直流电机

合集下载

直流电机基本知识

直流电机基本知识
(1)主磁极 作用:建立主磁场。
构成:主极铁心和套装 在铁心上的励磁绕组。
第二十一页,编辑于星期五:十七点 二十一分。
15.1直流电机的工作原理、主要结构、额定值
二、直流电机主要结构 (一)定子各部件安装结构
(2)换向极
作用:用于改善换向
构成:换向极常用整块钢或厚钢板制成。换向极的数目 一般与主磁极相等。在小功率直流电机中,换向极数量 通常只有主磁极的一半,或不设置换向极
15.1直流电机的工作原理、主要结构、额定值
二、直流电机主要结构 (二)转子各部件安装结构
(3)换向器
作用:整流(发电机)或逆变(电动机)。
构成:由许多鸽形尾的换向片排列成一个圆筒片间
用V形云母绝缘,两端再用两个形环夹紧而 构成。
第三十页,编辑于星期五:十七点 二十一分。
15.1直流电机的工作原理、主要结构、额定值
作用:电枢绕组——功率绕组。当电枢绕组在磁场中旋转 时将感应电势,当电枢绕组中流通电流时,电流和气隙磁 场相互作用将产生电磁转矩。通过电枢绕组直流电机进行 电功率和机械功率的转换。 特点:直流绕组是闭合绕组。每个元件的两端点分别连接在两
换向片上,每个换向片连接两个元件,各元件依一定规律依次连 接,形成闭合回路。
件串联起来,象波浪式的前进。波绕组,又分为单波和复波
绕组。 (3)混合绕组。
第三十八页,编辑于星期五:十七点 二十一分。
15.2直流电机电枢绕组
一、电流电枢绕组基本知识
绕组是由元件构成的.放在槽内的元件边,能切割磁力线产 生感应电动势,叫有效边;放在槽外,不切割磁力线,仅
第九页,编辑于星期五:十七点 二十一分。
15.1直流电机的工作原理、主要结构、额定值
一、直流电机工作原理

直流电动机

直流电动机

第8章直流电动机8.1直流电机的构造8.2直流电机的基本工作原理8.3直流电动机的机械特性8.4并励电动机的起动与反转8.5并励(他励)电动机的调速第8章直流电动机本章要求1. 了解直流电动机的基本构造和工作原理;2. 掌握他励(并励)和串励直流电动机的电压与电流的关系式,接线图、机械特性;3. 搞清他励(并励)和串励直流电动机的起动、反转和调速的基本原理和基本方法。

8.1直流电机的构造直流电动机虽然比三相交流异步电动机结构复杂,维修也不便,但由于它的调速性能较好和起动转矩较大,因此,对调速要求较高的生产机械或者需要较大起动转矩的生产机械往往采用直流电动机驱动。

直流电机的优点:(1) 调速性能好, 调速范围广, 易于平滑调节。

(2) 起动、制动转矩大, 易于快速起动、停车。

(3) 易于控制。

应用:(1) 轧钢机、电气机车、中大型龙门刨床、矿山竖井提升机以及起重设备等调速范围大的大型设备。

(2)8.1.1直流电动机的构造极掌极心励磁绕组机座转子直流电动机的磁极和磁路直流电机由定子(磁极)、转子(电枢)和机座等部分构成。

SN ++++N +++++S+++1. 磁极用来在电机中产生磁场。

永磁式:由永久磁铁做成。

励磁式:磁极上绕线圈,线圈中通过直流电,形成电磁铁。

励磁:磁极上的线圈通以直流电产生磁通,称为励磁。

2. 转子(电枢)由铁心、绕组(线圈)、换向器组成。

电枢铁心:由硅钢片叠装而成。

电枢绕组:单个绕组元件组成。

1. 他励电动机励磁绕组和电枢绕组分别由两个直流电源供电。

8.1.2 直流电机的分类直流电机按照励磁方式可分为他励电动机、并励电动机、串励电动机和复励电动机2. 并励电动机励磁绕组和电枢绕组并联,由一个直流电源供电。

U U fI a M +_+_I ff R 'stR 他励I a U M +_I f f R 'st R +_I E 并励4. 复励电动机励磁线圈与转子电枢的联接有串有并,接在同一电源上。

直流电动机

直流电动机

直流电动机直流电动机是利用电磁感应原理实现直流电能与机械能的相互转换。

如果将电能转换为机械能则为电动机,反之就是发电机。

直流电动机具有调速范围广且平滑,起动和制动转矩大,过载能力强,且易于控制,常用于对调速有较高要求的场合。

本章主要介绍直流电机的基本结构、工作原理和机械特性。

并以他励电动机为例,讨论了直流电动机的启动、反转与调速等运行问题。

8.1 直流电机的构造常用的中小型直流电动机的结构如图8.1.1所示。

它由定子、转子、电刷装置,端盖,轴承、通风系统等部件组成。

图8.1.1 直流电动机的结构1.定子定子有机座、主磁极、换向极、电刷装置等组成,其剖面结构示意图见8.1.2所示。

它的作用就是产生主磁场和附加磁场,作电机的机械支架。

图8.1.2 直流电动机定子结构机座用作电机的外壳,并固定主磁极和换向极,并且也是磁路的一部分。

机座常用铸钢或厚钢板制成,保证良好的导磁性能和机械支撑作用。

主磁极由磁极铁心、励磁线圈组成,它能产生一定形状分布的气隙磁密。

主磁通铁心,由1~1.5mm厚的硅钢片冲压叠制而成,用铆钉与电动机壳体相连,铁心外套上预先绕制的线圈,以产生主磁场。

主极掌面呈孤型,以保证主磁极掌面与电枢表面之间的气隙均匀,磁场分布合理。

换向极结构与主磁极相似,只是几何尺寸小主磁极小。

其作用是产生附加磁场,以改善电机的换向。

电刷装置通过固定的电刷与转动的换向片之间的滑动接触,使旋转的转子与静止的外电路相连接,是电机结构中的薄弱之处。

石墨制成的电刷放在刷握内,用压紧弹簧将其压在换向器表面。

刷握固定在刷杆上,通过电刷的刷辩,将电流从电刷引入或引出。

2.转子转子(又称电枢)由电枢铁心,电枢绕组、换向器、转轴和风扇等组成,如图8.1.3所示。

它是产生电磁转矩或感应电动势,实现机电能量转换的关键。

图8.1.3 直流电动机的转子结构电枢铁心也是电机主磁路的一部分。

为了减少涡流和磁滞损耗,铁心采用0.5mm 厚的两面涂绝缘漆的硅钢片选压而成。

直流电机介绍

直流电机介绍
定义:直流电机的空载是指电枢电流等于零或者很小,且 可以不计其影响的一种运行状态,此时电机无负 载,即无功率输出。所以直流电机空载时的气隙磁 场可以看作就是主磁场,即由励磁磁通势单独建立 的磁场。
一、直流电机的磁路
图1.16 直流电机空载时的磁场分布示意图 1— 极靴;2—极身;3—元子磁轭;
4—励磁绕组;5—气隙;6—电枢齿;7—电枢磁轭
0
考虑到电机的运行性能 和经济性,直流电机额定运 行的磁通额定值的大小取在 磁化曲线开始弯曲的地方图 中的a点(称为膝部)。
N
A
If0 If
0
I fN F f 0 IN
图1.18 电机的磁化曲线
§1.3.2 直流电机负载时的磁场
负载时的气隙磁场将由励磁磁通势和电枢磁通势共同作 用所建立。
一、电枢磁通势和电枢磁场
图1.2 直流发电机原理模型
Hale Waihona Puke 从图看出,和电刷 A接触的导体永远位于 N极 下,同样,和电刷 B接触的导体永远位于S 极下。因 此,电刷 A始终有正极性,电刷 B始终有负极性, 所以电刷端能引出方向不变的但大小变化的脉振电 动势。如果电枢上线圈数增多,并按照一定的规律 把它们连接起来,可使脉振程度减小,就可获得直 流电动势。这就是直流发电机的工作原理。
长期过载或欠载运行都不好。为此选择电机时 ,应根据负载的要求,尽量让电机工作在额定状 态。
直流电动机的铭牌举例
§1.2
§1.2.1 直流电枢绕组基本知识 §1.2.2 单迭绕组 §1.2.3 单波绕组简介
§1.2.1 直流电枢绕组基本知识
电枢绕组是直流电机的一个重要部分,电机中机电能量的转换就是通 过电枢绕组而实现的,所以直流电机的转子也称为电枢。

直流电动机的分类

直流电动机的分类

直流电动机的分类直流电动机是一种常见的电动机类型,根据其不同的特性和用途,可以进行多种分类。

本文将从不同的角度对直流电动机进行分类介绍,以帮助读者更好地了解和理解直流电动机的特点和应用。

一、按照励磁方式分类1. 永磁直流电动机:永磁直流电动机是利用永磁材料产生磁场,用于产生转矩的一种直流电动机。

永磁直流电动机具有结构简单、体积小、效率高等优点,广泛应用于家用电器、机械设备等领域。

2. 电磁励磁直流电动机:电磁励磁直流电动机是通过外部电源提供电流,产生磁场,用于产生转矩的一种直流电动机。

电磁励磁直流电动机可根据不同的励磁方式进一步分为串激直流电动机、并激直流电动机和复合励磁直流电动机等。

二、按照转子结构分类1. 锚定转子直流电动机:锚定转子直流电动机是指转子上的绕组通过集电环与外部电源相连接的一种直流电动机。

锚定转子直流电动机具有结构简单、启动扭矩大等特点,广泛应用于起动和变速控制等场合。

2. 无刷直流电动机:无刷直流电动机是指转子上的绕组通过电子换向器与外部电源相连接的一种直流电动机。

无刷直流电动机不需要使用集电环和刷子,具有无摩擦、无火花、寿命长等优点,被广泛应用于航空航天、机器人等高精度领域。

三、按照工作原理分类1. 制动型直流电动机:制动型直流电动机又称为发电制动电动机,是指在发电状态下产生电能,用于制动负载的一种直流电动机。

制动型直流电动机通常用于电动车辆、电梯等需要制动的场合。

2. 发电型直流电动机:发电型直流电动机是指在机械转动的过程中产生电能的一种直流电动机。

发电型直流电动机通常用于风力发电、水力发电等领域。

四、按照用途分类1. 直流电机:直流电机是指用于将电能转换为机械能的一种电动机,广泛应用于各种机械设备和家用电器中。

2. 直流发电机:直流发电机是指将机械能转换为电能的一种电动机,常用于独立发电系统和特殊的工业用途。

以上是对直流电动机的分类介绍,希望能够帮助读者更好地理解直流电动机的不同类型和应用场景。

直流电机

直流电机

直流电机的电枢绕组是由结构形状相同的元件构成的。
所谓元件,是指两端分别与两片换向片连接的单匝或多匝线 圈。元件有两个引出线,即首端和末端。
第3章 直流电机
图 3-12 元件图 (a) 单匝元件;(b) 两匝元件
第3章 直流电机
每一元件有两个有效部分,称为元件边,用于切割磁场
感应电动势。元件在槽外(电枢铁芯两端)的部分,不切割 磁通,因而不感应电动势,仅作为连接引线,称为端部。构 成元件线匝的两个有效边称为导体。
电刷及换向器的作用:
①把旋转电路与外电路联系起来
②把电枢绕组中的交流电整流为外电路 中的直流电
第3章 直流电机
3.1.2
直流电机的主要结构部件
图 3-5 直流电机的剖面图
第3章 直流电机
图 3-6 直流电机横截面示意图
第3章 直流电机
定子
主磁极 换向磁极 电刷装置
电机结构
转子
机座 端盖
电枢铁心 电枢绕组 换向器 转轴 轴承
若PN的单位为kW,则系数9.55应改为9550。
第3章 直流电机
【例3-1】
一台直流电动机的额定值为PN=160 kW,
UN=220 V,nN=1500 r/min,ηN=90%,求该电机的额定输入 功率P1N、额定电流IN、额定输出转矩T2N。 解:额定输入功率为
P1 N PN
N

160 0 .9
第3章 直流电机 3.3.1 直流电机的磁路、磁密与磁通
图 3-20 直流电机的磁路
第3章 直流电机
主磁通所经过的磁路应分为以下几段:磁极极身、气隙、
转子齿、转子铁轭、定子铁轭。根据磁路欧姆定律有

2 Ff 2 R m 2 R m p 2 R m t R m yr R m yt

直流电动机的概述

直流电动机的概述

直流电动机的概述1. 什么是直流电动机直流电动机是一种将直流电能转化为机械能的装置。

它通过直流电源提供的电流产生旋转力,驱动机械运动。

直流电动机广泛应用于工业、交通和家庭设备中,具有高效率、精确控制和稳定性等优势。

2. 直流电动机的工作原理直流电动机主要由电流产生装置、旋转部分和定位部分组成。

电流产生装置通常是采用直流电源或电池,通过接通电路提供电流。

电流经过旋转部分(由电枢和永磁体组成)和定位部分(由电枢和永磁体之间的磁场相互作用产生转矩)后,产生旋转力。

3. 直流电动机的类型直流电动机根据其结构和工作原理的不同,可以分为多种类型。

常见的直流电动机包括:3.1 刷型直流电动机刷型直流电动机是最为常见的一种直流电动机。

它由电枢、磁极和刷子组成。

电流通过电枢产生磁场,与电磁铁的磁场相互作用产生转矩,从而驱动电机旋转。

3.2 无刷直流电动机无刷直流电动机是近年来发展起来的一种新型直流电动机。

它消除了传统电刷和电枢之间的摩擦,并通过电子元器件实现对电流和转矩的精确控制。

3.3 混合型直流电动机混合型直流电动机是刷型直流电动机和步进电动机的结合体。

它集两者的优势于一身,具有较高的转矩密度和精确的位置控制能力。

4. 直流电动机的优点与交流电动机相比,直流电动机具有以下优势:4.1 高效率直流电动机在能量转换过程中损耗较少,具有较高的能量利用率。

这使得直流电动机在能源消耗和成本控制方面更具优势。

4.2 精确控制直流电动机可以通过改变电流大小和方向来实现精确的转矩和速度控制。

这对于需要高精度位置控制的应用非常重要,例如机器人、自动化设备等。

4.3 起动扭矩大直流电动机具有较高的起动扭矩,适用于需要瞬时大功率输出的场合,如电动汽车、起重机等。

4.4 可逆性直流电动机的旋转方向可以通过改变电流的方向来调节。

这使得直流电动机在需要频繁反向运动的应用中非常有用,如卷筒机、搅拌机等。

5. 直流电动机的应用直流电动机由于其优异的性能,在各个领域都有广泛的应用,包括但不限于:5.1 工业自动化直流电动机在工业自动化设备中广泛应用,如机床、输送机、风机等。

直流电机

直流电机

第一章直流电机直流电机是一种通过磁场的耦合作用实现机械能与直流电能相互转换的旋转式机械,包括直流发电机和直流电动机。

将机械能转换为电能的是直流发电机,将电能转换为机械能的是直流电动机。

与交流电机相比,直流电机结构复杂,成本高,运行维护较困难。

但直流电动机调速性能好,启动转矩大,过载能力强,在启动和调速要求较高的场合,仍获得广泛应用。

作为直流电源的直流发电机虽已逐步被晶闸管整流装置所取代,但在电镀、电解行业中仍被继续使用。

第一节直流电机的基本原理与基本结构直流电机是根据导体切割磁感线产生感应电动势和载流导体在磁场中受到电磁力的作用这两条基本原理制造的。

因此,从结构上看,任何电机都包括磁路和电路两部分;从原理上讲,任何电机都体现了电和磁的相互作用。

一、直流电机的工作原理(一)直流发电机工作原理图 1-1 所示两极直流发电机模型,可说明直流发电机的基本工作原理。

图中,N 、S 是一对固定不动的磁极。

磁极可以由永久磁铁制成,但通常是在磁极铁心上绕制励磁绕组,在励磁绕组中通入直流电流,即可产生N 、S 极。

在N 、S 磁极之间装有由铁磁性物质构成的圆柱体,在圆柱体外表面的槽中嵌放了线圈abcd ,整个圆柱体可在磁极内部旋转。

整个转动部分称为转子或电枢。

电枢线圈abcd 的两端分别与固定在轴上相互绝缘的两个半圆铜环相连接,这两个半圆铜环称为换向片,即构成了简单的换向器。

换向器通过静止不动的电刷 A 和 B ,将电枢线圈与外电路接通。

电枢由原动机拖动,以恒定转速按逆时针方向旋转,转速为n (r/min )。

若导体的有效长度为 l ,线速度为v ,导体所在位置的磁感应强度为B ,根据电磁感应定律,则每根导体的感应电动势为e Blv =,其方向可用右手定则确定。

当线圈有效边ab 和cd 切割磁感线时,便在其中产生感应电动势。

如图1-1所示瞬间,导体ab 中的电动势方向由b 指向a ,导体cd 中的电动势则由d 指向 c ,从整个线圈来看,电动势的方向为d 指向a ,故外电路中的电流自换向片1流至电刷A ,经过负载,流至电刷B 和换向片2,进入线圈。

直流电机

直流电机

Tav = f 2 = Bav l ia N 2
Tav
l Ia N 2 p l 2a 2

pN
2a
Ia
CT Ia
大小:T

pN
2 a

Ia

CT Ia
其中:CT
= pN 2πa
为电机的转矩常数
电磁转矩性质:发电机—制动(与转速方向相反); 电动机—驱动(与转速方向相同)。
pm pFe p统称为空载损耗(不变损耗)。
负载损耗:电枢回路电阻损耗 pa ;I电a2 R刷a 接触压降损耗
pb ( 2负Δ载Us损Ia 耗又称可变损耗) 杂散损耗 p:Δ齿槽引起磁场脉动引起的铁耗,一些机械部件切
割磁通产生的铁耗等 pΔ (0.5 ~ 1)%P2
二、直流发电机的基本方程
Bx
B0 x
Bax
物理中性线偏离几何中性线
2.当电刷不在几何中性线上时
电刷从几何中性线偏
移 角,电枢磁动势
轴线也随之移动角, 如图(a)、(b)所示。
这时电枢磁动势可 以分解为两个垂直 分量:交轴电枢磁 动势 Faq 和直轴电 枢磁动势 Fad 。如 图(a)、(b)所示。
交轴磁势和直轴磁势
P1 PM p0 原动机输入给发电机的机械功率 P1
输入直流发电机后扣除空载损耗,其余为电磁功率 空载损耗p0包括:机械摩擦损耗、铁损耗、附加损耗。
p0 pm pFe p ❖电磁功率是转换成电功率的那部分机械功率
将式 U Ea Ia Ra 两边同乘电枢电流:
UIa Ea Ia Ia2 Ra
A Nia
D 在原点O左右x处取磁力线闭

直流电机的运行原理

直流电机的运行原理

新材料与新工艺的应用
新材料
随着科技的发展,新型材料如碳纤维、纳米材料等在直流电机中得到了广泛应用。这些新材料具有更高的导磁性 能、耐高温和轻量化等特点,提高了电机的性能和可靠性。
新工艺
新工艺的应用为直流电机的制造提供了更多的可能性。例如,采用先进的激光加工、3D打印等技术,可以实现对 电机零部件的高精度制造和快速成型,提高了生产效率和产品质量。
电能。
反接制动
通过反接电机电源来产生制动转 矩。这种方式适用于快速停止电 机,但会对电机造成较大冲击。
机械制动
通过机械摩擦力来产生制动转矩。 这种方式适用于高速或大惯量电 机的快速停止,但需要额外的机
械装置。
04
直流电机的应用
工业领域的应用
自动化生产线
直流电机广泛应用于自动化生产线, 如传送带、机械臂等,实现高效、精 准的物料搬运和加工。
02
直流电机的运行原理
直流电机的电磁场原理
磁场定义
磁场对电流的作用
磁场是存在于磁体周围的一种特殊物 质,它看不见摸不着,但具有能量, 可以被磁体所磁化。
在磁场中运动的导线会受到安培力的 作用,这个力就是直流电机转动的主 要驱动力。
直流电机中的磁场
在直流电机中,磁场是由励磁绕组产 生的,励磁绕组通入直流电流后,就 会在电机内部形成一个恒定的磁场。
串电阻调速
通过在电机回路中串入电 阻来调节转速。这种方式 适用于小功率电机,但电 阻耗能较大。
PWM调速
通过调节电机输入端的 PWM信号占空比来调节 转速。这种方式可以实现 宽范围的调速,且效率较 高。
直流电机的制动方式
能耗制动
在电机定子绕组中通入直流电, 产生制动转矩使电机迅速停止。 这种方式简单可靠,但需要消耗

直流电机

直流电机

解: 1)
2p 4
a 1
Z 31
E 115
nN 1450
N Z 12 31 12 372
pN 2 372 Ce 12.4 60 a 60 1
E 115 6.4 10 3 Wb C e n 12.4 1450
【例】一台4极直流发电机,单波绕制,有31槽,每槽元件数为12,额定 转速为1450转,在额定工作时,测出的电枢电势为115V。求: (1) (2) 每极磁通。 当作电动运行时,电枢电流为600A时,能产生多大的电磁转矩。
二、倒拉反转反接制动 倒拉反转反接制动只适用于位能性恒转矩负载
在电枢回路中串联一个较大的电阻,即可实 现制动. n
电枢回路串入较大电 阻 RB 后特性曲线
正向电动状态提 升重物(A点)
n0
B
A
Ra
工作点由A-BC-D,CD段为制 动段
电机以稳 定的转速 下放重物D 点
C
0 TB TK
TL
Tem
负载作用下 电机反向旋 转(下放重物)
换向片 E F E
d T
n
– U + 由图可知,电枢感应电动势E与电枢电流或外 加电压方向总是相反,所以称反电势。 Ia Ra 2. 电枢回路电压平衡式 + + U E Ia Ra K E n Ia Ra M E U – 式中:U — 外加电压 – Ra — 绕组电阻
励磁电动机
他励电动机
为了限制起动电流,他励直流电动机通常采用电枢回路串 电阻或降低电枢电压起动。
2.3.1 电枢回路串电阻起动 一、起动过程 以三级电阻起动时电动机为例
n

S
U

直流电动机

直流电动机

直流电枢绕组
2 1 3 4
1
A
2
3
4
B
A
8 7
B
5
8
7
6
5
6
结论:整个电枢绕组通过换向片连成一个闭合回路。
2、分类
转子电枢
M — (a) 他励式
M — (b) 并励式
励磁线圈
M — (c) 串励式
(
M — (b) 并励式
M — (c) 串励式
M — (d) 复励式
+


Ia
M
If
+ Uf
+ U
直流电动机的用途
8.1 直流电动机的构造
定子、转子
直流电动机的结构
1、定子(磁极):产生磁场
主磁极:由铁心和励磁线圈组成,用于产生一个恒定 的主磁场; 换向磁极:安装在两个相邻的主磁极之间,它的作用 是改善电机的换向; 电刷:是通过与换向器之间的 滑动接触,把直流电压、直流 电流引入或引出电枢绕组。 机座:固定主磁极等部件,同 时也是磁路的一部分。
永磁直流电机
做电源用的直流发电机
直流电动机虽然比三相交流异步电动机结构复杂, 维修也不便,但由于它的调速性能较好和起动转矩较 大,因此,对调速要求较高的生产机械或者需要较大 起动转矩的生产机械往往采用直流电动机驱动。
应用: 轧钢机、电气机车、无轨电车、中大型龙门刨 床等调速范围大的大型设备;用蓄电池做电源的地 方,如汽车、拖拉机等;家庭:电动缝纫机、电动 自行车、电动玩具;
定子铁心和绕组
(2)转子 又称电枢,包括电枢铁心和电枢绕组、换向器、转轴、 风扇等。 电枢铁心上冲有槽孔,槽内放电枢绕组,电枢铁心也 是直流电动机磁路的组成部分;

直流电动机

直流电动机

Ea=CeΦn
Ce= pN/60a
Te=CtΦIa
Ct=9.55Ce
二、直流电动机的种类和铭牌
1、直流电动机的分类 直流电动机按产生磁场的方式来进行区分,分为 两大类:他励和自励。 他励是指通入电动机定子中,产生磁场的电流If 与通入电动机转子,产生转矩的电流Ia分别由两个电 源提供。 他励的特点是,励磁电流If 的大小与电枢电压U及负载等 参数无关。若U=Uf,则他励 电动机与并励电动机性能相 同。
Ia = IN-If =155-1.765 = 153.235 A
Rf =
UN If

220 1 . 765
= 124 . 6 W
Ea=UN-IaRa=220-153.235×0.1=204.68 V
一台并励直流电动机, 电源电压UN=230 V时, 电枢电流IN=60 A, 电枢电组Ra=0.1 Ω, Φ=0.08 Wb, Ce=2.5, 求电枢反电势Ea及此时的转速n。
Ec
a Eab b
Ea Eb
C
x
y
(a)接线图
图4-25 Yy0联结组别的接线图和相量图
直流电动机
直流电动机
直流电机可分为直流发电机和直流电动机两大类。 将机械能转化为电能的直流电机是直流发电机,将电 能转化为机械能的直流电机是直流电动机。直流电机 具有良好的调速性能、较大的起动转矩和过载能力, 一般应用于对起动和调速要求较高的场合。另外,结 构复杂、成本较高、维护较困难是直流电机的不足之 处。
反转方法 1.改变电枢电流方向,励磁电流方向不变; 2.改变励磁电流方向,电枢电流方向不变。 即:单独改变电枢绕组或单独改变励磁绕组的接线。 注意:反转瞬间,电枢电流很大,应该采取措施限流。 同时改变电枢和励磁绕组的接线,则电枢电流和励磁电流的 方向将同时改变,电动机的电磁转矩的方向不变,电动机的转 速也不变。交、直流两用电动机的工作原理就是以此为依据的。 交、直流两用电动机实际上是一台直流电动机,使用时若电源 为交流电,则转向仍然不会发生变化。

直流电机

直流电机

• 直流发电机
• 直流电动机 额定转矩
额定转矩TN单位:N.m; 额定功率PN的单位:W
• • • •
1. 他励发电机 这种发电机的励磁电流是由另一直流电源单独供电的 。 2. 自励发电机 发电机的励磁电流由电机电枢提供,它又可分为如下三类。
• (1)并励发电机 • 励磁绕组与电机电枢两端并联连接,由发电机本 身发出的端电压提供励磁电流。 • (2) 串励发电机 • (3) 复励发电机 • • 此外,有些直流电机是用永久磁铁来产生磁场的, • 称为永磁式直流电机。
2. 转子部分
定子由主磁极、换向极、机座和电刷装置
机械能与电能相互转换的 枢纽,因此称作电枢。 电枢主要包括电枢铁心、电枢绕组、换 向器等。
1—轴承;2—轴;3—电枢绕组;4—换向极绕组;5—电枢铁心;6— 7—刷杆座;8—换向器;9—电刷;10—主磁极;11—机座;12—励磁绕组; 13—风扇;14—前端盖
1 - 5 生产机械的机械特性
• 一、生产机械的机械特性 所谓生产机械的机械特性,是指同一轴上负载静阻转 矩和转速之间的函数关系。 可在同一直角坐标系中作出电动机的机械特性和生 产机械的机械特性,用运动方程式对传动系统的运行状 态进行分析。
(一) 恒转矩型机械特性 恒转矩型负载的特点是负载转矩与转速的大小无关,是一常数。 1. 摩擦性恒转矩负载
通过,使定子铁心产生固定磁场,
即定子的主要作用是产生主磁场。
2— 电枢绕组:在固定的磁场中 旋转,主要作用是产生感应电动 势或产生机械转矩,实现能量的 转换。 3—电刷
4—换向片
3、4—换向器:电刷固定不动,换向片与电枢绕组一起旋转, 主要作用对发电机而言是将电枢绕组内感应的交流电势转换成电

直流电机的分类

直流电机的分类

直流电机的分类一、按照电源类型分类1.1 电池供电的直流电机电池供电的直流电机是最常见的一种直流电机类型。

它们使用化学能将直流电转换为机械能。

电池供电的直流电机通常用于便携式设备,如手持式电动工具、玩具等。

1.2 外部电源供电的直流电机外部电源供电的直流电机主要是指交流电转化为直流电后供应给直流电机使用。

这种直流电机的优点是能够提供较大的功率,并且不会受到电池容量限制。

它们广泛应用于工业设备、电动车辆等领域。

二、按照励磁方式分类2.1 永磁励磁直流电机永磁励磁直流电机是使用永磁体作为励磁源的直流电机。

永磁体的磁场稳定性较好,使得这种电机具有良好的转速调节性能和响应速度。

永磁励磁直流电机广泛应用于家电、办公设备等领域。

2.2 手动励磁直流电机手动励磁直流电机是通过手动方式将直流电导线接入电枢,实现励磁的直流电机。

由于手动励磁的不稳定性,这种直流电机的转速调节性能较差,应用范围有限。

2.3 刷碳式励磁直流电机刷碳式励磁直流电机是通过碳刷与旋转的集电环接触,实现励磁的直流电机。

它们通常具有较高的功率和较大的转矩,广泛应用于家电、自动化设备等领域。

2.4 无刷式励磁直流电机无刷式励磁直流电机是通过电子控制单元实现励磁的直流电机。

它们具有高效率、可靠性和长寿命的优点,广泛应用于工业自动化、机械加工等领域。

三、按照控制方式分类3.1 单向控制直流电机单向控制直流电机是最简单的一种直流电机控制方式。

它们只能沿一个方向旋转,通常用于一些简单的应用场景,如风扇、搅拌器等。

3.2 正反转控制直流电机正反转控制直流电机可以实现正转和反转两种运动方式。

它们通常由一个中间位置的开关控制,广泛应用于电动车、自动门等领域。

3.3 转速调节控制直流电机转速调节控制直流电机通过改变电机供电电压或者改变电机的励磁方式来实现转速的调节。

它们可以根据不同的需求实现不同的转速,广泛应用于工业设备、机械加工等领域。

3.4 位置控制直流电机位置控制直流电机通过反馈控制实现对电机位置的控制。

常用直流电机及应用

常用直流电机及应用
流电, 引入电枢绕组, 产生电枢电流(电枢磁场), 电枢磁场与励
磁磁场合成气隙磁场, 电枢绕组切割合成气隙磁场, 产生电磁转矩。
这是直流电机的基本工作原理。
• 图1 -11 为简单的两极直流电机模型, 由主磁极(励磁线圈)、
电枢(电枢线圈)、电刷和换向片等组成。固定部分(定子) 上,
装设了一对直流励磁的静止的主磁极N、S, 主磁极由励磁线圈的
返回
任务一
认识直流电机
• 4. 电刷装置
• 在直流电机中, 为了使电枢绕组和外电路连接起来, 必须装设固定
的电刷装置, 它是由电刷、刷握和刷杆座组成的, 如图1 - 8 所
示。电刷是用石墨等做成的导电块, 放在刷握内, 用弹簧压指将它
压触在换向器上。刷握用螺钉夹紧在刷杆上, 用铜绞线将电刷和刷
杆连接, 刷杆装在刷杆座上, 彼此绝缘, 刷杆座装在端盖上。
元器件参数测量仪器包括电桥、Q表、晶体管特性参数图示仪、集成
电路测试仪等。
• (3)示波器:包括通用示波器、多踪示波器等。

(4)频率、相位测量仪器:包括通用电子计数器、数字式频率计、数
字式相位计等。

(5)模拟电路特性测试仪:包括失真度测试仪、扫频仪、噪声系数测
试仪等。

(6)数字电路特性测试仪:包括逻辑笔、逻辑分析仪等。
的仍是传统的通用仪器因此熟练掌握传统的通用仪器的使用技术是十
分重要的。
上一页 返回
2.2常用电子仪器的介绍与使用


2. 2. 1示波器
示波器是一种用来观察各种周期性变化的电压和电流波形的电子仪
器.可用来测电压或电流的幅度、频率、相位、调制度及脉冲信号的
各种电参量。它是电工、电子实验中必不可少的常用电子测量仪器。

直流电机

直流电机

一台直流电机作为
电动机运行——在直流电机的两电刷端上加上直流电压,电枢旋 转,拖动生产机械旋转 ,输出机械能;
电能转换为机械能
发电机运行——用原动机拖动直流电机的电枢,电刷端引出直流 电动势,作为直流电源,输出电能。
机械能转为电能
注意:不要孤立的看待发电机和电动机问题
二、直流电机的结构
(一)直流电机的静止部分(定子) 1、主磁极
E U Ra Ia 110 0.04 234 100.6 V
7.5 并励(他励)电动机的起动 与反转 起动
直流电动机不允许在额定电压UN下直接起动。 1. 起动问题: (1) 起动电流大 起动时,n =0 E K E n 0 UN I ast (10 ~ 20) I a N Ra Iast太大会使换向器产生严重的火花,烧坏换向器; (2) 起动转矩大
T2: 机械负载转矩 T0: 空载转矩
T KT ΦIa
Ia
U Ea Ia Ra
达到新的平衡点(Ia 、 P入) 。
第四节 直流电动机的机械特性
特点: 励磁绕组与电枢并联 由图可求得
U E I a Ra U If Rf
I
+ E M Ia _ +
UE If Ia Ra
系。
-
+
-
+
他励式
并励式
并励绕组
-
+
-
+
串励绕组
串励式
复励式
按照上面的描述,存在如下四种情况:
1、他励直流电机——励磁绕组与电枢绕组无联接关系,而是由 其他直流电源对励磁绕组供电。
2、并励直流电机——励磁绕组与电枢绕组并联。

直流电机的工作原理与基本结构

直流电机的工作原理与基本结构

2)在电刷AB两端接上直流电源。
-
S
2.直流电动机的工作原理分析
电刷AB接直流电源: A接正极,B接负极。
图a 导体ab处于N极下时,电枢逆时针旋转
当导体ab处于N极下、cd处于S极下时,ab中的电流由a流向 b,cd中的电流由c流向d,整个线圈中的电流顺时针流动。 用左手定则判定:导体ab受力方向从右向左;导体cd受力方 向从左向右,形成逆时针方向的电磁转矩,带动电枢逆时针 旋转。
直流电机的工作原理与基本结构
一、直流电机简介
1.直流电机的定义
直流电机是通以直流电流的旋转电机,是电能和机械 能相互转换的设备。
将机械能转换为电能的是直流发电机; 将电能转换为机械能的是直流电动机。
与交流电机一样,直流电机的工作也遵循“导体切割 磁力线产生感应电动势”“载流导体在磁场中会受到 电磁力的作用”,这两条基本物理原理。
2.直流电机的特点(与交流电机相比)
●直流电动机的优点
调速性能好,启动转矩大,过载能力强。
●直流发电机的优点
性能好,能提供无脉动的大功率直流电源,输出电压还可 以精确调节和控制。
●直流电机的缺点
1)制造工艺复杂,消耗有色金属较多,生产成本高。 2)运行时电刷和换向器之间容易产生火花,工作可靠性较 差,维护比较困难。
2.直流电动机的工作原理分析
图a
图b
图c
图d
直流电动机工作过程分解图
直流电动机电刷两端接入的是直流电源,经过换向片和电刷 流到电枢线圈中的电流,却是交变的。
在恒定的励磁磁场作用下,位于N极下的电枢导体受力方向 始终不变,位于S极下的电枢导体受力方向也始终不变。
实际电机有多个位于不同角度的电枢线圈,它们产生的电磁 转矩方向始终不变,能够带动电枢朝某个方向连续旋转。

第一篇直流电机一.直流电机(DCMachines)概述

第一篇直流电机一.直流电机(DCMachines)概述

第一篇 直流电机一. 直流电机(DC Machines)概述直流电机是电机的主要类型之一。

直流电机可作为发电机使用,也可作为电动机使用。

用作发电机可以获得直流电源,用作电动机,由于其具有良好的调速性能,在许多调速性能要求较高的场合,得到广泛使用。

直流电机的用途:作电源用:发电机;作动力用:电动机;信号的传递:测速发电机,伺服电机作电源用:直流发电机将机械能转化为直流电能作动力用:直流电动机将直流电能转化为机械能信号传递:直流测速发电机将机械信号转换为电信号信号传递-直流伺服电动机将控制电信号转换为机械信号二. 直流电机的优缺点1.直流发电机的电势波形较好,受电磁干扰的影响小。

2.直流电动机的调速范围宽广,调速特性平滑。

3.直流电动机过载能力较强,起动和制动转矩较大。

4.由于存在换向器,其制造复杂,成本较高。

第1章 直流电机的工作原理和结构1-1 直流电机工作原理一、原理图(物理模型图)磁极对N、S不动, 线圈(绕组)abcd 旋转, 换向片1、2旋转, 电刷及出线A、B不动二、直流发电机原理(机械能--->直流电能)( Principles of DC Generator)1.原动机拖动电枢以转速n(r/min)旋转;2.电机内部有磁场存在;或定子(不动部件)上的励磁绕组通过直流电流(称为励磁电流I f)时产生恒定磁场(励磁磁场,主磁场) (magnetic field, field pole)3.电枢线圈的导体中将产生感应电势 e = B l v ,但导体电势为交流电,而经过换向器与电刷的作用可以引出直流电势E AB,以便输出直流电能。

(看原理图1,看原理图2)(commutator and brush)1.问题1-1:直流电机电枢单个导体中感应电势的性质?2.问题1-2:直流电机通过电刷引出的感应电势的性质?3.看直流发电机原理动画4.问题1-3:直流发电机如何得到幅值较为恒定的直流电势?5.为了得到稳定的直流电势,直流电机的电枢圆周上一般有多个线圈分布在不同的位置,并通过多个换向片联接成电枢绕组。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、直流电动机的工作原理
导体受力的方向用左手定则确定。这 一对电磁力形成了作用于电枢一个力矩, 这个力矩在旋转电机里称为电磁转矩,转 矩的方向是逆时针方向,企图使电枢逆时 针方向转动。如果此电磁转矩能够克服电 枢上的阻转矩(例如由摩擦引起的阻转矩 以及其它负载转矩),电枢就能按逆时针 方向旋转起来。
直流电机无论作电动机运行还是作发电机运行,电枢绕组内 都感应产生电动势,这个感应电动势是指一条支路的电动势。
二、如何计算感应电动势的
要计算支路电动势,可先求出每个元 件电动势的平均值,然后乘上每条支路串 联元件数,就可得出支路电动势。
Ea
N 2a
e
pN 60 a
n Ce n
Ce为电动势常数。上式表明直流电机的感应电动势与电机结构、 气隙磁通和电机转速有关。当电机制造好以后,与电机结构有关的常数 Ce不在变化,因此电枢电动势仅与气隙磁通和转速有关,改变转速
图1.4 直流电动机原理模型
因此,电枢一经转动,由于换向器配合电刷对电流的换向 作用,直流电流交替地由导体 ab和cd 流入,使线圈边只要处于 N 极下,其中通过电流的方向总是由电刷A 流入的方向,而在S 极下时,总是从电刷 B流出的方向。这就保证了每个极下线圈边 中的电流始终是一个方向,从而形成一种方向不变的转矩,使 电动机能连续地旋转。这就是直流电动机的工作原理。
假设励磁电流为零, 只有电枢电流。由图可 见电枢磁动势产生的气 隙磁场在空间的分布情 况,电枢磁动势为交轴 磁动势。
图1.19
电刷在几何中性线上时的电枢磁场分布
二、电枢磁通势单独产生的气隙磁通密度波形 为一三角波(气隙是均匀)
如果气隙是均匀的, 则在极靴范围内,磁密 分布也是一条直线。但 在两极极靴之间的空间 内,因气隙长度大为增 加,磁阻急剧增加,虽 然此处磁通势较大,磁 密却反而减小,因此磁 密分布曲线是马鞍形 (见书中图形)
(3)电枢电流等于个并联支路电 流之和。
§1.2.3
一、节距计算
单波绕组简介
y1
Z 2p

y yK
K 1 p
y 2 y y1
二、绕组展开图
图1.14
三、并联支路图
图1.15
单波绕组有以下特点:
单波绕组并联支路图
(1)同极性下各元件串联起来组成一个支路,支路对数 a=1 ,与磁级对数 p无关。 (2)当元件的几何形状对称时,电刷在换向器表面上的位置对准主磁极中心线, 正、负电刷间感应电动势最大。 (3)电刷杆数也应等于极数(采用全额电刷)。 (4)电枢电动势等于支路感应电动势。 (5)电枢电流等于两条支路电流之和。
和磁通均可改变电枢电动势的大小。
§1.4.2 直流电机的电磁转矩
定义:根据电磁力定律,当电枢绕组中有电枢电流 流过时,在磁场内将受到电磁力的作用,该 力与电机电枢铁心半径之积为电磁转矩。
Ia
:
Tem
pN 2 πa
ΦI a C T ΦI a
式中Ct 为转矩常数,仅与电机结构有关。从Ce与Ct的 表达式可以看出Ct =9.55Ce。 由 Tem=CtΦ Ia 可看出,制造好的直流电机其电磁转 矩仅与电枢电流和气隙磁通成正比。
§1.5
§1.5.1 §1.5.2 §1.5.3 换向概述 换向的电磁理论 改善换向的方法
§1.5.1
换向概述
定义: 直流电机在工作时,绕组元件连续不断地从一条支路退出而进入相邻 的支路,在元件从一条支路转入另一条支路这个过程中,元件中的电流就 要改变方向,这就是所谓直流电机的换向问题。 研究意义: 换向问题是换向器电机的一个专门问题,如果换向不良,将会在电刷 与换向片之间产生有害的火花。当火花超过一定程度,就会烧坏电刷和换 向器表面,使电机不能正常工作。此外,电刷下的火花也是一个电磁波的 来源,对附近无线电通讯有干扰。国家对电机换向时产生的火花等级及相 应的允许运行状态有一定的规定。
1—转轴;2—轴承;3—换向器;
4—电枢铁心;5—电枢绕组;6—风扇;7—轴承
§1.1.3 名牌数据及主要系列 每台直流电机的机座外表面上都钉有一块所谓铭牌, 上面标注着一些叫做额定值的铭牌数据,它是正确选择和 合理使用电机的依据。 (1)额定功率
PN U N I N PN U N I N N
三、电刷在几何中心线上时的电枢反应特点
(分为交轴电枢反应和直轴电枢反应)
§1.4
§1.4.1 直流电机的电枢电动势 §1.4.2 直流电机的电磁转矩
§1.4.1 直流电机的电枢电动势 定义:电枢绕组中的感应电动势。 一、运行时感应电动势始终存在
图1.22 电动机/发电机运行时电枢元件中的电势与电流方向
B ax
Fax
图1.20 四个元件所产生的电枢磁通势
§1.3.3
直流电机的电枢反应 一、负载时的合成磁场
定义:电枢磁场对主磁场的 影响称为电枢反应。 电枢反应与电刷位置 有关。
图1.21
磁场分布
二、电刷在几何中心线上时的电枢反应特点
(交轴电枢反应) (1)使气隙磁场发生畸变。 (2)对主磁场起去磁作用。
§1.3
§1.3.1 直流电机的空载磁场 §1.3.2 直流电机负载时的磁场 §1.3.3 直流电机的电枢反应
§1.3.1
直流电机的空载磁场
直流电机中除主极磁场外,当电枢绕组中有电流流过时, 还将会产生电枢磁场。电枢磁场与主磁场的合成形成了电机中 的气隙磁场,它是直接影响电枢电动势和电磁转矩大小的。要 了解气隙磁场的情况,就要先分析清楚主磁场和电枢磁场的特 性。
1.1 直流电机的基本工作原理和结构
1.1.1 直流电机的工作原理
一、直流发电机工作原理 直流发电机的工作原理就是把电枢线圈中感应的交 变电动势,靠换向器配合电刷的换向作用,使之从电刷 端引出时变为直流电动势的原理。 感应电动势的方向按右手定则确定(磁感线指向手心, 大拇指指向导体运动方向,其他四指的指向就是导体中感 应电动势的方向。)
5—换向极;6—端盖;7—风扇;8—电枢绕组;9—电枢铁心
一、定子部分
直流电机定子部分主要由主磁极、换向极、机座和电刷装 置等组成。
图1.6
直流电机的主磁极
1—主极铁心;2—励磁绕组;3—机座;4—电枢
二、转子部分
直流电机转子部分主要由电枢铁心和电枢绕组、换向 器、转轴和风扇等组成。
图1.7 直流电机的电枢
图1.3 直流电动机的原理模型
当电枢转了180°后,导 体 cd转到 N极下,导体ab转到 S极下时,由于直流电源供给的 电流方向不变,仍从电刷 A流 入,经导体cd 、ab 后,从电刷 B流出。这时导体cd 受力方向 变为从右向左,导体ab 受力方 向是从左向右,产生的电磁转 矩的方向仍为逆时针方向。
定义:直流电机的空载是指电枢电流等于零或者很小,且 可以不计其影响的一种运行状态,此时电机无负 载,即无功率输出。所以直流电机空载时的气隙磁 场可以看作就是主磁场,即由励磁磁通势单独建立 的磁场。
一、直流电机的磁路
图1.16 直流电机空载时的磁场分布示意图 1— 极靴;2—极身;3—元子磁轭;
4—励磁绕组;5—气隙;6—电枢齿;7—电枢磁轭
二、空载时气隙磁磁通密度的分布图形
返回
如果不计铁磁材料中的磁压降,则在气隙中各处所消耗的磁通势均 为励磁磁通势。 在极靴下,气隙小,气隙中沿电枢表面上各点磁密较大;在极靴范 围外,气隙增加很多,磁密显著减小,至两极间的几何中性线处磁密为 零。
为一平顶波
图1.17 直流电机空载磁场的磁密分布
三、直流电机的空载磁化特性
不管一个元件有多少匝,其出线端只有两根,一根叫首端,另一根叫 末端。同一个元件的首端和末端分别接到不同的换向片上,而各个元件之 间又是通过换向片彼此联接起来的。
图1.8 电枢绕组的元件及在槽内的放置情况
a)元件;b)元件在槽内的放置;c)实槽与虚槽
1—元件边;2—首端;3—末端;
4—有效部分;5—端接部分;6—元件边
图1.2 直流发电机原理模型
从图看出,和电刷 A接触的导体永远位于 N极 下,同样,和电刷 B接触的导体永远位于S 极下。因 此,电刷 A始终有正极性,电刷 B始终有负极性, 所以电刷端能引出方向不变的但大小变化的脉振电 动势。如果电枢上线圈数增多,并按照一定的规律 把它们连接起来,可使脉振程度减小,就可获得直 流电动势。这就是直流发电机的工作原理。
(2)额定电压 (3)额定电流 (4)额定转速 (5)励磁方式和 额定励磁电流
UN IN nN I fN
有些物理量虽然不标在铭牌上,但它们也是额定值, 例如在额定运行状态的转矩、效率分别称为额定转矩、额 定效率等。
直流电机运行时,若各个物理量都与它的额 定值一样,就称为额定运行状态或额定工况。在 额定状态下,电机能可靠地工作,并具有良好的 性能。
第1章 直流电机
§1.1 直流电机的基本工作原理与结构 §1.2 直流电机的电枢绕组简介 §1.3 直流电机的电枢反应
§1.4 直流电动机的电枢电动势和电磁转矩
§1.5 直流电动机的换向
§1.6 直流发电机
§1.7 直流电动机
§1.1
§1.1.1 直流电机的基本工作原理 §1.1.2 直流电机的主要结构 §1.1.3 名牌数据及主要系列
§1.2.2 单迭绕组
一、节距计算
y1 Z 2p
Z为电枢槽数 P为电机的极对数
y= y k =1
y 2 y1 y
二、绕组展开图
图1.11
三、元件连接顺序及并联支路图
绕组元件联接顺序图用来表示电枢上所有元件边的串联次序。
图1.12 单叠绕组元件联接顺序图
从图1.12中看出,从第1元件出发,绕完16个元件后又回 到第1元件。可见,整个绕组是一个闭路绕组。
相关文档
最新文档