,5),则(5,6)表示_______________. 14.若点P 位于x 轴上方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,则点P 的坐标是_____________.15.写一个第三象限的点坐标,这个点坐标是_______________.16.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如()1,0,()2,0,()2,1,()1,1,1,2,()2,2根据这个规律,第2020个点的坐标为______.17.在平面直角坐标系中,将点A (5,﹣8)向左平移得到点B (x +3,x ﹣2),则点B 的坐标为_____.18.若P(2-a ,2a+3)到两坐标轴的距离相等,则点P 的坐标是____________________. 19.如图,已知点A 的坐标为(−2,2),点C 的坐标为(2,1),则点B 的坐标是____.20.已知点()24,1P m m +-.()1若点P 在x 轴上,则点P 的坐标为________;()2若点P 在第四象限,且到y 轴的距离是2,则点P 的坐标为________.21.在平面直角坐标系中,点()3,1A -在第______象限.三、解答题22.在平面直角坐标系中,点P(2﹣m ,3m +6).(1)若点P 与x 轴的距离为9,求m 的值;(2)若点P 在过点A(2,﹣3)且与y 轴平行的直线上,求点P 的坐标.23.如图,已知火车站的坐标为()2,1,文化宫的坐标为()1,2-.(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育馆、市场、超市、宾馆的坐标;(3)请将原点O ,宾馆C 和文化宫B ,看作三点用线段连起来,将得OBC ,然后将此三角形向下平移3个单位长度,画出平移后的111O B C ,并求出其面积.24.如图,∠ABC 在建立了平面直角坐标系的方格纸中,方格纸中的每个小方格都是边长为1个单位长度的正方形.(1)请写出三角形ABC 各顶点的坐标;(2)直接写出三角形ABC 的面积;(3)把三角形ABC 平移得到A B C '''∆,点B 经过平移后对应点为()6,5B ',请在图中画出A B C '''∆.25.如图1,在平面直角坐标系中,A (a ,0),C (b ,4),且满足(a+5)2+5-b =0,过C 作CB ⊥x 轴于B .(1)a = ,b = ,三角形ABC 的面积= ;(2)若过B 作BD //AC 交y 轴于D ,且AE ,DE 分别平分∠CAB ,∠ODB ,如图2,求∠AED 的度数;(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等?若存在,求出P 点坐标;若不存在,请说明理由.。

初一数学下册(人教版)第七章平面直角坐标系7.1知识点总结含同步练习及答案

初一数学下册(人教版)第七章平面直角坐标系7.1知识点总结含同步练习及答案

描述:初一数学下册(人教版)知识点总结含同步练习题及答案第七章 平面直角坐标系 7.1 平面直角坐标系一、学习任务1. 理解有序数对、平面直角坐标系的概念,掌握平面内的点与有序数对的一一对应关系,能熟练的在坐标系中,根据坐标描出点的位置,也能由点的位置写出点的坐标.2. 了解象限的概念,掌握各象限和坐标轴的特征.二、知识清单点的坐标与坐标系三、知识讲解1.点的坐标与坐标系有序数对有顺序的两个数 与 组成数对,叫做有序数对(ordered pair ),记作 .当 时, 和 是不同的两个有序实数对.平面直角坐标系在平面内,两条互相垂直、原点重合的数轴,组成平面直角坐标系(rectangular coordinatesystem ).水平的数轴称为 轴或横轴,习惯取向右为正方向,竖直的数轴称为 轴或纵轴,习惯取向上为正方向,两坐标轴的交点为平面直角坐标系的原点. 轴和 轴把坐标平面分成Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,每个部分称为象限(quadrant ),按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限.点的坐标对于平面内任意一点 ,过点 向 轴、 轴作垂线,垂足在 轴、 轴上对应的数 ,分别叫做点 的横坐标和纵坐标,有序数对 叫做点 的坐标,记作 .坐标轴上的点不属于任何象限.a b (a ,b )a ≠b(a ,b )(b ,a )x y x y P P x y x y a bP (a ,b)P P (a ,b )例题:点到坐标轴的距离点 到 轴的距离是点的纵坐标的绝对值,即 ;点 到 轴的距离是点的横坐标的绝对值,即 .各象限的点的坐标点 在第一象限 ,;点 在第二象限 ,;点 在第三象限 ,;点 在第四象限 ,.坐标轴上点的坐标点 在 轴上, 为任意实数;点 在 轴上, 为任意实数;点 既在 轴上,又在 轴上,,即点 的坐标为 .象限角平分线上的点当点在第一、三象限夹角平分线上时,则点的横纵坐标相等;当点在第二、四象限夹角平分线上时,则点的横纵坐标互为相反数.平行于坐标轴的直线上的点平行于 轴直线上的两点,其纵坐标相等,横坐标不相等;平行于 轴直线上的两点,其横坐标相等,纵坐标不相等.关于 轴、 轴、原点对称的点① 两点关于 轴对称 两点坐标横坐标相同,纵坐标互为相反数;② 两点关于 轴对称 两点坐标横坐标互为相反数,纵坐标相同;③ 两点关于原点对称 两点坐标横坐标互为相反数,纵坐标互为相反数.点的平移平移口诀:在横坐标上左减右加,在纵坐标上上加下减.P(a,b)x|b|P(a,b)y|a|P(x,y)⇔x>0y>0P(x,y)⇔x<0y>0P(x,y)⇔x<0y<0P(x,y)⇔x>0y<0P(x,y)x⇔y=0xP(x,y)y⇔x=0yP(x,y)x y⇔x=0y=0P(0,0)x yx yx⇔y⇔⇔如果将一张“ 排 号”的电影票简记为 ,那么 表示的电影票是___排___号.解:,.68(6,8)(15,20)1520如图,写出、、、 各点的坐标.A B C D四、课后作业(查看更多本章节同步练习题,请到快乐学)解:,,,.A (1,1)B (3,−2)C (−4,4)D (−2,−3)若点 在第二象限,则:(1) 点 在第___象限;(2) 点 在第___象限;(3) 点 在第___象限;(4) 点 在第___象限.解:(1)三;(2)一;(3)四;(4)四.先根据第二象限点的横、纵坐标的特点,判断 , 的符号,再判断其余点所在的象限.P (a ,b )(a ,−b )P 1(−a ,b )P 2(−a ,−b )P 3(b ,a )P 4a b 点 到 轴的距离为____,到 轴的距离为_____.解:;.到 轴的距离就是该点纵坐标的绝对值,到 轴的距离就是该点横坐标的绝对值.P (5,−6)x y 65x y 已知:点 、,若 轴,则 _____;若 轴,则 _____.解: ;.过 、 两点的直线平行于 轴,显然两点的纵坐标相同,所以 .同理,当 轴时,可知 .E (a ,1)F (−3,b )EF ∥x b =EF ∥y a =1−3E F x b =1EF ∥y a =−3在平面直角坐标系,点 关于 轴对称的点的坐标为_____,关于 轴对称的点的坐标为_____,关于原点对称的点的坐标为_____.解:;;.A (2,3)x y (2,−3)(−2,3)(−2,−3)在平面直角坐标系,点 向上平移 个单位长度,向右平移 个单位长度后的坐标是_______.解:.在横坐标上左减右加,在纵坐标上上加下减.P (−1,2)13(2,3)答案:解析: 1. 如图, 、 、 这三个点中,在第二象限内的有 .A .B .C .D .D 由图可知, 在第二象限,点 在 轴的正 半轴上,点 在 轴的负半轴上,P 1P 2P 3(),,P 1P 2P 3,P 1P 2,P 1P 3P 1P 1P 2y P 3x高考不提分,赔付1万元,关注快乐学了解详情。

初一数学第七章《平面直角坐标系》知识点归纳

初一数学第七章《平面直角坐标系》知识点归纳

平面直角坐标系知识点总结1、 在平面内,两条互相垂直且原点重合的数轴组成了平面直角坐标系;2、 坐标平面上的任意一点 P 的坐标,都和惟一的一对 有序实数对( a ,b )一一对应;其中 a 为横坐标, b 为纵坐标;3、 x 轴上的点,纵坐标等于 0; y 轴上的点,横坐标等于 0;Y坐标轴上的点不属于任何象限; bP(a,b)4、 四个象限的点的坐标具有如下特征:1象限横坐标 x纵坐标 y -3 -2 -1 0 1a x-1第一象限正正-2第二象限负 正-3第三象限负负第四象限正负小结:(1)点 P ( x , y )所在的象限横、纵坐标 x 、 y 的取值的正负性;(2)点 P( x , y )所在的数轴横、纵坐标 x 、 y 中必有一数为零;y5、 在平面直角坐标系中,已知点 P (a , b ) ,则 a; bP ( a ,b ) (1) 点 P 到 x 轴的距离为 b ; (2)点 P 到 y 轴的距离为 ab (3) 点 P 到原点 O 的距离为 PO = a 2 b 2Oax6、 平行直线上的点的坐标特征:a) 在不 x 轴平行的直线上, 所有点的纵坐标相等;YAB点 A 、B 的纵坐标都等于 m ;m Xb) 在不 y 轴平行的直线上,所有点的横坐标相等; YC点 C 、D 的横坐标都等于 n ;n7、 对称点的坐标特征:a) 点 P (m , n ) 关于 x 轴的对称点为 P 1 (m ,-n ) , 即横坐标丌变,纵坐标互为相反数; b) 点 P (m , n ) 关于 y 轴的对称点为 P 2 (-m , n ) , 即纵坐标丌变,横坐标互为相反数; c) 点 P (m , n ) 关于原点的对称点为 P 3 (-m ,-n ) ,即横、纵坐标都互为相反数;yyyPPn P2nn PO mX- m- mmXOm XO- n P 1- nP 3关于 x 轴对称关于 y 轴对称 关于原点对称d) 点 P (a , b )关于点 Q (m , n ) 的对称点是 M (2m-a ,2n-b ); 8、 两条坐标轴夹角平分线上的点的坐标的特征:a) 若点 P ( m , n )在第一、三象限的角平分线上,则 m = n ,即横、纵坐标相等; b) 若点 P ( m , n )在第二、四象限的角平分线上,则 m = -n ,即横、纵坐标互为相反数;yyn PP nOm X m OX在第一、三象限的角平分线上在第二、四象限的角平分线上9、 用坐标点表示移(1)点的平移将点(x , y )向右(或向左)平移 a 个单位,可得对应点(x+a , y ){或(x-a , y )},可记为“右加左减,纵不变”;将点(x , y )向上(或向下)平移 b 个单位,可得对应点(x , y+b ){或(x , y-b )},可记为“上加下减,横不变”;(2)图形的平移把一个图形各个点的横坐标都加上(或减去)一个正数 a ,相应的新图像就是把原图形向右(或向左)平移 a 个单元得到的。

七年级数学下册第七章平面直角坐标系知识点归纳

七年级数学下册第七章平面直角坐标系知识点归纳

平面直角坐标系知识点总结1、在平面内,两条互相垂直且原点重合的数轴组成了平面直角坐标系;2、坐标平面上的任意一点 P 的坐标,都和惟一的一对有序实数对a,b一一对应;其中a为横坐标, b为纵坐标;Y3、x轴上的点,纵坐标等于 0;y轴上的点,横坐标等于 0;坐标轴上的点不属于任何象限; b Pa,b4、四个象限的点的坐标具有如下特征:1象限横坐标x纵坐标y-3 -2 -1 0 1a x-1第一象限正正-2第二象限负正-3第三象限负负第四象限正负小结:1点 P x,y所在的象限横、纵坐标x、y的取值的正负性;2点 Px,y所在的数轴横、纵坐标x、y中必有一数为零;y5、在平面直角坐标系中,已知点 P a,b ,则a; b P a,b1 点 P 到x轴的距离为b; 2点 P 到y轴的距离为ab3 点 P 到原点 O 的距离为 PO=a2b2O a x6、平行直线上的点的坐标特征:a)在不x轴平行的直线上, 所有点的纵坐标相等;YA B点 A、B 的纵坐标都等于m;mXb)在不y轴平行的直线上,所有点的横坐标相等;YC点 C、D 的横坐标都等于n;n7、 对称点的坐标特征:a) 点 P m , n 关于 x 轴的对称点为 P 1 m ,n , 即横坐标丌变,纵坐标互为相反数; b) 点 P m , n 关于 y 轴的对称点为 P 2 m , n , 即纵坐标丌变,横坐标互为相反数; c) 点 P m , n 关于原点的对称点为 P 3 m ,n ,即横、纵坐标都互为相反数;yyyPPn P2nn PO mXmmmXOm X OnP 1 nP 3关于 x 轴对称 关于 y 轴对称关于原点对称d 点 Pa , b 关于点 Q m , n 的对称点是 M2m-a,2n-b ;8、 两条坐标轴夹角平分线上的点的坐标的特征:a) 若点 P m , n 在第一、三象限的角平分线上,则 m n ,即横、纵坐标相等;b) 若点 P m , n 在第二、四象限的角平分线上,则 m n ,即横、纵坐标互为相反数;yynPP nOm X m OX在第一、三象限的角平分线上在第二、四象限的角平分线上9、 用坐标点表示移1点的平移将点x , y 向右或向左平移 a 个单位,可得对应点x+a , y {或x-a , y },可记为“右加左减,纵不变”;将点x , y 向上或向下平移 b 个单位,可得对应点x , y+b {或x , y-b },可记为“上加下减,横不变”;2图形的平移把一个图形各个点的横坐标都加上或减去一个正数 a,相应的新图像就是把原图形向右或向左平移 a 个单元得到的;如果把图形各个点的纵坐标都加上或减去一个正数 a, 相应的新图像就是把原图形向上或向下平移 a 个单元得到的;。

(完整版)平面直角坐标系知识点归纳及例题

(完整版)平面直角坐标系知识点归纳及例题

X平面直角坐标系知识点归纳1、在平面内,两条互相垂直且有公共原点的数轴组成了平面直角坐标系;2、坐标平面上的任意一点 P 的坐标,都和惟一的一对有序实数对(a,b )一一对应;其中,a 为横坐标,b 为纵坐标坐标;3、 x 轴上的点,纵坐标等于 0; y 轴上的点,横坐标等于 0; 坐标轴上的点 不属于任何象限;4、 四个象限的点的坐标具有如下特征:小结:(1 )点P ( x, y )所在的象限 —►横、纵坐标X 、y 的取值的正负性;(2 )点P ( X, y )所在的数轴 —*■横、纵坐标X 、y 中必有一数为零;5、 在平面直角坐标系中,已知点p (a,b ),则(1) 点P 到X 轴的距离为b ;( 2 )点P 到y 轴的距离为(3) 点P 到原点o 的距离为PO = .a 2 b 26、 平行直线上的点的坐标特征:a )在与x 轴平行的直线上,所有点的纵坐标相等;b )在与y 轴平行的直线上,所有点的横坐标相等;d bJ_____ P(a,b) 1____________ 1-3 -2 -1 0 -1-2 -31a X点A 、B 的纵坐标都等于m ;象限 横坐标X 纵坐标y 第一象限 正 正 第二象限 负 正 第三象限负 负 第四象限正负点C、D的横坐标都等于n ;X7、对称点的坐标特征:8、两条坐标轴夹角平分线上的点的坐标的特征:a) 若点P ( m,n )在第一、三象限的角平分线上,则 b)若点P ( m,n )在第二、四象限的角平分线上,则习题1、在平面直角坐标系中,线段 BC// x 轴,则 A.点B 与C 的横坐标相等 BC •点B 与C 的横坐标与纵坐标分别相等D 2 •若点P (x, y)的坐标满足xy 0则点P 必在A.原点 B . x 轴上 C . y 轴上 D . x 轴或y 轴上 3.点P在x 轴上,且到y 轴的距离为5,则点P 的坐标是 (A. (5,0) B . (0,5) C . (5,0)或(-5,0) D . (0,5)或(0,-5) 4.平面上的点(2,-1)通过上下平移不能与之重合的是 (A . (2,-2)B . (-2,-1)C . (2,0)D . 2,-3)5. 将△ ABC 各顶点的横坐标分别减去3,纵坐标不变,得到的厶ABC 相应顶点的坐标,则 △ A 'B 'C '可以看成厶ABCi 卜y1 y匸y n P--------- —--•P2 • __ n P _ ___ 亠n -------- * P1m ;亠 1 11 ----- T P U f imII V 1 ""O ' XHm O ------------ X 1 1 O mn __ _ ▲1Rb-n关于x 轴对称 关于y 轴对称关于原点对称点P (m,n)关于y 轴的对称点为 b) 点P (m,n)关于原点的对称点为P 3( m, n),即横、纵坐标都互为相反数; c) XP 2( m,n),即纵坐标不变,横坐标互为相反数; a)点P (m, n)关于x 轴的对称点为 R(m, n),即横坐标不变,纵坐标互为相反数;m n ,即横、纵坐标相等;m n ,即横、纵坐标互为相反数;( •点B 与C 的纵坐标相等 •点B 与C 的横坐标、纵坐标都不相等 )) ) )y在第一、三象限的角平分线上在第二、四象限的角平分线上A.向左平移3个单位长度得到B .向右平移三个单位长度得到C•向上平移3个单位长度得到 D •向下平移3个单位长度得到6•线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标是A . (2,9)B . (5,3)C . (1,2)D . (-9,-4)7•在坐标系内,点P (2, -2)和点Q(2,4 )之间的距离等于______________ 单位长度,线段PQ和中点坐标是____________8. 将点M(2,-3)向左平移2个单位长度,再向下平移1个单位长度,得到的点的坐标为9. 在直角坐标系中,若点P(a 2,b 5)在y轴上,则点P的坐标为___________________10. 已知点P( 2,a),Q(b,3),且PQ// x 轴,则a ___________ ,b ____________11. 将点P( 3,y)向下平移3个单位,并向左平移2个单位后得到点Q(x, 1),则xy = _______12. 则坐标原点0( 0,0 ),A (-2,0 ) ,B(-2,3)三点围成的△ ABO勺面积为_______________13. 点P(a,b)在第四象限,则点Q(b, a)在第_________ 限14. 已知点P在第二象限两坐标轴所成角的平分线上,且到x轴的距离为3,则点P的坐标为 ____________15. 在同一坐标系中,图形a是图形b向上平移3个单位长度得到的,如果在图形a中点A的坐标为(5, 3),则图形b中与A对应的点A'的坐标为______________16. 在平面直角坐标系中,将坐标为(0,0),(2,0),(3,4),(1,4) 的点用线段依次连接起来形成一个图像,并说明该图像是什么图形。

七年级数学下册第七章平面直角坐标系知识点总结归纳完整版

七年级数学下册第七章平面直角坐标系知识点总结归纳完整版

(名师选题)七年级数学下册第七章平面直角坐标系知识点总结归纳完整版单选题1、如图所示,点A1(1,2),A2(2,0),A3(3,−2),A4(4,0),…,根据这个规律,可得点A2022的坐标是()A.(2021,0)B.(2021,−2)C.(2022,0)D.(2022,2)答案:C分析:由图形得出点的横坐标依次是0、1、2、3、4、…、n,纵坐标依次是0、2、0、−2、0、2、0、−2、…,四个一循环,继而求得答案.解:观察图形可知,点的横坐标依次是0、1、2、3、4、…、n,纵坐标依次是0、2、0、−2、0、2、0、−2、…,四个一循环,2022÷4=505…2,故点A2022坐标是(2022,0).故选:C.小提示:本题考查了规律型:点的坐标,学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是一道比较容易出错的题目.2、已知三角形ABC在平面直角坐标系中的位置如图所示,将三角形ABC先向左平移2个单位,再向下平移5个单位,则平移后点C1的坐标是()A.(5,-2)B.(1,-2)C.(2,-1)D.(2,-2)答案:B分析:先写出平移前点C的坐标,再根据平移的规律“左减右加,上加下减”解答即可.解:平移前点C的坐标是 (3,3),则△ABC先向下平移5个单位长度,再向左平移2个单位长度后点C的坐标是(1,-2).故选:B.小提示:本题考查了平移的性质和坐标系中点的平移规律,属于基础题型,熟练掌握坐标系中点的平移规律是解题关键.3、根据下列表述,能够确定具体位置的是()A.北偏东25°方向B.距学校800米处C.国家大剧院音乐厅4排D.东经116°20″北纬39°56″答案:D分析:根据确定一个点的具体位置的方法判断即得.确定一个点的具体位置的方法是确定点所在的方向和距离,或用有序数对.A. 北偏东25°方向不能确定一个点的具体位置,缺少距离,故此选项错误;B. 距学校800米处不能确定一个点的具体位置,缺少方向,故此选项错误;C. 国家大剧院音乐厅4排不能确定一个点的具体位置,应具体到8排几号,故此选项错误;D. 东经116°20″北纬39°56″可以确定一个点的具体位置,故此选项正确.故选:D.小提示:本题考查确定位置的方法,熟练掌握确定一个点的具体位置是解题的关键.4、小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是().A.小李现在位置为第1排第2列B.小张现在位置为第3排第2列C.小王现在位置为第2排第2列D.小谢现在位置为第4排第2列答案:B分析:由于撤走一排,则四人所在的列数不变、排数减一,据此逐项排除即可.解:A. 小李现在位置为第1排第4列,故A选项错误,不符合题意;B. 小张现在位置为第3排第2列,故B选项正确,符合题意;C. 小王现在位置为第2排第3列,故C选项错误,不符合题意;D. 小谢现在位置为第4排第4列,故D选项错误,不符合题意.故选:B.小提示:本题考查了位置的确定,根据题目信息、明确行和列的实际意义是解答本题的关键.5、如图,象棋盘上“将”位于点(2,−1),“象”位于点(4,−1),则“炮”位于点()A.(1,2)B.(2,−1)C.(−1,2)D.(2,1)答案:C分析:根据象棋盘上“将”位于点(2,−1),“象”位于点(4,−1),建立直角坐标系,即可解题.如图所示:“炮”位于点(−1,2),故选:C.小提示:本题考查坐标与象限,是基础考点,难度较易,掌握相关知识是解题关键.6、在平面直角坐标系中,点A的坐标为(−4,3),AB∥y轴,AB=5,则点B的坐标为()A.(1,3)B.(−4,8)C.(1,3)或(−9,3)D.(−4,8)或(−4,−2)答案:D分析:线段AB∥y轴,A、B两点横坐标相等,又AB=5,B点在A点上边或者下边,根据距离确定B点坐标.解:∵AB∥y轴,∴A、B两点的横坐标相同,又AB=5,∴B点纵坐标为:3+5=8或3−5=−2,∴B点的坐标为:(−4,−2)或(−4,8).故选:D.小提示:本题考查了坐标与图形的性质,要掌握平行于y轴的直线上的点横坐标相等,再根据两点相对的位置及两点距离确定点的坐标.7、若点P(x,y)到y轴的距离为2,且xy=−6,则点P的坐标为()A.(2,−3)B.(−2,3)或(2,−3)C.(−2,3)D.(–3,2)或(3,−2)答案:B分析:根据点P(x,y)到y轴的距离为2,且xy=−6,列出绝对值方程即可求解.解:∵点P(x,y)到y轴的距离为2,∴|x|=2,∵xy=−6,∴当x=2时,y=−3当x=−2时,y=3即点P的坐标为(−2,3)或(2,−3)故选B小提示:本题考查了坐标与图形的性质,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x 轴的距离,掌握坐标的意义是解题的关键.8、已知x是整数,当|x−√30|取最小值时,x的值是( )A.5B.6C.7D.8答案:A分析:根据绝对值的意义,找到与√30最接近的整数,可得结论.解:∵√25<√30<√36,∴5<√30<6,且与√30最接近的整数是5,∴当|x−√30|取最小值时,x的值是5,故选A.小提示:本题考查了算术平方根的估算和绝对值的意义,熟练掌握平方数是关键.9、在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到An.则△OA2A2018的面积是()A.504m2B.10092m2C.10112m2D.1009m2答案:A分析:由OA4n=2n知OA2017=20162+1=1009,据此得出A2A2018=1009-1=1008,据此利用三角形的面积公式计算可得.解:由题意知OA4n=2n,∴OA2016=2016÷2=1008,即A2016坐标为(1008,0),∴A2018坐标为(1009,1),则A2A2018=1009-1=1008(m),∴S△OA2A2018=12×A2A2018×A1A2=12×1008×1=504(m2).故选:A.小提示:本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.10、观察下面一列有序数对:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,按这些规律,第50个有序数对是( )A.(3,8)B.(4,7)C.(5,6)D.(6,5)答案:C分析:不难发现横坐标依次是:1、1、2、1、2、3、1、2、3、4、1、2、3、4、5…,纵坐标依次是:1、2、1、3、2、1、4、3、2、1、5、4、3、2、1…,根据此规律即可知第50个有序数对.观察发现,横坐标依次是:1、1、2、1、2、3、1、2、3、4、1、2、3、4、5…,纵坐标依次是:1、2、1、3、2、1、4、3、2、1、5、4、3、2、1…,∵1+2+3+4+5+6+7+8+9=45,∴第46、47、48、49、50个有序数对依次是(1,10)、(2,9)、(3,8)、(4,7)、(5,6).所以C选项是正确的.小提示:本题主要考查了点的坐标探索规律题,找出有序数对的横、纵坐标变化规律是解决问题的关键.填空题11、在平面直角坐标系中,横坐标,纵坐标都为整数的点称为整点.观察图中每个正方形(实线)四条边上的整点的个数,请你猜测由里向外第11个正方形(实线)四条边上的整点一共有_____个.答案:44分析:可以发现第n个正方形的整点数有4n个点,故第11个有44个整数点.由图象可知,第1个正方形四条边上整点数为4,第2个正方形四条边上整点数为8,第3个正方形四条边上整点数为12,则第n个正方形四条边上整点数为4n.当n=11时,第11个正方形四条边上整点数为44.故答案为44.小提示:此题考查点的坐标规律、正方形各边相等的性质,解决本题的关键是观察分析,得到规律,这是中考的常见题型.12、如图,在平面直角坐标系中,点A1(1,1),A2(−2,1),A3(−2,−2),A4(4,−2),A5(4,4),A6(−5,4),⋅⋅⋅⋅⋅⋅依次排列下去,则点A10的横坐标为____________.答案:−8分析:根据题意可知,点A平移的规律是4次为一个循环,由10÷4=2···2,可知点A10的坐标与点A4n+2的坐标规律相同,再根据点A2,A6的坐标得出答案即可.根据题意可知点A1(1,1)向左平移3各单位长度得到点A2(−2,1),再向下平移3个单位长度得到A3(−2,−2),向右平移6个单位长度得到A4(4,−2),再向上平移6个单位长度得到点A5(4,4)···,点A平移时每4次一个循环.由10÷4=2···2,∴点A10的坐标与点A4n+2(n为大于等于0的整数)的坐标的规律相同.∵A2(−2,1),A6(−5.4),∴点A10(−8,7),所以点A10的横坐标为-8.所以答案是:-8.小提示:本题主要考查了平面直角坐标系内点的坐标,掌握坐标变化规律是解题的关键.13、若点P(m+1,m)在第四象限,则点Q(﹣3,m+2)在第________象限.答案:二分析:根据点P(m+1,m)在第四象限,可得到−1<m<0,从而得到m+2>0,即可求解.解:∵点P(m+1,m)在第四象限,∴{m+1>0,解得:−1<m<0,m<0∴m+2>0,∴点Q(﹣3,m+2)在第二象限.所以答案是:二小提示:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键.14、−27的立方根是________.答案:-3分析:根据立方根的定义求解即可.解:-27的立方根是-3,所以答案是:-3.小提示:本题考查了立方根的定义,属于基础题型,熟知立方根的概念是解题的关键.15、如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始、按顺时针方向、取与三角形外箭头方向一致的一侧序号),如点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,3,1),按此方法,若点C的坐标为(3,m,m−1),则m=__________.答案:3分析:根据题目中定义的新坐标系中点坐标的表示方法,求出点C坐标,即可得到结果.解:根据题意,点C的坐标应该是(3,3,2),∴m=3.故答案是:3.小提示:本题考查新定义,解题的关键是理解题目中新定义的坐标系中点坐标的表示方法.解答题16、已知平面直角坐标系中有一点M(m−1,2m+3).(1)若点M到x轴的距离为1,请求出点M的坐标.(2)若点N(5,−1)),且MN∥x轴,求线段MN的长度.答案:(1)当m=-1时,点M的坐标为(-2,1);当m=-2时,点M的坐标为(-3,-1);(2)8分析:(1)根据点M到x轴的距离为1,得到|2m+3|=1,求出m即可;(2)根据MN// x轴,得到2m+3=-1,求出点M的坐标,即可求出MN的长度.(1)∵点M(m-1,2m+3),点M到x轴的距离为1,∴|2m+3|=1,解得,m=-1或m=-2,当m=-1时,点M的坐标为(-2,1),当m=-2时,点M的坐标为(-3,-1);(2)∵点M(m-1,2m+3),点N(5,-1)且MN// x轴,∴2m+3=-1,解得:m=-2,故点M的坐标为(-3,-1).所以MN=5-(-3)=5+3=8.小提示:此题考查了点到坐标轴的距离,与坐标轴平行的直线上点的坐标特点,掌握并理解点的坐标与位置是解题的关键.17、如图,平面直角坐标系中有一个6×6的正方形网格,每个小正方形的边长为1个单位长度,每个小正方形的顶点称为格点,点A、B、C均在格点上,请完成下列问题.(1)点C坐标为_________.(2)将△ABC先向_________平移_________个单位、再向_________平移_________个单位到达△A1B1C1的位置.(3)图中阴影部分的面积为_________.答案:(1)(2,3)(2)右,三,下,二(或下,二,右,三)(3)9分析:(1)根据网格结构,确定点C在平面直角坐标系中的象限,及其到x轴、y轴的距离分别为|y|,|x|,即可得点C的坐标;(2)根据网格结构,确定A、B、C三点分别同步平移到A1、B1、C1的方向和距离(单位数)即可得到结论;(3)根据平面直角坐标系中网格结构和平移的性质,可知AB平行且等于A1B1,S△ABC=S△A1B1C1,根据平行四边形的判定,从而得S阴影=S▱ABB1A1,计算即可得到结果.(1)解:根据平面直角坐标系及网格结构,可得:点C在第一象限到x轴距离为3,y轴的距离为2∴点C的坐标为(2,3);(2)解:根据网格结构,点A平移到A1,需先向,再向下平移2个单位,B、C同步移动;或先向下平移2个格点,再向右平移3个单位,B、C同步移动.∴将△ABC先向右平移3个单位、再向下平移2个单位或者先向下平移2个单位、再向右平移3个单位,到达△A1B1C1的位置;(3)解:根据题意及平移的性质,AB∥A1B1,AB=A1B1,S△ABC=S△A1B1C1∴四边形ABB1A1为平行四边形∴S阴影=S▱ABB1A1=3×3=9小提示:本题主要考查平面直角坐标系点的坐标特征,作图-平移变换,平面直角坐标系中的图形面积,解题的关键是掌握平移变换的性质及要素(平移方向和平移距离).18、已知点A(2a−3,4+a)在第一象限,且点A到x轴和y轴的距离相等,求点A的坐标.答案:(11,11)分析:直接利用第一象限内点的坐标特点,横纵坐标的符号关系,结合点A到x轴和y轴的距离相等,得出横纵坐标相等,进而得出答案.解:∵点A(2a−3,4+a)在第一象限,点A到x轴和y轴的距离相等,∴2a−3=4+a,解得:a=7,故2a−3=2×7−3=11,4+a=11,则点A的坐标为:(11,11).小提示:本题主要考查了第一象限内点的坐标特点,解题的关键是结合点A到x轴和y轴的距离相等,得出横纵坐标相等,进而得出答案.。

第七章 平面直角坐标系知识点及习题

第七章 平面直角坐标系知识点及习题

第七章平面直角坐标系知识点1、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记作(a,b)。

2、平面直角坐标系:在平面内两条互相垂直且有公共原点的数轴组成平面直角坐标系。

3、横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

4、坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。

5、象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。

坐标轴上的点不在任何一个象限内。

6、各象限点的坐标特点①第一象限的点:横坐标> 0,纵坐标> 0;②第二象限的点:横坐标< 0,纵坐标> 0;③第三象限的点:横坐标< 0,纵坐标< 0;④第四象限的点:横坐标> 0,纵坐标< 0。

7、坐标轴上点的坐标特点①x轴正半轴上的点:横坐标> 0,纵坐标= 0;②x轴负半轴上的点:横坐标< 0,纵坐标= 0;③y轴正半轴上的点:横坐标= 0,纵坐标> 0;④y轴负半轴上的点:横坐标= 0,纵坐标< 0;⑤坐标原点:横坐标= 0,纵坐标= 0。

(填“>”、“<”或“=”)8、点P(a,b)到x轴的距离是 |b| ,到y轴的距离是 |a| 。

9、对称点的坐标特点①关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。

10、点P(2,-3) 到x轴的距离是3;到y轴的距离是2;点P(2,3) 关于x轴对称的点坐标为(2,-3);点P(2,-3) 关于y轴对称的点坐标为(-2,3)。

11、如果两个点的横坐标相同,则过这两点的直线与y轴平行、与x轴垂直;如果两点的纵坐标相同,则过这两点的直线与x轴平行、与y轴垂直。

人教版七年级下册数学知识点归纳:第七章平面直角坐标系

人教版七年级下册数学知识点归纳:第七章平面直角坐标系

精品基础教育教学资料,仅供参考,需要可下载使用!人教版七年级下册数学知识点归纳第七章平面直角坐标系7.1 平面直角坐标系(一) 有序数对1.有序数对:用两个数来表示一个确定的位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b)2.坐标:数轴(或平面)上的点可以用一个数(或数对)来表示,这个数(或数对)叫做这个点的坐标。

(二)平面直角坐标系1.平面直角坐标系:在平面内画两条互相垂直,并且有公共原点的数轴。

这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。

2.X轴:水平的数轴叫X轴或横轴。

向右方向为正方向。

3.Y轴:竖直的数轴叫Y轴或纵轴。

向上方向为正方向。

4.原点:两个数轴的交点叫做平面直角坐标系的原点。

对应关系:平面直角坐标系内的点与有序实数对一一对应。

坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。

(三)象限1.象限:X轴和Y轴把坐标平面分成四个部分,也叫四个象限。

右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。

象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。

一般,在x轴和y轴取相同的单位长度。

2.象限的特点:1、特殊位置的点的坐标的特点:(1)x轴上的点的纵坐标为零;y轴上的点的横坐标为零。

(2)第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。

(3)在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。

2、点到轴及原点的距离:点到x轴的距离为|y|;点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方再开根号;3、三大规律(1)平移规律:点的平移规律左右平移→纵坐标不变,横坐标左减右加;上下平移→横坐标不变,纵坐标上加下减。

七下第七章平面直角坐标系知识点总结及分类解析

七下第七章平面直角坐标系知识点总结及分类解析

七下第七章平面直角坐标系知识点总结及分类解析知识点:1、对应关系:平面直角坐标系内的点与有序实数对一一对应。

2、平面内两条互相垂直、原点重合组成的数轴组成平面直角坐标系。

水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴为y轴或纵轴,取向上为正方向;两个坐标轴的交点为平面直角坐标系的原点。

坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。

象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。

坐标轴上的点不在任何一个象限内3、三大规律(1)平移规律:点的平移规律左右平移→纵坐标不变,横坐标左减右加;上下平移→横坐标不变,纵坐标上加下减。

图形的平移规律找特殊点(2)对称规律关于x轴对称→横坐标不变,纵坐标互为相反数;关于y轴对称→横坐标互为相反数,纵坐标不变;关于原点对称→横纵坐标都互为相反数。

x轴上→纵坐标为0;y轴上→横坐标为0;第一、三象限夹角平分线上→横纵坐标相等;1.(2016•舟山)点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为()A.(﹣4,3)B.(﹣3,﹣4)C.(﹣3,4)D.(3,﹣4)解:∵点P在第二象限内,∴点的横坐标<0,纵坐标>0,又∵P到x轴的距离是4,即纵坐标是4,到y轴的距离是3,横坐标是﹣3,∴点P的坐标为(﹣3,4).故选:C.2.(2017•长春)如图,小手盖住的点的坐标可能为()A.(5,2) B.(﹣6,3)C.(﹣4,﹣6)D.(3,﹣4)解:根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;分析选项可得只有D符合.故选D.3.(2017•盐城)如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2) B.(3,1) C.(2,2) D.(﹣2,2)解:由棋子“车”的坐标为(﹣2,3)、棋子“马”的坐标为(1,3)可知,平面直角坐标系的原点为底边正中间的点,以底边为x轴,向右为正方向,以左右正中间的线为y 轴,向上为正方向;根据得出的坐标系可知,棋子“炮”的坐标为(3,2).故选:A.4.(2002•江西)在平面直角坐标系中,点(﹣1,m2+1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限解:因为点(﹣1,m2+1),横坐标<0,纵坐标m2+1一定大于0,所以满足点在第二象限的条件.故选B.5.(2017春•潮阳区期末)线段CD是由线段AB平移得到的.点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A.(2,9) B.(5,3) C.(1,2) D.(﹣9,﹣4)解:平移中,对应点的对应坐标的差相等,设D的坐标为(x,y);根据题意:有4﹣(﹣1)=x﹣(﹣4);7﹣4=y﹣(﹣1),解可得:x=1,y=2;故D的坐标为(1,2).故选:C.6.(2016•菏泽)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.7.(2015•安顺)点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(﹣3,0)B.(﹣1,6)C.(﹣3,﹣6)D.(﹣1,0)解:根据题意,得点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,所得点的横坐标是﹣2﹣1=﹣3,纵坐标是﹣3+3=0,即新点的坐标为(﹣3,0).故选A.8.(2017秋•平川区期末)如果点P(m+3,m+1)在直角坐标系的x轴上,P点坐标为()A.(0,2) B.(2,0) C.(4,0) D.(0,﹣4)解:∵点P(m+3,m+1)在直角坐标系的x轴上,∴m+1=0,∴m=﹣1,把m=﹣1代入横坐标得:m+3=2.则P点坐标为(2,0).故选B.9.(2017春•和县期末)课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4) B.(4,5) C.(3,4) D.(4,3)解:如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选D.10.(2015•钦州)在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重合,则点A的坐标是()A.(2,5) B.(﹣8,5)C.(﹣8,﹣1)D.(2,﹣1)解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:D.11.(2008•菏泽)在平面直角坐标系中,若点P(m﹣3,m+1)在第二象限,则m的取值范围为()A.﹣1<m<3 B.m>3 C.m<﹣1 D.m>﹣1解:∵点P(m﹣3,m+1)在第二象限,∴可得到,解得m的取值范围为﹣1<m<3.故选A.12.(2015•威海)若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在()A.第一象限B.第二象限C.第三象限D.第四象限解:由A(a+1,b﹣2)在第二象限,得a+1<0,b﹣2>0.解得a<﹣1,b>2.由不等式的性质,得﹣a>1,b+1>3,点B(﹣a,b+1)在第一象限,故选:A.13.(2014•株洲)在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,∵100÷3=33余1,∴走完第100步,为第34个循环组的第1步,所处位置的横坐标为33×3+1=100,纵坐标为33×1=33,∴棋子所处位置的坐标是(100,33).故选:C.14.(2009秋•杭州期末)小明的家,学校和书店依次坐落在一条南北方向的大街上,学校在家南边20米,书店在家北边100米,小明从家出来向北走了50米,又向北走了﹣70米,此时,小明的位置在()A.家B.学校C.书店D.不在上述地方解:根据题意:小明从家出来向北走了50米,又向北走了﹣70米,即向南走了20米,而学校在家南边20米.故此时,小明的位置在学校.故选B.15.(2014•台湾)如图为小杰使用手机内的通讯软件跟小智对话的纪录.根据图中两人的对话纪录,若下列有一种走法能从邮局出发走到小杰家,则此走法为何?()A.向北直走700公尺,再向西直走100公尺B.向北直走100公尺,再向东直走700公尺C.向北直走300公尺,再向西直走400公尺D.向北直走400公尺,再向东直走300公尺解:依题意,OA=OC=400=AE,AB=CD=300,DE=400﹣300=100,所以邮局出发走到小杰家的路径为,向北直走AB+AE=700,再向西直走DE=100公尺.故选:A.二.填空题(共10小题)16.(2014•黔西南州)在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);(2)g(m,n)=(﹣m,﹣n),如g (2,1)=(﹣2,﹣1)按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]=(3,2).解:∵f(﹣3,2)=(﹣3,﹣2),∴g[f(﹣3,2)]=g(﹣3,﹣2)=(3,2),故答案为:(3,2).17.(2013•天水)已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是(﹣1,1).解:原来点的横坐标是3,纵坐标是﹣2,向左平移4个单位,再向上平移3个单位得到新点的横坐标是3﹣4=﹣1,纵坐标为﹣2+3=1.则点N的坐标是(﹣1,1).故答案填:(﹣1,1).18.(2013•绵阳)如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B的坐标是(3,3).解:∵左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),∴右眼的坐标为(0,3),向右平移3个单位后右眼B的坐标为(3,3).故答案为:(3,3).19.(2015•广元)若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是(﹣3,5).解:∵|x|=3,y2=25,∴x=±3,y=±5,∵第二象限内的点P(x,y),∴x<0,y>0,∴x=﹣3,y=5,∴点P的坐标为(﹣3,5),故答案为:(﹣3,5).20.(2005•杭州)如图的围棋盘放在某个平面直角坐标系内,白棋②的坐标为(﹣7,﹣4),白棋④的坐标为(﹣6,﹣8),那么黑棋①的坐标应该是(﹣3,﹣7).解:由白棋②的坐标为(﹣7,﹣4),白棋④的坐标为(﹣6,﹣8)得出:棋盘的y 轴是右侧第一条线,横坐标从右向左依次为﹣1,﹣2,﹣3,…;纵坐标是以上边第一条线为﹣1,向下依次为﹣2,﹣3,﹣4,….∴黑棋①的坐标应该是(﹣3,﹣7).故答案为:(﹣3,﹣7).21.(2015•青岛)如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别变为原来的,那么点A的对应点A′的坐标是(2,3).解:点A变化前的坐标为(6,3),将横坐标保持不变,纵坐标分别变为原来的,则点A的对应点的坐标是(2,3),故答案为(2,3).22.(2015•台州)如图,这是台州市地图的一部分,分别以正东、正北方向为x轴、y 轴的正方向建立直角坐标系,规定一个单位长度表示1km,甲、乙两人对着地图如下描述路桥区A处的位置.则椒江区B处的坐标是(10,8).解:如图:连接AB,作BC⊥x轴于C点,由题意,得AB=16,∠ABC=30°,AC=8,BC=8.OC=OA+AC=10,B(10,8).23.(2013•聊城)如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(2n,1)(用n 表示).解:由图可知,n=1时,4×1+1=5,点A5(2,1),n=2时,4×2+1=9,点A9(4,1),n=3时,4×3+1=13,点A13(6,1),所以,点A4n(2n,1).+1故答案为:(2n,1).24.(2009•延庆县一模)一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是(5,0).解:质点运动的速度是每秒运动一个单位长度,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒,2秒,3秒,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,到(4,0)用16秒,依此类推,到(5,0)用35秒.故第35秒时质点所在位置的坐标是(5,0).25.(2007•德阳)如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)(4,0)根据这个规律探索可得,第100个点的坐标为(14,8).解:因为1+2+3+…+13=91,所以第91个点的坐标为(13,0).因为在第14行点的走向为向上,故第100个点在此行上,横坐标就为14,纵坐标为从第92个点向上数8个点,即为8;故第100个点的坐标为(14,8).故填(14,8).三.解答题(共15小题)26.(2015秋•谯城区期末)如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A(2,﹣1)、B(4,3)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(0,0)、B′(2,4)、C′(﹣1,3).(3)△ABC的面积为5.解:(1)写出点A、B的坐标:A(2,﹣1)、B(4,3)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(0,0)、B′(2,4)、C′(﹣1,3).(3)△ABC的面积=3×4﹣2××1×3﹣×2×4=5.27.(2015春•江西期末)王霞和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道游乐园D的坐标为(2,﹣2),你能帮她求出其他各景点的坐标吗?解:由题意可知,本题是以点F为坐标原点(0,0),FA为y轴的正半轴,建立平面直角坐标系.则A、B、C、E的坐标分别为:A(0,4);B(﹣3,2);C(﹣2,﹣1);E(3,3).28.(2012秋•昌邑市期中)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+3),从B到A记为:A→B(﹣1,﹣3),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A→C(3,3),B→D(3,﹣2),C→D(+1,﹣2);(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置.解:(1)∵规定:向上向右走为正,向下向左走为负∴A→C记为(3,3)B→D记为(3,﹣2)C→D记为(1,﹣2);(2)据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2),该甲虫走过的路线长为1+4+2+1+2=10.(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),P点位置如图所示.29.(2011春•曲阜市期中)如图所示的直角坐标系中,四边形ABCD各顶点的坐标分别为A(0,0)、B(9,0)、C(7,5)、D(2,7).求四边形ABCD的面积.解:过D,C分别作DE,CF垂直于AB,E、F分别为垂足,则有:S=S△OED+S EFCD+S△CFB=×AE×DE+×(CF+DE)×EF+×FC×FB.=×2×7+×(7+5)×5+×2×5=42.故四边形ABCD的面积为42平方单位.30.(2005•安徽)小明的爷爷退休生活可丰富了!下表是他某日的活动安排.和平广场位于爷爷家东400米,老年大学位于爷爷家西600米.从爷爷家到和平路小学需先向南走300米,再向西走400米.早晨6:00﹣7:00与奶奶一起到和平广场锻炼上午9:00﹣11:00与奶奶一起上老年大学下午4:30﹣5:30到和平路小学讲校史(1)请依据图示中给定的单位长度,在图中标出和平广场A、老年大学B与和平路小学的位置;(2)求爷爷家到和平路小学的直线距离.解:(1)以爷爷家为坐标原点,东西方向为x轴,南北方向为y轴建立坐标系.早晨6:00﹣7:00与奶奶一起到和平广场锻炼上午9:00﹣11:00与奶奶一起上老年大学下午4:30﹣5:30到和平路小学讲校史可得:和平广场A坐标为(400,0);老年大学(﹣600,0);平路小学(﹣400,﹣300).(2)由(1)得:和平路小学(﹣400,﹣300),爷爷家为坐标原点,即(0,0)故爷爷家到和平路小学的直线距离为=500(m).31.已知点A(﹣1,﹣2),点B(1,4)(1)试建立相应的平面直角坐标系;(2)描出线段AB的中点C,并写出其坐标;(3)将线段AB沿水平方向向右平移3个单位长度得到线段A1B1,写出线段A1B1两个端点及线段中点C1的坐标.解:(1)坐标系如图:(2)C(0,1);(3)平移规律是(x+3,y),所以A1(2,﹣2),B1(4,4),C1(3,1).32.(2010•河源)在平面直角坐标系中,点M的坐标为(a,﹣2a).(1)当a=﹣1时,点M在坐标系的第二象限;(直接填写答案)(2)将点M向左平移2个单位,再向上平移1个单位后得到点N,当点N在第三象限时,求a的取值范围.解:(1)当a=﹣1时点M的坐标为(﹣1,2),所以M在第二象限.故答案为:二;(2)将点M向左平移2个单位,再向上平移1个单位后得到点N,点M的坐标为(a,﹣2a),所以N点坐标为(a﹣2,﹣2a+1),因为N点在第三象限,所以,解得<a<2,所以a的取值范围为<a<2.33.(2017春•阳谷县期末)已知:A(0,1),B(2,0),C(4,3)(1)求△ABC的面积;(2)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.解:(1)S=3×4﹣×2×3﹣×2×4﹣×1×2=4;△ABC(2)如图所示:P1(﹣6,0)、P2(10,0)、P3(0,5)、P4(0,﹣3).34.(2016春•江西期末)如图,在下面直角坐标系中,已知A(0,a),B(b,0),C (b,c)三点,其中a、b、c满足关系式|a﹣2|+(b﹣3)2=0,(c﹣4)2≤0(1)求a、b、c的值;(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.解:(1)由已知|a﹣2|+(b﹣3)2=0,(c﹣4)2≤0及(c﹣4)2≥0可得:a=2,b=3,c=4;(2)∵×2×3=3,×2×(﹣m)=﹣m,∴S四边形ABOP =S△ABO+S△APO=3+(﹣m)=3﹣m(3)因为×4×3=6,∵S四边形ABOP =S△ABC∴3﹣m=6,则m=﹣3,所以存在点P(﹣3,)使S四边形ABOP =S△ABC.35.(2017秋•鄞州区期末)如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3)(1)求点C到x轴的距离;(2)求△ABC的面积;(3)点P在y轴上,当△ABP的面积为6时,请直接写出点P的坐标.解:(1)∵C(﹣1,﹣3),∴|﹣3|=3,∴点C到x轴的距离为3;(2)∵A(﹣2,3)、B(4,3)、C(﹣1,﹣3)∴AB=4﹣(﹣2)=6,点C到边AB的距离为:3﹣(﹣3)=6,∴△ABC的面积为:6×6÷2=18.(3)设点P的坐标为(0,y),∵△ABP的面积为6,A(﹣2,3)、B(4,3),∴6×|y﹣3|=6,∴|y﹣3|=2,∴y=1或y=5,∴P点的坐标为(0,1)或(0,5).36.(2010春•嘉祥县期中)有趣玩一玩:中国象棋中的马颇有骑士风度,自古有“马踏八方”之说,如图,按中国象棋中“马”的行棋规则,图中的马下一步有A、B、C、D、E、F、G、H八种不同选择,它的走法就象一步从“日”字形长方形的对角线的一个端点到另一个端点,不能多也不能少.要将图中的马走到指定的位置P处,即从(四,6)走到(六,4),现提供一种走法:(四,6)→(六,5)→(四,4)→(五,2)→(六,4)(1)下面是提供的另一走法,请你填上其中所缺的一步:(四,6)→(五,8)→(七,7)→(八,五)→(六,4)(2)请你再给出另一种走法(只要与前面的两种走法不完全相同即可,步数不限),你的走法是:(四,6)⇒(六,5)⇒(八,4)⇒(七,2)⇒(六,4)..你还能再写出一种走法吗.解:(1)根据题意可知:(八,5)(2)(四,6)⇒(六,5)⇒(八,4)⇒(七,2)⇒(六,4).37.(2012春•上饶校级期中)如图,在直角坐标系中,四边形ABCD 各个顶点的坐标分别是A (﹣2,﹣3)、B (5,﹣2)、C (2,4)、D (﹣2,2),求这个四边形的面积.解:过C 点作x 轴的平行线,与AD 的延长线交于F ,作BE ⊥CF ,交FC 的延长线于E , 根据点的坐标可知,AF=7,DF=2,EF=7,CE=3,CF=4,BE=6,∴S 四边形ABCD =S 梯形BEFA ﹣S △BEC ﹣S △CDF =(6+7)×7﹣×3×6﹣×2×4 =.38.(2015春•鞍山期末)如图,在平面直角坐标系中,点A ,B 的坐标分别为(﹣1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD .(1)求点C ,D 的坐标及四边形ABDC 的面积S 四边形ABDC ;(2)在y 轴上是否存在一点P ,连接PA ,PB ,使S △PAB =S 四边形ABDC ?若存在这样一点,求出点P 的坐标;若不存在,试说明理由.解:(1)依题意,得C (0,2),D (4,2),∴S 四边形ABDC =AB ×OC=4×2=8;(2)在y 轴上是否存在一点P ,使S △PAB =S 四边形ABDC .理由如下:设点P 到AB 的距离为h ,S △PAB =×AB ×h=2h ,由S △PAB =S 四边形ABDC ,得2h=8,解得h=4,∴P (0,4)或(0,﹣4).39.(2015春•莆田校级期中)如图,长方形OABC 中,O 为平面直角坐标系的原点,A 点的坐标为(4,0),C 点的坐标为(0,6),点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O ﹣A ﹣B ﹣C ﹣O 的路线移动(即:沿着长方形移动一周).(1)写出点B 的坐标( 4,6 ).(2)当点P 移动了4秒时,描出此时P 点的位置,并求出点P 的坐标.(3)在移动过程中,当点P 到x 轴距离为5个单位长度时,求点P 移动的时间.解:(1)根据长方形的性质,可得AB与y轴平行,BC与x轴平行;故B的坐标为(4,6);(2)根据题意,P的运动速度为每秒2个单位长度,当点P移动了4秒时,则其运动了8个长度单位,此时P的坐标为(4,4),位于AB上;(3)根据题意,点P到x轴距离为5个单位长度时,有两种情况:P在AB上时,P运动了4+5=9个长度单位,此时P运动了4.5秒;P在OC上时,P运动了4+6+4+1=15个长度单位,此时P运动了=7.5秒.40.(2015秋•承德县期末)先阅读下列一段文字,在回答后面的问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离公式,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A、B两点间的距离.(3)已知一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),你能判定此三角形的形状吗?说明理由.解:(1)∵A(2,4)、B(﹣3,﹣8),∴|AB|==13,即A、B两点间的距离是13;(2)∵A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,∴|AB|=|﹣1﹣5|=6,即A、B两点间的距离是6;(3)∵一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),∴AB=5,BC=6,AC=5,∴AB=AC,∴△ABC是等腰三角形.。

人教版七年级数学下册—第7章平面直角坐标系单元总结复习

人教版七年级数学下册—第7章平面直角坐标系单元总结复习

第七章平面直角坐标系知识框架知识梳理1. 有序数对1.有顺序的两个数a,b组成的数叫做有序数对,记作(a,b).2.(a,b)中的a,b两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,表示不同位置。

2. 平面直角坐标系1. 在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系2. 水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为原点.3. 象限:两坐标轴把平面分为四个象限,坐标轴不属于任何一个象限.3. 点的坐标1.可用有序数对(a ,b )表示平面内任意一点的坐标,a 表示横坐标,b 表示纵坐标2.各象限内和坐标轴上点的坐标符号规律象限 横纵坐标符号(a ,b )图象第一象限 (+,+)a >0,b >0第二象限 (-,+)a <0,b >0 第三象限 (-,-)a <0,b <0 第四象限 (+,-)a >0,b <0x 轴上 正半轴(+,0);负半轴(-,0) y 轴上 正半轴(0,+);负半轴(0,-) 原点(0,0)3.其他特殊线上的点的坐标特殊线上的点的坐标与坐标轴平行的线与x 轴平行的线纵坐标相同横坐标不同 与y 轴平行的线 横坐标相同纵坐标不同 象限的角平分线一、三象限角平分线(m ,m ),横、纵坐标相同 二、四象限角平分线(m ,-m ),横、纵坐标互为相反数4. 坐标平面内的点到x 轴.y 轴及到原点的距离点P (a ,b )到x 轴的距离为b ,到y 轴的距离为a 22a b 5. 点和图形的平移1. 点的平移(1)左右平移:左减右加(纵坐标不变,横坐标变) (2)上下平移:上加下减(横坐标不变,纵坐标变) (3)沿x 轴平移纵坐标不变,沿y 轴平移横坐标不变2.图形的平移(1)一个图形各个点的横坐标都加上或减去正数a ,得到的新图形就是把原图形向右或向左平移a 个单位 (2)一个图形各个点的纵坐标都加上或减去正数a ,得到的新图形就是把原图形向上或向下平移a 个单位 (3)图形的平移可以转化为点的平移,平移只改变图形的位置,不改变图形的大小和形状6. 与坐标轴.原点对称的点的坐标特点1.关于x轴对称的点的横坐标相同,纵坐标互为相反数2.关于y轴对称的点的纵坐标相同,横坐标互为相反数3.关于原点对称的点的横坐标、纵坐标都互为相反数7. 用坐标表示地理位置1.建立适当的坐标系,选择一个适当的参照点为原点,确定x轴,y轴的正方向;2.根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;3.在坐标平面内画出这些点,写出各点的坐标和各个地点的名称考点1:有序数对有顺序的两个数a,b组成的数叫做有序数对,记作(a,b)。

人教版数学七年级下册第七章平面直角坐标系基础知识点讲解+典型例题讲解.doc

人教版数学七年级下册第七章平面直角坐标系基础知识点讲解+典型例题讲解.doc

【本文档由书林工作坊整理发布,谢谢你的下载和关注!】平面直角坐标系(基础)知识讲解【学习目标】1.理解平面直角坐标系概念,能正确画出平面直角坐标系.2.能在平面直角坐标系中,根据坐标确定点,以及由点求出坐标,掌握点的坐标的特征.3.由数轴到平面直角坐标系,渗透类比的数学思想.【要点梳理】要点一、有序数对定义:把有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).要点诠释:有序,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,如电影院的座位是6排7号,可以写成(6,7)的形式,而(7,6)则表示7排6号.要点二、平面直角坐标系与点的坐标的概念1. 平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系.水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1).要点诠释:平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的.2. 点的坐标平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b 分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标,记作:P(a,b),如图2.要点诠释:(1)表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用“,”隔开.(2)点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离.(3) 对于坐标平面内任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序数对是一一对应的.要点三、坐标平面1. 象限建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限,如下图.要点诠释:(1)坐标轴x轴与y轴上的点(包括原点)不属于任何象限.(2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方.2. 坐标平面的结构坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限. 这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点.要点四、点坐标的特征1.各个象限内和坐标轴上点的坐标符号规律要点诠释:(1)对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上.(2)坐标轴上点的坐标特征:x轴上的点的纵坐标为0;y轴上的点的横坐标为0.(3)根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况.2.象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).3.关于坐标轴对称的点的坐标特征P(a,b)关于x轴对称的点的坐标为 (a,-b);P(a,b)关于y轴对称的点的坐标为 (-a,b);P(a,b)关于原点对称的点的坐标为 (-a,-b).4.平行于坐标轴的直线上的点平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同.【典型例题】类型一、有序数对1.如果将一张“13排10号”的电影票简记为(13,10),那么(10,13)表示的电影票是排号.【思路点拨】在平面上,一个数据不能确定平面上点的位置.须用有序数对来表示平面内点的位置.【答案】10,13.【解析】由条件可知:前面的数表示排数,后面的数表示号数.【总结升华】在表示时,先要“约定”顺序,一旦顺序“约定”,两个数的位置就不能随意交换,(a,b)与(b,a)顺序不同,含义就不同.类型二、平面直角坐标系与点的坐标的概念2.如图,写出点A、B、C、D各点的坐标.【思路点拨】要确定点的坐标,要先确定点所在的象限,再看点到坐标轴的距离.【答案与解析】解:由点A向x轴作垂线,得A点的横坐标是2,再由点A向y轴作垂线,得A点的纵坐标是3,则点A的坐标是(2,3),同理可得点B、C、D的坐标.所以,各点的坐标:A(2,3),B(3,2),C(-2,1),D(-1,-2).【总结升华】平面直角坐标系内任意一点到x轴的距离是这点纵坐标的绝对值,到y轴的距离是这点横坐标的绝对值.举一反三:【变式】在平面直角坐标系中,如果点A既在x轴的上方,又在y轴的左边,且距离x轴,y轴分别为5个单位长度和4个单位长度,那么点A的坐标为( ).A.(5,-4) B.(4,-5) C.(-5,4) D.(-4,5)【答案】D.3.在平面直角坐标系中,描出下列各点A(4,3),B(-2,3),C(-4,1),D(2,-2).【答案与解析】解:因为点A的坐标是(4,3),所以先在x轴上找到坐标是4的点M,再在y轴上找到坐标是3的点N.然后由点M作x轴的垂线,由点N作y轴的垂线,过两条垂线的交点就是点A,同理可描出点B、C、D.所以,点A、B、C、D在直角坐标系的位置如图所示.【总结升华】对于坐标平面内任意一点,都有唯一的一对有序数对和它对应;对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序实数对是一一对应的.举一反三:【变式】在平面直角坐标系中,O为坐标原点,已知:A(3,2),B(5,0),则△AOB的面积为.【答案】5.类型三、坐标平面及点的特征4.(2014春•夏津县校级期中)根据要求解答下列问题:设M(a,b)为平面直角坐标系中的点.(1)当a>0,b<0时,点M位于第几象限?(2)当ab>0时,点M位于第几象限?(3)当a为任意实数,且b<0时,点M位于何处?【思路点拨】(1)利用第四象限点的坐标性质得出答案;(2)利用第二、四象限点的坐标性质得出答案;(3)利用第三、四象限和纵轴点的坐标性质得出答案.【答案与解析】解:∵M(a,b)为平面直角坐标系中的点.(1)当a>0,b<0时,点M位于第四象限;(2)当ab>0时,即a,b同号,故点M位于第一、三象限;(3)当a为任意实数,且b<0时,点M位于第三、四象限和纵轴的负半轴.【总结升华】本题考查点的坐标的确定,正确掌握各象限对应坐标的符号是解题关键.举一反三:【变式】(2015•威海)若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】解:由A(a+1,b﹣2)在第二象限,得a+1<0,b﹣2>0.解得a<﹣1,b>2.由不等式的性质,得﹣a>1,b+1>3,点B(﹣a,b+1)在第一象限,故选:A.5.(2016春•宜阳县期中)已知点P(2m+4,m﹣1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过A(2,﹣3)点,且与x轴平行的直线上.【思路点拨】(1)根据横纵坐标的大小关系得出m﹣1﹣(2m+4)=3,即可得出m的值,进而得出P点坐标;(2)根据平行于x轴点的坐标性质得出m﹣1=﹣3,进而得出m的值,进而得出P点坐标.【答案与解析】解:(1)∵点P(2m+4,m﹣1),点P的纵坐标比横坐标大3,∴m﹣1﹣(2m+4)=3,解得:m=﹣8,∴2m+4=﹣12,m﹣1=﹣9,∴点P的坐标为:(﹣12,﹣9);(2)∵点P在过A(2,﹣3)点,且与x轴平行的直线上,∴m﹣1=﹣3,解得:m=﹣2,∴2m+4=0,∴P点坐标为:(0,﹣3).【总结升华】此题主要考查了坐标与图形的性质,根据已知得出关于m的等式是解题关键.举一反三:【变式】在直角坐标系中,点P(x,y)在第二象限且P到x轴,y轴的距离分别为2,5,则P 的坐标是_________;若去掉点P在第二象限这个条件,那么P的坐标是________.【答案】(-5,2);(5,2),(-5,2),(5,-2),(-5,-2).【本文档由书林工作坊整理发布,谢谢你的下载和关注!】坐标方法的简单应用(基础)知识讲解【学习目标】1.能建立适当的平面直角坐标系描述物体的位置.2. 能在同一坐标系中,感受图形变换后点的坐标的变化.【要点梳理】要点一、用坐标表示地理位置根据已知条件,建立适当的平面直角坐标系,是确定点的位置的必经过程,只有建立了适当的直角坐标系,点的位置才能得以确定,才能使数与形有机地结合在一起.利用平面直角坐标系绘制区域内一些地点分布情况的过程:(1)建立坐标系,选择一个适当的参照点为原点,确定x轴,y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.要点诠释:(1)建立坐标系的关键是确定原点和坐标轴的位置,我们一般选择那些使点的位置比较容易确定的方法,例如借助于图形的某边所在直线为坐标轴等,而建立平面直角坐标系的方法是不唯一的.所建立的平面直角坐标系也不同,得到的点的坐标不同.(2)应注意比例尺和坐标轴上的单位长度的确定.要点二、用坐标表示平移1.点的平移:在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).要点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.2.图形的平移:在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点诠释:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化.【典型例题】类型一、用坐标表示地理位置1.(2015春•建昌县期末)课间操时,小聪、小慧、小敏的位置如图所示,小聪对小慧说,如果我的位置用(1,1)表示,小敏的位置用(7,7)表示,那么你的位置可以表示成()A.(5,4)B.(4,4)C.(3,4)D.(4,3)【答案】B.【解析】解:如图,小慧的位置可表示为(4,4).【总结升华】本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.2.如图所示,在一次敌我双方交战中,我军先头部队在距敌方据点A处200米的B 处遇到敌方火力阻击,为了尽快扫除障碍,使我军驻C处的后续大部队顺利前进,先头部队请求大部队炮火支援.如果你就在先头部队中,你能表述出敌方据点的准确位置吗?【思路点拨】建立适当的直角坐标系,把A、B、C三点的位置用坐标表示出来.【答案与解析】解:如图所示,以B点为坐标原点,正东方向为x轴的正方向,正北方向为y轴正方向,建立平面直角坐标系,A、B、C各点的位置为A(-200,0)、B(0,0)、C(800,-600).若以A为坐标原点,正东方向为x轴的正方向,正北方向为y轴正方向,建立平面直角坐标系,A、B、C各点的位置为A(0,0)、B(200,0)、C(1000,-600).若以C为坐标原点,正东方向为x轴的正方向,正北方向为y轴正方向,建立平面直角坐标系,A、B、C各点的位置为A(-1000,600)、B(-800,600)、C(0,0).【总结升华】对于本题,选取的坐标原点不同,各个据点的坐标也不同,不论是哪个点表示原点,都要让人一听一看就清楚所描述的位置.当然,就本题而言,选择B点为坐标原点更贴切一些.举一反三:【变式】如图所示是某市市区几个旅游景点的示意图(图中每个小正方形的边长都为1个单位长度),请以某景点为坐标原点,画出直角坐标系,并用坐标表示下列景点的位置.光岳楼________,金风广场________,动物园________.【答案】本题的答案不唯一,现给出三种答案:(1)如果以山峡会馆为坐标原点,水平方向为横轴,取向右方向为正方向,竖直方向为纵轴,取竖直向上方向为正方向,则光岳楼的位置是(-3,1),金风广场的位置是1 5,2⎛⎫--⎪⎝⎭,动物园的位置是(4,4);(2)如果以光岳楼为坐标原点,水平方向为横轴,取向右方向为正方向,竖直方向为纵轴,取竖直向上方向为正方向,则光岳楼的位置是(0,0),金风广场的位置是12,12⎛⎫--⎪⎝⎭,动物园的位置是(7,3);(3)若以动物园为坐标原点,水平方向为横轴.取向右方向为正方向,竖直方向为纵轴,取竖直向上方向为正方向,则光岳楼(-7,-3),金风广场19,42⎛⎫--⎪⎝⎭,动物园(0,0).类型二、用坐标表示平移3.(2016•徐州模拟)在平面直角坐标系中,将点A向左平移1个单位长度,再向下平移4个单位长度得点B,点B的坐标是(2,﹣2),则A点的坐标是.【思路点拨】首先设点A的坐标是(x,y),根据平移方法可得A的对应点坐标为(x﹣1,y﹣4),进而可得x﹣1=2,y﹣4=﹣2,然后可得x、y的值,从而可得答案.【答案】(3,2).【解析】解:设点A的坐标是(x,y),∵将点A向左平移1个单位长度,再向下平移4个单位长度得点B,可得B的对应点坐标为(x﹣1,y﹣4),∵得到点B的坐标是(2,﹣2),∴x﹣1=2,y﹣4=﹣2,∴x=3,y=2,∴A的坐标是(3,2).【总结升华】左右平移的单位数是平移后点的横坐标减去平移前对应点的横坐标,上下平移的单位数是平移后点的纵坐标减去对应平移前点的纵坐标.举一反三:【变式1】已知:两点A(-4,2)、B(-2,-6),(1)线段AB的中点C坐标是;(2)若将线段AB沿x轴向右平移5个单位,得到线段A1B1,则A1点的坐标是 ,B1点的坐标是.(3)若将线段AB沿y轴向下平移3个单位,得到线段A2B2,则A2点的坐标是 ,B2点的坐标是.【答案】(1)(-3, -2); (2)(1,2),(3,-6); (3)(-4,-1),(-2,-9).【变式2】(2015•甘南州)将点A(2,1)向上平移3个单位长度得到点B的坐标是.【答案】(2,4).解:原来点的横坐标是2,纵坐标是1,向上平移3个单位长度得到新点的横坐标不变,纵坐标为1+3=4.即该坐标为(2,4).4.如图所示的直角坐标系中,△ABC的顶点坐标分别是A(0,0),B(6,0),C(5,5).(1)求△ABC的面积;(2)如果将△ABC向上平移1个单位长度,得△A1B1C1,再向右平移2个单位长度,得到△A2B2C2,试求A2、B2、C2的坐标;(3)△A2B2C2与△ABC的大小、形状有什么关系.【思路点拨】 (1)已知AB=6,故只要求得C到x轴距离即可.(2)在平面直角坐标系中,将图形向右(或左)平移a个单位长度,那么图形的点(x,y)向右(或向左)平移a个单位长度,可得对应点(x+a,y)或(x-a,y),将图形向上(或向下)平移b个单位长度,可得到对应点(x,y+b)或(x,y-b).(3)可根据平移的性质进行分析和判断.【答案与解析】解:(1)点C到x轴的距离为5,所以11651522ABCS AB h==⨯⨯=g△;(2)根据题意求出三角形A2B2C2各顶点的坐标为A2(2,1),B2(8,1),C2(7,6);(3)连接A2B2C2三点可以看出△A2B2C2与△ABC的大小、形状相等或相同.【总结升华】平移只改变图形的位置,不改变图形的形状和大小.举一反三:【变式】如图,三角形DEF经过平移后得到三角形ABC,则点D坐标为,点E的坐标为.【答案】D(2,2),E(3,-2).【本文档由书林工作坊整理发布,谢谢你的下载和关注!】《平面直角坐标系》全章复习与巩固(基础)知识讲解【学习目标】1. 理解平面直角坐标系及象限的概念,并会在坐标系中根据点的坐标描出点的位置、由点的位置写出它的坐标;2. 掌握用坐标系表示物体位置的方法及在物体平移变化前后点坐标的变化;3. 通过学习平面直角坐标系的基础知识,逐步理解平面内的点与有序实数对之间的一一对应关系,进而培养数形结合的数学思想.【知识网络】【要点梳理】要点一、有序数对把一对数按某种特定意义,规定了顺序并放在一起就形成了有序数对,人们在生产生活中经常以有序数对为工具表达一个确定的意思,如某人记录某个月不确定周期的零散收入,可用(13,2000), (17,190), (21,330)…,表示,其中前一数表示日期,后一数表示收入,但更多的人们还是用它来进行空间定位,如:(4,5),(20,12),(13,2),…,用来表示电影院的座位,其中前一数表示排数,后一数表示座位号.要点二、平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系,如下图:要点诠释:(1)坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限,这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点.(2)在平面上建立平面直角坐标系后,坐标平面上的点与有序数对(x,y)之间建立了一一对应关系,这样就将‘形’与‘数’联系起来,从而实现了代数问题与几何问题的转化. (3)要熟记坐标系中一些特殊点的坐标及特征:① x轴上的点纵坐标为零;y轴上的点横坐标为零.②平行于x轴直线上的点横坐标不相等,纵坐标相等;平行于y轴直线上的点横坐标相等,纵坐标不相等.③关于x轴对称的点横坐标相等,纵坐标互为相反数;关于y轴对称的点纵坐标相等,横坐标互为相反数;关于原点对称的点横、纵坐标分别互为相反数.④象限角平分线上的点的坐标特征:一、三象限角平分线上的点横、纵坐标相等;二、四象限角平分线上的点横、纵坐标互为相反数.注:反之亦成立.(4)理解坐标系中用坐标表示距离的方法和结论:①坐标平面内点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|.② x轴上两点A(x1,0)、B(x2,0)的距离为AB=|x1 - x2|;y轴上两点C(0,y1)、D(0,y2)的距离为CD=|y1 - y2|.③平行于x轴的直线上两点A(x1,y)、B(x2,y)的距离为AB=|x1 - x2|;平行于y轴的直线上两点C(x,y1)、D(x,y2)的距离为CD=|y1 - y2|.(5)利用坐标系求一些知道关键点坐标的几何图形的面积:切割、拼补.要点三、坐标方法的简单应用1.用坐标表示地理位置(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.要点诠释:(1)我们习惯选取向东、向北分别为x 轴、y 轴的正方向,建立坐标系的关键是确定原点的位置.(2)确定比例尺是画平面示意图的重要环节,要结合比例尺来确定坐标轴上的单位长度.2.用坐标表示平移(1)点的平移点的平移引起坐标的变化规律:在平面直角坐标中,将点(x ,y)向右(或左)平移a 个单位长度,可以得到对应点(x+a ,y)(或(x-a ,y));将点(x ,y)向上(或下)平移b 个单位长度,可以得到对应点(x ,y+b)(或(x ,y-b)).要点诠释:上述结论反之亦成立,即点的坐标的上述变化引起的点的平移变换.(2)图形的平移在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.要点诠释:平移是图形的整体运动,某一个点的坐标发生变化,其他点的坐标也进行了相应的变化,反过来点的坐标发生了相应的变化,也就意味着点的位置也发生了变化,其变化规律遵循:“右加左减,纵不变;上加下减,横不变”.【典型例题】类型一、有序数对1.数学家发明了一个魔术盒,当任意数对(a ,b)进入其中时,会得到一个新的数:21a b ++.例如把(3,-2)放入其中,就会有32 +(-2)+1=8,现将数对(-2,3)放入其中得到数m ,再将数对(m ,1)放入其中,得到的数是________.【思路点拨】解答本题的关键是正确理解如何由数对得到新的数,只要按照新定义的数的运算,把数对代入21a b ++求值即可.【答案】66 .【解析】解:将(-2,3)代入,21a b ++,得(-2)2+3+1=8,再将(8,1)代入,得82 +1+1=66,故填:66.【总结升华】解答此题的关键是把实数对(-2,3)放入其中得到实数m ,解出m 的值,即可求出把(m ,1)放入其中得到的数. 举一反三:【变式】我们规定向东和向北方向为正,如向东走4米,再向北走6米,记作(4,6),则向西走5米,再向北走3米,记作________;数对(-2,-6)表示________.【答案】 (-5,3);向西走2米,向南走6米.类型二、平面直角坐标系2. (滨州)第三象限内的点P(x,y),满足|x|=5,y2=9,则点P的坐标为________.【思路点拨】点在第三象限,横坐标<0,纵坐标<0.再根据所给条件即可得到x,y的具体值.【答案】(-5,-3).【解析】因为|x|=5,y2=9.所以x=±5,y=±3,又点P(x,y)在第三象限,所以x<0,y<0,故点P的坐标为(-5,-3).【总结升华】解决本题的关键是记住各象限内点的坐标的符号,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).举一反三:【变式1】 (乐山)在平面直角坐标系中,点P(-3,4)到x轴的距离为( ) .A.3 B.-3 C.4 D.-4【答案】C.【变式2】 (长春)如图所示,小手盖住的点的坐标可能为( ) .A.(5,2) B.(-6,3) C.(-4,-6) D.(3,-4)【答案】D.类型三、坐标方法的简单应用3.(2016春•吐鲁番市校级期中)如图,是某校的平面示意图,已知图书馆、行政楼的坐标分别为(﹣3,2),(2,3).完成以下问题:(1)请根据题意在图上建立直角坐标系;(2)写出图上其他地点的坐标(3)在图中用点P表示体育馆(﹣1,﹣3)的位置.【思路点拨】(1)根据图书馆、行政楼的坐标分别为(﹣3,2),(2,3),可以建立合适的平面直角坐标系,从而可以解答本题;(2)根据(1)中的平面直角坐标系可以写出其它地点的坐标;(3)根据点P(﹣1,﹣3)可以在直角坐标系中表示出来.【答案与解析】解:(1)由题意可得,(2)由(1)中的平面直角坐标系可得,校门口的坐标是(1,0),信息楼的坐标是(1,﹣2),综合楼的坐标是(﹣5,﹣3),实验楼的坐标是(﹣4,0);(3)在图中用点P表示体育馆(﹣1,﹣3)的位置,如下图所示,【总结升华】本题考查利用坐标确定位置,解题的关键是明确题意,建立相应的平面直角坐标系.4.(2015春•荣昌县期末)如图,四边形OABC各个顶点的坐标分别是O(0,0),A(3,0),B(5,2),C(2,3).求这个四边形的面积.【思路点拨】分别过C点和B点作x轴和y轴的平行线,如图,然后利用S四边形ABCO=S矩形OHEF ﹣S△ABH﹣S△CBE﹣S△OCF进行计算.【答案与解析】解:分别过C点和B点作x轴和y轴的平行线,如图,则E(5,3),所以S四边形ABCO=S矩形OHEF﹣S△ABH﹣S△CBE﹣S△OCF=5×3﹣×2×2﹣×1×3﹣×3×2=.【总结升华】本题考查了坐标与图形性质:利用点的坐标计算相应线段的长和判断线段与坐标轴的位置关系;会运用面积的和差计算不规则图形的面积.5.△ABC三个顶点坐标分别是A(4,3),B(3,1),C(1,2).(1)将△ABC向右平移1个单位,再向下平移2个单位,所得△A1B1C1的三个顶点坐标分别是什么?(2)将△ABC三个顶点的横坐标都减去5,纵坐标不变,分别得到A2、B2、C2,依次连接A2、B2、C2各点,所得△A2B2C2与△ABC的大小、形状和位置上有什么关系?(3)将△ABC三个顶点的纵坐标都减去5,横坐标不变,分别得到A3、B3、C3,依次连接A3、B3、C3各点,所得△A3B3C3与△ABC的大小、形状和位置上有什么关系?【答案与解析】解:(1)A1(5,1),B1(4,-1),C1(2,0).(2)△A2B2C2与△ABC的大小、形状完全相同,在位置上是把△ABC向左平移5个单位得到.(3)△A3B3C3与△ABC的大小、形状完全相同,在位置上是把△ABC向下移5个单位得到.【总结升华】此题揭示了平移的整体性,以及平移前后的坐标关系是一一对应的,在平移中,横坐标减小等价于向左平移;横坐标增大等价于向右平移;纵坐标减小等价于向下平移;纵坐标增大等价于向上平移.举一反三:【变式】(2015•钦州)在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重合,则点A的坐标是()A.(2,5)B.(﹣8,5)C.(﹣8,﹣1)D.(2,﹣1)【答案】D.解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:D.类型四、综合应用6.三角形ABC三个顶点A、B、C的坐标分别为A(2,-1)、B(1,-3)、C(4,-3.5).(1)在直角坐标系中画出三角形ABC;(2)把三角形A1B1C1向右平移4个单位,再向下平移3个单位,恰好得到三角形ABC,试写出三角形A1B1C1三个顶点的坐标,并在直角坐标系中描出这些点;(3)求出三角形A1B1C1的面积.【思路点拨】(1)建立平面直角坐标系,从中描出A、B、C三点,顺次连接即可.(2)把三角形A1B1C1向右平移4个单位,再向下平移3个单位,恰好得到三角形ABC,即三角形ABC向上平移3个单位,向左平移4个单位,得到三角形A1B1C1,按照平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.写出三角形A1B1C1三个顶点的坐标,从坐标系中画出图形.(3)把△A1B1C1补成矩形再把周边的三角形面积减去,即可求得△A1B1C1的面积.【答案与解析】解:(1)如图1,(2)如图2,A1(-2,2),B1(-3,0),C1(0,-0.5);(3)把△A1B1C1补成矩形再把周边的三角形面积减去,即可求得△A1B1C1的面积=3×2.5-1-2.5-0.75=3.25.∴△A1B1C1的面积=3.25.【总结升华】本题综合考查了平面直角坐标系,及平移变换.注意平移时,要找到三角形各顶点的对应点是关键,然后割补法求出三角形ABC的面积。

人教版七年级数学下册第七章《平面直角坐标系》知识梳理、考点精讲精练、课堂小测、课后作业第9讲有答案

人教版七年级数学下册第七章《平面直角坐标系》知识梳理、考点精讲精练、课堂小测、课后作业第9讲有答案

第9讲平面直角坐标系1、有序数对:有顺序的两个数a与b组成的数对。

(1)记作(a ,b);(2)注意:a、b的先后顺序对位置的影响。

a,)(3)、坐标平面上的任意一点P的坐标,都和惟一的一对有序实数对(b 一一对应;其中,a为横坐标,b为纵坐标坐标;(4)、x轴上的点,纵坐标等于0;y轴上的点,横坐标等于0;坐标轴上的点不属于任何象限;2、平面直角坐标系平面直角坐标系:我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

构成坐标系的各种名称:水平的数轴称为x轴或横轴,习惯上取向右为正方向竖直的数轴称为y轴或纵轴,取向上方向为正方向两坐标轴的交战为平面直角坐标系的原点第一象限:(+,+)点P(x,y),则x>0,y>0;第二象限:(-,+)点P(x,y),则x<0,y>0;第三象限:(-,-)点P(x,y),则x<0,y<0;第四象限:(+,-)点P(x,y),则x>0,y<0;四个象限的特点:第一象限(正,正),第二象限(负,正),第三象限(负,负),第四象限(正,负)横坐标轴上的点:(x ,0)纵坐标轴上的点:(0,y )1、平行于x 轴(或横轴)的直线上的点的纵坐标相同;2、平行于y 轴(或纵轴)的直线上的点的横坐标相同。

3、第一、三象限角平分线上的点的横纵坐标相同;4、第二、四象限角平分线上的点的横纵坐标相反。

(1)在与x 轴平行的直线上, 所有点的纵坐标相等; 点A 、B 的纵坐标都等于m ;(2)在与y 轴平行的直线上,所有点的横坐标相等; 点C 、D 的横坐标都等于n ;(3)各象限的角平分线上的点的坐标特点:若点P (n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等; 若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;在第一、三象限的角平分线上 在第二、四象限的角平分线上利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:(1)建立坐标系,选择一个适当的参照点为原点,确定x 轴、y 轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

新人教版七年级下册数学第七章平面直角坐标系知识点总结归纳及阶梯练习

新人教版七年级下册数学第七章平面直角坐标系知识点总结归纳及阶梯练习

第七章平面直角坐标系知识点总结归纳1.平面直角坐标系的定义:在平面内有公共原点且互相垂直的两条数轴组成平面直角坐标系。

水平的数轴为X轴,竖直的数轴为y轴,它们的公共原点O为直角坐标系的原点。

2.象限: 两坐标轴把平面分成________,坐标轴上的点不属于 ____________。

3.可用有序数对(x ,y)表示平面内任一点P的坐标。

a表示横坐标,b表示纵坐标。

4.各象限内点的坐标符号特点: 第一象限______,第二象限_____ 第三象限______,第四象限_______。

5.坐标轴上点的坐标特点: 横轴上的点纵坐标为___,纵轴上的点横坐标为____。

6.特殊点的坐标:平行于x轴的直线上的点的坐标特点是平行于y轴的直线上的点的坐标特点是7. 在平面直角坐标系中,点p ( x , y )关于x轴的对称点的坐标为_______,关于y轴的对称点的坐标为_______,关于原点的对称点的坐标为_______。

8.点p ( x ,y )到x轴的距离为_______,到y轴的距离为_______。

9.在第一、三象限角平分线的点的横纵坐标;在第二、四象限角平分线上的点的横纵坐标。

10.利用平面直角坐标系绘制某一区域的各点分布情况的平面图包括以下过程:(1)建立适当的坐标系,即选择适当点作为原点,确定x轴、y轴的正方向; (注重寻找最佳位置)(2)根据具体问题确定恰当的比例尺,在数轴上标出单位长度;(3)在坐标平面上画出各点,写出坐标名称。

11.一个图形在平面直角坐标系中进行平移,其坐标就要发生相应的变化, 可以简单地理解为:左、右平移___坐标不变, ___坐标变,变化规律是___减___加, 上下平移___坐标不变, ___坐标变, 变化规律是___减 ___加。

例如:当P(x ,y)向右平移a个单位长度,再向上平移b个单位长度后坐标为p′(x+a ,y+b)。

精题精炼一、选择题1、下列说法正确的是()A平面内,两条互相垂直的直线构成数轴B、坐标原点不属于任何象限。

七年级数学下册第七章平面直角坐标系知识点归纳总结(精华版)

七年级数学下册第七章平面直角坐标系知识点归纳总结(精华版)

(名师选题)七年级数学下册第七章平面直角坐标系知识点归纳总结(精华版)单选题1、在平面直角坐标系中,点A(2,a)在第四象限内,则a的取值可以是()C.0D.2或﹣2A.1B.−32答案:B分析:根据第四象限内点的纵坐标是负数,纵坐标是正数即可判断.解:∵点A(2,a)是第四象限内的点,∴a<0,.四个选项中符合题意的数是−32故选:B.小提示:本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2、如图,在平面直角坐标系中A(−1,1),B(−1,−2),C(3,−2),D(3,1),一只瓢虫从点A出发以2个单位长度/秒的速度沿A→B→C→D→A循环爬行,问第2022秒瓢虫在()处.A.(−1,1)B.(1,1)C.(2,1)D.(3,1)答案:B分析:根据点A、B、C、D的坐标可得出AB、AD及矩形ABCD的周长,由4044÷14商是288,余数是12,可得出当t=2022秒时瓢虫在点D左侧2个单位处,再结合点D的坐标即可得出结论.解:∵A(−1,1),B(−1,−2),C(3,−2),D(3,1),∴AB =CD =3,AD =BC =4,∴C 矩形ABCD =2(AB +AD )=14,瓢虫2022秒行驶的路程为:2022×2=4044,∵4044÷14商是288,余数是12,∴当t =2022秒时,瓢虫在点D 左侧2个单位处,∴此时瓢虫的坐标为(1,1),故B 正确.故选:B .小提示:本题考查了规律型中点的坐标,根据瓢虫的运动规律找出当t =2022秒时瓢虫在点D 处,是解题的关键.3、在平面直角坐标系中,点A(a,2)在第二象限内,则a 的取值可以..是( ) A .1B .−32C .43D .4或-4答案:B分析:根据第二象限内点的横坐标是负数,纵坐标是正数即可判断.解:∵点A(a,2)是第二象限内的点,∴a <0,四个选项中符合题意的数是−32,故选:B小提示:本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4、下列说法不正确的是( )A .点A (−a 2−1,|b|+1)一定在第二象限B .点P(−2,3)到y 轴的距离为2C .若P(x,y)中xy =0,则P 点在x 轴上D.若x+y=0,则点P(x,y)一定在第二、第四象限角平分线上答案:C分析:根据各象限角平分线上点的坐标特征,坐标轴上点的坐标特征以及点到y轴的距离等于横坐标的长度对各选项分析判断即可得解.解:A、因为−a2−1<0,|b|+1>0,所以点A(−a2−1,|b|+1)一定在第二象限,说法正确,故此选项不符合题意.B、点P(−2,3)到y轴的距离是2,说法正确,故此选项不符合题意;C、若P(x,y)中xy=0,则P点在x轴或y轴上,说法不正确,故此选项符合题意;D、若x+y=0,则x、y互为相反数,点P(x,y)一定在第二、四象限角平分线上,说法正确,故此选项不符合题意;故选:C.小提示:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).5、已知点P1(−6,2),P2(−6,−2),则P1和P2满足()A.P1P2//x轴B.P1P2=12C.P1P2//y轴D.P1P2=8答案:C分析:由两个点的横坐标相同,纵坐标互为相反数即可得到两点关于x轴对称,与y轴平行.解:∵P1(−6,2),P2(−6,−2),∴两个点关于x轴对称,与y轴平行,故选:C.小提示:本题考查了关于坐标轴对称点的坐标的特点,解题的关键是熟记坐标特点.6、在平面直角坐标系中,点A(﹣1,﹣2)落在()A.第一象限B.第二象限C.第三象限D.第四象限答案:C分析:根据第三象限中点的坐标特征:横坐标为负数,纵坐标为负数,由此可确定A点位置.解:∵﹣1<0,﹣2<0,∴点A(﹣1,﹣2)在第三象限,故选:C.小提示:本题考查平面直角坐标系中点的坐标特征,熟练掌握平面直角坐标系中各象限点的坐标特点是解题的关键.7、在平面直角坐标系中,点P(x2+2,−3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限答案:D分析:直接利用各象限内点的坐标特点分析得出答案.∵x2+2>0,∴点P(x2+2,−3)所在的象限是第四象限.故选:D.小提示:此题主要考查了点的坐标,正确掌握各象限内点的坐标特点是解题关键.8、家长会前,四个孩子分别向家长描述自己在班里的座位,家长能准确找到自己孩子座位的是()A.小明说他坐在第1排B.小白说他坐在第3列C.小清说她坐在第2排第5列D.小楚说他的座位靠窗答案:C分析:直接利用坐标确定位置需要两个量,进而分析得出答案.解:A.小明说他坐在第1排,无法确定座位位置,故此选项不合题意;B.小白说他坐在第3列,无法确定座位位置,故此选项不合题意;C.小清说她坐在第2排第5列,可以确定座位位置,故此选项符合题意;D.小楚说他的座位靠窗,无法确定座位位置,故此选项不合题意;故选:C.小提示:本题主要考查了坐标确定位置,掌握具体位置确定需两个量是解题关键.9、下列说法不正确的是()A.点A(−a2−1,|b|+1)一定在第二象限B.点P(−2,3)到y轴的距离为2C.若P(x,y)中xy=0,则P点在x轴上D.若P(x,y)在x轴上,则y=0答案:C分析:A:第二象限的点满足(-,+),B:找出P点坐标即可确定与y轴的距离,C:xy=0,可确定x、y至少有一个为0来确定,D:根据x轴上点的坐标特征即可判定.A:−a2−1<0,|b|+1>0,本选项说法正确;B:P点到y轴距离是2,本选项说法正确;C:xy=0,得到x、y至少有一个为0,P可能在x轴上,也可能在y轴上,本选项说法错误;D:点P在x轴上,则y=0,本选项说法正确.故选:C.小提示:本题考查坐标上点的特征.确定各个象限的点和坐标轴上点的特征是解决本题的关键.10、若点A的坐标为(0,0),点B的坐标为(4,0),点C在y轴上,△ABC的面积是10,则C点的坐标可能是()A.(0,10)B.(5,0)C.(0,4)D.(0,−5)答案:D分析:根据三角形面积公式求出OC的长即可得到答案.解:∵点B的坐标为(4,0),∴OB=4,∵△ABC的面积为10,∴1OB⋅OC=10,2∴OC=5,∴点C的坐标为(0,5)或(0,-5),故选D.小提示:本题主要考查了坐标与图形,正确求出OC的长是解题的关键.填空题11、已知点A(−3,−1),AB//x轴,AB=5,则点B的坐标为______.答案:(-8,-1)或(2,-1),分析:由AB//x轴可得A、B两点纵坐标相等,由AB的长为3,分B点在A点左边和右边,分别求B点坐标即可.∵AB//x轴,点A(−3,−1),∴A、B两点纵坐标相等,即点B的纵坐标为-1,∵AB=5,∴当点B在点A左侧时,点B横坐标为-3-5=-8,当点B在点A右侧时,点B横坐标为-3+5=2,∴点B坐标为(-8,-1)或(2,-1),所以答案是:(-8,-1)或(2,-1)小提示:本题考查了坐标与图形性质,主要利用了平行于x轴的点的纵坐标相同的性质,要注意分情况讨论.12、如图,在平面直角坐标系中,点A(0,4)在y轴正半轴上,点B(-3,0)在x轴负半轴上,且AB=5,点M坐标为(3,0),N点为线段OA上一动点,P为线段AB上的一动点,则MN+NP的最小值为___________.答案:245分析:连接AM,根据点A(0,4),点B(-3,0),点M坐标为(3,0),得到OA=4,OB=3,OM=3,过M作MP⊥AB于P交OA于N,则此时,MN+NP的值最小,且MN+NP的最小值=MP,根据三角形的面积公式即可得到结论.解:连接AM,∵点A(0,4),点B(-3,0),点M坐标为(3,0),∴OA=4,OB=3,OM=3,过M作MP⊥AB于P交OA于N,则此时,MN+NP的值最小,且MN+NP的最小值=MP,∵S△ABM=12AB⋅PM=12OA⋅MB,BM=6,OA=4,AB=5,∴PM=OA⋅BMAB =4×65=245.所以答案是:245.小提示:本题考查垂线段最短的应用,坐标与图形性质,三角形的面积公式,正确的作出图形是解题的关键.13、一个正数的平方根分别是x+1和x−5,则x=__.答案:2.分析:根据正数的两个平方根互为相反数可得关于x的方程,解方程即可得.根据题意可得:x+1+x﹣5=0,解得:x=2,故答案为2.小提示:本题主要考查了平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.14、如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2021秒时,点P的坐标是__.答案:(2021,1)分析:根据图象可得移动4次图象完成一个循环,从而可得出点P的坐标.×2π×1=π,半径为1个单位长度的半圆的周长为12∵点P从原点O出发,沿这条曲线向右运动,速度为每秒π个单位长度,2∴点P每秒走1个半圆,2当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2021÷4=505余1,∴P的坐标是(2021,1),所以答案是:(2021,1).小提示:此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.15、若A点的坐标是(2,−1),AB=4,且AB∥y轴,则点B的坐标为______.答案:(2,3)或(2,−5)##(2,-5)或(2,3)分析:根据A点的坐标是(2,﹣1),AB=4,且AB平行于y轴,可知点B的横坐标为是2,纵坐标是﹣1+4=3或﹣1﹣4=﹣5,从而可以写出点B的坐标.解:∵A点的坐标是(2,﹣1),AB=4,且AB平行于y轴,∴点B的横坐标是2,纵坐标是﹣1+4=3或﹣1﹣4=﹣5,即点B的坐标为(2,3)或(2,﹣5),所以答案是:(2,3)或(2,﹣5).小提示:本题考查坐标与图形的性质,解答本题的关键是明确平行于y轴的直线上点的横坐标都相等.解答题16、已知点P(8﹣2m,m+1).(1)若点P在y轴上,求m的值.(2)若点P在第一象限,且点P到x轴的距离是到y轴距离的2倍,求P点的坐标.答案:(1)4(2)P(2,4).分析:(1)直接利用y轴上点的坐标特点得出m的值;(2)直接利用P点位置结合其到x,y轴距离得出点的坐标.(1)解:∵点P(8﹣2m,m+1),点P在y轴上,∴8﹣2m=0,解得:m=4;(2)解:由题意可得:m+1=2(8﹣2m),解得:m=3,则8﹣2m=2,m+1=4,故P(2,4).小提示:此题主要考查了点的坐标,正确掌握平面内点的坐标特点是解题关键.17、对于平面直角坐标系xOy中的图形G和图形G上的任意点P(x,y),给出如下定义:将点P(x,y)平移到P′(x+t,y−t)称为将点P进行“t型平移”,点P′称为将点P进行“t型平移”的对应点;将图形G上的所有点进行“t 型平移”称为将图形G进行“t型平移”.例如,将点P(x,y)平移到P′(x+1,y−1)称为将点P进行“1型平移”,将点P(x,y)平移到P′(x−1,y+1)称为将点P进行“﹣1型平移”.已知点A(2,1)和点B(4,1).(1)将点A(2,1)进行“1型平移”后的对应点A′的坐标为.(2)①将线段AB进行“﹣1型平移”后得到线段A′B′,点P1(1.5,2),P2(2,3),P3(3,0)中,在线段A′B′上的点是.②若线段AB进行“t型平移”后与坐标轴有公共点,则t的取值范围是.(3)知点C(6,1),D(8,−1),点M是线段CD上的一个动点,将点B进行“t型平移”后得到的对应点为B′,画图..、观察..可得,当t的取值范围是时,B′M的最小值保持不变...、归纳答案:(1)(3,0);(2)P1(1.5,2),−4≤t≤−2或t=1;(3)1≤t≤3.分析:(1)根据“1型平移”的定义求解即可;(2)①画出线段A′B′即可求解;②根据定义求出t的最大值,最小值即可;(3)观察图象可知:当B′在线段B′B″上时,B′M的最小值保持不变,最小值为√2.(1)解:由“1型平移”的定义可知:A′的坐标为(3,0);(2)解:①如图所示,观察图象可知:将线段进行“﹣1型平移”后得到线段A′B′,点P1(1.5,2),P2(2,3),P3(3,0)中,在线段A′B′上的点是P1(1.5,2);②若线段AB进行“t型平移”后与坐标轴有公共点,则t的取值范围是−4≤t≤−2或t=1;(3):如图所示:观察图象可知:当B′在线段B′B″上时,B′M的最小值保持不变,最小值为√2,此时1≤t≤3.小提示:本题考查平移变换,“t型平移”的定义,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用图象法解决问题.18、已知点P(2m+4,m-1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过A(2,-3)点,且与x轴平行的直线上.答案:(1)点P(-12,-9)(2)P(0,-3)试题分析:(1)根据横纵坐标的大小关系得出m﹣1﹣(2m+4)=3,即可得出m的值,进而得出P点坐标;(2)根据平行于x轴点的坐标性质得出m﹣1=﹣3,进而得出m的值,进而得出P点坐标.解:(1)∵点P(2m+4,m﹣1),点P的纵坐标比横坐标大3,∴m﹣1﹣(2m+4)=3,解得:m=﹣8,∴2m+4=﹣12,m﹣1=﹣9,∴点P的坐标为:(﹣12,﹣9);(2)∵点P在过A(2,﹣3)点,且与x轴平行的直线上,∴m﹣1=﹣3,解得:m=﹣2,∴2m+4=0,∴P点坐标为:(0,﹣3).。

第七章 平面直角坐标系 全章知识点归纳及典型题目练习(含答案)

第七章 平面直角坐标系 全章知识点归纳及典型题目练习(含答案)

第七章 平面直角坐标系1. 把有顺序的两个数 a 与b 组成的数对,叫做_____________,记作_______ . 利用________,可以很准确地表示出一个位置.2. 数轴上的点可以用____个数来表示,这个数叫做这个点的_______.反之,知道数轴上一个点的坐标,这个点在数轴上的位置也就确定了.3. 平面直角坐标系⑴平面直角坐标系 在平面内画两条互相____、原点重合的数轴,组成____________.水平的数轴称为____________,习惯上取______为正方向;竖直的数轴称为____________,取______为正方向;两坐标轴的交点为平面直角坐标系的_____. ⑵点的坐标 平面内点的坐标是有序数对,其顺序是________在前,______在后,中间用“,”分开.⑶象限的概念 建立了平面直角坐标系的平面是坐标平面,坐标平面被两条坐标轴分成四个部分,分别叫做第一、二、三、四象限. 坐标轴上的点不属于_____.4. 特殊位置的点的坐标特征⑴ x 轴将坐标平面分为两部分,x 轴上方的点的纵坐标为正数,x 轴下方的点的纵坐标为______;y 轴把坐标平面分为两部分,y 轴左侧的点的横坐标为_____,y 轴右侧的点的横坐标为_____.⑵规定原点坐标是_____.⑶坐标平面内的点的坐标有如下特征:点(),P x y 在第一象限:0,0.x y >>点(),P x y 在第二象限:_________.点(),P x y 在第三象限:_________.点(),P x y 在第四象限:_________.⑷x 轴上的点可以记为(),0x ,y 轴上的点可记为()0,y ,也就是说x 轴(横轴)上的点的纵坐标为____,y 轴(纵轴)上的点的横坐标为_____ .⑸点(),P a b 关于x 轴对称的点的坐标是__________;关于y 轴对称的点的坐标是_______;关于原点对称的点的坐标是___________.5. 利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程.(1)建立坐标系,选择一个____________为原点,确定x 轴、y 轴的___方向;(2)根据具体问题确定______________,在坐标轴上标出__________;(3)在坐标平面内画出这些点,写出各点的_______和各个地点的名称.6. 利用坐标表示平移的规律:⑴在平面直角坐标系中,将点(x ,y )向右(或左)平移a (a 是正数)个单位长度,可以得到对应点(x +a ,y )(或( , ));将点(x ,y )向上(或下)平移b (b 是正数)个单位长度,可以得到对应点(x ,y +b )(或( , )). ⑵在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a ,相应的新图形就是把原图形向___(或向____)平移___个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a ,相应的新图形就是把原图形向___(或向 __) 平移___个单位长度.熟悉以下各题:7. 已知A (-4,2),B (1,2),则A ,B 两点的距离是( )A .3个单位长度B .4个单位长度C .5个单位长度D .6个单位长度8. 点P (m +3,m +1)在直角坐标系的x 轴上,则点P 的坐标是( )A .(2,0)B .(0,-2)C .(4,0)D .(0,-4)9. 点A (-2,3)在第____象限,它到x 轴的距离是____.10. 点B (-5,0)在_____轴上;若点C (a +2,a -1)在y 轴上,则a =____.11. 点A (2,-5)关于x 轴的对称点的坐标是_________,关于y 轴的对称点的坐标是_________.12. 若点A (a ,2)与B (-3,b )关于x 轴对称,则a =____,b =_____.13. 如图,△ABC 中任意一点P (00,x y )经平移后对应点为100(5,3)P x y ++.将△ABC作同样的平移得到△A 1B 1C 1.求:⑴111,,A B C 坐标;⑵△A 1B 1C 1的面积.参考答案1.有序数对 (a ,b ) 有序数对2. 一 坐标3.⑴垂直 平面直角坐标系 横轴( x 轴) 向右 纵轴(y 轴) 向上 原点 ⑵横坐标 纵坐标 ⑶任何象限4.⑴负数 负数 正数 ⑵(0,0)⑶0,0;0,0;0,0.x y x y x y <><<><⑷0,0.⑸(a ,-b )(-a ,b ) (-a ,-b )5.适当的参照点 正 单位长度 单位长度 坐标6.,x a y - ,x y b - 右 (左) a 上 (下)a.7.C8.A9.二 3 10.x -2 11.()2,5()2,5--12. -3 -2 13.()()()3,61,27,3 11平方单位.。

初一数学第七章《平面直角坐标系》知识点归纳

初一数学第七章《平面直角坐标系》知识点归纳

初一数学第七章《平面直角坐标系》知识点归纳-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN平面直角坐标系知识点总结1、在平面内,两条互相垂直且原点重合的数轴组成了平面直角坐标系;2、坐标平面上的任意一点 P 的坐标,都和惟一的一对有序实数对(a,b)一一对应;其中a为横坐标,b为纵坐标;3、x轴上的点,纵坐标等于 0;y轴上的点,横坐标等于 0;Y坐标轴上的点不属于任何象限; b P(a,b)4、四个象限的点的坐标具有如下特征:1象限横坐标x 纵坐标y -3 -2 -1 0 1a x-1 第一象限正正-2第二象限负正-3第三象限负负第四象限正负小结:(1)点P(x,y)所在的象限横、纵坐标x、y的取值的正负性;(2)点P(x,y)所在的数轴横、纵坐标x、y中必有一数为零;y5、在平面直角坐标系中,已知点 P (a,b),则a (1)点P到x轴的距离为b ;(2)点P到y轴的距离为 a; b P(a,b)b (3)点P到原点O的距离为a2 b2x6、平行直线上的点的坐标特征:a)在不x轴平行的直线上,所有点的纵坐标相等;YA B 点A、B的纵坐标都等于m;mXb)在不y轴平行的直线上,所有点的横坐标相等;YC点C、D的横坐标都等于n;n7、 对称点的坐标特征:a) 点 P (m , n ) 关于 x 轴的对称点为 P 1 (m ,-n ) , 即横坐标丌变,纵坐标互为相反数; b) 点 P (m , n ) 关于 y 轴的对称点为 P 2 (-m , n ) , 即纵坐标丌变,横坐标互为相反数;c) 点 P (m , n ) 关于原点的对称点为 P 3 (-m ,-n ) ,即横、纵坐标都互为相反数;yyyPPnPn nPOmX- m- mm XOm X O- nP 1- nP 3关于 x 轴对称 关于 y 轴对称 关于原点对称d) 点 P (a , b )关于点 Q (m , n ) 的对称点是 M (2m-a ,2n-b );8、 两条坐标轴夹角平分线上的点的坐标的特征:a) 若点 P ( m , n )在第一、三象限的角平分线上,则 m = n ,即横、纵坐标相等;b) 若点 P ( m , n )在第二、四象限的角平分线上,则 m = -n ,即横、纵坐标互为相反数;yynPPnOm X m OX在第一、三象限的角平分线上 在第二、四象限的角平分线上9、 用坐标点表示移(1)点的平移将点(x , y )向右(或向左)平移 a 个单位,可得对应点(x+a , y ){或(x-a , y )},可记为“右加左减,纵不变”;将点(x , y )向上(或向下)平移 b 个单位,可得对应点(x , y+b ){或(x , y-b )},可记为“上加下减,横不变”;(2)图形的平移把一个图形各个点的横坐标都加上(或减去)一个正数 a ,相应的新图像就是把原图形向右(或向左)平移 a 个单元得到的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章平面直角坐标系的复习资料一、本章的主要知识点(一)有序数对:有顺序的两个数a与b组成的数对。

1、记作(a ,b);2、注意:a、b的先后顺序对位置的影响。

(二)平面直角坐标系1、历史:法国数学家笛卡儿最早引入坐标系,用代数方法研究几何图形;2、构成坐标系的各种名称;3、各种特殊点的坐标特点。

(三)坐标方法的简单应用;1、用坐标表示地理位置;2、用坐标表示平移。

二、特殊位置点的特殊坐标:六、用坐标表示平移:见下图~五、经典例题 知识一、坐标系的理解例1、平面内点的坐标是( )A 一个点B 一个图形C 一个数D 一个有序数对{坐标不同同 y >0 y <0)P (x ,y -a )P (x -a ,y )P (x +a ,y )P (x ,y +a )向上平移a 个单位~向左平移a 个单位学生自测1.在平面内要确定一个点的位置,一般需要________个数据; 在空间内要确定一个点的位置,一般需要________个数据. 2、在平面直角坐标系内,下列说法错误的是( )A 原点O 不在任何象限内B 原点O 的坐标是0C 原点O 既在X 轴上也在Y 轴上D 原点O 在坐标平面内 知识二、已知坐标系中特殊位置上的点,求点的坐标(点在x 轴上,坐标为(x,0)在x 轴的负半轴上时,x<0, 在x 轴的正半轴上时,x>0点在y 轴上,坐标为(0,y )在y 轴的负半轴上时,y<0, 在y 轴的正半轴上时,y>0 第一、三象限角平分线上的点的横纵坐标相同;坐标点(x ,y )xy>0 第二、 四象限角平分线上的点的横纵坐标相反;坐标点(x ,y )xy<0例1 点P 在x 轴上对应的实数是3 ,则点P 的坐标是 ,若点Q 在y 轴上 对应的实数是31,则点Q 的坐标是 , 例2 点P (a -1,2a -9)在x 轴负半轴上,则P 点坐标是 。

学生自测…1、点P(m+2,m -1)在y 轴上,则点P 的坐标是 .2、已知点A (m ,-2),点B (3,m -1),且直线AB ∥x 轴,则m 的值为 。

3、已知:A(1,2),B(x,y),AB∥x轴,且B到y轴距离为2,则点B的坐标是. 4.平行于x轴的直线上的点的纵坐标一定()A.大于0 B.小于0 C.相等D.互为相反数(3)若点(a ,2)在第二象限,且在两坐标轴的夹角平分线上,则a= .(3)已知点P(x2-3,1)在一、三象限夹角平分线上,则x= .`5.过点A(2,-3)且垂直于y轴的直线交y轴于点B,则点B坐标为().A.(0,2) B.(2,0)C.(0,-3)D.(-3,0)6.如果直线AB平行于y轴,则点A,B的坐标之间的关系是().A.横坐标相等 B.纵坐标相等C.横坐标的绝对值相等 D.纵坐标的绝对值相等知识点三:点符号特征。

点在第一象限时,横、纵坐标都为,点在第二象限时,横坐标为,纵坐标为,点有第三象限时,横、纵坐标都为,点在第四象限时,横坐标为,纵坐标为;y轴上的点的横坐标为,x轴上的点的纵坐标为。

(例1 .如果a-b<0,且ab<0,那么点(a,b)在( )A 、第一象限B 、第二象限C 、第三象限,D 、第四象限.例2、如果<0,那么点P (x ,y )在( ) (A) 第二象限 (B) 第四象限 (C) 第四象限或第二象限 (D) 第一象限或第三象限 学生自测1.点P的坐标是(2,-3),则点P在第 象限.2、点P (x ,y )在第四象限,且|x|=3,|y|=2,则P 点的坐标是 。

…3.点 A 在第二象限 ,它到 x 轴 、y 轴的距离分别是 3 、2,则坐标是 ;4. 若点P(x ,y )的坐标满足xy ﹥0,则点P在第 象限;若点P(x ,y )的坐标满足xy ﹤0,且在x 轴上方,则点P在第 象限. 若点P (a ,b )在第三象限,则点P '(-a ,-b +1)在第 象限;5.若点P(m -1, m )在第二象限,则下列关系正确的是 ( )A.10<<mB.0<mC.0>mD.1>m6.点(x ,1-x )不可能在 ( )/A.第一象限B.第二象限C.第三象限D.第四象限7.已知点P(102-x ,x -3)在第三象限,则x 的取值范围是 ( ) A .53<<x B.3≤x ≤5 C.5>x 或3<x D.x ≥5或x ≤3xy8.(本小题12分)设点P 的坐标(x ,y ),根据下列条件判定点P 在坐标平面内的位置: (1);(2);(3).(2)点A(1-)在第 象限.(3)横坐标为负,纵坐标为零的点在( )`(A)第一象限 (B)第二象限 (C)X 轴的负半轴 (D)Y 轴的负半轴(4)如果a-b <0,且ab <0,那么点(a ,b)在( )(A)第一象限, (B)第二象限 (C)第三象限, (D)第四象限. (5)已知点A (m ,n )在第四象限,那么点B (n ,m )在第 象限(6)若点P(3a-9,1-a)是第三象限的整数点(横、纵坐标都是整数),那么a= 知识四:求一些特殊图形,在平面直角坐标系中的点的坐标。

过点作x 轴的 线,垂足所代表的 是这点的横坐标;过点作y 轴的垂线,垂足所代表的实数,是这点的 。

点的横坐标写在小括号里第一个位置,纵坐标写小括号里的第 个位置,中间用 隔开。

《例1、X 轴上的点P 到Y 轴的距离为2.5,则点P的坐标为( )A(2.5,0) B (-2.5,0) C(0,2.5) D(2.5,0)或(-2.5,0)0xy =0xy >0x y +=π,2学生自测1、点A(2,3)到x轴的距离为;点B(-4,0)到y轴的距离为;点C到x 轴的距离为1,到y轴的距离为3,且在第三象限,则C点坐标是。

2、若点A的坐标是(-3,5),则它到x轴的距离是,到y轴的距离是.3、点P到x轴、y轴的距离分别是2、1,则点P的坐标可能为。

4、已知点M到x轴的距离为3,到y轴的距离为2,则M点的坐标为().A.(3,2) B.(-3,-2) C.(3,-2) D.(2,3),(2,-3),(-2,3),(-2,-3),5、若点P(a,b)到x轴的距离是2,到y轴的距离是3,则这样的点P有()A.1个B.2个C.3个D.4个6、已知直角三角形ABC的顶点A(2 ,0),B(2 ,3).A是直角顶点,斜边长为5,求顶点C的坐标.7、在平面直角坐标系中,A,B,C三点的坐标分别为(0,0),(0,-5),(-2,-2),•以这三点为平行四边形的三个顶点,则第四个顶点不可能在第_______象限.知识点五:对称点的坐标特征。

关于x对称的点,横坐标不,纵坐标互为;关于y轴对称的点,坐标不变,坐标互为相反数;关于原点对称的点,横坐标,纵坐标。

例1.已知A(-3,5),则该点关于x轴对称的点的坐标为_________;关于y轴对的点的坐标为____________;关于原点对称的点的坐标为___________。

例2. -例3.将三角形ABC 的各顶点的横坐标都乘以,则所得三角形与三角形ABC 的关系( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .将三角形ABC 向左平移了一个单位 学生自测1在第一象限到x 轴距离为4,到y 轴距离为7的点的坐标是______________;在第四象限到x 轴距离为5,到y 轴距离为2的点的坐标是________________;3.点A(-1,-3)关于x 轴对称点的坐标是 .关于原点对称的点坐标是 。

4.若点A(m,-2),B(1,n)关于原点对称,则m= ,n= .5.已知:点P 的坐标是(m ,1-),且点P 关于x 轴对称的点的坐标是(3-,n 2),则______,==n m ; 》6.点P(1-,2)关于x 轴的对称点的坐标是 ,关于y 轴的对称点的坐标是 ,关于原点的对称点的坐标是 ;7.若 ),()与,(13-m n N m M 关于原点对称 ,则 _______,==n m ;8.已知0=mn,则点(m ,n )在 ; 9.直角坐标系中,将某一图形的各顶点的横坐标都乘以,纵坐标保持不变,得到的图形与原图形关于________轴对称;将某一图形的各顶点的纵坐标都乘以,横坐标保持不变,得到的图形与原图形关于________轴对称.10.点A(3-,4)关于x 轴对称的点的坐标是 ( ) A.(3,4-) B. (3-,4-) C . (3, 4) D. (4-, 3-)1-1-1-11.点P(1-,2)关于原点的对称点的坐标是 ( )@A.(1,2-) B (1-,2-) C (1,2) D. (2,1-)12.在直角坐标系中,点P(2-,3)关于y 轴对称的点P 1的坐标是 ( ) A (2,3) B. (2,3-) C. (2-, 3) D. (2-,3-)若+(b+2)2=0,则点M (a ,b )关于y 轴的对称点的坐标为_______.13.若一个点的横坐标与纵坐标互为相反数,则此点一定在( ) A .原点 B .x 轴上 C .两坐标轴第一、三象限夹角的平分线上 D .两坐标轴第二、四象限夹角的平分线上知识点六:利用直角坐标系描述实际点的位置。

需要根据具体情况建立适当的平面直角坐标系,找出对应点的坐标。

学生自测:1.课间操时,小华、小军、小刚的位置如下图左,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A .(5,4)B .(4,5)C .(3,4)D .(4,3)2.如图,小明从点O 出发,先向西走40米,再向南走30米到达点M ,如果点M 的位置用(-40,-30)表示,那么(10,20)表示的位置是( )3a -A 、点AB 、点BC 、点CD 、点D 知识点七:平移、旋转的坐标特点。

图形向左平移m 个单位,纵坐标不变,横坐标 m 个单位;图形向右平移m 个单位,纵坐标不变,横坐标 m 个单位;图形向上平移个单位,横坐标 ,纵坐标增加n 个单位;向下平移n 个单位, 不变, 减小n 个单位。

旋转的情形,同学们自己归纳一下。

例1.三角形ABC 三个顶点A 、B 、C 的坐标分别为A(2,-1)、B(1,-3)、C(4,-3.5).把三角形A 1B 1C 1向右平移4个单位,再向下平移3个单位,恰好得到三角形ABC ,试写出三角形A 1B 1C 1三个顶点的坐标,并在直角坐标系中描出这些点;在平面直角坐标系中,将点M (1,0)向右平移3个单位,得到点,则点的坐标为________. 学生自测1.矩形ABCD 在坐标系中的位置如图所示,若矩形的边长AB 为1,AD 为2,则点A ,B ,C ,D 的坐标依次为 ;把矩形向右平移3个单位,得矩形,的坐标为________.2.小华若将平面直角坐标系中一只猫的图案向右平移了3个单位长度,而猫的形状,大小都不变,则她将图案上的各点坐标________.3.平面直角坐标系中一条线段的两端点坐标分别为(2,1),(4,1),若将此线段向右平移1个单位长度, 则变化后的线段的两个端点的坐标分别为_____;•若将此线段的两个端点的纵坐标不变,••横坐标变为原来的2•倍,••则所得的线段与原线段相比_______;若将此线段的两个端点的横坐标不变,纵坐标分别加上1,•则所得的线段与原线段相比_______;若横坐标不变,纵坐标分别减去3,•则所得的线段与原线段相比_________。

相关文档
最新文档