挡土墙计算

合集下载

挡墙基础宽度计算公式

挡墙基础宽度计算公式

挡墙基础宽度计算公式
挡土墙宽度的计算:重力式挡土墙的顶宽约为1/12×H,底宽约为(1/2~1/3)H。

例如,设顶宽b1=0.42m,可初步确定底宽B=2.5m。

挡土墙是指支承路基填土或山坡土体、防止填土或土体变形失稳的构造物。

在挡土墙横断面中,与被支承土体直接接触的部位称为墙背;与墙背相对的、临空的部位称为墙面;与地基直接接触的部位称为基底;与基底相对的、墙的顶面称为墙顶;基底的前端称为墙趾;基底的后端称为墙踵。

挡土墙的挖土方工程量需要根据基槽开挖进行计算工程量,注意相应的工作面及放坡系数。

对于套定额时,需分套用基槽挖土方工程量及回土工程量。

根据地质资料中冻结深度确定,路基规范中有,一般冻结深度小于1m时埋深1m即可,冻结深度大于1m时一般取1.25m。

然后根据确定的挡墙尺寸和地基承载力,C,q值,基地摩擦力的资料进行挡土墙验算。

挡土墙台阶宽度D≤D1= H2tan(45° - p /2);(2)D1<D≤D2=
H2tan(90° - q );(3)D>D23种不同状况下的上级墙荷载引起的下级墙体中附加垂直应力,并以此计算下级墙墙背水平土压力。

五种常见挡土墙的设计计算实例

五种常见挡土墙的设计计算实例

五种常见挡土墙的设计计算实例
挡土墙是一种用于防止土方滑坡和土壤侵蚀的土木结构,常用于公路、铁路、水利工程等项目中。

设计一个挡土墙需要考虑多个因素,包括土壤
性质、挡土墙的高度和倾角、抗滑稳定性等。

以下是五种常见挡土墙的设
计计算实例:
1.重力挡土墙设计:
重力挡土墙是最简单的挡土墙类型,靠自身的重力使其稳定。

设计时
需要计算挡土墙的底部摩擦力、上部土压力以及挡土墙的自重。

2.填土挡土墙设计:
填土挡土墙是利用挡土墙后面的填土来平衡土压力的一种结构。

设计
时需要计算挡土墙的自重和填土的重量以及土与墙之间的摩擦力。

3.墙身倾斜挡土墙设计:
墙身倾斜挡土墙是指挡土墙的外侧墙面倾斜,以增加土体与墙之间的
摩擦力,提高稳定性。

设计时需要计算倾斜挡土墙的自重、上部土压力和
墙身倾斜带来的附加力。

4.箱形式挡土墙设计:
箱形式挡土墙是由钢片或混凝土墙板拼接而成的结构形式,其内部填
充土体以平衡土压力。

设计时需要计算挡土墙板的自重和填充土的重量。

5.挡土墙加筋设计:
挡土墙加筋设计是为了增加挡土墙的稳定性和承载能力,常用的加筋方式有钢筋混凝土挡土墙和钢束挡土墙。

设计时需要计算挡土墙的自重、土压力以及加筋材料的受力情况。

以上是五种常见挡土墙的设计计算实例,每一种挡土墙都有其适用的场景和设计要点。

实际设计时还需要考虑地质条件、降雨等因素对土体的影响,以确保挡土墙的稳定性和安全性。

挡土墙工程量计算公式.doc

挡土墙工程量计算公式.doc

挡土墙工程量计算公式说到挡土墙工程量计算公式,现阶段,建筑企业人员如何计算挡土墙工程量计算,基本情况怎么样?以下是中国下面梳理挡土墙工程量计算公式相关内容,基本情况如下:小编通过建筑行业百科网站下面建筑知识专栏进行查询,梳理建筑企业进行挡土墙工程量计算公式相关内容,基本情况如下:挡土墙工程量计算基本情况:挡土墙工程量等于挡墙断面面积*长度。

挡土墙:挡土墙是指支承路基填土或山坡土体、防止填土或土体变形失稳的构造物。

而根据其刚度及位移方式不同,可分为刚性挡土墙、柔性挡土墙和临时支撑三类。

在挡土墙横断面中,与被支承土体直接接触的部位称为墙背;与墙背相对的、临空的部位称为墙面;与地基直接接触的部位称为基底;与基底相对的、墙的顶面称为墙顶;基底的前端称为墙趾;基底的后端称为墙踵。

为了便于建筑企业人员了解挡土墙工程量计算公式,小编整理基本数据,以潘庄村拆迁安置挡土墙工程基本情况为例,主要内容如下:一、合同约定工程量:1、浆砌挡土墙:4442.88m3290元/m3=1288435.20元2、干片石:6m3120元/m3=720元3、回填土:1003.55m345元/m3=45159.75元4、回填土:225.77m325元/m3=5644.25元二、增加工程量:1、钢筋砼地面:245.86㎡6元/㎡=1475.16元2、6钢筋:0.98 t3800元/t=3724元3、C20砼:36.7m3390元/m3=14313元4、制作钢筋人工费:620元三、应扣除项目1、扣除罚款:3850元2、扣除税金:1360091.36元4.875%/2=33152.22元3、不按规范施工罚款:10000元四、结余1、*95%-47002.22元=1245084.57元。

挡土墙内插法计算公式举例

挡土墙内插法计算公式举例

挡土墙内插法计算公式举例计算公式:
V=(A+B+C)×H×Φ×L
其中
V表示填土体积,单位为立方米;
A表示挡土墙顶部的横截面积,单位为平方米;
B表示挡土墙底部的横截面积,单位为平方米;
C表示挡土墙两侧的横截面积,单位为平方米;
H表示挡土墙的高度,单位为米;
Φ表示填土的扩散系数,一般取1.1;
L表示挡土墙的长度,单位为米。

举例:
A

┌────┼────┐
││
│B│
││
└────┼────┘
C
A=10平方米
B=15平方米
C=5平方米
H=6米
Φ=1.1
L=20米
将以上数值代入公式中进行计算:
V=(10+15+5)×6×1.1×20
=840立方米
因此,该挡土墙背后填土的体积为840立方米。

根据填土的体积可以计算出填土的重量,一般采用土的干密度来计算。

假设土的干密度为1.8吨/立方米,则填土的重量为:
W=V×干密度
=840×1.8
=1512吨
因此,该挡土墙背后填土的重量为1512吨。

挡土墙计算公式

挡土墙计算公式

挡土墙计算公式重力式挡土墙的顶宽约为1/12XH,底宽约为(1∕2~1∕3)H o例如,设顶宽b1=0∙42m,可初步确定底宽B=2.5m。

挡土墙是指支承路基填土或山坡土体、防止填土或土体变形失稳的构造物。

在挡土墙横断面中,与被支承土体直接接触的部位称为墙背;与墙背相对的、临空的部位称为墙面;与地基直接接触的部位称为基底;与基底相对的、墙的顶面称为墙顶;基底的前端称为墙趾;基底的后端称为墙踵。

1、挡土墙的稳定验算以及强度验算挡土墙的设计应保证其在自重和外荷载作用下不发生全墙的滑动和倾覆,且保证墙身截面有足够的强度、基底应力小于地基承载力与偏心距不超过容许值。

所以在拟定墙身断面形式及尺寸之后,应进行墙的稳定以及强度验算(采用容许应力法)。

2、墙身截面强度验算一般选取一、两个截面来进行验算。

验算截面可选于基础底面、12墙高处或上下墙交界处等。

墙身截面强度验算包括法向应力和剪应力的验算。

剪应力虽然包括水平剪应力和斜剪应力两种,重力式挡土墙只验算水平剪应力。

3、基底应力及偏心验算基底的合力偏心距e计算公式为:e=B2-Zn=B2-(WZw+EyZχ-ExZy)(W+Ey)o 在土质地基上,eWB6;在软弱岩石地基上,eWB5;在不易风化的岩石地基上,eWB404、无上部结构柱相连的地下室外墙,支乘顶板梁处不宜设扶壁柱,扶壁柱使得此处墙为变截面,易产生收缩裂缝,不设扶壁柱顶板梁在墙上按校接考虑,此处墙无需设暗柱。

地下室内外墙除了上部为框剪结构或外框架-内核心筒结构的剪力墙延伸者外,在楼层不需要设置暗梁,剪力墙在基础底板处均不需要设置暗梁。

5、单层或多层地下室外墙,均可按单向板或连续单向板计算,较上层地下室楼层板处按较支座,基础底板处按固端。

窗井外侧墙顶部敞开无顶板相连,其计算简图可根据窗井深度按三边连续一边自由,或水平多跨连续板计算,如按多跨连续板计算时,因为荷载上下差别大,下分段计算弯矩确定配筋。

6、实际工程的地下室外墙截面设计中,竖向荷载及风荷载或地震作用产生的内力一般不起控制作用,通常不考虑竖向荷载组合的压弯作用,仅按墙板弯曲计算墙的配筋。

挡土墙工程量计算

挡土墙工程量计算

挡土墙工程量计算一.挖沟槽土方挖槽土方=挖槽段面积*段长挖槽段面为1:1放坡梯形断面,断面高度=地面高程-去墙底标高+垫层高度A-B段地面标高为17.00m 墙底标高为15.50m 垫层高度为100+300=0.4m 即断面高度为1.9m 根据图纸可得槽底宽度为8.15m顶部宽度为8.15+1.9+1.9=11.95m 断面面积=(11.95+8.15)*1.9/2=19.095m2 挖槽土方量=19.095*96.001=1833.14m³B-B1段地面标高20.0m 墙底标高17.0m垫层高度0.4m 所以断面高度为3.4m 槽底宽度为8.15m槽顶宽度为8.15+3.4*2=14.95m 断面面积=(14.95+8.15)*3.4/2=39.27m2挖槽方量=39.27*10=392.7m³B1-C段地面标高20.0m 墙底标高18.5m 垫层高度0.4m 即断面高度为1.9m 槽底宽度8.15m 槽顶宽度8.15+3.8=11.95m 断面面积=(8.15+11.95)*1.9/2=11.353m²土方量=11.353*55.858=634.16m³C-D段地面标高20.0m墙底标高18.5m同上可得断面面积=11.353m²土方=11.353*72.238=820.12m³挖槽土方量=1833.14+392.7+634.16+820.12=3680.12m³回填方A-B段断面底宽L=4.2m 高H=8.0m 顶宽B=0.5m 面积=4.7*4=18.8m²填方量=18.8*96.001=1804.82m³B-B1段断面底宽L=3.0m 高H=6.8m 顶宽B=0.5m 面积=3.5*3.4=11.9m²填方量=11.9*10=119m³B1-C段断面底宽L=2.5m 高H=5.4m 顶宽B=0.5m 面积=3*2.7=8.1m²填方量=8.1*55.858=452.45m³C-D段断面底宽L=2m 高H=4.4m 顶宽B=0.5m 面积=2.5*2.2=5.5m²填方量=5.5*72.238=397.309m³总的回填方量=1804.82+119+452.45+397.309=2773.58m³余方弃置多余土方量=挖方量-回填方量=3680.12-2773.58=906.54m³深层搅拌桩搅拌桩每排9个排间距为0.9m即排数=段长/排间距=96.001/0.9=106.7 取整为107排所以搅拌桩总数=963个总长=963*7=6741m挡土墙砼挡土墙砼总量=各段墙砼量之和每个支撑的体积V=DL1*(H-DH)*0.4*0.5其他主要墙体的截面=BT*HT+(DH+DH0)*DT*0.2+DH*(DL1+B)+B*(H-DH)代入数据可得:AB段V=5.88m³S=10.375m²则总体积Va=996.01+(96.001/5)*5.88=1108.91m³BB1段V=3.78m³S=5.7m²则总体积Vb=57+(10/5)*3.78=64.56m³B1C段V=2.55m³S=4.36m²则总体积Vc=243.54+(55.858/5)*2.55=272.03m³CD段V=1.56m³S=3.56m²则总体积Vd=257.17+(72.238/5)*3.56=308.60m³所以挡土墙砼量=1754.1m³C15垫层垫层工程量=剖面断面面积×段长AB段查图纸上的数据可得断面面积=4.798×0.1+(7.1-4.798)×(0.1+0.598)×0.5=0.8034m²方量=0.8034*96.001=77.127m³BB1段查图纸可得断面面积=4.3*0.1=0.43m²方量=0.43*10=4.3m³B1C段查图纸可得断面面积=3.8*0.1=0.38m²方量=0.38*55.858=21.226m³CD段查图纸可得断面面积=3.3*0.1=0.33m²方量=0.33*72.238=23.84m³所以C15砼垫层的方量=126.493m³垫层根据图纸可得垫层宽度=C15砼垫层宽度+0.7厚度=0.3m垫层方量=7.9*0.3*96.001+5.0*0.3*10+4.5*0.3*55.858+4.0*0.3*72.238=404.61m ³ 现浇构件钢筋钢筋总量=各段中所有型号的钢筋总重量即现浇构件钢筋总量为149.127t 排洪沟砼排洪沟砼量=断面面积×沟长=3.0×0.5×161.859=242.79m ³ 排水沟砼排水沟砼量=断面面积×沟长=0.75×0.15×72.238=8.13m ³钢筋直径(mm ) AB 段(m ) BB1段(m ) B1C 段(m) CD 段(m) 排水沟(m) 排洪沟(m) 合计m 公称直径重量kg/m 重量t10 2261.7562261.8 0.617 1.396 12 22808.448 1473.700 5994.958 6201.160 10250.860 46729.1 0.888 41.495 16 18859.592 1962.900 9208.932 9889.276 805.50040726.2 1.580 64.347 18 3008.000 476.920 1731.598 1805.950 7022.5 2.000 14.045 20 7476.056490.8967967.0 2.470 19.678 22 111.648 563.904675.6 2.980 2.013 25 1593.7201593.7 3.860 6.152总计106975.8149.127砖砌排水沟长度从图纸中可以得出=挡土墙长度=234.097m³泄水管根据设计泄水管的排布为2m×2m梅花形布置管长约为0.4m。

大小头挡土墙方量计算公式及例题

大小头挡土墙方量计算公式及例题

大小头挡土墙方量计算公式及例题
摘要:
1.大小头挡土墙的定义和作用
2.大小头挡土墙方量计算公式
3.例题及解题过程
正文:
一、大小头挡土墙的定义和作用
大小头挡土墙,又称为变截面挡土墙,是一种用于防止土体滑动、坍塌的防护结构。

它的特点是墙身截面在高度方向上呈梯形,底部较宽,顶部较窄,以此来承受土压力,保证边坡稳定。

在我国,大小头挡土墙广泛应用于公路、铁路、水利等工程项目中。

二、大小头挡土墙方量计算公式
大小头挡土墙的方量计算公式为:
V = (B1 + B2) * H * (1/3)
其中:
V 表示大小头挡土墙的体积,单位为立方米(m);
B1 表示大头底宽,单位为米(m);
B2 表示小头底宽,单位为米(m);
H 表示大小头挡土墙的高度,单位为米(m)。

三、例题及解题过程
例题:某公路工程中,需要修建一段大小头挡土墙,大头底宽B1 为6
米,小头底宽B2 为4 米,高度H 为5 米。

请计算该挡土墙的方量。

挡土墙计算

挡土墙计算

6.2 挡土墙土压力计算6.2.1 作用在挡土墙上的力系挡土墙设计关键是确定作用于挡土墙上的力系,其中主要是确定土压力。

作用在挡土墙上的力系,按力的作用性质分为主要力系、附加J力和特殊力.主要力系是经常作用于挡土墙的各种力,如图6—11所示, 它包括:1.挡土墙自重G及位于墙上的衡载;2.墙后土体的主动土压力Ea(包括作用在墙后填料破裂棱体上的荷载,简称超载);3.基底的法向反力N及摩擦力T;4.墙前土体的被动土压力Ep .对浸水挡土墙而言,在主要力系中尚应包括常水位时的静水压力和浮力。

附加力是季节性作用于挡土墙的各种力,例如洪水时的静水压力和浮力、动力压力、波浪冲击力、冻胀压力以及冰压力等。

特殊力是偶然出现的力,例如地震力、施工荷载、水流漂浮物的撞击力等。

在一般地区,挡土墙设计仅考虑主要力系.在浸水地区还应考虑附加力,而在地震区应考虑地震对挡土墙的影响。

各种力的取舍,应根据挡土墙所处的具体工作条件,按最不利的组合作为设计的依据。

6.2.2 一般条件下库伦(coulomb)主动土压力计算土压力是挡土墙的主要设计荷载。

挡土墙的位移情况不同,可以形成不同性质的土压力(图6—12)。

当挡土墙向外移动时(位移或倾覆),土压力随之减少,直到墙后土体沿破裂面下滑而处于极限平衡状态,作用于墙背的土压力称主动土压力;当墙向土体挤压移动,土压力随之增大,上体被推移向上滑动处于极限平衡状态,此时土体对墙的抗力称为被动土压力;墙处于原来位置不动,土压力介于两者之间,称为静止土压力. 采用哪种性质的土压力作为档土墙设计荷载,要根据挡土墙的具体条件而定。

路基档土墙一般都可能有向外的位移或倾覆,因此在设计中按墙背土体达到主动极限平衡状态,且设计时取一定的安全系数,以保证墙背土体的稳定。

对于墙趾前土体的被动土压力Ep, 在挡土墙基础一般埋深的情况下,考虑到各种自然力和人畜活动的作用,一般均不计,以偏于安全.主动土压力计算的理论和方法,在土力学中已有专门论述,这里仅结合路基挡土墙的设计,介绍库伦土压力计算方法的具体应用。

挡土墙计算

挡土墙计算

引言:挡土墙是一种用于抵抗土体滑动和侧向压力的结构工程。

它广泛应用于道路、铁路、堤坝和建筑物等工程领域,其作用是保持土体的稳定性,防止土方坍塌或滑动,从而确保工程的安全和稳定。

本文将详细介绍挡土墙的计算方法,包括挡土墙的设计原理、荷载计算、稳定性分析和结构设计等。

概述:正文内容:一、荷载计算1.1持力荷载:1.2偶力荷载:1.3水荷载:1.4暂载和附加荷载:1.5地震荷载:二、稳定性分析2.1滑移稳定性:2.2倾覆稳定性:2.3声度稳定性:2.4山体稳定性:2.5基础稳定性:三、构件计算3.1墙体厚度:3.2墙体高度:3.3墙体倾角:3.4模型选择:3.5抗滑抗倾力计算:四、变形计算4.1墙体变形:4.2地基变形:4.3算例分析:4.4墙体倾斜:4.5变形控制:五、结构设计5.1构件选用:5.2墙体布置:5.3墙体连接:5.4基础设计:5.5结构施工:总结:挡土墙的计算是确保工程安全和稳定的重要环节。

荷载计算、稳定性分析、构件计算、变形计算和结构设计是挡土墙计算的核心内容。

荷载计算包括持力荷载、偶力荷载、水荷载、暂载和附加荷载以及地震荷载等。

稳定性分析涉及滑移稳定性、倾覆稳定性、声度稳定性、山体稳定性和基础稳定性等。

构件计算需要考虑墙体厚度、墙体高度、墙体倾角、模型选择和抗滑抗倾力计算。

变形计算涉及墙体和地基的变形及变形控制。

结构设计包括构件选用、墙体布置、墙体连接、基础设计和结构施工等方面。

只有综合考虑了这些因素,才能确保挡土墙的稳定性和安全性。

各种挡土墙计算公式.xls

各种挡土墙计算公式.xls

各种挡土墙计算公式.xls1:各种挡土墙计算公式1. 简介本文档旨在提供各种挡土墙计算公式,供工程设计人员参考。

挡土墙是一种用于防止土体倾斜或塌方的结构,常见于道路、铁路、堤坝等工程领域。

2. 挡土墙类型2.1 重力式挡土墙公式重力式挡土墙的稳定性主要依靠自身重力来抵抗土体的倾斜或塌方。

常用的计算公式如下:- 承载力判断:根据土的内摩擦角和挡土墙倾斜角度来确定承载力是否足够。

- 根底滑移检验:根据土体的强度和挡土墙形状,判断根底是否存在滑移危险。

2.2 增加支撑的挡土墙公式某些情况下,重力式挡土墙的承载力不足以满足需求,需要增加支撑来提高稳定性。

常用的计算公式如下:- 土体抗剪强度:根据土的内摩擦角和墙体倾斜角度来计算土体的抗剪强度。

- 支撑结构计算:根据支撑结构类型(如钢筋混凝土桩、地锚等)和墙体形状来计算支撑结构的稳定性。

3. 挡土墙设计要点3.1 土体力学参数的确定- 地质勘察与试验- 土体参数的计算与选择3.2 墙体结构设计- 墙体高度和倾斜角度的确定- 基底宽度和根底结构的设计- 支撑结构的选择与设计4. 附件- 附件一:挡土墙稳定性计算表格- 附件二:土体参数试验数据分析报告5. 法律名词及注释5.1 挡土墙:一种用于防止土体倾斜或塌方的结构。

5.2 内摩擦角:土体内部颗粒间的摩擦角度,影响土体的抗剪强度。

5.3 承载力:挡土墙抵抗土体倾斜或塌方的能力。

5.4 根底滑移:挡土墙基底在土体的作用下发生滑移现象。

5.5 土体抗剪强度:土体抵抗剪切破坏的能力。

2:各种挡土墙计算公式1. 简介本文档旨在提供各种挡土墙计算公式,供工程设计人员参考。

挡土墙是一种用于防止土体倾斜或塌方的结构,常见于道路、铁路、堤坝等工程领域。

2. 挡土墙类型2.1 重力式挡土墙公式重力式挡土墙的稳定性主要依靠自身重力来抵抗土体的倾斜或塌方。

常用的计算公式如下:- 承载力判断:根据土的内摩擦角和挡土墙倾斜角度来确定承载力是否足够。

各种挡土墙计算公式

各种挡土墙计算公式

各种挡土墙计算公式挡土墙是一种用于支撑填土或山坡土体,防止其坍塌或滑移的结构。

在工程设计中,准确计算挡土墙的各项参数至关重要,这需要运用一系列的计算公式。

以下将为您详细介绍常见的几种挡土墙计算公式。

一、重力式挡土墙重力式挡土墙主要依靠自身的重力来维持稳定,其计算包括抗倾覆稳定性、抗滑移稳定性以及基底应力的计算。

1、抗倾覆稳定性计算抗倾覆稳定性系数 Kt 应满足:Kt =(∑My)/(∑M0)≥15其中,∑My 是抗倾覆力矩之和,∑M0 是倾覆力矩之和。

抗倾覆力矩 My 主要由墙体重力 G、墙背土压力 Ey 以及墙底摩擦力 Fx 对墙趾 O 点产生的力矩组成。

倾覆力矩 M0 则主要由墙背主动土压力 Ex 对墙趾 O 点产生的力矩组成。

2、抗滑移稳定性计算抗滑移稳定性系数 Ks 应满足:Ks =(∑Fx)/(∑Ex)≥13∑Fx 是抗滑力之和,∑Ex 是滑动力之和。

抗滑力 Fx 主要由墙底摩擦力和墙后被动土压力组成。

滑动力 Ex 主要是墙背主动土压力的水平分力。

3、基底应力计算基底平均应力σ 应满足:σ =(G + Ey Ex)/A ≤ σ其中,G 是挡土墙自重,Ey 和 Ex 分别是墙背土压力的竖向和水平分力,A 是基底面积,σ是地基承载力。

基底最大和最小应力σmax 和σmin 分别为:σmax =(G + Ey Ex)/A +(M0/W)σmin =(G + Ey Ex)/A (M0/W)二、悬臂式挡土墙悬臂式挡土墙由立壁和底板组成,计算内容主要包括立壁和底板的内力计算。

1、立壁内力计算在土压力作用下,立壁可视为固定在底板上的悬臂梁。

墙顶的水平位移较小,可按底端固定的悬臂梁计算弯矩和剪力。

2、底板内力计算(1)悬臂板部分按悬臂板计算在基底反力作用下的弯矩和剪力。

(2)内跨板部分按连续板计算在基底反力作用下的弯矩和剪力。

三、扶壁式挡土墙扶壁式挡土墙由立板、扶壁和底板组成,计算较为复杂。

1、立板内力计算与悬臂式挡土墙的立壁类似,按底端固定的悬臂板计算。

挡土墙计算

挡土墙计算

5抗滑移稳定性验算:
Ks=(Gn+Eay)u/(Eax-Gt)=(G+Eay)u/Eax> 1.3 6抗倾覆稳定性验算: Kt=(Gx0+Eay.xf)/(Eax.Zf) >1.6
xf=a+2b/3
Zf=H/3
7地基承载力验算:
(1)作用于基底的总垂直力 N=G+Eay (2) 合力对基底中心的总力矩 M= Eax.Zf- Eay.( xf- B/2)±G.(X0- B/2)
墙趾
墙基
重力式挡土墙的计算 稳定性验算
抗倾覆稳定
抗滑稳定
地基承载力验算 墙身强度验算
1、稳定性验算
(1)抗倾覆稳定性验算:
要保证挡土墙在土压力 的作用下不发生绕墙趾O点 的倾覆,必须要求抗倾覆 安全系数Kt满足要求:
β
Ea
Xo h G
δ
α
Zf
墙趾
Z
Kt
G x 0 E az x f E ax z f
图 8-12 挡 土 墙 的 抗 滑 移 稳 定 性
2.地基承载力验算
挡土墙在自重及土压力的 垂直分力作用下,基底压力按 线性分布。其验算方法及要求 完全同如天然地基浅基础验算。 f为地基承载 力设计值 基底平均应力p≤f 基底最大压应力pmax≤1.2f
1初步选择截面尺寸
顶宽:1-2m; 底宽:(0.5-0.9)×H; 2求G的大小 G=V×r=A×1×r r=24KN/m3 3求重心的位置
e=M/N
B:底宽
(3)承载力验算:
Pmax=N/A(1+6e/B) B:底宽 Pmin=N/A(1-6e/B) P=0.5(Pmax+ Pmin) 如果Pmin<0,则应力重分布,取

地下室外墙(挡土墙)的计算

地下室外墙(挡土墙)的计算

地下室外墙(挡土墙)的计算1 计算方法1.1计算简图①根据墙板长边与短边支承长度的比例关系,地下室外墙(挡土墙)、窗井外墙按双向板或单向板计算。

②对单层或多层地下室外墙,当基础底板厚度不小于墙厚时,可按底边固结于基础、顶边铰接于地下室顶板的单跨或连续板计算。

当基础底板厚度小于墙厚时,底边按铰接计算。

窗井外墙顶边按自由计算。

墙板两侧根据实际情况按固结或铰接考虑。

③墙板的支承条件应符合实际受力状态,作为墙板支座的基础和内墙(或扶壁柱),其内力和变形应满足设计要求。

1.2计算荷载图一地下室外墙压力分布地下室外墙承受竖向荷载和水平荷载。

竖向荷载包括地下室外墙自重、上部建筑(结构构件和围护构件)竖向荷载、地下室各层楼板传递的竖向荷载。

水平荷载包括土压力(地下水位以下为土水混合压力)、地下水压力、室外地面活荷载引起的侧压力、人防外墙等效静荷载。

2计算中需注意的问题2.1《全国民用建筑工程设计技术措施/结构/地基与基础》(2009年版)[1]第5.8.11条和《北京市建筑设计技术细则-结构专业》(2005版)[2]第2.1.6条对室外地面活荷载,建议取5kN/m2(包括可能停放消防车的室外地面)。

该规定适用于有上部结构的地下室外墙,且当考虑消防车时消防车重不超过30吨。

其出发点是行车道距离建筑物外墙总是有一定距离的,即一般情况下汽车不可能紧贴上部建筑外墙行驶(《城市居住区规划设计规范》、《建筑设计防火规范》等对室外行车道距离建筑物外墙的距离有明确规定),消防车更不可能紧贴上部建筑外墙进行消防扑救(因消防云梯车在工作时受云梯高度和仰角的制约必须与建筑物外墙保持一定距离)。

但是,对于没有上部结构的纯地下车库,或处于上部结构范围之外的地下室外墙,以及消防车重超过30吨的,笼统地按5kN/m2计算是有问题的,应当根据车道与地下室外墙的位置关系、地下室顶板覆盖层厚度及其应力扩散角、车辆轮压按实际情况计算。

2.2文[1]第5.8.5条计算水压力时,当勘察报告提供了地下室外墙水压力分布时,按勘察报告计算;当勘察报告未提供时,可取历史最高水位和近3~5年的最高水位的平均值(水位高度包括上层滞水),水压力按静止压力直线分布计算。

挡土墙计算

挡土墙计算

fc
Nc f B
N B Cc Ll CB LB
TC TB Dn Sn / R
§4.陡坡路堤稳定性验算
• 一.陡坡路堤可能的滑动形式 • 1. 路堤可能沿基底接触面产生滑动 • 2. 路堤可能随同基底复盖层沿倾斜基岩滑

岩 岩
§ 4 陡坡路堤稳定性验算
• 3. 路堤连同其下的软弱土层沿软弱层中某一最弱 的圆弧滑动面滑动
§5 挡土墙计算
e1
B1 2
Z1N
B1 2
G1Z1G
E1Y Z1Y E1X Z1X G1 E1Y
2. 墙趾或墙踵处的最大(小)应力
1,2
G1
E1Y B1
(1
6e1 ) B1
• 2. 剪应力验算 • 计算截面上的剪应力为
E1X
B1

例题:已知重力式挡石砌土墙,如图所示,砌体
• 4. 路堤连同其下的岩层沿某一最弱的层面滑动 • 5. 纵向滑动情况
软土 岩层倾向平行于基底倾向
二.验算方法
§ 4 陡坡路堤稳定性验算
• 路堤沿直线或折线破裂面滑动的情况 • 破裂面为圆弧状时,可根据具体情况
参照圆弧滑动面的条分法进行计算
单坡滑动面的稳定性验算
a1
a3
a2
多坡滑动面的稳定性验算
1.填方边坡
B
T
D
G
N
cl
F
A
• 填方边坡土楔体沿破裂面AD滑动
• 下滑力: T=Gsinω
• 抗滑力:CL 粘聚力

F=Ntgφ=Gcosωtgφ 摩擦力
•破裂面上的安全系数
k F G costg CL
T
G sin

各个挡土墙详细计算和计算图形

各个挡土墙详细计算和计算图形

目录1。

重力式挡土墙 (2)1。

1土压力计算 (2)1.2挡土墙检算 (4)2。

2设计计算 (6)3。

扶壁式挡土墙 (9)3。

1土压力计算 (9)5。

2锚杆设计计算 (16)5。

3锚杆长度计算 (17)6.锚定板挡土墙 (17)6.1土压力计算 (17)6。

3抗拔力计算 (18)7.土钉墙 (18)7.1土压力计算 (18)7.2土钉长度计算和强度检算 (18)7.3土钉墙内部整体稳定性检算 (19)7.4土钉墙外部整体稳定性检算 (19)1。

重力式挡土墙 1.1土压力计算⑴第一破裂面ψϕδα=++()00tan tan tan cot tan B A θψψϕψ⎛⎫=-±++⎪⎝⎭土压力系数:()()()cos tan tan sin θϕλθαθψ+=-+土压力:()()()00cos tan sin a E A B θϕγθθψ+=-+()cos ax a E E δα=- ()sin ay a E E δα=-① 破裂面在荷载分布内侧()2012A A a H =+ ()012tan 22H B ab H a α=-+ a a σγλ= H H σγλ=1tan tan tan b a h θθα-=+ 21h H h =-()()32211223332x H a H h H h Z H a H h +-+=⎡⎤+-⎣⎦tan y x Z B Z α=-②破裂面在荷载分布范围中()()00122A a H h a H =+++ ()()000122tan 22HB ab b d h H a h α=++-++00h σγλ= a a σγλ= H H σγλ=1tan tan tan b a h θθα-=+ 2tan tan dh θα=+ 312h H h h =--()()322211032103333322x H a H h H h h h Z H aH ah h h +-++=+-+ tan y x Z B Z α=-③破裂面在荷载分布外侧()2012A a H =+ ()00012tan 22HB ab l h H a α=--+00h σγλ= a a σγλ= H H σγλ=1tan tan tan b a h θθα-=+ 2tan tan dh θα=+ 03tan tan l h θα=+ 4123h H h h h =---()()()322211033421033332322x H a H h H h h h h h Z H aH ah h h +-+++=+-+tan y x Z B Z α=-⑵第二破裂面 查有关的计算手册。

挡土墙的计算内容

挡土墙的计算内容

挡土墙的计算内容
挡土墙的计算内容包括以下几个方面:
1. 土压力计算:需确定挡土墙背后土体的重量、土壤的黏聚力、内摩擦角等参数,进而计算出土体对挡土墙的压力。

2. 结构强度计算:挡土墙的结构强度应满足对土压力的承载要求,需要确定挡土墙的结构形式、材料性质、截面尺寸、悬臂长度等参数,以验证挡土墙的耐久性和安全性。

3. 基础设计:挡土墙的基础设计需要考虑到土壤条件、墙体高度、土压力等因素,选择合适的基础形式和深度,并计算出基础的承载力和稳定性。

4. 排水系统设计:在山区等降水较多的地区,挡土墙需要设置排水系统,以避免背后土体的液压压力对挡土墙的损害。

需要考虑到排水管道数量和直径等因素。

5. 施工设计:挡土墙的施工应当符合国家相关规范和标准,需要考虑到土体固结时间、墙体施工顺序、基础和墙体之间的粘结等因素,确保施工的质量和效果。

挡土墙计算公式

挡土墙计算公式

挡土墙计算公式
挡土墙是一种重要的建筑结构,可以用来防止土壤滑移、抵抗水压,确保地基稳定和支撑建筑物。

它是一种灵活性强、外形各异的建筑结构,广泛应用于公路、铁路等建筑工程场所。

挡土墙的设计必须考虑到地基的强度、挡土墙的高度、地形的特征等因素,为了保证挡土墙的稳定性,必须正确计算挡土墙的数量和尺寸。

挡土墙的计算公式主要有以下几个:
1、计算挡土墙高度:挡土墙高度h=坡度S×填方深度L
2、计算挡土墙长度:挡土墙长度L=挡土墙高度h/坡度S
3、计算挡土墙宽度:挡土墙宽度B=挡土墙高度h+挡土墙基底宽度b
4、计算挡土墙的质量:挡土墙的质量W=挡土墙长度L×挡土墙宽度B×挡土墙高度h
5、计算挡土墙的总体积:挡土墙的总体积V=挡土墙长度L×挡土墙宽度B×挡土墙高度h+挡土墙基底宽度b
以上就是挡土墙计算公式的介绍,以上公式可以帮助我们精确计算挡土墙的尺寸和体积,从而保证挡土墙的稳定性和耐久性。

此外,在计算挡土墙的尺寸时,应根据地形特征选择合适的挡土墙结构,
以满足挡土墙在不同地形条件下的使用要求。

总之,正确使用挡土墙计算公式,可以精确测算挡土墙的尺寸,从而确保挡土墙的稳定性和耐久性,为建筑工程提供有力的支撑。

重力式挡土墙计算 -回复

重力式挡土墙计算 -回复

重力式挡土墙计算
重力式挡土墙是指通过墙体本身重量和与土体的摩擦力来抵抗土压力,从而稳定土体的一种挡土结构。

其计算公式如下:
1. 计算土压力:土压力是指土体对墙面施加的垂直力和水平力。

土压力可以采用库仑公式或考虑排水情况后的阿基米德原理计算。

一般情况下,采用库仑公式进行计算,其公式如下:
ka = tan²(45 - φ/2)
其中,ka为土壤活动系数,φ为土体内摩擦角度。

土压力的计算公式为:
P = kaγH²/2
其中,γ为土体单位重量,H为挡土墙高度。

2. 计算自重:自重是指墙体本身产生的重力。

其计算公式为:
W = γBHL
其中,B为挡土墙底部宽度,L为挡土墙长度。

3. 计算角度安全系数:角度安全系数是指挡土墙倾斜度与水平面夹角与土壤内摩擦力角度之间的关系。

角度安全系数需要根据挡土墙的实际情况进行确定,一般建议采用1.2-1.5的安全系数。

4. 计算稳定性:稳定性是指挡土墙的稳定程度。

稳定性计算需要根据挡土墙的实际情况进行确定,一般建议采用1.5-2.0的稳定性系数。

综合上述计算公式,可以计算出重力式挡土墙的设计参数,从而达到挡土目的。

挡土墙计算书

挡土墙计算书

DQ1一、计算条件墙高 = mm 墙宽 = mm 按单向板计算墙厚 = mm室外地坪高于板顶:900mm室外超载:10kN/m2回填土容重:18kN/m3侧压系数:墙底土压力标准值:+= kN/m墙外超载等效均布活载标准值:= kN/m恒载控制组合:墙顶设计荷载:qa=墙底设计荷载: qb=墙面均布荷载设计值:q0= kN/m墙面三角形荷载设计值:q1= kN/m墙底弯矩设计值:Mb=−51.03×4.2220−15.835x4.2212=−68.29kN−m墙顶弯矩设计值:Ma=−51.03×4.2230−15.835x4.2212=−53.28kN−m跨中弯矩设计值取墙底1/2:M中= kN-m墙底剪力设计值:Rb=7×51.03×4.220+15.835×4.22=108.27kN墙顶剪力设计值:Ra=3×51.03×4.220+15.835×4.22=65.40kN活载控制组合:墙顶荷载设计值:qa=墙底荷载设计值: qb=墙面均布荷载设计值:q0= kN/m墙面三角形荷载设计值:q1= kN/m墙底弯矩设计值:Mb=−45.36×4.2220−16.72x4.2212=−64.59kN−m墙顶弯矩设计值:Ma=−45.36×4.2230−16.72x4.2212=−52.25kN−m跨中弯矩设计值取墙底1/2:M中墙底剪力设计值:Rb=7×45.36×4.220+16.72×4.22= 101.79kN墙顶剪力设计值:Ra=3×45.36×4.220+16.72×4.22=63.68kN二、承载力验算混凝土强度等级: C35 fc= N/mm2 ft= N/mm2 ftk= N/mm2混凝土保护层:外侧35mm,h0=250-45=205mm;内侧20mm,h0=250-35=215mm钢筋级别 : HRB400 fy=360 N/mm2墙外侧实配钢筋F14100HRB400,As=1540 mm2x=f y A sf c b=360×154016.7×1000= mmM=f c bx(ℎ0−x2)=16.7×1000×33.2×(205−33.22)= kN-m, 墙顶和墙底抗弯承载力满足;墙内侧实配钢筋F14150HRB400,As=1026 mm2x=f y A sf c b=360×102616.7×1000= mmM=f c bx(ℎ0−x2)=16.7×1000×22.1×(215−22.12)= kN-m, 墙内侧抗弯承载力满足;V=0.7f t bℎ0=0.7×1.57×1000×205= kN,墙上下端斜截面承载力满足;三、墙外侧裂缝验算墙外超载准永值系数取墙面均布荷载标准值:q0=+= kN/m墙面三角形荷载设计值:q1= kN/m仅验算墙底部墙底弯矩标准值:Mb=−37.8×4.2220−10.6x4.2212=−48.92kN−mρte=AsA te=15400.5×1000×250=0.0123σsk=M k0.87×h0×A s=48.92×1060.87×205×1540=178 N/mm2φ=1.1−0.65f tkρteσsk=1.1−0.65× 2.20.0123×178=ωmax=αcrφσskE s (1.9c+0.08d eqρte)=2.1×0.447×1872.0×105×(1.9×35+0.08×140.0123)=,满足要求;DQ2一、计算条件墙高 = 见简图mm 墙宽 = mm 按单向板计算墙厚 = mm室外地坪低于板顶:500mm室外超载:10kN/m2回填土容重:18kN/m3侧压系数:墙顶C处土压力标准值:0 kN/m墙底D处土压力标准值:+= kN/m墙外超载等效均布活载标准值:= kN/m恒载控制组合:墙顶C处荷载设计值墙中B处荷载设计值墙底D处荷载设计值: qdAB段墙面均布荷载设计值:q0= kN/m墙面三角形荷载设计值:q1= kN/mβ=28333333⁄=墙中B处弯矩设计值:Mb上=−4.9×2.83328×(2−0.85)2−34.43×2.833224×(4−3×0.85+3×0.8525)=−28.18kN−m墙中b处上端截面剪力设计值:Rb上=4.9×2.8338×(8−4×0.852+0.853)−8×(4−0.852+0.8535)=51.39kNBD段墙面均布荷载设计值:q0= kN/m墙面三角形荷载设计值:q1= kN/m墙底D处弯矩设计值:Md=−22.49×1.852220−39.325x1.852212=−15.10kN−m墙中B处下截面弯矩设计值:Mb下=22.49×1.852230+39.325x1.852212=13.81kN−m墙底D处剪力设计值:Rd=7×22.49×1.85220+39.325×1.8522=50.99kN墙中B处下截面剪力设计值:Rb下=3×22.49×1.85220+39.325×1.8522=42.66kN墙中B处不平衡弯矩需要按上下段刚度分配,μBD=4×0.544×0.54+3×0.33=0.686;μBA=3×0.334×0.54+3×0.33=0.314墙中B处弯矩设计值:Mb=+ kN-m墙底D处弯矩设计:Mc=+ kN-m活载控制组合:墙顶C处荷载设计值:qc= = kN/m墙中B处荷载设计值墙底D处荷载设计值: qd= = kN/mAB段墙面均布荷载设计值:q0=7 kN/m墙面三角形荷载设计值:q1= kN/mβ=28333333⁄=墙中B处弯矩设计值:Mb上=−7×2.83328×(2−0.85)2−30.6×2.833224×(4−3×0.85 +3×0.8525)=−28.56kN−m墙中b处上端截面剪力设计值:Rb上=7×2.8338×(8−4×0.852+0.853)−8×(4−0.852+0.8535)=51.04kNBD段墙面均布荷载设计值:q0=m墙面三角形荷载设计值:q1= kN/m墙底D处弯矩设计值:Md=−20.0×1.852220−37.6x1.852212=−14.18kN−m墙中B处下截面弯矩设计值:Mb下=20.0×1.852230+37.6x1.852212=13.03kN−m墙底D处剪力设计值:Rd=7×20.0×1.85220+37.6×1.8522=47.78kN墙中B处下截面剪力设计值:Rb下=3×20.0×1.85220+37.6×1.8522=40.37kN墙中B处不平衡弯矩需要按上下段刚度分配,,μBD=4×0.544×0.54+3×0.33=0.686;μBA=3×0.334×0.54+3×0.33=0.314墙中B处弯矩设计值:Mb=+ kN-m墙底D处弯矩设计值:Mc=+ kN-m二、承载力验算混凝土强度等级: C35 fc= N/mm2 ft= N/mm2 ftk= N/mm2混凝土保护层:外侧35mm,h0=250-45=205mm;内侧20mm,h0=250-35=215mm钢筋级别 : HRB400 fy=360 N/mm2墙外侧实配钢筋F14100HRB400,As=1540 mm2x=f y A sf c b=360×154016.7×1000= mmM=f c bx(ℎ0−x2)=16.7×1000×33.2×(205−33.22)= kN-m, 墙顶和墙底抗弯承载力满足;墙内侧实配钢筋F14150HRB400,As=1026 mm2x=f y A sf c b=360×102616.7×1000= mmM=f c bx(ℎ0−x2)=16.7×1000×22.1×(215−22.12)= kN-m, 墙内侧抗弯承载力满足;V=0.7f t bℎ0=0.7×1.57×1000×205= kN,墙上下端斜截面承载力满足;三、墙外侧裂缝验算墙外超载准永值系数取墙顶C处荷载标准值:qc== kN/m墙中B处荷载标准值: qb= += kN/m墙底D处荷载标准值: qd= += kN/mAB段墙面均布荷载标准值:q0= kN/m墙面三角形荷载标准值:q1== kN/mβ=28333333⁄=墙中B处弯矩标准值:Mb上=−2.5×2.83328×(2−0.85)2−25.5×2.833224×(4−3×0.85+3×0.8525)=−19.36kN−mBD段墙面均布荷载标准值:q0= kN/m墙面三角形荷载标准值:q1= kN/m墙底D处弯矩设计值:Md=−16.76×1.852220−28.0x1.852212=−10.87kN−m墙中B处下截面弯矩设计值:Mb下=16.76×1.852230+28.0x1.852212=9.92kN−m墙中B处不平衡弯矩需要按上下段刚度分配,μBD=0.540.54+0.33=0.62;μBA=0.330.54+0.33=0.38墙中B处弯矩标准值:Mbk=+ kN-m墙底D处弯矩标准值:Mck=+ kN-mρte=AsA te=15400.5×1000×250=0.0123σsk=M k0.87×h0×A s =15.77×1060.87×205×1540= N/mm2φ=1.1−0.65f tkρteσsk=1.1−0.65× 2.20.0123×57.4=<,取φ=0.2ωmax=αcrφσskE s (1.9c+0.08d eqρte)=2.1×0.2×57.42.0×105×(1.9×35+0.08×140.0123)=,满足要求;DQ2b墙高 = 见简图mm 墙宽 = mm 按单向板计算墙厚 = mm 室外地坪低于板顶:500mm室外超载:10kN/m2回填土容重:18kN/m3侧压系数:墙顶C处土压力标准值:0 kN/m墙底B处土压力标准值:+= kN/m墙外超载等效均布活载标准值:= kN/m恒载控制组合: AC段墙面均布荷载设计值:q0= kN/m墙面三角形荷载设计值:q1= kN/mA处端弯矩设计值:MA上=4.9×1.16722+14.18×1.16726=6.56kN−mAB段由于A处上端弯矩较小,AB段上端按铰接计算墙底B处弯矩设计值:M b=7×19.08+8×66.86120×3.9332=86.16 kN−mA处剪力设计值:R a=11×19.08+4×66.8640×3.933=46.93 kNB处剪力设计值:R b=9×19.08+16×66.8640×3.933=122.07 kN跨中取下支座的倍:M中活载控制组合:墙顶C处荷载设计值:qc= = kN/m AC段墙面均布荷载设计值:q0= kN/m墙面三角形荷载设计值:q1= kN/mA处端弯矩设计值:MA上=7×1.16722+12.6×1.16726=7.63kN−mAB段由于A处上端弯矩较小,AB段上端按铰接计算墙底B处弯矩设计值:M b= 7×19.6+8×62.08120×3.9332=81.7 kN−m A处剪力设计值:R a=11×19.6+4×62.0840×3.933=45.61 kNB处剪力设计值:R b=9×19.6+16×62.0840×3.933=115.01 kN跨中取下支座的倍:M中二、承载力验算混凝土强度等级: C35 fc= N/mm2 ft= N/mm2 ftk= N/mm2混凝土保护层:外侧35mm,h0=250-45=205mm;内侧20mm,h0=250-35=215mm钢筋级别 : HRB400 fy=360 N/mm2墙外侧实配钢筋F14100HRB400,As=1540 mm2x=f y A sf c b =360×154016.7×1000= mmM=f c bx(ℎ0−x2)=16.7×1000×33.2×(205−33.22)= kN-m, 墙顶和墙底抗弯承载力满足;墙内侧实配钢筋F14150HRB400,As=1026 mm2x=f y A sf c b =360×102616.7×1000= mmM=f c bx(ℎ0−x2)=16.7×1000×22.1×(215−22.12)= kN-m, 墙内侧抗弯承载力满足;V=0.7f t bℎ0=0.7×1.57×1000×205= kN,墙上下端斜截面承载力满足;三、墙外侧裂缝验算墙外超载准永值系数取墙中A处荷载标准值: qa= kN/m墙底B处荷载设计值: qb= kN/mAB段由于A处上端弯矩较小,AB段上端按铰接计算墙底B处弯矩标准值:M bk=7×13.0+8×48.4120×3.9332=61.64 kN−mρte=AsA te=15400.5×1000×250=0.0123σsk=M k0.87×h0×A s =61.64×1060.87×205×1540= N/mm2φ=1.1−0.65f tkρteσsk=1.1−0.65× 2.20.0123×224.4=ωmax=αcrφσskE s(1.9c+0.08d eqρte)=2.1×0.58×224.42.0×105×(1.9×35+0.08×140.0123)=,满足要求;DQ3墙高 = 见简图mm 墙宽 = mm 按单向板计算墙厚 = mm室外地坪低于板顶:500mm室外超载:10kN/m2回填土容重:18kN/m3侧压系数:墙顶C处土压力标准值:0 kN/m墙中A处土压力标准值: kN/m墙底B处土压力标准值:+= kN/m墙外超载等效均布活载标准值:= kN/m恒载控制组合:墙中A处荷载设计值: qa= kN/m墙底B处荷载设计值: qb= kN/mAC段墙面均布荷载设计值:q0= kN/m墙面三角形荷载设计值:q1= kN/mA处上端弯矩设计值:MA上=−4.9×2.45322−29.81×2.45326=−44.64kN−mAB段墙面均布荷载设计值:q0= kN/m墙面三角形荷载设计值:q1= kN/m墙中A处下端弯矩设计值:MA下=34.71×2.897212+35.19×2.897230=34.12kN−m墙底B处弯矩设计值:M B=−34.71×2.897212−35.19×2.897220=−39.04kN−mA端弯矩设计值:Ma= kN-mB端弯矩设计值:Mb=+ kN-m跨中取下支座的倍:M中活载控制组合:墙顶C处荷载设计值:qc= = kN/m AC段墙面均布荷载设计值:q0= kN/m墙面三角形荷载设计值:q1= kN/mA处上端弯矩设计值:MA上=−7.0×2.45322−26.5×2.45326=−47.64kN−mAB段墙面均布荷载设计值:q0= kN/m墙面三角形荷载设计值:q1= kN/m墙中A处下端弯矩设计值:MA下=33.5×2.897212+31.28×2.897230=32.18kN−m墙底B处弯矩设计值:M B=−33.5×2.897212−31.28×2.897220=−36.55kN−mA端弯矩设计值:Ma= kN-mB端弯矩设计值:Mb=+ kN-m跨中取下支座的倍:M中配筋与DQ3b相同,承载力和裂缝验算详DQ3bDQ3b墙高 = 见简图mm 墙宽 = mm 按单向板计算墙厚 = mm 室外地坪低于板顶:500mm室外超载:10kN/m2回填土容重:18kN/m3侧压系数:墙中C处土压力标准值:0 kN/m墙外超载等效均布活载标准值:= kN/m恒载控制组合:墙面均布荷载设计值:q0= kN/m墙面三角形荷载设计值:q1= kN/mβ=53505850⁄=墙底B处弯矩设计值:Mb=−4.9×5.3528×(2−0.915)2−65.0×5.35224×(4−3×0.915+3×0.91525)=−156.87kN−m跨中取下支座的倍:M中kN-m墙底B处截面剪力设计值:Rb=4.9×5.358×(8−4×0.9152+0.9153)−8×(4−0.9152+0.91535)=161.89kN活载控制组合:墙中C处荷载设计值: qc= = kN/m墙面均布荷载设计值:q0= kN/m墙面三角形荷载设计值:q1= kN/mβ=53505850⁄=墙底B处弯矩设计值:Mb=−7.0×5.3528×(2−0.915)2−57.78×5.35224×(4−3×0.915+3×0.91525)=−150.58kN−m跨中取下支座的倍:M中墙底B处截面剪力设计值:Rb=7.0×5.358×(8−4×0.9152+0.9153)−8×(4−0.9152+0.91535)=153.49kN二、承载力验算混凝土强度等级: C35 fc= N/mm2 ft= N/mm2 ftk= N/mm2混凝土保护层:外侧35mm,h0=300-45=255mm;内侧20mm,h0=300-35=265mm钢筋级别 : HRB400 fy=360 N/mm2墙外侧实配钢筋F18100HRB400,As=2540 mm2x=f y A sf c b =360×254016.7×1000= mmM=f c bx(ℎ0−x2)=16.7×1000×54.8×(255−54.82)= kN-m, 墙顶和墙底抗弯承载力满足;墙内侧实配钢筋F16150HRB400,As=1333 mm2x=f y A sf c b =360×133316.7×1000= mmM=f c bx(ℎ0−x2)=16.7×1000×28.7×(265−28.72)= kN-m, 墙内侧抗弯承载力满足;V=0.7f t bℎ0=0.7×1.57×1000×255= kN,墙上下端斜截面承载力满足;三、墙外侧裂缝验算墙外超载准永值系数取kN/m墙底B处弯矩标准值:M bk=−2.5×5.3528×(2−0.915)2−48.15×5.35224×(4−3×0.915+3×0.91525)=−111.44kN−mρte=A sA te=25400.5×1000×300=0.0169σsk=M k0.87×h0×A s =111.44×1060.87×255×2540= N/mm2φ=1.1−0.65f tkρteσsk =1.1−0.65× 2.20.0169×197.8=ωmax=αcrφσskE s(1.9c+0.08d eqρte)=2.1×0.67×197.82.0×105×(1.9×35+0.08×180.0169)=,满足要求;RDQ1一、计算条件墙高 = mm 墙宽 = mm 按单向板计算, 墙厚 =mm室外地坪高于板顶:1150mm室外超载:10kN/m2回填土容重:18kN/m3侧压系数:墙顶土压力标准值:+= kN/m墙外超载等效均布活载标准值:= kN/m外墙人防等效荷载标准值:25 kN/m二、正常使用工况恒载控制组合:墙面均布荷载设计值:q0= kN/m墙面三角形荷载设计值:q1= kN/m墙底弯矩设计值:Mb=−46.17×3.8220−18.87x3.8212=−56.04kN−m墙顶弯矩设计值:Ma=−46.17×3.8230−18.87x3.8212=−44.93kN−m跨中弯矩设计值取墙底1/2:M中墙底剪力设计值:Rb=7×46.17×3.820+18.87×3.82=97.26kN墙顶剪力设计值:Ra=3×46.17×3.820+18.87×3.82=62.17kN活载控制组合:= kN/m墙面均布荷载设计值:q0= kN/m墙面三角形荷载设计值:q1= 墙底弯矩设计值:Mb=−44.01×3.8220−19.42x3.8212=−55.14kN−m墙顶弯矩设计值:Ma=−44.01×3.8230−19.42x3.8212=−44.55kN−m跨中弯矩设计值取墙底1/2:M中= kN-m墙底剪力设计值:Rb=7×44.01×3.820+19.42×3.82=95.43kN墙顶剪力设计值:Ra=3×44.01×3.820+19.42×3.82=61.98kN承载力验算混凝土强度等级: C50 fc= N/mm2 ft= N/mm2 ftk= N/mm2混凝土保护层:外侧35mm,h0=400-45=355mm;内侧20mm,h0=400-35=365mm钢筋级别 : HRB400 fy=360 N/mm2墙外侧实配钢筋F16150HRB400,As=1333 mm2x=f y A sf c b =360×133323.1×1000= mmM=f c bx(ℎ0−x2)=23.1×1000×20.8×(355−20.82)= kN-m, 墙顶和墙底抗弯承载力满足;墙内侧实配钢筋F16150HRB400,As=1333 mm2x=f y A sf c b =360×133323.1×1000= mmM=f c bx(ℎ0−x2)=23.1×1000×20.8×(365−20.82)= kN-m, 墙内侧抗弯承载力满足;V=0.7f t bℎ0=0.7×1.89×1000×355= kN,墙上下端斜截面承载力满足;墙外侧裂缝验算墙外超载准永值系数取墙面均布荷载标准值:q0=+= kN/m墙面三角形荷载设计值:q1= kN/m仅验算墙底部墙底弯矩标准值:Mbk=−34.2×3.8220−12.85x3.8212=−40.16kN−mρte=AsA te=13330.5×1000×400=0.0067<0.01,取ρte=0.01σsk=M k0.87×h0×A s=40.16×1060.87×355×1333= N/mm2φ=1.1−0.65f tkρteσsk=1.1−0.65× 2.20.01×97.5=< ,取ψ=ωmax=αcrφσskE s(1.9c+0.08d eqρte)=2.1×0.2×97.52.0×105×(1.9×35+0.08×140.0123)=,满足要求;三、人防工况墙底设计荷载: qb= = kN/m墙面均布荷载设计值:q0= kN/m墙面三角形荷载设计值:q1= kN/m墙底弯矩设计值:Mb=−41.04×3.8220−37.42x3.8212=−74.66kN−m墙顶弯矩设计值:Ma=−41.04×3.8230−37.42x3.8212=−64.78kN−m跨中弯矩设计值取墙底1/2:M中= kN-m墙底剪力设计值:Rb=7×41.04×3.820+37.42×3.82= 125.68kN墙顶剪力设计值:Ra=3×41.04×3.820+37.42×3.82= 94.49kN承载力验算混凝土强度等级: C50 fcd= N/mm2 ftd= N/mm2混凝土保护层:外侧35mm,h0=400-45=355mm;内侧20mm,h0=400-35=365mm钢筋级别 : HRB400 fyd==432 N/mm2墙外侧实配钢筋F16150HRB400,As=1333 mm2x=f yd A sf cd b =432×13330.8×34.65×1000= mmM=f cd bx(ℎ0−x2)=0.8×34.65×1000×20.8×(355−20.82)= kN-m, 墙顶和墙底抗弯承载力满足;墙内侧实配钢筋F16150HRB400,As=1333 mm2x=f yd A sf cd b =432×13330.8×34.65×1000= mmM=f cd bx(ℎ0−x2)=0.8×34.65×1000×20.8×(365−20.82)= kN-m, 墙内侧抗弯承载力满足;V=0.7f td bℎ0=0.8×0.7×2.835×1000×355= kN,墙上下端斜截面承载力满足;RDQ2、RDQ2a一、计算条件墙高 = mm 墙宽 = mm 按单向板计算, 墙厚 = mm室外地坪高于板顶:1150mm室外超载:10kN/m2回填土容重:18kN/m3侧压系数:墙顶土压力标准值:+= kN/m墙外超载等效均布活载标准值:= kN/m外墙人防等效荷载标准值:25 kN/m二、正常使用工况恒载控制组合:墙面均布荷载设计值:q0= kN/m墙面三角形荷载设计值:q1= kN/m墙底弯矩设计值:Mb=−51.03×4.2220−18.87x4.2212=−72.75kN−m墙顶弯矩设计值:Ma=−51.03×4.2230−18.87x4.2212=−57.74kN−m跨中弯矩设计值取墙底1/2:M中墙底剪力设计值:Rb=7×51.03×4.220+18.87×4.22= 114.64kN墙顶剪力设计值:Ra=3×51.03×4.220+18.87×4.22= 71.78kN活载控制组合:kN/m墙面均布荷载设计值:q0= kN/m墙面三角形荷载设计值:q1= kN/m墙底弯矩设计值:Mb=−45.36×4.2220−19.42x4.2212=−68.55kN−m墙顶弯矩设计值:Ma=−45.36×4.2230−19.42x4.2212=−55.22kN−m跨中弯矩设计值取墙底1/2:M中= kN-m墙底剪力设计值:Rb=7×45.36×4.220+19.42×4.22= 107.46kN墙顶剪力设计值:Ra=3×45.36×4.220+19.42×4.22= 69.36kN承载力验算混凝土强度等级: C35 fc= N/mm2 ft= N/mm2 ftk= N/mm2混凝土保护层:外侧35mm,h0=250-45=205mm;内侧20mm,h0=250-35=215mm钢筋级别 : HRB400 fy=360 N/mm2墙外侧实配钢筋F14100HRB400,As=1540 mm2x=f y A sf c b=360×154016.7×1000= mmM=f c bx(ℎ0−x2)=16.7×1000×33.2×(205−33.22)= kN-m, 墙顶和墙底抗弯承载力满足;墙内侧实配钢筋F14150HRB400,As=1026 mm2x=f y A sf c b =360×102616.7×1000= mmM=f c bx(ℎ0−x2)=16.7×1000×22.1×(215−22.12)= kN-m, 墙内侧抗弯承载力满足;V=0.7f t bℎ0=0.7×1.57×1000×205= kN,墙上下端斜截面承载力满足;墙外侧裂缝验算墙外超载准永值系数取墙面均布荷载标准值:q0=+= kN/m墙面三角形荷载设计值:q1= kN/m仅验算墙底部墙底弯矩标准值:Mb=−37.8×4.2220−12.85x4.2212=−52.23kN−mρte=AsA te=15400.5×1000×250=0.0123σsk=M k0.87×h0×A s =52.23×1060.87×205×1540=190 N/mm2φ=1.1−0.65f tkρteσsk=1.1−0.65× 2.20.0123×190=ωmax=αcrφσskE s (1.9c+0.08d eqρte)=2.1×0.488×1902.0×105×(1.9×35+0.08×140.0123)=,满足要求;三、人防工况kN/m墙底设计荷载: qb= = kN/m墙面均布荷载设计值:q0= kN/m墙面三角形荷载设计值:q1= kN/m墙底弯矩设计值:Mb=−45.36×4.2220−37.42x4.2212=−95.01kN−m墙顶弯矩设计值:Ma=−45.36×4.2230−37.42x4.2212=−81.68kN−m跨中弯矩设计值取墙底1/2:M中= kN-m墙底剪力设计值:Rb=7×45.36×4.220+37.42×4.22= 145.26kN墙顶剪力设计值:Ra=3×45.36×4.220+37.42×4.22= 107.16kN承载力验算混凝土强度等级: C35混凝土保护层:外侧35mm,h0=250-45=205mm;内侧20mm,h0=250-35=215mm钢筋级别 : HRB400 fyd==432 N/mm2墙外侧实配钢筋F14100HRB400,As=1540 mm2x=f yd A sf cd b=432×15400.8×25.05×1000= mmM=f cd bx(ℎ0−x2)=0.8×25.05×1000×33.2×(205−33.22)= kN-m, 墙顶和墙底抗弯承载力满足;墙内侧实配钢筋F14150HRB400,As=1026 mm2x=f yd A sf cd b=432×10260.8×25.05×1000= mmM=f cd bx(ℎ0−x2)=0.8×25.05×1000×22.1×(215−22.12)= kN-m, 墙内侧抗弯承载力满足;V=0.7f td bℎ0=0.8×0.7×2.355×1000×205= kN,墙上下端斜截面承载力满足;LKQ1计算条件墙高 = mm 墙宽 = mm 墙厚 = mm竖向均布荷载KN/M:墙面均布荷载KN/M2:墙面三角形荷载KN/M2:砼强度等级: C50配筋计算 asmm: 30钢筋级别 : HRB400支撑条件:上边下边左边右边简支固定固定固定内力计算 :轴压比 N/Afc=跨中弯矩kN-m/m:水平:竖向:垂直板边弯矩kN-m/m:上下左右, , , 配筋结果 :竖直方向配筋mm^2/m:上截面非荷载侧:实配F14150HRB400 荷载侧:实配F14150HRB400中截面非荷载侧:实配F14150HRB400 荷载侧:实配F14150HRB400下截面非荷载侧:实配F14150HRB400 荷载侧:实配F14150HRB400水平方向配筋mm^2/m:左中右非荷载侧 , , 实配F14150HRB400荷载侧 , ,实配F14150HRB400LKQ2、LKQ2a计算条件墙高 = mm 墙宽 = mm 墙厚 = mm竖向均布荷载KN/M:墙面均布荷载KN/M2:墙面三角形荷载KN/M2:砼强度等级: C50配筋计算 asmm: 30钢筋级别 : HRB400支撑条件:上边下边左边右边简支固定固定固定内力计算 :轴压比 N/Afc=跨中弯矩kN-m/m:水平:竖向:垂直板边弯矩kN-m/m:上下左右, , ,配筋结果 :竖直方向配筋mm^2/m:上截面非荷载侧:实配F14150HRB400 荷载侧:实配F16150HRB400中截面非荷载侧:实配F14150HRB400 荷载侧:实配F16150HRB400下截面非荷载侧:实配F14150HRB400 荷载侧:实配F16150HRB400水平方向配筋mm^2/m:左中右非荷载侧 , , 实配F14150HRB400荷载侧 , , 实配F16150HRB400LKQ2b、LKQ2c计算条件墙高 = mm 墙宽 = mm 墙厚 = mm竖向均布荷载KN/M:墙面均布荷载KN/M2:墙面三角形荷载KN/M2:砼强度等级: C50配筋计算 asmm: 30钢筋级别 : HRB400支撑条件:上边下边左边右边简支固定固定固定内力计算 :轴压比 N/Afc=跨中弯矩kN-m/m:水平:竖向:垂直板边弯矩kN-m/m:上下左右, , ,配筋结果 :竖直方向配筋mm^2/m:上截面非荷载侧:实配F14150HRB400 荷载侧:实配F14150HRB400中截面非荷载侧:实配F14150HRB400 荷载侧:实配F14150HRB400下截面非荷载侧:实配F14150HRB400 荷载侧:实配F14150HRB400水平方向配筋mm^2/m:左中右非荷载侧 , , 实配F14150HRB400荷载侧 , , 实配F16150HRB400LKQ3计算条件按单向板计算墙高 = mm 墙宽 = mm 墙厚 = mm竖向均布荷载KN/M:墙面均布荷载KN/M2:墙面三角形荷载KN/M2:砼强度等级: C50配筋计算 asmm: 30钢筋级别 : HRB400支撑条件:上边下边左边右边简支固定固定固定内力计算 :轴压比 N/Afc=跨中弯矩kN-m/m:水平:竖向:垂直板边弯矩kN-m/m:上下左右, , , 配筋结果 :竖直方向配筋mm^2/m:上截面非荷载侧:实配F16150HRB400 荷载侧:实配F18150HRB400中截面非荷载侧:实配F16150HRB400 荷载侧:实配F18150HRB400下截面非荷载侧:实配F16150HRB400 荷载侧:实配F18150HRB400水平方向配筋mm^2/m:左中右非荷载侧 , , 实配F16150HRB400荷载侧 , , 实配F16150HRB400LKQ3a计算条件墙高 = mm 墙宽 = mm 墙厚 = mm竖向均布荷载KN/M:墙面均布荷载KN/M2:墙面三角形荷载KN/M2:砼强度等级: C50配筋计算 asmm: 30钢筋级别 : HRB400支撑条件:上边下边左边右边简支固定固定固定内力计算 :轴压比 N/Afc=跨中弯矩kN-m/m:水平:竖向:垂直板边弯矩kN-m/m:上下左右, , , 配筋结果 :竖直方向配筋mm^2/m:上截面非荷载侧:实配F16150HRB400 荷载侧:实配F16150HRB400中截面非荷载侧:实配F16150HRB400 荷载侧:实配F16150HRB400下截面非荷载侧:实配F16150HRB400 荷载侧:实配F16150HRB400水平方向配筋mm^2/m:左中右非荷载侧 , , 实配F16150HRB400荷载侧 , , 实配F16150HRB400LKQ4计算条件墙高 = mm 墙宽 = mm 墙厚 = mm竖向均布荷载KN/M:墙面均布荷载KN/M2:墙面三角形荷载KN/M2:砼强度等级: C35配筋计算 asmm: 30钢筋级别 : HRB400支撑条件:上边下边左边右边简支固定固定固定内力计算 :轴压比 N/Afc=跨中弯矩kN-m/m:水平:竖向:垂直板边弯矩kN-m/m:上下左右, , ,配筋结果 :竖直方向配筋mm^2/m:上截面非荷载侧:实配F14150HRB400 荷载侧:实配F18150HRB400中截面非荷载侧:实配F14150HRB400 荷载侧:实配F18150HRB400下截面非荷载侧:实配F14150HRB400 荷载侧:实配F18150HRB400水平方向配筋mm^2/m:左中右非荷载侧 , , 实配F14150HRB400荷载侧 , , 实配F18150HRB400计算项目: 临战封堵上挡墙计算条件L = mm L1 = mm L2 = mmH = mmqe = KN/M2qi = KN/M2砼强度等级: C35配筋计算 asmm: 20纵筋级别 : HRB400箍筋级别 : HRB400箍筋间距 : 100mm计算结果弯矩kN-m/m: M =剪力kN/m: V =按悬臂梁计算抗弯受拉筋: As = mm^2/m 实配F12100HRB400抗剪箍筋: Av = mm^2/m计算项目: 桩承台-1 CT1计算条件1、承台信息剖面形状:阶形现浇平面形状:矩形承台阶数:1阶承台底标高:承台边数:4承台高:1200mm承台x方向移心:0mm承台y方向移心:0mm2、桩信息桩截面宽:500mm桩截面高:0mm单桩承载力:桩位坐标:NUm X Y1 875 -8752 -875 -8753 875 8754 -875 875 3、荷载信息竖向荷载:N =x方向弯矩:Mx =y方向弯矩:My =x方向剪力:Qx =y 方向剪力:Qy = 4、柱信息柱截面宽:600mm 柱截面高:600mm 5、混凝土信息 混凝土等级:C35 混凝土容重:m3 计算结果6、桩反力计算 采用公式:承台及土自重 Gk = B S H γ+ B S futu = + = kn∑XiXi = ∑YiYi = 桩号 X Y 桩反力QKN 桩净反力QNKN1 2 3 4 桩总反力QP= kN; 桩均反力QAVE= kN7、冲切抗剪计算 台阶1 H = 角桩冲切 公式如下: 其中:Nl------------角桩桩顶竖向力设计值β1x,β1y-------角桩冲切系数 λ1x,λ1y-------角桩冲垮比 c1,c2---------角桩内边缘至承台外边缘的距离α1x,α1y-------角桩内缘到冲切面顶部的水平距离h0------------承台外边缘的有效高度No.=1 h0= 1150. α1x=375. λ1x= c1=700. h0= 1150. α1y=375. λ1y= c2=700.β1x= β1y= βhp= ft=QPC=β1xC2+α1y/2+β1yc1+α1x/2βhpftho = > QPD = KN No.=2h0= 1150. α1x=375. λ1x= c1=700.h0= 1150. α1y=375. λ1y= c2=700.β1x= β1y= βhp= ft=QPC=β1xC2+α1y/2+β1yc1+α1x/2βhpftho= > QPD = KN No.=3 h0= 1150. α1x=375.λ1x= c1=700.h0= 1150. α1y=375. λ1y= c2=700.β1x= β1y= βhp= ft=QPC=β1xC2+α1y/2+β1yc1+α1x/2βhpftho = > QPD = KN No.=4h0= 1150. α1x=375. λ1x= c1=700.h0= 1150. α1y=375. λ1y= c2=700.β1x= β1y= βhp= ft=QPC=β1xC2+α1y/2+β1yc1+α1x/2βhpftho = > QPD = KN 柱冲切 公式如下: 其中:F------------柱根部轴力设计值Fl-----------扣除土和自重作用在锥体上的冲切设计值βox,βoy------冲切系数 βhp----------冲切截面高度影响系数λox,λoy-------冲跨比 αox,αoy-------柱边或变阶处到桩边的水平距离h0-----------冲切破坏锥体的有效高度∑Ni---------冲切破坏锥体范围内桩的净反力设计制之和 截面净高H00=x+ h0=1150. αox= 375. λox= x- h0=1150. αox= 375. λox= y+ h0=1150. αoy= 375. λoy= y+ h0=1150. αoy= 375. λoy= hc= 600. bc= 600. βox= βoy= ft= βhp= QCC = 2βoxbc+αoy+βoyhc+αox βhpftho=柱子抗冲切承载力QCC= > 冲切荷载QCD= KN抗剪计算 公式如下: 其中:b0-----------承台计算截面处的计算宽度V------------扣除土和自重作用在锥体上的最大剪力设计值β------------剪切系数 βhs----------受剪切截面高度影响系数λ------------计算截面的剪跨比h0-----------冲切破坏锥体的有效高度左 h0=1150. αx= 375. λx= VPL = βhs λ+b0h0ft =+2750.1150. =VCI1= > VDI1= KN 右 h0=1150. αx= 375. λx=VPL = βhs λ+b0h0ft =+2750.1150. =VCI2= > VDI2= KN 下 h0=1150. αy= 375. λy=VPL = βhs λ+b0h0ft =+2750.1150. =VCJ1= > VDJ1= KN 上 h0=1150. αy= 375. λy=VPL = βhs λ+b0h0ft =+2750.1150.=VCJ2= > VDJ2= KN 8、配筋计算 DMX1 =AGX = DMX1/h0fy/YS = /= mm/M 换算成HRB400,AGX=4593x210/360=2679mm 实配F 22130HRB400 AS=2923mm DMX2 =AGX = DMX2/h0fy/YS = /= mm/M 换算成HRB400,AGX=4756x210/360=2775mm 实配F 22130HRB400 AS=2923mmDMY1 =AGY = DMY1/h0fy/XS = /= mm/M换算成HRB400,AGX=4667x210/360=2722mm实配F 22130HRB400 AS=2923mm DMY2 =AGY = DMY2/h0fy/XS = /= mm/M 换算成HRB400,AGX=4682x210/360=2731mm 实配F 22130HRB400 AS=2923mm计算项目: 桩承台-2 CT2计算条件1、承台信息剖面形状:阶形现浇 平面形状:矩形 承台阶数:1阶 承台底标高: 承台边数:4 承台高:1500mm 承台x 方向移心:0mm 承台y 方向移心:0mm 2、桩信息桩截面宽:500mm 桩截面高:0mm 单桩承载力: 桩位坐标:NUm X Y1 875 -2 -875 -3、荷载信息竖向荷载:N =x方向弯矩:Mx =y方向弯矩:My =x方向剪力:Qx =y方向剪力:Qy =4、柱信息柱截面宽:600mm柱截面高:600mm5、混凝土信息混凝土等级:C35混凝土容重:m3计算结果6、桩反力计算采用公式:承台及土自重 Gk = B S H γ+ B S futu= += kn∑XiXi = ∑YiYi = 桩号 X Y 桩反力QKN桩净反力QNKN12桩总反力QP= kN; 桩均反力QAVE=kN7、冲切抗剪计算截面净高H00=x+ h0=1450. αox= 375. λox=x- h0=1450. αox= 375. λox=抗剪计算公式如下:其中:b0-----------承台计算截面处的计算宽度V------------扣除土和自重作用在锥体上的最大剪力设计值β------------剪切系数βhs----------受剪切截面高度影响系数λ------------计算截面的剪跨比h0-----------冲切破坏锥体的有效高度左 h0=1450. αx= 375. λx=QPC =VPL = βhsλ+b0h0ft=+1000.1450.=VCI1 = MIN VPL , QPCVCI1= > VDI1= KN右 h0=1450. αx= 375. λx=QPC =VPL = βhsλ+b0h0ft=+1000.1450.=VCI2 = MIN VPL , QPCVCI2= > VDI2= KN8、配筋计算DMX1 =AGX = DMX1/h0fy/YS = /= mm/MDMX2 =AGX = DMX2/h0fy/YS = /= mm/MDMY1 =AGY = DMY1/h0fy/XS = /= mm/M DMY2 =AGY = DMY2/h0fy/XS = /= mm/M ASX=mm/M ASY= mm/M换算成HRB400,AGX=5300x210/360=3091mm 实配F22100HRB400 AS=3800mm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.2 挡土墙土压力计算6.2.1 作用在挡土墙上的力系挡土墙设计关键是确定作用于挡土墙上的力系,其中主要是确定土压力。

作用在挡土墙上的力系,按力的作用性质分为主要力系、附加J力和特殊力.主要力系是经常作用于挡土墙的各种力,如图6—11所示, 它包括: 1.挡土墙自重G及位于墙上的衡载;2.墙后土体的主动土压力Ea(包括作用在墙后填料破裂棱体上的荷载,简称超载);3.基底的法向反力N及摩擦力T;4.墙前土体的被动土压力Ep .对浸水挡土墙而言,在主要力系中尚应包括常水位时的静水压力和浮力。

附加力是季节性作用于挡土墙的各种力,例如洪水时的静水压力和浮力、动力压力、波浪冲击力、冻胀压力以及冰压力等。

特殊力是偶然出现的力,例如地震力、施工荷载、水流漂浮物的撞击力等。

在一般地区,挡土墙设计仅考虑主要力系.在浸水地区还应考虑附加力,而在地震区应考虑地震对挡土墙的影响。

各种力的取舍,应根据挡土墙所处的具体工作条件,按最不利的组合作为设计的依据。

6.2.2 一般条件下库伦(coulomb)主动土压力计算土压力是挡土墙的主要设计荷载。

挡土墙的位移情况不同,可以形成不同性质的土压力(图6—12)。

当挡土墙向外移动时(位移或倾覆),土压力随之减少,直到墙后土体沿破裂面下滑而处于极限平衡状态,作用于墙背的土压力称主动土压力;当墙向土体挤压移动,土压力随之增大,上体被推移向上滑动处于极限平衡状态,此时土体对墙的抗力称为被动土压力;墙处于原来位置不动,土压力介于两者之间,称为静止土压力.采用哪种性质的土压力作为档土墙设计荷载,要根据挡土墙的具体条件而定。

路基档土墙一般都可能有向外的位移或倾覆,因此在设计中按墙背土体达到主动极限平衡状态,且设计时取一定的安全系数,以保证墙背土体的稳定。

对于墙趾前土体的被动土压力Ep, 在挡土墙基础一般埋深的情况下,考虑到各种自然力和人畜活动的作用,一般均不计,以偏于安全.主动土压力计算的理论和方法,在土力学中已有专门论述,这里仅结合路基挡土墙的设计,介绍库伦土压力计算方法的具体应用。

(一)各种边界条件下主动土压力计算路基挡土墙因路基形式和荷载分布的不同,土压力有多种计算图式. 以路堤挡土墙为例,按破裂面交于路基面的位置不同,可分为5种图示:破裂面交于内边坡,破裂面交于荷载的内侧、中部和外侧,以及破裂面交于外边坡。

兹分述如下:1.破裂面交于内边坡(图6—13)这一图式适用于路堤式或路堑式挡土墙。

图中AB为挡土墙墙背,BC为破裂面,BC与铅垂线的夹角θ为破裂角,ABC为破裂棱体。

棱体上作用着三个力,即破裂棱体自重G、主动土压力的反力Ea和破裂面上的反力R。

Ea的方向与墙背法线成δ角,且偏于阻止棱体下滑的方向; R的方向与破裂面法线成φ角,且偏于阻止棱体下滑的方向。

取挡土墙长度为1m计算,作用于棱体上的平衡力三角形abc可得:当参数r、φ、δ、α、β固定时,Ea随破裂面的位置而变化,即Ea是破裂角θ的函数。

为求最大土压力Ea,首先要求对应于最大土压力时的破裂角θ。

取dEa/dθ=0,得整理化简后得将式(6-5)求得的θ值代入式(6-4),即可求得最大主动土压力Ea 值. 最大主动土压力Ea也可用式(6-6)表示.式中:r——墙后填土的容重,kN/m3;φ——填土的内摩擦角,°;δ——墙背与填土间的摩擦角,°:β——墙后填土表面的倾斜角,°;α——墙背倾斜角,°,俯斜墙背α为正,仰斜墙背α为负;H——挡土墙高度,m;Ka——主动土压力系数。

土压力的水平和垂直分力为:2.破裂角交于路基面(图6-14)1)破裂面交于荷载中部(图6-14b)破裂棱体的断面面积S为因此,破裂棱体的重量为将求得的θ值代入式(6—9),即可求得主动土压力Ea.必须指出,式(6—9)和式(6—10)具有普遍意义。

因为无论破裂面交于荷载中部、荷载的内侧或外侧,破裂棱体的断面面积S都可以归纳为一个表达式,即式中A0和B0为边界条件系数.将不同边界条件下的A0、B0值代入式中,即可求得与之相应的破裂角和最大主动土压力。

2)破裂面交于荷载外侧(图6—14c)3)破裂面交于荷载内侧(图6—14a) 在式(6—8)或式(6—11)中,令h0=0 则3.破裂面交于外边坡(图6—15)6.2.3 大俯角墙背的主动土压力——第二破裂面法在挡土墙设计中,往往会遇到墙背俯斜很缓,即墙背倾角α很大的情况,如折线形挡土墙的土墙墙背,衡重式挡土墙上墙的假象墙背(图6—16)。

当墙后土体达到主动极限平衡状态时,破裂棱体并不沿墙背或假想墙背CA滑动,而是沿着土体的另一破裂面CD滑动,CD称为第二破裂面.而远离墙的破裂面CF称为第一破裂面,αi和θi为相应的破裂角。

这时,挡土墙承受着第二破裂上的土压力Ea, Ea是αi和θi的函数。

因E x是Ea的水平分力,故可以列出以下函数关系:为了确定最不利的破裂角αi和θi及相应的主动土压力值,可以求解下列偏微分方程组:并满足下列条件:出现第二破裂面的条件是:1)墙背或假想墙背的倾角α′必须大于第二破裂面的倾角αi,即墙背或假想墙背不妨碍第二破裂面的出现;2)在墙背或假想墙背面上产生的抗滑力必须大于其下滑力,即NR>NG, 或Extg(α′+δ)>Ey+G,使破裂棱体不会沿墙背或假想墙背下滑;第二条件的又一表达方式为:作用于墙背或假想墙背上的土压力对墙背法线的倾角δ′应小于或等于墙背摩擦角δ.一般俯斜式挡土墙为避免土压力过大,很少采用平缓背坡,故不易出现第二破裂面.衡重式的上墙或悬臂式墙,因系假想墙背,δ=φ,只要满足第—个条件,即出现第二破裂面.设计时应首先判别是否出现第二破裂面,然后再用相应的公式计算土压力。

现以衡重式路堤墙墙后土体第一破裂交于荷载内,第二破裂交于边坡的情况为例(图6—17)说明公式的推导过程。

1.根据边界条件,计算破裂棱体(包括棱体上的荷载)的重量G自衡重台后缘A点作表坡线的垂线OB,设其长度为h’’则式(c)中的e取正号,还是负号,要根据Ex出现最大值,即按式(6—26)的二阶偏微商而定。

计算结果,e取正号,则式(c)可写成公式(6—22)中tgφⅰ可得两个根,有效根可取其正值中较小的一个.将求得的第一破裂角φⅰ代入式(c),其中x=tg(αi-β),可得6.2.4 折线形墙背的土压力计算凸形墙背的挡土墙和衡重式挡土墙,其墙背不是一个平面而是折面,称为折线形墙背。

对这类墙背,以墙背转折点或衡重台为界,分成上墙与下墙.分别按库伦方法计算主动土压力,然后取两者的矢量和作为全墙的土压力。

计算上墙土压力时,不考虑下墙的影响,按俯斜墙背计算土压力。

衡重式挡土墙的上墙.由于衡重台的存在,通常都将墙顶内缘和衡重台后缘的连线作假想墙背,假想墙背与实际墙背间的上楔假定与实际墙背一起移动.计算时先按墙背倾角α或假想墙背倾角α′是否大于第二破裂角α1进行判断,如不出现第二破裂面,应以实际墙背或假想墙背为边界条件,按一般直线墙背库伦主动土压力计算;如出现第二破裂面,则按第二破裂面的主动土压力计算。

下墙土压力计算较复杂,目前普遍采用各种简化的计算方法,下面介绍两种常用的计算方法:1.延长培背法如图6—18所示,在上墙土压力算出后,延长下墙墙背交于填土表面C,以B′C为假想墙背,根据延长墙背的边界条件,用相应的库伦公式计算土压力,并绘出墙背应力分布图,从中截取下墙B B′部分的应力图作为下墙的土压力。

将上下墙两部分应力图叠加,即为全墙土压力。

这种方法存在着一定误差。

第一,忽略了延长墙背与实际墙背之间的土楔及荷载重,但考虑了在延长墙背和实际墙背上土压力方向不同而引起的垂直分力差,虽然两者能相互补偿,仅未必能相抵消。

第二,绘制土压应力图形时,假定上墙破裂面与下墙破裂面平行,但大多数情况下两者是不平行的,由此存在计算下墙土压力所引起的误差。

以上误差一般偏于安全,由于此法计算简便,至今仍被广泛采用.2.力多边形法在墙背土体处于极限平衡条件下,作用于破裂棱体上的诸力,应构成矢量闭合的力多边形。

在算得上墙土压力E1后,就可绘出下墙任一破裂面力多边形。

利用力多边形来推求下墙土压力.这种方法叫力多边形法。

现以路堤挡土墙下墙破裂面交于荷载范围内的情况(图6—19)为例说明下墙土压力的推导过程。

在极限平衡的条件下,破裂棱体AOBCD的力平衡多边形为abed,其中abc为上墙破裂棱体AOC′D的力平衡三角形,bedc为下墙破裂棱体C′OBC的力平衡多边形。

图中eg//bc,cf//be,gf=△E.在△cfd中,由正弦定律可得将求得的破裂角θ2代人式(6—30),可求得下墙土压力E2。

在图6—19中作用于下墙的土压力图形,可近似假定θ1≈θ2,即6.2.5 粘性土土压力计算库伦理论本来只考虑不具有粘聚力的砂性土的土压力问题。

当墙背填料为粘性土时,土的粘聚力对主动土压力的影响很大,因此应考虑粘聚力的影响。

现介绍以库伦理论为基础计算粘性土主动土压力的近似方法。

1.等效内摩擦角法由于目前对粘性土c、φ值的确定还存在一些问题,尤其是土的流变性质及其对墙的影响尚不十分清楚,因此在设计粘性土的挡土墙时,通常将内摩擦角φ与单位粘聚力c ,换算成较实有φ值为大的“等效内摩擦角”φD,按砂性土的公式来计算土压力。

可以按换算前后土的抗剪强度相等的原则或土压力相等的原则来计算φD值。

通常把粘性土的内摩擦角值增大5°~10°,或采用等效内摩擦角φD为30°~35°。

但是,由于影响土压力数值的因素是多方面的,包括墙高、墙型、墙后填料的表面以及荷载的情况等,不可能用上述方法确定一个固定的换算关系或固定的换算值。

用上述方法换算的内摩擦角,只与某一特定的墙高相适应,对于矮墙偏于安全,对于高墙则偏于危险。

因此在设计高墙时,应按墙高酌情降低φD值。

最好是按实际测定的c,φ值,采用力多边形法来计算粘性土的主动土压力。

2.力多边形法(数解法)当墙身向外有足够位移时,粘性土土层顶部会出现拉应力,产生竖向裂缝,裂缝从地面向下延伸至拉应力趋于零处.裂缝深度hc按下式计算式中:c——填料的单位粘聚力,kPa或kN/m2。

在垂直裂缝区hc范围内,竖直面上的侧压力等于零,因此在此范围内不计土压力。

根据库伦理论,假设破裂面为一平面,沿破裂面的土的抗剪强度由土的内摩擦力σtgφ和粘聚力c组成。

至于墙背和土之间的粘聚力c’,由于影响因素很多,为简化计算及使用安全,可忽略不计。

现以路堤墙后破裂面交于荷载内的情况为例,介绍公式的推导方法:图6—20为路堤式挡土墙,填土表面有局部荷载,其裂缝假定在荷载作用面以下产生。

BD为破裂面,破裂棱体为ABDEFMN。

在主动极限平衡状态下,棱体在自重G、墙背反力Ea、破裂面反力R和破裂面粘聚力BD.c等四个力的作用下保持静力平衡,构成力多边形。

相关文档
最新文档