巴特沃斯低通滤波器的设计方法

合集下载

二阶巴特沃斯滤波器电路设计

二阶巴特沃斯滤波器电路设计

二阶巴特沃斯滤波器电路设计
二阶巴特沃斯滤波器可以通过使用电容器和电感器来实现。

下面是一个常见的二阶巴特沃斯低通滤波器的电路设计:
1. 选择合适的电容和电感。

根据要求的截止频率和阻带衰减率选择合适的电容和电感。

截止频率是滤波器开始衰减的频率,阻带衰减率是滤波器在截止频率之上的衰减量。

2. 设计RC网络。

使用一个电阻和一个电容构建一个RC网络。

这个网络是滤
波器的一部分,用于控制截止频率。

3. 设计RL网络。

使用一个电阻和一个电感构建一个RL网络。

这个网络也是
滤波器的一部分,用于增加滤波器的阻带衰减率。

4. 连接RC和RL网络。

将RC网络和RL网络连接起来,形成一个二阶巴特沃斯低
通滤波器。

5. 使用操作放大器。

如果需要,可以使用操作放大器来增强滤波器的增益和带宽。

6. 测试及调整。

连接信号源和输出设备,对滤波器进行测试,并根据需要调
整电路参数。

需要注意的是,这只是一个基本的二阶巴特沃斯滤波器电路设计步骤的概述。

具体的设计取决于所需的截止频率、阻带衰减率和其他特定需求。

【完整版毕业论文】巴特沃斯有源低通滤波器的设计

【完整版毕业论文】巴特沃斯有源低通滤波器的设计

巴特沃斯有源低通滤波器的设计摘要随着社会科学技术的飞速发展,各种科技产品在人类社会中随处可见,极大的丰富了人们的日常生活。

物联设备、可穿戴设备以及虚拟仪器产品在各种应用和消费场合变得极为普遍。

就目前而言,在几乎所有的电子产品中,各种增益、带宽以及高性能的滤波器都发挥着至关重要的作用,例如可穿戴设备的语音信号输入系统中,运用高性能的低通滤波器进行语音信号的降噪、滤波、回声消除,来提高系统的音质和语音识别精准度等。

本论文通过对各种低通滤波器的通频带、增益和截止频率的分析,采用通频带最大扁平度技术(巴特沃斯技术)来设计实现四阶高性能低通滤波器,通过Multisum仿真软件,验证了设计的正确性。

在这基础上,本文还对如何提高该滤波器的响应速度进行了研究,提出了一种有效的提高响应速度的方案,并通过仿真软件得以验证。

这在低通滤波器的理论以及实际工程应用中,都具有非常重要的意义。

关键词:有源低通滤波器,巴特沃斯,运算放大器Design of Butterworth Active Low Pass FilterABSTRACTWith the rapid development of social science and technology, various technological products can be seen everywhere in human society, which greatly enriches people's daily lives. IoT devices, wearable devices, and virtual instrument products have become extremely common in various applications and consumer occasions. For now, in almost all electronic products, various gains, bandwidths, and high-performance filters play a vital role. For example, in the voice signal input system of wearable devices, the use of high-performance low-pass The filter performs noise reduction, filtering, and echo cancellation of the speech signal to improve the sound quality of the system and the accuracy of speech recognition.In this paper, through the analysis of the passband, gain and cutoff frequency of various low-pass filters, the maximum flatness of the passband technology (Butterworth technology) is used to design and implement a fourth-order high-performance low-pass filter, through Multisum simulation software To verify the correctness of the design. On this basis, this paper also studies how to improve the response speed of the filter, and puts forward an effective scheme to improve the response speed, which is verified by simulation software. This is of great significance in the theory of low-pass filters and in practical engineering applications.KEYWORDS:active low-pass filter,butterworth,amplifier1绪论1.1 引言在近现代的科技发展中,滤波器作为一种必不可少的组成成分,在仪器仪表、智能控制、计算机科学、通信技术、电子应用技术和现代信号处理等领域有着十分重要的作用。

巴特沃斯低通滤波器法

巴特沃斯低通滤波器法

巴特沃斯低通滤波器法
巴特沃斯低通滤波器是一种常用的频率域滤波器,用于将高频信号从输入信号中滤除。

它是基于巴特沃斯函数设计的,具有平坦的幅频响应和最小的相位延迟。

巴特沃斯低通滤波器的设计方法如下:
1. 确定滤波器的通带截止频率和阻带截止频率。

通带是指允许信号通过的频率范围,阻带是指需要被滤除的频率范围。

2. 根据所需的通带和阻带性能,选择滤波器的阶数。

阶数越高,滤波器性能越好,但计算复杂度也越高。

3. 根据选择的通带和阻带截止频率,使用巴特沃斯低通滤波器的设计公式计算滤波器的系数。

4. 将计算得到的滤波器系数应用于输入信号进行滤波操作。

巴特沃斯低通滤波器的设计公式和计算方法是比较复杂的,一般需要使用专门的滤波器设计软件或者数学计算工具进行计算。

设计得到的滤波器可以通过软件实现,或者通过硬件电路进行实现。

LC低通滤波器设计(巴特沃斯低通滤波器归一化)讲解

LC低通滤波器设计(巴特沃斯低通滤波器归一化)讲解

C1 1.84776F C2 0.76537F
1NEW

0.76537 K 0.76537 4 12.29μH 5 M 2.512 10
L2NEW
1.84776 K 1.84776 4 29.42μH 5 M 2.512 10
待设计LPF的电容参数为 :
(1 2 )Hz
特征阻抗变换K 4 4 1 四阶Butterworth低通滤波器的电感电容参 数
2018/10/24
只因准备不足,才导致失败
7
四阶Butterworth低通滤波器的归一化LPF基 准滤波器的参数,设 L1 0.76537H L2 1.84776H 得:L
1.84776 1.84776 C1NEW 1.84 μF 5 M K 4 2.512 10 0.76537 0.76537 C2NEW 0.76μF 5 M K 4 2.512 10
2018/10/24 只因准备不足,才导致失败 8
电感采用无损磁芯及细包漆线绕制而成,其 电感值可用数字电桥测量仪器测量得到。
2018/10/24
只因准备不足,才导致失败
1
对滤波器截止角频率的变换是通过先求出待 设计滤波器截止角频率与基准角频率的比值 M,再用这个M去除滤波器中的所有元件值 来计算所需参数,其计算公式如下:
待设计滤波器的截止频 率 M 基准滤波器的截止频率
C (base) Cm(new) M
2018/10/24
5. 低通滤波器设计
1)归一化LPF设计方法 归一化低通滤波器设计数据,指的是特征阻 1 抗为 1 且截止频率为 0.159Hz 的基准 低通滤波器的数据。 2 在设计巴特沃思型的归一化LPF的情况下, 以巴特沃思的归一化LPF设计数据为基准滤 波器,将它的截止频率和特征阻抗变换为待 设计滤波器的相应值。

巴特沃斯低通滤波器课程设计

巴特沃斯低通滤波器课程设计

电路基础课程设计巴特沃斯低通滤波器设计目标:通带边界频率ωc=4396rad/s (f c=700Hz);通带最大衰减αmax=3dB;阻带边界频率ωs=26376rad/s(f s=4200Hz); 阻带最小衰减αmin=30dB;1.设计步骤⑴设计电压转移函数①将给定的电压衰减技术指标进行频率归一化选取归一化角频率ωr=ωc,这样通带边界频率Ωc=ωc/ ωr=1,阻带边界频率Ωs=ωs/ ωr=ωs/ωc。

②根据归一化的技术指标求出电压转移函数巴特沃斯低通滤波器的阶数n=Log(100.1αmin−1) 2Log(Ωs)带入数据求得n=1.93 取整得n=2由a k=2sin(2k−1)π2n,b k=1和H(s)=U out(s)U in(s)=∏A ks2+a k s+b kn2k=1可得到电压转移函数H(s)=U out(s)U in(s)=1s2+√2s+1将转移函数进行反归一化,即另s=sωc 得到实际转移函数H(s)=U out(s)U in(s)=1s243962+√2s4396+1⑵转移函数的实现选取下图作为实现转移函数的具体电路:列节点方程求解转移函数节点1 U1(1R1+1R2+s∗C1)−1R1U in−1R2−s∗C1∗U2=0节点2 (1R2+s∗C2)U2−1R2U1=0又有U out=U3解得H(s)=U outU in=11+(R2+R2)s∗C2+C1C2R1R2s2对比解得的电压转移函数和推得的电压转移函数里各项的系数并且令R1= R2,C1=1μF,可以得到C1=11000000F=1μFR1=250000√21099Ω=321.705ΩR2=250000√21099Ω==321.705ΩC2=12000000F=0.5μF因实验室没有0.5μF的电容因此取C2=0.47μF2.计算机仿真⑴软件环境:Multisim 10⑵电路图:⑶仿真结果:①700Hz下的波形图②4200Hz下的波形图③波特图◎700Hz下衰减2.673dB◎4200Hz下衰减30.491dB3.实验室实际操作因实验室没有0.5μF的电容和321.705Ω的电阻,因此取C2=0.47μFR1=R2=330Ω实际连电路时,选取集成电路块的第1、2、3引脚分别作为放大器的输出端、负端和正端,第4和11引脚作为供电端,C2一端连接电压源的接地线。

设计一个巴特沃斯模拟低通滤波器

设计一个巴特沃斯模拟低通滤波器

1. 设计一个巴特沃斯模拟低通滤波器,要求通带截止频率为Hz f p 25=,通带最大衰减dB a p 3=,阻带起始频率Hz f s 50=,阻带最小衰减dB a s 25=。

解:根据已知条件确定巴特沃斯低通滤波器的阶数N :053.01010202520===--sa s δ()()2355.46021.05502.22lg 21053.01lg lg211lg 22==⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-≥p s s ΩΩδN取N =5。

低通滤波器3dB 截止频率为)/(157502s rad πf πΩΩp p c ====则五阶巴特沃斯滤波器的传输函数为:1021.010719.110095.110326.510048.111236.3236.4236.4236.31)(2436495112345++⨯+⨯+⨯+⨯=+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=----s s s s s Ωs Ωs Ωs Ωs Ωs s H c c c c c2. 设计一个切比雪夫模拟低通滤波器,要求通带截止频率为kHz f p 3=,通带最大衰减dB a p 2.0=,阻带起始频率kHz f s 12=,阻带最小衰减dB a s 50=。

解:由()2.01lg 20-=-p δ,求得9772.0101202.0==--p δ。

则2171.019772.011)1(122=-=--=p δε 由50lg 20-=s δ,求得0032.0102050==-s δ,则23.31610032.011122=-=-=s δδ 所需滤波器的阶数为:()()()()8604.30634.29770.7312arccos 2171.0/23.316arccos arccos arccos ===≥h h ΩΩh εδh N p s取N =4。

则该模拟低通滤波器的幅度表示为:⎪⎭⎫ ⎝⎛⨯⨯+=⎪⎪⎭⎫⎝⎛+=32422210322171.01111)(πΩC ΩΩC εΩj H pNa归一化的系统函数表示为:∏∏==--=-⋅=Nk k Nk k N a p p p p εp H 111)(7368.11)(21)(其中极点k p 为:0715.14438.01j p +-=,4438.00715.12j p +-=,4438.00715.13j p --=,0715.14438.01j p --=将)(p H a 去归一化,求得实际滤波器的系统函数)(s H a()()()8428426414107790.4100394.4107791.4106731.1102687.77368.1)()(⨯+⨯+⨯+⨯+⨯=-==∏==s s s s p Ωs Ωp H s H k k p pΩsp a a p3. 设计一个巴特沃斯模拟高通滤波器,要求通带截止频率为kHz f p 20=,通带最大衰减dB a p 3=,阻带起始频率kHz f s 10=,阻带最小衰减dB a s 15=。

数字信号处理巴特沃斯滤波器设计

数字信号处理巴特沃斯滤波器设计

数字信号处理巴特沃斯滤波器设计数字信号处理在当今科技领域中扮演着至关重要的角色,滤波器作为数字信号处理领域中的重要组成部分,广泛应用于信号去噪、信号增强、信号分析等方面。

巴特沃斯滤波器作为数字信号处理领域中的一种重要类型,具有平滑的频率响应曲线和较陡的截止特性,被广泛应用于语音处理、图像处理、生物医学信号处理等领域。

本文将介绍数字信号处理中巴特沃斯滤波器的设计原理和方法。

在数字信号处理中,滤波器是一种通过对信号进行处理来实现滤除或增强某些频率成分的系统。

巴特沃斯滤波器是一种典型的低通滤波器,其特点是在通频带范围内频率响应平坦,截止频率处有较 steependifferentiation,可有效滤除非所需频率信号。

要设计一个巴特沃斯滤波器,首先需要确定滤波器的截止频率和阶数。

巴特沃斯滤波器的阶数决定了滤波器的频率选择性能,在实际应用中可根据信号处理的要求进行选择。

一般来说,阶数越高,滤波器的截止特性越陡,但相应的频率选择性能也会增强。

确定好阶数后,接下来需要进行巴特沃斯滤波器的参数计算,包括极点位置和幅频特性。

根据巴特沃斯滤波器的传递函数形式,可以通过公式计算各个极点的位置,并绘制出滤波器的幅频特性曲线。

设计完巴特沃斯滤波器的参数后,接下来是实现滤波器的数字化。

数字巴特沃斯滤波器一般通过模拟滤波器的模拟频率响应和数字频率响应之间的变换来实现。

常用的数字化方法包括脉冲响应不变法和双线性变换法,通过这些方法可以将模拟滤波器的参数转换为数字滤波器的参数,实现数字滤波器的设计。

在实际应用中,巴特沃斯滤波器的设计需要根据具体的信号处理要求和系统性能来选择合适的截止频率和阶数,确保滤波器设计的稳定性和性能。

同时,在设计过程中需要考虑到滤波器的实现复杂性和计算成本,选择合适的设计方法和参数计算技术,以实现滤波器设计的有效性和可靠性。

综上所述,巴特沃斯滤波器作为数字信号处理领域中的重要组成部分,在信号处理、通信系统、生物医学等领域中有着广泛的应用前景。

一阶归一化数字巴特沃斯低通滤波器

一阶归一化数字巴特沃斯低通滤波器

一阶归一化数字巴特沃斯低通滤波器数字巴特沃斯滤波器是一种常用的数字信号处理滤波器,可用于滤波和去噪等应用。

本文将介绍一阶归一化数字巴特沃斯低通滤波器的原理和设计方法。

1.原理概述一阶归一化数字巴特沃斯低通滤波器是一种理想滤波器。

其设计目标是实现信号在截止频率以下的完美衰减,而在截止频率以上则不进行滤波。

该滤波器的频率响应特点可用模拟巴特沃斯低通滤波器的频率响应特点进行近似。

2.设计步骤实现一阶归一化数字巴特沃斯低通滤波器的设计,可以按照以下步骤进行:步骤一:确定截止频率根据滤波器的应用需求,选择合适的截止频率。

截止频率是指滤波器开始滤波的频率点,一般以赫兹为单位。

步骤二:计算模拟巴特沃斯低通滤波器的阶数根据所选截止频率,使用模拟巴特沃斯低通滤波器的阶数公式计算阶数。

对于一阶滤波器,阶数为1。

步骤三:计算截止频率对应的模拟巴特沃斯低通滤波器的增益根据所选截止频率,使用模拟巴特沃斯低通滤波器的增益公式计算增益。

对于一阶滤波器,增益为-3dB。

步骤四:进行归一化在设计数字巴特沃斯滤波器时,需要对模拟滤波器进行归一化。

归一化处理可将截止频率与折返频率映射到数字滤波器的单位圆上。

步骤五:数值实现根据归一化的模拟滤波器参数,使用双线性变换将其转换为数字滤波器的差分方程。

假设我们需要设计一个一阶归一化数字巴特沃斯低通滤波器,截止频率选取为1kHz。

根据步骤一,确定截止频率为1kHz。

根据步骤二,计算阶数为1。

根据步骤三,计算增益为-3dB。

在步骤四中,进行归一化处理,将1kHz映射到单位圆上。

最后,在步骤五中,根据归一化的模拟滤波器参数,使用双线性变换转换为数字滤波器的差分方程。

本文介绍了一阶归一化数字巴特沃斯低通滤波器的原理和设计方法。

通过明确的设计步骤,我们可以根据所需的截止频率实现滤波器设计。

在应用中,可以根据实际需求调整截止频率和滤波器的阶数,以获得更好的滤波效果。

Butterworth (巴特沃斯)滤波器设计参考

Butterworth (巴特沃斯)滤波器设计参考
采样频率 fs, -3dB 频率点 fc
高通滤波器:
1 z 1 s C1 , 1 1 z
C1 c tan
c
2
,
c 1
(Note: 参考 陈佩青《数字信号处理教程》第二版 291 页 表 6-8)
2
其他带通、带阻滤波器频率变换式参考表 6-8 (下图)
3
参考设计: 1. 1 阶 Butterworth LPF 设计
频响如下
8
Butterworth 1~2 阶 LPF & HPF Filter Coefficients 以及制作成 Excel 表格分享在: /s/1hqw2mby 可以下载使用,选择对应的类型,设定相应的 fs & fc 就能自动计算出 Filter Coefficients。
(Note: 参考 陈佩青《数字信号处理教程》第二版 266 页 表 6-4)
上面的表达式是 s 域的表达式,下面是变化到 z 域的方法。
低通滤波器:
1 1 z 1 s C 1 1 z 1 C 1 c tan c 2 c 1, c 2 f c / f s
Butterworth (巴特沃斯)滤波器设计参考
-- By Water 在嵌入式音频产品开发过程中经常会到 LPF(Low Pass Filter 低通滤波器)和 HPF(High Pass Filter 高通滤 波器),一般情况下都是离线用工具(如: Matlab)设计好滤波器的参数(Filter Coefficients)再应用到产品中 去。但有些状况下需要用户自己根据需求来实时(Real-time)调整 Filter Frequency Response (滤波器频率响应), 这种情形下就需要在嵌入式系统中实时根据客户的设定需求来产生相应的 Filter Coefficients。 下文就汇总出了 N 阶 IIR LPF & HPF Butterworth 滤波器系数的设计方法, 具体的算法原理推导可以参考陈佩 青《数字信号处理教程》一书,此处只给出工程上可以应用的结论。

浅谈五阶巴特沃斯低高通滤波器归一化设计方法

浅谈五阶巴特沃斯低高通滤波器归一化设计方法

浅谈五阶巴特沃斯低高通滤波器归一化设计方法
注:滤波器由滤波节构成,一个滤波器可能只有一个滤波节,也可以由多个滤波节构成。

以下示例为10Hz~500Hz的带通滤波器(由一个五阶巴特沃斯低通滤波器和一个五阶巴特沃斯高通滤波器构成)。

1.五阶巴特沃斯低通滤波器
1-1.二阶低通滤波器结构
二阶传递函数为:T s2=1
c1c2s2+2c2+1
1-2.三阶低通滤波器结构
传递函数为:1
c1c2c3s3+2c2(c1+c2)s2+(c2+3c3)s+1
1-3.5阶=3阶+2阶
1-5.计算步骤
1).归一化电阻(例如:将电阻归一为Z=47kΩ)
2).计算初始值FSF=2*π*R*f c(注:此处的R为归一化的电阻,可取47K、50K等)
3).c
1=1.753
FSF , C
2=1.354
FSF
…..
2.五阶巴特沃斯高通滤波器(依据低通归一化参数算高通)
2-1. 二阶高通滤波器结构
2-2. 三阶高通滤波器结构
2-3. 5阶=3阶+2阶
2-4. 计算步骤
1).对5阶归一化参数值求倒数,得到新的参数
2).计算初始值FSF=2*π*C*f c(注:此处的C为归一化的电容,可取0.1uF、1uF等) 3).R1=0.5705/FSF, R2=0.7386/FSF, ……。

巴特沃斯低通滤波电路设计

巴特沃斯低通滤波电路设计

巴特沃斯低通滤波电路设计:
巴特沃斯低通滤波电路的设计主要包括以下几个步骤:
1.确定系统函数的极点:巴特沃斯滤波器的极点位于Z平面的单位圆上,因此可以通
过选取适当的滤波器阶数和电气参数,使得滤波器的极点位于单位圆上。

2.设计传递函数:根据滤波器的性能要求,如通带增益、阻带增益、过渡带宽度等,
设计出传递函数。

巴特沃斯滤波器的传递函数具有固定的形式,可以通过选取电气参数来调整其性能。

3.实现电路结构:将设计好的传递函数转换为实际电路结构。

根据不同的电路形式,
可以选择不同的电路元件和结构,如运算放大器、RC电路等。

4.参数调整:对电路中的元件参数进行适当调整,以保证滤波器的性能符合设计要求。

参数调整是滤波器设计中非常关键的一步,需要通过实验和仿真反复验证和调整。

5.测试和验证:对设计好的滤波器进行测试和验证,包括频率响应、相位响应、群延
迟等性能指标的测试。

如果测试结果不符合设计要求,需要对电路或参数进行调整。

八阶巴特沃斯低通滤波器的设计方法

八阶巴特沃斯低通滤波器的设计方法

八阶巴特沃斯低通滤波器的设计方法设计八阶巴特沃斯低通滤波器可以通过以下步骤进行:
1. 确定滤波器的规格:首先确定滤波器的截止频率和通带衰减。

截止频率是指滤波器开始降低信号幅度的频率,通带衰减是指滤波器在通带内允许的最大幅度变化。

2. 计算极点位置:使用巴特沃斯滤波器的公式可以计算出滤波器极点的位置。

对于八阶低通滤波器,共有四对共轭极点。

这些极点会决定滤波器的频率响应。

3. 进行归一化:对于滤波器的极点位置,需要对其进行归一化处理,将其转换为标准低通滤波器的情况。

4. 进行极点频率转换:通过将归一化后的极点位置转换为实际的截止频率,即可得到实际滤波器的极点位置。

5. 构造传递函数:使用极点位置构造滤波器的传递函数,可以表示为巴特沃斯多项式的形式。

6. 计算滤波器系数:通过将传递函数展开并与标准低通滤波器的传递函数进行比较,可以计算滤波器的系数。

7. 实施滤波器:将计算得到的滤波器系数应用于数字滤波器的差分方程中,从而实现滤波器的效果。

需要注意的是,设计巴特沃斯滤波器需要一定的信号处理和滤波器设计知识。

如果不熟悉滤波器设计或数字信号处理的相关概念,建议咨询专业的工程师或使用现成的滤波器设计软件来完成滤波器设计任务。

DSP试验4巴特沃斯滤波器的设计与实现精

DSP试验4巴特沃斯滤波器的设计与实现精

实验四巴特沃斯数字滤波器的设计与实现1.数字滤波器的设计参数滤波器的4个重要的通带、阻带参数为:f p:通带截止频率(Hz)f s:阻带起始频率(Hz)R p :通带内波动(dB),即通带内所允许的最大衰减;R s:阻带内最小衰减设采样速率(即奈奎斯特速率)为f N,将上述参数中的频率参数转化为归一化角频率参数:-■ p :通带截止角频率(rad/s),- f p/(f N /2);''s:阻带起始角频率(rad/s),(二f s/( f N/2)通过以上参数就可以进行离散滤波器的设计。

低通滤波器情况:采样频率为8000Hz,要求通带截止频率为1500Hz,阻带起始频率为2000Hz,通带内波动3dB,阻带内最小衰减为50dB,则■ p=1500/4000,- s=2000/4000,R p=3dB,R s=50dB。

高通滤波器情况:采样频率为8000Hz,要求通带截止频率为1500Hz,阻带起始频率为1000Hz,通带内波动3dB,阻带内最小衰减为65dB,则■ p=1500/4000,- s=1000/4000,R p=3dB,R s=65dB。

带通滤波器情况:采样频率为8000Hz,要求通带截止频率为[800Hz,1500Hz],阻带起始频率为[500Hz ,1800Hz],通带内波动3dB,阻带内最小衰减为45dB ,则灼p=[800/4000,1500/4000],■ s=[500/4000,1800/4000],R p=3dB,R s=45dB。

带阻滤波器情况:采样频率为8000Hz,要求通带截止频率为[800Hz,1500Hz],阻带起始频率为[1000Hz,1300Hz],通带内波动3dB,阻带内最小衰减为55dB,则■ p=[800/4000,1500/4000],■ s=[1000/4000,1300/4000],R p=3dB,R s=45dB。

2.巴特沃斯滤波器设计1)巴特沃斯滤波器阶数的选择:在已知设计参数■-p,'s, R p, R s之后,可利用“ buttord”命令可求出所需要的滤波器的阶数和3dB截止频率,其格式为:[n , Wn]=buttord[Wp , Ws, Rp, Rs],其中Wp, Ws, Rp, Rs 分别为通带截止频率、阻带起始频率、通带内波动、阻带内最小衰减。

巴特沃斯低通滤波器公式 巴特沃斯低通滤波器设计原理

巴特沃斯低通滤波器公式 巴特沃斯低通滤波器设计原理

巴特沃斯低通滤波器公式巴特沃斯低通滤波器设计原理
巴特沃斯低通滤波器可用如下振幅的平方对频率的公式表示:其中, = 滤波器的阶数= 截止频率= 振幅下降为-3分贝时的频率=通频带边缘频率在通频带边缘的数值。

关于“巴特沃斯低通滤波器公式巴特沃斯低通滤波器设计原理”的详细说明。

1.巴特沃斯低通滤波器公式
巴特沃斯低通滤波器可用如下振幅的平方对频率的公式表示:
其中, = 滤波器的阶数= 截止频率= 振幅下降为-3分贝时的频率=通频带边缘频率在通频带边缘的数值。

2.巴特沃斯低通滤波器设计原理
巴特沃斯型低通滤波器在现代设计方法设计的滤波器中,是最为有名的滤波器,由于它设计简单,性能方面又没有明显的缺点,又因它对构成滤波器的元件Q值较低,因而易于制作且达到设计性能,因而得到了广泛应用。

其中,巴特沃斯滤波器的特点是通频带的频率响应曲线最平滑。

滤波器的截止频率的变换是通过先求出待设计滤波器的截止频率与基准滤波器的截止频率的比值M,再用这个M去除滤波器中的所有元件值来实现的,其计算公式如下:M=待设计滤波器的截止频率/基准滤波器的截止频率。

滤波器的特征阻抗的变换是通过先求出待设计滤波器的特征阻抗与基准滤波器的特征阻抗的比值K,再用这个K去乘基准滤波器中的所有电感元件值和用这个K去除基准滤波器中的
所有电容元件值来实现的。

滤波器设计中的巴特沃斯滤波器

滤波器设计中的巴特沃斯滤波器

滤波器设计中的巴特沃斯滤波器滤波器在信号处理和电子通信中扮演着至关重要的角色,能够去除原始信号中的噪声或者限制信号在感兴趣频率范围内。

在滤波器的设计中,巴特沃斯滤波器是一种常用的滤波器类型,其具有平坦的幅频响应和极窄的过渡带宽。

本文将介绍巴特沃斯滤波器的原理和设计方法。

一、巴特沃斯滤波器的原理巴特沃斯滤波器基于巴特沃斯多项式来实现滤波功能。

巴特沃斯多项式的特点是它在通带内具有最平坦的幅频响应,即没有波纹或峰谷,而在过渡带和阻带中有最陡峭的衰减。

这使得巴特沃斯滤波器在高通和低通滤波器应用中非常有用。

巴特沃斯滤波器的频率响应函数可以通过以下公式表示:H(s) = 1 / (1 + (s/wc)^2N)^0.5其中,H(s)为频率响应函数,s为复变量,wc为截止频率,N为滤波器的阶数。

通过调整截止频率和阶数,可以实现不同类型的巴特沃斯滤波器,如低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

二、巴特沃斯滤波器的设计方法巴特沃斯滤波器的设计过程可以通过以下步骤进行:1. 确定滤波器类型:根据实际需求确定滤波器的类型,例如低通滤波器或高通滤波器。

2. 确定滤波器的通带和阻带范围:根据信号的频率范围确定滤波器的通带和阻带范围。

通带是信号允许通过的频率范围,而阻带是信号被抑制的频率范围。

3. 确定滤波器的截止频率:根据滤波器类型和信号需求,确定滤波器的截止频率。

截止频率是信号通过滤波器时的临界点,可以控制滤波器的频率特性。

4. 确定滤波器的阶数:根据滤波器的要求,确定滤波器的阶数。

阶数越高,滤波器的衰减特性越陡。

5. 计算滤波器的巴特沃斯多项式:根据选择的滤波器类型、截止频率和阶数,计算滤波器的巴特沃斯多项式。

6. 实现滤波器:根据计算得到的巴特沃斯多项式,采用电路或者数字滤波器的方式来实现滤波器。

多种实现方式包括RC电路、LC电路、激励响应滤波器等。

三、巴特沃斯滤波器的应用巴特沃斯滤波器广泛应用于各个领域,包括通信系统、音频处理、图像处理等。

巴特沃斯数字低通滤波器的设计—双线性变换法

巴特沃斯数字低通滤波器的设计—双线性变换法

课程设计任务书2010—2011学年第一学期专业: 通信工程 学号: 080110509 姓名: 郭威课程设计名称: 数字信号处理课程设计设计题目: 巴特沃斯数字低通滤波器的设计—双线性变换法完成期限:自 2011 年 1 月 3 日至 2011 年 1 月 9 日共 1 周一.设计目的1.巩固所学的理论知识。

2.提高综合运用所学理论知识独立分析和解决问题的能力。

3.更好地将理论与实践相结合。

4.掌握信号分析与处理的基本方法与实现。

5.熟练使用MATLAB 语言进行编程实现。

二.设计内容已知四阶归一化低通巴特沃斯模拟滤波器系统函数为()16131.24142.36131.21234++++=s s s s s H a ,编写MATLAB 程序实现从()s H a 设计3dB 截止频率为2π=c w 的四阶低通巴特沃斯数字滤波器。

三.设计要求1、设采样周期为s T 1=,用双线性变换法进行设计;2、绘出滤波器的的幅频响应曲线并分析所得结果是否满足技术指标;3、和同组另一同学采用的脉冲响应不变法设计的结果进行比较分析。

四.设计条件计算机、MATLAB 语言环境五、参考资料[1] 丁玉美,高西全.数字信号处理.西安:电子科技大学出版社,2006.[2] 陈怀琛,吴大正,高西全. MATLAB 及在电子信息课程中的应用.北京:电子科技大学出版社,2003.[3] 楼顺天,李博苗.基于MATLAB 的系统分析与设计一信号处理 西安:西安电子科技大学出版社,1998.指导教师(签字): 教研室主任(签字): 批准日期: 年 月 日数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数字处理来达到频域滤波的目的。

本文是设计一个数字低通滤波器。

根据滤波器的设计思想,通过双线性变换法将巴特沃斯模拟低通滤波器变换到数字低通滤波器,利用MATLAB绘制出数字低通滤波器的系统幅频函数曲线。

关键词:数字滤波器;双线性变换法;巴特沃斯;MATLAB1课题描述 (1)2设计原理 (1)2.1 IIR数字滤波器设计原理 (1)2.2巴特沃斯低通滤波器的原理 (2)2.3双线性变换法 (3)3设计过程 (6)4结果分析 (8)总结 (11)参考文献 (12)1课题描述数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。

巴特沃斯滤波器设计

巴特沃斯滤波器设计

巴特沃斯滤波器设计1、巴特沃斯滤波器设计原理低通滤波器的幅值响应如下图所示。

maxA 为通带内允许最大衰减;minA 为阻带内允许最小衰减,c ω为通带角频率,s ω为阻带角频率。

一个n 阶低通巴特沃斯滤波器的幅频函数为:1-7阶巴特沃斯多项式如下:常数ε的作用是调整通带内允许的最大衰减,使其可小于3dB。

逼近过程中,A 需要确定的参数为ε和巴特沃斯多项式的阶数n,其中,通带内允许最大衰减maxA。

首先,推导确定了ε的大小;阶数n的大小取决于阻带内允许的最小衰减minε。

习惯上,多用衰减(分贝数)表示幅频特性。

因此,巴特沃斯低通响应为:ωω时,产生通带内最大衰减,即当=c解上式,可得:ωω时,产生阻带内最小衰减当=s上式可写为:对上式求解,可得:把 的表达式带入,可得:例子:用matlab 重复以上计算过程:wp=90*pi; ws=150*pi; Rp=3; Rs=10;N_true=(10^(Rp/10)-1)/(10^(Rs/10)-1);%真数 Num_Base=wp/ws;%底数N=ceil(log10(N_true)/log10(Num_Base)/2); wc=ws/((10^(Rs/10)-1)^(1/(2*N)));附加:Matlab 计算对数的时候,没有以a 为底b 的对数的函数,因此需要通过lgblog lg b a a改为以10为底的对数或者自然对数进行计算。

来源:https:///view/06e71fc5c67da26925c52cc58bd63186bceb92ca.html2、matlab 的巴特沃斯滤波器设计matlab 中提供了函数进行巴特沃斯滤波器设计同样对应上边的例子,通带90πHz ,通带最大衰减3dB ,阻带150πHz ,阻带最小衰减10 dB 。

Matlab 计算方法如下:229010lg 1315010lg 110nc nc πωπω⎧⎡⎤⎛⎫⎪⎢⎥+= ⎪⎪⎢⎥⎝⎭⎪⎣⎦⎨⎡⎤⎪⎛⎫⎢⎥+=⎪⎪⎢⎥⎝⎭⎪⎣⎦⎩20.32901010.995261501019nc nc πωπω⎧⎛⎫⎪=-= ⎪⎪⎝⎭⎨⎛⎫⎪=-= ⎪⎪⎝⎭⎩两式相除有:2290150900.99526/0.110581509nncc πππωωπ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ 整理得:()20.60.11058n=因此,0.110580.61log 2.15532n ==取3n =,带入215010lg 110n c πω⎡⎤⎛⎫⎢⎥+= ⎪⎢⎥⎝⎭⎣⎦,即21509nc πω⎛⎫= ⎪⎝⎭计算得:1/6150326.7388/9c rad s πω== 3n =,查表得对应的巴特沃斯滤波器,并去归一化:7323232711 3.488210221653.5 2.135 3.488210221c c c s s s s s s s s s ωωω⨯==++++++⨯⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭Matlab 代码如下: wp=90*pi; ws=150*pi; Rp=3; Rs=10;[N,wc]=buttord(wp,ws,Rp,Rs,'s');[B,A]=butter(N,wc,'s');f=1:300;w=2*pi*f;H=freqs(B,A,w);figure(1)plot(f,20*log10(abs(H)));grid on,xlabel('频率(Hz)'),ylabel('幅度(dB)')title('巴特沃斯模拟滤波器')设计滤波器幅值响应如下:3、pscad和matlab关于滤波器的配合设计的滤波器的系数经常很大,连续的滤波器在pscad中用s的传递函数实现,pscad中该元件系数有限制要在-810之间,实际的滤波器不满足该条件。

巴特沃斯低通滤波器设计

巴特沃斯低通滤波器设计

L1'
2
600 1.304 104
0.7654H
5.61mH
C2
1 c RS
C2'
2
1 1.304 104
600
1.8478F
0.038uF
L3
RS c
L'3
2
600 1.304 104
1.8478H
13.53mH
C4
1 c RS
C4'
2
1 1.304 104
600
0.7654F
0.016uF
设计实现电路
巴特沃斯低通滤波器迅速设计总结
一:根据滤波器性
能指标(通带内旳
最大衰减 c ,阻带
内旳最小衰减 s ,
截至频率 c ,阻带
起始频率 s )利用
公式
N
lg
1
s2
-1
2 lg s / c
求巴特沃斯低通滤波 器旳阶次N。
二:根据阶次N和考尔 型电路
RS' 1
L1' 0.7654
L'3 1.8478
一般情况下,电路是在匹配情况下工作,所以取
信源内阻 Rs 和负载电阻 RL 相等。
此时满足
Ha ( j0)
RL RS RL
1 2
根据反射系数公式
(s)
(
s)=1- 4RS RL
s' s
H
a
s
H
a
-s
j
达林顿电路构造
Rs 源电阻 RL 负载电阻
RS
I1
Es
V1
1
2
LC
I2
无损

巴特沃斯阶跃阻抗低通滤波器设计

巴特沃斯阶跃阻抗低通滤波器设计

巴特沃斯阶跃阻抗低通滤波器设计引言巴特沃斯阶跃阻抗低通滤波器是一种常用于信号处理和电子电路设计中的滤波器类型。

它的设计原理是通过调整滤波器的阶数和截止频率,来实现对输入信号的频率成分进行筛选和衰减。

本文将详细介绍巴特沃斯阶跃阻抗低通滤波器的设计方法及其在实际应用中的一些注意事项。

巴特沃斯阶跃阻抗低通滤波器概述巴特沃斯阶跃阻抗低通滤波器是一种I IR(无无限冲激响应)滤波器,具有平坦的通带、陡峭的衰减特性以及相对较低的群延迟。

它广泛应用于音频处理、通信系统等领域。

巴特沃斯滤波器的设计步骤1.确定滤波器的阶数(n):阶数决定了滤波器的衰减程度和复杂度,一般取偶数值。

2.确定滤波器的截止频率(f c):截止频率即信号通过滤波器时频率衰减到原来的1/√2,是决定滤波器频率特性的关键参数。

3.计算滤波器的极点位置:根据巴特沃斯滤波器的特性方程,计算极点位置。

4.标准化滤波器:对计算得到的极点位置进行标准化处理,使得滤波器的截止频率为1。

巴特沃斯滤波器设计实例以下是一个以设计一个4阶巴特沃斯阶跃阻抗低通滤波器为例的设计过程。

步骤1:确定滤波器的阶数我们选择设计一个4阶的巴特沃斯阶跃阻抗低通滤波器。

步骤2:确定滤波器的截止频率假设我们需要将信号的截止频率设置在1k H z。

步骤3:计算滤波器的极点位置根据巴特沃斯滤波器的特性方程,我们可以计算出滤波器的极点位置。

对于一个4阶的巴特沃斯低通滤波器,其极点位置可以通过下式计算得到:p_k=-s in h(π*fc)*s in(π*(2k-1)/(2n)),k=1,2,...,n式中,f c是截止频率,n是滤波器阶数。

步骤4:标准化滤波器标准化滤波器是将计算得到的极点位置通过变换使得滤波器的截止频率为1。

标准化后的滤波器的特性方程为:H(s)=1/((s+p1)(s+p2)...(s+pn))巴特沃斯滤波器的应用注意事项-在实际设计中,应根据需要调整滤波器的阶数和截止频率,以满足对信号的频率特性要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ap:通带最大衰减系数
as:阻带最小衰减系数
ap 10lg
Ha( j) 2
2
(5.2.1)
Ha( jp)
as
10lg
Ha( j) 2 Ha( js ) 2
(5.2.2)
将Ω=0处幅度已归一化到1,即|Ha(0)|=1,得到
2
ap10lgHa(jp) (5.2.3)
as 10lgHa(js)2 (5.2.4)
2021/2/11
11
2.巴特沃斯低通滤波器的设计方法
幅度平方函数:
Ha
Байду номын сангаас
(
j)
2
1(
1
)2N
c
(5.2.6) 两个参数:N, Ωc
2021/2/11
12
将|Ha(jΩ)|2写成s的函数:
Ha(s)Ha(s) 1(
1 s
)2N
jc
(5.2.7)
N阶Butterworth滤波器,|Ha(jΩ)|2=Ha(s)Ha(-s)有2N个极点,极点sk为:
最大衰减用ap表示,阻带内允许的最小衰减用as表示,ap和as分别 定义为:
H (e j0 ) a p 2 0 lg H ( e j p ) d B
(5.1.3)
H (e j0 ) a s 2 0 lg H ( e j s ) d B
(5.1.4)
如将|H(ej0)|归一化为1,(5.1.3)和(5.1.4)式则表示成:
(3)网络结构: ——IIR、FIR
M
brzr
N1
H(z)
r0 N
H(z) h(n)zn
2021/2/11
1 akzk
n0
3
k1
低通

π
高通
H (e j )
0
π
H (e j )


π
带通
0
π
H (e j )


π
带阻
0
π
H (e j )


π
0
π

理想低通、高通、带通、带阻数字滤波器幅度特性
( p pk )
(5.2.12)
k 0
2021/2/11
15
式中,pk为归一化极点,用下式表示:
pk skcej(1 222 kN 1),k0,1,,N1
2021/2/11
10
技术指标给定后,设计一个传输函数Ha(s),希望其幅度平方函数 满足给定的指标ap和as。
一般滤波器的单位冲激响应为实数,因此
H a (j )2 H a ( s ) H a ( s )s j H a (j ) H a (j ) (5.2.5)
注意: 1. 从数学上讲,有无限多种Ha(s)能满足指标 2. 实际中,针对结构给定的Ha(s) (如:Butterworth, Chebyshev, Elliptic等),选取合适的参数
ap 20lg H(ejp ) dB as 20lg H(ejs ) dB
2021/2/11
(5.1.5)
(5.1.6)
6
3. 数字滤波器设计方法概述
回想控制器设计问题 IIR滤波器和FIR滤波器的设计方法是不同,IIR滤波器 设计需要借助于模拟滤波器来完成
Specifications
Butterworth, Chebyshev, elliptic, Bessel, etc.
第5章 数字滤波器的设计
5.1 数字滤波器的基本概念 5.2 模拟滤波器的设计 5.3 用脉冲响应不变法设计IIR数字低通滤波器 5.4 用双线性变换法设计IIR数字低通滤波器 5.5 数字高通、带通和带阻滤波器的设计
2021/2/11
1
5.1 数字滤波器的基本概念
数字滤波器:
是指输入输出均为数字信号,通过一定运算关系改变输入信 号所含频率成分的相对比例或者滤除某些频率成分的器件。
优点:
高精度、稳定、体积小、重量轻、灵活,不要求阻抗匹配,可 实现特殊滤波功能
2021/2/11
2
1.数字滤波器的分类
(1)总体分类: 经典滤波器,信号与干扰分占不同频带: ——选频滤波器 现代滤波器,信号与干扰频带重叠: ——维纳滤波器、卡尔曼滤波器、自适应滤波器等
(2)滤波特性: ——低通、高通、带通、带阻等
cN (s sk )
LHP
(5.2.10)
例:设N=3,极点有6个,它们分别为
j2
j2
s0 ce3 s1c s2 ce 3
j1
j1
s3ce 3 s4 c s5 ce3
取s平面左半平面的极点s0, s1, s2组成Ha(s):
Ha(s)
3 c
j2
j2
(sc)(sc3 )(sc 3 )
2021/2/11
14
归一化:
——由于各滤波器的幅频特性不同,为使设计统一,需要将所 有的频率归一化
——这里采用对3dB截止频率Ωc归一化,归一化后的Ha(s)表示

1
Ha(s)
N 1
(
s
sk )
k0 c c
(5.2.11)
令归一化复变量p=s/Ωc,pk=sk/Ωc,得到归一化巴特沃斯的传
输函数
Ha ( p) N1 1
2021/2/11
8
H a (jΩ)
H a (jΩ)
低通
高通
0
Ω0
Ω
H a (jΩ)
H a (jΩ)
带通
c
Ω0
带阻 Ω
图5.2.1 各种理想模拟滤波器的幅频特性
2021/2/11
9
1.模拟低通滤波器的设计指标及逼近方法
模拟低通滤波器的设计指标有ap, Ωp,as和Ωs。
Ωp:通带截止频率
Ωs:阻带截止频率
1
sk ( 1) 2 N ( j c )
j ( 1 2 k 1 )
ce 2 2N
(5.2.8)
|Ha(jΩ)|2的2N个 极点均匀分布在 半径为Ωc的圆上
2021/2/11
三阶巴特沃斯滤波器极点分布 13
为形成稳定的滤波器,2N个极点中只取s平面左半平面的N个 极点构成Ha(s),
Ha (s)
2021/2/11
脉冲响应不变法 阶跃响应不变法 双线性变换法
Desired IIR
7
5.2 模拟滤波器的设计
模拟滤波器的理论和设计方法已发展得相当成熟, 且有若干典型的模拟滤波器供我们选择,如巴特沃斯 (Butterworth)滤波器、切比雪夫(Chebyshev)滤波器、椭 圆(Elliptic)滤波器、贝塞尔(Bessel)滤波器等,这些滤 波器都有严格的设计公式、现成的曲线和图表供设计 人员使用。
2021/2/11
4
2.数字滤波器的技术指标
我们通常用的数字滤波器一般属于选频滤波器。假设数字滤 波器的传输函数H(ejω)用下式表示:
H(ej)H(ej)ej()
通带纹波幅度 阻带纹波幅度 通带截止频率 3dB通带截止频率 阻带截止频率
数字低通滤波器的技术要求
2021/2/11
5
通带内和阻带内允许的衰减一般用dB数表示,通带内允许的
相关文档
最新文档