数学必修三教案

合集下载

高中数学必修三教案全套

高中数学必修三教案全套

高中数学必修三教案全套教学目标:学习直线与平面的位置关系,掌握直线与平面的垂直、平行、相交等性质。

教学重点:直线与平面的垂直、平行、相交等性质。

教学难点:解决实际问题中的直线与平面的位置关系问题。

教学内容:一、直线与平面的位置关系概念1. 直线与平面的位置关系的定义2. 直线与平面的垂直、平行、相交等性质二、直线与平面的垂直关系1. 垂直平面的定义2. 垂直平面的性质3. 判断直线与平面是否垂直的方法三、直线与平面的平行关系1. 平行平面的定义2. 平行平面的性质3. 判断直线与平面是否平行的方法四、直线与平面的相交关系1. 直线与平面相交的性质2. 直线与平面相交的判断方法3. 实际问题中的应用教学过程:一、导入新知识1. 引入直线与平面的位置关系的概念,通过图示讲解直线与平面的垂直、平行、相交等性质。

2. 分组讨论,总结直线与平面的位置关系的定义和性质。

二、讲解直线与平面的垂直关系1. 讲解垂直平面的定义和性质,解释直线与平面垂直的条件。

2. 练习题:判断给定直线与平面是否垂直。

三、讲解直线与平面的平行关系1. 讲解平行平面的定义和性质,解释直线与平面平行的条件。

2. 练习题:判断给定直线与平面是否平行。

四、讲解直线与平面的相交关系1. 讲解直线与平面相交的性质,介绍如何判断直线与平面是否相交。

2. 实例分析:解决实际问题中的直线与平面的位置关系问题。

五、课堂练习1. 学生完成课堂练习题,检查学生掌握情况。

2. 学生自主完成作业,巩固所学知识。

教学反思:通过本节课的学习,学生能够掌握直线与平面的位置关系,提高解决实际问题的能力。

教案二:向量的运算与应用教学目标:学习向量的加法、减法、数量积和向量积的运算方法,掌握向量运算的应用。

教学重点:向量的加法、减法、数量积和向量积的运算方法。

教学难点:解决实际问题中的向量运算问题。

教学内容:一、向量的基本概念1. 向量的定义和表示方法2. 向量的平行、共线和反向性质二、向量的加法1. 向量的加法的几何意义2. 向量的加法的运算规则3. 解决向量加法实际问题的方法三、向量的减法1. 向量的减法的几何意义2. 向量的减法的运算规则3. 解决向量减法实际问题的方法四、向量的数量积1. 向量的数量积的定义和运算规则2. 向量的数量积的性质和应用五、向量的向量积1. 向量的向量积的定义和运算规则2. 向量的向量积的性质和应用教学过程:一、导入新知识1. 引入向量的定义和表示方法,通过图示讲解向量的基本概念。

高中必修三数学教案

高中必修三数学教案

高中必修三数学教案高中必修三数学教案篇1教学分析本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.通过本节课的学习,让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程.即能用不等式或不等式组把这些不等关系表示出来.在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上点的一一对应关系,从数与形两方面建立实数的顺序关系.要在温故知新的基础上提高学生对不等式的认识.三维目标1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系.2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围.3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美.重点难点教学重点:比较实数与代数式的大小关系,判断二次式的大小和范围.教学难点:准确比较两个代数式的大小.课时安排1课时教学过程导入新课思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.这些不等关系怎样在数学上表示出来呢?让学生自由地展开联想,教师组织不等关系的相关素材,让学生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课.推进新课新知探究提出问题1回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式研究及表示不等关系?2在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗?3数轴上的任意两点与对应的两实数具有怎样的关系?4任意两个实数具有怎样的关系?用逻辑用语怎样表达这个关系?活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“<”“≠”“≥”“≤”表示,而不等式则是表示两者的不等关系,可用“a>b”“a教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系.在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容.实例1:某天的天气预报报道,气温32 ℃,最低气温26 ℃.实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则xA实例3:若一个数是非负数,则这个数大于或等于零.实例4:两点之间线段最短.实例5:三角形两边之和大于第三边,两边之差小于第三边.实例6:限速40 km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40 km/h.实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.教师进一步点拨:能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢?学生很容易想到,用不等式或不等式组来表示这些不等关系.那么不等式就是用不等号将两个代数式连结起来所成的式子.如-7<-5,3+4>1+4,2x≤6,a+2≥0,3≠4,0≤5等.教师引导学生将上述的7个实例用不等式表示出来.实例1,若用t表示某天的气温,则26 ℃≤t≤32 ℃.实例3,若用x表示一个非负数,则x≥0.实例5,|AC|+|BC|>|AB|,如下图. |AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.|AB|-|BC|<|AC|、|AC|-|BC|<|AB|、|AB|-|AC|<|BC|.交换被减数与减数的位置也可以.实例6,若用v表示速度,则v≤40 km/h.实例7,f≥2.5%,p≥2.3%.对于实例7,教师应点拨学生注意酸奶中的脂肪含量与蛋白质含量需同时满足,避免写成f≥2.5%或p≥2.3%,这是不对的.但可表示为f≥2.5%且p≥2.3%.对以上问题,教师让学生轮流回答,再用投影仪给出课本上的两个结论.讨论结果:(1)(2)略;(3)数轴上任意两点中,右边点对应的实数比左边点对应的实数大.(4)对于任意两个实数a和b,在a=b,a>b,a应用示例例1(教材本节例1和例2)活动:通过两例让学生熟悉两个代数式的大小比较的基本方法:作差,配方法.点评:本节两例的求解,是借助因式分解和应用配方法完成的,这两种方法是代数式变形时经常使用的方法,应让学生熟练掌握.变式训练1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系是( )A.f(x)>g(x)B.f(x)=g(x)C.f(x)答案:A解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).2.已知x≠0,比较(x2+1)2与x4+x2+1的大小.解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.∵x≠0,得x2>0.从而(x2+1)2>x4+x2+1.例2比较下列各组数的大小(a≠b).(1)a+b2与21a+1b(a>0,b>0);(2)a4-b4与4a3(a-b).活动:比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定.本例可由学生独立完成,但要点拨学生在最后的符号判断说理中,要理由充分,不可忽略这点.解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].∵2a2+(a+b)2≥0(当且仅当a=b=0时取等号),又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]<0.∴a4-b4<4a3(a-b).点评:比较大小常用作差法,一般步骤是作差——变形——判断符号.变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用.变式训练已知x>y,且y≠0,比较xy与1的大小.活动:要比较任意两个数或式的大小关系,只需确定它们的差与0的大小关系.解:xy-1=x-yy.∵x>y,∴x-y>0.当y<0时,x-yy<0,即xy-1<0. ∴xy<1;当y>0时,x-yy>0,即xy-1>0.∴xy>1.点评:当字母y取不同范围的值时,差xy-1的正负情况不同,所以需对y分类讨论.例3建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了?请说明理由.活动:解题关键首先是把文字语言转换成数学语言,然后比较前后比值的大小,采用作差法.解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为m,根据问题的要求a由于a+mb+m-ab=m b-a b b+m>0,于是a+mb+m>ab.又ab≥10%,因此a+mb+m>ab≥10%.所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.点评:一般地,设a、b为正实数,且a变式训练已知a1,a2,…为各项都大于零的等比数列,公比q≠1,则( )A.a1+a8>a4+a5B.a1+a8C.a1+a8=a4+a5D.a1+a8与a4+a5大小不确定答案:A解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).∵{an}各项都大于零,∴q>0,即1+q>0.又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.课堂小结1.教师与学生共同完成本节课的小结,从实数的基本性质的回顾,到两个实数大小的比较方法;从例题的活动探究点评,到紧跟着的变式训练,让学生去繁就简,联系旧知,将本节课所学纳入已有的知识体系中.2.教师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方.鼓励学有余力的学生对节末的思考与讨论在课后作进一步的探究.作业习题3—1A组3;习题3—1B组2.设计感想1.本节设计关注了教学方法的优化.经验告诉我们:课堂上应根据具体情况,选择、设计最能体现教学规律的教学过程,不宜长期使用一种固定的教学方法,或原封不动地照搬一种实验模式.各种教学方法中,没有一种能很好地适应一切教学活动.也就是说,世上没有万能的教学方法.针对个性,灵活变化,因材施教才是成功的施教灵药.2.本节设计注重了难度控制.不等式内容应用面广,可以说与其他所有内容都有交汇,历来是高考的重点与热点.作为本章开始,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响.3.本节设计关注了学生思维能力的训练.训练学生的思维能力,提升思维的品质,是数学教师直面的重要课题,也是中学数学教育的主线.采用一题多解有助于思维的发散性及灵活性,克服思维的僵化.变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升.高中必修三数学教案篇2上个学期,根据需要,学校安排我上高二数学文科,在这一学期里我从各方面严格要求自己,在教学上虚心向老教师请教,结合本校和班级学生的实际状况,针对性的开展教学工作,使工作有计划,有组织,有步骤。

高中数学必修3全书教案

高中数学必修3全书教案

高中数学必修3全书教案课程名称:高中数学必修3教材版本:人民教育出版社《高中数学必修3》章节:第一章函数与导数课时安排:共10课时教学目标:1. 理解函数的概念,并能够用符号化的方式来表示和描述函数;2. 掌握常用的函数类型,包括一次函数、二次函数、指数函数和对数函数;3. 熟练掌握导数的定义,能够用极限的概念来求导数;4. 学会应用导数的各种性质和方法,解决实际问题。

教学内容与重点:1. 函数的概念2. 一次函数和二次函数的性质及图像3. 指数函数的定义和性质4. 对数函数的定义和性质5. 导数的定义和性质6. 导数的计算方法7. 导数的应用教学步骤:第一课时:1. 引入函数的概念,让学生了解函数的定义和性质;2. 讲解一次函数和二次函数的性质,让学生能够通过函数的图像来理解函数的特点;3. 做一些练习,让学生掌握一次函数和二次函数的相关知识。

第二至第四课时:1. 介绍指数函数和对数函数的定义及性质,让学生了解这两种特殊函数的特点;2. 给学生一些练习题,让他们能够熟练掌握指数函数和对数函数的相关知识。

第五至第七课时:1. 讲解导数的定义和性质,解释导数在数学中的重要性;2. 带领学生学习导数的计算方法,让他们能够独立求解导数;3. 给学生一些导数的应用题,让他们理解导数在实际中的意义。

第八至第十课时:1. 整合前面所学的知识,进行复习和总结;2. 组织学生进行导数的综合练习,巩固所学知识;3. 带领学生解决一些综合应用题,让他们能够熟练应用导数来解决实际问题。

教学方法:1. 讲授相结合:通过讲解、示范和练习相结合的方式,增进学生的理解和掌握;2. 互动讨论:通过问答、小组讨论等形式,激发学生的兴趣和参与度;3. 实例分析:通过引导学生分析实际例子,加深他们对知识的理解和运用能力。

教学评价:1. 考试评价:通过定期进行单元测试、期末考试等方式,检验学生对所学知识的掌握情况;2. 作业评价:通过布置练习题、作业等方式,检查学生对知识的理解和应用能力;3. 实际应用评价:通过实际问题的解决,检验学生对导数在实际中的应用能力。

新人教A版数学必修3全套教案

新人教A版数学必修3全套教案

新人教A版数学必修3全套教案教案一:平面向量教学目标:1.理解平面向量的概念及基本性质。

2.掌握平面向量的加法、减法、数量乘法及向量的线性运算。

3.利用向量的性质解决实际问题。

教学重点:1.向量的基本概念和性质。

2.向量的加法和减法。

3.向量的数量乘法和线性运算。

教学难点:1.向量的线性运算和应用。

2.解决实际问题的向量运算方法。

教学步骤:一、引入新知识(20分钟)教师通过引入平面向量的概念和基本性质,以及向量的几何表示和坐标表示,引发学生对向量的兴趣。

二、向量的加法和减法(30分钟)1.向量的几何表示和坐标表示。

2.向量加法和减法的定义和性质。

3.通过例题讲解向量加法和减法的具体运算方法。

三、向量的数量乘法和线性运算(30分钟)1.向量数量乘法的定义和性质。

2.讲解向量的数乘和向量的线性运算。

3.通过例题加深学生对向量数量乘法和线性运算的理解。

四、应用实例(30分钟)1.结合实际问题讲解向量运算在解决实际问题中的应用。

2.利用向量运算解决实际问题的步骤和方法。

五、巩固练习(20分钟)教师布置一些巩固练习,让学生运用所学知识解决一些相关问题。

教学反思:通过本节课的教学,学生对平面向量的概念和基本性质有了初步的了解,并且掌握了向量的加法、减法、数量乘法及向量的线性运算。

通过实际应用例题的解析,学生对向量运算在解决实际问题中的应用有了更深入的理解。

整个教学过程中,教师注重启发式教学,通过提问和引导,激发学生的思维和创造力,培养学生的问题解决能力。

同时,教师还通过巩固练习,对学生所学知识进行巩固和拓展,帮助学生更好地掌握和应用向量的相关知识。

高中数学必修3的教案

高中数学必修3的教案

高中数学必修3的教案课时:1节课(45分钟)
教学内容:多项式函数的性质和运算
教学目标:
1. 了解多项式函数的基本概念和性质;
2. 掌握多项式函数的加法、减法、乘法运算;
3. 能够灵活运用多项式函数的性质解决实际问题。

教学重点和难点:
重点:多项式函数的性质和运算
难点:多项式函数的乘法运算
教学准备:
1. 教材《高中数学必修3》
2. 教学课件和笔记
3. 彩色粉笔、黑板擦
4. 练习题和答案
教学过程:
一、导入(5分钟)
1. 讲解多项式函数的定义和基本概念;
2. 介绍多项式函数的性质和运算。

二、讲解与演示(15分钟)
1. 分别讲解多项式函数的加法、减法、乘法运算;
2. 演示如何简化和展开多项式函数。

三、练习与讨论(15分钟)
1. 布置练习题,让学生进行练习;
2. 引导学生互相讨论,解决问题。

四、总结与拓展(5分钟)
1. 总结多项式函数的性质和运算规律;
2. 提出拓展问题,鼓励学生拓展思维和应用能力。

五、作业布置(5分钟)
1. 布置作业题,巩固所学内容;
2. 提醒学生复习和预习下节课内容。

教学反思:
通过这节课的教学,学生可以基本掌握多项式函数的性质和运算方法,培养了他们的数学思维和计算能力。

同时,引导学生积极思考和讨论问题,提高了他们的学习兴趣和动手能力。

在未来的教学中,我将进一步关注学生的实际需求和学习状态,不断优化教学方法和内容,促进学生的全面发展。

高中优秀教案数学必修3

高中优秀教案数学必修3

高中优秀教案数学必修3
教学目标:
1. 了解导数的定义,掌握导数的计算方法;
2. 熟练掌握求导法则,能够运用导数解决实际问题;
3. 发展学生的数学思维能力和解决问题能力。

教学重点:
1. 导数的定义和计算方法;
2. 求导法则的运用。

教学难点:
1. 导数的概念理解;
2. 求导法则的应用。

教学准备:
1. 教材:《数学必修3》;
2. 教学工具:黑板、彩色粉笔、教学PPT、作业本;
3. 教学素材:导数的定义、求导示例。

教学过程:
一、导入(5分钟)
教师引导学生回顾前几章的知识,激发学生对导数的兴趣和好奇心。

二、概念讲解(15分钟)
1. 导数的定义及其意义;
2. 导数的计算方法;
3. 求导法则的介绍。

三、案例讲解(20分钟)
教师通过实例向学生展示导数的运用方法,引导学生思考问题的解决思路。

四、导数习题训练(20分钟)
学生进行导数的练习题,巩固所学知识点。

五、课堂讨论(15分钟)
教师与学生一起讨论学习中遇到的问题,提高学生的解决问题能力。

六、作业布置(5分钟)
布置相关作业,巩固所学知识。

教学反思:
通过本节课的教学,学生可以深入理解导数的概念和计算方法,培养解决问题的能力,提高数学素养。

同时,也可以发展学生的逻辑思维能力和创造性思维能力。

高中数学必修3全套教案

高中数学必修3全套教案

高中数学必修3全套教案教案一:函数的概念与性质一、教学目标:1.了解函数的概念和基本性质;2.能够通过实例理解函数的意义和作用;3.掌握函数的表示方法和求解方法。

二、教学重点:1.函数的定义和性质;2.函数的图像和表示方法。

三、教学难点:1.掌握函数的性质和图像;2.能够灵活运用函数的表示方法。

四、教学内容:1.函数的定义和表示方法;2.函数的图像和性质;3.函数的求解方法。

五、教学步骤:1.引入:通过一个实际问题引入函数的概念;2.概念讲解:介绍函数的定义和性质;3.图像展示:通过示意图展示函数的图像和性质;4.示例演练:通过例题让学生掌握函数的表示方法和求解方法;5.练习测试:让学生进行练习和测试,巩固所学知识;6.复习总结:回顾本节课所学内容,强化学生对函数的理解。

教案二:一元二次方程的解法一、教学目标:1.了解一元二次方程的定义和性质;2.学会通过不同方法解一元二次方程;3.掌握求解一元二次方程的步骤和技巧。

二、教学重点:1.一元二次方程的定义和特点;2.一元二次方程的解法和应用。

三、教学难点:1.灵活运用求根公式解一元二次方程;2.能够通过实际问题应用一元二次方程。

四、教学内容:1.一元二次方程的定义和性质;2.一元二次方程的解法和应用;3.一元二次方程的实例演练。

五、教学步骤:1.引入:通过一个实际问题引入一元二次方程的概念;2.概念讲解:介绍一元二次方程的定义和性质;3.解法展示:通过展示不同方法解一元二次方程;4.实例演练:通过例题让学生掌握求解一元二次方程的步骤和技巧;5.练习测试:让学生进行练习和测试,巩固所学知识;6.复习总结:回顾本节课所学内容,强化学生对一元二次方程的理解。

以上为高中数学必修3全套教案范本,供参考使用。

高中数学必修3课程教案5篇

高中数学必修3课程教案5篇

高中数学必修3课程教案5篇高中数学必修3课程教案1教学目标(1)了解算法的含义,体会算法思想.(2)会用自然语言和数学语言描述简单具体问题的算法;(3)学习有条理地、清晰地表达解决问题的步骤,培养逻辑思维能力与表达能力教学重难点重点:算法的含义、解二元一次方程组的算法设计.难点:把自然语言转化为算法语言.情境导入电影《神枪手》中描述的凌靖是一个天生的狙击手,他百发百中,最难打的位置对他来说也是轻而易举,是香港警察狙击手队伍的第一神枪手.作为一名狙击手,要想成功地完成一次狙击任务,一般要按步骤完成以下几步:第一步:观察、等待目标出现(用望远镜或瞄准镜);第二步:瞄准目标;第三步:计算(或估测)风速、距离、空气湿度、空气密度;第四步:根据第三步的结果修正弹着点;第五步:开枪;第六步:迅速转移(或隐蔽).以上这种完成狙击任务的方法、步骤在数学上我们叫算法.预习提升1.定义:算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.2.描述方式自然语言、数学语言、形式语言(算法语言)、框图.3.算法的要求(1)写出的算法,必须能解决一类问题,且能重复使用;(2)算法过程要能一步一步执行,每一步执行的操作,必须确切,不能含混不清,而且经过有限步后能得出结果.4.算法的特征(1)有限性:一个算法应包括有限的操作步骤,能在执行有穷的操作步骤之后结束.(2)确定性:算法的计算规则及相应的计算步骤必须是唯一确定的.(3)可行性:算法中的每一个步骤都是可以在有限的时间内完成的基本操作,并能得到确定的结果.(4)顺序性:算法从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,后一步是前一步的后续,且除了最后一步外,每一个步骤只有一个确定的后续.(5)不唯一性:解决同一问题的算法可以是不唯一的.命题方向1 对算法意义的理解例1.下列叙述中,①植树需要运苗、挖坑、栽苗、浇水这些步骤;②按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…99+1=100;③从青岛乘动车到济南,再从济南乘飞机到伦敦观看奥运会开幕式;④3xx+1;⑤求所有能被3整除的正数,即3,6,9,12,….能称为算法的个数为( )A.2B.3C.4D.5【解析】根据算法的含义和特征:①②③都是算法;④⑤不是算法.其中④,3xx+1不是一个明确的步骤,不符合明确性;⑤的步骤是无穷的,与算法的有限性矛盾.【答案】B[规律总结]1.正确理解算法的概念及其特点是解决问题的关键.2.针对判断语句是否是算法的问题,要看它的步骤是否是明确的和有效的,而且能在有限步骤之内解决这一问题.【变式训练】下列对算法的理解不正确的是________①一个算法应包含有限的步骤,而不能是无限的②算法可以理解为由基本运算及规定的运算顺序构成的完整的解题步骤③算法中的每一步都应当有效地执行,并得到确定的结果④一个问题只能设计出一个算法【解析】由算法的有限性指包含的步骤是有限的故①正确;由算法的明确性是指每一步都是确定的故②正确;由算法的每一步都是确定的,且每一步都应有确定的结果故③正确;由对于同一个问题可以有不同的算法故④不正确.【答案】④命题方向2 解方程(组)的算法例2.给出求解方程组的一个算法.[思路分析]解线性方程组的常用方法是加减消元法和代入消元法,这两种方法没有本质的差别,为了适用于解一般的线性方程组,以便于在计算机上实现,我们用高斯消元法(即先将方程组化为一个三角形方程组,再通过回代方程求出方程组的解)解线性方程组.[规范解答]方法一:算法如下:第一步,①×(-2)+②,得(-2+5)y=-14+11,即方程组可化为第二步,解方程③,可得y=-1,④第三步,将④代入①,可得2x-1=7,x=4,第四步,输出4,-1.方法二:算法如下:第一步,由①式可以得到y=7-2x,⑤第二步,把y=7-2x代入②,得x=4.第三步,把x=4代入⑤,得y=-1.第四步,输出4,-1.[规律总结]1.本题用了2种方法求解,对于问题的求解过程,我们既要强调对“通法、通解”的理解,又要强调对所学知识的灵活运用.2.设计算法时,经常遇到解方程(组)的问题,一般是按照数学上解方程(组)的方法进行设计,但应注意全面考虑方程解的情况,即先确定方程(组)是否有解,有解时有几个解,然后根据求解步骤设计算法步骤.【变式训练】【解】算法如下:S1,①+2×②得5x=1;③S2,解③得x=;S3,②-①×2得5y=3;④S4,解④得y=;命题方向3 筛选问题的算法设计例3.设计一个算法,对任意3个整数a、b、c,求出其中的最小值.[思路分析]比较a,b比较m与c―→最小数[规范解答]算法步骤如下:1.比较a与b的大小,若a2.比较m与c的大小,若m[规律总结]求最小(大)数就是从中筛选出最小(大)的一个,筛选过程中的每一步都是比较两个数的大小,保证了筛选的可行性,这种方法可以推广到从多个不同数中筛选出满足要求的一个.【变式训练】在下列数字序列中,写出搜索89的算法:21,3,0,9,15,72,89,91,93.[解析]1.先找到序列中的第一个数m,m=21;2.将m与89比较,是否相等,如果相等,则搜索到89;3.如果m与89不相等,则往下执行;4.继续将序列中的其他数赋给m,重复第2步,直到搜索到89.命题方向4 非数值性问题的算法例4.一个人带三只狼和三只羚羊过河,只有一条船,同船可以容一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃掉羚羊.(1)设计安全渡河的算法;(2)思考每一步算法所遵循的共同原则是什么?[解析](1)1.人带两只狼过河;2.人自己返回;3.人带一只狼过河;4.人自己返回;5.人带两只羚羊过河;6.人带两只狼返回;7.人带一只羚羊过河;8.人自己返回;9.人带两只狼过河.(2)在人运送动物过河的过程中,人离开岸边时必须保证每个岸边的羚羊的数目大于狼的数目.[规律总结]1.对于非数值性的问题,在设计算法时,应当先建立过程模型,也就是找到解决问题的方案,再把它细化为一步连接一步组成的步骤.从而设计出算法.2.首先应想到先运两只狼,这是唯一的首选步骤,只有这样才可避免狼吃羊,带过一只羊后,必须将狼带回来才行.【变式训练】两个大人和两个小孩一起渡河,渡口只有一条小船,每次只能渡一个大人或两个小孩,他们四人都会划船,但都不会游泳,他们如何渡河?请写出你的渡河方案及算法.[解析]因为一次只能渡过一个大人或两个小孩,而船还要回来渡其他人,所以只能让两个小孩先过河,渡河的方案算法为:1.两个小孩同船渡过河去;2.一个小孩划船回来;3.一个大人独自划船渡过河去;4.对岸的小孩划船回来;5.两个小孩再同船渡过河去;6.一个小孩划船回来;7.余下的一个大人独自划船渡过河去;8.对岸的小孩划船回来;9.两个小孩再同船渡过河去.课后习题1.以下对算法的描述正确的个数是()①对一类问题都有效;②对个别问题有效;③计算可以一步步地进行,每一步都有唯一的结果;④是一种通法,只要按部就班地做,总能得到结果.A.1个B.2个C.3个D.4个[答案]C[解析]①③④正确,均符合算法的概念与要求,②不正确.2.算法的有限性是指()A.算法的最后必包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确[答案]C[解析]由算法的要求可知,应选C.3.下列语句中是算法的个数是()①从广州到北京旅游,先坐火车,再坐飞机抵达;②解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1;③方程x2-1=0有两个实根;④求1+2+3+4的值,先计算1+2=3,再由3+3=6,6+4=10得最终结果10.A.1个B.2个C.3个D.4个[答案]C[分析]解答本题可先正确理解算法的概念及其特点,然后逐一验证每个语句是否正确.[解析]①中说明了从广州到北京的行程安排,完成任务;②中给出了一元一次方程这一类问题的解决方法;④中给出了求1+2+3+4的一个过程,最终得出结果.对于③,并没有说明如何去算,故①②④是算法,③不是算法.4.设计一个算法求方程5x+2y=22的正整数解,其最后输出的结果应为________.[答案](2,6),(4,1)[解析]因为求方程的正整数解,所以应将x从1开始输入,直到方程成立.x=2时,y==6;5.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99. 求它的总分和平均成绩的一个算法为:1.取A=89,B=96,C=99;2.____①____;3.____②____;4.输出D,E.[解析]求总分需将三个数相加,求平均分,另需让总分除以3即可.x=4时,y==1.[答案]①计算总分D=A+B+C ②计算平均成绩E=高中数学必修3课程教案2本章教材分析算法是数学及其应用的重要组成部分,是计算科学的重要基础.算法的应用是学习数学的一个重要方面.学生学习算法的应用,目的就是利用已有的数学知识分析问题和解决问题.通过算法的学习,对完善数学的思想,激发应用数学的意识,培养分析问题、解决问题的能力,增强进行实践的能力等,都有很大的帮助.本章主要内容:算法与程序框图、基本算法语句、算法案例和小结.教材从学生最熟悉的算法入手,通过研究程序框图与算法案例,使算法得到充分的应用,同时也展现了古老算法和现代计算机技术的密切关系.算法案例不仅展示了数学方法的严谨性、科学性,也为计算机的应用提供了广阔的空间.让学生进一步受到数学思想方法的熏陶,激发学生的学习热情.在算法初步这一章中让学生近距离接近社会生活,从生活中学习数学,使数学在社会生活中得到应用和提高,让学生体会到数学是有用的,从而培养学生的学习兴趣.“数学建模”也是高考考查重点.本章还是数学思想方法的载体,学生在学习中会经常用到“算法思想” “转化思想”,从而提高自己数学能力.因此应从三个方面把握本章:(1)知识间的联系;(2)数学思想方法;(3)认知规律.本章教学时间约需12课时,具体分配如下:1.1.1 算法的概念约1课时1.1.2 程序框图与算法的基本逻辑结构约4课时1.2.1 输入语句、输出语句和赋值语句约1课时1.2.2 条件语句约1课时1.2.3 循环语句约1课时1.3算法案例约3课时本章复习约1课时1.1 算法与程序框图1.1.1 算法的概念整体设计教学分析算法在中学数学课程中是一个新的概念,但没有一个精确化的定义,教科书只对它作了如下描述:“在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.”为了让学生更好理解这一概念,教科书先从分析一个具体的二元一次方程组的求解过程出发,归纳出了二元一次方程组的求解步骤,这些步骤就构成了解二元一次方程组的算法.教学中,应从学生非常熟悉的例子引出算法,再通过例题加以巩固.三维目标1.正确理解算法的概念,掌握算法的基本特点.2.通过例题教学,使学生体会设计算法的基本思路.3.通过有趣的实例使学生了解算法这一概念的同时,激发学生学习数学的兴趣.重点难点教学重点:算法的含义及应用.教学难点:写出解决一类问题的算法.课时安排1课时教学过程导入新课思路1(情境导入)一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量狼就会吃羚羊.该人如何将动物转移过河?请同学们写出解决问题的步骤,解决这一问题将要用到我们今天学习的内容——算法.思路2(情境导入)大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步?答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上.上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念.思路3(直接导入)算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础.在现代社会里,计算机已成为人们日常生活和工作中不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始.推进新课新知探究提出问题(1)解二元一次方程组有几种方法?(2)结合教材实例总结用加减消元法解二元一次方程组的步骤.(3)结合教材实例总结用代入消元法解二元一次方程组的步骤.(4)请写出解一般二元一次方程组的步骤.(5)根据上述实例谈谈你对算法的理解.(6)请同学们总结算法的特征.(7)请思考我们学习算法的意义.讨论结果:(1)代入消元法和加减消元法.(2)回顾二元一次方程组的求解过程,我们可以归纳出以下步骤:第一步,①+②×2,得5x=1.③第二步,解③,得x= .第三步,②-①×2,得5y=3.④第四步,解④,得y= .第五步,得到方程组的解为(3)用代入消元法解二元一次方程组我们可以归纳出以下步骤:第一步,由①得x=2y-1.③第二步,把③代入②,得2(2y-1)+y=1.④第三步,解④得y= .⑤第四步,把⑤代入③,得x=2× -1= .第五步,得到方程组的解为(4)对于一般的二元一次方程组其中a1b2-a2b1≠0,可以写出类似的求解步骤:第一步,①×b2-②×b1,得(a1b2-a2b1)x=b2c1-b1c2.③第二步,解③,得x= .第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1.④第四步,解④,得y= .第五步,得到方程组的解为(5)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.(6)算法的特征:①确定性:算法的每一步都应当做到准确无误、不重不漏.“不重”是指不是可有可无的,甚至无用的步骤,“不漏” 是指缺少哪一步都无法完成任务.②逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确,“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行.(7)在解决某些问题时,需要设计出一系列可操作或可计算的步骤来解决问题,这些步骤称为解决这些问题的算法.也就是说,算法实际上就是解决问题的一种程序性方法.算法一般是机械的,有时需进行大量重复的计算,它的优点是一种通法,只要按部就班地去做,总能得到结果.因此算法是计算科学的重要基础.应用示例思路1例1 (1)设计一个算法,判断7是否为质数.(2)设计一个算法,判断35是否为质数.算法分析:(1)根据质数的定义,可以这样判断:依次用2—6除7,如果它们中有一个能整除7,则7不是质数,否则7是质数.算法如下:(1)第一步,用2除7,得到余数1.因为余数不为0,所以2不能整除7.第二步,用3除 7,得到余数1.因为余数不为0,所以3不能整除7.第三步,用4除7,得到余数3.因为余数不为0,所以4不能整除7.第四步,用5除7,得到余数2.因为余数不为0,所以5不能整除7.第五步,用6除7,得到余数1.因为余数不为0,所以6不能整除7.因此,7是质数.(2)类似地,可写出“判断35是否为质数”的算法:第一步,用2除35,得到余数1.因为余数不为0,所以2不能整除35.第二步,用3除35,得到余数2.因为余数不为0,所以3不能整除35.第三步,用4除35,得到余数3.因为余数不为0,所以4不能整除35.第四步,用5除35,得到余数0.因为余数为0,所以5能整除35.因此,35不是质数.点评:上述算法有很大的局限性,用上述算法判断35是否为质数还可以,如果判断1997是否为质数就麻烦了,因此,我们需要寻找普适性的算法步骤.变式训练请写出判断n(n 2)是否为质数的算法.分析:对于任意的整数n( n2),若用i表示2—(n-1)中的任意整数,则“判断n是否为质数”的算法包含下面的重复操作:用i除n,得到余数r.判断余数r是否为0,若是,则不是质数;否则,将i 的值增加1,再执行同样的操作.这个操作一直要进行到i的值等于(n-1)为止.算法如下:第一步,给定大于2的整数n.第二步,令i=2.第三步,用i除n,得到余数r.第四步,判断“r=0”是否成立.若是,则n不是质数,结束算法;否则,将i的值增加1,仍用i表示.第五步,判断“i(n-1)”是否成立.若是,则n是质数,结束算法;否则,返回第三步.例2 写出用“二分法”求方程x2-2=0 (x0)的近似解的算法.分析:令f(x)=x2-2,则方程x2-2=0 (x0)的解就是函数f(x)的零点.“二分法”的基本思想是:把函数f(x)的零点所在的区间[a,b](满足f(a)•f(b)0)“一分为二”,得到[a,m]和[m,b].根据“f(a)•f(m)0”是否成立,取出零点所在的区间[a,m]或[m,b],仍记为[a,b].对所得的区间[a,b]重复上述步骤,直到包含零点的区间[a,b]“足够小”,则[a,b]内的数可以作为方程的近似解.[来源:学科网ZXXK]解:第一步,令f(x)=x2-2,给定精确度d.第二步,确定区间[a,b],满足f(a)•f(b)0.第三步,取区间中点m= .第四步,若f(a)•f(m)0,则含零点的区间为[a,m];否则,含零点的区间为[m,b].将新得到的含零点的区间仍记为[a,b].第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步.当d=0.005时,按照以上算法,可以得到下表.a b |a-b|1 2 11 1.5 0.51.25 1.5 0.251.375 1.5 0.1251.375 1.437 5 0.062 51.406 25 1.437 5 0.031 251.406 25 1.421 875 0.015 6251.414 062 5 1.421 875 0.007 812 51.414 062 5 1.417 968 75 0.003 906 25于是,开区间(1.414 062 5,1.417 968 75)中的实数都是当精确度为0.005时的原方程的近似解.实际上,上述步骤也是求的近似值的一个算法.点评:算法一般是机械的,有时需要进行大量的重复计算,只要按部就班地去做,总能算出结果,通常把算法过程称为“数学机械化”.数学机械化的最大优点是它可以借助计算机来完成,实际上处理任何问题都需要算法.如:中国象棋有中国象棋的棋谱、走法、胜负的评判准则;而国际象棋有国际象棋的棋谱、走法、胜负的评判准则;再比如申请出国有一系列的先后手续,购买物品也有相关的手续……思路2例1 一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量就会吃羚羊.该人如何将动物转移过河?请设计算法.分析:任何动物同船不用考虑动物的争斗但需考虑承载的数量,还应考虑到两岸的动物都得保证狼的数量要小于羚羊的数量,故在算法的构造过程中尽可能保证船里面有狼,这样才能使得两岸的羚羊数量占到优势.解:具体算法如下:算法步骤:第一步:人带两只狼过河,并自己返回.第二步:人带一只狼过河,自己返回.第三步:人带两只羚羊过河,并带两只狼返回.第四步:人带一只羊过河,自己返回.第五步:人带两只狼过河.点评:算法是解决某一类问题的精确描述,有些问题使用形式化、程序化的刻画是最恰当的.这就要求我们在写算法时应精练、简练、清晰地表达,要善于分析任何可能出现的情况,体现思维的严密性和完整性.本题型解决问题的算法中某些步骤重复进行多次才能解决,在现实生活中,很多较复杂的情境经常遇到这样的问题,设计算法的时候,如果能够合适地利用某些步骤的重复,不但可以使得问题变得简单,而且可以提高工作效率.例2 喝一杯茶需要这样几个步骤:洗刷水壶、烧水、洗刷茶具、沏茶.问:如何安排这几个步骤?并给出两种算法,再加以比较.分析:本例主要为加深对算法概念的理解,可结合生活常识对问题进行分析,然后解决问题.解:算法一:第一步,洗刷水壶.第二步,烧水.第三步,洗刷茶具.第四步,沏茶.算法二:第一步,洗刷水壶.第二步,烧水,烧水的过程当中洗刷茶具.第三步,沏茶.点评:解决一个问题可有多个算法,可以选择其中最优的、最简单的、步骤尽量少的算法.上面的两种算法都符合题意,但是算法二运用了统筹方法的原理,因此这个算法要比算法一更科学.例3 写出通过尺轨作图确定线段AB一个5等分点的算法.分析:我们借助于平行线定理,把位置的比例关系变成已知的比例关系,只要按照规则一步一步去做就能完成任务.解:算法分析:第一步,从已知线段的左端点A出发,任意作一条与AB不平行的射线AP.第二步,在射线上任取一个不同于端点A的点C,得到线段AC.第三步,在射线上沿AC的方向截取线段CE=AC.第四步,在射线上沿AC的方向截取线段EF=AC.第五步,在射线上沿AC的方向截取线段FG=AC.第六步,在射线上沿AC的方向截取线段GD=AC,那么线段AD=5AC.第七步,连结DB.第八步,过C作BD的平行线,交线段AB于M,这样点M就是线段AB的一个5等分点.点评:用算法解决几何问题能很好地训练学生的思维能力,并能帮助我们得到解决几何问题的一般方法,可谓一举多得,应多加训练.知能训练设计算法判断一元二次方程ax2+bx+c=0是否有实数根.解:算法步骤如下:第一步,输入一元二次方程的系数:a,b,c.第二步,计算Δ=b2-4ac的值.第三步,判断Δ≥0是否成立.若Δ≥0成立,输出“方程有实根”;否则输出“方程无实根”,结束算法.点评:用算法解决问题的特点是:具有很好的程序性,是一种通法.并且具有确定性、逻辑性、有穷性.让我们结合例题仔细体会算法的特点.拓展提升中国网通规定:拨打市内电话时,如果不超过3分钟,则收取话费0.22元;如果通话时间超过3分钟,则超出部分按每分钟0.1元收取通话费,不足一分钟按一分钟计算.设通话时间为t(分钟),通话费用y(元),如何设计一个程序,计算通话的费用.解:算法分析:数学模型实际上为:y关于t的分段函数.关系式如下:y=其中[t-3]表示取不大于t-3的整数部分.算法步骤如下:第一步,输入通话时间t.第二步,如果t≤3,那么y=0.22;否则判断t∈Z 是否成立,若成立执行y=0.2+0.1×(t-3);否则执行y=0.2+0.1×([t-3]+1).第三步,输出通话费用c.课堂小结(1)正确理解算法这一概念.(2)结合例题掌握算法的特点,能够写出常见问题的算法.作业课本本节练习1、2.设计感想本节的引入精彩独特,让学生在感兴趣的故事里进入本节的学习.算法是本章的重点也是本章的基础,是一个较难理解的概念.为了让学生正确理解这一概念,本节设置了大量学生熟悉的事例,让学生仔细体会反复训练.本节的事例有古老的经典算法,有几何算法等,因此这是一节很好的课例.高中数学必修3课程教案3教学要求:了解各种进位制与十进制之间转换的规律,会利用各种进位制与十进制之间的联系进行各种进位制之间的转换;学习各种进位制转换成十进制的计算方法,研究十进制转换为各种进位制的除k去余法,并理解其中的数学规律. 教学重点:各种进位制之间的互化. 教学难点:除k取余法的理解以及各进位制之间转换的程序框图。

高中数学必修3教案

高中数学必修3教案

高中数学必修3教案一、教学目标:1.会用二次函数的图象及性质说明实际问题,能根据实际问题建立数学模型并解决问题。

2.掌握求解二次函数的零点、极值、对称轴、图像及解决实际问题的方法。

3.了解二次函数在实际生活中的应用及现象,培养灵活处理问题的能力。

二、教学重难点:重点:通过实际问题的解答学习和认识二次函数的性质及作用。

了解二次函数在解答实际问题中的重要应用。

难点:在实际问题中灵活运用二次函数解决问题,并将解答结果与实际问题相联系。

三、教学方法:由教师引导学生自主探究,让学生通过实例来了解二次函数问题的解法,配合教师讲解和学生自主研究,强化对二次函数知识的理解与应用。

四、教学步骤:一、引入通过一个有趣的故事,来引发学生对二次函数的兴趣,激发学生的好奇心。

二、讲授1、二次函数的定义二次函数的标准式为$y=ax^2+bx+c$,其中$a\ne 0$。

在数学中,二次函数具有唯一的图象,它是一个开口朝上或开口朝下的抛物线。

二次函数的解析式中的$a$、$b$和$c$在解释抛物线图象时扮演着不同作用:当$a>0$时,二次函数图像开口朝上,顶点坐标为$V(-\frac{b}{2a},-\frac{\Delta}{4a})$,其中 $\Delta=b^2-4ac$。

当$a<0$时,二次函数图像开口朝下,顶点坐标为$V(-\frac{b}{2a},-\frac{\Delta}{4a})$。

2、二次函数的零点当$f(x)=0$时,$x$取的值称为方程$f(x)=0$的根,也叫做零点,或者称为二次函数的交点。

求出二次函数的零点,可以通过因式分解,配方法和公式法。

其中二次公式即求解二次方程的公式:$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$,可以用来确定一般的二次函数在 $x$ 轴上的根。

3、二次函数的对称轴令$x=-\frac{b}{2a}$,则得到二次函数的对称轴方程$y=-\frac{\Delta}{4a}$。

高中数学必修3电子教案

高中数学必修3电子教案

高中数学必修3电子教案
教学目标:
1. 理解平行线的特性,能够判断两条直线是否平行;
2. 理解垂直线的特性,能够判断两条直线是否垂直;
3. 能够利用平行线和垂直线的性质解决相关问题。

教学内容:
1. 平行线的定义及平行线性质;
2. 垂直线的定义及垂直线性质;
3. 平行线和垂直线的应用。

教学步骤:
一、导入
老师通过一个实际生活中的例子引入平行线和垂直线的概念,让学生感受平行线和垂直线
在我们周围的存在。

二、讲解
1. 讲解平行线的定义及平行线性质,如平行线的任意两点间距离相等;
2. 讲解垂直线的定义及垂直线性质,如垂直线上的两个角为直角;
3. 提出相关定理和性质,引导学生理解和记忆。

三、示例
老师通过几个例题演示如何利用平行线和垂直线的性质解决问题,让学生参与讨论和思考。

四、练习
让学生在课堂上进行一些练习,巩固所学内容,并能够运用到实际问题中。

五、总结
总结平行线和垂直线的性质及应用,强调学生对于定理和性质的理解和记忆。

六、作业
布置相关练习题作业,要求学生独立完成,并在下节课检查和讲解。

教学反思:
通过这节课的教学,学生应该能够对平行线和垂直线的性质有一个清晰的认识,并能够灵活运用到解决相关问题中。

在教学过程中,要引导学生思考,培养他们的逻辑思维能力和解决问题的能力。

高中数学必修三教案书

高中数学必修三教案书

高中数学必修三教案书
第一课:平面直角坐标系及其应用
教学目标:学生能够掌握平面直角坐标系的基本概念和应用,能够画出简单的函数图像,
并能够解决相关问题。

教学重点:平面直角坐标系的构建、函数图像的画法、函数图像的性质。

教学难点:函数图像的性质的掌握和应用。

教学过程:
一、导入:通过引入平面直角坐标系的概念,引导学生理解坐标系的作用和构建方法。

二、讲解:讲解平面直角坐标系的构建方法和基本性质,引导学生掌握坐标系的使用方法。

三、练习:让学生画出几个简单的函数图像,并解决相关问题,巩固所学内容。

四、总结:总结本课所学内容,强调函数图像的性质和应用。

五、作业:布置相关作业,让学生进一步巩固所学知识。

教学反思:本课主要是引入平面直角坐标系的概念和基本使用方法,通过简单的函数图像
训练,帮助学生掌握相关知识,为后续课程学习打下基础。

(以上教学内容仅为参考,具体教案内容可根据教学实际情况做出调整)。

高一数学必修三教案(优秀5篇)

高一数学必修三教案(优秀5篇)

在教学工作者实际的教学活动中,常常要根据教学需要编写教案,教案是教学蓝图,可以有效提高教学效率。

优秀的教案都具备一些什么特点呢?下面是小编精心为大家整理的高一数学必修三教案(优秀5篇),希望能够帮助到大家。

高一数学必修三教案篇一教材:逻辑联结词(1)目的:要求学生了解复合命题的意义,并能指出一个复合命题是有哪些简单命题与逻辑联结词,并能由简单命题构成含有逻辑联结词的复合命题。

过程:一、提出课题:简单逻辑、逻辑联结词二、命题的概念:例:125 ① 3是12的约数② 0.5是整数③定义:可以判断真假的语句叫命题。

正确的叫真命题,错误的叫假命题。

如:①②是真命题,③是假命题反例:3是12的约数吗? x5 都不是命题不涉及真假(问题)无法判断真假上述①②③是简单命题。

这种含有变量的语句叫开语句(条件命题)。

三、复合命题:1、定义:由简单命题再加上一些逻辑联结词构成的命题叫复合命题。

2、例:(1)10可以被2或5整除④ 10可以被2整除或10可以被5整除(2)菱形的对角线互相菱形的对角线互相垂直且菱形的垂直且平分⑤对角线互相平分(3)0.5非整数⑥非0.5是整数观察:形成概念:简单命题在加上或且非这些逻辑联结词成复合命题。

3、其实,有些概念前面已遇到过如:或:不等式 x2x60的解集 { x | x2或x3 }且:不等式 x2x60的解集 { x | 23 } 即 { x | x2且x3 }四、复合命题的构成形式如果用 p, q, r, s表示命题,则复合命题的形式接触过的有以下三种:即: p或q (如④)记作 pqp且q (如⑤)记作 pq非p (命题的否定)(如⑥)记作 p小结:1.命题 2.复合命题 3.复合命题的构成形式高一数学必修三教案篇二教学目标1、使学生了解奇偶性的概念,回会利用定义判定简单函数的奇偶性。

2、在奇偶性概念形成过程中,培养学生的观察,归纳能力,同时渗透数形结合和非凡到一般的思想方法。

高中数学必修3教案完整版

高中数学必修3教案完整版

第一章算法初步一、课标要求:1、本章的课标要求包括算法的含义、程序框图、基本算法语句,通过阅读中国古代教学中的算法案例,体会中国古代数学世界数学发展的贡献。

2、算法就是解决问题的步骤,算法也是数学及其应用的重要组成部分,是计算机科学的基础,利用计算机解决问需要算法,在日常生活中做任何事情也都有算法,当然我们更关心的是计算机的算法,计算机可以解决多类信息处理问题,但人们必须事先用计算机熟悉的语言,也就是计算能够理解的语言(即程序设计语言)来详细描述解决问题的步骤,即首先设计程序,对稍复杂一些的问题,直接写出解决该问题的程序是困难的,因此,我们要首先研究解决问题的算法,再把算法转化为程序,所以算法设计是使用计算机解决具体问题的一个极为重要的环节。

3、通过对解决具体问题的过程与步骤的分析(如二元一次方程组的求解等问题),体会算法的思想,了解算法的含义。

理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构。

理解并掌握几种基本的算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句。

进一步体会算法的基本思想。

4、本章的重点是体会算法的思想,了解算法的含义,通过模仿、操作、探索,经过通过设计程序框图解决问题的过程。

点是在具体问题的解决过程中,理解三种基本逻辑结构,经历将具体问题的程序框图转化为程序语句的过程,理解几种基本的算法语句。

二、编写意图与特色:算法是数学及其应用的重要组成部分,是计算科学的重要基础。

随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。

需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。

在本模块中,学生将在义务教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力。

新人教版高中数学必修三教案(全册)

新人教版高中数学必修三教案(全册)

新人教版高中数学必修三教案(全册)第一课时整式的定义和基本运算【教学目标】1. 理解整式的概念;2. 掌握整式的基本运算规则;3. 能够运用整式的基本运算解决实际问题。

【教学重点】1. 整式的定义;2. 整式的基本运算规则。

【教学难点】能够运用整式的基本运算解决实际问题。

【教学过程】一、导入(10分钟)1. 谈论一下整式在生活中的应用,引发学生对整式的兴趣。

2. 让学生回顾一下多项式的概念。

二、讲授整式的定义(10分钟)1. 定义:整式是由若干项按照加法或减法连接而成的代数式。

2. 解释整式中的几个概念:项、系数、字母幂、指数。

3. 引导学生举例说明何为整式,如3x^2-2x+1。

三、整式的基本运算规则(20分钟)1. 加法运算:a. 同类项相加,保留系数,字母幂不变。

b. 引导学生通过例题进行练习和探讨。

2. 减法运算:a. 转化为加法运算,然后按照加法的规则进行计算。

b. 通过例题引导学生掌握减法运算的方法。

3. 乘法运算:a. 按照分配律展开式子,将每一项相乘后相加。

b. 引导学生通过例题进行练习和探讨。

4. 介绍乘法运算的特例:平方差公式的应用。

5. 除法运算:a. 引导学生回顾整式的除法定义,除法结果是整式,除数不为零。

b. 通过例题引导学生掌握除法运算的方法。

四、实际问题的解决(10分钟)1. 运用整式的基本运算解决实际问题,如周长、面积等。

2. 通过例题引导学生运用整式进行实际问题的解决。

五、小结(5分钟)让学生总结整式的定义和基本运算规则。

【课后作业】1. 完成课本上的练习题。

2. 预习下一课时的内容。

数学高中必修三教案

数学高中必修三教案

数学高中必修三教案
教学目标:
1. 理解二元一次方程组的概念,并能够正确列方程求解。

2. 掌握用代入法、消元法和比较法解二元一次方程组的方法。

3. 能够应用所学方法解决实际问题。

教学重点:
1. 二元一次方程组的概念和解法。

2. 代入法、消元法和比较法解二元一次方程组的步骤。

教学难点:
1. 掌握不同解法的使用时机和技巧。

2. 能够灵活运用所学知识解决实际问题。

教具准备:黑板、彩色粉笔、教材、练习题
教学过程:
一、导入新知识(5分钟)
教师引入二元一次方程组的概念,并提出解二元一次方程组的重要性和实际应用。

二、讲解基本概念(15分钟)
1. 介绍二元一次方程组的定义和形式。

2. 解释代入法、消元法和比较法的概念和步骤。

三、示范解题(20分钟)
1. 用代入法解一道简单的二元一次方程组。

2. 用消元法解一道稍复杂的二元一次方程组。

3. 用比较法解一道实际问题中的二元一次方程组。

四、练习巩固(15分钟)
让学生尝试解决几道练习题,巩固所学知识。

五、拓展应用(10分钟)
提供一些实际问题,让学生灵活运用所学方法解决。

六、作业布置(5分钟)
布置作业:完成课后习题,掌握不同解法的使用时机和技巧。

教学反思:
通过本节课的学习,学生能够理解二元一次方程组的概念和解法,灵活运用代入法、消元法和比较法解题,提高了解决实际问题的能力。

同时,提出问题引导学生思考,并加强实际运用的训练,能够更好地巩固所学知识。

数学必修3教案

数学必修3教案

数学必修3教案教案标题:数学必修3教案教学目标:1. 理解数学必修3课程的基本概念和原理2. 掌握数学必修3课程中的重要技巧和方法3. 培养学生的数学思维和解决问题的能力教学内容:1. 三角函数和周期性函数2. 数列和级数3. 概率与统计4. 空间解析几何教学步骤:第一课:三角函数和周期性函数1. 介绍三角函数的基本概念和性质2. 讲解三角函数的图像和周期性3. 练习解决三角函数相关的问题第二课:数列和级数1. 理解数列和级数的定义和性质2. 讲解常用数列和级数的求和公式3. 练习解决数列和级数相关的问题第三课:概率与统计1. 介绍概率的基本概念和计算方法2. 讲解统计学中的数据分析和概率分布3. 练习解决概率与统计相关的问题第四课:空间解析几何1. 理解三维空间中的点、直线和平面的性质2. 讲解空间几何图形的投影和旋转3. 练习解决空间解析几何相关的问题教学方法:1. 讲授结合实例分析,引导学生理解数学概念和原理2. 组织学生进行小组讨论和合作,培养学生的解决问题能力3. 布置作业和课堂练习,巩固学生的数学技能和方法评估方法:1. 定期进行课堂测验和作业评定,检查学生对数学知识的掌握情况2. 组织期中和期末考试,评估学生对数学必修3课程的整体掌握程度3. 鼓励学生参加数学竞赛和活动,展示他们的数学能力和成就教学资源:1. 数学必修3教材和教辅书籍2. 多媒体课件和教学视频3. 数学实验室和教学设备教学反思:1. 根据学生的学习情况和反馈,及时调整教学内容和方法2. 关注学生的学习动态和问题,及时进行个性化辅导和指导3. 不断学习和更新数学教学理念和技术,提高自身的教学水平和能力以上是针对数学必修3课程的教案建议,希望对你有所帮助。

如果有其他问题或需要进一步指导,欢迎随时与我联系。

祝你的教学工作顺利!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章:算法初步1.1 算法与程序框图第一课时 1.1.1 算法的概念教学要求:了解算法的含义,体会算法的思想;能够用自然语言叙述算法;掌握正确的算法应满足的要求;会写出解线性方程(组)的算法、判断一个数为质数的算法、用二分法求方程近似根的算法. 教学重点:解二元一次方程组等几个典型的的算法设计. 教学难点:算法的含义、把自然语言转化为算法语言. 教学过程:一、复习准备:1. 提问:我们古代的计算工具?近代计算手段?(算筹与算盘→计算器与计算机,见章头图)2. 提问:①小学四则运算的规则?(先乘除,后加减) ②初中解二元一次方程组的方法?(消元法) ③高中二分法求方程近似解的步骤? (给定精度ε,二分法求方程根近似值步骤如下: A .确定区间[,]a b ,验证()()0f a f b <,给定精度ε;B. 求区间(,)a b 的中点1x ; C. 计算1()f x : 若1()0f x =,则1x 就是函数的零点; 若1()()0f a f x <,则令1b x =(此时零点01(,)x a x ∈); 若1()()0f x f b <,则令1a x =(此时零点01(,)x x b ∈); D. 判断是否达到精度ε;即若||a b ε-<,则得到零点零点值a (或b );否则重复步骤2~4. 二、讲授新课:1. 教学算法的含义:① 出示例:写出解二元一次方程组22(1)24(2)x y x y -=⎧⎨+=⎩的具体步骤.先具体解方程组,学生说解答,教师写解法 → 针对解答过程分析具体步骤,构成其算法 第一步:②-①×2,得5y =0 ③; 第二步:解③得y =0; 第三步:将y =0代入①,得x =2.② 理解算法: 12世纪时,指用阿拉伯数字进行算术运算的过程. 现代意义上的算法是可以用计算机来解决的某一类问题的程序或步骤,程序和步骤必须是明确和有效的,且能在有限步完成. 广义的算法是指做某一件事的步骤或程序.算法特点:确定性;有限性;顺序性;正确性;普遍性.举例生活中的算法:菜谱是做菜肴的算法;洗衣机的使用说明书是操作洗衣机的算法;歌谱是一首歌曲的算法;渡河问题.③ 练习:写出解方程组()1111221222(1)0(2)a x b y c a b a b a x b y c +=⎧-≠⎨+=⎩的算法.2. 教学几个典型的算法:① 出示例1:任意给定一个大于1的整数n ,试设计一个程序或步骤对n 是否为质数做出判断.提问:什么叫质数?如何判断一个数是否质数? → 写出算法.分析:此算法是用自然语言的形式描述的. 设计算法要求:写出的算法必须能解决一类问题,并且能够重复使用. 要使算法尽量简单、步骤尽量少. 要保证算法正确,且计算机能够执行. ② 出示例2:用二分法设计一个求方程230x -=的近似根的算法. 提问:二分法的思想及步骤?如何求方程近似解 →写出算法.③ 练习:举例更多的算法例子; → 对比一般解决问题的过程,讨论算法的主要特征. 3. 小结:算法含义与特征;两类算法问题(数值型、非数值型);算法的自然语言表示. 三、巩固练习:1. 写出下列算法:解方程x 2-2x -3=0;求1×3×5×7×9×11的值2. 有蓝和黑两个墨水瓶,但现在却错把蓝墨水装在了黑墨水瓶中,黑墨水错装在了蓝墨水瓶中,要求将其互换,请你设计算法解决这一问题.3. 根据教材P6 的框图表示,使用程序框表示以上算法.4. 作业:教材P4 1、2题.第二课时 1.1.2 程序框图(一)教学要求:掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构. 掌握画程序框图的基本规则,能正确画出程序框图. 通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图.教学重点:程序框图的基本概念、基本图形符号和3种基本逻辑结构.教学难点:综合运用框图知识正确地画出程序框图教学过程:一、复习准备:1. 写出算法:给定一个正整数n,判定n是否偶数.x-=的近似根的算法.2. 用二分法设计一个求方程320二、讲授新课:1. 教学程序框图的认识:①讨论:如何形象直观的表示算法?→图形方法.教师给出一个流程图(上面1题),学生说说理解的算法步骤.②定义程序框图:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形.③基本的程序框和它们各自表示的功能:程序框名称功能终端框表示一个算法的起始和结束(起止框)输入、输出框表示一个算法输入和输出的信息处理(执行)框赋值、计算判断框判断一个条件是否成立流程线连接程序框④阅读教材P5的程序框图. →讨论:输入35后,框图的运行流程,讨论:最大的I值.2. 教学算法的基本逻辑结构:①讨论:P5的程序框图,感觉上可以如何大致分块?流程再现出一些什么结构特征?→教师指出:顺序结构、条件结构、循环结构.②试用一般的框图表示三种逻辑结构. (见下图)③出示例3:已知一个三角形的三边分别为4,5,6,利用海伦公式设计一个算法,求出它的面积,并画出算法的程序框图. (学生用自然语言表示算法→师生共写程序框图→讨论:结构特征)④出示例4:任意给定3个正实数,设计一个算法,判断分别以这3个数为三边边长的三角形是否存在.画出这个算法的程序框图. (学生分析算法→写出程序框图→试验结果→讨论结构)⑤出示例5:设计一个计算1+2+3+…+1000的值的算法,并画出程序框图.(学生分析算法→写出程序框图→给出另一种循环结构的框图→对比两种循环结构)3. 小结:程序框图的基本知识;三种基本逻辑结构;画程序框图要注意:流程线的前头;判断框后边的流程线应根据情况标注“是”或“否”;循环结构中要设计合理的计数或累加变量等.三、巩固练习: 1.练习:把复习准备题②的算法写成框图. 2. 作业:P12 A组1、2题.第三课时 1.1.2 程序框图(二)教学要求:更进一步理解算法,掌握算法的三个基本逻辑结构. 掌握画程序框图的基本规则,能正确画出程序框图.学会灵活、正确地画程序框图.教学重点:灵活、正确地画程序框图.教学难点:运用程序框图解决实际问题.教学过程:一、复习准备:1. 说出下列程序框的名称和所实现功能.2. 算法有哪三种逻辑结构?并写出相应框图顺序结构条件结构循环结构程序框图结构说明按照语句的先后顺序,从上而下依次执行这些语句. 不具备控制流程的作用. 是任何一个算法都离不开的基本结构根据某种条件是否满足来选择程序的走向. 当条件满足时,运行“是”的分支,不满足时,运行“否”的分支.从某处开始,按照一定的条件,反复执行某一处理步骤的情况. 用来处理一些反复进行操作的问题二、讲授新课:1. 教学程序框图①出示例1:任意给定3个正实数,判断其是否构成三角形,若构成三角形,则根据海伦公式计算其面积. 画出解答此问题算法的程序框图.(学生试写→共同订正→对比教材P7 例3、4 →试验结果)②设计一个计算2+4+6+…+100的值的算法,并画出程序框图.(学生试写→共同订正→对比教材P9 例5 →另一种循环结构)③循环语句的两种类型:当型和直到型.当型循环语句先对条件判断,根据结果决定是否执行循环体;直到型循环语句先执行一次循环体,再对一些条件进行判断,决定是否继续执行循环体. 两种循环语句的语句结构及框图如右.说明:“循环体”是由语句组成的程序段,能够完成一项工作. 注意两种循环语句的区别及循环内部改变循环的条件.④练习:用两种循环结构,写出求100所有正约数的算法程序框图.2. 教学“鸡兔同笼”趣题:①“鸡兔同笼”,我国古代著名数学趣题之一,大约在1500年以前,《孙子算经》中记载了这个有趣的问题,书中描述为:今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?②学生分析其数学解法. (“站立法”,命令所有的兔子都站起来;或用二元一次方程组解答.)③欣赏古代解法:“砍足法”,假如砍去每只鸡、每只兔一半的脚,则“独脚鸡”,“双脚兔”. 则脚的总数47只;与总头数35的差,就是兔子的只数,即47-35=12(只).鸡35-12=23(只).④试用算法的程序框图解答此经典问题. (算法:鸡的头数为x,则兔的头数为35-x,结合循环语句与条件语句,判断鸡兔脚数2x+4(35-x)是否等于94.)三、巩固练习:1. 练习:100个和尚吃100个馒头,大和尚一人吃3个,小和尚3人吃一个,求大、小和尚各多少个?分析其算法,写出程序框图. 2. 作业:教材P12 A组1题.1.2基本算法语句第一课时 1.2.1 输入语句、输出语句和赋值语句教学要求:正确理解输入语句、输出语句、赋值语句的结构. 让学生充分地感知、体验应用计算机解决数学问题的方法;并能初步操作、模仿. 通过实例使学生理解3种基本的算法语句(输入语句、输出语句和赋值语句)的表示方法、结构和用法,能用这三种基本的算法语句表示算法,进一步体会算法的基本思想. 教学重点:会用输入语句、输出语句、赋值语句.教学难点:正确理解输入语句、输出语句、赋值语句的作用.教学过程:一、新课导入:1. 提问:学习了哪些算法的表示形式?(自然语言或程序框图描述)算法中的三种基本的逻辑结构?(顺序结构、条件结构和循环结构)2. 导入:我们用自然语言或程序框图描述的算法,计算机是无法“看得懂,听得见”的. 因此还需要将算法用计算机能够理解的程序设计语言翻译成计算机程序. 程序设计语言有很多种. 如BASIC,Foxbase,C语言,C++,J++,VB,VC,JB等.各种程序设计语言中都包含下列基本的算法语句:输入语句、输出语句、赋值语句条件语句和循环语句.今天,我们一起用类BASIC语言学习输入语句、输出语句、赋值语句. 基本上对应于算法中的顺序结构.门课的平语句的理①出示例2:用描点法作函数y=x3+3x2-24x+30的图象时,需要求出自变量和函数的一组对应值. 编写程序,分别计算当x=-5,-4,-3,-2,-1,0,1,2,3,4,5时的函数值②出示例3:给一个变量重复赋值. (程序见P16)③出示例4:交换两个变量A和B的值,并输出交换前后的值.(教法:先分析算法→画出框图→编写程序→分析各语句→变式→小结:先写算法,再编程)3. 小结:输入、输出和赋值语句的格式;赋值“=”及表达式;编写简单程序解决数学问题.三、巩固练习:1. 练习:教材P16 1、2题四、作业:P16 3、4题.教学重点:条件语句的步骤、结构及功能.教学难点:会编写程序中的条件语句.教学过程:一、复习准备:1. 提问:算法的三种逻辑结构?条件结构的框图模式?2. 提问:输入语句、输出语句和赋值语句的格式与功能?3. 一次招生考试中,测试三门课程,如果三门课程的总成绩在200分及以上,则被录取. 请对解决此问题的算法分析,画出程序框图. (变题:…总成绩在200分以下,则不被录取)二、讲授新课:1. 教学条件语句的格式与功能:①分析:复习题③中的两种条件结构的框图模式?②给出复习题③的程序,试读懂程序,说说新的语句的结构及含义.③条件语句的一般有两种:IF—THEN语句;IF—THEN—ELSE语句. 语句格式及框图如下.分析语句执行流程,并说明:①“条件”是由一个关系表达式或逻辑表达式构成,其一般形式为“<表达式><关系运算符><表达式>”,常用的运算符有“>”(大于)、“<”(小于)、“>=”(大于或等于)、“<=”(小于或等于),“<>”(不等于). 关系表达式的结果可取两个值,以“真”或“假”来表示,“真”表示条件满足,“假”则条件不满足. ②“语句”是由程序语言中所有语句构成的程序段,即可以是语句组. ③条件语句可以嵌套,即条件语句的THEN或ELSE后面还可以跟条件语句,嵌套时注意内外分层,避免逻辑混乱.2. 教学典型例题:②出示例5:编写程序,输入一元二次方程ax2+bx+c=0的系数,输出它的实数根.(算法分析→画程序框图→编写程序→给出系数的一组值,分析框图与程序各步结果)注意:解方程之前,先由判别式的符号判断方程根的情况. 函数SQR()的功能及格式.②讨论:例5程序中为何要用到条件语句?条件语句一般用在什么情况下?答:一般用在需要对条件进行判断的算法设计中,如判断一个数的正负,确定两个数的大小等问题,还有求分段函数的函数值等,往往要用条件语句,有时甚至要用到条件语句的嵌套③练习:编写程序,使得任意输入的2个实数从小到大排列.④出示例6:编写程序,使得任意输入的3个实数从小到大排列.(讨论:先用什么语句?→用具体的数值给a、b、c,分析计算机如何排列这些数?→写出程序→画出框图→说说算法→变式:如果是4个实数呢?3. 小结:条件语句的格式与功能及对应框图. 编程的一般步骤:①算法分析:根据提供的问题,利用数学及相关学科的知识,设计出解决问题的算法. ②画程序框图:依据算法分析,画出程序框图. ③写出程序:根据程序框图中的算法步骤,逐步写出相应的程序语句.三、巩固练习:1. 练习:教材P22 1、2题.2. 试编写程序进行印刷品邮资的计算. (前100g 0.7元,以后每100g 0.4元)3. 作业:P22 3、4题.教学重点:两种循环语句的表示方法、结构和用法,用循环语句表示算法.教学难点:理解循环语句的表示方法、结构和用法,会编写程序中的循环语句. 教学过程:一、复习准备:1. 设计一个计算1+2+3+……+10的算法,并画出程序框图.2. 循环结构有哪两种模式?有何区别?相应框图如何表示?答:当型(while 型)和直到型(until 型). 当型循环语句先对条件判断,根据结果决定是否执行循环体,可能一次也不执行循环体,也称为“前测试型”循环;直到型循环语句先执行一次循环体,再对一些条件进行判断,决定是否继续执行循环体. 二、讲授新课:1. 教学两种循环语句的格式与功能:① 给出复习题①的两种循环语句的程序,试读懂程序,说说新的语句的结构及含义. ② 两种循环语句的语句结构及框图如下.说明:“循环体”是由语句组成的程序段,能够完成一项工作. 当使用WHIL 语句时,循环内部应当有改变循环的条件,否则会产生无限循环. 学习时注意两种循环语句的区别. ③ 讨论:两种循环语句的区别?当型循环先判断后执行,直到型循环先执行后判断,则:在WHILE 语句中,是当条件满足时执行循环体;在UNTIL 语句中,先执行循环体,再当条件不满足时再执行循环体. 2. 教学例题:① 出示例:编写程序,计算1+2+3+……+99+100的值.(分析:实现累加的算法 → 分别用两种循环语句编写 → 变题:计算20以内偶数的积. ② 给出下列一段程序,试读懂程序,说说各语句的作用,分析程序的功能. (见教材P24) (读,找疑问 → 说各语句 → 分析功能)③ 练习:用描点法作函数y =x 3+3x 2-24x +30的图象时,需要求出自变量和函数的一组对应值. 编写程序,分别计算当x =-5,-4,-3,-2,-1,0,1,2,3,4,5时的函数值. ④ 分析右边所给出程序:当n=10时,结果是多少?程序实现功能? 3. 小结: ① 循环语句的两种不同形式:WHILE 语句和UNTIL 语句(还可补充了For 语句),掌握它们的一般格式.② 在用WHILE 语句和UNTIL 语句编写程序解决问题时,一定要注意它们的格式及条件的表述方法. WHILE 语句中是当条件满足时执行循环体,而UNTIL 语句中是当条件不满足时执行循环体.③ 循环语句主要用来实现算法中的循环结构,在处理一些需要反复执行的运算任务. 如累加求和,累乘求积等问题中常用到.三、巩固练习: 1. 练习:教材P24 1题.2. 编写程序,实现输出1000以内能被3和5整除的所有整数. (算术运算:5 MOD 3 =2)3. 作业:P24 2、3题.INPUT “n=”;n i =1 a =0 WHILE i <= n a = a +(i +1)/ii = i+1 WEND PRINT “…”;aEND1.3算法案例第一课时 1.3.1 算法案例---辗转相除法与更相减损术教学要求:理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析; 基本能根据算法语句与程序框图的知识设计出辗转相除法与更相减损术完整的程序框图并写出它们的算法程序. 教学重点:理解辗转相除法与更相减损术求最大公约数的方法.教学难点:把辗转相除法与更相减损术的方法转换成程序框图与程序语言. 教学过程:一、复习准备:1. 回顾算法的三种表述:自然语言、程序框图(三种逻辑结构)、程序语言(五种基本语句).2. 提问:①小学学过的求两个数最大公约数的方法?(先用两个公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来.)口算出36和64的最大公约数. ②除了用这种方法外还有没有其它方法?6436128=⨯+,36∴和28的最大公约数就是64和36的最大公约数,反复进行这个步骤,直至842=⨯,得出4即是36和64的最大公约数. 二、讲授新课:1. 教学辗转相除法:例1:求两个正数1424和801的最大公约数.分析:可以利用除法将大数化小,然后逐步找出两数的最大公约数. (适用于两数较大时)①以上我们求最大公约数的方法就是辗转相除法,也叫欧几里德算法,它是由欧几里德在公元前300年左右首先提出的. 利用辗转相除法求最大公约数的步骤如下:(1)用较大的数m 除以较小的数n 得到一个商0S 和一个余数0R ;(2)若0R =0,则n 为m ,n 的最大公约数;若0R ≠0,则用除数n 除以余数0R 得到一个商1S 和一个余数1R ;(3)若1R =0,则1R 为m ,n 的最大公约数;若1R ≠0,则用除数0R 除以余数1R 得到一个商2S 和一个余数2R ;……依次计算直至n R =0,此时所得到的1n R -即为所求的最大公约数.②由上述步骤可以看出,辗转相除法中的除法是一个反复执行的步骤,且执行次数由余数是否等于0来决定,所以我们可以把它看成一个循环体,它的程序框图如右图:(师生共析,写出辗转相除法完整的程序框图和程序语言)练习:求两个正数8251和2146的最大公约数. (乘法格式、除法格式) 2. 教学更相减损术:我国早期也有求最大公约数问题的算法,就是更相减损术. 在《九章算术》中有更相减损术求最大公约数的步骤:可半者半之,不可半者,副置分母•子之数,以少减多,更相减损,求其等也,以等数约之. 翻译为:(1)任意给出两个正数;判断它们是否都是偶数. 若是,用2约简;若不是,执行第二步.(2)以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数. 继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数. 例2:用更相减损术求91和49的最大公约数.分析:更相减损术是利用减法将大数化小,直到所得数相等时,这个数(等数)就是所求的最大公约数. (反思:辗转相除法与更相减损术是否存在相通的地方) 练习:用更相减损术求72和168的最大公约数.3. 小结:辗转相除法与更相减损术及比较①都是求最大公约数的方法,辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少;②结果上,辗转相除法体现结果是以相除余数为0得到,而更相减损术则以减数与差相等而得到.三、巩固练习:1、练习:教材P35第1题 2、作业:教材P38第1题第二课时 1.3.2 算法案例---秦九韶算法教学要求:了解秦九韶算法的计算过程,并理解利用秦九韶算法可以减少计算次数、提高计算效率的实质;理解数学算法与计算机算法的区别,理解计算机对数学的辅助作用. 教学重点:秦九韶算法的特点及其程序设计.教学难点:秦九韶算法的先进性理解及其程序设计. 教学过程:一、复习准备:1. 分别用辗转相除法和更相减损术求出两个正数623和1513的最大公约数.2. 设计一个求多项式5432()254367f x x x x x x =--+-+当5x =时的值的算法. (学生自己提出一般的解决方案:将5x =代入多项式进行计算即可)提问:上述算法在计算时共用了多少次乘法运算?多少次加法运算?此方案有何优缺点?(上述算法一共做了5+4+3+2+1=15次乘法运算,5次加法运算. 优点是简单、易懂;缺点是不通用,不能解决任意多项式的求值问题,而且计算效率不高.) 二、讲授新课:1. 教学秦九韶算法:① 提问:在计算x 的幂值时,可以利用前面的计算结果,以减少计算量,即先计算2x ,然后依次计算2x x ⋅,2()x x x ⋅⋅,2(())x x x x ⋅⋅⋅的值,这样计算上述多项式的值,一共需要多少次乘法,多少次加法?(上述算法一共做了4次乘法运算,5次加法运算)② 结论:第二种做法与第一种做法相比,乘法的运算次数减少了,因而能提高运算效率,而且对于计算机来说,做一次乘法所需的运算时间比做一次加法要长得多,因此第二种做法能更快地得到结果. ③ 更有效的一种算法是:将多项式变形为:5432()254367((((25)4)3)6)7f x x x x x x x x x x x =--+-+=--+-+, 依次计算2555⨯-=,55421⨯-=,2153108⨯+=,10856534⨯-=,534572677⨯+= 故(5)2677f =. ――这种算法就是“秦九韶算法”. (注意变形,强调格式)④ 练习:用秦九韶算法求多项式432()2351f x x x x x =+-++当4x =时的值.(学生板书→师生共评→教师提问:上述算法共需多少次乘法运算?多少次加法运算?)⑤ 如何用秦九韶算法完成一般多项式1110()n n n n f x a x a x a x a --=++++的求值问题?改写:11101210()(()))n n n n n n n f x a x a x a x a a x a x a x a x a ----=++++=+++++.首先计算最内层括号内一次多项式的值,即11n n v a x a -=+,然后由内向外逐层计算一次多项式的值,即212n v v x a -=+,323n v v x a -=+,,10n n v v x a -=+. ⑥ 结论:秦九韶算法将求n 次多项式的值转化为求n 个一次多项式的值,整个过程只需n 次乘法运算和n 次加法运算;观察上述n 个一次式,可发出k v 的计算要用到1k v -的值,若令0n v a =,可得到下列递推公式:01,(1,2,,)n k k n k v a v v x a k n --=⎧⎨=+=⎩. 这是一个反复执行的步骤,因此可用循环结构来实现.⑦ 练习:用秦九韶算法求多项式5432()52 3.5 2.6 1.70.8f x x x x x x =++-+-当5x =时的值并画出程序框图.2. 小结:秦九韶算法的特点及其程序设计三、巩固练习:1、练习:教材P35第2题 2、作业:教材P36第2题教学要求:了解各种进位制与十进制之间转换的规律,会利用各种进位制与十进制之间的联系进行各种进位制之间的转换;学习各种进位制转换成十进制的计算方法,研究十进制转换为各种进位制的除k 去余法,并理解其中的数学规律.教学重点:各种进位制之间的互化.教学难点:除k 取余法的理解以及各进位制之间转换的程序框图及其程序的设计. 教学过程:一、复习准备:1. 试用秦九韶算法求多项式52()42f x x x =-+当3x =时的值,分析此过程共需多少次乘法运算?多少次加法运算?2. 提问:生活中我们常见的数字都是十进制的,但是并不是生活中的每一种数字都是十进制的.比如时间和角度的单位用六十进位制,电子计算机用的是二进制,旧式的秤是十六进制的,计算一打数值时是12进制的......那么什么是进位制?不同的进位制之间又有什么联系呢? 二、讲授新课:1. 教学进位制的概念:① 进位制是人们为了计数和运算方便而约定的记数系统,“满几进一”就是几进制,几进制的基数就是几. 如:“满十进一”就是十进制,“满二进一”就是二进制. 同一个数可以用不同的进位制来表示,比如:十进数57,可以用二进制表示为111001,也可以用八进制表示为71、用十六进制表示为39,它们所代表的数值都是一样的. 表示各种进位制数一般在数字右下脚加注来表示,如上例中:(2)(8)(16)1110017139== ② 一般地,任意一个k 进制数都可以表示成不同位上数字与基数的幂的乘积之和的形式,即110110()110110...(0,0,...,,)n n n n k n n n n a a a a a k a a a k a k a k a k a k ----<<≤<=⨯+⨯+⨯+⨯.如:把(2)110011化为十进制数,(2)110011=1⨯25+1⨯24+0⨯23+0⨯22+1⨯21+1⨯20=32+16+2+1=51. 把八进制数(8)7348化为十进制数,3210(8)7348783848883816=⨯+⨯+⨯+⨯=. 2. 教学进位制之间的互化:①例1:把二进制数(2)1001101化为十进制数.(学生板书→教师点评→师生共同总结将非十进制转为十进制数的方法) 分析此过程的算法过程,编写过程的程序语言. 见P34 ②练习:将(5)2341、(3)121转化成十进制数.③例2、把89化为二进制数.分析:根据进位制的定义,二进制就是“满二进一”,可以用2连续去除89或所得商,然后取余数. (教师板书)上述方法也可以推广为把十进制化为k 进制数的算法,这种算法成为除k 取余法. ④练习:用除k 取余法将89化为四进制数、六进制数. ⑤例3、把二进制数(2)11011.101化为十进制数.解:4321123(2)11011.101121202121212021227.625---=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=.(小数也可利用上述方法化进行不同进位制之间的互化. ) 变式:化为八进制→方法:进制互化3. 小结:进位制的定义;进位制之间的互化.三、巩固练习:1、练习:教材P35第3题 2、作业:教材P38第3题。

相关文档
最新文档