导数与不等式的证明(高考真题)【含答案】
高考数学利用导数研究不等式问题(解析版)题型一:构造法证明不等式
题型一:构造法证明不等式1.(2021·山东德州·高三期中)已知函数()2(1)x f x xe a x =++(其中常数e 2.718=是自然对数的底数).(1)当0a <时,讨论函数()f x 的单调性;(2)证明:对任意1a ≤,当0x >时,()()23231f x ex a x x x -≥-++.【答案】(1)答案见解析(2)证明见解析(1)由()()()()12(1)12x x f x x e a x x e a =+++=++,令()0f x '=,解得1x =-,()ln 2x a =-, ①当102a e-<<, 由()0f x '>,解得()ln 2x a <-或1x >-,由()0f x '<,解得()ln 21a x -<<-,故()f x 在()(),ln 2a -∞-,()1,-+∞上单调递增;在()()ln 2,1a --上单调递减, ②当12a e=-,()0f x '≥,()f x 在R 上单调递增; ③当12a e<-,由()0f x '>,解得1x <-或()ln 2x a >-, 由()0f x '<,解得()1ln 2x a -<<-故()f x 在(),1-∞-,()()ln 2,a -+∞上单调递增;在()()1,ln 2a --上单调递减, 综上所述,当102a e-<<时, ()f x 在()(),ln 2a -∞-,()1,-+∞上单调递增;在()()ln 2,1a --上单调递减, 当12a e=-,()f x 在R 上单调递增; 当12a e<-,()f x 在(),1-∞-,()()ln 2,a -+∞上单调递增; 在()()1,ln 2a --上单调递减.(2)证明:对任意1a ≤,当0x >时,要证()()23231f x ex a x x x --++≥,需证,20x e a a ax e x x+---≥, 令()2x e a g x a ax e x x=+---, 则()()()21x x e ax a g x x ---'=, 令()x h x e ax a =--,则()x h x e a '=-,因为0x >,1a ≤,所以()0x h x e a '=->,所以()()010h x h a >=-≥,所以()0,1x ∈时,()0g x '<,()g x 单调递减,当()1,x ∈+∞时,()0g x '>,()g x 单调递增,所以()()10g x g ≥=,即20x e a a ax e x x+---≥,原不等式成立. 2.(2021·河南驻马店·高三月考(文))已知函数()()248ln x a x x f a x +--=.(1)求()f x 的单调区间;(2)当2a =时,证明:()242e 64x f x x x >-++.【答案】(1)答案不唯一,见解析(2)证明见解析(1)由题意知()f x 的定义域为(0,)+∞.由已知得()()2()()8188x a x x a x a f x x x-++--'== 当0a ≤时,()()0,f x f x '>在(0,)+∞上单调递增,无单调递减区间.当0a >时,令()0f x '>,得8a x >;令()'0f x <,得08a x <<, 所以()f x 在0,8a ⎛⎫ ⎪⎝⎭上单调递减,在,8a ⎛+∞⎫ ⎪⎝⎭上单调递增. 综上,当0a ≤时,()f x 的单调递增区间为(0,)+∞,无单调递减区间;当0a >时,()f x 的单调递减区间为0,8a ⎛⎫ ⎪⎝⎭,单调递增区间为,8a ⎛+∞⎫ ⎪⎝⎭. (2)证明:原不等式等价于()e ln 20x x x ϕ=-->,则()1e x x xϕ'=-,易知()x ϕ'在(0,)+∞上单调递增,且()120,1e 102ϕϕ⎛⎫''<=-> ⎪⎝⎭, 所以()x ϕ'在1,12⎛⎫ ⎪⎝⎭上存在唯一零点0x ,此时()x ϕ在()00,x 上单调递减,在()0,x +∞上单调递增, 要证()0x ϕ>即要证()00x ϕ>,由001e 0x x -=,得001e x x =,001ex x =,代入()000e ln 2x x x ϕ=--,得()00012x x x ϕ=+-, 因为()0001220x x x ϕ=+->=, 所以()242e 64x f x x x >-++.3.(2021·湖北武汉·高三月考)已知函数()e 21x f x a x =+-(1)讨论函数()f x 的单调性;(2)证明:对任意的1a ≥,当0x >时,()()f x x ae x ≥+.【答案】(1)答案见解析(2)证明见解析(1)解:()e 2x f x a '=+.①当0a ≥时,()0f x '>,函数()f x 在R 上单调递增;②当0a <时,由()0f x '>解得2ln x a ⎛⎫<- ⎪⎝⎭,由()0f x '<解得2ln x a ⎛⎫>- ⎪⎝⎭. 故()f x 在2,ln a ⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭上单调递增,在2ln ,a ⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭上单调递减. 综上所述,当0a ≥时,()f x 在R 上单调递增;当0a <时,()f x 在2,ln a ⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭上单调递增,在2ln ,a ⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭上单调递减. (2)证明:原不等式等价于()2(1)x a e ex x -≥-.令()x g x e ex =-,则()e e x g x '=-.当1x <时,()0g x '<;当1x >时,()0g x '>.∴()()10g x g ≥=,即0x e ex -≥,当且仅当1x =时等号成立.当1x =时,()2(1)x a e ex x -≥-显然成立;当0x >且1x ≠时,0x e ex -≥.欲证对任意的1a ≥,()2(1)x a e ex x -≥-成立,只需证2(1)x e ex x -≥-()()()()2g 1'21x x x e ex x g x e e x =---=---,令()()(),2x h x g x h x e ''==-,令()0,ln 2h x x ='= ()ln 2,0,x h x '<<()g x '递减,()ln 2,0,x h x '>>()g x '递增()()()'ln 222ln 2142ln 20,030g e e g e =---==-=-'故存在()00,ln 2x ∈,使()00g x '=又由(1)0g '=,所以00x x <<时,()0g x '>,()g x 递增,01x x <<时,()0g x '<,()g x 递减,1x >时,()0g x '>,()g x 递增,又()()g 00,10g ==,故0x >时,()0g x ≥.综上所述,结论得证。
专题05 应用导数研究不等式恒成立问题(解析版)
专题05 应用导数研究不等式恒成立问题【压轴综述】纵观近几年的高考命题,应用导数研究函数的单调性、极(最)值问题,证明不等式、研究函数的零点等,是高考考查的“高频点”问题,常常出现在“压轴题”的位置.其中,应用导数研究不等式恒成立问题的主要命题角度有:证明不等式恒成立、由不等式恒(能)成立求参数的范围、不等式存在性问题.本专题就应用导数研究不等式恒成立问题,进行专题探讨,通过例题说明此类问题解答规律与方法---参变分离、数形结合、最值分析等.一、利用导数证明不等式f(x)>g(x)的基本方法(1)若f(x)与g(x)的最值易求出,可直接转化为证明f(x)min>g(x)max;(2)若f(x)与g(x)的最值不易求出,可构造函数h(x)=f(x)-g(x),然后根据函数h(x)的单调性或最值,证明h(x)>0.二、不等式恒成立问题的求解策略(1)已知不等式f(x,λ)≥0(λ为实参数)对任意的x∈D恒成立,求参数λ的取值范围.利用导数解决此类问题可以运用分离参数法,其一般步骤如下:(2)如果无法分离参数,可以考虑对参数或自变量进行分类讨论求解,如果是二次不等式恒成立的问题,可以考虑二次项系数与判别式的方法(a>0,Δ<0或a<0,Δ<0)求解.三、不等式存在性问题的求解策略“恒成立”与“存在性”问题的求解是“互补”关系,即f(x)≥g(a)对于x∈D恒成立,应求f(x)的最小值;若存在x∈D,使得f(x)≥g(a)成立,应求f(x)的最大值.在具体问题中究竟是求最大值还是最小值,可以先联想“恒成立”是求最大值还是最小值,这样也就可以解决相应的“存在性”问题是求最大值还是最小值.特别需要关注等号是否成立,以免细节出错.【压轴典例】例1.(2021·全国高三其他模拟)已知数列{}n a 满足11a =,()1ln 1n n a a +=+.若11n n a a λ++≥恒成立,则实数λ的最大值是( )(选项中e 为自然对数的底数,大约为2.71828)A .21e -B .2e 1- CD .e【答案】D【详解】由()1ln 1n n a a +=+得()111ln 1n n n n a a a a +++-=-+,设()ln(1),1f x x x x =-+>-, ()1x f x x '=+,()f x 在(1,0)-单调递减,在(0,+∞)单调递增,故min ()(0)0f x f ==,则10n n a a +->,所以1n n a a +≤, 1n a ≥,由11n n a a λ++≥得111ln(1)n n a a λ++++≥易得11ln(11)n n a a λ++≤++,记110n t a ++=>,所以111ln(1ln )n n a t a t ++=++,记()ln t f t t=,()2ln 1()ln t f t t -'=,当ln 10t ->即()0f t '>得t e >时()f t 单调递增,当ln 10t -<即()0f t '<得0t e <<时()f t 单调递减,所以min ()()f t f e e ==,得e λ≤,例2.(2021·浙江嘉兴市·高三)已知函数()()()1x f x e a tax =-+,其中0t ≠.若对于某个t ∈R ,有且仅有3个不同取值的a ,使得关于x 的不等式()0f x ≥在R 上恒成立,则t 的取值范围为( )A .()1,eB .(),2e eC .(),e +∞D .()2,e +∞ 【答案】C【详解】显然0a ≥,否则0x e a ->,于是()()()10x f x e a tax =-+≥,即10tax +≥,这与不等式的解集为R 矛盾.又易知0a =时,不等式()0f x >恒成立.于是仅需再分析0a >的情形.易知0t >,由()()()10x f x e a tax =-+=知ln x a =或1x ta=-,所以11ln ln a a a ta t =-⇔-=.所以原问题等价于关于a 的方程1ln a a t-=有两解,设()ln h a a a =,则()ln 1h a a '=+,10a e <<时,()0h a '<,()h a 递减,1a e>时,()0'>h a ,()h a 递增,所以min 11()h a h e e ⎛⎫==- ⎪⎝⎭,0x →时,()0h a →,a →+∞时,()h a →+∞,所以由关于a 的方程1ln a a t -=有两解,得110e t-<-<,所以t e >. 例3.(2020·新高考全国Ⅰ卷)已知函数f(x)=ae x-1-ln x+ln a.(1)当a=e 时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;(2)若f(x)≥1,求a 的取值范围.【解析】f(x)的定义域为(0,+∞),f'(x)=ae x-1-.(1)当a=e 时,f(x)=e x -ln x+1,f'(1)=e-1,曲线y=f(x)在点(1,f(1))处的切线方程为y-(e+1)=(e-1)(x-1),即y=(e-1)x+2.直线y=(e-1)x+2在x 轴,y 轴上的截距分别为,2,因此所求三角形的面积为.(2)当0<a<1时,f(1)=a+ln a<1不满足条件;当a=1时,f(x)=e x-1-ln x,f'(x)=e x-1-.当x ∈(0,1)时,f'(x)<0;当x ∈(1,+∞)时,f'(x)>0.所以f(x)在(0,1)上是减函数,在(1,+∞)上是增函数,所以当x=1时,f(x)取得最小值,最小值为f(1)=1,从而f(x)≥1.所以a=1满足条件;当a>1时,f(x)=ae x-1-ln x+ln a ≥e x-1-ln x ≥1.综上,a 的取值范围是[1,+∞).例4.(2020·全国卷Ⅰ高考理科·T21)已知函数f(x)=e x +ax 2-x.(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥x 3+1,求a 的取值范围. 【解析】(1)当a =1时,f=e x +x 2-x ,f'=e x +2x -1,由于f″=e x +2>0, 故f'单调递增,注意到f'=0, 故当x ∈时,f'<0,f 单调递减,当x ∈时,f'>0,f 单调递增.(2)由f ≥x 3+1得,e x +ax 2-x ≥x 3+1,其中x ≥0, ①当x =0时,不等式为:1≥1,显然成立,符合题意;②当x>0时,分离参数a得,a≥-,记g =-,g'=-,令h=e x -x2-x -1,则h'=e x-x-1,h″=e x-1≥0,故h'单调递增,h'≥h'=0,故函数h单调递增,h≥h=0,由h≥0可得:e x -x2-x-1≥0恒成立,故当x ∈时,g'>0,g单调递增;当x ∈时,g'<0,g单调递减,因此,=g =,综上可得,实数a 的取值范围是.例5.(2020·天津高考·T20)已知函数f(x)=x3+k ln x(k∈R),f'(x)为f(x)的导函数.(1)当k=6时,①求曲线y=f(x)在点(1,f(1))处的切线方程;②求函数g(x)=f(x)-f'(x )+的单调区间和极值;(2)当k≥-3时,求证:对任意的x1,x2∈[1,+∞),且x1>x2,有>.【解析】(1)①当k=6时,f(x)=x3+6ln x,f'(x)=3x2+.可得f(1)=1,f'(1)=9,所以曲线y=f(x)在点(1,f(1))处的切线方程为y-1=9(x-1),即y=9x-8.②依题意,g(x)=x3-3x2+6ln x +,x∈(0,+∞).从而可得g'(x)=3x2-6x +-,整理可得:g'(x )=,令g'(x)=0,解得x=1.当x变化时,g'(x),g(x)的变化情况如表:x(0,1) 1 (1,+∞)g'(x) - 0 +g(x) 单调递减极小值单调递增所以,g(x)的减区间为(0,1),单调递增区间为(1,+∞);g(x)的极小值为g(1)=1,无极大值.(2)由f (x )=x 3+k ln x ,得f'(x )=3x 2+.对任意的x 1,x 2∈[1,+∞),且x 1>x 2,令=t (t >1), 则(x 1-x 2)[f'(x 1)+f'(x 2)]-2(f (x 1)-f (x 2))=(x 1-x 2)-2 =--3x 2+3x 1+k -2k ln =(t 3-3t 2+3t -1)+k .(ⅰ)令h (x )=x --2ln x ,x ∈(1,+∞).当x >1时,h'(x )=1+-=>0,由此可得h (x )在(1,+∞)上单调递增,所以当t >1时,h (t )>h (1),即t --2ln t >0. 因为x 2≥1,t 3-3t 2+3t -1=(t -1)3>0,k ≥-3, 所以(t 3-3t 2+3t -1)+k ≥(t 3-3t 2+3t -1)-3=t 3-3t 2+6ln t +-1.(ⅱ) 由(1)②可知,当t >1时,g (t )>g (1),即t 3-3t 2+6ln t +>1,故t 3-3t 2+6ln t +-1>0.(ⅲ) 由(ⅰ)(ⅱ)(ⅲ)可得(x 1-x 2)[f'(x 1)+f'(x 2)]-2(f (x 1)-f (x 2))>0.所以,当k ≥-3时,对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有>.例6.(2021·江苏苏州市·高三)已知函数()e ln ax f x x x =-,其中e 是自然对数的底数,0a >.(1)若曲线()y f x =在点(1,(1))f 处的切线斜率为21e -,求a 的值;(2)对于给定的常数a ,若()1f x bx ≥+对(0,)x ∈+∞恒成立,求证:b a ≤.【答案】(1)1a =;(2)证明见解析.【详解】(1)因为1()(1)ax f x ax e x'=+-,所以切线斜率为(1)(1)121a k f a e e '==+-=-,即(1)20a a ee +-=.设()(1)2x h x x e e =+-, 由于()(2)0x h x x e '=+>,所以()h x 在(0,)+∞上单调递增,又(1)0h =,由(1)()02a a e h a e +-==可得1a =.(2)设()1t u t e t =--,则()1t u t e '=-,当0t >时,()0u t '>,当0t <时,()0u t '<,所以()u t 在(,0)-∞上单调递减,在(0,)+∞上单调递增,所以min()(0)0u t u ==,即()0u t ≥,所以1(*)t e t ≥+.若()1f x bx ≥+对(0,)x ∈+∞恒成立,即ln 1ax xe x bx --≥对(0,)x ∈+∞恒成立,即ln 1ln 1ax ax x xe x b e x x x --≤--=对(0,)x ∈+∞恒成立.设ln 1()ax xe x g x x --=,由(*)可知ln ln 1ln 1ln 1ln 1()ax ax x xe x e x ax x x g x a x x x+----++--==≥=, 当且仅当()ln 0x ax x ϕ=+=时等号成立.由()1()00x a x xϕ'=+>>,所以()ϕx 在()0+∞,上单调递增,又()()1a a a e ae a a e ϕ---=-=-,由0a >,所以10a e --<,即()0a e ϕ-<()10a ϕ=>,则存在唯一()0,1a x e -∈使得0()=0x ϕ,即方程()ln 0x ax x ϕ=+=有唯一解()0,1a x e -∈,即()g x a ≥(对于给定的常数a ,当0x x =,()0,1a x e -∈时取等号)由ln 1ln 1ax axx xe x b e x x x --≤--=对(0,)x ∈+∞恒成立,所以b a ≤. 例7.(2020·江苏高考·T19)已知关于x 的函数y=f(x),y=g(x)与h(x)=kx+b(k,b ∈R)在区间D 上恒有f(x)≥h(x)≥g(x).(1)若f(x)=x 2+2x,g(x)=-x 2+2x,D=(-∞,+∞).求h(x)的表达式;(2)若f(x)=x 2-x+1,g(x)=kln x,h(x)=kx-k,D=(0,+∞).求k 的取值范围;(3)若f(x)=x 4-2x 2,g(x)=4x 2-8,h(x)=4(t 3-t)x-3t 4+2t 2(0<|t|≤),D=[m,n]⊆[-,],求证:n-m ≤. 【解析】(1)由f(x)=g(x)得x=0.又f'(x)=2x+2,g'(x)=-2x+2,所以f'(0)=g'(0)=2,所以,函数h(x)的图象为过原点,斜率为2的直线,所以h(x)=2x.经检验:h(x)=2x 符合题意.(2)h(x)-g(x)=k(x-1-ln x),设φ(x)=x -1-ln x,则φ'(x)=1-=,φ(x)≥φ(1)=0,所以当h(x)-g(x)≥0时,k ≥0.设m(x)=f(x)-h(x)=x 2-x+1-(kx-k)=x 2-(k+1)x+(1+k)≥0,当x=≤0时,m(x)在(0,+∞)上递增,所以m(x)>m(0)=1+k ≥0,所以k=-1.当x=>0时,Δ≤0,即(k+1)2-4(k+1)≤0,(k+1)(k-3)≤0,-1≤k≤3.综上,k∈[0,3].(3)①当1≤t≤时,由g(x)≤h(x),得4x2-8≤4(t3-t)x-3t4+2t2,整理得x2-(t3-t)x+≤0.(*)令Δ=(t3-t)2-(3t4-2t2-8),则Δ=t6-5t4+3t2+8.记φ(t)=t6-5t4+3t2+8(1≤t≤),则φ'(t)=6t5-20t3+6t=2t(3t2-1)(t2-3)<0恒成立, 所以φ(t)在[1,]上是减函数,则φ()≤φ(t)≤φ(1),即2≤φ(t)≤7所以不等式(*)有解,设解集为,因此n-m≤x2-x1=≤.②当0<t<1时,f(-1)-h(-1)=3t4+4t3-2t2-4t-1.设v(t)=3t4+4t3-2t2-4t-1,v'(t)=12t3+12t2-4t-4=4(t+1)(3t2-1),令v'(t)=0,得t=.当t∈时,v'(t)<0,v(t)是减函数;当t∈时,v'(t)>0,v(t)是增函数;v(0)=-1,v(1)=0,则当0<t<1时,v(t)<0,(或证:v(t)=(t+1)2(3t+1)(t-1)<0)则f(-1)-h(-1)<0,因此-1∉(m,n).因为[m,n]⊆[-,],所以n-m≤+1<.③当-≤t<0时,因为f(x),g(x)均为偶函数,因此n-m≤也成立.综上所述,n-m≤.例8.(2020届安徽省马鞍山市高三)已知函数.(1)若在定义域内无极值点,求实数的取值范围;(2)求证:当时,恒成立.【答案】(1);(2)见解析【解析】(1)由题意知,令,则,当时,在上单调递减, 当时,在上单调递增, 又,∵在定义域内无极值点,∴ 又当时,在和上都单调递增也满足题意,所以(2),令,由(1)可知在上单调递増,又,所以存在唯一的零点,故在上单调递减,在上单调递増,∴由知 即当时,恒成立.例9.(2021·安徽高三)已知函数()2ln ,f x x ax x =+-其中0.a ≥(1)讨论()f x 的单调性;(2)若当2x >时()31,12f x x <+恒成立,求a 的取值范围. 【答案】(1)当18a ≥时,函数()f x 在()0,∞+内单增;当108a <<,()f x 在1181180,,4,4a a a a -⎛--+⎛⎫ ⎪ ⎪⎝⎭⎝⎭∞内单增,在11811844a a a a -+-⎛ ⎝⎭内单减;当0a =时,()f x 在(0,1)内单增,在()1,+∞内单减; (2)7ln20,4-⎡⎤⎢⎥⎣⎦. 【详解】(1)()212121,0ax x f x ax x x x-+=+'-=> 若()()110,21,x a f x ax f x x x-==+-=-在(0,1)内单增,在()1,+∞内单减. 若0,a >由2210ax x -+=知, 18a ∆=-.当Δ180,a =-≤即18a ≥时,2210,ax x -+≥此时()f x 在()0,∞+内单增. 当1Δ180,08a a =-><<时,1184a x a-=,此时()f x 在1181180,,4,4a a a a -⎛-+-+⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∞内单增,在118118,44a a a a --+-⎛⎫ ⎪ ⎪⎝⎭内单减. 综上所述:当18a ≥时,函数()f x 在()0,∞+内单增. 当108a <<,()f x 在1181180,,4,4a a a a -⎛-+-+⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∞内单增,在118118,44a a a a --+-⎛⎫ ⎪ ⎪⎝⎭内单减. 当0a =时,()f x 在(0,1)内单增,在()1,+∞内单减.(2)()3112f x x <+即231ln 1,2x ax x x +-<+ 即2311ln 2ax x x x <++- 即22111ln 2x a x x x x <++-,2x >,令()22111ln ,2,2x g x x x x x x=++-> 则()23311212ln 2x g x x x x -=---'33264ln ,22x x x x x--+=> 令()()324264ln ,2,320h x x x x x h x x x=--+>=-+>'. 所以()h x 在2x >时单增,()()()24ln222ln410h x h >=-=->,因此()0g x '>, ()g x 在2x >时单增,()()7ln224g x g ->=,于是7ln2.4a -≤ 故a 的取值范围是7ln20,.4-⎡⎤⎢⎥⎣⎦例10.(2020届山西省孝义市一模)已知函数. (1)讨论函数的单调性; (2)当时,曲线总在曲线的下方,求实数的取值范围.【答案】(1)当时,函数在上单调递增;当时,在上单调递增,在上单调递减;(2).【解析】(1)由可得的定义域为,且, 若,则,函数在上单调递增; 若,则当时,,在上单调递增, 当时,,在上单调递减. 综上,当时,函数在上单调递增; 当时,在上单调递增,在上单调递减.(2)原命题等价于不等式在上恒成立, 即,不等式恒成立.∵当时,,∴, 即证当时,大于的最大值.又∵当时,,∴,综上所述,.【总结提升】不等式恒成立问题常见方法:① 分离参数恒成立(即可)或恒成立(即可);② 数形结合( 图象在 上方即可);③ 讨论最值或恒成立;④ 讨论参数.本题是利用方法 ① 求得的范围. 【压轴训练】1.(2021·长宁区·上海市延安中学高三)设函数()f x 的定义域为R ,满足()()22f x f x +=,且当(]0,2x ∈时,()194f x x x =+-.若对任意(],x m ∈-∞,都有()23f x ≥-,则m 的取值范围是( )A .215⎛⎤-∞ ⎥⎝⎦,B .163⎛⎤-∞ ⎥⎝⎦,C .184⎛⎤-∞ ⎥⎝⎦,D .194⎛⎤-∞ ⎥⎝⎦,【答案】D【详解】当(]0,2x ∈时,()194f x x x =+-的最小值是1,4-由()()22f x f x +=知,当(]2,4x ∈时,()()192224f x x x ⎡⎤=-+-⎢⎥-⎣⎦的最小值是1,2-当(]4,6x ∈时,()()194444f x x x ⎡⎤=-+-⎢⎥-⎣⎦的最小值是1,-要使()23f x ≥-,则()1924443x x -+-≥--,解得:194x ≤或16.3x ≥2.(2020·河津中学高三)若函数2()cos sin 3f x a x x x ⎛⎫=-+ ⎪⎝⎭(其中a 为参数)在R 上单调递增,则a 的取值范围是( ) A .10,3⎡⎤⎢⎥⎣⎦B .11,,33⎛⎫⎛⎫-∞-+∞ ⎪⎪⎝⎭⎝⎭C .11,33⎡⎤-⎢⎥⎣⎦D .1,03⎡⎤-⎢⎥⎣⎦【答案】C【详解】函数1()sin sin 23f x a x x x =-+在R 上单调递增,等价于2245()cos cos21cos cos 0333f x a x x x a x =-+=-++'在R 上恒成立.设cos x t =,则245()033g t t at =-++在[1,1]-上恒成立,所以45(1)0,3345(1)0,33g a g a ⎧=-++⎪⎪⎨⎪-=--+⎪⎩解得.3.(2021·全国高三专题练习)已知函数()ln f x x =,若对任意的12,(0,)x x ∈+∞,都有()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦恒成立,则实数k 的最大值是( )A .1-B .0C .1D .2【答案】B【详解】设12x x >,因为()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦,变形为()()()()121212212ln ln x x x x x x kx x x -+->+,即12212ln x kx x x x >-,等价于1221ln 1x kx x x >-,因为120x x >>,令12x t x =(1t >),则ln 1k t t >-,即(1)ln k t t <-.设()()1ln g t t t =-(1t >),则min ()k g t <.当1t >时1()ln 10g t t t'=+->恒成立,故()g t 在()1,+∞上单调递增,()(1)0g t g >=.所以0k ≤,k 的最大值为0.4.(2019·天津高考模拟)已知函数23ln ,1(),46,1x x f x x x x -≤⎧=⎨-+>⎩ 若不等式()|2|f x x a ≥-对任意(0,)x ∈+∞上恒成立,则实数a 的取值范围为( )A .13,3e ⎡⎤-⎢⎥⎣⎦ B .[3,3ln 5]+ C .[3,4ln 2]+D .13,5e ⎡⎤-⎢⎥⎣⎦【答案】C【解析】由题意得:设g(x)=|2|x a -,易得a >0,可得2,2g(x)=2,2a x a x a x a x ⎧-≥⎪⎪⎨⎪-+⎪⎩<,g(x)与x 轴的交点为(,0)2a,① 当2a x ≥,由不等式()|2|f x x a ≥-对任意(0,)x ∈+∞上恒成立,可得临界值时,()g()f x x 与相切,此时2()46,1f x x x x =-+>,()2,2ag x x a x =-≥,可得'()24f x x =-,可得切线斜率为2,242x -=,3x =,可得切点坐标(3,3), 可得切线方程:23y x =-,切线与x 轴的交点为3(,0)2,可得此时322a =,3a =, 综合函数图像可得3a ≥;② 同理,当2ax <,由()g()f x x 与相切, (1)当2()46,1f x x x x =-+>,()2,2a g x x a x =-+<,可得'()24f x x =-,可得切线斜率为-2,242x -=-,1x =,可得切点坐标(1,3),可得切线方程25y x =-+,可得5a =,综合函数图像可得5a ≤,(2)当()3ln ,1f x x x =-≤,()2,2a g x x a x =-+<,()g()f x x 与相切,可得'1()f x x, 此时可得可得切线斜率为-2,12x -=-,12x =,可得切点坐标1(,32)2In +, 可得切线方程:1(32)2()2y In x -+=--,242y x In =-++可得切线与x 轴的交点为2(2,0)2In +,可得此时2222a In =+,42a In =+, 综合函数图像可得42a In ≤+, 综上所述可得342a In ≤≤+,故选C.5.(2020·广东佛山市·高三)(多选)命题:p 已知ABC 为锐角三角形,不等式cos cos log 0sin CAB≥恒成立,命题2:2q x x ax +在[1,2]x ∈上恒成立,在[1,2]上恒成立,则真命题的为( ) A .p q ∨ B .p q ∧C .p q ⌝∨D .p q ∧⌝【答案】AD 【详解】因为为锐角三角形,所以0,0,0222A B C πππ<<<<<<,所以2A B π+>,则022A B ππ>>->,所以0cos cos()sin 12A B B π<<-=<,所以cos 01sin AB<<,又0cos 1C <<,所以不等式cos cos log 0sin CA B≥恒成立,故命题p 是真命题;命题2:2q x x ax +在[1,2]x ∈上恒成立()min2x a ⇔+,在[1,2]上恒成立,故命题q 是假命题所以p q ∨,p q ∧⌝是真命题.6.(2020·福清西山学校高三)(多选)记函数()f x 与()g x 的定义域的交集为I ,若存在0x I ∈,使得对任意x I ∈,不等式()()fx g x -⎡⎤⎣⎦()00x x -≥恒成立,则称()()(),f x g x 构成“相关函数对”.下列所给的两个函数构成“相关函数对”的有( ) A .()xf x e =,()1g x x =+B .()ln f x x =,()1g x x= C .()f x x =,()2g x x =D .()f x x =,【答案】BD【详解】根据函数的新定义,可得两个函数的图象有一个交点,且交点的两侧图象一侧满足()()f x g x >,另一侧满足()()f x g x <,对于A 中,令()()()1xx f x g x e x ϕ=-=--,可得()1xx e ϕ'=-,当0x >时,()10xx e ϕ'=->,函数单调递增;当0x <时,()10x x e ϕ'=-<,函数单调递减,所以当0x =时,函数()x ϕ 取得最小值,最小值为()00ϕ=,即()0x ϕ≥,所以()()f x g x ≥恒成立,不符合题意;对于B 中,令()()()1ln ,0x f x g x x x x ϕ=-=->,可得()2110x x xϕ'=+>,所以函数()x ϕ单调递增,又由()()11ln110,ln 0e e eϕϕ=-<=->,设0x x =满足()00x ϕ=,且01x e <<,则对任意(0,)x ∈+∞,不等式()()f x g x -⎡⎤⎣⎦()00x x -≥恒成立,符合题意;对于C 中,函数()f x x =,()2g x x =,根据一次函数和二次函数的性质,可得函数()y f x =的图象由两个交点,此时不满足题意;对于D 中,令()()()1()2x x f x g x x ϕ=-=,可得()1211()ln 2022x x x ϕ-'=+>,所以()x ϕ在定义域[0,)+∞单调递增,又由()()1010,102ϕϕ=-<=>,所以方程()0x ϕ=只有一个实数根,设为0x ,则满足对任意x I ∈,不等式()()f x g x -⎡⎤⎣⎦()00x x -≥恒成立,符合题意. 7.(2020·浙江高三月考)已知1a >,若对于任意的1[,)3x ∈+∞,不等式()4ln 3e ln x x x a a -≤-恒成立,则a 的最小值为______.【答案】3e【详解】()()4ln 3ln 3ln 3ln x x e x x a a x x ae a x -≤-⇔-≤--()()3ln 3ln x x x x ae ae ⇔-≤-令()ln f x x x =-,()111x f x x x-'=-=,∴()f x 在[)1,+∞上单调递增.∵1a >,1[,)3x ∈+∞,∴[)3,1,x e x a ∈+∞,∴33x x e ae x x a ⇔≤⇔≤恒成立,令()3x xg x e=,只需max ()a g x ≥,()33x xg x e -'=,∴1[,1),()0,()3x g x g x ∈'>单调递增,∴(1,),()0,()x g x g x ∈+∞'<单调递减,1x ∴=时,()g x 的最大值为3e ,∴3a e≥, ∴a 的最小值为3e. 8.(2020·全国高三月考)已知函数()()ln 202xaf x ae a x =+->+,若()0f x >恒成立,则实数a 的取值范围为______. 【答案】(),e +∞ 【详解】()ln202x af x ae x =+->+,则()ln ln ln 22x a e a x ++>++,两边加上x 得到()()()ln 2ln ln 2ln 2ln 2x x aex a x x ex ++++>+++=++,x y e x =+单调递增,()ln ln 2x a x ∴+>+,即()ln ln 2a x x >+-,令()()ln 2g x x x =+-,则()11121x g x x x --'=-=++,因为()f x 的定义域为()2,-+∞()2,1x ∴∈--时,()0g x '>,()g x 单调递增,()1,x ∈-+∞,()0g x '<,()g x 单调递减, ()()max ln 11a g x g ∴>=-=,a e ∴>.9.(2021·安徽高三开学考试)已知函数()()11ln f x a x x =+++. (1)讨论函数()f x 的单调性;(2)对任意0x >,求证:()()22e 11exa x f x x +++>.【答案】(1)答案见解析;(2)证明见解析.【详解】(1)由题意得,()f x 的定义域为()0,∞+,()()1111a x f x a x x++'=++=, 当1a ≥-时,()0f x '>恒成立,∴()f x 在()0,∞+上单调递增. 当1a <-时,令()0f x '>,解得11x a <-+;令()0f x '<,解得11x a >-+, ∴()f x 在10,1a ⎛⎫-⎪+⎝⎭上单调递增,在1,1a ⎛⎫-+∞⎪+⎝⎭上单调递减. (2)要证()()22e 11e x a x f x x +++>,即证22e ln 0e x x x ⋅->.令()22e ln e xg x x x =⋅-,则()()22221e e e x x x g x x--'=.令()()221e e x r x x x =--,则()22e e x r x x '=-, 易得()r x '在()0,∞+上单调递增,且()212e e 0r '=-<,()223e 0r '=>,∴存在唯一的实数()01,2x ∈,使得()00r x '=,∴()r x 在()00,x 上单调递减,在()0,x +∞上单调递增.∵()00r <,()20r =, ∴当()0r x >时,2x >;当()0r x <时,02x <<,∴()g x 在()0,2上单调递减,在()2,+∞上单调递增,∴()()21ln 20g x g ≥=->.综上,22e ln 0e x x x ⋅->,即()()22e 11exa x f x x +++>.10.(2020·山东高考模拟)已知函数2()ln 2()f x x a x x a R =+-∈.(1)求()f x 的单调递增区间;(2)若函数()f x 有两个极值点1212,()x x x x <且12()0f x mx -≥恒成立,求实数m 的取值范围.【答案】(1)12a ≥时,增区间为(0,)+∞;0a ≤时,增区间为1()2++∞;102a <<时,增区间为,)+∞;(2)3(,ln 2]2-∞--. 【解析】(1)函数()f x 的定义域为(0,)+∞,222'()22a x x af x x x x-+=+-=,令2220x x a -+=,484(12)a a ∆=-=-,1︒若12a ≥时,0∆≤,'()0f x ≥在(0,)+∞恒成立,函数()f x 在(0,)+∞上单调递增. 2︒若12a <,>0∆,方程2220x x a -+=,两根为1x =2x =,当0a ≤时,20x >,2(,)x x ∈+∞,'()0f x >,()f x 单调递增. 当102a <<时,1>0x ,20x >, 1(0,)x x ∈,'()0f x >,()f x 单调递增,2(,)x x ∈+∞,'()0f x >,()f x 单调递增.综上,12a ≥时,函数()f x 单调递增区间为(0,)+∞, 0a ≤时,函数()f x单调递增区间为1()2+∞, 102a <<时,函数()f x单调递增区间为1(0,2-,1()2++∞. (2)由(1)知,()f x 存在两个极值点1212,()x x x x <时,102a <<且121x x =+,122a x x ⋅=,则1112ax x +=,()1121a x x =-,且1102x <<,2112x <<. 此时()120f x mx ≥-恒成立,可化为()()21111112121ln 21f x x x x x x m x x +--≤=- ()()11111111121ln 11x x x x x x x -+-+--=-1111112ln 1x x x x =-++-恒成立, 设1()12ln 1g x x x x x =-++-,1(0,)2x ∈,2221(1)1'()122ln 2ln (1)(1)x g x x xx x --=-++-=+--2(2)2ln (1)x x x x -=+-, 因为102x <<,所以(2)0x x -<,2ln 0x <,所以)'(0g x <,故()g x 在1(0,)2单调递减,13()ln 222g x g ⎛⎫>=-- ⎪⎝⎭,所以实数m 的取值范围是3(,ln 2]2-∞--.11.(2021·黑龙江哈尔滨市·哈尔滨三中高三)已知()()ln 0f x x mx m =->. (1)若()y f x =在点()()1,1f 处的切线平行于x 轴,求其单调区间和极值;(2)若不等式()21112f x xmx ++≤对于任意的0x >恒成立,求整数m 的最小值. 【答案】(1)增区间为()0,1,减区间为()1,+∞,()f x 的极大值为1-,无极小值;(2)2. 【详解】(1)()1f x m x'=-,则()110f m '=-=,1m ∴=, ()ln f x x x ∴=-,定义域为(0,)+∞,()111xf x x x-'=-=令()0f x '>,得01x <<;令()0f x '<,得1x >()f x ∴的增区间为()0,1,减区间为()1,+∞,且()f x 的极大值为()11f =-,无极小值.(2)因为0m >,所以()21112f x xmx ++≤对于任意的0x >恒成立,可化为21ln 122x x m x x ++≥+,设()2ln 12x x h x x x++=+,则()()()()()()2222212(ln 1)(22)12ln 22x x x x x x x x x x h x x x x x ⎛⎫++-+++ ⎪-++⎝⎭'==++, 设()2ln g x x x =+,则()2ln g x x x =+单调增,且111112ln 2ln 2ln 4022222g ⎛⎫=+=-=-< ⎪⎝⎭,()10g >,01,12x ⎛⎫∴∃∈ ⎪⎝⎭使()00g x =,即 ()00h x '=,所以002ln 0x x +=,所以当012x x <<时,0()()0g x g x <=,()0h x '>, 当01x x <<时,0()()0g x g x >=,()0h x '<,()h x ∴在()00,x 单调递增,在()0,x +∞单调递减()()000022max000001ln 1112,12222x x x h x h x x x x x x +++⎛⎫∴====∈ ⎪++⎝⎭()()021,2m h x ∴≥∈,m ∴的最小整数值为2。
41 导数中不等式的证明问题(学生版)
专题41导数中不等式的证明问题【高考真题】1. (2022•北京)已知函数/(x) = e*ln(l+x).(1)求曲线y = fa)在点(。
,/(0))处的切线方程;(2)设g*)=rα),讨论函数g*)在。
+8)上的单调性;(3)证明:对任意的S, £€(0, +∞),有"s+E)>f(s)+f(f).2. (2022•浙江)设函数/(X) = ± + lnx(x>0). Ix(1)求/O)的单调区间;(2)已知α"eR,曲线y =7。
)上不同的三点(国,/(8)),(巧Ja2)),(孙/(巧))处的切线都经过点3 3.证明:(i )⅛α> e ,则O<b-f(α) <g(∕-1);・・-4⅛.z% mf2 e -4 112 e —。
(11)若OVaVe, X] <A⅛<Λ⅞ ,贝∣]一 + -^-V — + 一< -- T -e oe Xy Xy ci oe(注:e = Z71828…是自然对数的底数)3. (2022・新高考∏)已知函数/(x) = XeS-e,(1)当。
=1时,讨论/*)的单调性;(2)当“>。
时,/(x)v-1,求α的取值范围;(3)设〃eN*,证明:-/= + -/^=+,,+T^=>ln(72 + 1)- √12+ 1 √22+2 y∣n2+n【方法总结】构造法证明不等式是指在证明与函数有关的不等式时,根据所要证明的不等式,构造与之相关的函数,利用函数单调性、极值、最值加以证明.常见的构造方法有:(1)直接构造法:证明不等式力r)>g(x)(∕(x) Vga))转化为证明y(x)—g(x)>o(/u)—g(X)V0),进而构造辅助函数〃(X)= 火防一g(x);(2)适当放缩构造法:X一是根据已知条件适当放缩,二是利用常见的放缩结论,如lnx≤r-l, e v≥r+l, InκVχVeYQO),币≤ln(x + l)≤x(x>-1); (3)构造“形似”函数:稍作变形再构造,对原不等式同解变形,如移项、通分、取对数,把不等式转化为左、右两边是相同结构的式子的形式,根据“相同结构”构造辅助函数;(4)构造双函数:若直接构造函数求导难以判断符号,导函数零点也不易求得,因此函数单调性与极值点都不易获得,则可构造函数Kr)和g(x),利用其最值求解.【题型突破】1 .己知函数y(x)="—αdnχ-l(a£R, tz≠O).(I)讨论函数AX)的单调性;(2)当x>l 时,求证:—^>⅛-1. x—1 e A2 .已知函数外)=1—3」,g(x)=χ-Inx.(1)证明:g(x)≥l;(2)证明:(x-inx)成x)>l-±∙3 . (2021 •全国乙)设函数/(x)=ln(α-x),已知X=O是函数y=M(x)的极值点.⑴求〃;(2)设函数g。
高考数学一轮总复习课件:专题研究-利用导数证明不等式
2a2-4或x=a+
a2-4 2.
当x∈(0,a- 2a2-4),(a+ 2a2-4,+∞)时,f′(x)<0;当
x∈(a- 2a2-4,a+ 2a2-4)时,f′(x)>0.
所以f(x)在
0,a-
a2-4
2
,
a+
2a2-4,+∞
上单调递
减,在a- 2a2-4,a+ 2a2-4上单调递增.
(2)证明:由(1)知,f(x)存在两个极值点时,当且仅当a>2时
课外阅读
一、赋值法证明正整数不等式 (1)函数中与正整数有关的不等式,其实质是利用函数性质 证明数列不等式,证明此类问题时常根据已知的函数不等式, 用关于正整数n的不等式替代函数不等式中的自变量.通过多次 求和达到证明的目的.此类问题一般至少两问,所证的不等式 常由第一问根据待证式的特征而得到. (2)已知函数式为指数不等式(或对数不等式),而待证不等式 为与对数有关的不等式(或与指数有关的不等式),还要注意指、 对数式的互化,如ex>x+1可化为ln(x+1)<x等.
所以函数h′(x)=ex+1-
1 x+1
在(-1,+∞)上有唯一零点
x0,且x0∈-12,0. 因为h′(x0)=0,所以ex0+1=x0+1 1, 即ln(x0+1)=-(x0+1). 当x∈(-1,x0)时,h′(x)<0,h(x)单调递减;当x∈(x0,+
∞)时,h′(x)>0,h(x)单调递增,
(2)若f(x)存在两个极值点x1,x2,证明:
f(x1)-f(x2) x1-x2
<a
-2.
【思路】 (1)求f(x)的定义域,对函数f(x)求导,对参数a进
行分类讨论,即可判断f(x)的单调性;(2)结合(1),求出f(x)存在
2023届高考数学导数满分通关:极值点偏移之积(x1x2)型不等式的证明
专题25 极值点偏移之积(x 1x 2)型不等式的证明【例题选讲】[例1] 已知f (x )=x ln x -12mx 2-x ,x ∈R .(1)当m =-2时,求函数f (x )的所有零点;(2)若f (x )有两个极值点x 1,x 2,且x 1<x 2,求证:x 1x 2>e 2(e 为自然对数的底数).解析 (1)当m =-2时,f (x )=x ln x +x 2-x =x (ln x +x -1),x >0.设g (x )=ln x +x -1,x >0, 则g ′(x )=1x+1>0,于是g (x )在(0,+∞)上为增函数.又g (1)=0,所以g (x )有唯一的零点x =1,从而函数f (x )有唯一的零点x =1. (2)欲证x 1x 2>e 2,只需证ln x 1+ln x 2>2.由函数f (x )有两个极值点x 1,x 2,可得函数f ′(x ) 有两个零点,又f ′(x )=ln x -mx ,所以x 1,x 2是方程f ′(x )=0的两个不同实根.于是有⎩⎪⎨⎪⎧ln x 1-mx 1=0, ①ln x 2-mx 2=0, ②①+②可得ln x 1+ln x 2=m (x 1+x 2),即m =ln x 1+ln x 2x 1+x 2,②-①可得ln x 2-ln x 1=m (x 2-x 1),即m =ln x 2-ln x 1x 2-x 1,从而可得ln x 2-ln x 1x 2-x 1=ln x 1+ln x 2x 1+x 2,于是ln x 1+ln x 2=⎝⎛⎭⎫1+x 2x 1ln x 2x 1x 2x 1-1.由0<x 1<x 2,设t =x 2x 1,则t >1.因此ln x 1+ln x 2=(1+t )ln t t -1,t >1.要证ln x 1+ln x 2>2,即证(t +1)ln t t -1>2(t >1),即证当t >1时,有ln t >2(t -1)t +1.令h (t )=ln t -2(t -1)t +1(t >1),则h ′(t )=1t -2(t +1)-2(t -1)(t +1)2=(t -1)2t (t +1)2>0,所以h (t )为(1,+∞)上的增函数.因此h (t )>ln 1-2(1-1)1+1=0.于是当t >1时,有ln t >2(t -1)t +1.所以有ln x 1+ln x 2>2成立,即x 1x 2>e 2.[例2] 已知函数()ln g x x bx =+.(1)函数()g x 有两个不同的零点12, x x ,求实数b 的取值范围; (2)在(1)的条件下,求证:212e x x >.解析 (1)()g x 有两个不同的零点12, x x ,即ln 0x bx +=有两个不同的根,ln xb x∴=-.设ln ()x f x x =-,21ln ()xf x x -'∴=-,令()0f x '>可得:1ln 0e x x -<⇒>. ()f x ∴在()0, e 单调递减,在()e, +∞单调递增,且x →+∞时,()0f x →,()1e e f =-,1, 0e b ⎛⎫∴∈- ⎪⎝⎭ (2)思路一:不妨设21x x >,由已知可得:1122ln 0ln 0x bx x bx +=⎧⎨+=⎩,()1212ln x x b x x ∴=-+.即只需证明:()122b x x -+>,在方程1122ln 0ln 0x bx x bx +=⎧⎨+=⎩可得:()2121ln xb x x x -=.2112lnx x b x x ∴=-,∴只需证明:()211212ln 2xx x x x x -+>-. 即()2221112221222111111lnln221ln 211x x x x x x x xx x x x x x x x x x ⎛⎫+ ⎪⎛⎫⎛⎫⎝⎭+>⇔>⇔+>- ⎪ ⎪-⎝⎭⎝⎭-. 令21x t x =,则1t >,所以只需证明不等式:()()()1ln 211ln 220t t t t t t +>-⇒+-+>①, 设()()1ln 22h t t t t =+-+,()10h =,()11ln 2ln 1t h t t t t t+'∴=+-=+-,()10h '= ()221110t h t t t t -''∴=-=>,()h t ∴在()1, +∞单调递增.()()10h t h ''∴>=.()h t ∴在()1, +∞单调递增,()()10h t h ∴>=,即不等式①得证. ()122b x x ∴-+>即12ln 2x x >,212e x x ∴>.思路二:所证不等式221212e e x x x x >⇔>,因为()ln g x x bx =+有两不同零点12, x x .12, x x ∴满足方程ln ln 0xx bx b x+=⇔=-,由(1)可得:120e x x <<<. 考虑设ln ()xf x x=-,12()()f x f x ∴=,由(1)可得:()f x 在()0, e 单调递减,在()e,+∞单调递增. 120e x x <<<,()()212e 0, e , 0, e x x ∴∈∈.结合()f x 的单调性可知:只需证明()212e f x f x ⎛⎫< ⎪⎝⎭.12()()f x f x =,所以只需证明:222222e e ()()()()0f x f f x f x x <⇔-<.即证明:()222222222222222222lnln e e 0ln ln 02e ln 0e x x x x x x x e x x x x -<⇔-<⇔-+<.设()()222()2e ln , e, h x x x x x =-+∈+∞,则()e 0h =.()()2221e 4e 2ln 32ln h x x x x x x x x x x '∴=-+-=--,则()e 0h '=.()()2222e e 321ln 12ln h x x x x x''∴=+-+=+-,则()e 0h ''=.()h x ''单调递减,()()0h x h e ''''∴<=,()h x '∴单调递减,()()e 0h x h ''∴<=.单调递减,,即得证.得证,从而有. [例3] 已知函数f (x )=ln x -ax (a ∈R ). (1)求函数f (x )的单调区间;(2)当a =1时,方程f (x )=m (m <-2)有两个相异实根x 1,x 2,且x 1<x 2,求证:x 1·x 22<2. 解析 (1)由题意得,f ′(x )=1x -a =1-ax x(x >0).当a ≤0时,由x >0,得1-ax >0,即f ′(x )>0,所以f (x )在(0,+∞)上单调递增. 当a >0时,由f ′(x )>0,得0<x <1a ,由f ′(x )<0,得x >1a ,所以f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. 综上,当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减.(2)由题意及(1)可知,方程f (x )=m (m <-2)的两个相异实根x 1,x 2满足ln x -x -m =0, 且0<x 1<1<x 2,即ln x 1-x 1-m =ln x 2-x 2-m =0. 由题意,可知ln x 1-x 1=m <-2<ln 2-2,又由(1)可知,f (x )=ln x -x 在(1,+∞)上单调递减,故x 2>2. 令g (x )=ln x -x -m ,则g (x )-g ⎝⎛⎭⎫2x 2=-x +2x 2+3ln x -ln 2. 令h (t )=-t +2t 2+3ln t -ln 2(t >2),则h ′(t )=-(t -2)2(t +1)t 3.当t >2时,h ′(t )<0,h (t )单调递减,所以h (t )<h (2)=2ln 2-32<0,所以g (x )<g ⎝⎛⎭⎫2x 2. 因为x 2>2且g (x 1)=g (x 2),所以h (x 2)=g (x 2)-g ⎝⎛⎭⎫2x 22=g (x 1)-g ⎝⎛⎭⎫2x 22<0,即g (x 1)<g ⎝⎛⎭⎫2x 22.因为g (x )在(0,1)上单调递增,所以x 1<2x 22,故x 1·x 22<2. 总结提升 本题第(2)问要证明的方程根之间的不等式关系比较复杂,此类问题可通过不等式的等价变()h x ∴()()e 0h x h ∴<=()222222e ln 0x x x -+<()212e f x f x ⎛⎫∴<⎪⎝⎭221122e e x x x x >⇔>形,将两个根分布在不等式两侧,然后利用函数的单调性转化为对应函数值之间的大小关系即可.显然构造函数的关键仍然是消掉参数,另外根据函数性质确定“x 2>2”是解题的一个关键点,确定其范围之后才能将x 1与2x 22化归到函数的同一个单调区间上,这也是此类问题的一个难点——精确定位.[例4] 已知函数()ln f x x ax b =-+(a ,b ∈R )有两个不同的零点1x ,2x . (1)求()f x 的最值; (2)证明:1221x x a <. 思维引导 (1)求出导函数,由函数()f x 有两个不同的零点,则()f x 在()0, +∞内必不单调,得0a >,进而得到函数的单调性,即可求出函数的最值.(2)由题意转化为证明()212211221221ln 2x x x x xx x x x x -<=-+,不妨设12x x <,令()120, 1x t x =∈,只需证明21ln 2t t t <-+,设()12ln h t t t t=-+,根据函数的单调性,即可作出证明.解析 (1)1'()f x a x=-,()f x 有两个不同的零点,∴()f x 在()0, +∞内必不单调,故0a >, 此时'()0f x >,解得1x a <,∴()f x 在10, a ⎛⎫ ⎪⎝⎭上单增,1, a ⎛⎫+∞ ⎪⎝⎭上单减, ∴max 1()()ln 1f x f a b a==--+,无最小值.(2)由题知1122ln 0ln 0x ax b x ax b -+=⎧⎨-+=⎩两式相减得()1122ln 0x a x x x --=,即1212lnx x a x x =-,故要证1221x x a <,即证21212212(ln )x x x x x x -<,即证221121221221(l )n 2x x x x x x x x x x -<=-+,不妨设12x x <,令()120, 1x t x =∈,则只需证21ln 2t t t <-+,设21()ln 2g t t t t=--+, 则212ln 11'()2ln 1t t t g t t t tt-+=-+=,设1()2ln h t t t t=-+,则22(1)'()0t h t t -=-<,∴()h t 在()0, 1上单减,∴()(1)0h t h >=,∴()g t 在()0, 1上单增,∴()(1)0g t g <=, 即21ln 2t t t<-+在(0, 1)t ∈时恒成立,原不等式得证.总结提升 体会在用12, x x 表示a 时为什么要用两个方程,而不是只用21112ln 0x x ax --=来表示a ?如果只用1x 或2x 进行表示,则1ln x 很难处理,用12, x x 两个变量表示a ,在代入的时候有21lnx x 项,即可以考虑利用换元法代替21x x ,这也体现出双变量换元时在结构上要求“平衡”的特点.【对点训练】1.已知函数f (x )=x ln x 的图象与直线y =m 交于不同的两点A (x 1,y 1),B (x 2,y 2).求证:x 1x 2<1e 2.1.解析 f ′(x )=ln x +1,由f ′(x )>0得x >1e ,由f ′(x )<0得0<x <1e,∴函数f (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增.可设0<x 1<1e <x 2. 方法一 构造函数F (x )=f (x )-f ⎝⎛⎭⎫1e 2x ,则 F ′(x )=f ′(x )+1e 2x 2f ′⎝⎛⎭⎫1e 2x =1+ln x +1e 2x 2·⎝⎛⎭⎫1+ln 1e 2x =(1+ln x )·⎝⎛⎭⎫1-1e 2x 2, 当0<x <1e 时,1+ln x <0,1-1e 2x 2<0,则F ′(x )>0,得F (x )在⎝⎛⎭⎫0,1e 上是增函数,∴F (x )<F ⎝⎛⎭⎫1e =0, ∴f (x )<f ⎝⎛⎭⎫1e 2x ⎝⎛⎭⎫0<x <1e ,将x 1代入上式得f (x 1)<f ⎝⎛⎭⎫1e 2x 1,又f (x 1)=f (x 2),∴f (x 2)<f ⎝⎛⎭⎫1e 2x 1, 又x 2>1e ,1e 2x 1>1e ,且f (x )在⎝⎛⎭⎫1e ,+∞上单调递增,∴x 2<1e 2x 1,∴x 1x 2<1e 2. 方法二f (x 1)=f (x 2)即x 1ln x 1=x 2ln x 2,令t =x 2x 1>1,则x 2=tx 1,代入上式得x 1ln x 1=tx 1(ln t +ln x 1),得ln x 1=t ln t1-t. ∴x 1x 2<1e 2⇔ln x 1+ln x 2<-2⇔2ln x 1+ln t <-2⇔2t ln t1-t +ln t <-2⇔ln t -2(t -1)t +1>0.设g (t )=ln t -2(t -1)t +1 (t >1),则g ′(t )=(t -1)2t (t +1)2>0.∴当t >1时,g (t )为增函数,g (t )>g (1)=0,∴ln t -2(t -1)t +1>0.故x 1x 2<1e 2.2.已知函数()ln f x x ax =-. (1)讨论()f x 的单调性;(2)若函数()f x 有两个零点1x ,212()x x x <. ①求a 的取值范围;②证明:212e x x ⋅>. 2.解析 (1)()f x 的定义域为(0, )+∞,1()f x a x'=-, (ⅰ)当0a 时()0f x '>,()f x ∴在(0, )+∞上单调递增;(ⅰ)当0a >时,若1(0, )x a ∈,则()0f x '>,()f x 在1(0, )a 上单调递增;若1(, )x a ∈+∞,则()0f x '<,()f x 在区间1[, )a+∞上单调递减;综上:0a 时,()f x 在(0, )+∞上单调递增;0a >时,()f x 在1(0, )a 上单调递增,在1[, )a+∞上单调递减;(2)①由(1)知,0a 时,()f x 单调递增,()f x 至多一个零点,不合题意,当0a >时,()x 在1(0, )a 上单调递增,在区间1[, )a+∞上单调递减;11()()1max f x f ln a a==-,若函数()f x 有两个零点1x ,212()x x x <,由于0x →时,y →-∞,x →+∞时,y →-∞,所以11()ln 10f a a =->,解得1a e<,故所求a 的取值范围为10a e<<; ②证明:由题意:11ln x ax =,22ln x ax =,∴2121ln ln x x a x x -=-,要证212x x e ⋅>,只要证12ln ln 2x x +>,即12()2a x x +>. 只要证212112ln ln 2x x x x x x ->-+即证()2121ln 11t x t t t x -⎛⎫>=> ⎪+⎝⎭其中,令2(1)()ln (1)1t g t t t t -=->+,()()()()()2210 1, 1t g t g t t t -'=>∴+∞+,在单调递增, ()(1)g t g >0=,即()2121ln 11t x t t t x -⎛⎫>=> ⎪+⎝⎭其中成立, 故原不等式212e x x ⋅>成立.3.已知函数2()ln ()f x x x ax x a a =+-+∈R 在其定义域内有两个不同的极值点. (1)求a 的取值范围.(2)设()f x 的两个极值点为1x ,2x ,证明212e x x >.3.解析 (1)函数2()ln ()f x x x ax x a a =+-+∈R 的定义域为(0, )+∞,()ln 2f x x ax '=+.函数2()ln ()f x x x ax x a a =+-+∈R 在其定义域内有两个不同的极值点.∴方程()0f x '=在(0, )+∞有两个不同根;转化为函数ln ()xg x x=与函数2y a =-的图象在(0, )+∞上有两个不同交点. 又21ln ()xg x x-'=,即0e x <<时,()0g x '>,e x >时,()0g x '<, 故()g x 在(0, e)上单调增,在(e, )+∞上单调减.故()(e)g x g =极大1e=.又()g x 有且只有一个零点是1,且在0x →时,()g x →-∞,在在x →+∞时,()0g x →,故()g x 的草图如图,102e a ∴<-<,即102e a -<<.故a 的取值范围为1(, 0)2e-.(2)由(1)可知1x ,2x 分别是方程20lnx a +=的两个根,即11ln 2x ax =-,22ln 2x ax =-, 设12x x >,作差得1122ln 2()x a x x x =--.得1212ln2x x a x x -=-.要证明212x x e >.只需证明12ln ln 2x x +>.122()2a x x ⇐-+>,⇐121212ln()2x x x x x x +>-,即只需证明1122122()ln x x x x x x ->+, 令12x t x =,则1t >,只需证明2(1)ln 1t t t ->+, 设2(1)()ln 1t g t t t -=-+(1)t >,2(1)()0(1)t g t t t -'=>+.∴函数()g t 在(1, )+∞上单调递增, ()(1)g t g ∴>0=,故2(1)ln 1t t t ->+成立.212x x e ∴>成立. 4.已知函数f (x )=ln xx +a (a ∈R ),曲线y =f (x )在点(1,f (1))处的切线与直线x +y +1=0垂直.(1)试比较2 0182 019与2 0192 018的大小,并说明理由;(2)若函数g (x )=f (x )-k 有两个不同的零点x 1,x 2,证明:x 1x 2>e 2. 4.解析 (1)依题意得f ′(x )=x +ax -ln x (x +a )2,所以f ′(1)=1+a (1+a )2=11+a ,又曲线y =f (x )在点(1,f (1))处的切线与直线x +y +1=0垂直, 所以f ′(1)=1,即11+a=1,解得a =0.故f (x )=ln xx ,f ′(x )=1-ln x x 2.令f ′(x )>0,则1-ln x >0,解得0<x <e ;令f ′(x )<0,则1-ln x <0,解得x >e , 所以f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞).所以f (2 018)>f (2 019),即ln 2 0182 018>ln 2 0192 019,整理得ln 2 0182 019>ln 2 0192 018,所以2 0182 019>2 0192 018.(2)不妨设x 1>x 2>0,因为g (x 1)=g (x 2)=0,所以ln x 1-kx 1=0,ln x 2-kx 2=0, 可得ln x 1+ln x 2=k (x 1+x 2),ln x 1-ln x 2=k (x 1-x 2).要证x 1x 2>e 2,即证ln x 1x 2>2,只需证ln x 1+ln x 2>2,也就是证k (x 1+x 2)>2,即证k >2x 1+x 2. 因为k =ln x 1-ln x 2x 1-x 2,所以只需证ln x 1-ln x 2x 1-x 2>2x 1+x 2,即证ln x 1x 2>2(x 1-x 2)x 1+x 2.令x 1x 2=t (t >1),则只需证ln t >2(t -1)t +1(t >1). 令h (t )=ln t -2(t -1)t +1(t >1),则h ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0,故函数h (t )在(1,+∞)上是单调递增的,所以h (t )>h (1)=0,即ln t >2(t -1)t +1,所以x 1x 2>e 2. 5.已知函数f (x )=ln x +bx -a (a ∈R ,b ∈R )有最小值M ,且M ≥0.(1)求e a -1-b +1的最大值;(2)当e a -1-b +1取得最大值时,设F (b )=a -1b -m (m ∈R ),F (x )有两个零点为x 1,x 2(x 1<x 2),证明:2312e x x >.5.解析 (1)有题意, 当时,,在上单增,此时显然不成立,当时,令,得,此时在上单减,在上单增, (b ),即,所以,.所以的最大值为1.(2)当取得最大值时,,, 的两个零点为,,则,即,, 不等式恒成立等价于,两式相减得, 带入上式得,令,则,, 所以函数在上单调递增,(1),得证. 6.已知函数f (x )=(ln x -k -1)x (k ∈R ). (1)当x >1时,求f (x )的单调区间和极值;221()(0)b x bf x x x x x-'=-=>0b ()0f x '()f x (0,)+∞0b >()0f x '=x b =()f x (0,)b (,)b +∞M f ∴=10lnb a =+-1lnb a -1a b e -10a e b --11a e b --+11a e b --+1a lnb -=1()a lnbF b m m b b-=-=-()F x 1x 2x 12120;0lnx lnxm m x x -=-=11lnx mx =22lnx mx =2312x x e ⋅>12121222(2)3lnx lnx mx mx m x x +=+=+>11212212()x lnx x ln m x x m x x x =-⇒=-11211221211221223(1)3()(2)322x xlnx x x x x x x ln x x x x x x x --+⋅>⇔<=-++12(01)x t t x =<<3(1)(),(01)2t g t lnt t t -=-<<+2(1)(4)()0(2)t t g t t t --'=>+()g t (0,1)()g t g ∴<0=(2)若对任意x ∈[e ,e 2],都有f (x )<4ln x 成立,求k 的取值范围; (3)若x 1≠x 2,且f (x 1)=f (x 2),证明x 1x 2<e 2k . 6.解析 (1)f ′(x )=1x ·x +ln x -k -1=ln x -k .①当k ≤0时,因为x >1,所以f ′(x )=ln x -k >0,所以函数f (x )的单调递增区间是(1,+∞),无单调递减区间,无极值. ②当k >0时,令ln x -k =0,解得x =e k , 当1<x <e k 时,f ′(x )<0;当x >e k 时,f ′(x )>0.所以函数f (x )的单调递减区间是(1,e k ),单调递增区间是(e k ,+∞), 在(1,+∞)上的极小值为f (e k )=(k -k -1)e k =-e k ,无极大值.(2)由题意,f (x )-4ln x <0,即问题转化为(x -4)ln x -(k +1)x <0对任意x ∈[e ,e 2]恒成立, 即k +1>(x -4)ln xx对任意x ∈[e ,e 2]恒成立,令g (x )=(x -4)ln x x ,x ∈[e ,e 2],则g ′(x )=4ln x +x -4x 2.令t (x )=4ln x +x -4,x ∈[e ,e 2],则t ′(x )=4x+1>0,所以t (x )在区间[e ,e 2]上单调递增,故t (x )min =t (e)=4+e -4=e>0,故g ′(x )>0, 所以g (x )在区间[e ,e 2]上单调递增,函数g (x )max =g (e 2)=2-8e2.要使k +1>(x -4)ln x x 对任意x ∈[e ,e 2]恒成立,只要k +1>g (x )max ,所以k +1>2-8e 2,解得k >1-8e 2,所以实数k 的取值范围为⎝⎛⎭⎫1-8e 2,+∞. (3)法一 因为f (x 1)=f (x 2),由(1)知,当k >0时,函数f (x )在区间(0,e k )上单调递减,在区间(e k ,+∞)上单调递增,且f (e k +1)=0. 不妨设x 1<x 2,当x →0时,f (x )→0,当x →+∞时,f (x )→+∞,则0<x 1<e k <x 2<e k +1, 要证x 1x 2<e 2k ,只需证x 2<e 2k x 1,即证e k<x 2<e 2k x 1. 因为f (x )在区间(e k,+∞)上单调递增,所以只需证f (x 2)<f ⎝⎛⎭⎫e 2kx 1, 又f (x 1)=f (x 2),即证f (x 1)<f ⎝⎛⎭⎫e 2kx 1,构造函数h (x )=f (x )-f ⎝⎛⎭⎫e 2kx =(ln x -k -1)x -⎝⎛⎭⎫ln e 2kx -k -1e 2kx , 即h (x )=x ln x -(k +1)x +e 2k ⎝⎛⎭⎫ln x x -k -1x ,h ′(x )=ln x +1-(k +1)+e 2k⎝⎛⎭⎫ 1-ln x x 2 +k -1x 2=(ln x -k )x 2-e 2kx 2,当x ∈(0,e k )时,ln x -k <0,x 2<e 2k ,即h ′(x )>0,所以函数h (x )在区间(0,e k )上单调递增,h (x )<h (e k ), 而h (e k)=f (e k)-f ⎝⎛⎭⎫e 2ke k =0,故h (x )<0,所以f (x 1)<f ⎝⎛⎭⎫e 2kx 1,即f (x 2)=f (x 1)<f ⎝⎛⎭⎫e 2kx 1,所以x 1x 2<e 2k 成立. 法二 要证x 1x 2<e 2k 成立,只要证ln x 1+ln x 2<2k .因为x 1≠x 2,且f (x 1)=f (x 2),所以(ln x 1-k -1)x 1=(ln x 2-k -1)x 2,即x 1ln x 1-x 2ln x 2=(k +1)(x 1-x 2), x 1ln x 1-x 2ln x 1+x 2ln x 1-x 2ln x 2=(k +1)(x 1-x 2),即(x 1-x 2)ln x 1+x 2ln x 1x 2=(k +1)(x 1-x 2),k +1=ln x 1+x 2lnx 1x 2x 1-x 2,同理k +1=ln x 2+x 1ln x 1x 2x 1-x 2,从而2k =ln x 1+ln x 2+x 2ln x 1x 2x 1-x 2+x 1lnx 1x 2x 1-x 2-2,要证ln x 1+ln x 2<2k ,只要证x 2ln x 1x 2x 1-x 2+x 1lnx 1x 2x 1-x 2-2>0,不妨设0<x 1<x 2,则0<x 1x 2=t <1,即证ln t t -1+ln t1-1t -2>0,即证(t +1)ln t t -1>2,即证ln t <2·t -1t +1对t ∈(0,1)恒成立,设h (t )=ln t -2·t -1t +1,当0<t <1时,h ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0,所以h (t )在t ∈(0,1)上单调递增,h (t )<h (1)=0,得证,所以x 1x 2<e 2k .专题3 f '(x 1+x 22)型不等式的证明【例题选讲】[例1] 已知函数g (x )=ln x -ax 2+(2-a )x (a ∈R ). (1)求g (x )的单调区间;(2)若函数f (x )=g (x )+(a +1)x 2-2x ,x 1,x 2(0<x 1<x 2)是函数f (x )的两个零点,证明:f ′⎝⎛⎭⎫x 1+x 22<0.思维引导 (2)利用分析法先等价转化所证不等式:要证明f ′⎝⎛⎭⎫x 1+x 22<0,只需证明2x 1+x 2-ln x 1-ln x 2x 1-x 2<012(0)x x <<,即证明()1212122ln ln x x x x x x ->-+,即证明12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+,再令()120, 1x t x =∈,构造函数()()1ln 22h t t t t =+-+,利用导数研究函数()h t 单调性,确定其最值:()h t 在()0, 1上递增,所以()()10h t h <=,即可证得结论.解析 (1)函数g (x )=ln x -ax 2+(2-a )x 的定义域为(0,+∞), g ′(x )=1x -2ax +(2-a )=-(ax -1)(2x +1)x,①当a ≤0时,g ′(x )>0,则g (x )在(0,+∞)上单调递增;②当a >0时,若x ∈⎝⎛⎭⎫0,1a ,则g ′(x )>0,若x ∈⎝⎛⎭⎫1a ,+∞,则g ′(x )<0, 则g (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. (2)因为x 1,x 2是f (x )=ln x +ax 2-ax 的两个零点,所以ln x 1+ax 21-ax 1=0,ln x 2+ax 22-ax 2=0,所以a =ln x 1-ln x 2x 1-x 2+(x 2+x 1),又f ′(x )=1x +2x -a , 所以f ′⎝⎛⎭⎫x 1+x 22=2x 1+x 2+(x 1+x 2)-a =2x 1+x 2-ln x 1-ln x 2x 1-x 2,所以要证f ′⎝⎛⎭⎫x 1+x 22<0,只须证明2x 1+x 2-ln x 1-ln x 2x 1-x 2<0,即证明2(x 1-x 2)x 1+x 2>ln x 1-ln x 2,即证明()12112221ln *1x x x x x x ⎛⎫- ⎪⎝⎭>+ 令()120, 1x t x =∈,则()()1ln 22h t t t t =+-+,则()1ln 1h t t t =+-', ()2110h t t t=-'<'. ∴()h t '在()0, 1上递减, ()()10h t h '>=',∴()h t 在()0, 1上递增, ()()10h t h <=.所以()*成立,即1202x x f +⎛⎫< ⎪⎝⎭'.[例2] 已知函数f (x )=x 2+ax +b ln x ,曲线y =f (x )在点(1,f (1))处的切线方程为y =2x . (1)求实数a ,b 的值;(2)设F (x )=f (x )-x 2+mx (m ∈R ),x 1,x 2 (0<x 1<x 2)分别是函数F (x )的两个零点,求证:F '(x 1x 2)<0(F '(x )为函数F (x )的导函数).解析 (1) a =1,b =-1;(2),,,因为分别是函数的两个零点,所以,两式相减,得,,要证明,只需证. 思维引导1 因为,只需证.令,即证,令,则,所以函数在上单调递减,,即证,由上述分析可知.总结提升 这是极值点偏移问题,此类问题往往利用换元把转化为的函数,常把的关系变形为齐次式,设等,构造函数来解决,可称之对称化构造函数法. 思维引导2 因为,只需证,设2()ln ln Q x x x =-2(0)x x <<,则211()0Q x xx '=-=-==<,所以函数在上单调递减,,即证.由上述分析可知.总结提升 极值点偏移问题中,由于两个变量的地位相同,将待证不等式进行变形,可以构造关于(或)的一元函数来处理.应用导数研究其单调性,并借助于单调性,达到待证不等式的证明.此乃主元法.思维引导3 要证明,只需证,即证易得.()2ln f x x x x =+-()()1ln F x m x x =+-()11F x m x'=+-12, x x ()F x ()()11221ln 1ln m x x m x x +=⎧⎪⎨+=⎪⎩1212ln ln 1x x m x x -+=-1212ln ln 1x x F m x x -'=+=-0F '<1212ln ln x x x x -<-120x x <<1122ln ln ln 0x x x x -⇔>()0,1t =12ln 0t t t -+>()()12ln 01h t t t t t =-+<<()()22212110t h t t t t-'=--=-<()h t ()0, 1()()10h t h >=12ln 0t t t-+>0F '<12, x x t 12, x x 12111222, ln , , x x x xt t t x x t e x x -===-=120x x <<12ln ln 0x x -()Q x ()20, x ()()20Q x Q x >=2ln ln x x ->0F '<1x 2x 0F '<1212ln ln x x x x -<-1212ln ln x x x x ->-总结提升 极值点偏移问题中,如果等式含有参数,则消参,有指数的则两边取对数,转化为对数式,通过恒等变换转化为对数平均问题,利用对数平均不等式求解,此乃对数平均法.[例3] 已知函数2()(2)ln (0)f x x a x a x a =+-->.(1)若0x ∀>,使得2()33f x a a >-恒成立,求a 的取值范围.(2)设11),( P x y ,22),( Q x y 为函数()f x 图象上不同的两点,PQ 的中点为00),( M x y ,求证:f (x 1)-f (x 2)x 1-x 2<f '(x 0).解析 (1)()233f x a a >-恒成立,即()2330f x a a -+>恒成立, 令()()233g x f x a a =-+,()()()1222x x a a g x x a x x-+'=+--=, 由于012a-<<,则()g x 在()0,1单调递减,在()1,+∞单调递增,故()()213410g x g a a ≥=-+->,解得1,13a ⎛⎫∈ ⎪⎝⎭.(2)因为()00,M x y 为PQ 的中点,则1202x x x +=, 故()00120122222a af x x a x x a x x x '=+--=++--+, ()()()()221211122212122ln 2ln f x f x x a x a x x a x a x x x x x -+-----+=--()()22112122122lnx x x a x x a x x x -+---=-121212ln2x a x x x a x x =++---, 故要证()()()12012f x f x f x x x -'<-,即证121212ln2x a x ax x x x -<--+, 由于0a >,即证121212ln2x x x x x x >-+.不妨假设120x x >>, 只需证明()1212122ln x x x x x x ->+,即12112221ln 1x x xx x x ⎛⎫- ⎪⎝⎭>+.设121x t x =>,构造函数()()21ln 1t h t t t -=-+,()()()221'01t h t t t -=>+,则()()10h t h >=,则有12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+,从而()()()12012f x f x f x x x -'<-. [例4] 已知函数f (x )=e x -12x 2-ax 有两个极值点x 1,x 2(e 为自然对数的底数).(1)求实数a 的取值范围; (2)求证:f (x 1)+f (x 2)>2.解析 (1)由于f (x )=e x -12x 2-ax ,则f ′(x )=e x -x -a ,设g (x )=f ′(x )=e x -x -a ,则g ′(x )=e x -1,令g ′(x )=e x -1=0,解得x =0.所以当x ∈(-∞,0)时,g ′(x )<0;当x ∈(0,+∞)时,g ′(x )>0.所以g (x )min =g (0)=1-a . ①当a ≤1时,g (x )=f ′(x ) ≥0,所以函数f (x )单调递增,没有极值点;②当a >1时,g (x )min =1-a <0,且当当x →-∞时,g (x )→+∞;当x →+∞时,g (x )→+∞. 此时,g (x )=f ′(x )=e x -x -a 有两个零点x 1,x 2,不妨设x 1<x 2,则x 1<0<x 2, 所以函数f (x )=e x -12x 2-ax 有两个极值点时,实数a 的取值范围是(1,+∞);答案速得 函数f (x )有两个极值点实质上就是其导数f ′(x )有两个零点,亦即函数y =e x 与直线y =x +a 有两个交点,如图所示,显然实数a 的取值范围是(1,+∞).(2)由(1)知,x 1,x 2为g (x )=0的两个实数根,x 1<0<x 2,g (x )在(-∞,0)上单调递减. 下面先证x 1<-x 2<0,只需证g (-x 2)<g (x 1)=0,由于g (x 2)=2e x -x 2-a =0,得a =2e x -x 2, 所以g (-x 2)=2e x -+x 2-a =2e x --2e x +2x 2. 设h (x )=e x --e x +2x (x >0),则h ′(x )=1ex --e x +2<0,所以h (x )在(0,+∞)上单调递减, 所以h (x )<h (0)=0,h (x 2)=g (-x 2)<0,所以x 1<-x 2<0. 由于函数f (x )在(x 1,0)上也单调递减,所以f (x 1)>f (-x 2).要证f (x 1)+f (x 2)>2,只需证f (-x 2)+f (x 2)>2,即证2e x +2e x --22x -2>0. 设函数k (x )=e x +e x --2x -2,x ∈(0,+∞),则k ′(x )=e x -e x --2x . 设r (x )=k ′(x )=e x -e x --2x ,则r ′(x )=e x +e x --2>0,所以r (x )在(0,+∞)上单调递增,r (x )>r (0)=0,即k ′(x )>0. 所以k (x )在(0,+∞)上单调递增,k (x )>k (0)=0.故当x ∈(0,+∞)时,e x +e x --2x -2>0,则2e x +2e x --22x -2>0, 所以f (-x 2)+f (x 2)>2,亦即f (x 1)+f (x 2)>2.总结提升 本题是极值点偏移问题的泛化,是拐点的偏移,依然可以使用极值点偏移问题的有关方法来解决.只不过需要挖掘出拐点偏移中隐含的拐点的不等关系,如本题中的x 1<-x 2<0,如果“脑中有‘形’”,如图所示,并不难得出.【对点训练】1.设函数f (x )=x 2-(a -2)x -a ln x . (1)求函数f (x )的单调区间;(2)若方程f (x )=c 有两个不相等的实数根x 1,x 2,求证:12()02x x f +'>. 1.解析 (1)(0, )x ∈+∞.22(2)(2)(1)()2(2)a x a x a x a x f x x a x x x----+'=---==.当0a ≤时,()0f x '>,函数()f x 在(0, )+∞上单调递增,即()f x 的单调递增区间为(0, )+∞. 当0a >时,由()0f x '>得2a x >;由()0f x '<,解得02ax <<.所以函数()f x 的单调递增区间为(, )2a +∞,单调递减区间为(0, )2a.(2)1x ,2x 是方程()f x c =得两个不等实数根,由(1)可知:0a >.不妨设120x x <<.则()21112ln x a x a x c ---=,()22222ln x a x a x c ---=.两式相减得()()221112222ln 2ln 0x a x a x x a x a x ----+-+=,化为221122112222ln ln x x x x a x x x x +--=+--.()02a f '=,当(0, )2a x ∈时,()0f x '<,当(, )2ax ∈+∞时,()0f x '>. 故只要证明1222x x a+>即可,即证明22112212112222ln ln x x x x x x x x x x +--+>+--,即证明11221222ln x x x x x x -<+,设12(01)x t t x =<<,令()22ln 1t g t t t -=-+,则22214(1)()(1)(1)t g t t t t t -'=-=++.10t >>,()0g t ∴'>.()g t ∴在(0, 1)上是增函数,又在1t =处连续且(1)g 0=,∴当(0, 1)t ∈时,()0g t <总成立.故命题得证.2.(2011辽宁)已知函数f (x )=ln x -ax 2+(2-a )x . (1)讨论f (x )的单调性;(2)设a >0,证明:当0<x <1a 时,f (1a +x )>f (1a-x );(3)若函数y =f (x )的图象与轴交于A ,B 两点,线段AB 中点的横坐标为x 0,证明:f '(x 0)<0. 2.解析 (1)若a ≤0,f (x )在(0,+∞)上单调增加;若a >0,f (x )在(0,1a )上单调递增,在(1a,+∞)上单调递减;(2)法一:构造函数111()()(), (0)g x f x f x x a a a =+>-<<,利用函数单调性证明,方法上同,略;法二:构造以a 为主元的函数,设函数11()()()h a f x f x a a=+>-,则()ln(1)ln(1)2h a ax ax ax =+---,32222()2111x x x a h a x ax ax a x '=+-=+--, 由10x a <<,解得10a x <<,当10a x<<时,()0h a '>,而(0)0h =, 所以()0h a >,故当10x a <<时,11()()f x f x a a+>- (2)由(1)可得a >0,f '(x )=1x -2ax +2-a 在(0,+∞)上单调递减,f '(1a )=0,不妨设A (x 1,0),B (x 2,0),0<x 1<x 2,则0<x 1<1a<x 2,欲证明f '(x )<0,即f '(x 0)<f '(1a ),只需证明x 0=x 1+x 2 2>1a ,即x 1>2a -x 2,只需证明f (x 2)=f (x 1)>f (2a-x 2).由(2)得f (2a -x 2)=f [1a +(1a -x 2)]>f [1a -(1a-x 2)]=f (x 2),得证.3.设函数f (x )=e x -ax +a ,其图象与轴交于A (x 1,0),B (x 2,0)两点,且x 1<x 2. (1)求a 的取值范围;(2)证明:f '(x 1x 2)<0(f '(x )为函数f (x )的导函数).3.解析 (1)a ∈(e 2,+∞),且0<x 1<ln a <x 2,f (x )在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增; (2)要证明f '(x 1x 2)<0,只需证f '(x 1+x 22)<0,即f '(x 1+x 22)<f '(ln a ),因为f '(x )=e x -a 单调递增,所以只需证x 1+x 22<ln a ,亦即x 2>2ln a -x 1,只要证明f (x 2)=f (x 1)>f (2ln a -x 1)即可;令g(x )=f (x )-f (2ln a -x )(x <ln a ),则g '(x )=f '(x )-f '(2ln a -x 1)=e x-a 2ex -2a <0,所以g (x )在(0,ln a )上单调递减,g(x )>g(ln a )=0,得证.4.已知函数f (x )=ln x -ax +1有两个零点.(1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:f ′(x 1·x 2)<1-a . 4.解析 (1)由f (x )=0,可得a =1+ln xx,转化为函数g (x )=1+ln xx 与直线y =a 的图象在(0,+∞)上有两个不同交点.g ′(x )=-ln xx 2(x >0),故当x ∈(0,1)时,g ′(x )>0;当x ∈(1,+∞)时,g ′(x )<0. 故g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以g (x )max =g (1)=1. 又g ⎝⎛⎭⎫1e =0,当x →+∞时,g (x )→0,故当x ∈⎝⎛⎭⎫0,1e 时,g (x )<0;当x ∈⎝⎛⎭⎫1e ,+∞时,g (x )>0.可得a ∈(0,1). (2)f ′(x )=1x -a ,由(1)知x 1,x 2是ln x -ax +1=0的两个根,故ln x 1-ax 1+1=0,ln x 2-ax 2+1=0⇒a =ln x 1-ln x 2x 1-x 2.要证f ′(x 1·x 2)<1-a ,只需证x 1·x 2>1,即证ln x 1+ln x 2>0,即证(ax 1-1)+(ax 2-1)>0, 即证a >2x 1+x 2,即证ln x 1-ln x 2x 1-x 2>2x 1+x 2.不妨设0<x 1<x 2,故ln x 1x 2<2(x 1-x 2)x 1+x 2=2⎝⎛⎭⎫x 1x 2-1x 1x 2+1, (*)令t =x 1x 2∈(0,1),h (t )=ln t -2(t -1)t +1,h ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0,则h (t )在(0,1)上单调递增,则h (t )<h (1)=0,故(*)式成立,即要证不等式得证. 5.已知函数f (x )=ax+ln x (a ∈R ).(1)讨论f (x )的单调性;(2)设f (x )的导函数为f ′(x ),若f (x )有两个不相同的零点x 1,x 2. ①求实数a 的取值范围;②证明:x 1f ′(x 1)+x 2f ′(x 2)>2ln a +2.5.思维引导 (1)求导函数f ′(x ),对a 分类讨论,确定导函数的正负,即可得到f (x )的单调性;(2)①根据第(1)问的函数f (x )的单调性,确定a >0,且f (x )min =f (a )<0,求得a 的取值范围,再用零点判定定理证明根的存在性.②对所要证明的结论分析,问题转化为证明x 1x 2>a 2,不妨设0<x 1<a <x 2,问题转化为证明x 1>a 2x 2,通过对f (x )的单调性的分析,问题进一步转化为证明f (a 2x 2)>f (x 2),构造函数,通过导数法不难证得结论.解析 (1)f (x )的定义域为(0,+∞),且f ′(x )=x -ax 2. 当a ≤0时,f′(x )>0成立,所以f (x )在(0,+∞)为增函数;当a >0时,(i )当x >a 时,f ′(x )>0,所以f (x )在(a ,+∞)上为增函数; (ii )当0<x <a 时,f ′(x )<0,所以f (x )在(0,a )上为减函数. (2)①由(1)知,当a ≤0时,f (x )至多一个零点,不合题意;当a >0时,f (x )的最小值为f (a ),依题意知f (a )=1+ln a <0,解得0<a <1e.一方面,由于1>a ,f (1)=a >0,f (x )在(a ,+∞)为增函数,且函数f (x )的图像在(a ,1)上不间断. 所以f (x )在(a ,+∞)上有唯一的一个零点.另一方面,因为0<a <1e ,所以0<a 2<a <1e .f (a 2)=1a +ln a 2=1a +2ln a ,令g (a )=1a +2ln a ,当0<a <1e 时,g ′(a )=-1a 2+2a =2a -1a 2<0,所以f (a 2)=g (a )=1a +2ln a >g ⎝⎛⎭⎫1e =e -2>0 又f (a )<0,f (x )在(0,a )为减函数,且函数f (x )的图像在(a 2,a )上不间断. 所以f (x )在(0,a )有唯一的一个零点. 综上,实数a 的取值范围是⎝⎛⎭⎫0,1e . ②设p =x 1f ′(x 1)+x 2f ′(x 2)=1-a x 1+1-a x 2=2-⎝⎛⎭⎫a x 1+a x 2.又ln x 1+a x 1=0,ln x 2+ax 2=0,则p =2+ln(x 1x 2). 下面证明x 1x 2>a 2.不妨设x 1<x 2,由①知0<x 1<a <x 2. 要证x 1x 2>a 2,即证x 1>a 2x 2.因为x 1,a 2x 2∈(0,a ),f (x )在(0,a )上为减函数,所以只要证f (a 2x 2)>f (x 1). 又f (x 1)=f (x 2)=0,即证f (a 2x 2)>f (x 2).设函数F (x )=f (a 2x )-f (x )=x a -ax -2ln x +2ln a (x >a ).所以F ′(x )=(x -a )2ax 2>0,所以F (x )在(a ,+∞)为增函数.所以F (x 2)>F (a )=0,所以f (a 2x 2)>f (x 2)成立.从而x 1x 2>a 2成立.所以p =2+ln(x 1x 2)>2ln a +2,即x 1f ′(x 1)+x 2f ′(x 2)>2ln a +2成立.总结提升 1.第(2)①中,用零点判定定理证明f (x )在(0,a )上有一个零点是解题的一个难点,也是一个热点问题,就是当0<a <1e 时,要找一个数x 0<a ,且f (x 0)>0,这里需要取关于a 的代数式,取x 0=a 2,再证明f (a 2)>0,事实上由(1)可以得到x ln x ≥-1e ,而f (a 2)=1a +ln a 2=1+2a ln a a>0即可.2.在(2)②中证明x 1x 2>a 2的过程,属于构造消元构造函数方法,将两个变量x 1,x 2转化为证明单变量的问题,这一处理方法,在各类压轴题中,经常出现,要能领悟并加以灵活应用. 6.已知函数f (x )=e x +ax -1(a ∈R ).(1)若对任意的实数x ,函数y =f ′(x )的图象与直线y =x 有且只有两个交点,求a 的取值范围; (2)设g (x )=f (x )-12x 2+1,若函数g (x )有两个极值点x 1,x 2,且x 1<x 2,证明:g (x 1)+g (x 2)>2.6.解析 (1) f (x )=e x +ax -1,则f ′(x )=e x +a ,由已知得,函数y =e x +a 的图象与直线y =x 有两个交点, 即方程e x -x +a =0有两个不相等的实数解,设h (x )=e x -x +a ,则h ′(x )=e x -1,令h ′(x )=0,解得x =0, 当x ∈(-∞,0)时,h ′(x ) <0,h (x )单调递减, 当x ∈(0,+∞)时,h ′(x ) >0,h (x )单调递增,所以h (x )min =h (0)=a +1,所以a +1<0,所以a <-1, 当x →-∞时,h (x ) →+∞;当x →+∞时,h (x ) →+∞所以a <-1时,函数y =f ′(x )的图象与直线y =x 有且只有两个交点. (2)g (x )=f (x )-12x 2+1=e x -12x 2-ax ,g ′(x )=e x -x -a ,因为函数g (x )有两个极值点x 1,x 2,∴方程g ′(x )=0有两个不同的实数解x 1,x 2, 由(1)知,h (x )=e x -x +a ,h (x 1)=h (x 2)=0,且x 1<0<x 2,所以g (x )在区间(-∞,x 1),(x 2,+∞)上单调递增,在区间(x 1,x 2)上单调递减, 且得a =2e x -x 2,所以h (-x 2)=2e x -+x 2-a =2e x --2e x +2x 2.设k (x )=e x --e x +2x (x >0),则k ′(x )=-e x --e x +2<0,所以k (x )在(0,+∞)上单调递减, 所以k (x )<k (0)=0,h (x 2)=h (-x 2)<0,所以x 1<-x 2<0. 又因为g (x )在(x 1,0)单调递减,所以g (x 1)> g (-x 2), 要证g (x 1)+g (x 2)>2,只须证g (-x 2)+g (x 2)>2, 即证2e x +2e x --22x -2>0,设r (x )=e x +e x --2x -2,则r ′(x )=e x -e x --2x , 令p (x )=r ′(x )=e x -e x --2x ,则p ′(x )=e x +e x --2>0, 所以p (x )在(0,+∞)单调递增,p (x )>p (0)=0,即r ′(x )>0, 所以r (x )在(0,+∞)单调递增,r (x )>r (0)=0,故当x >0时,e x +e x --2x -2>0,即2e x +2e x --22x -2>0, 所以g (-x 2)+g (x 2)>2,亦即g (x 1)+g (x 2)>2.。
导数解答题之证明不等式
,
①当 m≤0 时 f′(x)>0 恒成立,∴f(x)在(0,+∞)上是增函数,无极值, ②当 m>0 时令 f′(x)>0,∴0<x< , 令 f′(x)<0,∴x> , 所以函数 f(x)在(0, )上为增函数,在( ,+∞)为减函数, 所以当 x= 时,有极大值,极大值为﹣ (ln2m+1),无极小值,
∴
由题意可知 a>x0+1,又 x0∈(3,4),a∈Z, ∴a 的最小值为 5.
多元不等式的证明
证明多元不等式通常的方法有两个 (1)消元:① 利用条件代入消元 ② 不等式变形后对某多元表达式进行整体换元 (2)变量分离后若结构相同,则可将相同的结构构造一个函数,进而通过函数的单调性与 自变量大小来证明不等式 (3)利用函数的单调性将自变量的不等关系转化为函数值的不等关系,再寻找方法.
证明一元不等式主要的方法
方法一:将含 x 的项或所有项均挪至不等号的一侧,将一侧的解析式构造为函数,通过分
析函数的单调性得到最值,从而进行证明,其优点在于目的明确,构造方法简单,但对于 移项后较复杂的解析式则很难分析出单调性
x 1
2e x
f (x) e ln x . f x 1 已知函数
证明:
上单 调递增 ,从
1
而
g(x)在(0,+∞)上的最小值为
g
e
=-1 e
设函数 h(x)=xe-x-2,则 h′(x)=e-x(1-x).所以当 x∈(0,1)时,h′(x)>0;当 x∈(1, e
+∞)时,h′(x)<0.故 h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而 h(x)在(0,+∞)
所以 h(x)max=h(x0)=
专题3 导数解决不等式的恒成立和证明
第三章 导数专题3 导数解决不等式的恒成立和证明【三年高考精选】(2021年全国新高考Ⅰ卷数学试题) 1. 已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 【答案】(1)()f x 的递增区间为()0,1,递减区间为()1,+∞;(2)证明见解析. 【解析】【分析】(1) 首先确定函数的定义域,然后求得导函数的解析式,由导函数的符号即可确定原函数的单调性.(2)方法二:将题中的等式进行恒等变换,令11,m n a b==,命题转换为证明:2m n e <+<,然后构造对称差函数,结合函数零点的特征和函数的单调性即可证得题中的结论.【详解】(1)()f x 的定义域为()0,∞+. 由()()1ln f x x x =-得,()ln f x x '=-,当1x =时,()0f x '=;当()0,1x ∈时()0f x >′;当()1,x ∈+∞时,()'0f x <. 故()f x 在区间(]0,1内为增函数,在区间[)1,+∞内为减函数, (2)[方法一]:等价转化由ln ln b a a b a b -=-得1111(1ln )(1ln )a a b b -=-,即11()()f f a b=.由a b ,得11a b ≠.由(1)不妨设11(0,1),(1,)b a ∈∈+∞,则1()0f a >,从而1()0f b >,得1(1,)e b∈,①令()()()2g x f x f x =--,则22()(2)()ln(2)ln ln(2)ln[1(1)]g x f x f x x x x x x ''=---'=-+=-=--,当()0,1x ∈时,()0g x '<,()g x 在区间()0,1内为减函数,()()10g x g >=,从而()()2f x f x ->,所以111(2)()()f f f a a b->=,由(1)得112a b -<即112a b<+.①令()()h x x f x =+,则()()'11ln h x f x x '=+=-,当()1,x e ∈时,()0h x '>,()h x 在区间()1,e 内为增函数,()()h x h e e <=,从而()x f x e +<,所以11()f e b b +<.又由1(0,1)a ∈,可得11111(1ln )()()f f a a a a b <-==,所以1111()f e a b b b+<+=.②由①②得112e a b<+<. [方法二]【最优解】:ln ln b a a b a b -=-变形为ln ln 11a b a b b a-=-,所以ln 1ln 1a b a b ++=. 令11,m n a b ==.则上式变为()()1ln 1ln m m n n -=-, 于是命题转换为证明:2m n e <+<.令()()1ln f x x x =-,则有()()f m f n =,不妨设m n <. 由(1)知01,1m n e <<<<,先证2m n +>.要证:()()()222)2(m n n m f n f m f m f m +>⇔>-⇔<-⇔<-()()20f m f m ⇔--<.令()()()()2,0,1g x f x f x x =--∈,则()()()()()2ln ln 2ln 2ln10g x f x f x x x x x '='+'-=---=⎡⎤⎣≥-⎦--=, ()g x ∴在区间()0,1内单调递增,所以()()10g x g <=,即2m n +>.再证m n e +<.因为()()1ln 1ln m n n m m -=⋅->,所以()1ln n n n e m n e -+<⇒+<.令()()()1ln ,1,h x x x x x e =-+∈,所以()'1ln 0h x x =->,故()h x 在区间()1,e 内单调递增. 所以()()h x h e e <=.故()h n e <,即m n e +<. 综合可知112e a b<+<. [方法三]:比值代换 证明112a b+>同证法2.以下证明12x x e +<. 不妨设21x tx =,则211x t x =>, 由1122(1ln )(1ln )x x x x -=-得1111(1ln )[1ln()]x x tx tx -=-,1ln 1n 1l t x t t=--, 要证12x x e +<,只需证()11t x e +<,两边取对数得1ln(1)ln 1t x ++<,即ln(1)1ln 11t t t t++-<-, 即证ln(1)1ln t t t t+<-. 记ln(1)(),(0,)s g s ss ∈=+∞+,则2ln(1)1()s s s g s s '-++=. 记()ln(1)1sh s s s=-++,则211()0(1)1h s s s '=-<++, 所以,()h s 在区间()0,∞+内单调递减.()()00h s h <=,则()'0g s <, 所以()g s 在区间()0,∞+内单调递减.由()1,t ∈+∞得()10,t -∈+∞,所以()()1g t g t <-, 即ln(1)1ln t t t t+<-. [方法四]:构造函数法 由已知得ln ln 11a b a b b a-=-,令1211,x x a b ==,不妨设12x x <,所以()()12f x f x =.由(Ⅰ)知,1201x x e <<<<,只需证122x x e <+<. 证明122x x +>同证法2.再证明12x x e +<.令2ln 21()(0)()(ln ,)exh x x e h x x e x xe x '-++-=<<=--. 令()ln 2(0)e x x x e x ϕ=+-<<,则221()0e x ex x x xϕ-'=-=<. 所以()()()0,0x e h x ϕϕ>='>,()h x 在区间()0,e 内单调递增.因为120x x e <<<,所以122111ln ln x e x e x x --<--,即112211ln ln x x x ex e -->-- 又因为()()12f x f x =,所以12212112ln ln 1,1x x x ex x x ex x --=>--,即()()2222111212,0x ex x ex x x x x e -<--+->.因为12x x <,所以12x x e +<,即11e a b+<. 综上,有112e a b<+<结论得证. 【整体点评】(2)方法一:等价转化是处理导数问题的常见方法,其中利用的对称差函数,构造函数的思想,这些都是导数问题必备的知识和技能.方法二:等价转化是常见的数学思想,构造对称差函数是最基本的极值点偏移问题的处理策略.方法三:比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.方法四:构造函数之后想办法出现关于120e x x +-<的式子,这是本方法证明不等式的关键思想所在.视频(2020年高考全国Ⅰ卷文数20) 2. 已知函数()(2)x f x e a x =-+. (1)当1a =时,讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.【答案】(1)()f x 的减区间为(,0)-∞,增区间为(0,)+∞;(2)1(,)e+∞.【解析】【分析】(1)将1a =代入函数解析式,对函数求导,分别令导数大于零和小于零,求得函数的单调增区间和减区间;(2)若()f x 有两个零点,即(2)0xe a x -+=有两个解,将其转化为2xea x =+有两个解,令()(2)2xe h x x x =≠-+,求导研究函数图象的走向,从而求得结果.【详解】(1)当1a =时,()(2)x f x e x =-+,'()1xf x e =-,令'()0f x <,解得0x <,令'()0f x >,解得0x >, 所以()f x 的减区间为(,0)-∞,增区间为(0,)+∞; (2)若()f x 有两个零点,即(2)0x e a x -+=有两个解,从方程可知,2x =-不成立,即2x e a x =+有两个解,令()(2)2x e h x x x =≠-+,则有'22(2)(1)()(2)(2)x x x e x e e x h x x x +-+==++, 令'()0h x >,解得1x >-,令'()0h x <,解得2x <-或21x -<<-, 所以函数()h x 在(,2)-∞-和(2,1)--上单调递减,在(1,)-+∞上单调递增, 且当2x <-时,()0h x <,而2x +→-时,()h x →+∞,当x →+∞时,()h x →+∞,所以当2xe a x =+有两个解时,有1(1)a h e >-=,所以满足条件的a 的取值范围是:1(,)e+∞.【点睛】本题考查的是有关应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性,根据零点个数求参数的取值范围,在解题的过程中,也可以利用数形结合,将问题转化为曲线x y e =和直线(2)y a x =+有两个交点,利用过点(2,0)-的曲线x y e =的切线斜率,结合图形求得结果. 【三年高考刨析】【2022年高考预测】预测2022年高考仍是考查函数的单调性,根据不等式恒成立求参数的取值范围或不等式的证明..【2022年复习指引】由前三年的高考命题形式,在2022年的高考备考中同学们只需要稳扎稳打,加强常规题型的练习,关于集合2022高考备考主要有以下几点建议:1.涉及本单元知识点的高考题,综合性强.所以在复习中要熟记相关的定义,法则;2.利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.3.将不等式的证明、方程根的个数的判定转化为函数的单调性、极值问题处理.4.要深入体会导数应用中蕴含的数学思想方法.数形结合思想,如通过从导函数图象特征解读函数图象的特征,或求两曲线交点个数等;等价转化思想,如将证明的不等式问题等价转化为研究相应问题的最值等.【2022年考点定位】 考点1 证明不等式典例1 (安徽省蚌埠市2021-2022学年高三上学期第一次教学质量检查)已知函数()()212,2e 21x x f x x x g x x =+-=---. (1)求()f x 的单调区间;(2)当(),1x ∈-∞时,求证:()()g x f x .【答案】(1)在(),1-∞单调递增,在()1,+∞上单调递减;(2)证明见解析. 【分析】(1)由题可以求函数的导函数,则可得()f x 的单调区间; (2)由题知要证()()g x f x ,即证2201e 2x x x x x x ---+≥-,然后利用导函数判断函数的单调性,最后利用单调性证明即可. 【详解】 (1)因为()21e 2x x f x x x =+-, 所以()()()21e 1e e 1e ex x x x x x x f x x +--=+-=', 令()0f x '=,解得1x =,∴当(),1x ∈-∞时,()()0,1,f x x ∞∈'>+时,()0f x '< 所以()f x 在(),1-∞单调递增,在()1,+∞上单调递减; (2)要证()()g x f x即证22121e 2x x x x x --+--, 即22e 0112x x x x x x --+-≥-, 设2()11e 21x F x x x=---+-,即证()0xF x .因为()2211(1)e 2xF x x =++-' 所以当(),1x ∈-∞时,()0F x '>恒成立,()F x 单调递增, 又当0x =时,()0F x =,所以当01x <<时,()0F x >,当0x <时,()0F x <; 所以当()(),1,0x xF x ∞∈-, 即当(),1x ∈-∞时,()()g x f x .【规律方法技巧】利用导数证明不等式f (x )>g (x )的基本方法 (1)若f (x )与g (x )的最值易求出,可直接转化为证明f (x )min >g (x )max ;(2)若f (x )与g (x )的最值不易求出,可构造函数h (x )=f (x )-g (x ),然后根据函数h (x )的单调性或最值,证明h (x )>0. 2.证明不等式时的一些常见结论(1)ln x ≤x -1,等号当且仅当x =1时取到; (2)e x ≥x +1,等号当且仅当x =0时取到; (3)ln x <x <e x ,x >0; (4)≤ln(x +1)≤x ,x >-1,等号当且仅当x =0时取到.【考点针对训练】(2022贵州省贵阳市五校联考)3. 已知函数()xe f x x =.(1)函数()()f xg x x=,求()g x 的单调区间和极值. (2)求证:对于()0,x ∀∈+∞,总有()13ln 44f x x >-. 【答案】(1)()g x 在(0,2)上单调递减,在(,0)-∞和(2,)+∞上单调递增;极小值()2e 24g =,无极大值;(2)证明见解析. 【解析】【分析】(1)写出()g x 的函数表达式,通过求导写出单调区间和极值即可(2)证明()13ln 44f x x >-恒成立,结合(1)得,等价于2e 1(ln 3)4x x x x >-恒成立,且已知左式的最小值,只要大于右式的最大值,则不等式恒成立【详解】(1)解:2243e e 2e e (2)()()x x x x x x x g x g x x x x --'=⇒==,当02x <<时,()0g x '<; 当0x <或2x >时,()0g x '>,()g x ∴在(0,2)上单调递减,在(,0)-∞和(2,)+∞上单调递增;故()g x 有一个极小值2e (2)4g =,无极大值.(2)证明:要证13()ln 44f x x >-成立,只需证e 13ln 44x x x >-成立,即证2e 1(ln 3)4x x x x>-成立,令1()(ln 3)4h x x x =-,则24ln ()=4xh x x -',当40e x <<时,()0h x '>; 当4e x >时,()0h x '<,()h x ∴在()40,e 上单调递增,在()4e ,+∞上单调递减,()4max 41()e 4e h x h ==∴, 2e ()x g x x =∵由(1)可知2min e ()(2)4g x g ==,min max ()()g x h x >∴,()()g x h x >∴,13()ln 44f x x >-∴.【点睛】题目比较综合,第一小题是已知函数求单调性极值的问题,属于常规题目;第二小题证明不等式成立,有两种类型,一种是构造左右两个函数,若最小值大于最大值,则不等式恒成立,但是只能做证明题;若最小值不大于最大值,不能说明不等式不成立;另外一种是构造一个函数,证明最小值大于0恒成立,这种的函数会比较困难,所以优先用第一种尝试,再选取第二种方法考点2 不等式恒成立问题典例2 (2020辽宁省沈阳市2019届高三一模)已知函数()ln 2f x a x x =-,若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,则实数a 的取值范围是( )A.2a ≤B.2a ≥C.0a ≤D.02a ≤≤ 【答案】A【分析】先证明11x x e <+<恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,问题转化为2(1)a x x ≤>恒成立,即可求出a 的范围. 【详解】设()1,x g x e x =--则()1x g x e '=-,当0x >时()0110x g x e e =->-=', 所以()1x g x e x =--在()0,∞+上递增,得()()00010,g x g e >=--=所以当0x >时,11x x e <+<恒成立.若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,所以()20af x x-'=≤ 即2ax≤,可得2(1)a x x ≤>恒成立,因为22x >,所以2a ≤, 故选A .【规律方法技巧】利用导数解决恒成立问题主要涉及以下方面:(1)已知不等式在某一区间上恒成立,求参数的取值范围:一般先分离参数,再转化为求函数在给定区间上的最值问题求解;(2)如果无法分离参数可以考虑对参数a 或自变量进行分类求解,如果是二次不等式恒成立的问题,可以考虑限制二次项系数或判别式的方法求解.(3)已知函数的单调性求参数的取值范围:转化为f ′(x )≥0(或f ′(x )≤0)恒成立的问题. 【考点针对训练】(山西省运城市2021届高三检测)4. 当0x <时,不等式()2e e 3xxx x k k -≥恒成立,则实数k 的取值范围是__. 【答案】[]3e,0- 【解析】 【分析】由题意可得()232e 3x k x x +≤对0x <恒成立,讨论320x +=,320x +>,320x +<,运用参数分离和构造函数,利用导数判断单调性,求最值,可得所求范围.【详解】解:当0x <时,不等式()2e e 3xxx x k k -≥恒成立, 即为()232e 3x k x x +≤对0x <恒成立,Ⅰ当320x +=即23x =-时,403≤恒成立;Ⅰ当320x +<,即23x <-时,()2332e x x k x +≥恒成立,等价为()2max 332e x x k x ⎡⎤⎢⎥+⎣⎦≥, 设()()2332e x x f x x =+,()()()()()232222632e 335e 931232e 32e x x x x x x x x x x x f x x x +-+-++'==++ ()()()2313432exx x x x -+-=+,可得1x <-时,()0f x >′,()f x 递增;213x -<<-时,()0f x <′,()f x 递减, 可得()f x 在1x =-处取得最大值,且为3e -, 则3e k ≥-;Ⅰ当320x +>,即203x -<<时,()2332e x x k x +≤恒成立, 等价为()2min332e x x k x ⎡⎤⎢⎥+⎣⎦≤,设()()2332e x x f x x =+,()()()()2313432e x f x x x x x -+-'=+, 可得203x -<<时,()0f x <′,()f x 递减, 可得()0f x >, 则0k ≤,综上可得,k 的范围是[]3e,0-.【点睛】本题考查不等式恒成立问题解法,参变分离是常用的解题方法,属于中档题.方法点睛:(1)将参数和变量分离,转化为求最值问题; (2)构造函数,求导数,分析单调性; (3)求函数的最值,求出参数的范围.考点3 不等式存在成立问题典例3 (黑龙江省大庆铁人中学2021届高三第三次模拟)若函数()2ln 2f x x ax =+-在区间1,22⎛⎫⎪⎝⎭内存在单调递增区间,则实数a 的取值范围是( )A.(],2-∞B.1,8⎛⎫-+∞ ⎪⎝⎭C.12,8⎛⎫-- ⎪⎝⎭ D.()2,-+∞【答案】D 【分析】将函数2()ln 2f x x ax =+-在区间1()22,内存在单调递增区间,转化1()20f x ax x '=+>在区间1()22,成立,再转化为min 212()a x>-,进而可求出结果. 【详解】因为函数2()ln 2f x x ax =+-在区间1()22,内存在单调递增区间, 所以1()20f x ax x '=+>在区间1()22,上成立, 即min 212()a x>-在区间1()22,上成立,又函数2yx 在1()22,上单调递增, 所以函数21y x =-在1()22,上单调递增, 故当12x =时21y x =-最小,且min 21()=4x --,即24a >-,得2a >-. 故选:D【规律方法技巧】1.有关存在成立问题的解题方法∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2)等价于函数f (x )在D 1上的最小值大于g (x )在D 2上的最小值,即f (x )min >g (x )min (这里假设f (x )min ,g (x )min 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值大于函数y =g (x )的某一个函数值,但并不要求大于函数y =g (x )的所有函数值.∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),等价于函数f (x )在D 1上的最大值小于函数g (x )在D 2上的最大值(这里假设f (x )max ,g (x )max 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值小于函数y =g (x )的某一个函数值,但并不要求小于函数y =g (x )的所有函数值.2.注意不等式恒成立与存在成立的异同不等式在某区间上能成立与不等式在某区间上恒成立问题是既有联系又有区别的两种情况,解题时应特别注意,两者都可转化为最值问题,但f (a )≥g (x )(f (a )≤g (x ))对存在x ∈D 能成立等价于f (a )≥g (x )min (f (a )≤g (x )max ),f (a )≥g (x )(f (a )≤g (x ))对任意x ∈D 都成立等价于f (a )≥g (x )max (f (a )≤g (x )min ),应注意区分,不要搞混. 【考点针对训练】 (2019·吉林白山联考)5. 设函数f (x )=e x 33x x ⎛⎫+- ⎪⎝⎭-ax (e 为自然对数的底数),若不等式f (x )≤0有正实数解,则实数a 的最小值为________. 【答案】e 【解析】【分析】已知不等式转化为2(33)x a e x x ≥-+,此不等式有正数解,只要求得2()(33)x g x e x x =-+在(0,)+∞上的最小值即可得a 的范围.【详解】原问题等价于存在x Ⅰ(0,+∞),使得a ≥e x (x 2-3x +3),令g (x )=x e (x 2-3x +3),x Ⅰ(0,+∞),则a ≥g (x )min ,而g ′(x )=x e (x 2-x ),由g ′(x )>0,得x Ⅰ(1,+∞),此时()g x 递增,由g ′(x )<0,得x Ⅰ(0,1),此时()g x 递减,Ⅰ函数g (x )在区间(0,+∞)上的极小值也是最小值为g (1)=e , Ⅰa ≥e ,即实数a 的最小值为e . 故答案为:e .【点睛】本题考查不等式有解问题,解题关键是用分离参数法转化为求函数的最值.只是求解时要注意与不等式恒成立区分开来,不等式恒成立也常常用分离参数法转化为求函数的最值,但两者所求最值一个是最大值,一个是最小值,要根据题意确定.考点4 利用导数研究方程的根(或函数的零点)典例4 (河南省郑州市商丘市名师联盟 2020-2021学年高三质量检测)已知函数()2ln f x x x =-,()33g x x xm =-+,方程()()f x g x =在区间1,e e ⎡⎤⎢⎥⎣⎦内有两个不同的实根,则m 的取值范围是( )A.2121,333e ⎛⎤+ ⎥⎝⎦ B.2221e -2,33e 3⎡⎤+⎢⎥⎣⎦ C.221,133e ⎡⎫+⎪⎢⎣⎭ D.21e 2,33⎛⎤- ⎥⎝⎦【答案】A 【分析】由题可得232ln m x x =-,构造函数()22ln h x x x =-,讨论其在1,e e ⎡⎤⎢⎥⎣⎦的变化情况即可得出答案. 【详解】由()()f x g x =,得232ln m x x =-,令()22ln h x x x =-,则()()()211x x h x x-+'=,所以()h x 在1,1e ⎡⎫⎪⎢⎣⎭上单调递减,在(]1,e 上单调递增,所以()()min 11h x h ==,()221122h e e h e e ⎛⎫=->=+ ⎪⎝⎭,则21132m e <≤+,即2121333m e <≤+. 故选:A.【规律方法技巧】求解涉及函数零点或方程根的问题的注意点 (1)利用函数零点存在性定理求解.(2)分离参数a 后转化为函数的值域(最值)问题求解,如果涉及多个零点,还需考虑函数的图象与直线y =a 的交点个数.(3)转化为两个熟悉的函数的图象的上、下位置关系问题,从而构建不等式求解. 【考点针对训练】(重庆市秀山高级中学校2022届高三上学期9月月考) 6. 已知函数2eln ()x f x x =,若关于x 的方程21[()]()08f x mf x -+=有4个不同的实数根,则实数m 的取值范围为___________.【答案】324⎛⎫⎪ ⎪⎝⎭【解析】【分析】利用导数求出函数()f x 的单调区间和最值,设()f x t =,则要使方程21[()]()08f x mf x -+=有4个不同的实数根等价于方程2108t mt -+=在10,2t ⎛⎫∈ ⎪⎝⎭上有两个不同的实数根,故12121201102201t t t t t t ∆>⎧⎪⎛⎫⎛⎫⎪-->⎪ ⎪⎪⎝⎭⎝⎭⎨⎪<+<⎪>⎪⎩,从而可求出实数m 的取值范围 【详解】依题意,求导243e 2eln e(12ln )()x x xx x f x x x ⋅--'==,令()0f x '=,解得:x =当x ∈时,()0f x '>,()f x 单调递增;当)x ∈+∞,()0f x '<,函数单调递减,且max 1()e 2f x f ===, 又0x →时,()f x →-∞;又x →+∞时,()0f x →;设()f x t =,显然当10,2t ⎛⎫∈ ⎪⎝⎭时,方程()f x t =有两个实数根,则要使方程21[()]()08f x mf x -+=有4个不同的实数根等价于方程2108t mt -+=在10,2t ⎛⎫∈ ⎪⎝⎭上有两个不同的实数根, 故121212011022010t t t t t t ∆>⎧⎪⎛⎫⎛⎫⎪-->⎪ ⎪⎪⎝⎭⎝⎭⎨⎪<+<⎪>⎪⎩,210211082401m m m ⎧->⎪⎪⎪-+>⎨⎪<<⎪⎪⎩,解得:324m ⎛⎫∈ ⎪ ⎪⎝⎭.故答案为:3,24⎛⎫⎪ ⎪⎝⎭【点睛】关键点点睛:此题考查函数与方程的综合应用,考查导数的应用,解题的关键是利用导数判断出函数()f x 的单调区间和最值,设()f x t =,将问题转化为方程2108t mt -+=在10,2t ⎛⎫∈ ⎪⎝⎭上有两个不同的实数根,然后利用一元二次方程根的分布情况求解即可,考查数学转化思想和计算能力,属于中档题【二年模拟精选】(2020河北省衡水市第二中学高三检测) 7. 已知函数21()ln 2f x x a x =+,若对任意两个不等的正数1x ,2x ,都有()()12124f x f x x x ->-恒成立,则a 的取值范围为A. [4,)+∞B. (4.?)+∞C. (,4]-∞D. (,4)-∞【答案】A 【解析】【分析】根据题意先确定g (x )=f (x )﹣4x 在(0,+∞)上单增,再利用导数转化,可得24x a x ≥-恒成立,令()24h x x x =-,求得()h x max ,即可求出实数a 的取值范围.【详解】令()()4g x f x x =-,因为()()12124f x f x x x ->-,所以()()12120g x g x x x ->-,即()g x 在()0,+∞上单调递增,故()40ag x x x=-'+≥在()0,+∞上恒成立, 即24x a x ≥-,令()()24,0,h x x x x =-∈+∞.则()()2424h x x x h =-≤=,()h x max 4=,即a 的取值范围为[4,+∞).故选A.【点睛】本题考查了函数单调性的判定及应用,考查了原函数单调与导函数正负的关系,确定g (x )在(0,+∞)上单增是关键,属于中档题. (2020辽宁省沈阳市高三上学期一模)8. 已知函数()ln 2f x a x x =-,若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,则实数a 的取值范围是( ) A. 2a ≤ B. 2a ≥C. 0a ≤D. 02a ≤≤【答案】A 【解析】【分析】先证明11x x e <+<恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,问题转化为2(1)a x x ≤>恒成立,即可求出a 的范围.【详解】设()1,x g x e x =--则()'1x g x e =-,当0x >时()0110x g x e e =->-=', 所以()1x g x e x =--在()0,∞+上递增,得()()00010,g x g e >=--=所以当0x >时,11x x e <+<恒成立.若不等式()()1xf x f e +>在()1,x ∈+∞上恒成立,得函数()f x 在()1,+∞上递减,即当1x >时,()'0f x ≤恒成立,所以()20af x x-'=≤ 即2ax≤,可得2(1)a x x ≤>恒成立,因为22x >,所以2a ≤, 故选A .【点睛】本题考查了构造新函数,也考查了导数的应用以及由单调性求参数的问题,属于中档题.(江西省萍乡市2021届高三上期数学期中复习试卷)9. 已知函数222,0()11,0x x x f x x x ⎧++≤⎪=⎨-+>⎪⎩,若()f x ax ≥恒成立,则实数a 的取值范围是( )A. 2⎡⎤-⎣⎦B. (],1-∞C. ()2-D. 2⎡⎤-⎣⎦【答案】A 【解析】 【分析】作出函数()f x 的图象,利用数形结合的思想判断a 的范围,找出临界点即相切时a 的取值,进而得出a 的范围. 【详解】作出()f x 的图象,如图,由图象可知:要使()f x ax 恒成立,只需函数()g x ax =的图象恒在图象()f x 的下方, 可得1a ,设()g x ax =与函数2()22(0)f x x x x =++相切于点(),(0)P m n m <, 由()f x 的导数为22x +,可得切线的斜率为22m +, 即有22a m =+,222am m m =++,解得m =2a =-由图象可得222a -,综上可得a 的范围是[2-1]. 故选:A【点睛】解决此类问题的关键是作出函数图象,根据数形结合的思想处理问题,本题关键找出相切时刻这一临界位置,利用直线与抛物线相切即可求解. (四川省内江市威远中学2020-2021学年高三月考)10. 已知函数32()f x x x ax b =-++,12,(0,1)x x ∀∈且12x x ≠,都有1212|()()|||f x f x x x -<-成立,则实数a 的取值范围是( )A. 2(1,]3--B. 2(,0]3-C. 2[,0]3-D. [1,0]-【答案】C 【解析】 【分析】原不等式等价于()()211212x x f x f x x x --<-<恒成立,得到()()()321g x f x x x x a x b =-=-+-+,()()()321h x f x x x x a x b =+=-+++在()0,1上严格单调,转化为()0g x '≤在()0,1上恒成立,()0h x '≥在()0,1上恒成立,利用分离参数思想转化为求最值问题即可. 【详解】不妨设1210x x >>>,则1212|()()|||f x f x x x -<-等价于()()211212x x f x f x x x --<-<,即()()()()11221122 f x x f x x f x x f x x ⎧-<-⎪⎨+>+⎪⎩,设()()()321g x f x x x x a x b =-=-+-+,()()()321h x f x x x x a x b =+=-+++,依题意,函数()g x 在()0,1上为严格的单调递减函数, 函数()h x 在()0,1上为严格的单调递增函数,Ⅰ()23210g x x x a '=-+-≤在()0,1上恒成立,()23210h x x x a '=-++≥在()0,1上恒成立,Ⅰ2321a x x ≤-++在()0,1上恒成立,2321a x x ≥-+-在()0,1上恒成立, 而二次函数2321y x x =-++在[0,1]上的最小值在1x =时取得,且最小值为0, 二次函数2321y x x =-+-在[0,1]上的最大值在13x =时取得,其最大值为23-, 综上,实数a 的取值范围是2[,0]3-, 故选:C.【点睛】关键点点睛:去绝对值,得到两个函数的单调性,结合导数与单调性的关系,利用分离参数的思想转化为求二次函数最值问题. (2020湖南省益阳市高三上学期期末)11. 已知变量()()12,0,0x x m m ∈>,且12x x <,若2112x x x x <恒成立,则m 的最大值为(e 2.71828=为自然对数的底数)( ) A. eB.C.1eD. 1【答案】A 【解析】 【分析】不等式两边同时取对数,然后构造函数()ln xf x x=,求函数的导数,研究函数的单调性即可得到结论. 【详解】21122112ln ln x x x x x x x x <⇒<,()12,0,,0x x m m ∈>,1212ln ln x x x x ∴<恒成立, 设函数()ln xf x x=,12x x <,()()12f x f x <,()f x ∴在()0,m 上为增函数,函数的导数()21ln xf x x -'=, ()00f x x e '>⇒<<,即函数()f x 的增区间是()0,e ,则m 的最大值为e . 故选:A【点睛】关键点点睛:本题考查利用函数研究函数的单调性,本题的关键点是对已知等式变形,211212211212ln ln ln ln x x x x x x x x x x x x <⇒<⇒<,转化为求函数()ln xf x x=的单调区间. (山东省泰安肥城市2021届高三高考适应性训练)12. 已知函数()ln f x x x x =+,()g x kx k =-,若k Z ∈,且()()f x g x >对任意2x e >恒成立,则k 的最大值为( ) A. 2 B. 3C. 4D. 5【答案】B 【解析】【分析】由不等式,参变分离为ln 1x x x k x +⎛⎫< ⎪-⎝⎭,转化为求函数()ln 1x x x u x x +=-,()2,x e ∈+∞的最小值,利用导数求函数的最小值.【详解】()()f x g x >,即ln x x x kx k +>-.由于()()f x g x >对任意()2,x e ∈+∞恒成立,所以ln 1x x x k x +⎛⎫< ⎪-⎝⎭,即min ln 1x x x k x +⎛⎫< ⎪-⎝⎭.令()ln 1x x x u x x +=-,()2,x e ∈+∞,()()2ln 21x x u x x --'=-.令()ln 2h x x x =--,()1110x h x x x='-=->, 所以()h x 在()2,x e ∈+∞上单调递增,所以()()22e e 40h x h >=->,可得()0u x '>,所以()u x 在()2,e +∞上单调递增.所以()()()22223e 3e 33,4e 1e 1u x u >==+∈--.又k Z ∈,所以max 3k =. 故选:B.(广西柳州市2021届高三摸底考试)13. 已知函数212,(0)()2ln ,(0)x x x f x x x x ⎧++≤⎪=⎨⎪>⎩,若存在0x R ∈,使得()2012f x m m ≤-成立,则实数m 的取值范围是( )A. 1,12⎡⎤-⎢⎥⎣⎦B. 11,2⎡⎤-⎢⎥⎣⎦C. 11,2⎡⎤⎢⎥⎣⎦D. 1,02⎡⎤-⎢⎥⎣⎦【答案】A 【解析】【分析】分析函数()f x 的最小值,只需使()2min 12f x m m ≤-成立即可. 【详解】当0x ≤时,()2122f x x x =++,根据二次函数的性质可知,当1x =-时,()f x 有最小值12-;当0x >时,()ln f x x x =,由()ln 10f x x '=+=得1=x e当10,e x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>, 所以()ln f x x x =在10,e x ⎛⎫∈ ⎪⎝⎭上单调递减,在1,x e ⎛⎫∈+∞ ⎪⎝⎭上单调递增,所以()ln f x x x =最小值为11111ln 2f e e ee ⎛⎫==->- ⎪⎝⎭,则()min 12f x =-若存在0x R ∈,使得()2012f x m m ≤-成立,则()2min 12f x m m ≤- 所以21122m m -≤-,解得112m -≤≤故选:A .(重庆实验外国语学校2022届高三上学期入学考试)14. 关于函数()xf x e =,()lng x x =下列说法正确的是( )A. 对0x ∀>,()1g x x ≤-恒成立B. 对x R ∀∈,()f x ex ≥恒成立C. 若a b e >>,()()ag b bg a <D. 若不等式()()f ax ax x g x -≥-对1x ∀>恒成立,则正实数a 的最小值为1e【答案】ABD 【解析】【分析】选项A :构造函数()()ln 10h x x x x =-+>,根据导数判断函数的单调性并求最大值,从而判断选项正确;选项B :构造函数()()x f x ex ϕ=-,根据导数判断函数的单调性并求最小值,从而判断选项正确; 选项C :构造函数()()()0g x m x x x=>,根据导数判断函数在(),e +∞内单调递减,从而判断选项错误;选项D :把不等式()()f ax ax x g x -≥-变形为ln ln ax x e ax e x -≥-,所以只需研究函数()xF x e x =-的单调性即可求出答案,从而判断选项正确.【详解】选项A :令()()ln 10h x x x x =-+>,则()111xh x x x -'=-=,因为0x >,所以由()0h x '>得01x <<;由()0h x '<得1x >, 所以()h x 在()0,1内单调递增,在()1,+∞内单调递减,所以()h x 的最大值为()10h =,所以对0x ∀>,()0h x ≤恒成立, 即对0x ∀>,()1g x x ≤-恒成立,故选项A 正确;选项B :令()()x x f x ex e ex ϕ=-=-,则()xx e e ϕ'=-,由()0x ϕ'>得1x >;由()0x ϕ'<得1x <,所以()x ϕ在()1,+∞内单调递增,在(),1-∞内单调递减,所以()x ϕ的最小值为()10ϕ=,所以对x R ∀∈,()0x ϕ≥恒成立,即对x R ∀∈,()f x ex ≥恒成立,故选项B 正确;选项C :令()()ln ()0g x x m x x x x==>,则21ln ()xm x x -'=,所以由()0m x '>得0x e <<;由()0m x '<得x e >,所以()m x 在()0,e 内单调递增,在(),e +∞内单调递减, 所以当a b e >>时,()()m a m b <,即()()g a g b a b<, 所以a b e >>,()()ag b bg a >成立,故选项C 错误; 选项D :因为不等式()()f ax ax x g x -≥-对1x ∀>恒成立,即不等式ln ax e ax x x -≥-对1x ∀>恒成立,又因为ln ln ln x x x e x -=-, 所以不等式ln ln ax x e ax e x -≥-对1x ∀>恒成立;令()xF x e x =-,则 ()1x F x e '=-,当0x >时,()10x F x e '=->恒成立,所以()xF x e x =-在()0,∞+单调递增,所以由不等式ln ln ax x e ax e x -≥-对1x ∀>恒成立,得ln ax x ≥对1x ∀>恒成立,即ln xa x≥对1x ∀>恒成立, 由选项C 知,()ln ()1xm x x x=>在()1,e 内单调递增,在(),e +∞内单调递减,所以()m x 的最大值为1()m e e =,所以只需1a e ≥,即正实数a 的最小值为1e .故选:ABD.【点睛】利用导数研究不等式恒成立问题,通常要构造函数,然后利用导数研究函数的单调性,求出最值进而得到结论或求出参数的取值范围;也可分类变量构造函数,把问题转化为函数的最值问题.恒成立问题常见的处理方式有:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)()f x a >恒成立型的可转化为min ()f x a >;(3)()()f x g x >恒成立型的可以通过作差法构造函数()()()h x f x g x =-,然后求min ()0h x >,或者转化为min max ()()f x g x >.(T 8联考八校2020-2021学年高三上学期第一次联考) 15. 已知函数()()ln 202x af x ae a x =+->+,若()0f x >恒成立,则实数a 的取值范围为______. 【答案】(),e +∞ 【解析】 【分析】根据()0f x >恒成立,可得到含有x a ,的不等式,再进行分离变量,将“恒成立”’转化为求函数的最大值或最小值,最后得出a 的范围. 【详解】()ln202x af x ae x =+->+,则()ln ln ln 22x a e a x ++>++, 两边加上x 得到()()()ln 2ln ln 2ln 2ln 2x x aex a x x ex ++++>+++=++,x y e x =+单调递增,()ln ln 2x a x ∴+>+,即()ln ln 2a x x >+-, 令()()ln 2g x x x =+-,则()11121x g x x x --'=-=++,因为()f x 的定义域为()2,-+∞()2,1x ∴∈--时,()0g x '>,()g x 单调递增,()1,x ∈-+∞,()0g x '<,()g x 单调递减,()()max ln 11a g x g ∴>=-=,a e ∴>.故答案为:(),e +∞【点睛】对于“恒成立问题”,关键点为:对于任意的x ,使得()f x a >恒成立,可得出()min f x a >; 对于任意的x ,使得()f x a <恒成立,可得出()max f x a <. (浙江省百校2020-2021学年高三上学期12月联考)16. 已知1a >,若对于任意的1[,)3x ∈+∞,不等式()4ln 3e ln xx x a a -≤-恒成立,则a 的最小值为______.【答案】3e【解析】 【分析】不等式等价变形()()()4ln 3ln 3ln 3ln x x xe x x a a x x a a e e -≤-⇔-≤-,利用同构函数()ln f x x x =-的单调性得解【详解】()()4ln 3ln 3ln 3ln x xe x x a a x x ae a x -≤-⇔-≤--()()3ln 3ln x x x x ae ae ⇔-≤- 令()ln f x x x =-,()111x f x x x-'=-=, Ⅰ()f x 在[)1,+∞上单调递增.Ⅰ1a >,1[,)3x ∈+∞,Ⅰ[)3,1,xe x a ∈+∞,Ⅰ33x x eae x x a ⇔≤⇔≤恒成立,令()3x x g x e =,只需max ()a g x ≥,()33xxg x e -'=,Ⅰ1[,1),()0,()3x g x g x ∈'>单调递增,Ⅰ(1,),()0,()x g x g x ∈+∞'<单调递减,1x ∴=时,()g x 的最大值为3e,Ⅰ3a e ≥,Ⅰa 的最小值为3e.故答案为:3e【点睛】不等式等价变形,同构函数()ln f x x x =-是解题关键. (河北省部分学校2022届高三上学期第一次月考)17. 已知函数()32f x x x ax =--在R 上单调递增,则a 的取值范围是____________.【答案】1(,]3-∞-【解析】【分析】求出函数()f x 的导函数()f x ',再由()0f x '≥恒成立即可得解.【详解】依题意:()232x x a f x '=--,因函数()32f x x x ax =--在R 上单调递增,于是得2320x x a --≥对x ∈R 恒成立,则4120a ∆=+≤,解得13a ≤-,所以a 的取值范围是1(,]3-∞-.故答案为:1(,]3-∞-18. 已知函数()f x 的定义域为R ,()12f -=,对任意(),2x R f x '∈>,则()24f x x >+的解集为____________.【答案】(1,)-+∞. 【解析】【分析】构造()()24g x f x x =--,根据题意得到()g x 在R 为单调递增函数,又由()12f -=,得到()10g -=,进而得到1x >-时,()0g x >,即可求解.【详解】设()()24g x f x x =--,可得()()2g x f x ''=-,因为对任意(),2x R f x '∈>,所以()0g x '>,所以()g x 在R 为单调递增函数, 又由()12f -=,可得()12240g -=+-=,所以当1x >-时,()0g x >,即不等式()24f x x >+的解集为(1,)-+∞. 故答案为:(1,)-+∞.(浙江省宁波市北仑中学2021-2022学年高三上学期返校考试) 19. 设函数()ln 2ef x x mx n x=--+,若不等式()0f x ≤对任意(0,)x ∈+∞恒成立,则nm的最大值为______________. 【答案】2e 【解析】【分析】根据()0ln 22e n f x x m x x m ⎛⎫≤⇒-≤- ⎪⎝⎭转化成两个函数比较大小的问题.【详解】不等式()0f x ≤对任意(0,)x ∈+∞恒成立,即ln 22e n x m x x m ⎛⎫-≤- ⎪⎝⎭,0x >恒成立, 设()()'21ln 0e e g x x g x x x x=-⇒=+> 所以()g x 在()0,∞+单调递增,且()0g e =,当0x →时()g x →-∞ 当x →+∞时()g x →+∞ 作出()g x 的图像如图,再设()22n h x m x m ⎛⎫=- ⎪⎝⎭,当0x >可得()h x 表示过点,02n m ⎛⎫⎪⎝⎭,斜率为2m 的一条射线(不含端点),要求nm 的最大值且满足不等式恒成立,可求2n m的最大值,由点,02n m ⎛⎫⎪⎝⎭在x 轴上方移动,只需找到合适的0m >,且()h x 与()g x 图像相切于点,02n m ⎛⎫⎪⎝⎭,如图所示,此时22n n e e m m =⇒= 故答案为:2e(江苏省扬州市仪征市精诚高级中学2021-2022学年高三上学期9月月考) 20. 已知函数()ln ()f x x ax a R =-∈. (1)讨论函数()f x 的单调性; (2)证明不等式2()x e ax f x --≥恒成立. 【答案】(1)答案见解析;(2)证明见解析. 【解析】 【分析】(1)求出函数导数,讨论a 的范围结合导数即可得出单调性;(2)构造函数2()ln x x e x ϕ-=-,利用导数可得()x ϕ'在(0,)+∞上有唯一实数根0x ,且012x <<,则可得()0()0x x ϕϕ≥>,即得证.【详解】(1)11()(0)axf x a x x x-'=-=>, 当0a ≤时,()0f x '>,所以()f x 在(0,)+∞上单调递增; 当0a >时,令()0f x '=,得到1x a=, 所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 单调递增,当1,x a ⎛⎫∈+∞ ⎪⎝⎭,()0f x '<,()f x 单调递减.综上所述,当0a ≤时,()f x 在(0,)+∞上单调递增;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减.(2)设函数2()ln x x e x ϕ-=-,则21()x x e xϕ-'=-,可知()x ϕ'在(0,)+∞上单调递增.又由(1)0ϕ'<,(2)0ϕ'>知,()x ϕ'在(0,)+∞上有唯一实数根0x ,且012x <<,则()020010x x ex ϕ-'=-=,即0201x e x -=.当()00,x x ∈时,()0x ϕ'<,()ϕx 单调递减; 当()0x x ∈+∞时,()0x ϕ'>,()ϕx 单调递增;所以()0200()ln x x x ex ϕϕ-≥=-,结合021x e x -=,知002ln x x -=-, 所以()()22000000001211()20x x x x x x x x x ϕϕ--+≥=+-==>,则2()ln 0x x e x ϕ-=->, 即不等式2()x e ax f x --≥恒成立.【点睛】关键点睛:本题考查不等式恒成立的证明,解题的关键是转化为证明2()ln x x e x ϕ-=-的最小值大于0.(贵州省铜仁市思南中学2021届高三第十次月考)21. 已知函数()e (0)x f x ax a -=≠存在极大值1e .(1)求实数a 的值;(2)若函数F (x )=f (x )﹣m 有两个零点x 1,x 2(x 1≠x 2),求实数m 的取值范围,并证明:x 1+x 2>2.【答案】(1)a =1 (2)10e m <<,证明见解析【解析】【分析】(1)利用极值的定义,列式求出a 的值,然后进行验证即可; (2)利用(1)中的结论,确定()f x 的单调性、极值以及函数的取值情况,由零点的定义,即可得到m 的取值范围,利用12()()F x F x =,得到2211lnx x x x -=,将问题转化为证明2122111ln 2x x x x x x -<+,即证明21221111ln 21x x x x x x -<+,不妨设12x x <,令21x t x =,则1t >,从而将问题转化为证明1112t lnt t -<+对于1t >恒成立,构造函数11()ln 21t g t t t -=-+,利用导数研究函数的单调性,求解函数的取值情况,即可证明.【小问1详解】解:函数()e (0)x f x ax a -=≠, 则(1)()e xa x f x -'=, 令()0f x '=,解得1x =, 所以f (1)1e ea ==,解得1a =, 此时1()e xxf x -'=, 当1x <时,()0f x '>,则()f x 单调递增, 当1x >时,()0f x '<,则()f x 单调递减, 所以当1x =时,函数()f x 取得极大值f (1)1e=,符合题意,。
2023年高考备考利用导数证明不等式(含答案)
高考材料高考材料专题10 利用导数证明不等式1.〔2023·北京市第九中学模拟预测〕已知. ()sin 2f x k x x =+(1)当时,推断函数零点的个数; 2k =()f x (2)求证:.()sin 2ln 1,(0,2x x x x π-+>+∈(答案)(1)1; (2)证明见解析. (解析) (分析)〔1〕把代入,求导得函数的单调性,再由作答. 2k =()f x (0)0f =〔2〕构造函数,利用导数借助单调性证明作答.()2sin ln(1)g x x x x =--+(1)当时,,,当且仅当时取“=〞,所以在R 上单调2k =()2sin 2f x x x =+()2cos 20f x x '=+≥(21)π,Z x k k =-∈()f x 递增,而,即0是的唯—零点, (0)0f =()f x 所以函数零点的个数是1.()f x (2),令,则,因,则,因此,函数(0,)2x π∈()2sin ln(1)g x x x x =--+()12cos 1g x x x =-'-+1cos 1,11x x <<+()0g x '>在上单调递增,,,()g x (0,)2π(0,2x π∀∈()(0)0g x g >=所以当时,成立.(0,)2x π∈()sin 2ln 1x x x -+>+2.〔2023·河南·开封市东信学校模拟预测〔文〕〕已知函数. ()ln (0)f x x ax a a =-+>(1)当时,求的单调区间; 2a =()f x (2)设函数的最大值为m ,证明:.()f x 0m ≥(答案)(1)增区间为,减区间为;10,2⎛⎫ ⎪⎝⎭1,2⎛⎫+∞ ⎪⎝⎭(2)证明见解析. (解析)(分析)〔1〕利用导数研究的单调区间.()f x 〔2〕应用导数求得的最大值,再构造并利用导数证明不等式.()f x 1ln 1m f a a a ⎛⎫==-- ⎪⎝⎭()ln 1h a a a =--(1)当时,. 2a =()ln 22f x x x =-+∴,令,得. 112()2x f x x x -'=-=()0f x '=12x =∴当时,,函数单调递增; 102x <<()0f x '>()f x 当时,,函数单调递减. 12x >()0f x '<()f x 故函数的减区间为,增区间为;()f x 1,2⎛⎫+∞ ⎪⎝⎭10,2⎛⎫ ⎪⎝⎭(2)由,令,得. 1()axf x x -'=()0f x '=1x a=∴当时,,函数单调递增; 10x a<<()0f x '>()f x 当时,,函数单调递减. 1x a>()0f x '<()f x ∴.max 1()ln 1m f x f a a a ⎛⎫===-- ⎪⎝⎭令,则. ()ln 1h a a a =--11()1a h a a a-'=-=∴当时,,函数单调递减; 01a <<()0h x '<()h x 当时,,函数单调递增. 1a >()0h x '>()h x ∴,即.()(1)0h a h ≥=0m ≥3.〔2023·江苏无锡·模拟预测〕已知函数,其中m >0,f '(x )为f (x )的导函数,设,且()e (1ln )xf x m x =+()()ex f x h x '=恒成立.5()2h x ≥(1)求m 的取值范围;(2)设函数f (x )的零点为x 0,函数f '(x )的极小值点为x 1,求证:x 0>x 1. (答案)(1)3,2⎡⎫+∞⎪⎢⎣⎭(2)证明见解析 (解析)(分析)〔1〕求导可得解析式,即可得解析式,利用导数求得的单调区间和最小值,结合题意,即可()'f x ()h x ()h x 得m 的范围.〔2〕求得解析式,令,利用导数可得的单调性,依据零点存在性定理,可()f x ''22()1ln (0)m mt x m x x x x =++->()t x 得存在,使得t (x 2)=0,进而可得f '(x )在x =x 2处取得极小值,即x 1=x 2,所以21,12x ⎛⎫∈ ⎪⎝⎭,令,分析可得s (x 1)<0,即可得证 11211211ln 0,,12m m m x x x x ⎛⎫++-=∈ ⎪⎝⎭()1ln s x m x =+(1)由题设知, ()e (1ln xmf x m x x'=++则, 1ln (())0h mm x x xx ++>=所以 22(1)()m m m x h x x x x -'=-=当x >1时,h '(x )>0,则h (x )在区间(1,+∞)是增函数, 当0<x <1时,h '(x )<0,则h (x )在区间(0,1)是减函数, 所以h (x )min =h 〔1〕=,解得,512m +≥32m ≥所以m 的取值范围为3,2⎡⎫+∞⎪⎢⎣⎭高考材料高考材料(2) 222e 1ln e )n (1l x x m m m m m m x m x x x x x x f x ⎛⎫⎛⎫+++-=++- ⎪ ⎪⎝⎭⎝'=⎭'令 22()1ln (0)m mt x m x x x x=++->则=恒成立, 2322()m m m t x x x x '=-+2233(1)1(22)0m x m x x x x⎡⎤-+-+⎣⎦=>所以t (x )在(0,+∞)单调递增.又,1(1)10,1l 3ln 20n 2122t m t m ⎛⎫=+>=-≤- ⎪⎝⎭<所以存在,使得t (x 2)=0,21,12x ⎛⎫∈ ⎪⎝⎭当x ∈(0,x 2)时,t '(x )<0,即f ''(x )<0,则f '(x )在(0,x 2)单调递减; 当x ∈(x 2,+∞) 时,t '(x )>0,即f ''(x )>0,则f '(x )在(x 2,+∞)单调递增; 所以f '(x )在x =x 2处取得极小值.即x 1=x 2, 所以t (x 1)=0,即, 11211211ln 0,,12m m m x x x x ⎛⎫++-=∈ ⎪⎝⎭所以, 1122111(12)21ln 0m x m m m x x x x -+=-=<令,则 s (x )在(0,+∞)单调递增; ()1ln s x m x =+所以s (x 1)<0因为f (x )的零点为x 0,则,即s (x 0)=0 01ln 0m x +=所以s (x 1)<s (x 0),所以x 0>x 14.〔2023·全国·郑州一中模拟预测〔理〕〕已知函数. ()()ln 0f x ax x a =≠(1)商量函数的单调性;()f x (2)当时,证明:.1a =()e sin 1xf x x <+-(解析) (1)依题意知,,()0,x ∈+∞()()ln ln 1f x a x a a x '=+=+令得,()0f x '=1ex =当时,在上,单调递减,在单调递增;0a >10,e ⎛⎫⎪⎝⎭()0f x '<()f x 1,e ⎛⎫+∞ ⎪⎝⎭当时,在上,单调递增,在单调递减.0a <10,e ⎛⎫⎪⎝⎭()0f x '>()f x 1,e ⎛⎫+∞ ⎪⎝⎭(2)依题意,要证,ln e sin 1x x x x <+-①当时,,,故原不等式成立, 01x <≤ln 0x x ≤1sin 0e x x -+>②当时,要证:,即证:,1x >ln e sin 1x x x x <+-ln sin 1e 0x x x x --+<令,则,, ()()e ln sin 11x h x x x x x =--+>()e ln cos 1xh x x x '=--+()e 1sin 0xh x x x''=-+<∴在单调递减,∴,∴在单调递减,∴()h x '()1,+∞()()11e cos10h x h ''<=--<()h x ()1,+∞,即,故原不等式成立.()()11e sin10h x h <=--<ln sin 1e 0xx x x --+<5.〔2023·浙江·三模〕已知实数,设函数. 0a ≥2()2ln(1)(1)ln ,0f x x ax a ax x x =-++-->(1)当时,求函数的单调区间; 0a =()f x (2)假设函数单调递增,求a 的最大值;()f x (3)设是的两个不同极值点,是的最大零点.证明:. 12,x x ()f x 3x ()f x 31211x x x +<注:是自然对数的底数.e 2.71828=⋅⋅⋅(答案)(1)在上单调递增;(2)1;(3)证明见解析. ()f x (0,)+∞(解析)(分析)〔1〕求导,结合导数正负可直接求解函数的单调区间. ()f x 〔2〕由题意得对任意的的恒成立,即可求出a 的最大值. 1()23ln 0f x x a a x x--'=+≥()0,x ∞∈+〔3〕由〔2〕知,当有两个不同极值点时,,则存在两个零点,故,()f x 1a >()0f x '=12,x x ()()111222123ln 0,123ln 0.x a x x x a x x ⎧+-+=⎪⎪⎨⎪+-+=⎪⎩由此可得出,再证明:. 12112a x x +<32x a >即可证明。
专题04 导数解答题2013-2022十年全国高考数学真题分类汇编(文科,全国通用版)(解析版)
当 时, ,当 时, ,
故 在 上为减函数,在 上为增函数,
所以 ,
而 , ,
有两个不同的零点即 的解的个数为2.
当 ,由(1)讨论可得 、 仅有一个零点,
当 时,由(1)讨论可得 、 均无零点,
故若存在直线 与曲线 、 有三个不同的交点,
则 .
设 ,其中 ,故 ,
设 , ,则 ,
故 在 上为增函数,故 即 ,
【题目栏目】导数\导数的综合应用
【题目来源】2021年高考全国甲卷文科·第20题
10.(2021年全国高考乙卷文科·第21题)已知函数 .
(1)讨论 的单调性;
(2)求曲线 过坐标原点的切线与曲线 的公共点的坐标.
【答案】(1)答案见解析;(2) .
解析:(1)由函数的解析式可得: ,
导函数的判别式 ,
即曲线 过坐标原点的切线与曲线 的公共点的坐标为 .
【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.
故 为方程 的解,同理 也为方程 的解,
所以 ,而 ,
故 即 .
【题目栏目】导数\导数的综合应用
【题目来源】2022新高考全国I卷·第22题
5.(2021年新高考全国Ⅱ卷·第22题)已知函数 .
(1)讨论 的单调性;
(2)从下面两个条件中选一个,证明: 有一个零点
高考数学导数与不等式 导数方法证明不等式
探究点二 双变量不等式的证明
[思路点拨]首先求得导函数的解析式,然后结合导函数的符号即可确定函数的单调性;解: f'(x)=1-ln x-1=-ln x,x∈(0,+∞).当x∈(0,1)时,f'(x)>0,f(x)单调递增;当x∈(1,+∞)时,f'(x)<0,f(x)单调递减.所以f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.
[总结反思]待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,即若证明f(x)>g(x)在区间D上恒成立,则构造函数h(x)=f(x)-g(x),再根据函数h(x)的单调性,证明h(x)>0在区间D上恒成立.
课堂考点探究
课堂考点探究
变式题 [2021·云南师大附中模拟] 已知函数f(x)=aex+b,若f(x)的图像在点(0,f(0))处的切线方程为y=x+1.(1)求a,b的值;
课堂考点探究
例2 [2021·辽宁丹东二模] 已知函数f(x)=ln(ax)-x+a.(2)当0<a≤1时,证明:f(x)≤(x-1)ex-a-x+a.
数学-22年高考导数压轴题单变量与双变量不等式恒成立、能成立问题
2022年高考导数压轴题单变量与双变量不等式恒成立、能成立问题【原件版】一、单变量不等式恒成立、能成立问题题型一 证明不等式成立1、已知函数()xf x e ax =+.(a R ∈)(1)若0a <,求函数()f x 的单调区间;(2)若3a =,证明:当0x >时,()231f x x x >++恒成立.2、已知()ln 1f x x x =+,2()1g x x mx =-+-.(1)对一切实数()0,x ∈+∞,2()()f x g x ≥,求实数m 的取值范围; (2)求证:任意()0,x ∈+∞,12ln x x e ex>-.3、已知函数()xe f x x=.(1)函数()()f xg x x=,求()g x 的单调区间和极值. (2)求证:对于()0,x ∀∈+∞,总有()13ln 44f x x >-.4、已知函数1()ln ()f x a x a R x=+∈. (1)讨论函数()f x 在区间[1,2]上的最小值;(2)当1a =时,求证:对任意(0,)x ∈+∞,恒有cos ()x e xf x x+<成立.题型2 根据恒(能)成立求参数范围 类型1 根据恒成立求参数范围 1、已知函数2()(21)ln f x ax a x x =-++. (1)当1a =时,求()f x 的单调区间与极值; (2)若()0f x <恒成立,求a 的取值范围.2、已知函数()()()e e 0xf x a x a =-≠.(1)讨论()f x 的单调性:(2)若()1f x x >+对[)2,x ∈+∞恒成立,求a 的取值范围.3、已知()2sin xf x e x x =-+,()3122sin 3g x x x x m =-++.(1)求()f x 的单调区间;(2)若0x ≥时,()()f x g x ≥恒成立,求m 的取值范围.4、已知函数()axf x e x =-.(1)若曲线()y f x =在点()()0,0f 处切线的斜率为1,求()f x 的单调区间;(2)若不等式()2ln ax f x e x ax ≥-对(]0,x e ∈恒成立,求a 的取值范围.5、已知函数1()ln f x a x x =-,()a g x x x=+,其中a ∈R . (1)若1a =,求曲线()y f x =在点(1,(1))f 处的切线方程;(2)若()()g x f x >对于任意的[1,e]x ∈恒成立,求实数a 的取值范围.类型2 根据能成立求参数范围 1、已知函数()ln f x x a x =-,()1(0)ag x a x+=->. (1)若1a =,求函数()f x 的极值;(2)设函数()()()h x f x g x =-,求函数()h x 的单调区间;(3)若存在[]01x e ∈,,使得()()00f x g x <成立,求a 的取值范围.2、已知函数22()ln f x ax x bx c =--在1x =处取得极值3c -,其中,,a b c 为常数. (1)试确定,a b 的值;(2)讨论函数()f x 的单调区间;(3)若对任意0x >,不等式2()2f x c ≥有解,求c 的取值范围.3、已知函数()e 1xf x ax =--.(1)当1a =时,求()f x 的极值;(2)若()2f x x ≤在[)0,x ∈+∞上有解,求实数a 的取值范围.4、已知函数()()()2122ln 2f x x a x a x a =-++∈R . (1)若曲线()y f x =在点()()1,1f 处的切线方程为2y x b =+,求2+a b 的值; (2)若0a >,讨论函数()f x 的单调性;(3)设函数()()2g x a x =-+,若至少存在一个[]0,4x e ∈,使得()()00f x g x >成立,求实数a 的取值范围.5、已知函数()ln bf x x a x x=-+,a ,b ∈R . (1)若a >0,b >0,且1是函数()f x 的极值点,求12a b+的最小值; (2)若b =a +1,且存在0x ∈[1e,1],使0()0f x <成立,求实数a 的取值范围.6、已知函数1()ln f x a x x=+(a R ∈且0a ≠). (1)若1a =,求函数()f x 的极值;(2)若存在(]00,x e ∈,使得()00f x <成立,求实数a 的取值范围.二、双变量不等式恒成立、能成立问题1、已知曲线()()3,f x ax bx a b =+∈R 在点()()1,1f 处的切线方程是20y +=.(1)求()f x 的解析式;(2)若对任意[]12,2,3x x ∈-,都有()()12f x f x m -,求实数m 的取值范围.2、已知函数1()ln ,()2xf x x xg x m ⎛⎫=+=- ⎪⎝⎭, (1)先证明单调性,再求函数()f x 在[]1,2上的最小值;(2)若对[][]121,2,0,2x x ∀∈∃∈,使得12()()f x g x ≥,求实数m 的取值范围.3、已知函数()223x xe f x e -+=,其中e 为自然对数的底数.(1)证明:()f x 在(),0-∞上单调递减,()0,∞+上单调递增; (2)设0a >,函数()212cos cos 3g x x a x a =+--,如果总存在[]1,x a a ∈-,对任意2x R ∈,()()12f x g x 都成立,求实数a 的取值范围.4、已知函数2()(2)ln ()f x a x ax x a R =++-∈. (Ⅰ)当0a =时,求证:2()22x f x x >-. (Ⅱ)设232()3g x x x =-,若1(0,1]x ∀∈,2[0,1]x ∃∈,使得()()12f x g x 成立,求实数a 的取值范围.5、已知函数21()(1)ln 2f x x a x a x =-++. (1)求函数()f x 的单调递增区间;(2)任取[3,5]a ∈,函数()f x 对任意1212,[1,3]()x x x x ∈≠,恒有1212|()()|||f x f x x x λ-<-成立,求实数λ的取值范围.6、设f (x )=ax+x ln x ,g (x )=x 3-x 2-3.(1)如果存在x 1,x 2∈[0,2],使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M ; (2)如果对于任意的s ,t ∈⎣⎡⎦⎤12,2,都有f (s )≥g (t )成立,求实数a 的取值范围.7、已知函数f (x )=x -1-a ln x (a <0). (1)讨论函数f (x )的单调性; (2)当0<x 1<x 2≤1时,都有f (x 1)−f(x 2)x 1−x 2<4x1x 2,求实数a 的取值范围.8、已知函数f (x )=x -(a +1)ln x -a x (a ∈R ),g (x )=12x 2+e x -x e x .(1)当x ∈[1,e]时,求f (x )的最小值;(2)当a <1时,若存在x 1∈[e ,e 2],使得对任意的x 2∈[-2,0],f (x 1)<g (x 2)成立,求a 的取值范围.9、已知函数()13ln 144f x x x x=-+- (1)求函数()f x 的单调区间; (2)设()224gx x bx =-+-,若对任意()[]120,2,1,2x x ∈∈,不等式()()12f x g x ≥恒成立,求实数b的取值范围.10、已知函数321()1()32x a f x x ax a R +=-++∈. (1)若3x =是函数()f x 的一个极值点,求a 的值; (2)当2a <时,1x ∀,2[0x ∈,2],122|()()|3f x f x -恒成立,求a 的取值范围.11、已知函数2()3()f x lnx ax x a R =+-∈.(1)若函数()f x 在点(1,f (1))处的切线方程为2()y bx b R =-∈,求a ,b 的值及()f x 的极值; (2)若1a =,对1x ∀,2[1x ∈,2],当12x x <时,不等式1221()()m mf x f x x x ->-恒成立,求实数m 的取值范围.2022年高考导数压轴题单变量与双变量不等式恒成立、能成立问题【详细解析版】一、单变量不等式恒成立、能成立问题题型一 证明不等式成立1、已知函数()xf x e ax =+.(a R ∈)(1)若0a <,求函数()f x 的单调区间;(2)若3a =,证明:当0x >时,()231f x x x >++恒成立.【答案】(1)在()(),ln a -∞-上单调递减,在()()ln ,a -+∞上单调递增;(2)证明见解析.【分析】(1)求导可得()'f x 解析式,令()0f x '=,解得ln()x a =-,分别讨论()(),ln x a ∈-∞-和()()ln ,a -+∞时,()'f x 的正负,可得()f x 的单调区间.(2)令()22()(+3+1)=e 1x g x f x x x x =---,可得()2x g x e x '=-,再令()e 2x h x x =-,利用导数求得()h x 的单调区间和最值,即可得()0g x '>恒成立,可得()g x 的单调性和最值,得证.【解析】(1)()xf x e a '=+,当0a <时,令()0f x '=,解得ln()x a =-. 当x 变化时,()f x ',()f x 的变化情况如下表:所以0a <时,f x ,ln a -∞-ln ,a -+∞.(2)证明:令()22()(+3+1)=e 1x g x f x x x x =---,则()2xg x e x '=-.令()e 2xh x x =-,则()2x h x e '=-,当0ln2x <<时,()0h x '<,()h x 单调递减, 当ln2x >时,()0h x '>,()h x 单调递增;所以()()ln2ln2e 2ln222ln20h x h ≥=-=->,即()0g x '>恒成立.所以()g x 在()0,∞+上单调递增,所以()()01010g x g >=--=,所以2e 10x x -->,即当0x >时,()231f x x x >++恒成立.3、已知函数()xe f x x=.(1)函数()()f xg x x=,求()g x 的单调区间和极值. (2)求证:对于()0,x ∀∈+∞,总有()13ln 44f x x >-.【答案】(1)()g x 在(0,2)上单调递减,在(,0)-∞和(2,)+∞上单调递增;极小值()2e 24g =,无极大值;(2)证明见解析.【分析】(1)写出()g x 的函数表达式,通过求导写出单调区间和极值即可(2)证明()13ln 44f x x >-恒成立,结合(1)得,等价于2e 1(ln 3)4x x x x>-恒成立,且已知左式的最小值,只要大于右式的最大值,则不等式恒成立【解析】(1)2243e e 2e e (2)()()x x x x x x x g x g x x x x --'=⇒==,当02x <<时,()0g x '<;当0x <或2x >时,()0g x '>,()g x ∴在(0,2)上单调递减,在(,0)-∞和(2,)+∞上单调递增;故()g x 有一个极小值2e (2)4g =,无极大值. (2)证明:要证13()ln 44f x x >-成立,只需证e 13ln 44x x x >-成立,即证2e 1(ln 3)4x x x x>-成立,令1()(ln 3)4h x x x =-,则24ln ()=4xh x x -', 当40e x <<时,()0h x '>;当4e x >时,()0h x '<, ()h x ∴在()40,e 上单调递增,在()4e ,+∞上单调递减, ()4max 41()e 4e h x h ==∴, 2e ()x g x x =∵由(1)可知2min e ()(2)4g x g ==,min max ()()g x h x >∴,()()g x h x >∴,13()ln 44f x x >-∴.4、已知函数1()ln ()f x a x a R x=+∈. (1)讨论函数()f x 在区间[1,2]上的最小值;(2)当1a =时,求证:对任意(0,)x ∈+∞,恒有cos ()x e xf x x+<成立.【解析】(1)函数1()ln =+f x a x x的定义域是(0,)+∞, 2211()a ax f x x x x-'=-=. 当0a 时,2110,0ax ax x --<<,则()0f x '<,则函数()f x 在(0,)+∞上单调递减,即函数()f x 在区间[1,2]上单调递减,故函数()f x 在区间[1,2]上的最小值为1(2)ln 22f a =+. 当0a >时,令()0f x '<,得10x a <<;令()0f x '>,得1x a>;故函数()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增.当11a,即1a 时,函数()f x 在区间[1,2]上单调递增, 故函数()f x 在区间[1,2]上的最小值为(1)1f =;当12a,即102a <时,函数()f x 在区间[1,2]上单调递减,故函数()f x 在区间[1,2]上的最小值为1(2)ln 22f a =+;当112a <<,即112a <<时,函数()f x 在11,a ⎡⎫⎪⎢⎣⎭上单调递减,在1,2a ⎛⎤ ⎥⎝⎦上单调递增,此时函数()f x 在区间[1,2]上的最小值为11ln f a a a a ⎛⎫=+ ⎪⎝⎭. 综上,当12a时,函数()f x 在区间[1,2]上的最小值为1(2)ln 22f a =+; 当112a <<时,函数()f x 在区间[1,2]上的最小值为11ln f a a a a ⎛⎫=+ ⎪⎝⎭;当1a 时,函数()f x 在区间[1,2]上的最小值为(1)1f =.(2)当1a =时,1()ln f x x x=+, 要证cos ()x e x f x x +<,即证1cos ln x e xx x x++<,因为0x >,所以两边同时乘x ,得ln 1cos x x x e x +<+, 即证ln cos 1x x x e x <+-.当01x <时,ln 0x x ,而cos 11cos11cos10x e x +->+-=>,所以ln cos 1xx x e x <+-成立,即cos ()x e xf x x+<成立.当1x >时,令()cos ln 1(1)xh x e x x x x =+-->,则()sin ln 1xh x e x x '=---.设()sin ln 1(1)xg x e x x x =--->,,则因为1()cos xg x e x x'=--. 因为1x >,所以1()cos 110xg x e x e x'=-->-->, 所以当1x >时,()g x 单调递增,所以()sin110g x e >-->,即()0h x '>,所以()h x 在(1,)+∞上单调递增,所以()cos110h x e >+->,即cos ()x e xf x x +<成立.综上,对任意(0,)x ∈+∞,恒有cos ()x e xf x x+<成立.题型2 根据恒(能)成立求参数范围 类型1 根据恒成立求参数范围 1、已知函数2()(21)ln f x ax a x x =-++. (1)当1a =时,求()f x 的单调区间与极值; (2)若()0f x <恒成立,求a 的取值范围.【答案】(1)单调递增区间为10,2⎛⎫ ⎪⎝⎭,(1,)+∞,单调递减区间为1,12⎛⎫⎪⎝⎭,极大值15ln 224f ⎛⎫=-- ⎪⎝⎭,极小值(1)2f =-(2)(1,0]-【分析】(1)由题可求导函数,利用导数求出函数的单调区间,进而再求出极值即可;(2)分情况讨论,利用导数研究函数的单调性和极值即可求解.【解析】(1)当1a =时,函数2()3ln =-+f x x x x ,定义域为(0,)+∞,()21231(21)(1)23x x x x f x x x x x-+--'=-+==. 当()0f x '>时,102x <<或1x >;当()0f x '<时,112x <<,所以函数()f x 的单调递增区间为10,2⎛⎫ ⎪⎝⎭,(1,)+∞,单调递减区间为1,12⎛⎫⎪⎝⎭,所以当12x =时,函数()f x 取得极大值15ln 224f ⎛⎫=-- ⎪⎝⎭,当1x =时,函数()f x 取得极小值(1)2f =-. (2)()1(21)(1)2(21)ax x f x ax a x x--'=-++=. ①当0a >时,2()(21)ln f x ax a x x =-++,(0,)x ∈+∞, 令2(21)0ax a x -+>,解得12x a>+,则当01(2,)x a∈++∞时,200(21)0ax a x -+>,且0ln ln 20x >>,所以函数2()(21)ln 0f x ax a x x =-++>恒成立,不符合题意,舍去;②当0a ≤时,令()0f x '>,解得01x <<;令()0f x '<,解得1x >, 则函数()f x 在(0,1)上为增函数,在(1,)+∞上为减函数, 所以函数()f x 在1x =处取得极大值,也是最大值,要使得()0f x <恒成立,则只需(1)(21)0f a a =-+<,解得1a >-,故10a -<≤. 综上,a 的取值范围是(1,0]-.2、已知函数()()()e e 0xf x a x a =-≠.(1)讨论()f x 的单调性:(2)若()1f x x >+对[)2,x ∈+∞恒成立,求a 的取值范围. 【答案】(1)答案不唯一,具体见解析(2)23,e 2e ⎛⎫+∞ ⎪-⎝⎭【分析】(1)求导得()()e e xf x a '=-,在分0a >,0a <两种情况讨论求解即可;(2)根据题意将问题转化为1e e x x a x+>-对[)2,x ∈+∞恒成立,进而构造函数,求解函数最值即可. 【解析】(1)函数的定义域为R ,()()e e xf x a '=-.当0a >时,令()0f x '>,得1x >,令()0f x '<,得1x <; 当0a <时,令()0f x '>,得1x <,令()0f x '<,得1x >.综上,当0a >时,()f x 在(),1-∞上单调递减,在()1,+∞上单调递增; 当0a <时,()f x 在(),1-∞上单调递增,在()1,+∞上单调递减.(2)由(1)知,函数()e e xg x x =-在[)2,+∞上单调递增,则()()()2e e 20g x g ≥=->,所以()1f x x >+对[)2,x ∈+∞恒成立等价于1e e x x a x+>-对[)2,x ∈+∞恒成立. 设函数()()12e e x x h x x x +=≥-,则()()2e e e e xx x h x x -=-', 设()()e e 2x p x x x =-≥,则()()1e 0xp x x =-+<',则()p x 在[)2,+∞上单调递减, 所以()()22e 2e 0p x p ≤=-<,则()0h x '<,所以()h x 在[)2,+∞上单调递减, 所以()()2max 32e 2eh x h ==-; 故23e 2e a >-,即a 的取值范围是23,e 2e ⎛⎫+∞ ⎪-⎝⎭.3、已知()2sin xf x e x x =-+,()3122sin 3g x x x x m =-++.(1)求()f x 的单调区间;(2)若0x ≥时,()()f x g x ≥恒成立,求m 的取值范围. 【答案】(1)在(,0)-∞单调递减,在(0,)+∞单调递增.(2)m ≤1【分析】(1)先对函数进行求导,再进行分类讨论判断导数值的正负,即可得到答案;(2)将问题转化为31sin 3x m e x x --在0x 恒成立,令31()sin (0)3x u x e x x x =--,再利用(1)的结论进行求解,即可得到答案;【解析】(1)()2sin x f x e x x =-+,∴()2cos x f x e x '=-+,①当0x 时,2(2,1],1cos 1x e x -∈---,∴2cos 0x e x -+在0x 恒成立,∴()0f x ',∴()f x 在(,0)-∞单调递减,②当0x >时,令()2cos x g x e x =-+,则()sin 0x g x e x '=->在0x >恒成立,∴()g x 在(0,)+∞单调递增,且(0)0g =,∴()0>g x 在(0,)+∞恒成立,即()0f x '>在(0,)+∞恒成立,∴()f x 在(0,)+∞单调递增,综上所述:()f x 在(,0)-∞单调递减,在(0,)+∞单调递增.(2)当0x 时,312sin 22sin 3xe x xx x x m -+-++ 31sin 3x m e x x ∴--在0x 恒成立,令31()sin (0)3x u x e x x x =--,2()cos x x u x e x '=--,令2()cos (0)x v x e x x x =--,由(1)得()()2sin '01xv x e x x v ='-+=,()v x ∴在(0,)+∞单调递增,且(0)0v =,()0u x '∴在0x ≥恒成立,()u x ∴在[0,)+∞单调递增,(0)1u =,∴min ()(0)1m u x u ≤==.4、已知函数()axf x e x =-.(1)若曲线()y f x =在点()()0,0f 处切线的斜率为1,求()f x 的单调区间; (2)若不等式()2ln axf x e x ax ≥-对(]0,x e ∈恒成立,求a 的取值范围.【答案】(1)单调递减区间为ln 2,2⎛⎫-∞-⎪⎝⎭,单调递增区间为ln 2,2⎛⎫-+∞ ⎪⎝⎭;(2)1,e ⎡⎫+∞⎪⎢⎣⎭. 【分析】(1)由题设()1axf x ae '=-,根据导数的几何意义有()01f '=,可求a ,即()221xf x e'=-,进而可求()f x 的单调区间;(2)由题意,函数不等式恒成立可转化为(]0,x e ∈上ln 1ln 1ax ax xe e x --≥恒成立, 构造函数()ln 1x g x x -=,应用导数研究其单调性可得ln xa x ≥在(]0,x e ∈上恒成立, 即在(]0,x e ∈上max ln ()xa x≥即可求a 的取值范围. 【解析】(1)()1axf x ae '=-,则()011f a '=-=,即2a =.所以()221xf x e '=-,令0fx ,得ln 22x =-. 当ln 22x <-时,0f x ;当ln 22x >-时,0f x .故()f x 的单调递减区间为ln 2,2⎛⎫-∞-⎪⎝⎭,单调递增区间为ln 2,2⎛⎫-+∞ ⎪⎝⎭. (2)由()2ln axf x e x ax ≥-,即()2ln 1axax x ex -≥-,有1ln 1ax a x e x x --≥,故仅需ln 1ln 1ax axxe e x --≥即可. 设函数()ln 1x g x x -=,则ln 1ln 1ax axxe e x --≥等价于()()axg e g x ≥. 因为()22ln x g x x-'=, 所以当(]0,x e ∈时,0g x,则()g x 在(]0,e 上单调递增, 所以当(]0,x e ∈时,()()axg e g x ≥等价于当(]0,x e ∈时,()()ax g e g x ≥,ax e x ≥,即ln xa x≥恒成立. 设函数()ln x h x x =,(]0,x e ∈,则()21ln 0xh x x -'=≥, 即()h x 在(]0,x e ∈递增,所以()()max 1h x h e e==,则1a e ≥即可,所以a 的取值范围为1,e ⎡⎫+∞⎪⎢⎣⎭.5、已知函数1()ln f x a x x =-,()a g x x x=+,其中a ∈R . (1)若1a =,求曲线()y f x =在点(1,(1))f 处的切线方程;(2)若()()g x f x >对于任意的[1,e]x ∈恒成立,求实数a 的取值范围.【答案】(1)230x y --=;(2)2e 12e 1a +-<<-.【分析】(1)求导,利用导数的几何意义求出切线斜率,进而可得切线方程;(2)将不等式1ln a x a x x x+>-对于任意的[1,e]x ∈恒成立转化为任意的[1,e]x ∈, 1ln 0a x a x x+-+>恒成立,设1()ln a h x x a x x +=-+,[1,e]x ∈,求导,分11a +≤,1e a +≥,11e a <+<讨论,通过求min ()0h x >求实数a 的取值范围.【解析】(1)由题意知:1()ln f x x x=-,(1)1f =-,即切点为(1,1)-, ()211f x x x '=+,()12f '=, 故切线方程为:12(1)y x +=-,即230x y --=. (2)由题意知:不等式1ln a x a x x x+>-对于任意的[1,e]x ∈恒成立, 任意的[1,e]x ∈,1ln 0a x a x x+-+>恒成立, 设1()ln a h x x a x x+=-+,[1,e]x ∈, 2(1)(1)()x x a h x x +--'=,[1,e]x ∈①当11a +≤,即0a ≤时,()0h x '≥,()h x 为增函数, min ()(1)20h x h a ∴==+>,即2a >-,20a -<≤满足.②当1e a +≥,即e 1a ≥-时,()0h x '≤,()h x 为减函数,min1()(e)e e 0a h x h a +∴==-+>,即22e 1e 1a +<-,2e 1e 1e 1a +∴-≤<-满足③当11e a <+<时,即0e 1a <<-时,当[1,1]x a ∈+时,()0h x '≤,当(1,e]x a ∈+时,()0h x '≥,∴只需min ()(1)2ln(1)0h x h a a a a =+=+-+>,即min 2()ln(1)10h x a a a ⎡⎤=-++>⎢⎥⎣⎦,设2()ln(1)1F a a a=-++,其中0e 1a <<-, 2()ln(1)1F a a a =-++为递减函数,2()(e 1)0e 1F a F ∴>-=>-, 故0e 1a <<-,min ()(1)2ln(1)0h x h a a a a =+=+-+>,综上:2e 12e 1a +-<<-.类型2 根据能成立求参数范围 1、已知函数()ln f x x a x =-,()1(0)ag x a x+=->. (1)若1a =,求函数()f x 的极值;(2)设函数()()()h x f x g x =-,求函数()h x 的单调区间;(3)若存在[]01x e ∈,,使得()()00f x g x <成立,求a 的取值范围. 【答案】(1)极小值为1,无极大值(2)单调递增区间为()1,a ++∞,单调递减区间为()0,1a +.(3)21,1e e ⎛⎫++∞ ⎪-⎝⎭【分析】(1)研究()ln f x x x =-的单调区间,进而求出()f x 的极值;(2)先求()h x ',再解不等式()0h x '>与()0h x '<,求出单调区间,注意题干中的0a >的条件;(3)先把题干中的问题转化为在[]1x e ∈,上有()min 0h x <,再结合第二问研究的()h x 的单调区间,对a 进行分类讨论,求出不同范围下的()min h x ,求出最后结果【解析】(1)当1a =时,()ln f x x x =-,定义域为()0,∞+,()111x f x x x-'=-= 令()0f x '=得:1x =,当1x >时,()0f x '>,()f x 单调递增; 当01x <<时,()0f x '<,()f x 单调递减,故1x =是函数()f x 的极小值点,()f x 的极小值为()11f =,无极大值 (2)()()()()1ln 0ah x f x g x x a x a x+=-=-+>,定义域为()0,∞+ ()()()222211111x x a a a x ax a h x x x x x+--+---'=--== 因为0a >,所以10a +>,令()0h x '>得:1x a >+,令()0h x '<得:01x a <<+, 所以()h x 在()1,a ++∞单调递增,在()0,1a +单调递减.综上:()h x 单调递增区间为()1,a ++∞,单调递减区间为()0,1a +.(3)存在[]01x e ∈,,使得()()00f x g x <成立, 等价于存在[]01x e ∈,,使得()00h x <,即在[]1x e ∈,上有()min 0h x < 由(2)知,()h x 单调递增区间为()1,a ++∞,单调递减区间为()0,1a +,所以当1a e +≥,即1a e ≥-时,()h x 在[]1x e ∈,上单调递减,故()h x 在x e =处取得最小值, 由()()min10a h x h e e a e +==-+<得:211e a >e +-,因为2111e e e +>--,故211e a >e +-. 当11a e <+<,即01a e <<-时,由(2)知:()h x 在()1,1x a ∈+上单调递减,在()1,x a e ∈+上单调递增,()h x 在[]1x e ∈,上的最小值为()()12ln 1h a a a a +=+-+ 因为()0ln 11a <+<,所以()0ln 1a a a <+<,则()2ln 12a a a +-+>,即()12h a +>,不满足题意,舍去综上所述:a 的取值范围为21,1e e ⎛⎫++∞⎪-⎝⎭2、已知函数22()ln f x ax x bx c =--在1x =处取得极值3c -,其中,,a b c 为常数. (1)试确定,a b 的值;(2)讨论函数()f x 的单调区间;(3)若对任意0x >,不等式2()2f x c ≥有解,求c 的取值范围.【答案】(1)6a =-;3b =-;(2)单调递增区间为()0,1,()f x 的单调递减区间为()1,+∞;(3)3,12⎡⎤-⎢⎥⎣⎦【分析】(1)由()13f c =-,求得b ,由()10f '=,得a ;(2)将(1)中得到的,a b 的值代入函数表达式,进而得到()12ln f x x x '=-.判定导数的正负区间,进而得到单调区间;(3)由(2)知,得到函数()f x 最大值,根据不等式有解得到c 的不等式求解即得.【解析】(1)由题意知()13f c =-,因此3b c c --=-,从而3b =-.由题意求导得()10f '=,因此20a b -=,解得6a =-; (2)由(1)知()12ln f x x x '=-.令()0f x '=,解得1x =.因此()f x ()1,+∞; (3)由(2)知,()f x 在1x =处取得极大值()13f c =-,此极大值也是最最值.要使()22f x c ≥(0x >)有解,只需232c c -≥.即2230c c +-≤,从而()()2310c c +-≤.解得312c -≤≤. 所以c 的取值范围为3,12⎡⎤-⎢⎥⎣⎦.3、已知函数()e 1xf x ax =--.(1)当1a =时,求()f x 的极值;(2)若()2f x x ≤在[)0,x ∈+∞上有解,求实数a 的取值范围.【答案】(1)极小值()00f =,无极大值;(2)e 2a ≥-.【分析】(1)利用导数求得()f x 的单调区间,由此求得()f x 的极值.(2)将()2f x x ≤转化为2e 10x x ax ---≤,采用分离常数法,通过构造函数,结合导数求得a 的取值范围.【解析】(1)当1a =时,()e 1x f x x =--,所以()e 1xf x '=-,当0x <时()0f x '<;当0x >时()0f x '>,所以()f x 在(),0-∞上单调递减,在()0,∞+上单调递增, 所以当0x =时函数()f x 有极小值()00f =,无极大值.(2)因为()2f x x ≤在[)0,+∞上有解,所以2e 10x x ax ---≤在[)0,+∞上有解, 当0x =时,不等式成立,此时R a ∈, 当0x >时e 1x a x x x ⎛⎫≥-+ ⎪⎝⎭在()0,∞+上有解,令()e 1x g x x x x ⎛⎫=-+ ⎪⎝⎭,则()()()()22221e 1e 11xx x x x x g x x x x ⎡⎤--+-⎛⎫-⎣⎦'=-= ⎪⎝⎭, 由(1)知0x >时()()00f x f >=,即()e 10xx -+>,当01x <<时()0g x '<;当1x >时()0g x '>, 所以()g x 在()0,1上单调递减,在()1,+∞上单调递增, 所以当1x =时,()min e 2g x =-, 所以e 2a ≥-,综上可知,实数a 的取值范围是e 2a ≥-.4、已知函数()()()2122ln 2f x x a x a x a =-++∈R . (1)若曲线()y f x =在点()()1,1f 处的切线方程为2y x b =+,求2+a b 的值; (2)若0a >,讨论函数()f x 的单调性;(3)设函数()()2g x a x =-+,若至少存在一个[]0,4x e ∈,使得()()00f x g x >成立,求实数a 的取值范围. 【答案】(1)210a b +=-;(2)答案见解析;(3)2,ln 2⎛⎫-+∞ ⎪⎝⎭. 【分析】(1)利用导数的几何意义可得出关于实数a 、b 的方程组,解出这两个未知数的值,即可求得2+a b 的值; (2)求得()()()2xf x x x a --=',分2a =、02a <<、2a >三种情况讨论,分析导数的符号变换,由此可得出函数()f x 的增区间和减区间;(3)分析可知不等式222ln x a x>-在[],4e 上有解,利用导数求出函数()22ln x h x x=-在区间[],4e 上的最小值,由此可求得实数a 的取值范围.【解析】(1)()f x 的定义域为()0,∞+,()()22af x x a x'=-++. 由题意得()()11222f a b =-+=+,()()11222f a a '=-++=, 即32212a b a ⎧--=+⎪⎨⎪-=⎩,解得3132a b =⎧⎪⎨=-⎪⎩,因此,210a b +=-;(2)()()()()2222x a x ax x a f x xx-++--'==.当2a =时,()0f x '≥且()f x '不恒为0,所以,()f x 在()0,∞+上单调递增; 当02a <<时,由()0f x '>,得0x a <<或2x >,由()0f x '<,得2a x <<, 此时,()f x 在()0,a 和()2,+∞上单调递增,在(),2a 上单调递减; 当2a >时,由()0f x '>,得02x <<或x a >,由()0f x '<,得2x a <<, 此时,()f x 在()0,2和(),a +∞上单调递增,在()2,a 上单调递减. 综上所述,当2a =时,()f x 在()0,∞+上单调递增;当02a <<时,()f x 在()0,a 和()2,+∞上单调递增,在(),2a 上单调递减; 当2a >时,()f x 在()0,2和(),a +∞上单调递增,在()2,a 上单调递减;(3)若至少存在一个[]0,4x e ∈,使得()()00f x g x >成立,则当[],4x e ∈时,212ln 02x a x +>有解.当[],4x e ∈时,ln 1x ≥,即222ln x a x >-有解,令()22ln x h x x=-,[],4x e ∈,则()min 2a h x >.()()()()2212ln 2ln 02ln 2ln x x x x x h x x x --'=-=<,所以,()h x 在[],4e 上单调递减,所以,()()min 44ln 2h x h ==-, 所以,42ln 2a >-,即2ln 2a >-,因此,实数a 的取值范围是2,ln 2⎛⎫-+∞ ⎪⎝⎭.5、已知函数()ln bf x x a x x=-+,a ,b ∈R . (1)若a >0,b >0,且1是函数()f x 的极值点,求12a b+的最小值; (2)若b =a +1,且存在0x ∈[1e,1],使0()0f x <成立,求实数a 的取值范围.【答案】(1)最小值3+;(2)()211e a e e +<-+.【分析】(1)由1是函数()f x 的极值点得1a b +=,对12a b+用基本不等式中“1的代换”求最值; (2)把“存在0x ∈[1e ,1],使0()0f x <成立”转化为函数()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的最小值小于0, 利用导数讨论单调性,找到最小值,解出a 的范围即可.【解析】(1)()21,a bf x x x =--'因为1是函数()f x 的极值点, 所以()110,f a b '=--=即 1.a b +=此时()()()()222222111x b x b x x b a b x ax b f x x x x x x----+--=--=='= 当()01,0;x f x '<<<当()1,0,x f x >'>所以函数()f x 在1x =处取极小值.所以()121223b a a b a b a b a b⎛⎫+=++=++ ⎪⎝⎭因为0,0a b >>,所以2b a a b +≥=(当且仅当21a b =-=时等号成立) 此时12a b+有最小值3+. (2)当1b a =+时,()1ln a f x x a x x+=-+, 存在01,1x e ⎡⎤∈⎢⎥⎣⎦使()00f x <成立,即函数()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的最小值小于0. ()()()221111(0)x x a a a f x x x x x ⎡⎤+-'++⎣⎦=-==>①当11,a +≥即0a ≥时,() f x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递减,所以()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的最小值为()11120f a a =++=+<,所以2a <-,不符,舍去;②当11,a e+≤即11ae 时,()f x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递增, 所以()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的最小值为()()111110,f a e a e a e e e e⎛⎫=+++=+++< ⎪⎝⎭所以()211e a e e +<-+,又11,a e≤-所以()211e a e e +<-+;(3)当111a e <+<时,即110a e-<<时,()f x 在1,1a e ⎡⎤+⎢⎥⎣⎦上单调递增,在[]1,1a +上单调递减,所以()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的最小值为()()()111ln 11ln 12f a a a a a a ⎡⎤+=++-+=-++⎣⎦ 因为111,a e<+<所以()1ln 10,a -<+<所以()11ln 12a <-+<所以()1ln 12a a a a ⎡⎤>-+>⎣⎦,所以()()11ln 12220,f a a a a ⎡⎤+=-++>+>⎣⎦不符,舍去,综上可得,a 的取值范围是()211e a e e +<-+.6、已知函数1()ln f x a x x=+(a R ∈且0a ≠). (1)若1a =,求函数()f x 的极值;(2)若存在(]00,x e ∈,使得()00f x <成立,求实数a 的取值范围. 【答案】(1)()1f x =极小值,()f x 无极大值;(2)()1,,e e ⎛⎫-∞-+∞ ⎪⎝⎭.【分析】(1)求出导函数21()x f x x -'=,利用导数与函数单调性之间的关系判断函数的单调性, 由单调性求出函数的极值.(2)由题意只需函数()f x 在(]0,e 上的最小值小于0,求出2211()a ax f x x x x-'=-+=, 讨论a 的取值范围,利用导数判断函数的单调性,进而求出函数的最小值,即可.【解析】(1)依题意,当1a =时,1()ln f x x x=+,定义域为()0,∞+, 22111()x f x x x x-'=-+=,令()0f x '=,得1x =. 当()0,1x ∈时,()0f x '<,()f x 为减函数; 当()1,x ∈+∞时,()0f x '>,()f x 为增函数, 所以()()11f x f ==极小值,()f x 无极大值.(2)若存在(]00,x e ∈,使得()00f x <成立,即函数()f x 在(]0,e 上的最小值小于0.2211()a ax f x x x x -'=-+=,且0a ≠.令()0f x '=,得1x a=, 当10a<,即0a <时,()0f x '<恒成立,函数()f x 在(]0,e 单调递减,()min 1()f x f e a e==+, 由10a e +<,得1a e <-,即1,a e ⎛⎫∈-∞- ⎪⎝⎭;当1e a ≥,即10a e<≤时,()0f x '≤恒成立, 函数()f x 在(]0,e 上单调递减,()min 1()0f x f e a e==+>,不合题意; 当10e a<<,即1a e >时,在10,a ⎛⎫⎪⎝⎭上,()0f x '<,()f x 为减函数;2、已知函数1()ln ,()2xf x x xg x m ⎛⎫=+=- ⎪⎝⎭,(1)先证明单调性,再求函数()f x 在[]1,2上的最小值;(2)若对[][]121,2,0,2x x ∀∈∃∈,使得12()()f x g x ≥,求实数m 的取值范围. 【答案】(1)证明见解析(导数或定义),1;(2)34m ≥-.【分析】(1)求出()f x 的定义域和()'f x ,由()0f x '>可得()f x 的单调性及在[]1,2上的最小值;(2)转化为1min 2min ()()f x g x ≥,由(1)知min ()1f x =,利用单调性可得()g x 在[]0,2上单调性求得最值,解不等式可得答案.【解析】(1)函数()f x 的定义域为0x >,所以11()10xf x x x+'=+=>, 所以()f x 在()0,∞+上单调递增,所以()f x 在[]1,2上的最小值为min ()(1)1f x f ==.(2)若对[][]121,2,0,2x x ∀∈∃∈,使得12()()f x g x ≥,则1min 2min ()()f x g x ≥,由(1)知min()1f x =,因为1()2⎛⎫= ⎪⎝⎭xg x 是减函数, 所以1()2xg x m ⎛⎫=- ⎪⎝⎭在[]0,2上单调递减,所以2min 1()(2)4g x g m ==-,所以114m ≥-,即34m ≥-. 所以实数m 的取值范围为3,4⎡⎫-+∞⎪⎢⎣⎭.3、已知函数()223x xe f x e -+=,其中e 为自然对数的底数.(1)证明:()f x 在(),0-∞上单调递减,()0,∞+上单调递增; (2)设0a >,函数()212cos cos 3g x x a x a =+--,如果总存在[]1,x a a ∈-,对任意2x R ∈,()()12f x g x 都成立,求实数a 的取值范围.【答案】(1)证明见解析;(2)ln 2a ≥.【分析】(1)直接对函数求导,判断导函数在对应区间上的符号即可证明;(2)总存在1[x a ∈-,](0)a a >,对任意2x R ∈都有12()()f x g x ,即函数()y f x =在[a -,]a 上的最大值不小于()y g x =,x ∈R 的最大值; 借助单调性换元法,结合二次函数的性质分别求最值列不等式求解即可【解析】(1)证明:()()23x xe ef x -='-令()0f x '>,解得0x >,∴()f x 在()0,∞+上单调递增 令()0f x '<,解得0x <,∴()f x 在(),0-∞上单调递减 (2)总存在1[x a ∈-,](0)a a >,对任意2x R ∈都有12()()f x g x ,即函数()y f x =在[a -,]a 上的最大值不小于()y g x =,x ∈R 的最大值()()()()max 23a af x f a f a e e -=-==+ 令[]()cos 1,1t x t =∈-,∴()2123g t t at a =+--,对称轴02a t =-< ∴()()max 513g t g == ∴()2533a a e e -+≥,52a ae e -+≥, 令(),0ae m m =>,∴152m m +≥,∴2m ≥∴2a e ≥,∴ln 2a ≥4、已知函数2()(2)ln ()f x a x ax x a R =++-∈. (Ⅰ)当0a =时,求证:2()22x f x x >-. (Ⅱ)设232()3g x x x =-,若1(0,1]x ∀∈,2[0,1]x ∃∈,使得()()12f x g x 成立,求实数a 的取值范围. 【答案】(Ⅰ)证明见解析;(Ⅱ)1a -.【分析】(1)将0a =代入,只需证明()2202xf x x -+>成立即可,然后构造函数, 利用导数讨论单调区间及最小值,利用最值证明即可; (2)若1(0,1]x ∀∈,2[0,1]x ∃∈,使得()()12f x g x 成立,只需使()()min 1min 2f x g x 在1(0,1]x ∈,2[0,1]x ∈上恒成立, 然后分别讨论函数()f x 与()g x 的最小值,利用最值分析求解.【解析】(Ⅰ)当0a =时,要证222()22ln 2022x x f x x x x x -+=--+≥,只需证ln 02xx -<, 令()ln (0)2x h x x x =->,则112()22xh x x x-'=-=当(0,2)x ∈时,()0,()h x h x '>单调递增;当(2,)x ∈+∞时,()0,()h x h x '<单调递减;所以max ()(2)ln 210h x h ==-<,()(2)0h x h ≤<故ln 02x x -<,所以2()22x f x x >-. (Ⅱ)问题等价于1(0,1]x ∀∈,2[0,1]x ∃∈,()()12minmin f x g x由232()3g x x x =-得2()22g x x x '=-, 由2()220g x x x '=-得01x ,所以在[0,1]上,()g x 是增函数,故min ()(0)0g x g ==.()f x 定义域为(0,)+∞,而()()()()()22121221122x a x a x ax f x a x a x x x⎡⎤++-++-⎣⎦=++-=='. 当2a -时,()0f x '<恒成立,()f x 在(0,1]上是减函数,所以min ()(1)2(1)01f x f a a ==+⇒-,不成立; 当2a >-时,由()0f x '<,得102x a <<+;由()0f x '>,得12x a >+, 所以()f x 在10,2a ⎛⎫ ⎪+⎝⎭单调递减,在1,2a ⎛⎫+∞⎪+⎝⎭单调递减. 若112a >+,即21a -<<-时,()f x 在(0,1]是减函数, 所以min ()(1)2(1)01f x f a a ==+⇒-,不成立; 若1012a <+,即1a -时,()f x 在12x a =+处取得最小值min 11()1ln(2)22f x f a a a ⎛⎫==++- ⎪++⎝⎭, 令1()1ln(2)(1)2h a a a a =++--+, 则22113()02(2)(2)a h a a a a +'=+=>+++在[1,)-+∞上恒成立, 所以()h a 在[1,)-+∞是增函数且min ()(1)0h a h =-=, 此时min 1()02f x f a ⎛⎫=⎪+⎝⎭成立,满足条件. 综上所述,1a -.5、已知函数21()(1)ln 2f x x a x a x =-++. (1)求函数()f x 的单调递增区间;(2)任取[3,5]a ∈,函数()f x 对任意1212,[1,3]()x x x x ∈≠,恒有1212|()()|||f x f x x x λ-<-成立,求实数λ的取值范围.【答案】(1)答案见解析;(2)[6)-+∞.【分析】(1)求函数导数,分类讨论求()0f x '>的解即可求解;(2)由(1)知()f x 在[1.3]上单调递减,不妨设12x x <,从而把不等式中的绝对值去掉得:1122()()f x x f x x λλ+<+,构造函数()()(13)h x f x x x λ=+≤≤,把问题转化为恒成立问题,求得实数λ的取值范围.【解析】(1)(1)()()1(0)a x x a f x x a x x x----+'==> 当1a = 时,2(1)()0x f x x-=≥',所以()f x 在 (0,)+∞ 上单调递增;当1a > 时,由(1)()()0x x a f x x -'-=>解得(0,1)x ∈或(,)a +∞,所以()f x 在(0,1),(,)a +∞上单调递增; 当01a <<时,由(1)()()0x x a f x x-'-=>解得(0,)x a ∈或(1,)+∞,所以()f x 在(0,)a ,(1,)+∞ 上单调递增; 当0a ≤时,由(1)()()0x x a f x x-'-=>解得(1,)x ∈+∞,所以()f x 在(1,)+∞上单调递增.综上所述:当1a > 时,单调递增区间为(0,1)和(,)a +∞;当1a = 时,单调递增区间为(0,)+∞;当01a << 时,单调递增区间为(0,)a 和(1,)+∞; 当0a ≤ 时,单调递增区间为(1,)+∞(2)因为[3,5]a ∈,由(1)得,()f x 在[1,3]上单调递减,不妨设 12x x < , 由1212|()()|||f x f x x x λ-<-得1221()()f x f x x x λλ-<-, 即1122()()f x x f x x λλ+<+令()()(13)h x f x x x λ=+≤≤ ,()1ah x x a xλ'=+--+, 只需()0h x '≥恒成立,即1(1)1a x xλ≥--+([3,5]a ∈,[1,3]x ∈)恒成立,[]1,3x ∈ , 110x∴-≥max 1()1(5(1)111)a x x x x ∴=---++-即15(1)1x x λ≥--+([1,3]x ∈)恒成立, 即56()x x λ≥-+([1,3]x ∈)恒成立,因为56()6x x-+≤-x =,所以实数λ的取值范围是[6)-+∞.6、设f (x )=ax+x ln x ,g (x )=x 3-x 2-3.(1)如果存在x 1,x 2∈[0,2],使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M ; (2)如果对于任意的s ,t ∈⎣⎡⎦⎤12,2,都有f (s )≥g (t )成立,求实数a 的取值范围.【解析】(1)存在x 1,x 2∈[0,2],使得g (x 1)-g (x 2)≥M 成立,等价于[g (x 1)-g (x 2)]max ≥M 成立.g ′(x )=3x 2-2x =x (3x -2), 令g ′(x )=0,得x =0或x =23,∵g ⎝⎛⎭⎫23=-8527, 又g (0)=-3,g (2)=1,∴当x ∈[0,2]时,g (x )max =g (2)=1,g (x )min =g ⎝⎛⎭⎫23=-8527, ∴M ≤1-⎝⎛⎭⎫-8527=11227, ∴满足条件的最大整数M 为4.(2)对任意的s ,t ∈⎣⎡⎦⎤12,2有f (s )≥g (t ),则f (x )min ≥g (x )max .由(1)知当x ∈⎣⎡⎦⎤12,2时,g (x )max =g (2)=1,∴当x ∈⎣⎡⎦⎤12,2时,f (x )=ax +x ln x ≥1恒成立,即a ≥x -x 2ln x 恒成立. 令h (x )=x -x 2ln x ,x ∈⎣⎡⎦⎤12,2, ∴h ′(x )=1-2x ln x -x , 令φ(x )=1-2x ln x -x , ∴φ′(x )=-3-2ln x <0, h ′(x )在⎣⎡⎦⎤12,2上单调递减,又h ′(1)=0,∴当x ∈⎣⎡⎦⎤12,1时,h ′(x )≥0,当x ∈[1,2]时,h ′(x )≤0, ∴h (x )在⎣⎡⎦⎤12,1上单调递增,在[1,2]上单调递减, ∴h (x )max =h (1)=1,故a ≥1. ∴实数a 的取值范围是[1,+∞).7、已知函数f (x )=x -1-a ln x (a <0). (1)讨论函数f (x )的单调性; (2)当0<x 1<x 2≤1时,都有f (x 1)−f(x 2)x 1−x 2<4x1x 2,求实数a 的取值范围.【解析】(1)由题意知f ′(x )=1-a x =x -ax(x >0),因为x >0,a <0,所以f ′(x )>0, 所以f (x )在(0,+∞)上单调递增. (2)∵0<x 1<x 2≤1,∴x 1-x 2<0,∴原不等式等价于f (x 1)−f (x 2)>4(x 1−x 2)x 1x 2,即f (x 1)-f (x 2)>4x 2-4x 1,即f (x 1)+4x 1>f (x 2)+4x 2.设g (x )=f (x )+4x,x ∈(0,1],|f (x 1)-f (x 2)|<4⎪⎪⎪⎪1x 1-1x 2等价于g (x )在(0,1]上单调递减,所以g ′(x )≤0在(0,1]上恒成立⇔1-a x -4x 2=x 2-ax -4x 2≤0在(0,1]上恒成立⇔a ≥x -4x在(0,1]上恒成立,易知y =x -4x在(0,1]上单调递增,其最大值为-3.因为a <0,所以-3≤a <0,所以实数a 的取值范围为[-3,0).8、已知函数f (x )=x -(a +1)ln x -a x (a ∈R ),g (x )=12x 2+e x -x e x .(1)当x ∈[1,e]时,求f (x )的最小值;(2)当a <1时,若存在x 1∈[e ,e 2],使得对任意的x 2∈[-2,0],f (x 1)<g (x 2)成立,求a 的取值范围. 【解析】(1)f ′(x )=(x−1)(x−a)x 2.。
利用导数证明不等式 高考数学大一轮复习(新高考地区)(解析版)
3.5 利用导数证明不等式【题型解读】【知识储备】1.导数证明不等式方法:(1)构造单函数求最值证明不等式; (2)构造双函数比较最值证明不等式; (3)参变分离转化为具体函数最值证明不等式; (4)不等式放缩证明不等式;(5)双变量不等式证明转化为单变量不等式证明。
2.常用不等式的生成在不等式“改造”或证明的过程中,可借助题目的已知结论、均值不等式、函数单调性、与e x 、ln x 有关的常用不等式等方法进行适当的放缩,再进行证明.下面着重谈谈与e x 、ln x 有关的常用不等式的生成. (1)生成一:利用曲线的切线进行放缩设e x y =上任一点P 的横坐标为m ,则过该点的切线方程为()e e m my x m -=-,即()e 1e m m y x m =+-,由此可得与e x 有关的不等式:()e e1e xmm x m ≥+-,其中x ∈R ,m ∈R ,等号当且仅当x m=时成立.特别地,当0m =时,有e 1x x ≥+;当1m =时,有e e x x ≥. 设ln y x =上任一点Q 的横坐标为n ,则过该点的切线方程为()1ln y n x n n -=-,即11ln y x n n=-+,由此可得与ln x 有关的不等式:1ln 1ln x x n n≤-+,其中0x >,0n >,等号当且仅当x n =时成立.特别地,当1n =时,有ln 1x x ≤-;当e n =时,有1ln ex x ≤.利用切线进行放缩,能实现以直代曲,化超越函数为一次函数. 生成二:利用曲线的相切曲线进行放缩由图1可得1ln x x x -≥;由图2可得1ln e x x≥-;由图3可得,()21ln 1x x x -≤+(01x <≤),()21ln 1x x x -≥+(1x ≥);由图4可得,11ln 2x x x ⎛⎫≥- ⎪⎝⎭(01x <≤),11ln 2x x x ⎛⎫≤- ⎪⎝⎭(1x ≥).综合上述两种生成,我们可得到下列与e x 、ln x 有关的常用不等式: 与e x 有关的常用不等式: (1)e 1x x ≥+(x ∈R ); (2)e e x x ≥(x ∈R ). 与ln x 有关的常用不等式:(1)1ln 1x x x x -≤≤-(0x >); (2)11ln e ex x x -≤≤(0x >);(3)()21ln 1x x x -≤+(01x <≤),()21ln 1x x x -≥+(1x ≥);(4)11ln 2x x x ⎛⎫≥- ⎪⎝⎭(01x <≤),11ln 2x x x ⎛⎫≤- ⎪⎝⎭(1x ≥).用1x +取代x 的位置,相应的可得到与()ln 1x +有关的常用不等式.【题型精讲】【题型一 构造单函数证明不等式】方法技巧 构造单函数证明不等式待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,有时对复杂的式子要进行变形,利用导数研究其单调性和最值,借助所构造函数的单调性和最值即可得证. 例1 (2022·山东济南历城二中高三月考)已知函数f (x )=ln x +ax 2+(2a +1)x . (1)讨论f (x )的单调性; (2)当a <0时,证明f (x )≤-34a-2. 【解析】(1)f ′(x )=2ax 2+(2a +1)x +1x =(2ax +1)(x +1)x .当a ≥0时,f ′(x )≥0,则f (x )在(0,+∞)单调递增.若a <0,则f (x )在⎝⎛⎭⎫0,-12a 单调递增,在⎝⎛⎭⎫-12a ,+∞单调递减. (2)第一次构造辅助函数g (x )=f (x )+34a+2. 要证原不等式成立,需证g (x )max ≤0,即证f (x )max +34a +2≤0.由(1)知,当a <0时,f (x )max =f ⎝⎛⎭⎫-12a .即证ln ⎝⎛⎭⎫-12a +12a+1≤0 不妨设t =-12a >0,则证ln t -t +1≤0,令h (t )=ln t -t +1,求导得h ′(t )=1t -1.h ′(t )>0时,t ∈(0,1);h ′(t )<0时,t ∈(1,+∞).所以h (t )在(0,1)单调递增,在(1,+∞)单调递减,则h (t )max =h (1)=0.故f (x )≤-34a -2.【题型精练】1.(2022·天津·崇化中学期末)已知函数()ln 1a x bf x x x=++,曲线()y f x =在点()()1,1f 处的切线方程为230x y +-=.(1)求a 、b 的值;(2)证明:当0x >,且1x ≠时,()ln 1xf x x >-. 【解析】(1)()()221ln 1x a x bx f x x x +⎛⎫- ⎪⎝⎭'=-+. 由于直线230x y +-=的斜率为12-,且过点()1,1,所以()()11112f f ⎧=⎪⎨'=-⎪⎩,即1122b a b =⎧⎪⎨-=-⎪⎩,解得1a =,1b =. (2)由(1)知()ln 11x f x x x =++,所以()ln ln 1ln 111x x xf x x x x x >⇔+>-+- ()222ln 12110ln 0112x H x x x x x x x ⎡⎤⎛⎫⇔+>⇔=--> ⎪⎢⎥--⎝⎭⎣⎦.构造函数()11ln 2h x x x x ⎛⎫=-- ⎪⎝⎭(0x >),则()()22211111022x h x x x x -⎛⎫'=-+=-≤ ⎪⎝⎭,于是()h x 在()0,+∞上递减.当01x <<时,()h x 递减,所以()()10h x h >=,于是()()2101H x h x x=>-;当1x >时,()h x 递减,所以()()10h x h <=,于是()()2101H x h x x=>-.综上所述,当0x >,且1x ≠时,()ln 1xf x x >-. 2. (2022·山东济南高三期末)设函数()f x alnx x=,a R ∈.(1)讨论函数()f x 的单调性;(2)当1a =且1x >时,证明:213()2x x f x -+>.【解析】解:(1)函数()f x alnx x=+,定义域为(0,)+∞,1()a x f x x x-'=,① 当a ≤0时,()0f x '<,则()f x 在(0,)+∞上单调递减; ②当0a >时,令()0f x '=,解得21x a =, 当21(0,)x a ∈时,()0f x '<, 当21(x a∈,)+∞时,()0f x '>, 所以()f x 的单调递增区间为21(a ,)+∞,递减区间为21(0,)a . 综上所述,当a ≤0时,()f x 的单调递减区间为(0,)+∞; 当0a >时,()f x 的单调递增区间为21(a ,)+∞,递减区间为21(0,)a . (2)证明:当1a =时,令21()3(1)2h x lnx x x x x =+-+->, 则2211(1)(1)()1x x x x xx x x x h x x x x xx xx x--+---'=--+==,因为1x >,则()0h x '<,所以()h x 在(1,)+∞上单调递减, 故()h x h <(1)102=-<,则21302lnx x x x +-+-<,故213()2x x f x -+>. 【题型二 构造双函数比较最值证明不等式】方法技巧 构造双函数比较最值证明不等式若直接求导比较复杂或无从下手时,可将待证式进行变形,构造两个函数,从而找到可以传递的中间量,达到证明的目标.本例中同时含ln x 与e x ,不能直接构造函数,把指数与对数分离两边,分别计算它们的最值,借助最值进行证明.例2(2022·山东青岛高三期末)设函数1()ln x xbe f x ae x x-=+,曲线()y f x =在点(1,(1))f 处的切线方程为(1) 2.y e x =-+(I )求,;a b (II )证明:() 1.f x >【解析】(1)因为()1e f '=,()12f =,而()()12e e e ln x x a x bx bf x a x x-+-'=+,所以()()1e e 12f a f b '⎧==⎪⎨==⎪⎩,解得1a =,2b =.(2)由(1)知,()12e e ln x xf x x x -=+,于是()12e 1e ln 1x xf x x x ->⇔+>,将不等式改造为2ln e ex x x x +>. 令()2ln e m x x x =+,则()1ln m x x '=+.由()0m x '>可得1e x >,由()0m x '<可得10ex <<,所以()m x 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,e⎛⎫+∞ ⎪⎝⎭上递增,所以()min11e em x m ⎛⎫⎡⎤== ⎪⎣⎦⎝⎭.令()e x x n x =,则()1ex xn x -'=.由()0n x '<可得1x >,由()0n x '> 可得01x <<,所以()n x 在()0,1上递增,在()1,+∞上递减,所以()()max11en x n ⎡⎤==⎣⎦. 两个函数的凸性相反.此时,我们可以寻找与两个曲线都相切的公切线1ey =,将两个函数进行隔离,又因为等号不能同时成立,所以2ln e e xx x x +>. 【题型精练】1.(2022·天津市南开中学月考)已知函数f (x )=a ln x +x . (1)讨论f (x )的单调性; (2)当a =1时,证明:xf (x )<e x .【解析】(1) f (x )的定义域为(0,+∞), f ′(x )=ax +1=x +a x .当a ≥0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增.当a <0时,若x ∈(-a ,+∞),则f ′(x )>0; 若x ∈(0,-a ),则f ′(x )<0.所以f (x )在(-a ,+∞)上单调递增,在(0,-a )上单调递减. 综上所述,当a ≥0时,f (x )在(0,+∞)上单调递增;当a <0时,f (x )在(-a ,+∞)上单调递增,在(0,-a )上单调递减. (2)当a =1时,要证xf (x )<e x , 即证x 2+x ln x <e x ,即证1+ln x x <e x x 2.令函数g (x )=1+ln x x,则g ′(x )=1-ln xx 2.令g ′(x )>0,得x ∈(0,e);令g ′(x )<0,得x ∈(e ,+∞).所以g (x )在(0,e)上单调递增,在(e ,+∞)上单调递减, 所以g (x )max =g (e)=1+1e ,令函数h (x )=e xx 2,则h ′(x )=e x (x -2)x 3.当x ∈(0,2)时,h ′(x )<0;当x ∈(2,+∞)时,h ′(x )>0. 所以h (x )在(0,2)上单调递减,在(2,+∞)上单调递增, 所以h (x )min =h (2)=e 24.因为e 24-⎝⎛⎭⎫1+1e >0,所以h (x )min >g (x )max ,即1+ln x x <e xx2,从而xf (x )<e x 得证.2. (2022·安徽省江淮名校期末)已知函数f (x )=eln x -ax (a ∈R ). (1)讨论函数f (x )的单调性;(2)当a =e 时,证明:xf (x )-e x +2e x ≤0. 【解析】(1)f ′(x )=ex-a (x >0),①若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增; ②若a >0,则当0<x <ea 时,f ′(x )>0;当x >ea时,f ′(x )<0.故f (x )在⎝⎛⎭⎫0,e a 上单调递增,在⎝⎛⎭⎫ea ,+∞上单调递减. (2)因为x >0,所以只需证f (x )≤e xx-2e ,当a =e 时,由(1)知,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减. 所以f (x )max =f (1)=-e.设g (x )=e xx -2e(x >0),则g ′(x )=(x -1)e x x 2,所以当0<x <1时,g ′(x )<0,g (x )单调递减; 当x >1时,g ′(x )>0,g (x )单调递增, 所以g (x )min =g (1)=-e. 综上,当x >0时,f (x )≤g (x ),即f (x )≤e xx-2e.故不等式xf (x )-e x +2e x ≤0得证. 【题型三 放缩法证明不等式】方法技巧 放缩法证明不等式导数方法证明不等式中,最常见的是e x 和ln x 与其他代数式结合的问题,对于这类问题,可以考虑先对e x 和ln x 进行放缩,使问题简化,简化后再构建函数进行证明.常见的放缩公式如下:(1)e x ≥1+x ,当且仅当x =0时取等号.(2)ln x ≤x -1,当且仅当x =1时取等号. 例3 (2022·河南高三期末)已知函数f (x )=a e x -1-ln x -1. (1)若a =1,求f (x )在(1,f (1))处的切线方程; (2)证明:当a ≥1时,f (x )≥0.【解析】(1)当a =1时,f (x )=e x -1-ln x -1(x >0), f ′(x )=e x -1-1x,k =f ′(1)=0,又f (1)=0,∴切点为(1,0).∴切线方程为y -0=0(x -1),即y =0. (2)∵a ≥1,∴a e x -1≥e x -1,∴f (x )≥e x -1-ln x -1. 方法一 令φ(x )=e x -1-ln x -1(x >0),∴φ′(x )=e x -1-1x ,令h (x )=e x -1-1x ,∴h ′(x )=e x -1+1x 2>0,∴φ′(x )在(0,+∞)上单调递增,又φ′(1)=0,∴当x ∈(0,1)时,φ′(x )<0;当x ∈(1,+∞)时,φ′(x )>0, ∴φ(x )在(0,1)上单调递减,在(1,+∞)上单调递增, ∴φ(x )min =φ(1)=0,∴φ(x )≥0,∴f (x )≥φ(x )≥0,即f (x )≥0. 方法二 令g (x )=e x -x -1,∴g ′(x )=e x -1.当x ∈(-∞,0)时,g ′(x )<0; 当x ∈(0,+∞)时,g ′(x )>0,∴g (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增, ∴g (x )min =g (0)=0,故e x ≥x +1,当且仅当x =0时取“=”. 同理可证ln x ≤x -1,当且仅当x =1时取“=”. 由e x ≥x +1⇒e x -1≥x (当且仅当x =1时取“=”), 由x -1≥ln x ⇒x ≥ln x +1(当且仅当x =1时取“=”), ∴e x -1≥x ≥ln x +1, 即e x -1≥ln x +1,即e x -1-ln x -1≥0(当且仅当x =1时取“=”),即f (x )≥0. 【题型精练】1.(2022·广东·高三期末)已知函数1()1x e f x lnx-=+.(1)求函数()f x 的单调区间; (2)解关于x 的不等式11()()2f x x x>+【解析】(1)函数1()1x e f x lnx -=+.定义域为:11(0,)(,)ee+∞. 121(1)()(1)x e lnx x f x lnx -+-'=+,f '(1)0=. 令1()1g x lnx x =+-,211()0g x x x'=+>, ∴函数()g x 在定义域上单调递增. ∴10x e <<,11x e<<.()0f x '<,函数()f x 单调递减.1x >时,()0f x '>,函数()f x 单调递增. (2)不等式11()()2f x x x>+,即111()12x e x lnx x ->++.10x e <<,()0f x <,舍去.当1x =时,不等式的左边=右边,舍去.1x e∴>,且1x ≠.①11x e <<时,由1x e x ->,要证不等式111()12x e x lnx x ->++.可以证明:11()12x x lnx x >++.等价于证明:22211x lnx x >++.令222()(1)1x F x lnx x =-++. 2222(1)()0(1)x F x x x --'=<+,∴函数()F x 在1(,1)e上单调递减,()F x F ∴>(1)0=. ②当1x >时,不等式⇔12211x e lnxx x -+>+. 令122()1x e h x x -=+,1()lnxu x x+=. 12222(1)()0(1)x e x h x x --'=>+,函数()h x 在(1,)+∞上单调递增, ()h x h ∴>(1)1=.由1lnx x <-,()1u x ∴<.∴不等式12211x e lnxx x-+>+成立. 综上可得:不等式11()()2f x x x >+的解集为:1(,1)(1,)e +∞.【题型四 双变量不等式证明】方法技巧 双变量不等式证明对于两个未知数的函数不等式问题,其关键在于将两个未知数化归为一个未知数,常见的证明方法有以下4种:方法1:利用换元法,化归为一个未知数方法2:利用未知数之间的关系消元,化归为一个未知数 方法3:分离未知数后构造函数,利用函数的单调性证明 方法4:利用主元法,构造函数证明例4 (2022·黑龙江工农·鹤岗一中高三期末)已知函数()1ln f x x a x x=-+. ⑴讨论()f x 的单调性;⑵若()f x 存在两个极值点1x ,2x ,证明:()()12122f x f x a x x -<--.【解析】(1)定义域为()0,+∞,()222111a x ax f x x x x -+'=--+=-. ①若0a ≤,则()0f x '<,()f x 在()0,+∞上递减.②若240a ∆=-≤,即02a <≤时,()0f x '≤,()f x 在()0,+∞上递减.③若240a ∆=->,即2a >时,由()0f x '>2244a a a a x --+-<,由()0f x '<,可得240a a x --<<或24a a x +->,所以()f x 在24a a ⎛-- ⎝⎭,24a a ⎫+-+∞⎪⎪⎝⎭上递减,在2244a a a a --+-⎝⎭上递增.综上所述,当2a ≤时,()f x 在()0,+∞上递减;当2a >时,()f x 在24a a ⎛-- ⎝⎭,24a a ⎫+-+∞⎪⎪⎝⎭上递减,在2244a a a a --+-⎝⎭上递增.【证明】(2)法1:由(1)知,()f x 存在两个极值点,则2a >.因为1x ,2x 是()f x 的两个极值点,所以1x ,2x 满足210x ax -+=,所以12x x a +=,121x x =,不妨设1201x x <<<.()()11221212121211ln ln x a x x a x f x f x x x x x x x ⎛⎫⎛⎫-+--+ ⎪ ⎪-⎝⎭⎝⎭==-- ()()()()21121212121212121212ln ln ln ln ln ln 112x x x x a x x a x x a x x x x x x x x x x x x ---+---=--+=-+---,于是()()()121212212121222ln ln ln ln 2ln 222111f x f x a x x x x x a a x x x x x x x x ----<-⇔-+<-⇔<⇔<⇔----22212ln 0x x x +-<.构造函数()12ln g x x x x =+-,1x >,由(1)知,()g x 在()1,+∞上递减,所以()()10g x g <=,不等式获证.法2:由(1)知,()f x 存在两个极值点,则2a >.因为1x ,2x 是()f x 的两个极值点,所以1x ,2x 满足210x ax -+=,不妨设1201x x <<<,则2214x x a --,121x x =.()()11221212121211ln ln x a x x a x f x f x x x x x x x ⎛⎫⎛⎫-+--+ ⎪ ⎪-⎝⎭⎝⎭==-- ()22111122122*********ln ln ln14124a a x x x x a x x a a x x x x a a x x x x x x a -----++-=--+=----,于是()()22212222124ln44222444a a a f x f x a a a a a a a x x a a a ---+-+-<-⇔-<-⇔----- 22222444ln 4ln 222a a a a a a ⎛-+--⇔-< ⎪⎝⎭.设242a t -=,则244a t +,构造函数())2ln1t t t tϕ=-+,0t >,则()22212111011t t t t t ϕ++'==->+++,所以()t ϕ在()0,+∞上递增,于是()()00t ϕϕ>=,命题获证.法3:仿照法1,可得()()12121212ln ln 21f x f x x x a x x x x --<-⇔<--,因为121x x =,所以1212121121212122211212ln ln ln ln 1ln ln ln x x x x x x xx x x x x x x x x x x x x --<⇔⇔->⇔>--令()120,1x t x =,构造函数()12ln h t t t t=+-,由(1)知,()h t 在()0,1上递减,所以()()10h t h >=,不等式获证.【题型精练】1.(2022·全国高三课时练习)已知函数f (x )=ln x -2(x -1)x +1,g (x )=x ln x -m (x 2-1)(m ∈R ). (1)若函数f (x ),g (x )在区间(0,1)上均单调且单调性相反,求实数m 的取值范围; (2)若0<a <b ,证明:ab <a -b ln a -ln b<a +b2.【解析】 (1)f ′(x )=1x -4(x +1)2=(x -1)2x (x +1)2>0,所以f (x )在(0,1)上单调递增.由已知f (x ),g (x )在(0,1)上均单调且单调性相反,得g (x )在(0,1)上单调递减. 所以g ′(x )=ln x +1-2mx ≤0在(0,1)上恒成立,即2m ≥ln x +1x,令φ(x )=ln x +1x (x ∈(0,1)),φ′(x )=-ln xx 2>0,所以φ(x )在(0,1)上单调递增,φ(x )<φ(1)=1,所以2m ≥1,即m ≥12.(2)由(1)f (x )=ln x -2(x -1)x +1在(0,1)上单调递增,f (x )=ln x -2(x -1)x +1<f (1)=0,即ln x <2(x -1)x +1,令x =a b ∈(0,1)得ln a b <2⎝⎛⎭⎫a b -1a b +1=2(a -b )a +b ,∵ln ab <0,∴a -b ln a -ln b<a +b 2.在(1)中,令m =12,由g (x )在(0,1)上均单调递减得g (x )>g (1)=0,所以x ln x -12(x 2-1)>0,即ln x >12⎝⎛⎭⎫x -1x , 取x =ab∈(0,1)得ln a b >12⎝⎛⎭⎫a b-b a ,即ln a -ln b >a -b ab, 由ln a -ln b <0得:ab <a -b ln a -ln b ,综上:ab <a -b ln a -ln b <a +b2.总结提升 两个正数a 和b 的对数平均定义:(),(, )ln ln ().a ba b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩(, )2a bab L a b +≤≤(此式记为对数平均不等式) 取等条件:当且仅当a b =时,等号成立.2. (2022·全国高三课时练习)已知函数f (x )=ax 2-x -ln 1x.(1)若f (x )的图象在点(1,f (1))处的切线与直线y =2x +1平行,求f (x )的图象在点(1,f (1))处的切线方程; (2)若函数f (x )在定义域内有两个极值点x 1,x 2,求证:f (x 1)+f (x 2)<2ln2-3.【解析】(1)∵f (x )=ax 2-x -ln 1x =ax 2-x +ln x ,x ∈(0,+∞),∴f ′(x )=2ax -1+1x ,∴k =f ′(1)=2a .∵f (x )的图象在点(1,f (1))处的切线与直线y =2x +1平行,∴2a =2,即a =1. ∴f (1)=0,故切点坐标为(1,0).∴切线方程为y =2x -2. (2)∵f ′(x )=2ax -1+1x =2ax 2-x +1x,∴由题意知方程2ax 2-x +1=0在(0,+∞)上有两个不等实根x 1,x 2, ∴Δ=1-8a >0,x 1+x 2=12a >0,x 1x 2=12a >0,∴0<a <18.f (x 1)+f (x 2)=ax 21+ax 22-(x 1+x 2)+ln x 1+ln x 2=a (x 21+x 22)-(x 1+x 2)+ln(x 1x 2)=a [(x 1+x 2)2-2x 1x 2]-(x 1+x 2)+ln(x 1x 2)=ln 12a -14a-1,令t =12a ,g (t )=ln t -t 2-1,则t ∈(4,+∞),g ′(t )=1t -12=2-t 2t<0,∴g (t )在(4,+∞)上单调递减.∴g (t )<ln4-3=2ln2-3,即f (x 1)+f (x 2)<2ln2-3. 【题型五 数列不等式证明】例5 (2022·辽宁省实验中学分校高三期末)已知函数()1ln f x x a x =--.(1)若()0f x ≥,求a 的值(2)设m 为整数,且对于任意正整数,2111111222n m ⎛⎫⎛⎫⎛⎫+++< ⎪⎪⎪⎝⎭⎝⎭⎝⎭,求m 的最小值. 【解析】(1)()f x 的定义域为()0,+∞. ①当1x =时,有()10f =,成立.②当1x >时,11ln 0ln x x a x a x ---≥⇔≤,令()1ln x h x x-=,则()21ln 1ln x x h x x -+'=,令()1ln 1k x x x=-+,则()210x k x x-'=>,所以()k x 在()1,+∞上递增,于是()()10k x k >=,所以()0h x '>,所以()h x 在()1,+∞上递增.由洛必达法则可得1111lim lim 11ln x x x x x++→→-==,所以1a ≤. ③当01x <<时,11ln 0ln x x a x a x ---≥⇔≥,令()1ln x h x x-=,仿照②可得()h x 在()0,1上递增.由洛必达法则可得1111lim lim 11ln x x x x x--→→-==,所以1a ≥. 综上所述,1a =. (2)当1a =时()1ln 0f x x x =--≥,即ln 1x x ≤-,则有()ln 1x x +≤,当且仅当0x =时等号成立,所以11ln 122k k ⎛⎫+< ⎪⎝⎭,*k ∈N ,于是2111ln 1ln 1ln 1222n ⎛⎫⎛⎫⎛⎫++++++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭21111112222n n+++=-<,所以2111111e222n ⎛⎫⎛⎫⎛⎫+++< ⎪⎪⎪⎝⎭⎝⎭⎝⎭.当3n =时,23111359135111222224864⎛⎫⎛⎫⎛⎫+++=⨯⨯=> ⎪⎪⎪⎝⎭⎝⎭⎝⎭,于是m 的最小值为3.【题型精练】1. (2022·江苏·昆山柏庐高级中学期末)设函数()()ln 1f x x =+,()()g x xf x '=,0x ≥,其中()f x '是()f x 的导函数. (1)若()()f x ag x ≥恒成立,求实数a 的取值范围;(2)设*n ∈N ,比较()()()12g g g n +++与()n f n -的大小,并加以证明.【解析】(1)()11f x x '=+,所以()1xg x x=+. 法1:(分离参数法)当0x =时,()()f x ag x ≥恒成立.当0x >时,()()f x ag x ≥在()0,+∞上恒成立()()()()()1ln 1f x x x a Fx g x x++⇔≤==在()0,+∞上恒成立.()()2ln 1x x F x x -+'=,令()()ln 1G x x x =-+,则()01xG x x'=>+,所以()G x 在()0,+∞上递增,于是()()00G x G >=,即()0F x '>,所以()F x 在()0,+∞上递增. 由洛必达法则,可得()()()001ln 11ln 1lim lim 11x x x x x x++→→++++==,所以1a ≤,于是实数a 的取值范围为(],1-∞.法2:(不猜想直接用最值法)令()()()()ln 11axh x f x ag x x x=-=+-+,则()()()()22111111a x ax x a h x x x x +--+'=-=+++,令()0h x '=,得1x a =-. ①当10a -≤,即1a ≤时,()0h x '≥在[)0,+∞上恒成立,所以()h x 在[)0,+∞上递增,所以()()00h x h >=,所以当1a ≤时,()0h x ≥在[)0,+∞上恒成立.②当10a ->,即1a >时,()h x 在()0,1a -上递减,在()1,a -+∞上递增,所以当1x a =-时()h x 取到最小值,于是()()1ln 1h x h a a a ≥-=-+.设()ln 1a a a ϕ=-+,1a >,则()110a aϕ'=-<,所以函数()a ϕ在()1,+∞上递减,所以()()10a ϕϕ<=,即()10h a -<,所以()0h x ≥不恒成立.综上所述,实数a 的取值范围为(],1-∞. (2)()()()1212231ng g g n n +++=++++,()()ln 1n f n n n -=-+,比较结果为:()()()()12g g g n n f n +++>-.证明如下.上述不等式等价于()111ln 1231n n +>++++.为证明该式子,我们首先证明11ln 1i i i +>+. 法1:在(1)中取1a =,可得()ln 11x x x +>+,令1x i =,可得11ln 1i i i +>+.令1,2,,i n =可得21ln 12>,31ln 23>,…,11ln 1n n n +>+,相加可得()111ln 1231n n +>++++,命题获证. 法2:令1t i =,则()11ln ln 111i t t i i t +>⇔+>++,构造函数()()ln 11tF t t t=+-+,01t <<,则()()()22110111t F t t t t '=-=>+++,于是()F t 在()0,1上递增,所以()()00F t F >=,于是11ln 1i i i +>+. 下同法1.。
高考数学真题导数专题及答案
高考数学真题导数专题及答案2017年高考真题:导数专题一、解答题(共12小题)1.已知函数f(x) = ae^(2x) + (a-2)e^x - x。
1) 讨论f(x)的单调性;2) 若f(x)有两个零点,求a的取值范围。
2.已知函数f(x) = ax^2 - ax - xlnx,且f(x) ≥ 0.1) 求a;2) 证明:f(x)存在唯一的极大值点x,且e^-2 < f(x) < 2^-2.3.已知函数f(x) = x^-1 - alnx。
1) 若f(x) ≥ 0,求a的值;2) 设m为整数,且对于任意正整数n,(1+1/n)^m 的最小值。
4.已知函数f(x) = x^3 + ax^2 + bx + 1 (a。
0,b∈R)有极值,且导函数f'(x)的极值点是f(x)的零点。
1) 求b关于a的函数关系式,并写出定义域;2) 证明:b^2.3a;3) 若f(x)和f'(x)这两个函数的所有极值之和不小于 -1,求a的取值范围。
5.设函数f(x) = (1-x^2)e^x。
1) 讨论f(x)的单调性;2) 当x≥1时,f(x) ≤ ax+1,求a的取值范围。
6.已知函数f(x) = (x-1)/(x+1)。
1) 求f(x)的导函数;2) 求f(x)在区间(-1.+∞)上的取值范围。
7.已知函数f(x) = x^2 + 2cosx,g(x) = e^x(cosx-sinx+2x^-2),其中e≈2.…是自然对数的底数。
I) 求曲线y=f(x)在点(π。
f(π))处的切线方程;II) 令h(x) = g(x) - af(x) (a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值。
8.已知函数f(x) = e^x*cosx - x。
1) 求曲线y=f(x)在点(0.f(0))处的切线方程;2) 求函数f(x)在区间[0.π]上的最大值和最小值。
9.设a∈Z,已知定义在R上的函数f(x) = 2x^4 + 3x^3 -3x^2 - 6x + a在区间(1.2)内有一个零点x,g(x)为f(x)的导函数。
2024届高考数学复习:专项(利用导数证明不等式)练习(附答案)
2024届高考数学复习:专项(利用导数证明不等式)练习一、多选题1.已知函数1()2ln f x x x=+,数列{}n a 的前n 项和为n S ,且满足12a =,()()*1N n n a f a n +=∈,则下列有关数列{}n a 的叙述正确的是( ) A .21a a <B .1n a >C .100100S <D .112n n n a a a +⋅+<2.下列不等式正确的是( ) A .当x ∈R 时,1x e x ≥+ B .当0x >时,ln 1≤-x x C .当x ∈R 时,x e ex ≥D .当x ∈R 时,sin x x ≥3.已知定义在R 上的函数()f x 满足()()f x f x '>-,则下列式子成立的是( ) A .()()20192020f ef < B .()()20192020ef f >C .()f x 是R 上的增函数 D .0t >,则有()()t f x e f x t <+二、解答题4.已知函数()()ln 1f x x =+,()1axg x x =+,若()()()F x f x g x =-最小值为0. (1)求实数a 的值;(2)设n *∈N ,证明:()()()()12>g g g n f n n ++⋅⋅⋅++. 5.已知函数()ln f x x =,()g x x m =-. (1)当0m =时,求函数()()f x yg x =的最大值; (2)设()()()h x f x g x =-,当12x x <,且()()120h x h x ==,求证:()12ln 0em x x m +-+>. 6.已知函数()()xf x xex =∈R ,其中e 为自然对数的底数.(1)当1x >时,证明:()()211ln 231f x x x x x --->-+; (2)设实数1x ,()212x x x ≠是函数()()()2112g x f x a x =-+的两个零点,求实数a 的取值范围.7.已知()x f x e =,当0x ≥时(2)1f x ax ≥+恒成立. (1)求实数a 的取值范围; (2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求证:223sin x x x xe -≤. 8.已知函数()ln xxf x e a=-. (1)当1a =时,求曲线()y f x =在点()()1,1A f 处的切线方程; (2)若01a <<,求证:()2ln af x a+≥. 9.已知函数21()ln 2f x a x ax =+. (1)若()f x 只有一个极值点,求a 的取值范围.(2)若函数2()()(0)g x f x x =>存在两个极值点12,x x ,记过点1122(,()),(,())P x g x Q x g x 的直线的斜率为k ,证明:1211k x x +>. 10.函数()()11xxf x x e k e =+⋅--.(1)当1k =时,求()f x 的单调区间; (2)当0x >,k 2≤时,证明:()0f x >. 11.已知函数2()2ln 2(1)f x mx x m x =-+-.(1)讨论函数()f x 的单调区间;(2)当1x ≠时,求证:2286ln 3521x x x x x x---<-. 12.函数()2ln a xf x x x=-. (1)若12a =,求()f x 的单调性; (2)当0a >时,若函数()()2g x f x a =-有两个零点,求证:12a >. 13.已知函数()21()xm x xf x e++=.(1)试讨论()f x 的单调性;(2)若0m ≤,证明:()ln ef x x x +≤. 14.已知函数()()ln xf x xe a x x =-+.(1)当0a >时,求()f x 的最小值; (2)若对任意0x >恒有不等式()1f x ≥成立.①求实数a 的值; ②证明:()22ln 2sin xxe x x x >++.15.已知a >0,函数21()ln (1)2f x x x x a x =-+-. (1)若f (x )为减函数,求实数a 的取值范围;(2)当x >1时,求证:2e ()e 2aa f x <-.(e =2.718…) 16.已知函数()21ln 2f x ax x x b =-⋅+,()()g x f x '=. (1)判断函数()y g x =的单调性;(2)若(]()0, 2.718x e e ∈≈,判断是否存在实数a ,使函数()g x 的最小值为2?若存在求出a 的值;若不存在,请说明理由;(3)证明:1233ln 2341n n n ⎛⎫++++>-⎪+⎝⎭ .17.已知函数()2ln f x x x x =--. (1)求证:()0f x ≥;(2)函数()()()()21>0g x f x x a x a =-++,有两个不同的零点1x ,2x .求证:12ln ln 2ln 0x x a ++<.18.已知函数()()sin 1ln f x a x x =-+,a R ∈.(1)若函数()f x 在区间()0,1内是增函数,求a 的取值范围; (2)证明:()222111sinsin sin ln 2231n +++<+ . 19.已知函数()ln 21af x x x a x=+--+.(1)若a = -2,求函数f (x )的单调区间;(2)若函数f (x )有两个极值点x 1,x 2,求证12()+()0f x f x <.20.(1)当π02x ≤≤时,求证:sin x x ≥; (2)若1x e kx ≥+对于任意的[)0,x ∈+∞恒成立,求实数k 的取值范围; (3)设a >0,求证;函数()1cos ax f x e x -=⋅在π0,2⎡⎤⎢⎥⎣⎦上存在唯一的极大值点0x ,且()10a f x e ->.参考答案一、多选题1.已知函数1()2ln f x x x=+,数列{}n a 的前n 项和为n S ,且满足12a =,()()*1N n n a f a n +=∈,则下列有关数列{}n a 的叙述正确的是( ) A .21a a < B .1n a > C .100100S < D .112n n n a a a +⋅+<【答案】AB 【要点分析】A .计算出2a 的值,与1a 比较大小并判断是否正确;B .利用导数要点分析()f x 的最小值,由此判断出1n a >是否正确;C .根据n a 与1的大小关系进行判断;D .构造函数()()1ln 11h x x x x=+->,要点分析其单调性和最值,由此确定出1ln 10n n a a +->,将1ln 10nn a a +->变形可得112n n a a ++>,再将112n na a ++>变形可判断结果. 【答案详解】A 选项,3221112ln 2ln 4ln 2222a e =+=+<+=,A 正确; B 选项,因为222121()x f x x x x='-=-,所以当1x >时,()0f x '>,所以()f x 单增,所以()(1)1f x f >=, 因为121a =>,所以()11n n a f a +=>,所以1n a >,B 正确; C 选项,因为1n a >,所以100100S >,C 错误; D 选项,令1()ln 1(1)h x x x x =+->,22111()0x h x x x x-='=->, 所以()h x 在(1,)+∞单调递增,所以()(1)0h x h >=,所以1ln 10n na a +->, 则22ln 20n n a a +->,所以112ln 2n n n a a a ⎛⎫++> ⎪⎝⎭,即112n n a a ++>, 所以112n n n a a a ++>,所以D 错误. 故选:AB.【名师点睛】易错名师点睛:本题主要考查导数与数列的综合问题,属于难题.解决该问题应该注意的事项:(1)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(2)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化. 2.下列不等式正确的是( ) A .当x ∈R 时,1x e x ≥+ B .当0x >时,ln 1≤-x x C .当x ∈R 时,x e ex ≥ D .当x ∈R 时,sin x x ≥【答案】ABC 【要点分析】构建函数,利用导数研究其单调性和最值,可得出每个选项中的不等式正不正确. 【答案详解】对于A :设()1x f x e x =--,则()1x f x e =-',令()0f x '=,解得0x =, 当(,0)x ∈-∞时函数单调递减,当(0,)x ∈+∞时,函数单调递增,所以函数在0x =时,函数取得最小值()(0)0min f x f ==,故当x ∈R 时,1x e x +…,故A 正确;对于B :设()ln 1f x x x =-+,所以1(1)()1'--=-=x f x x x, 令()0f x '=,解得1x =,当(0,1)x ∈时,函数单调递增,当(1,)x ∈+∞时,函数单调递减, 所以在1x =时,max ()f x f =(1)0=,故当0x >时,1lnx x -…恒成立,故B 正确;对于C :设()x f x e ex =-,所以()x f x e e '=-,令()0f x '=,解得1x =,当(,1)x ∈-∞时,函数单调递减,当(1,)x ∈+∞时,函数单调递增,所以当1x =时,min ()f x f =(1)0=,所以当x ∈R 时,x e ex …,故C 正确;对于D :设函数()sin f x x x =-,则()1cos 0f x x '=-…,所以()f x 是定义在R 上单调递增的奇函数, 所以0x >时,sin x x …成立,0x <时,()0f x <,故D 错误. 故选:ABC3.已知定义在R 上的函数()f x 满足()()f x f x '>-,则下列式子成立的是( ) A .()()20192020f ef < B .()()20192020ef f >C .()f x 是R 上的增函数 D .0t >,则有()()t f x e f x t <+【答案】AD 【要点分析】由题意得()0x e f x '⎡⎤>⎣⎦,即()xe f x 为增函数,可得()()2019202020192020ef e f <,即可判断,A B ,举出反例可判断C ,根据单调性可判断D. 【答案详解】由()()f x f x '>-,得()()0xxe f x e f x '+>,即()0x e f x '⎡⎤>⎣⎦,所以函数()xe f x 为增函数,故()()2019202020192020ef e f <,所以()()20192020f ef <,故A 正确,B 不正确; 函数()xe f x 为增函数时,()f x 不一定为增函数,如122x x x e e ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭是增函数,但12x⎛⎫ ⎪⎝⎭是减函数,所以C 不正确;因为函数()xe f x 为增函数,所以0t >时,有()()xx te f x ef x t +<+,故有()()tf x e f x t <+成立,所以D 正确.故选:AD. 【名师点睛】本题主要考查了利用导数判断函数的单调性,构造函数()xe f x 是解题的关键,属于中档题.二、解答题4.已知函数()()ln 1f x x =+,()1axg x x =+,若()()()F x f x g x =-最小值为0. (1)求实数a 的值;(2)设n *∈N ,证明:()()()()12>g g g n f n n ++⋅⋅⋅++. 【答案】(1)1;(2)证明见解析. 【要点分析】(1)由()'0F x =,得1x a =-,讨论当0a ≤时,无最小值.当0a >时, ()()min 1ln 1F x F a a a =-=-+,由ln 10a a -+=可得答案得;(2)由(1)可知1a =,可得()111ln 1>231n n +++⋅⋅⋅++,由(1)可知111ln 1>111n n n n⎛⎫+= ⎪+⎝⎭+,即()1ln 1ln 1n n n +->+,进而可得结论.【答案详解】(1)由已知()()ln 11axF x x x =+-+,定义域为()1,-+∞. ()()()2211'111a x a F x x x x +-=-=+++. 由()'0F x =,得1x a =-.当0a ≤时,()1,∈-+∞x ,()'0F x >在()1,-+∞单调递增无最小值. 当0a >时,()1,a 1x ∈--,()'0F x <;()1,x a ∈-+∞,()'0F x >. 故()()min 1ln 1F x F a a a =-=-+, 令()()ln 1>0x x x x ϕ=-+,()()1'>0xx x xϕ-=. ()0,1∈x ,()'0x ϕ>;()1,∈+∞x ,()'0x ϕ<,()()max 10x ϕϕ==,所以由ln 10a a -+=,得1a =.(2)由(1)可知1a =,此时()()()()12>g g g n f n n ++⋅⋅⋅++ 等价于()111ln 1>231n n +++⋅⋅⋅++, 由(1)可知当0x >时,()ln 11xx x +>+. 故111ln 1>111n n n n⎛⎫+= ⎪+⎝⎭+,即()1ln 1ln 1n n n +->+. 所以()()()()111ln 1ln 2ln1ln 3ln 2ln 1ln >231n n n n +=-+-+⋅⋅⋅++-++⋅⋅⋅+⎡⎤⎣⎦+, 故()()()()12>g g g n f n n ++⋅⋅⋅++.【名师点睛】不等式证明问题是近年高考命题的热点,利用导数证明不等主要方法有两个,一是比较简单的不等式证明,不等式两边作差构造函数,利用导数研究函数的单调性,求出函数的最值即可;二是较为综合的不等式证明,要观察不等式特点,结合已解答的问题把要证的不等式变形,并运用已证结论先行放缩,然后再化简或者进一步利用导数证明.5.已知函数()ln f x x =,()g x x m =-.(1)当0m =时,求函数()()f x yg x =的最大值;(2)设()()()h x f x g x =-,当12x x <,且()()120h x h x ==,求证:()12ln 0em x x m +-+>. 【答案】(1)1e;(2)证明见解析. 【要点分析】 (1)当0m =时,()()ln f x x y g x x ==,21ln xy x -'=,由()()f x y g x =的单调性得出函数()()f x y g x =的最大值;(2)由函数()h x 的单调性结合零点个数得出1m >,结合要点分析法要证()12ln 0em x x m +-+>,只需证121mex x em -<<<<,由函数()h x 在(),1m e -上存在唯一零点1x 证明11m e x -<<,由函数()h x 在()1,em 上存在唯一零点2x 证明21x em <<,从而得出()12ln 0em x x m +-+>.【答案详解】解1)当0m =时,()()ln f x x y g x x==,221ln 1ln x x x x y x x ⋅--'==. 当x e >时,0y '<;当0x e <<时,0y '>.∴函数lny x=在()0,e 上单调递增,在(),e +∞上单调递减. ∴max1x e y y e===.(2)由题可知1x ,2x 是函数()ln h x x x m =-+的零点.()111x h x x x-=-=' 当1x >时,()0h x '<;当01x <<时,()0h x '>∴函数()hx 在()0,1上单调递增,在()1,+?上单调递减故函数()h x 要有两个零点,必有()110h m =-+>,即1m >. 要证()12ln 0em x x m +-+>,只需证21mx x em e --<-只需证121mex x em -<<<< ①由于1m >,()0,1me-∈,()0m m h e m e m --=--+<,()110h m =-+>∴函数()hx 在(),1m e -上存在唯一零点1x即11mex -<<. ②由(1)知,ln 1x x e ≤,所以ln x x e≤,且当x e =时,取等号 ∴()()()ln 20emh em em em m em m m e e=-+<-+=-<∴函数()hx 在()1,em 上存在唯一零点2x即21x em <<. ③由②③可知①成立,故()12ln 0em x x m +-+>. 【名师点睛】求解本题第(2)问的关键是根据题中条件将证明()12ln 0em x x m +-+>转化为证明121m e x x em -<<<<,然后利用零点存在定理即可求解.6.已知函数()()xf x xex =∈R ,其中e 为自然对数的底数.(1)当1x >时,证明:()()211ln 231f x x x x x --->-+; (2)设实数1x ,()212x x x ≠是函数()()()2112g x f x a x =-+的两个零点,求实数a 的取值范围. 【答案】(1)证明见解析;(2)(),0-∞. 【要点分析】 (1)构造函数()()()11ln 21ln 2111x f x h x x x e x x x x --=+-+=+-+>-,证明最小值大0即可得解;(2)先求导()()2112xg x xe a x =-+可()()()()()111x x g x x e a x x e a '=+-+=+-,分0a =,0a <和0a >进行讨论即可得解. 【答案详解】 (1)设()()()11ln 21ln 2111x f x h x x x e x x x x --=+-+=+-+>-,∴()112x h x e x -'=+-,∴()121x h x e x-''=-, ∵1x >,∴11x e ->,2101x<<,∴()1210x h x e x -''=->,∴()h x '在()1,+∞上单调递增,又()10h '=,∴1x >时,()()10h x h ''>=,()1ln 21x h x e x x -=+-+在()1,+∞上单调递增,又()10h =,∴1x >时,()()10h x h >=,故当1x >时,()1ln 211f x x x x ->-+--,∴()()211ln 231f x x x x x --->-+.(2)∵()()2112xg x xe a x =-+, ∴()()()()()111x x g x x e a x x e a '=+-+=+-,当0a =时,易知函数()g x 只有一个零点,不符合题意. 当0a <时,在(),1-∞-上,()0g x '<,()g x 单调递减; 在()1,-+∞上,()0g x '>,()g x 单调递增; 又()110g e-=-<,()120g e a =->, 不妨取4b <-且()ln b a <-时,()()()2ln 2111120222a g b bea b a b b -⎛⎫>-+=-++> ⎪⎝⎭, [或者考虑:当x →-∞,()g x →+∞],所以函数()g x 有两个零点,∴0a <符合题意,当0a >时,由()()()10xg x x e a '=+-=得1x =-或ln x a =.(ⅰ)当ln 1a =-,即1a e=时,在(),-∞+∞上,()0g x '≥成立, 故()g x 在(),-∞+∞上单调递增,所以函数()g x 至多有一个零点,不符合题意. (ⅱ)当ln 1a <-,即10a e<<时,在(),ln a -∞和()1,-+∞上, ()0g x '>,()g x 单调递增;在()ln ,1a -上,()0g x '<,()g x 单调递减; 又()110g e -=-<,且()()()2211ln ln ln 1ln 1022g a a a a a a a =-+=-+<, 所以函数()g x 至多有一个零点()g x ,不符合题意. (ⅲ)当ln 1a >-即1a e>时, 在(),1-∞-和()ln ,a +∞上()0g x '>,()g x 单调递增; 在()1,ln a -上()0g x '<,()g x 单调递减, 以()110g e-=-<,所以函数()g x 至多有一个零点,不符合题意. 综上所述,实数a 的取值范围是(),0-∞. 【名师点睛】本题考查了导数的应用,考查了利用导数研究函数的单调性,考查了构造法证明不等式以及分类讨论求参数范围,要求较高的计算能力,属于难题. 解决本类问题的方法有以下几点:(1)证明题常常利用构造法,通过构造函数来证明;(2)分类讨论解决含参问题,是导数压轴题常考题型,在讨论时重点是找到讨论点.7.已知()x f x e =,当0x ≥时(2)1f x ax ≥+恒成立. (1)求实数a 的取值范围; (2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求证:223sin x x x xe -≤.【答案】(1)2a ≤;(2)证明见解析. 【要点分析】(1)移项构造函数,求导后分类讨论.(2)利用(1)的结论构造新函数,求导后构造新函数再求导寻找极值点即可. 【答案详解】(1)(2)1f x ax ≥+即210x e ax --≥恒成立, 令2()1(0)x h x e ax x =--≥,则2()2x h x e a '=-当2a ≤时()0h x '≥,则()h x 在[)0,+∞是增函数,(0)0h =,()0h x ∴≥成立. 当2a >时,0x ∃使()00h x '=()00,x x ∈,()0h x '<,()h x 为减函数,()0,x x ∈+∞,()0h x '>,()h x 为增函数.所以()0(0)0h x h <=不合题意. 所以2a ≤.(2)由(1)得当0,2x π⎡⎤∈⎢⎥⎣⎦时221x e x ≥+,所以要证223sin x x x xe -≤只要证23sin (21)x x x x -≤+ 即证:2sin 0x x x --≤,设2()sin h x x x x =--,0,2x π⎡⎤∈⎢⎥⎣⎦, ()21cos h x x x '=--,()2sin 0h x x ''=+>所以()h x '在0,2π⎡⎤⎢⎥⎣⎦是增函数, (0)2h '=-,102h ππ⎛⎫'=-> ⎪⎝⎭,所以存在00,2x π⎡⎤∈⎢⎥⎣⎦使()00h x '=.故[)00,x x ∈时,()0h x '<,则()h x 为减函数,0,2x x π⎛⎤∈ ⎥⎝⎦时()0h x '>则()h x 为增函数(0)0h =,2224144202h πππππ--⎛⎫=--=< ⎪⎝⎭,所以0,2x π⎡⎤∈⎢⎥⎣⎦时()0≤h x ,故命题成立.【名师点睛】此题为导数综合题,属于难题.方法名师点睛:利用导数求参数范围方法:(1)变量分离,构造函数,转化为恒成立问题处理,求导数进步求新函数的最值. (2)移项后,构造函数,求导讨论函数的单调性及极值.8.已知函数()ln xxf x e a=-. (1)当1a =时,求曲线()y f x =在点()()1,1A f 处的切线方程; (2)若01a <<,求证:()2ln af x a+≥. 【答案】(1)()11y e x =-+;(2)证明见解析. 【要点分析】(1)首先求导得到()()10x f x e x x'=->,从而得到1k e =-,再利用点斜式求切线方程即可. (2)首先求导得到()111xx f x e xe ax x a ⎛⎫'=-=- ⎪⎝⎭,根据x y xe =在()0,∞+上单调递增,且()0,y ∈+∞,且11a>,得到存在唯一()00x ∈+∞,,使得0010x x e a -=,再根据函数()f x 的单调性得到()min f x ,利用基本不等式即可证明()2ln af x a+≥. 【答案详解】(1)当1a =时,()()()1ln 0xxf x e x f x e x x'=-⇒=->. ∴()11k f e '==-,又()1f e =,∴()f x 在点A 处的切线方程为()()11y e e x -=--,即()11y e x =-+.(2)()()()ln 1110xx x x f x e f x e xe x a ax x a ⎛⎫'=-⇒=-=-> ⎪⎝⎭, 易知x y xe =在()0,∞+上单调递增,且()0,y ∈+∞, 又1011a a<<⇒>, ∴存在唯一()00x ∈+∞,,使得0010x x e a-=,即0001ln ln x e x x a ax =⇔=--.当00x x <<时,()0f x '<,()f x 为减函数; 当0x x >时,()0f x '>,()f x 为增函数.∴()()00000min 00ln 1ln 11ln x x x a f x f x e x a a ax a a a x ⎛⎫==-=++=++ ⎪⎝⎭2l ln n 1a a a a ⎛⎫≥+ = +⎪⎪⎝⎭. 当且仅当001x x =,即01x =时,等号成立. ∴当01a <<时,()2ln af x a+≥. 【名师点睛】关键点名师点睛:本题主要考查导数的综合应用,考查利用导数证明不等式,解题的关键为找到导函数的隐藏零点,属于中档题.9.已知函数21()ln 2f x a x ax =+. (1)若()f x 只有一个极值点,求a 的取值范围.(2)若函数2()()(0)g x f x x =>存在两个极值点12,x x ,记过点1122(,()),(,())P x g x Q x g x 的直线的斜率为k ,证明:1211k x x +>. 【答案】(1)0a <;(2)证明见解析. 【要点分析】 (1n =,则0n >.令22()2n an n a φ=-+,解不等式组0,(0)0,a φ<⎧⎨>⎩即得解;(2)只需证21121222112ln ()2x x x a x x x x x -+>-,设12(01)xt t x =<<,函数21()2ln m t a t t t =-+,证明121()0()2m t x x >>-即得证. 【答案详解】(1)解:222'()222a a ax a f x x x x-+=+-=,(0,)x ∈+∞n =,则0n >.令22()2n an n a φ=-+,要使函数()f x 只有一个极值点,则需满足0,(0)0,a φ<⎧⎨>⎩,即0a <;(2)证明:因为2221()()2ln 2g x f x a x ax x ==+-, 所以22222'()1a ax x a g x ax x x -+=+-=,因为()g x 存在两个极值点,所以30,180,a a >⎧⎨->⎩即102a << 不妨假设120x x <<,则121x x a+=要证1211k x x +>,即要证121212()()11g x g x x x x x -+>-, 只需证121212121221()()()()x x x x x x g x g x x x x x -+->=-,只需证221112121212222111()[()2]2()222x x x x x x a x x a ln x x a ln x x x x -+-+=--+>-, 即证21121222112ln ()2x x x a x x x x x -+>-设12(01)x t t x =<<,函数21()2ln m t a t t t =-+,22221'()t a t m t t-+=- 因为102a <<,故4440a -<,所以22210t a t -+>,即'()0m t <, 故()m t 在(0,1)上单调递减,则()(1)0m t m >= 又因为121()02x x -<,所以121()0()2m t x x >>-,即21121222112ln ()2x x x a x x x x x -+>-,从而1211k x x +>得证. 【名师点睛】关键点名师点睛:解答本题的关键是通过要点分析得到只需证明21121222112ln ()2x x x a x x x x x -+>-.对于比较复杂的问题,我们可以通过要点分析把问题转化,再证明,提高解题效率.10.函数()()11xxf x x e k e =+⋅--.(1)当1k =时,求()f x 的单调区间;(2)当0x >,k 2≤时,证明:()0f x >.【答案】(1)单调递减区间为(),0-∞,单调递增区间为()0,∞+;(2)证明见解析. 【要点分析】(1)由1k =得到()()11xxf x x e e =+⋅-- 求导由()0f x '>, ()0f x '<求解.(2)求导()()1xf x e x k '=⋅--⎡⎤⎣⎦,分1k ≤,12k <≤讨论求解.【答案详解】(1)当1k =时,()()11xxf x x e e =+⋅-- ,.所以()x f x x e '=⋅当()0f x '>时,0x >; 当()0f x '<时,0x <.所以()f x 的单调递减区间为(),0-∞,单调递增区间为()0,∞+. (2)因为()()11xxf x x e k e =+⋅--,所以()()1xf x e x k '=⋅--⎡⎤⎣⎦.①当1k≤,0x >时,()0f x '>恒成立,所以()f x 单调递增,所以()()0f x f >,而()010f =>,所以()0f x >恒成立;②12k <≤,0x >时,由()0f x '>可得1x k >-;由()0f x '<可得01x k <<-.所以()f x 在()0,1k -单调递减,在()1,k -+∞单调递增,所以()()1min 11k f x f k k e -=-=+-.设()1112()x g x x ex -=+-<≤,则()110x g x e -'=-<,所以()g x 在(]1,2单调递减, 故()()min 230g x g e ==->,所以()min 110k f x k e -=+->,从而()0f x >.综上,当0x >,k 2≤时,()0f x >. 【名师点睛】方法名师点睛:1、利用导数研究函数的单调性的关键在于准确判定导数的符号,当f (x )含参数时,需依据参数取值对不等式解集的影响进行分类讨论;若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.2、利用导数证明不等式常构造函数φ(x ),将不等式转化为φ(x )>0(或<0)的形式,然后研究φ(x )的单调性、最值,判定φ(x )与0的关系,从而证明不等式.11.已知函数2()2ln 2(1)f x mx x m x =-+-. (1)讨论函数()f x 的单调区间;(2)当1x ≠时,求证:2286ln 3521x x x x x x---<-. 【答案】(1)答案见解析;(2)证明见解析. 【要点分析】(1)先求导,分为0m ≥,1m =-,1m <-和10m -<<四种情形进行分类讨论,根据导数和函数单调性的关系即可求出;(2)等价于3226(1ln )23501x x x x x-+--<-,令()()3261ln 235h x x x x x =-+--,利用当2m =时的结论,根据导数判断()h x 与0的关系,即可证明. 【答案详解】解:()f x 的定义域为(0,)+∞,则22(1)1(1)(1)()22(1)22mx m x mx x f x mx m x x x+--+-'=-+-=⋅=⋅, 当0m …时,10mx +>,当(0,1)x ∈时,()0f x '<,当(1,)x ∈+∞时,()0f x '>, ∴函数()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞,当0m <时,令()0f x '=,解得1x =或1x m=-, 当1m =-时,2(1)()2?0x f x x-'=-…恒成立,∴函数()f x 的单调递减区间为(0,)+∞,无单调递增区间,当1m <-时,101m<-<, 当1(0,x m ∈-或(1,)+∞时,()0f x '<,当1(x m∈-,1)时,()0f x '>, ∴函数()f x 的单调递减区间为1(0,)m -或(1,)+∞,单调递增区间为1(m-,1),当10m -<<,11m ->,当(0,1)x ∈或1(m -,)+∞时,()0f x '<,当1(1,x m∈-时,()0f x '>,∴函数()f x 的单调递减区间为(0,1)或1(m -,)+∞,单调递增区间为1(1,m.综上所述:当0m …时,函数()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞, 当1m =-时,函数()f x 的单调递减区间为(0,)+∞,无单调递增区间,当1m <-时,函数()f x 的单调递减区间为1(0,)m -,(1,)+∞,单调递增区间为1(m-,1), 当10m -<<时,函数()f x 的单调递减区间为(0,1)或1(m -,)+∞,单调递增区间为1(1,)m.(2) 证明:要证2286ln 3521x x x x x x ---<-,即证3226(1ln )23501x x x x x -+--<-, 令32()6(1ln )235h x x x x x =-+--,则22()66ln 6663(22ln 2)h x x x x x x x '=--+-=--, 由(1),当2m =时,2()22ln 2f x x x x =--, 可得()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞,即()h x '的单调递减区间为(0,1),单调递增区间为(1,)+∞,()h x h ∴''…(1)0=, ()h x ∴在(0,)+∞上单调递增,h (1)6(1ln1)2350=-+--=,∴当01x <<时,()0h x <,210x ->,当1x >时,()0h x >,210x -<,∴3226(1)23501x lnx x x x -+--<-, 即22863521x xlnx x x x---<-. 【名师点睛】含有参数的函数单调性讨论常见的形式: (1)对二次项系数的符号进行讨论; (2)导函数是否有零点进行讨论; (3)导函数中零点的大小进行讨论;(4)导函数的零点与定义域端点值的关系进行讨论等.12.函数()2ln a xf x x x=-. (1)若12a =,求()f x 的单调性; (2)当0a >时,若函数()()2g x f x a =-有两个零点,求证:12a >. 【答案】(1)()f x 在()0,1上单调递减,在()1,+∞上单调递增;(2)证明见解析. 【要点分析】(1)求导得()2221ln 1ln 1x x x f x x x--+'=-=,设()21ln x x x ϕ=-+,利用导数可得()x ϕ的单调性,并可得()x ϕ的零点,即可求出()f x 的单调性;(2)由函数()g x 有两个零点,所以()()22ln 20h x x a x ax x =-->,即()0h x =有两个不等实根,利用导数求得()h x 的单调性,结合题意可得201x a x =+,求出0x 的范围,利用对勾函数的单调性即可证明. 【答案详解】 (1)因为()ln xf x x x=-,(0x >), 所以()2221ln 1ln 1x x xf x x x--+'=-=. 设()21ln x x x ϕ=-+,则()120x x xϕ'=+>,所以()x ϕ在()0,∞+单调递增,又因为()10ϕ=,所以当()0,1x ∈时,()0x ϕ<,则()0f x '<,()f x 单调递减; 当()1,x ∈+∞时,()0x ϕ>,则()0f x '>,()f x 单调递增. 综上,()f x 在()0,1上单调递减,在()1,+∞上单调递增. (2)证明:因为函数()()2ln 20a xg x x a x x=-->有两个零点, 所以方程22ln 20x a x ax --=有两个不等实根.设()()22ln 20h x x a x ax x =-->,即()0h x =有两个不等实根,则()()22222220a x ax ah x x a x x x--'=--=>.设()()22220m x x ax a x =-->,则由0a >可知24160a a ∆=+>,而()2222m x x ax a =--的对称轴方程为2ax =,且()020m a =-<, 所以存在()00x ∈+∞,使得()20002220m x x ax a =--=,即2001x a x =+,且当()00,x x ∈时,()0m x <,则()0h x '<,所以()h x 单调递减; 当()0,x x ∈+∞时,()0m x >,则()0h x '>,所以()h x 单调递增.因为()0h x =有两个不等实根,所以必有()00h x <,即20002ln 20x a x ax --<.将2001x a x =+,代入整理可得0012ln 0x x --<.设()()12ln 0m x x x x =-->,则易得()m x 在()0,∞+上单调递减, 又()10m =,所以01x >,结合对勾函数1y t t=+在()2,+∞单调递增可知200001112112x a x x x ==++->++, 即12a >成立,命题得证. 【名师点睛】解题的关键是利用导数判断函数的单调性,当导函数无法直接判断正负时,可构造新函数,并继续求导,即可求出导函数的单调性和极值,进而可得导函数的正负,即原函数的单调性,考查要点分析理解,化简求值的能力,属中档题.13.已知函数()21()xm x xf x e++=.(1)试讨论()f x 的单调性;(2)若0m ≤,证明:()ln ef x x x +≤. 【答案】(1)答案不唯一见解析;(2)证明见解析. 【要点分析】(1)对函数进行求导得(1)(1)()xx mx m f x e--'+=-,再对m 分三种情况讨论,即0m =,0m >,0m <三种情况;(2)要证明()ln ef x x x +≤,只需证明 ()ln ef x x x ≤-,而ln 1x x -≥,因此只需证明1()f x e≤,再利用函数的单调性,即可得证; 【答案详解】解析:(1)因为(1)(1)()xx mx m f x e--'+=-, ①当0m =时,1()xx f x e-=-',当1x >时,()0f x '<,当1x <时,()0f x '>,所以()f x 在(,1)-∞上单调递增,在(1,)+∞上单调递减;②当0m >时,1(1)11(),11x m x x m f x e m'⎛⎫--+ ⎪⎝⎭=--<, 当11,1x m ⎛⎫∈-⎪⎝⎭时,()0f x '>,当1,1(1,)x m ⎛⎫∈-∞-⋃+∞ ⎪⎝⎭时,()0f x '<,所以()f x 在11,1m ⎛⎫- ⎪⎝⎭单调递增,在1,1,(1,)m ⎛⎫-∞-+∞ ⎪⎝⎭单调递减; ③当0m <时,111m ->,当11,1x m ⎛⎫∈- ⎪⎝⎭时,()0f x '<,当1(,1)1,x m ⎛⎫∈-∞⋃-+∞ ⎪⎝⎭时,()0f x '>,所以()f x 在11,1m ⎛⎫-⎪⎝⎭单调递减,在1(,1),1,m ⎛⎫-∞-+∞⎪⎝⎭单调递增. (2)要证明()ln ef x x x +≤,只需证明 ()ln ef x x x ≤-, 而ln 1x x -≥,因此只需证明1()f x e≤,当0m =时,()x xf x e =,由(1)知()f x 在(,1)-∞上单调递增,在(1,)+∞上单调递减,所以max1()(1)f x f e==; 当0m <时,()211()xx m x xx f x e e e++=<≤,故()ln ef x x x +≤. 【名师点睛】利用导数研究含参函数的单调区间,要注意先求导后,再解导数不等式.14.已知函数()()ln xf x xe a x x =-+.(1)当0a >时,求()f x 的最小值; (2)若对任意0x >恒有不等式()1f x ≥成立.①求实数a 的值; ②证明:()22ln 2sin xxe x x x >++.【答案】(1)ln a a a -;(2)①1;②证明见解析. 【要点分析】(1)求出函数()f x 的定义域,对函数求导,令0x xe a -=,构造()xg x xe =,利用导数研究函数的单调性与实根个数,进而得出()f x 的单调性和最值;(2)①当0a ≤时,()f x 单调递增,()f x 值域为R ,不适合题意;当0a >时,构造()()ln 0a a a a a ϕ=->,求导得出函数的最大值,可得实数a 的值;②由①可知ln 1xxe x x --≥,因此只需证:22ln 2sin x x x x +>+,只需证2222sin x x x x +>-+,即222sin x x x -+>,按1x >和01x <≤分别证明即可. 【答案详解】(1)法一:()f x 的定义域为()0,∞+,由题意()()()11x xa xe a f x x e x x x ⎛⎫-⎛⎫'=+-=+ ⎪ ⎪⎝⎭⎝⎭,令0x xe a -=,得x a xe =, 令()xg x xe =,()()10x x x g x e xe x e '=+=+>,所以()g x 在()0,x ∈+∞上为增函数,且()00g =, 所以x a xe =有唯一实根,即()0f x '=有唯一实根,设为0x , 即00xa x e =,所以()f x 在()00,x 上为减函数,在()0,x +∞上为增函数, 所以()()()00000min ln ln xf x f x x e a x x a a a ==-+=-.法二:()()()()ln ln ln 0xe x xf x x a x x e a x x x +=-+=-+>.设ln t x x =+,则t R ∈.记()()tt e at t R ϕ=-∈.故()f x 最小值即为()t ϕ最小值.()()0t t e a a ϕ'=->,当(),ln t a =-∞时,()0t ϕ'<,()t ϕ单调递减, 当()ln ,t a ∈+∞时,()0t ϕ'>,()t ϕ单调递增, 所以()()ln min ln ln ln af x a ea a a a a ϕ==-=-,所以()f x 的最小值为ln a a a -.(2)①当0a ≤时,()f x 单调递增,()f x 值域为R ,不适合题意,当0a >时,由(1)可知()min ln f x a a a =-, 设()()ln 0a a a a a ϕ=->, 所以()ln a a ϕ'=-,当()0,1a ∈时,()0a ϕ'>,()a ϕ单调递增, 当()1,a ∈+∞时,()0a ϕ'<,()a ϕ单调递减, 所以()()max 11a ϕϕ==,即ln 1a a a -≤. 由已知,()1f x ≥恒成立,所以ln 1a a a -≥, 所以ln 1a a a -=, 所以1a =.②由①可知ln 1xxe x x --≥,因此只需证:22ln 2sin x x x x +>+,又因为ln 1≤-x x ,只需证2222sin x x x x +>-+,即222sin x x x -+>,当1x >时,2222sin x x x -+>≥结论成立, 当(]0,1x ∈时,设()222sin g x x x x =-+-,()212cos g x x x '=--,当(]0,1x ∈时,()g x '显然单调递增.()()112cos10g x g ''≤=-<,故()g x 单调递减, ()()122sin10g x g ≥=->,即222sin x x x -+>. 综上结论成立. 【名师点睛】方法名师点睛:本题考查导数研究函数的最值,导数解决恒成立问题以及导数证明不等式,导数对于含参数的函数在闭区间上函数值恒大于等于或小于等于常数问题,可以求函数最值的方法, 一般通过变量分离,将不等式恒成立问题转化为求函数的最值问题:1.()f x m >恒成立min ()f x m ⇔>;2.()f x m <恒成立max ()f x m ⇔<. 15.已知a >0,函数21()ln (1)2f x x x x a x =-+-. (1)若f (x )为减函数,求实数a 的取值范围;(2)当x >1时,求证:2e ()e 2aa f x <-.(e =2.718…) 【答案】(1)0<a ≤1;(2)证明见解析. 【要点分析】(1)根据题意可得在()0+∞,上,()0f x '≤恒成立,即ln 0x x a -+≤恒成立,设()ln g x x x a =-+,求导数要点分析()g x 的单调性,使得()max 0g x ≤,即可得结果;(2)当0<a ≤1时,可得()12f x <-,2e 1e 22a a ->-;当1a >时,先得()f x '在()1,+∞ 上单调递减,()10f '>,得出存在0x ,使得()01,x 上单调递增,在()0+x ∞,上单调递减,进而()20001()2f x f x x x ≤=-,结合函数21()2F x x x =-的单调性可得结果. 【答案详解】(1)解:由题意知f (x )的定义域为(0,+∞),f '(x )=ln x -x +a , 由f (x )为减函数可知f '(x )≤0恒成立. 设g (x )=ln x -x +a ,1'1()g x x=-, 令g '(x )=0得x =1,当x ∈(0,1)时,g '(x )>0,g (x )单调递增,即f '(x )单调递增; 当x ∈(1,+∞)时,g '(x )<0,g (x )单调递减,即f '(x )单调递减. 故f '(x )≤f '(1)=-1+a ≤0,因此0<a ≤1.(2)证明:由(1)知,当0<a ≤1时,f (x )为减函数,所以3()(1)2f x f a <=-, 又0<a ≤1,3122a -≤-. 设2e e 2a ay =-,e a =t ,则22t y t =-,t ∈(1,e ]. 又22t y t =-在区间(1,e ]上单调递增,所以11122y >-=-,故231e ()(1)e 222a af x f a <=-≤-<-,所以当0<a ≤1时,2e ()e 2a a f x <-.当a >1时,由(1)知,当x ∈(1,+∞)时,f '(x )单调递减,且f '(1)=a -1>0.f '(e a )=2a -e a ,令h (x )=2x -e x ,h '(x )=2-e x,当x >1时,h '(x )<0,h (x )单调递减,故h (a )=2a -e a<h (1)=2-e <0, 又e a>1,f '(x )在(1,+∞)上单调递减,故存在x 0∈(1,e a),使得f '(x 0)=0,即f '(x 0)=ln x 0-x 0+a =0,即a =x 0-ln x 0, 因此有f (x )在(1,x 0)上单调递增,在(x 0,+∞)上单调递减, 故2000001()()ln (1)2f x f x x x x a x ≤=-+-, 将a =x 0-ln x 0代入,得20001()2f x x x =-. 因为函数21()2F x x x =-在(1,+∞)上单调递增, 所以20e ()(e )e 2a aaF x F <=-,即20e ()e 2a a f x <-, 故20e ()()e 2aa f x f x ≤<-成立。
A新高考数学 高考重难专攻(一) 导数与不等式的证明
成立.
适当放缩法
已知函数f(x)=aex-ln x-1. (1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间; (2)证明:当a≥1e时,f(x)≥0. [解] (1)f(x)的定义域为(0,+∞),f′(x)=aex-1x. 由题设知,f′(2)=0,所以a=21e2. 从而f(x)=21e2ex-ln x-1,f′(x)=21e2ex-1x. 当0<x<2时,f′(x)<0;当x>2时,f′(x)>0. 所以f(x)的单调递减区间为(0,2),单调递增区间为(2,+∞).
1.待证不等式的两边含有相同的变量时,一般地,可以直接构造“左减右” 或“右减
2.利用构造差函数证明不等式的基本步骤 (1)作差或变形; (2)构造新的函数g(x); (3)利用导数研究g(x)的单调性或最值; (4)根据单调性及最值,得到所证不等式.
x=ln 2.
于是当 x 变化时,f′(x),f(x)的变化情况如下表:
x (-∞,ln 2)
ln 2
(ln 2,+∞)
f′(x)
-
0
+
f(x)
2(1-ln 2+a)
故 f(x)的单调递减区间是(-∞,ln 2),单调递增区间是(ln 2,+∞). 所以 f(x)在 x=ln 2 处取得极小值,极小值为 f(ln 2)=2(1-ln 2+a),无极大值.
(2)证明:当a=0,x∈(0,1)时,x2-1x<fexx等价于-elnx x+x2-1x<0, ∵当x∈(0,1)时,ex∈(1,e),-ln x>0,∴-elnx x<-ln x, ∴只需要证-ln x+x2-1x<0在(0,1)上恒成立. 令g(x)=-ln x+x2-1x,x∈(0,1), ∴g′(x)=-1x+2x+x12=2x3-x2x+1>0, 则函数g(x)在(0,1)上单调递增,于是g(x)<g(1)=-ln 1+1-1=0, ∴当x∈(0,1)时,x2-1x<fexx.
2023年新高考数学大一轮复习专题一函数与导数第4讲不等式(含答案)
新高考数学大一轮复习专题:第4讲 不等式[考情分析] 1.不等式的解法是数学的基本功,在许多题目中起到工具作用.2.求最值和不等式恒成立问题常用到基本不等式.3.题型多以选择题、填空题形式考查,中等难度. 考点一 不等式的性质与解法 核心提炼1.不等式的倒数性质 (1)a >b ,ab >0⇒1a <1b.(2)a <0<b ⇒1a <1b.(3)a >b >0,0<c <d ⇒a c >b d.2.不等式恒成立问题的解题方法(1)f (x )>a 对一切x ∈I 恒成立⇔f (x )min >a ,x ∈I ;f (x )<a 对一切x ∈I 恒成立⇔f (x )max <a ,x ∈I . (2)f (x )>g (x )对一切x ∈I 恒成立⇔当x ∈I 时,f (x )的图象在g (x )的图象的上方. (3)解决恒成立问题还可以利用分离参数法.例1 (1)若p >1,0<m <n <1,则下列不等式正确的是( ) A.⎝ ⎛⎭⎪⎫m n p >1 B.p -m p -n <mnC .m -p<n -pD .log m p >log n p答案 D解析 方法一 设m =14,n =12,p =2,逐个代入可知D 正确.方法二 对于选项A ,因为0<m <n <1,所以0<m n<1,又p >1,所以0<⎝ ⎛⎭⎪⎫m n p <1,故A 不正确;对于选项B ,p -m p -n -m n =p -m n -m p -n n p -n =p n -m n p -n >0,所以p -m p -n >mn,故B 不正确;对于选项C ,由于函数y =x -p在(0,+∞)上为减函数,且0<m <n <1,所以m -p>n -p,故C 不正确;对于选项D ,结合对数函数的图象可得,当p >1,0<m <n <1时,log m p >log n p ,故D 正确. (2)(2020·北京市昌平区新学道临川学校模拟)已知关于x 的不等式ax -b ≤0的解集是[2,+∞),则关于x 的不等式ax 2+(3a -b )x -3b <0的解集是( ) A .(-∞,-3)∪(2,+∞)B .(-3,2)C .(-∞,-2)∪(3,+∞)D .(-2,3)答案 A解析 由关于x 的不等式ax -b ≤0的解集是[2,+∞),得b =2a 且a <0, 则关于x 的不等式ax 2+(3a -b )x -3b <0可化为x 2+x -6>0, 即(x +3)(x -2)>0,解得x <-3或x >2, 所以不等式的解集为(-∞,-3)∪(2,+∞).易错提醒 求解含参不等式ax 2+bx +c <0恒成立问题的易错点 (1)对参数进行讨论时分类不完整,易忽略a =0时的情况. (2)不会通过转换把参数作为主元进行求解. (3)不考虑a 的符号.跟踪演练 1 (1)已知函数f (x )=⎩⎪⎨⎪⎧3,x <12,1x ,x ≥12,则不等式x 2f (x )+x -2≤0的解集是________________. 答案 {x |-1≤x ≤1} 解析 由x 2f (x )+x -2≤0,得 ⎩⎪⎨⎪⎧x <12,3x 2+x -2≤0或⎩⎪⎨⎪⎧x ≥12,x 2·1x+x -2≤0,即⎩⎪⎨⎪⎧x <12,-1≤x ≤23或⎩⎪⎨⎪⎧x ≥12,x ≤1,∴-1≤x <12或12≤x ≤1,∴原不等式的解集为{x |-1≤x ≤1}.(2)若不等式(a 2-4)x 2+(a +2)x -1≥0的解集是空集,则实数a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫-2,65 B.⎣⎢⎡⎭⎪⎫-2,65C.⎣⎢⎡⎦⎥⎤-2,65D.⎣⎢⎡⎭⎪⎫-2,65∪{2} 答案 B解析 当a 2-4=0时,解得a =2或a =-2,当a =2时,不等式可化为4x -1≥0,解集不是空集,不符合题意;当a =-2时,不等式可化为-1≥0,此式不成立,解集为空集. 当a 2-4≠0时,要使不等式的解集为空集,则有⎩⎪⎨⎪⎧a 2-4<0,Δ=a +22+4a 2-4<0,解得-2<a <65.综上,实数a 的取值范围是⎣⎢⎡⎭⎪⎫-2,65. 考点二 基本不等式 核心提炼基本不等式求最值的三种解题技巧(1)凑项:通过调整项的符号,配凑项的系数,使其积或和为定值.(2)凑系数:若无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开,即化为y =m +Ag x+Bg (x )(AB >0),g (x )恒正或恒负的形式,然后运用基本不等式来求最值.例2 (1)下列不等式的证明过程正确的是( ) A .若a ,b ∈R ,则b a +a b ≥2b a ·a b =2 B .若a <0,则a +4a≥-2a ·4a=-4 C .若a ,b ∈(0,+∞),则lg a +lg b ≥2lg a ·lg b D .若a ∈R ,则2a+2-a≥22a ·2-a=2 答案 D解析 由于b a ,a b的符号不确定,故选项A 错误;∵a <0,∴a +4a=-⎣⎢⎡⎦⎥⎤-a +⎝⎛⎭⎪⎫-4a≤-2-a ·⎝ ⎛⎭⎪⎫-4a=-4(当且仅当a =-2时,等号成立),故B 错误;由于lg a ,lg b 的符号不确定,故选项C 错误;∵2a>0,2-a>0,∴2a +2-a ≥22a ·2-a=2(当且仅当a =0时,等号成立),故选项D 正确.(2)(2019·天津)设x >0,y >0,x +2y =5,则x +12y +1xy的最小值为________.答案 4 3解析x +12y +1xy=2xy +2y +x +1xy=2xy +6xy=2xy +6xy.由x +2y =5得5≥22xy ,即xy ≤524,即xy ≤258,当且仅当x =2y =52时等号成立.所以2xy +6xy≥22xy ·6xy=43,当且仅当2xy =6xy,即xy =3时取等号,结合xy ≤258可知,xy 可以取到3,故x +12y +1xy的最小值为4 3.易错提醒 运用基本不等式时,一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指“正数”;“二定”是指应用基本不等式求最值时,和或积为定值;“三相等”是指满足等号成立的条件.若连续两次使用基本不等式求最值,必须使两次等号成立的条件一致,否则最值取不到.跟踪演练2 (1)(2020·北京市中国人民大学附属中学模拟)已知a >0,b >0,且a -b =1,则2a +1b的最小值为________.答案 22+2解析 ∵a >0,b >0,由a -b =1,得a =1+b ,∴2a +1b =2+2b +1b≥2+22b ·1b=2+22,当且仅当b =22时,等号成立,∴2a +1b的最小值为22+2. (2)(2020·江苏)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________. 答案 45解析 方法一 由题意知y ≠0.由5x 2y 2+y 4=1, 可得x 2=1-y45y2,所以x 2+y 2=1-y 45y 2+y 2=1+4y 45y2=15⎝ ⎛⎭⎪⎫1y 2+4y 2≥15×21y 2×4y 2=45, 当且仅当1y 2=4y 2,即y =±22时取等号.所以x 2+y 2的最小值为45.方法二 设x 2+y 2=t >0,则x 2=t -y 2. 因为5x 2y 2+y 4=1,所以5(t -y 2)y 2+y 4=1, 所以4y 4-5ty 2+1=0.由Δ=25t 2-16≥0,解得t ≥45⎝ ⎛⎭⎪⎫t ≤-45舍去.故x 2+y 2的最小值为45.专题强化练一、单项选择题1.不等式(-x +3)(x -1)<0的解集是( ) A .{x |-1<x <3} B .{x |1<x <3} C .{x |x <-1或x >3} D .{x |x <1或x >3}答案 D解析 不等式即(x -3)(x -1)>0,由二次不等式的解法大于分两边可得不等式的解集为{x |x <1或x >3}.2.下列命题中正确的是( ) A .若a >b ,则ac 2>bc 2B .若a >b ,c <d ,则a c >b dC .若a >b ,c >d ,则a -c >b -dD .若ab >0,a >b ,则1a <1b答案 D解析 对于A 选项,当c =0时,不成立,故A 选项错误. 当a =1,b =0,c =-2,d =-1时,a c <b d,故B 选项错误. 当a =1,b =0,c =1,d =0时,a -c =b -d ,故C 选项错误. 由不等式的性质知D 正确.3.(2020·北京市昌平区新学道临川学校模拟)已知一元二次不等式f (x )<0的解集为{x |x <-2或x >3},则f (10x)>0的解集为( ) A .{x |x <-2或x >lg3} B .{x |-2<x <lg3} C .{x |x >lg3} D .{x |x <lg3}答案 D解析 一元二次不等式f (x )<0的解集为{x |x <-2或x >3}, 则f (x )>0的解集为{x |-2<x <3},则f (10x)>0可化为-2<10x<3,解得x <lg3, 所以所求不等式的解集为{x |x <lg3}.4.若a >b >0,且ab =1,则下列不等式成立的是( ) A .a +1b <b2a <log 2(a +b )B.b 2a <log 2(a +b )<a +1bC .a +1b <log 2(a +b )<b 2aD .log 2(a +b )<a +1b <b 2a答案 B解析 由题意得a >1,0<b <1, ∴b2a <1,log 2(a +b )>log 22ab =1, 12a b+>a +1b >a +b ⇒a +1b>log 2(a +b ).5.(2018·全国Ⅲ)设a =log 0.20.3,b =log 20.3,则( ) A .a +b <ab <0 B .ab <a +b <0 C .a +b <0<ab D .ab <0<a +b答案 B解析 ∵a =log 0.20.3>log 0.21=0,b =log 20.3<log 21=0,∴ab <0.∵a +b ab =1a +1b=log 0.30.2+log 0.32=log 0.30.4, ∴1=log 0.30.3>log 0.30.4>log 0.31=0, ∴0<a +bab<1,∴ab <a +b <0. 6.已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3B .4C.92D.112答案 B解析 由题意得x +2y =8-x ·2y ≥8-⎝⎛⎭⎪⎫x +2y 22,当且仅当x =2y 时,等号成立,整理得(x+2y )2+4(x +2y )-32≥0,即(x +2y -4)(x +2y +8)≥0,又x +2y >0,所以x +2y ≥4,所以x +2y 的最小值为4.故选B.7.已知a >-1,b >-2,(a +1)(b +2)=16,则a +b 的最小值是( ) A .4B .5C .6D .7 答案 B解析 由a >-1,b >-2,得a +1>0,b +2>0,a +b =(a +1)+(b +2)-3≥2a +1b +2-3=2×4-3=5,当且仅当a +1=b +2=4,即a =3,b =2时等号成立,所以a +b 的最小值是5.8.已知正实数a ,b ,c 满足a 2-2ab +9b 2-c =0,则当ab c取得最大值时,3a +1b-12c的最大值为( ) A .3B.94C .1D .0答案 C解析 由正实数a ,b ,c 满足a 2-2ab +9b 2-c =0,得a 2c -2ab c +9b 2c =1≥4ab c, 当且仅当a 2c =9b 2c ,即a =3b 时,ab c 取最大值14,又因为a 2-2ab +9b 2-c =0, 所以此时c =12b 2,所以3a +1b -12c =1b ⎝ ⎛⎭⎪⎫2-1b ≤⎝ ⎛⎭⎪⎫1b +2-1b 24=1,当且仅当b =1时等号成立.故最大值为1. 二、多项选择题9.设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12[f (a )+f (b )],则下列关系式中正确的是( )A .q =rB .p <qC .p =rD .p >q 答案 BC解析 r =12(ln a +ln b )=p =ln ab ,p =ln ab <q =ln a +b 2.10.已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则a 的值可以是( ) A .6B .7C .8D .9 答案 ABC解析 方法一 设y =x 2-6x +a ,则其图象为开口向上,对称轴是x =3的抛物线,如图所示.若关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则⎩⎪⎨⎪⎧22-6×2+a ≤0,12-6×1+a >0,解得5<a ≤8,又a ∈Z ,故a 可以为6,7,8.方法二 分离常数,得a ≤-x 2+6x ,函数y =-x 2+6x 的图象及直线y =a ,如图所示,由图易知5<a ≤8.11.(2020·威海模拟)若a ,b 为正实数,则a >b 的充要条件为( ) A.1a >1bB .ln a >ln bC .a ln a <b ln bD .a -b <e a-e b答案 BD解析 对于A ,因为a >b >0,所以1a <1b,故A 错误;对于B ,因为y =ln x 在(0,+∞)上为增函数,所以a >b >0⇔ln a >ln b ,故B 正确;对于C ,设f (x )=x ln x ,则f ′(x )=ln x +1(x >0),令f ′(x )=0,得x =1e ,当x ∈⎝ ⎛⎭⎪⎫0,1e 时,f ′(x )<0,f (x )单调递减;当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,f ′(x )>0,f (x )单调递增,所以a >b >0不能推出a ln a <b ln b ,故C 错误;对于D ,设g (x )=x-e x(x >0),则g ′(x )=1-e x.因为x >0,所以e x>1,所以g ′(x )<0,g (x )在(0,+∞)上单调递减,所以当a >b >0时,g (a )<g (b ),即a -e a<b -e b,即a -b <e a-e b,充分性成立;当a >0,b >0,且a -b <e a -e b 时,易证得a >b ,必要性成立,故D 正确.12.(2020·新高考全国Ⅰ)已知a >0,b >0,且a +b =1,则( ) A .a 2+b 2≥12B .2a -b>12C .log 2a +log 2b ≥-2 D.a +b ≤ 2答案 ABD解析 因为a >0,b >0,a +b =1, 所以a +b ≥2ab ,当且仅当a =b =12时,等号成立,即有ab ≤14.对于A ,a 2+b 2=(a +b )2-2ab =1-2ab ≥1-2×14=12,故A 正确;对于B,2a -b=22a -1=12×22a, 因为a >0,所以22a>1,即2a -b>12,故B 正确; 对于C ,log 2a +log 2b =log 2ab ≤log 214=-2,故C 错误;对于D ,由(a +b )2=a +b +2ab =1+2ab ≤2, 得a +b ≤2,故D 正确. 三、填空题13.对于0<a <1,给出下列四个不等式:①log a (1+a )<log a ⎝⎛⎭⎪⎫1+1a ;②log a (1+a )>log a ⎝ ⎛⎭⎪⎫1+1a ;③a1+a<11aa+;④a1+a>a 1+1a.其中正确的是________.(填序号)答案 ②④解析 由于0<a <1,所以函数f (x )=log a x 和g (x )=a x在定义域上都是单调递减函数,而且1+a <1+1a,所以②④是正确的.14.当x ∈(0,+∞)时,关于x 的不等式mx 2-(m +1)x +m >0恒成立,则实数m 的取值范围是________. 答案 (1,+∞)解析 ∵x ∈(0,+∞),mx 2-(m +1)x +m >0恒成立, ∴m (x 2-x +1)>x 恒成立,又x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,∴m >xx 2-x +1恒成立,当x ∈(0,+∞)时,xx 2-x +1=1x +1x-1≤121-1=1, 当且仅当x =1x,即x =1时取“=”.∴m >1.15.已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数,若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________. 答案 ⎣⎢⎡⎦⎥⎤-1,12解析 由f (x )=x 3-2x +e x-1e x ,得f (-x )=(-x )3-2(-x )+e -x-1e-x =-x 3+2x -e x+1ex =-f (x ),又x ∈R ,所以f (x )=x 3-2x +e x-1e x 是奇函数.因为f ′(x )=3x 2-2+e x +1e x ≥3x 2-2+2e x·1ex=3x 2≥0,当且仅当x =0时“=”成立, 所以f (x )在R 上单调递增, 因为f (a -1)+f (2a 2)≤0,所以f (2a 2)≤-f (a -1),即f (2a 2)≤f (1-a ). 所以2a 2≤1-a ,即2a 2+a -1≤0,解得-1≤a ≤12.16.已知实数x ,y 满足x >1,y >0且x +4y +1x -1+1y =11,则1x -1+1y的最大值为________. 答案 9 解析 ∵x +4y +1x -1+1y=11, ∴(x -1)+4y =10-⎝ ⎛⎭⎪⎫1x -1+1y ,又⎝⎛⎭⎪⎫1x -1+1y [(x -1)+4y ]=5+x -1y +4y x -1≥5+24=9, 当且仅当x -1y =4y x -1,即2y =x -1>0时等号成立, ∴⎝⎛⎭⎪⎫1x -1+1y ⎣⎢⎡⎦⎥⎤10-⎝ ⎛⎭⎪⎫1x -1+1y ≥9, 令t =1x -1+1y,则t (10-t )≥9,即t2-10t+9≤0,∴1≤t≤9,∴1x-1+1y的最大值为9.11。
导数历年高考真题精选及答案
导数历年高考真题精选及答案 一.选择题1. (2011年高考山东卷文科4)曲线211y x =+在点P(1,12)处的切线与y 轴交点的纵坐标是(A)-9 (B)-3 (C)9 (D)152.(2011年高考山东卷文科10)函数2sin 2x y x =-的图象大致是3.(2011年高考江西卷文科4)曲线x y e =在点A (0,1)处的切线斜率为( )A.1B.2C.eD.1e4.2011年高考浙江卷文科10)设函数()()2,,f x ax bx c a b c R =++∈,若1x =-为函数()x f x e 的一个极值点,则下列图象不可能为()y f x =的图象是5.(2011年高考湖南卷文科7)曲线sin 1sin cos 2xy x x=-+在点(,0)4M π处的切线的斜率为 ( )A .12-B .12 C .22-D .226.【2012高考重庆文8】设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x =-处取得极小值,则函数()y xf x '=的图象可能是7.【2012高考浙江文10】设a >0,b >0,e 是自然对数的底数A. 若23b ,则a >bB. 若23b ,则a <bC. 若 23b ,则a >bD. 若23b ,则a <b8.【2012高考陕西文9】设函数f (x )2x则 ( ) A .12为f(x)的极大值点 B .12为f(x)的极小值点C .2为 f(x)的极大值点D .2为 f(x)的极小值点9.【2012高考辽宁文8】函数122-㏑x 的单调递减区间为(A)(-1,1] (B)(0,1] (C.)[1,+∞)(D)(0,+∞)10.【2102高考福建文12】已知f(x)³-6x²+9,a<b<c,且f (a)(b)(c)=0.现给出如下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.其中正确结论的序号是A.①③B.①④C.②③D.②④11.2012高考辽宁文12】已知为抛物线x2=2y上两点,点的横坐标分别为4,-2,过分别作抛物线的切线,两切线交于点A,则点A的纵坐标为(A) 1 (B) 3 (C) -4 (D) -812..(2009年广东卷文)函数x exxf)3()(-=的单调递增区间是( )A. )2,(-∞ B.(0,3) C.(1,4) D. ),2(+∞13.(2009江西卷文)若存在过点(1,0)的直线与曲线3y x=和2159 4y ax x=+-都相切,则a等于( )A.1-或25-64 B.1-或214C.74-或25-64D.74-或714.(2009湖南卷文)若函数()y f x=的导函数...在区间[,]a b上是增函数,则函数()y f x =在区间[,]a b 上的图象可能是( )AB .C .D . 二、填空题1.(2009辽宁卷文)若函数2()1x af x x +=+在1x =处取极值,则a =2.若曲线()2f x ax Inx =+存在垂直于y 轴的切线,则实数a 的取值范围是 . 3.(2009江苏卷)函数32()15336f x x x x =--+的单调减区间为.4.(2009宁夏海南卷文)曲线21x y xe x =++在点(0,1)处的切线方程为 三.解答题1.(2009浙江文)(本题满分15分)已知函数ab ab aoxoxy ba oxy oxyb32()(1)(2)f x x a x a a x b =+--++ (,)a b ∈R .(I )若函数()f x 的图象过原点,且在原点处的切线斜率是3-,求,a b 的值;()若函数()f x 在区间(1,1)-上不单调...,求a 的取值范围.2.(2009北京文)(本小题共14分)设函数3()3(0)f x x ax b a =-+≠. (Ⅰ)若曲线()y f x =在点(2,())f x 处与直线8y =相切,求,a b 的值;(Ⅱ)求函数()f x 的单调区间与极值点.3.2009山东卷文)(本小题满分12分) 已知函数321()33f x ax bx x =+++,其中0a ≠(1)当ba,满足什么条件时,)(xf取得极值?(2)已知0a,且)(xf在区间(0,1]上单调递增,试用a表示出b的取值范围4.设函数321()(1)4243f x x a x ax a =--++,其中常数a>1(Ⅰ)讨论f(x)的单调性;(Ⅱ)若当x≥0时,f(x)>0恒成立,求a 的取值范围。
(完整版)数学不等式高考真题
1.(2018•卷Ⅱ)设函数(1)当时,求不等式的解集;(2)若,求的取值范围2。
(2013•辽宁)已知函数f(x)=|x﹣a|,其中a>1(1)当a=2时,求不等式f(x)≥4﹣|x﹣4|的解集;(2)已知关于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},求a的值.3.(2017•新课标Ⅲ)[选修4-5:不等式选讲]已知函数f(x)=|x+1|﹣|x﹣2|.(Ⅰ)求不等式f(x)≥1的解集;(Ⅱ)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围.4.(2017•新课标Ⅱ)[选修4-5:不等式选讲]已知a>0,b>0,a3+b3=2,证明:(Ⅰ)(a+b)(a5+b5)≥4;(Ⅱ)a+b≤2.5。
(2017•新课标Ⅰ卷)[选修4-5:不等式选讲]已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(10分)(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.6.(2017•新课标Ⅱ)[选修4—5:不等式选讲]已知a>0,b>0,a3+b3=2,证明:(Ⅰ)(a+b)(a5+b5)≥4;(Ⅱ)a+b≤2.7。
(2018•卷Ⅰ)已知(1)当时,求不等式的解集(2)若时,不等式成立,求的取值范围8.(2018•卷Ⅰ)已知f(x)=|x+1|—|ax-1|(1)当a=1时,求不等式f(x)〉1的解集(2)若x∈(0,1)时不等式f(x)〉x成立,求a的取值范围9。
(2017•新课标Ⅲ)[选修4-5:不等式选讲]已知函数f(x)=|x+1|﹣|x﹣2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围.10。
(2014•新课标II)设函数f(x)=|x+ |+|x﹣a|(a>0).(1)证明:f(x)≥2;(2)若f(3)<5,求a的取值范围.11。
专题3.4利用导数证明不等式(2021年高考数学一轮复习专题)
专题利用导数证明不等式一、题型全归纳题型一作差法构造函数证明不等式【题型要点】(1)欲证函数不等式f(x)>g(x)(x>a),只需证明f(x)-g(x)>0(x>a),设h(x)=f(x)-g(x),即证h(x)>0(x>a).若h(a)=0,h(x)>h(a)(x>a).接下来往往用导数证得函数h(x)是增函数即可.(2)欲证函数不等式f(x)>g(x)(x∈I,I是区间),只需证明f(x)-g(x)>0(x∈I).设h(x)=f(x)-g(x)(x∈I),即证h(x)>0(x∈I),也即证h(x)min>0(x∈I)(若h(x)min不存在,则须求函数h(x)的下确界),而这用导数往往容易解决.【例1】(2020·广州模拟)已知函数f(x)=e x-ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为-1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x.【解析】(1)由f(x)=e x-ax,得f′(x)=e x-a.因为f′(0)=1-a=-1,所以a=2,所以f(x)=e x-2x,f′(x)=e x-2.令f′(x)=0,得x=ln 2,当x<ln 2时,f′(x)<0,f(x)在(-∞,ln 2)上单调递减;当x>ln 2时,f′(x)>0,f(x)在(ln 2,+∞)上单调递增.所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-2ln 2,f(x)无极大值.(2)证明:令g(x)=e x-x2,则g′(x)=e x-2x.由(1)得g′(x)=f(x)≥f(ln 2)>0,故g(x)在R上单调递增.所以当x>0时,g(x)>g(0)=1>0,即x2<e x.【例2】已知函数f(x)=ax+x ln x在x=e-2(e为自然对数的底数)处取得极小值.(1)求实数a的值;(2)当x>1时,求证:f(x)>3(x-1).【解析】(1)因为f(x)定义域为(0,+∞),f(x)=ax+x ln x,所以f′(x)=a+ln x+1,因为函数f(x)在x=e-2处取得极小值,所以f′(e-2)=0,即a+ln e-2+1=0,所以a =1,所以f ′(x )=ln x +2.当f ′(x )>0时,x >e -2;当f ′(x )<0时,0<x <e -2, 所以f (x )在(0,e -2)上单调递减,在(e -2,+∞)上单调递增, 所以f (x )在x =e-2处取得极小值,符合题意,所以a =1.(2)证明:由(1)知a =1,所以f (x )=x +x ln x .令g (x )=f (x )-3(x -1),即g (x )=x ln x -2x +3(x >0). g ′(x )=ln x -1,由g ′(x )=0,得x =e.由g ′(x )>0,得x >e ;由g ′(x )<0,得0<x <e. 所以g (x )在(0,e)上单调递减,在(e ,+∞)上单调递增, 所以g (x )在(1,+∞)上的最小值为g (e)=3-e >0.于是在(1,+∞)上,都有g (x )≥g (e)>0,所以f (x )>3(x -1).题型二 拆分法构造函数证明不等式【题型要点】(1)在证明不等式中,若无法转化为一个函数的最值问题,则可以考虑转化为两个函数的最值问题.(2)在证明过程中,等价转化是关键,此处f (x )min >g (x )max 恒成立.从而f (x )>g (x ),但此处f (x )与g (x )取到最值的条件不是同一个“x 的值”.【例1】设函数f (x )=ax 2-(x +1)ln x ,曲线y =f (x )在点(1,f (1))处切线的斜率为0. (1)求a 的值;(2)求证:当0<x ≤2时,f (x )>12x .【解】(1)f ′(x )=2ax -ln x -1-1x ,由题意,可得f ′(1)=2a -2=0,所以a =1.(2)证明:由(1)得f (x )=x 2-(x +1)ln x ,要证当0<x ≤2时,f (x )>12x ,只需证当0<x ≤2时,x -ln x x -ln x >12,即x -ln x >ln x x +12.令g (x )=x -ln x ,h (x )=ln x x +12,令g ′(x )=1-1x=0,得x =1,易知g (x )在(0,1)上单调递减,在(1,2]上单调递增,故当0<x ≤2时,g (x )min =g (1)=1.因为h ′(x )=1-ln xx 2,当0<x ≤2时,h ′(x )>0,所以h (x )在(0,2]上单调递增,故当0<x ≤2时,h (x )max =h (2)=1+ln 22<1,即h (x )max <g (x )min .故当0<x ≤2时,h (x )<g (x ),即当0<x ≤2时,f (x )>12x . 【例2】已知函数f (x )=eln x -ax (a ∈R ).(1)讨论f (x )的单调性;(2)当a =e 时,求证:xf (x )-e x +2e x ≤0. 【解析】(1)f ′(x )=ex-a (x >0),∈若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增;∈若a >0,令f ′(x )=0,得x =e a ,则当0<x <e a 时,f ′(x )>0;当x >ea时,f ′(x )<0,故f (x )在⎪⎭⎫ ⎝⎛a e ,0上单调递增,在⎪⎭⎫⎝⎛+∞,a e 上单调递减. (2)证明:因为x >0,所以只需证f (x )≤e xx-2e ,当a =e 时,由(1)知,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以f (x )max =f (1)=-e. 记g (x )=e xx -2e(x >0),则g ′(x )=(x -1)e x x 2,当0<x <1时,g ′(x )<0,g (x )单调递减;当x >1时,g ′(x )>0,g (x )单调递增,所以g (x )min =g (1)=-e. 综上,当x >0时,f (x )≤g (x ),即f (x )≤e xx-2e ,即xf (x )-e x +2e x ≤0.题型三 换元法构造函数证明不等式【题型要点】换元法构造函数证明不等式的基本思路是直接消掉参数a ,再结合所证问题,巧妙引入变量c =x 1x 2,从而构造相应的函数.其解题要点为:【例1】已知函数f (x )=ln x -12ax 2+x ,a ∈R .(1)当a =0时,求函数f (x )的图象在(1,f (1))处的切线方程;(2)若a =-2,正实数x 1,x 2满足f (x 1)+f (x 2)+x 1x 2=0,求证:x 1+x 2≥5-12. 【解】(1)当a =0时,f (x )=ln x +x ,则f (1)=1,所以切点(1,1),又因为f ′(x )=1x +1,所以切线斜率k =f ′(1)=2,故切线方程为y -1=2(x -1),即2x -y -1=0.(2)证明:当a =-2时,f (x )=ln x +x 2+x (x >0).由f (x 1)+f (x 2)+x 1x 2=0,得ln x 1+x 21+x 1+ln x 2+x 22+x 2+x 1x 2=0,从而(x 1+x 2)2+(x 1+x 2)=x 1x 2-ln(x 1x 2),令t =x 1x 2(t >0),令φ(t )=t -ln t ,得φ′(t )=1-1t =t -1t,易知φ(t )在区间(0,1)上单调递减,在区间(1,+∞)上单调递增,所以φ(t )≥φ(1)=1,所以(x 1+x 2)2+(x 1+x 2)≥1,因为x 1>0,x 2>0,所以x 1+x 2≥5-12成立. 题型四 两个经典不等式的应用【题型要点】逻辑推理是得到数学结论,构建数学体系的重要方式,是数学严谨性的基本保证.利用两个经典不等式解决其他问题,降低了思考问题的难度,优化了推理和运算过程. (1)对数形式:x ≥1+ln x (x >0),当且仅当x =1时,等号成立.(2)指数形式:e x ≥x +1(x ∈R ),当且仅当x =0时,等号成立.进一步可得到一组不等式链: e x >x +1>x >1+ln x (x >0,且x ≠1). 【例1】设函数f (x )=ln x -x +1.(1)讨论f (x )的单调性;(2)求证:当x ∈(1,+∞)时,1<x -1ln x <x .【解析】(1)由题设知,f (x )的定义域为(0,+∞), f ′(x )=1x-1,令f ′(x )=0,解得x =1.当0<x <1时,f ′(x )>0,f (x )在(0,1)上单调递增;当x >1时,f ′(x )<0,f (x )在(1,+∞)上单调递减.(2)证明:由(1)知f (x )在x =1处取得最大值,最大值为f (1)=0.所以当x ≠1时,ln x <x -1. 故当x ∈(1,+∞)时,ln x <x -1,x -1ln x >1.∈因此ln 1x <1x -1,即ln x >x -1x ,x -1ln x<x .∈故当x ∈(1,+∞)时恒有1<x -1ln x<x . 二、高效训练突破1.(2020·四省八校双教研联考)已知函数f (x )=ax -ax ln x -1(a ∈R ,a ≠0). (1)讨论函数f (x )的单调性; (2)当x >1时,求证:1x -1>1e x-1.【解析】:(1)f ′(x )=a -a (ln x +1)=-a ln x ,若a >0,则当x ∈(0,1)时,f ′(x )>0,当x ∈(1,+∞),f ′(x )<0,所以f (x )在(0,1)上单调递增,在(1,+∞)上单调递减;若a <0,则当x ∈(0,1)时,f ′(x )<0,当x ∈(1,+∞),f ′(x )>0,所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增.(2)证明:要证1x -1>1e x -1,即证x x -1>e -x ,即证x -1x <e x ,又由第(1)问令a =1知f (x )=x -x ln x -1在(1,+∞)上单调递减,f (1)=0, 所以当x >1时,x -x ln x -1<0,即x -1x <ln x ,则只需证当x >1时,ln x <e x 即可.令F (x )=e x -ln x, x >1,则F ′(x )=e x -1x 单调递增,所以F ′(x )>F ′(1)=e -1>0,所以F (x )在(1,+∞)上单调递增,所以F (x )>F (1),而F (1)=e ,所以e x -ln x >e>0, 所以e x >ln x ,所以e x >ln x >x -1x ,所以原不等式得证.2.(2020·唐山市摸底考试)设f (x )=2x ln x +1.(1)求f (x )的最小值;(2)证明:f (x )≤x 2-x +1x+2ln x .【解】 (1)f ′(x )=2(ln x +1).所以当x ∈⎪⎭⎫ ⎝⎛e 1,0时,f ′(x )<0,f (x )单调递减;当x ∈⎪⎭⎫ ⎝⎛+∞,1e 时,f ′(x )>0,f (x )单调递增.所以当x =1e 时,f (x )取得最小值⎪⎭⎫⎝⎛e f 1=1-2e .(2)证明:x 2-x +1x +2ln x -f (x )=x (x -1)-x -1x -2(x -1)ln x =(x -1)⎪⎭⎫⎝⎛--x x x ln 21,令g (x )=x -1x -2ln x ,则g ′(x )=1+1x 2-2x =(x -1)2x 2≥0,所以g (x )在(0,+∞)上单调递增,又g (1)=0,所以当0<x <1时,g (x )<0,当x >1时,g (x )>0,所以(x -1)⎪⎭⎫⎝⎛--x x x ln 21≥0,即f (x )≤x 2-x +1x +2ln x . 3.(2020·福州模拟)已知函数f (x )=eln x -ax (a ∈R ). (1)讨论f (x )的单调性;(2)当a =e 时,证明:xf (x )-e x +2e x ≤0. 【解】(1)f ′(x )=ex-a (x >0).∈若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增; ∈若a >0,则当0<x <e a 时,f ′(x )>0,当x >ea 时,f ′(x )<0,故f (x )在(0,e a )上单调递增,在(ea ,+∞)上单调递减.(2)证明:法一:因为x >0,所以只需证f (x )≤e xx-2e ,当a =e 时,由(1)知,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 所以f (x )max =f (1)=-e.记g (x )=e xx -2e(x >0),则g ′(x )=(x -1)e x x 2,所以当0<x <1时,g ′(x )<0,g (x )单调递减,当x >1时,g ′(x )>0,g (x )单调递增,所以g (x )min =g (1)=-e. 综上,当x >0时,f (x )≤g (x ),即f (x )≤e xx -2e ,即xf (x )-e x +2e x ≤0.法二:由题意知,即证e x ln x -e x 2-e x +2e x ≤0,从而等价于ln x -x +2≤e xe x.设函数g (x )=ln x -x +2,则g ′(x )=1x -1.所以当x ∈(0,1)时,g ′(x )>0,当x ∈(1,+∞)时,g ′(x )<0,故g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而g (x )在(0,+∞)上的最大值为g (1)=1. 设函数h (x )=e xe x ,则h ′(x )=e x (x -1)e x 2.所以当x ∈(0,1)时,h ′(x )<0,当x ∈(1,+∞)时,h ′(x )>0,故h (x )在(0,1)上单调递减,在(1,+∞)上单调递增,从而h (x )在(0,+∞)上的最小值为h (1)=1. 综上,当x >0时,g (x )≤h (x ),即xf (x )-e x +2e x ≤0. 4.(2019·高考北京卷节选)已知函数f (x )=14x 3-x 2+x .(1)求曲线y =f (x )的斜率为1的切线方程; (2)当x ∈[-2,4]时,求证:x -6≤f (x )≤x .【解析】:(1)由f (x )=14x 3-x 2+x 得f ′(x )=34x 2-2x +1.令f ′(x )=1,即34x 2-2x +1=1,得x =0或x =83.又f (0)=0,⎪⎭⎫ ⎝⎛38f =827,所以曲线y =f (x )的斜率为1的切线方程是y =x 与y -827=x -83, 即y =x 与y =x -6427.(2)证明:令g (x )=f (x )-x ,x ∈[-2,4].由g (x )=14x 3-x 2得g ′(x )=34x 2-2x .令g ′(x )=0得x =0或x =83.g ′(x ),g (x )的情况如下:故-6≤g (x )≤0,即x -6≤f (x )≤x .5.已知函数f (x )=ln x -ax (x >0),a 为常数,若函数f (x )有两个零点x 1,x 2(x 1≠x 2).求证:x 1x 2>e 2. 【证明】不妨设x 1>x 2>0,因为ln x 1-ax 1=0,ln x 2-ax 2=0,所以ln x 1+ln x 2=a (x 1+x 2),ln x 1-ln x 2=a (x 1-x 2),所以ln x 1-ln x 2x 1-x 2=a ,欲证x 1x 2>e 2,即证ln x 1+ln x 2>2.因为ln x 1+ln x 2=a (x 1+x 2),所以即证a >2x 1+x 2,所以原问题等价于证明ln x 1-ln x 2x 1-x 2>2x 1+x 2,即ln x 1x 2>2(x 1-x 2)x 1+x 2,令c =x 1x 2(c >1),则不等式变为ln c >2(c -1)c +1.令h (c )=ln c -2(c -1)c +1,c >1,所以h ′(c )=1c -4(c +1)2=(c -1)2c (c +1)2>0,所以h (c )在(1,+∞)上单调递增,所以h (c )>h (1)=ln 1-0=0,即ln c -2(c -1)c +1>0(c >1),因此原不等式x 1x 2>e 2得证.6.已知函数()()x a ax x x f 12ln 2+++=.(1)讨论()x f 的单调性;(2)当0<a 时,证明()243--≤ax f 【解析】(1)()x f 的定义域为(0,+∞),()()()xax x a ax x x f 1211221++=+++=' 当0≥a ,则当x ∈(0,+∞)时,()0>'x f ,故()x f 在(0,+∞)上单调递增.当0<a ,则当x ∈⎪⎭⎫ ⎝⎛-a 21,0时,f ′(x )>0;当x ∈⎪⎭⎫⎝⎛+∞-,21a 时,f ′(x )<0. 故()x f 在⎪⎭⎫ ⎝⎛-a 21,0上单调递增,在⎪⎭⎫⎝⎛+∞-,21a 上单调递减. (2)证明:由(1)知,当a <0时,f (x )在x =-12a取得最大值,最大值为⎪⎭⎫ ⎝⎛-a f 21=a a 41121ln --⎪⎭⎫⎝⎛-. 所以()243--≤a x f 等价于24341121ln --≤--⎪⎭⎫ ⎝⎛-a a a ,即012121ln ≤++⎪⎭⎫ ⎝⎛-aa . 设g (x )=ln x -x +1,则g ′(x )=1x -1.当x ∈(0,1)时,g ′(x )>0;当x ∈(1,+∞)时,g ′(x )<0.所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减.故当x =1时,g (x )取得最大值,最大值为g (1)=0.所以当x >0时,g (x )≤0.从而当a <0时,012121ln ≤++⎪⎭⎫ ⎝⎛-a a ,即()243--≤a x f . 7.已知函数f (x )=1x -x +a ln x .(1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f (x 1)-f (x 2)x 1-x 2<a -2.【解析】(1)f (x )的定义域为(0,+∞),f ′(x )=-1x 2-1+ax =-x 2-ax +1x 2.(∈)若a ≤2,则f ′(x )≤0,当且仅当a =2,x =1时f ′(x )=0,所以f (x )在(0,+∞)单调递减. (∈)若a >2,令f ′(x )=0得,x =a -a 2-42或x =a +a 2-42.当x ∈⎝ ⎛⎭⎪⎫0,a -a 2-42∈⎝ ⎛⎭⎪⎫a +a 2-42,+∞时,f ′(x )<0;当x ∈⎝⎛⎭⎪⎫a -a 2-42,a +a 2-42时,f ′(x )>0.所以f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增. (2)证明:由(1)知,f (x )存在两个极值点时,当且仅当a >2.由于f (x )的两个极值点x 1,x 2满足x 2-ax +1=0,所以x 1x 2=1,不妨设x 1<x 2,则x 2>1. 由于f (x 1)-f (x 2)x 1-x 2=-1x 1x 2-1+a ln x 1-ln x 2x 1-x 2=-2+a ln x 1-ln x 2x 1-x 2=-2+a -2ln x 21x 2-x 2,所以f (x 1)-f (x 2)x 1-x 2<a -2等价于1x 2-x 2+2ln x 2<0.设函数g (x )=1x -x +2ln x ,由(1)知,g (x )在(0,+∞)上单调递减,又g (1)=0,从而当x ∈(1,+∞)时g (x )<0.所以1x 2-x 2+2ln x 2<0,即f (x 1)-f (x 2)x 1-x 2<a -2.8.已知函数f (x )=e x ,g (x )=ln(x +a )+b .(1)当b =0时,f (x )-g (x )>0恒成立,求整数a 的最大值;(2)求证:ln 2+(ln 3-ln 2)2+(ln 4-ln 3)3+…+[ln(n +1)-ln n ]n <ee -1(n ∈N *).【解析】(1)现证明e x ≥x +1,设F (x )=e x -x -1,则F ′(x )=e x -1,当x ∈(0,+∞)时,F ′(x )>0,当x ∈(-∞,0)时,F ′(x )<0,所以F (x )在(0,+∞)上单调递增,在(-∞,0)上单调递减,所以F (x )min =F (0)=0,即F (x )≥0恒成立,即e x ≥x +1.同理可得ln(x +2)≤x +1,即e x >ln(x +2),当a ≤2时,ln(x +a )≤ln(x +2)<e x ,所以当a ≤2时,f (x )-g (x )>0恒成立. 当a ≥3时,e 0<ln a ,即e x -ln(x +a )>0不恒成立.故整数a 的最大值为2. (2)证明:由(1)知e x >ln(x +2),令x =-n +1n ,则e -n +1n >ln ⎝⎛⎭⎫-n +1n +2, 即e-n +1>ln ⎝⎛⎭⎫-n +1n +2n=[ln(n +1)-ln n ]n ,所以e 0+e -1+e -2 +…+e -n +1>ln 2+(ln 3-ln 2)2+(ln 4-ln 3)3+…+[ln(n +1)-ln n ]n ,又因为e 0+e -1+e -2+…+e -n +1=1-1e n 1-1e <11-1e=e e -1, 所以ln 2+(ln 3-ln 2)2+(ln 4-ln 3)3+…+[ln(n +1)-ln n ]n <e e -1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数与不等式的证明1.【2013湖南文科】已知函数f (x )=xe x21x 1+-. (Ⅰ)求f (x )的单调区间;(Ⅱ)证明:当f (x 1)=f (x 2)(x 1≠x 2)时,x 1+x 2<0.【解析】 (Ⅰ) .)123)12)1()1)11()('222222x x x xe x x e x x e x x f x x x ++--⋅=+⋅--+⋅-+-=(((;)(,0)(']0-02422单调递增时,,(当x f y x f x =>∞∈∴<⋅-=∆单调递减)时,,当)(,0)('0[x f y x f x =≤∞+∈.所以,)上单调递减,上单调递增;在,在(∞+∈∞=0[]0-)(x x f y 。
(Ⅱ)由(Ⅰ)知,只需要证明:当x>0时f(x) < f(-x)即可。
]1)1[(11111)()(2222x e x xe e x x e x x xf x f x xx x ---+=++-+-=----。
1)21()('0,1)1()(22--=⇒>---=x x e x x g x x e x x g 令。
,04)21()('1)21()(222<-=-=⇒--=x x x xe e x x h e x x h 令0)0()(0)(=<⇒∞+=⇒h x h x h y )上单调递减,在( 0)0()(0)(=<⇒∞+=⇒g x g x g y )上单调递减,在(.000]1)1[(122==∞+---+=⇒-y x x e x xe y x x时)上单调递减,但,在( )()(0)()(x f x f x f x f -<⇒<--⇒.0)()(212121<+≠=x x x x x f x f 时,且所以,当(证毕)2.【2013天津理科】已知函数.(Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使.(Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为, 证明: 当时, 有. (1)函数f (x )的定义域为(0,+∞).f ′(x )=2x ln x +x =x (2ln x +1),令f ′(x )=0,得x = 当x 变化时,f ′(x ),f (x )的变化情况如下表:2l ()n f x x x =()t f s =()s g t =2>e t 2ln ()15ln 2g t t <<-+所以函数f(x)的单调递减区间是⎛⎝,单调递增区间是⎫+∞⎪⎭.(2)证明:当0<x≤1时,f(x)≤0.设t>0,令h(x)=f(x)-t,x∈[1,+∞).由(1)知,h(x)在区间(1,+∞)内单调递增.h(1)=-t<0,h(e t)=e2t ln e t-t=t(e2t-1)>0.故存在唯一的s∈(1,+∞),使得t=f(s)成立.(3)证明:因为s=g(t),由(2)知,t=f(s),且s>1,从而2ln()ln ln lnln ln()ln(ln)2ln ln(ln)2lng t s s s ut f s s s s s u u====++,其中u=ln s.要使2ln()15ln2g tt<<成立,只需0ln2uu<<.当t>e2时,若s=g(t)≤e,则由f(s)的单调性,有t=f(s)≤f(e)=e2,矛盾.所以s>e,即u>1,从而ln u>0成立.另一方面,令F(u)=ln2uu-,u>1.F′(u)=112u-,令F′(u)=0,得u=2.当1<u<2时,F′(u)>0;当u>2时,F′(u)<0.故对u>1,F(u)≤F(2)<0.因此ln2uu<成立.综上,当t>e2时,有2ln()15ln2g tt<<.3【2013天津文科】设[2,0]a∈-, 已知函数332(5),03,0(,).2xfa x xax x x xxa-+≤+-+>⎧⎪=⎨⎪⎩(Ⅰ) 证明()f x在区间(-1,1)内单调递减, 在区间(1, + ∞)内单调递增;(Ⅱ) 设曲线()y f x=在点(,())(1,2,3)i i ix f x iP=处的切线相互平行, 且1230,x xx≠证明12313xx x++>.(1)设函数f1(x)=x3-(a+5)x(x≤0),f2(x)=3232ax x ax+-+(x≥0),①f1′(x)=3x2-(a+5),由a∈[-2,0],从而当-1<x<0时,f1′(x)=3x2-(a+5)<3-a-5≤0,所以函数f1(x)在区间(-1,0]内单调递减.②f2′(x)=3x2-(a+3)x+a=(3x-a)(x-1),由于a∈[-2,0],所以当0<x<1时,f2′(x)<0;当x>1时,f2′(x)>0.即函数f2(x)在区间[0,1)内单调递减,在区间(1,+∞)内单调递增.综合①,②及f1(0)=f2(0),可知函数f(x)在区间(-1,1)内单调递减,在区间(1,+∞)内单调递增.(2)由(1)知f ′(x )在区间(-∞,0)内单调递减,在区间306a +⎛⎫⎪⎝⎭,内单调递减,在区间36a +⎛⎫+∞ ⎪⎝⎭,内单调递增. 因为曲线y =f (x )在点P i (x i ,f (x i ))(i =1,2,3)处的切线相互平行,从而x 1,x 2,x 3互不相等,且f ′(x 1)=f ′(x 2)=f ′(x 3).不妨设x 1<0<x 2<x 3,由213x -(a +5)=223x -(a +3)x 2+a =233x -(a +3)x 3+a ,可得222333x x --(a +3)(x 2-x 3)=0,解得x 2+x 3=33a +,从而0<x 2<36a +<x 3. 设g (x )=3x 2-(a +3)x +a ,则36a g +⎛⎫⎪⎝⎭<g (x 2)<g (0)=a . 由213x -(a +5)=g (x 2)<a,解得<x 1<0,所以x 1+x 2+x 3>33a +, 设ta =2352t -,因为a ∈[-2,0],所以t∈⎣⎦, 故x 1+x 2+x 3>2231111(1)6233t t t +-+=--≥-,即x 1+x 2+x 3>13-.4【2014天津理科】已知函数x f x xae a R ,x R .已知函数y f x 有两个零点12,x x ,且12x x .(Ⅰ)求a 的取值范围; (Ⅰ)证明21x x 随着a 的减小而增大; (Ⅰ)证明12x x 随着a 的减小而增大.(Ⅰ)解:由x f x xae ,可得1x f x ae .下面分两种情况讨论: (1)0a时0f x在R 上恒成立,可得f x 在R 上单调递增,不合题意.(2)0a 时, 由0fx,得ln xa .当x 变化时,fx ,f x 的变化情况如下表:xln 1a这时,f x 的单调递增区间是,ln a ;单调递减区间是ln ,a .于是,“函数y f x 有两个零点”等价于如下条件同时成立: 1°ln 0fa ;2°存在1,ln a s ,满足10f s ;3°存在2ln ,a s ,满足20f s .由ln 0fa ,即ln 10a ,解得10ae ,而此时,取10s ,满足1,ln a s ,且10f s a;取222ln s a a,满足2ln ,a s ,且22222ln 0aaf s eeaa.所以,a 的取值范围是10,e.(Ⅰ)证明:由0xf x xae ,有x x ae. 设xxg xe ,由1xxg x e ,知g x 在,1上单调递增,在1,上单调递减. 并且,当,0x 时,0g x ;当0,x 时,0g x .由已知,12,x x 满足1ag x ,2ag x . 由10,ae,及g x 的单调性,可得10,1x ,21,x .对于任意的1120,,a a e,设12a a ,121g ga ,其中1201;122gga ,其中121.因为g x 在0,1上单调递增,故由12a a ,即11gg,可得11;类似可得22.又由11,0,得222111.所以,21x x 随着a 的减小而增大. (Ⅲ)证明:由11x x ae ,22x x ae ,可得11ln ln x ax ,22ln ln x ax .故221211ln ln ln x x x x x x . 设21x t x ,则1t,且2121,ln ,x tx x x t 解得1ln 1tx t ,2ln 1t tx t .所以, 121ln 1t t x x t . ①令1ln 1xx h xx ,1,x,则212ln 1xxx h xx .令12ln u x x xx ,得21x u x x. 当1,x时,0u x .因此,u x 在1,上单调递增,故对于任意的1,x ,10u xu ,由此可得0h x,故h x 在1,上单调递增.因此,由①可得12x x 随着t 的增大而增大.而由(Ⅰ),t 随着a 的减小而增大,所以12x x 随着a 的减小而增大。