溶剂概述和溶剂效应

合集下载

化学反应机理的溶剂效应

化学反应机理的溶剂效应

化学反应机理的溶剂效应化学反应机理的溶剂效应是指溶剂对反应速率、平衡常数和反应机理的影响。

溶剂作为反应中的介质,对于反应物分子的相互作用、扩散速率和溶解度均有一定影响,从而对反应速率和反应机理产生影响。

1. 溶剂极性和溶剂效应溶剂极性是影响溶剂效应的一个重要因素。

一般来说,极性溶剂更容易产生溶剂效应。

以溶剂分子间的相互作用为例,溶剂分子会与反应物分子发生氢键或离子-溶剂相互作用,从而改变反应物分子的活性。

这种相互作用可以加速或减缓反应速率,并影响反应物的平衡常数。

2. 溶剂极性对活化能的影响溶剂极性可以影响反应物的活化能。

在非极性溶剂中,由于溶剂分子与反应物分子之间只有较弱的相互作用,所以反应物分子在非极性溶剂中的体系中更为自由,其几率更大地参与反应,从而降低了反应物的活化能,加速反应的进行。

而在极性溶剂中,由于溶剂分子与反应物分子之间较强的相互作用,反应物分子需要克服较大的相互作用能才能参与反应,因此需要更高的能量才能到达活化状态,从而提高了活化能,降低了反应速率。

3. 溶剂对反应物溶解度的影响溶剂对反应物的溶解度也会对反应速率和平衡常数产生影响。

在反应物溶解度较低的情况下,由于反应物浓度较低,反应速率可能会受到限制。

而在增加溶剂的情况下,反应物溶解度增加,反应物浓度增加,从而促进了反应速率的提高。

此外,溶剂对溶解度的影响还会改变反应物的活性,从而对反应的平衡常数产生影响。

4. 溶剂对催化剂的影响许多反应中使用催化剂来促进反应速率。

溶剂可以影响催化剂的活性和选择性。

溶剂对催化剂的溶解度、吸附性能和催化剂表面的溶剂分子的覆盖程度均会对催化剂的活性产生影响。

溶剂还可以改变催化剂表面的电子结构和溶剂分子自身的电子密度分布,从而影响反应机理和催化剂的选择性。

总结:溶剂效应是指溶剂对化学反应速率、平衡常数和反应机理的影响。

溶剂极性是影响溶剂效应的一个重要因素,非性和溶解度的影响外,还可以改变反应物的活化能和催化剂的活性和选择性。

溶剂效应介绍

溶剂效应介绍

F-〉Cl-〉Br-〉OH-
CH3O- 〉I- 〉CN-
负离子溶剂化程度越大,亲核性越小。
在某些亲核取代反应中,离去基团的溶剂化也是非常重 要的。质子溶剂的氢键作用优先发生,因此质子溶剂对 亲核取代反应一般都有加速作用,故卤代烷与磺酸酯的 亲核取代反应一般都需要用水、醇或羧酸作为溶剂。
如对甲苯磺酸—2—甲基—2-(4—甲氧基苯基)丙酯在 几种溶剂中的相对离子化速度如下:
特殊溶剂化两种。前者是靠氢键结合力,后者是靠电子 给体与受体之间的作用力。特殊的结构效应可使反应物 或过渡态特别强烈地被溶剂化.这比前述的溶剂静电效 应要强烈很多。
其原因是,氢键的形成及由电子对的给予和接受而产生的 作用.比溶利因静电作用所产生的分子间作用力要大得多。
7.3.1 负离子的特殊溶剂化
HMPA〉 DMSO 〉DMAc〉 DMF〉 CH3CN〉 CH3NO2 正离子越小越易被溶剂化,因它接受负电荷的能力是 随单位体积所具有正电荷的增大而增加。 卤素负离子在极性非质子溶剂中的亲核性和碱性次序为:
F-〉Cl-〉Br-〉I溶剂效应对化学反应的影响,除了反应活性以外,有时 也影响反应机理。如溴甲烷在乙醇的水溶液中水解,是 按SN2机理进行,而在极性更强的离子型溶剂如在甲酸中 反应时,机理要变为SN1.
溶质和溶剂相互作用叫做溶剂化。它是指溶液中溶 质被附近的溶剂分于包围起来的现象。例如溶质R+L-和 溶剂水作用的示意图如下:
溶剂对反应速率、化学平衡及反应机理的影响叫溶剂效 应。 7.1 溶剂的分类和性质
溶剂的分类方法有两种,一种是根据溶剂的极性进 行分类,另一种是根据溶剂是否具有形成氢键的能力进 行分类。
按溶剂的性质和它与溶质间相互作用力的性质,分 别讨论两类不同的溶剂化效应:

溶剂概述和溶剂效应

溶剂概述和溶剂效应

溶剂概述和溶剂效应摘要:对化学反应中溶剂的种类和作用做概述,以及溶剂效应在紫外,荧光,红外,核磁波谱和液相色谱中的作用。

关键词:溶剂溶剂效应吸收光谱液相色谱1,溶剂1.1溶剂的定义溶剂是一种可以溶化固体,液体或气体溶质的液体,继而成为溶液,最常用的溶剂是水。

1.2溶剂的分类溶剂按化学组成分为有机溶剂和无机溶剂有机溶剂是一大类在生活和生产中广泛应用的有机化合物,分子量不大,常温下呈液态。

有机溶剂包括多类物质,如链烷烃、烯烃、醇、醛、胺、酯、醚、酮、芳香烃、氢化烃、萜烯烃、卤代烃、杂环化物、含氮化合物及含硫化合物等等,多数对人体有一定毒性。

(本文主要概述有机溶剂在化学反应以及波谱中的应用)2,溶剂效应2.1溶剂效应的定义溶剂效应是指溶剂对于反应速率,平衡甚至反应机理的影响。

溶剂对化学反应速率常数的影响依赖于溶剂化反应分子和相应溶剂化过渡态的相对稳定性。

2.2溶剂效应在紫外,荧光,红外,核磁中的应用2.2.1溶剂效应在紫外吸收光谱中的应用[5]有机化合物紫外吸收光谱的吸收带波长和吸收强度,与所采用的溶剂有密切关系。

通常,溶剂的极性可以引起谱带形状的变化。

一般在气态或者非极性溶剂(如正己烷)中,尚能观察到振动跃迁的精细结构。

但是改为极性溶剂后,由于溶剂与溶质分子的相互作用增强,使谱带的精细结构变得模糊,以至完全消失成为平滑的吸收谱带。

这一现象称为溶剂效应。

例如,苯酚在正庚烷溶液中显示振动跃迁的精细结构,而在乙醇溶液中,苯酚的吸收带几乎变得平滑的曲线,如图所示2.2.1.1溶剂极性对n→π*跃迁谱带的影响[2]n→π*跃迁的吸收谱带随溶剂的极性的增大而向蓝移。

一般来说,从以环己烷为溶剂改为以乙醇为溶剂,会使该谱带蓝移7nm:如改为以极性更大的水为溶剂,则将蓝移8nm。

增大溶剂的极性会使n→π*跃迁吸收谱带蓝移的原因如下:会发生n→π*跃迁的分子,都含有非键电子。

例如C=O在基态时碳氧键极化成Cδ+=Oδ-,当n电子跃迁到π*分子轨道时,氧的电子转移到碳上,使得羰基的激发态的极性减小,即Cδ+=Oδ-(基态)→C=O(激发态)。

溶剂效应在紫外光谱中的应用

溶剂效应在紫外光谱中的应用

溶剂效应在紫外光谱中的应用1.引言1.1 概述概述溶剂效应是指在化学反应或物理过程中,溶剂对溶质的溶解和溶质对溶剂的影响所产生的效应。

在紫外光谱分析中,溶剂效应是指溶剂对物质在紫外光谱中的吸收行为所产生的影响。

溶剂效应在紫外光谱分析中具有重要的作用。

不同的溶剂会对物质的吸收峰位置、吸收强度和光谱形状等参数产生影响,从而对物质的结构和性质进行研究和分析。

溶剂效应的研究不仅可以帮助我们更深入地了解物质的光谱特性,还可以为溶液中溶质的分析提供重要的指导。

本文将首先介绍溶剂效应的概念和原理,包括溶剂分子与溶质分子相互作用的机制。

然后,我们将重点探讨溶剂效应在紫外光谱中的基本应用,包括不同溶剂对物质吸收峰位置的影响、溶剂效应对吸收强度的影响以及溶剂效应对光谱形状的影响等。

通过对溶剂效应在紫外光谱中的应用的研究,我们可以更加准确地识别和定量分析物质,尤其是在溶液中的物质。

同时,溶剂效应的研究也为我们提供了深入了解物质溶解过程和溶解行为的机制的途径。

本文的目的是系统地介绍溶剂效应在紫外光谱分析中的应用,希望能够为相关领域的研究者提供一定的参考和借鉴,推动溶剂效应在紫外光谱分析中的深入研究和应用。

在文章的后续部分,我们将详细阐述溶剂效应对紫外光谱的影响以及溶剂效应在紫外光谱分析中的应用前景。

1.2文章结构2.正文2.1 溶剂效应的概念和原理溶剂效应是指溶剂对溶质分子或离子的环境影响所导致的物理性质的变化。

溶剂效应在化学和物理学领域中具有广泛的应用,其中在光谱学中的应用尤为显著。

溶剂效应的产生是由于溶剂与溶质之间的相互作用力。

在溶液中,溶剂分子与溶质分子之间可以发生氢键、范德华力、静电作用等相互作用,这些相互作用能会对溶质的光谱特性产生影响。

2.2 溶剂效应在紫外光谱中的基本应用溶剂是紫外光谱分析中不可或缺的一个因素。

溶剂对溶质的光谱特性产生影响,主要是通过溶剂效应的方式实现的。

溶剂的选择和光谱的测量条件对于准确分析和解释光谱数据非常重要。

什么是化学反应的溶剂效应

什么是化学反应的溶剂效应

什么是化学反应的溶剂效应化学反应的溶剂效应是指在化学反应过程中,溶剂对反应物、产物和反应速率的影响。

溶剂在化学反应中扮演着至关重要的角色,它可以改变反应物的浓度、稳定性、活性以及反应速率。

溶剂效应对于理解化学反应机理、优化反应条件和提高化学品的产率具有重要意义。

溶剂效应主要包括以下几个方面:1.溶剂对反应物和产物的溶解度影响:溶剂可以影响反应物和产物的溶解度,从而影响反应的速率和平衡位置。

一般来说,溶剂的极性越大,对极性物质的溶解度越大。

因此,在选择溶剂时,需要根据反应物的性质选择合适的溶剂,以提高反应的效率。

2.溶剂对反应物活性的影响:溶剂可以与反应物分子发生相互作用,从而影响反应物的活性。

例如,某些溶剂可以降低反应物分子的活化能,使反应更容易进行。

此外,溶剂还可以通过氢键、范德华力等相互作用影响反应物分子的构象,进一步影响反应活性。

3.溶剂对反应速率的影响:溶剂可以影响反应物之间的碰撞频率和反应活性中心的选择性。

溶剂的极性、粘度和密度等性质会影响反应物分子的扩散速率,从而影响反应速率。

此外,溶剂还可以通过调节反应条件,如温度和压力,影响反应速率。

4.溶剂对产物稳定性的影响:溶剂可以影响产物的稳定性,从而影响反应的产率。

某些溶剂可以使产物分子更容易解离,从而提高产物的稳定性。

另一方面,溶剂也可以通过与产物分子发生相互作用,降低产物的稳定性,导致产物的降解或失活。

5.溶剂对反应机理的影响:溶剂可以参与反应过程,影响反应机理的步骤。

例如,在溶剂介质中,反应可能发生不同的途径,生成不同的产物。

此外,溶剂还可以影响反应中间体的稳定性,从而影响反应的进程。

总之,溶剂效应在化学反应中起着关键作用。

了解溶剂效应有助于我们更好地掌握化学反应的规律,为实际应用提供理论指导。

在化学研究和工业生产中,合理选择溶剂和优化反应条件,可以提高化学反应的效率和产率,降低生产成本,为我国的经济社会发展做出贡献。

第六章 溶剂效应

第六章  溶剂效应

O
NMe2 H O
罗丹明 B
O
C
O
DMSO、DMF、吡啶等 非质子溶剂中无色
水、甲醇、冰乙酸等 (80-100%) 质子性溶剂中红色
16
质子溶剂能和偶极离子式中的羧基负离子形成氢键而使其稳定。
溶剂效应对均相化学反应速率的影响(1)
[AB]≠ Ⅰ ΔGI ≠ G A+B A+B (a) C+D (b) C+D Ⅱ ΔGII≠
Cl-<Br-<I
负离子在质子型溶剂和非质子极性溶剂中的亲核性能刚好相反:Cl->Br->I6
各种溶剂与溶质间的相互作用:非质子溶剂(2)
非质子非极性溶剂对于离子型化合物的溶解力很小; 非质子弱极性溶剂中,正离子和负离子容易发生离子缔合作用而形成离子 对(或缔合离子),只有很少溶剂化的“独立”正离子或“独立”负离子;

溶剂的影响因素包括:介电常数、离子强度、溶剂化能力、酸碱性等。
3
有机溶剂的Parker分类法:质子溶剂和非质子溶剂
非质子非极性溶剂 脂肪烃、芳烃、烷基 卤、叔胺、二硫化碳 ε<15,μ<8.34× 10-30 C· ET(30) m, 约30~40 非氢键给体
非质子弱极性给体 醚类、羧酸酯、吡啶 ε<15,μ <8.34×10-30 C· m,非氢键给体

G GA,I GA,II -ΔGII

ΔGA ΔGB
-GI GB,I GB,II
A
B 平衡反应溶剂化自由焓图
-ΔGII + ΔGA= ΔGB - ΔGI ΔGI -ΔGII = ΔΔG = ΔGB - ΔGA = ΔΔGS 设ΔGB > ΔGA 则IΔGIII >I ΔGI I 反应在溶剂Ⅱ中的平衡位置比在溶剂1中的平衡位置更偏向B方( -ΔG=RTlnK) 15

物理有机化学 第3章、溶剂效应

物理有机化学 第3章、溶剂效应
溶剂化显色物质一般是那些具有高度极化的基态和极性小得多 的激发态的化合物.可近似地认为激发态的自由能在任何溶剂 中是恒定的,而基态的自由能是随着溶剂极性的增大而大幅度 地改变,即溶剂极性越大,溶剂化作用越强,自由能越低,因 此激发所需要的能量从也将越大,即λmax向光谱的蓝端移动.
E.M.Kosower首先尝试用一个染料的电子跃迁来建立一套溶 剂极性标度.他选择碘化l-乙基-4-甲氧羰基吡啶盐.
在许多有用的经验溶剂参数中,基于溶剂化显色现象的Z值是最全 面的 .
§3.3 非质子极性溶剂
有一些溶剂具有较大的介电常数和电偶极矩, 但不含酸性氢, 不 能形成氢键. 一般称为非质子极性溶剂.
对于负离子与中性分子之间的双分子反应来说,在极性非质子 溶剂中的反应速率要比在质子溶剂中大得多.例如,
这些化合物的特殊的溶剂化性质是由于分子几何形状使它们对 正离子的溶剂化作用远远大于对负离子的溶剂化作用.
1. 必须满足Franck-Condon原理, 即电子跃迁必须发生得比核移 动快, 使成为一个非平衡的激发态, 其中溶剂围绕溶质的排 列如同基态一样; 2. 标准物吡啶盐在许多非极性溶剂中不溶解, 使用在这些非极 性溶剂中有较大溶解性的其它标准物, 可以克服这问题;
3. 在极性最大的溶剂中(基态溶剂化作用强, 自由能降低很多, λ <331nm, 相当于Z>86.4, 即需较大的能量来激发), 则在更强 的吡啶环的π→π*带不能区别出charge transfer band. 后来Dimroth又发展了一套更全面的溶剂极性标度ET, 是将吡啶 苯酚内铵盐作为标准物(Pyridinium-N-phenol betaines)
作为标准物的氯代叔丁烷几乎完全以SN1机理进行溶剂解反应, 但由于溶剂解反应是在大量过量的溶剂中进行的, 不可能以动力 学级数来判断溶剂是否有亲核行为, 因此氯代叔丁烷作为模型化 合物的合理性必须得到验验. 方法就是用其他模型化合物与氯代 叔丁烷的溶剂解速率进行比较,为此曾选择了下列桥头碳原子 的化合物.

有机化学中的溶剂与溶剂效应

有机化学中的溶剂与溶剂效应

有机化学中的溶剂与溶剂效应溶剂在有机化学领域中扮演着举足轻重的角色。

它们不仅能够溶解反应物和产物,还可以在反应中起到催化剂、稀释剂和反应介质的作用。

本文将探讨有机化学中的溶剂以及溶剂对化学反应的影响。

一、溶剂在有机反应中的作用溶剂在有机反应中起到了至关重要的作用。

首先,它们可以溶解反应物和产物,使它们能够自由移动并与其他分子进行反应。

其次,溶剂可以调节反应的速率和选择性。

溶剂的选择会对反应条件、反应速率和产物分布产生直接影响。

此外,溶剂还可以通过稀释反应物浓度来控制反应的速度,并影响反应的平衡位置。

二、溶剂的极性与溶剂效应溶剂的极性对反应的速率和选择性影响很大。

极性溶剂可以极大地促进反应速率并提高反应的选择性。

极性溶剂中的极性分子可以与反应物分子产生相互作用,形成溶剂解合物,从而降低反应物分子之间的亲和力,促进反应进行。

另一方面,无极性溶剂可能会降低反应的速率,因为它们无法提供溶剂解合物的形成。

三、溶剂的酸碱性对反应的影响溶剂的酸碱性也会直接影响反应的进行。

酸性溶剂可以提供质子,促进酸碱反应的进行。

碱性溶剂则可以接受质子,并参与酸碱中和反应。

此外,溶剂的酸碱性还可以影响反应物的离子化程度,从而影响反应的速率和产物形成。

四、溶剂的挥发性对反应的影响溶剂的挥发性对有机反应的温度控制和溶剂效应至关重要。

高挥发性溶剂可以快速蒸发,从而降低反应的温度,控制副反应的发生。

此外,溶剂的挥发性还可以影响产物的分布,因为挥发性溶剂更容易去除产物,从而推动平衡向有利于产物生成的方向转化。

五、共溶剂对溶剂效应的调控在有机反应中,经常会采用共溶剂的方式,以调控溶剂效应。

共溶剂可以改变溶剂的极性和酸碱性,从而影响反应的速率和选择性。

常用的共溶剂包括水、醇类和乙醚等,它们的选择取决于反应物和所需的溶剂效应。

六、溶剂选择的注意事项在选择溶剂时,有几点需要注意。

首先,溶剂应当与反应物的性质相容,能够有效溶解反应物。

其次,溶剂的挥发性和热稳定性应与反应条件相匹配。

溶剂化作用

溶剂化作用

溶剂化作用溶剂效应(solvent effect)亦称“溶剂化作用”。

指液相反应中,溶剂的物理和化学性质影响反应平衡和反应速度的效应。

溶剂化本质主要是静电作用。

对中性溶质分子而言,共价键的异裂将引起电荷的分离,故增加溶剂的极性,对溶质影响较大,能降低过渡态的能量,结果使反应的活化能减低,反应速度大幅度加快。

了解溶剂效应,有助于研究有机物的溶解状况和反应历程。

基本简介对于等极性过滤态和自由基过滤态反应,溶剂效应较小;对于偶极过渡态反应,溶剂效应较大,例如非质子偶极溶剂的特点是正端藏于分子内部,负端露于分子外部,负端可以与正离子起作用,而正端却不能与负离子起作用,因此,在非质子溶剂中,用负离子作为试剂时,由于它不被溶剂分子包围,可以很容易地进行反应,成为加快反应速度的重要手段。

溶剂效应对反应的影响的关注历史悠久。

不同的溶剂可以影响反应速率,甚至改变反应进程和机理,得到不同的产物。

溶剂对反应速率的影响十分复杂,包括反应介质中的离解作用、传能和传质、介电效应等物理作用和化学作用,溶剂参与催化、或者直接参与反应(有人不赞成将溶剂参与反应称作溶剂效应)。

溶剂效应溶剂效应的模拟通常我们对溶剂效应的静态模拟,关心的是溶剂效应的两个方面:一是溶剂分子反应中心有键的作用,包括配位键和氢键等,这种作用属于短程作用,另一个是极性溶剂的偶极距和溶质分子偶极距之间的静电相互作用,这个属于远程作用,当然溶剂和溶质之间的色散力作用也是重要的远程作用,特别是对于非极性溶剂而言,但是色散力的描述是量子化学模拟的一个难题。

高斯计算时,考虑溶剂效应,可以采用三种策略:对于短程作用十分重要的体系,我们采用microsolvation model,或者称为explicit Solvation model。

直接考虑溶剂分子和反应中心的作用。

对于没有短程作用的体系,我们直接用虚拟溶剂模型(Implicit Solvation Model)来模拟远程作用。

化学反应机理中的溶剂效应

化学反应机理中的溶剂效应

化学反应机理中的溶剂效应溶剂在化学反应中起到了非常重要的作用,它可以影响反应速率、平衡常数和反应路径等。

这种影响被称为溶剂效应。

本文将就溶剂效应的概念、影响因素以及其在化学反应机理中的作用进行探讨。

一、溶剂效应的概念溶剂效应是指溶剂在化学反应中对反应速率、平衡常数和反应路径的影响。

在溶解过程中,溶剂分子与反应物和产物分子发生相互作用,形成溶液。

这种相互作用会改变反应物和溶剂分子之间的力学平衡,从而影响反应的进行。

二、影响溶剂效应的因素1. 极性:溶剂的极性是影响溶剂效应的关键因素之一。

极性溶剂可以与反应物形成氢键或离子作用力,从而加速或减慢反应速率。

非极性溶剂则对大多数反应物不起作用。

2. 溶剂极性与反应活化能的匹配性:溶剂的极性与反应的活化能之间的匹配性也会影响溶剂对反应的影响。

如果溶剂与反应物的极性相似,可以提供足够的溶剂势能来降低反应的活化能,从而加速反应速率。

3. 溶剂分子结构:溶剂分子的结构也可以对溶剂效应产生影响。

例如,溶剂分子中的功能基团可以与反应物发生相互作用,影响反应速率和反应路径。

4. 温度:温度对溶剂效应同样有影响。

温度的升高可以提供更多的能量,使溶剂分子与反应物之间的相互作用增强,从而影响反应速率。

三、溶剂效应在化学反应机理中的作用溶剂效应在化学反应机理中起到了至关重要的作用,主要体现在以下几个方面:1. 反应速率的影响:溶剂可以通过溶剂分子与反应物之间的相互作用,改变反应物的反应速率。

例如,极性溶剂可以通过静电作用加速带电反应物的解离过程;溶剂的溶解能力也可以影响溶剂中物质的浓度,从而影响反应速率。

2. 平衡常数的变化:溶剂也可以通过改变反应的平衡常数来影响反应的进行。

溶剂的极性和溶解能力可以影响反应中产物和反应物的浓度,从而改变平衡常数。

3. 反应路径的调节:溶剂可以调节反应的路径,使反应在不同的条件下选择不同的路径进行。

这种调节可以通过溶剂分子与反应物之间的相互作用改变活化能和过渡态的稳定性来实现。

化学反应中的溶剂效应与溶剂选择的影响

化学反应中的溶剂效应与溶剂选择的影响

化学反应中的溶剂效应与溶剂选择的影响化学反应是溶液中发生的一系列化学变化过程。

在这些反应中,溶剂(通常是液体)的选择和溶剂效应对于产率、速率和产物选择性等方面都有着显著的影响。

本文将探讨溶剂效应对化学反应的影响以及如何选择适当的溶剂来优化反应结果。

一、溶剂效应的基本概念溶剂效应是指溶剂在化学反应中对反应速率和产品选择性的影响。

溶剂可以影响反应速率的决速步骤、产物的稳定性以及反应中的中间体生成等。

不同的溶剂具有不同的极性、酸碱性、溶解度和势能面,从而导致溶剂效应的差异。

二、影响因素1. 极性:溶剂的极性对于溶剂效应起着重要作用。

通常情况下,极性溶剂能够促进极性反应,而非极性溶剂则更适用于非极性反应。

极性溶剂具有较强的溶解能力和极化作用,有助于稳定产物的离子化程度。

2. 酸碱性:溶剂的酸碱性也会对反应产生重要影响。

酸性溶剂可以促进碱性反应,而碱性溶剂则促进酸性反应。

溶剂的酸碱性与其电负性和碱性基团有关。

3. 溶解度:溶剂的溶解度决定了反应物在溶液中的浓度。

溶解度越大,反应物的浓度越高,反应速率可能会增加。

溶剂选择时需要考虑反应物的溶解度以及溶解度随温度和压力的变化。

4. 势能面:溶剂的极性和分子结构会对反应中的势能面造成影响。

不同的溶剂具有不同的溶剂势能面,导致不同的反应途径和反应产物选择。

三、溶剂选择的原则1. 化学性质匹配:溶剂的化学性质应与反应物相适应,如溶剂的极性和酸碱性等。

选择化学性质相似的溶剂可以提高反应速率和选择性。

2. 反应物溶解度:溶剂应能够较好地溶解反应物。

反应物的溶解度对于反应速率和产物选择性至关重要。

3. 溶剂效应调节:溶剂效应可以通过改变溶剂的极性、酸碱性和溶解度等进行调节。

良好的溶剂效应可以提高反应速率和选择性,使反应得到更好的控制。

四、溶剂效应的应用1. 促进反应速率:选择适当的极性和酸碱性溶剂可以提高反应速率,降低反应的活化能。

例如,极性溶剂如水和醇类溶剂常用于催化剂的活化和促进离子反应。

浅析有机化学中的溶剂效应

浅析有机化学中的溶剂效应

浅析有机化学中的溶剂效应在有机化学反应中,人们经常会使用溶剂。

从某种程度上来说,溶剂对化学反应的作用有时候堪比催化剂,更有甚者能影响化学反应的成败。

有机溶剂和無机溶剂种类繁多,不同溶剂的物理性质和化学性质存在种种差异。

本文主要通过溶剂在有机化学中的应用,简要分析溶剂效应对有机物酸性和碱性强度的影响、溶剂效应与亲核取代反应速度的关系。

标签:溶剂溶剂效应溶剂极性一、溶剂分类溶剂是一种可以溶化的固体、液体或者气体溶质的一种液体,继而又成为了溶液,最常用和最常见的溶剂是水。

溶剂按化学组成可以分为有机溶剂与无机溶剂。

有机的溶剂是一大类在生活与生产中广泛应用的有机化合物成分,分子量不大,常温下呈现液态。

有机溶剂包括很多类物质,如链烷烃、胺、酯、醚、酮、芳香烃、烯烃、醇、醛氢化烃、卤代烃、杂环化物、萜烯烃、含氮化合物和含硫化合物等,多数物质对人体有一定的毒性。

溶剂的效应是指溶剂对于反应的速率、平衡甚至反应机理的一些影响。

溶剂对化学反应的速率常数的影响依赖于溶剂化反应分子与相应溶剂化过渡态相对的稳定性。

溶剂因其种类繁多,分类也较为繁杂,目前对溶剂的分类主要采取如下几种方法。

按照溶剂的化学键,可以把溶剂分为三类。

第一类是分子态液体(分子熔融体,只涉及共价键);第二类是离子态液体(熔盐,只涉及离子键);第三类是原子态液体(低熔点金属,比如液态汞或液态钠,涉及金属键)。

[1]根据溶剂的物理常数(比导电率、沸点、熔点、蒸气压、蒸发潜热、折射率、密度、粘度、表而张力、偶极矩,介电常数等可以用来体现溶剂的性质)进行划分,[2]可以把溶剂分成低沸点、中等沸点、高沸点三类。

根据溶剂的酸碱性能对溶剂进行分类。

按照BrΦnsted酸碱理论进行划分,可以把溶剂划分成质子给体溶剂、质子受体溶剂和两性溶剂。

Lewis对BrΦnsted 划分的种类加以推广并把介电常数大于或小子20的溶剂加以区分,[3]按照他的观点,可以把溶剂分为EPA(酸)溶剂和EPD(碱)溶剂。

高等有机第二章-溶剂化效应

高等有机第二章-溶剂化效应

21
CHCl3
1.0
4.8
CH3NO2 3.4
36
HNEt2
1.0
5.0 DMF
3.8
38
Et2O
1.1
4.8 DMSO 3.9
45
HCO2H 1.5
57
PhNO2 4.3
35
CH2Cl2
1.6
9
三、溶剂对均相体系化学平衡的影响
1、对酸、碱平衡的影响 改变溶剂可影响酸碱的解离平衡。例如醋酸在水中为 弱酸,而在液氨中则几乎完全解离。
一、基本概念 1、选择性溶剂化 若在两种溶剂的混合物中,二元盐的两种离子同样优 先地为同种溶剂所溶剂化,称同选择性溶剂化。
例: CaCl2在水-甲醇体系中,Ca2+ 和Cl – 都优先被 水溶剂化。
如阳离子优先被一种溶剂溶剂化,而阴离子优先被另 一种溶剂溶剂化,则称异选择性溶剂化。 例:硝酸银在乙腈-水体系中,Ag+优先被乙腈溶剂 化, 而NO3-优先被水溶剂化。
2、有机物在气相和溶液中的酸碱性
气态中物质的酸碱性是物质的固有性质,而在溶液中
存在溶剂化效应。
气态中碱性:NH3<RNH2<R2NH<R3N 在水中: NH3<RNH2<R2NH>R3N 溶液中铵离子通过氢键被稳定,氢键越多,胺碱性越
大。
3、溶剂对互变异构平衡的影响
1,3-二羰基化合物可能存在三种互变异构体:
Cl
Cl Me
Me
+
Cl
Cl Me
Me
O
Me
红色络合物
黄色
无色
在两个键已饱和的分子间形成一个附加的成键作用必 须是在电子给体分子中存在一个能量足够高的已占据 分子轨道,而在电子受体分子中存在一个能量足够底 的未占据分子轨道。

物理有机化学 第3章、溶剂效应

物理有机化学 第3章、溶剂效应

这个标度的主要优点是该标准化合物的电荷转移吸收带比科绍 尔染料的处于更长的波长,以至产生一个更大的溶剂化显色范 围 ( 从 二 苯 醚 的 810nm , ET=35.3KJmol-1 , 到 水 的 453nm , ET=63.1KJmol-1).
ET与 Z值之间有着线性关系. 用取代的染料如下列结构可把这种标度推到非极性溶剂:
§3.1 溶剂效应的定性理论
溶剂效应第一个满意的定性理论,是Hughes-Ingold 于1935年提出的静电模型.在亲核取代反应和消去 反应的研究中,他们提出,与初始态相比,在反应 的过渡态中,如果产生了电荷或者电荷更集中了, 则反应速率随介质的极性增加而增加.反之,当与 起始态相比,在反应的过渡态中如果电荷消失了或 电荷更分散了,则反应速率随介质的极性增加而降 低.
例:
从表中可见,当溶剂的类型改变时,如醇改变为腈,则溶剂对 反应速率影响是较大的,这可能由于含羟基的溶剂稳定了带电 荷的亲核试剂,即溶剂效应不仅与介电常数的宏观性质有关, 而且也与氢键有关.
§3.2 溶剂极性参数
3.2.1 Winstein-Grunwald的Y值 在SN1 溶剂解反应中,化合物在不同溶剂中的离解速 率是不一样的.这与溶剂的极性及反应物的结构有 关. Winstein 等提出下列方程式来定量地表示这种关 系.
溶剂化显色物质一般是那些具有高度极化的基态和极性小得多 的激发态的化合物.可近似地认为激发态的自由能在任何溶剂 中是恒定的,而基态的自由能是随着溶剂极性的增大而大幅度 地改变,即溶剂极性越大,溶剂化作用越强,自由能越低,因 此激发所需要的能量从也将越大,即λmax向光谱的蓝端移动.
E.M.Kosower首先尝试用一个染料的电子跃迁来建立一套溶 剂极性标度.他选择碘化l-乙基-4-甲氧羰基吡啶盐.

气相色谱溶剂效应_解释说明以及概述

气相色谱溶剂效应_解释说明以及概述

气相色谱溶剂效应解释说明以及概述1. 引言1.1 概述气相色谱溶剂效应是指在气相色谱(GC)分析中,溶剂对样品分离和检测的影响。

溶剂效应通常由于溶剂与样品之间的相互作用引起,这种相互作用可导致样品分子在柱上产生不同的保留和分离行为。

了解和研究溶剂效应对于准确的分析结果至关重要。

1.2 文章结构本文将依次讨论气相色谱溶剂效应解释说明以及概述的相关内容。

首先,我们将介绍气相色谱溶剂效应的定义和背景知识,包括其基本概念和相关研究现状。

然后,我们将探讨影响气相色谱溶剂效应的因素,并介绍色谱分离机理与溶剂效应之间的关系。

接下来,我们将重点讨论溶剂效应在气相色谱中的实际应用。

具体而言,我们将探讨温度对溶剂效应的影响、不同溶剂对分析结果的影响以及样品前处理方法优化与溶剂选择之间的关系。

在展示实验方法和技术措施时,我们将介绍样品准备与处理步骤、色谱柱和条件选择的要点,以及数据分析和结果解读策略。

最后,我们将总结本文的主要观点,并提出对研究潜力与未来发展方向的建议。

1.3 目的本文旨在深入探讨气相色谱溶剂效应的解释和应用。

通过全面了解溶剂效应对气相色谱分析结果的影响,我们可以更好地理解该现象并提出相应的实验方法和技术措施。

同时,本文也希望为相关领域的研究者提供有关气相色谱溶剂效应的综合指南。

2. 气相色谱溶剂效应解释说明:2.1 定义和背景:气相色谱是一种常用的分离和分析技术,它通过将样品溶解在挥发性液体(溶剂)中,以气态物质在固定填充材料上的分配系数差异实现分离。

然而,溶剂的选择不同会引起溶剂效应,对色谱结果有着显著影响。

2.2 影响因素:气相色谱溶剂效应主要受以下几个因素影响:- 构成:不同溶剂由于其化学结构和性质的不同,可能与样品中的组分发生特定的相互作用,并改变它们在固定相中的吸附行为。

- 极性:极性溶剂(如醇类)与非极性物质(如烷烃)相互作用较弱,易于从固定相上解吸下来移动;而非极性溶剂(如正庚烷)则对非极性物质具有较强的吸附作用。

化学反应的溶剂效应

化学反应的溶剂效应

化学反应的溶剂效应溶剂在化学反应中起到重要的作用,被称为溶剂效应。

溶剂能够对反应速率、平衡常数以及反应路径等产生影响,这些效应在实际应用中具有重要的意义。

本文将探讨化学反应的溶剂效应。

一、溶剂对反应速率的影响溶剂对反应速率的影响可通过溶解度、溶剂分子性质和粘度等方面来进行分析。

1. 溶解度效应溶解度效应指的是溶剂与反应物的相互作用能力对反应速率的影响。

通常情况下,溶解度较高的溶剂有利于提高反应速率,原因如下:首先,溶解度高的溶剂能够更好地溶解反应物,使得反应物能够更充分地参与反应,提高反应速率。

其次,溶解度高的溶剂中分子浓度较高,反应物之间的碰撞频率增加,从而增加了反应速率。

2. 溶剂分子性质的影响溶剂的分子性质也能够影响化学反应的速率。

溶剂分子中的电荷分布、极性以及溶剂分子的大小等因素,均会对反应物的活性、稳定性以及反应物与溶剂之间的相互作用能力产生影响。

极性溶剂通常能够更好地溶解极性反应物,促使极性反应物之间的碰撞更加频繁,从而增加反应速率。

溶剂中存在的氢键、离子和配位能够进一步增加反应物与溶剂之间的相互作用能力,提高反应速率。

3. 溶剂粘度的影响溶剂的粘度对于溶质扩散以及反应物之间的碰撞起到重要的影响。

通常情况下,粘度较高的溶剂会减慢反应物的扩散速度,从而降低反应速率。

二、溶剂对反应平衡的影响溶剂对化学反应平衡的影响主要通过溶解度、配位以及酸碱性等方面进行分析。

1. 溶解度效应溶剂可以通过增加或降低某些物质的溶解度,对反应平衡产生影响。

当溶剂对于产物的溶解度较低时,会促使反应向产物生成的方向移动,提高反应的产物生成速率。

2. 配位效应溶剂能够与反应物或产物形成配位物,从而影响反应平衡。

配位效应通常通过溶剂中的配体与反应物或产物之间发生配位反应来实现。

3. 酸碱性的影响溶剂的酸碱性对于反应平衡也起到重要的影响。

例如,在酸性溶剂中,酸性反应的反应速率通常更快,因为酸性溶剂可以提供H+离子,促进反应进行。

一篇长文让您完全理解液相色谱中的溶剂效应

一篇长文让您完全理解液相色谱中的溶剂效应

一篇长文让您完全理解液相色谱中的溶剂效应液相色谱(liquid chromatography, LC)是一种常用的分析技术,广泛应用于化学、生物、环境等各个领域。

在液相色谱中,溶剂是一个重要的组成部分,并且溶剂的选择和使用会对色谱分离的效果产生显著影响。

本文将详细介绍液相色谱中的溶剂效应,帮助读者更好地理解并优化液相色谱实验。

溶剂在液相色谱中的作用溶剂在液相色谱中具有多重作用,主要包括:1. 分离基质的溶解:溶剂的主要作用是将待分离的混合物中的样品物质溶解为液相。

溶剂的极性和溶解度会影响样品物质在液相中的溶解度,进而影响样品的分离效果。

通常情况下,选择与样品物质相似或足够极性的溶剂可以提高样品物质的溶解度。

2. 液相的选择:液相色谱分为正相液相色谱和反相液相色谱两种类型。

正相液相色谱(Normal Phase Chromatography, NPC)使用极性溶剂作为流动相,极性固定相对样品物质进行分离;反相液相色谱(Reverse Phase Chromatography, RPC)使用非极性溶剂作为流动相,非极性固定相对样品物质进行分离。

溶剂的选择和组合会直接影响分离效果和分离机理。

3. 色谱峰的形状和保留时间:溶剂的性质和使用量会影响色谱峰的形状和保留时间。

峰形的对称性、峰高、峰宽等参数会受到溶剂的选择和使用方式的影响。

溶剂选择不当或使用不当可能导致峰形不对称、峰形分离不良,以及保留时间不稳定等问题。

4. 色谱柱寿命:溶剂的选择和使用方式也会影响色谱柱的寿命。

某些溶剂会对色谱柱产生腐蚀或破坏作用,从而缩短色谱柱的使用寿命。

此外,溶剂的质量和纯度也会对色谱柱的寿命产生影响。

溶剂效应的影响因素液相色谱中的溶剂效应受多个因素的影响,主要包括:1. 溶剂极性:溶剂的极性与待分离物质的极性需相匹配。

如果待分离物质和溶剂的极性相差太大,可能导致溶液不稳定、溶解度不足或溶解度过高等问题。

2. 溶剂选择:不同的样品物质可能需要使用不同的溶剂才能得到较好的分离效果。

高等有机第二章-溶剂化效应

高等有机第二章-溶剂化效应

例:CaCl在水-甲醇体系中,Ca2+和Cl–都优先被2水溶剂化。

如阳离子优先被一种溶剂溶剂化,而阴离子优先被另一种溶剂溶剂化,则称异选择性溶剂化。

例:硝酸银在乙腈-水体系中,Ag+优先被乙腈溶剂-优先被水溶剂化。

化, 而NO32、溶剂和溶质分子间的相互作用第一类包括定向诱导力和色散力,这些力是非特异性的,不可能完全饱和。

第二类包括氢键力和电荷转移力,或称电子对授受力。

这类作用有方向并且可以饱和生成化学计量的分子化合物。

C、偶极-诱导偶极力具有永久偶极矩的分子或离子能诱导邻近分子,产生诱导偶极矩,分子在被诱导的瞬间总是处于诱导偶极的方向,两者之间有吸引力。

非极性分子可极化率越大,诱导偶极矩也越大。

这对偶极分子和离子在非极性溶剂中的体系最重要。

D、瞬间偶极-诱导偶极力(色散力〕非极性分子由于电子不断运动,会瞬间产生小的偶极矩,它使邻近分子产生脉冲性极化,从而产生分子间的相互吸引力,这称为色散力。

在两个键已饱和的分子间形成一个附加的成键作用必须是在电子给体分子中存在一个能量足够高的已占据分子轨道,而在电子受体分子中存在一个能量足够底的未占据分子轨道。

3、溶剂的极性和分类(1)质子性溶剂(2)极性非质子性溶剂(3)非极性溶剂量度溶剂极性的标准:(1)偶极矩u常见有机溶剂分子偶极矩的数值在0-5.5D, 在不存在特异性溶质-溶剂间相互作用时,分子极性大小与偶极矩大小一致。

溶剂极性加大,K T 值降低,cis-烯醇式减少。

因为:1、在两种互变异构体中,烯醇式极性较小。

分子内氢键的形成降低羰基偶极-偶极斥力,而在酮式中,这种斥力使其极性加大。

2、分子内氢键使烯醇稳定化,溶剂极性加大,分子间氢键加强,分子内氢键被削弱,烯醇含量减少。

烯醇含量与1,3-二羰基化合物浓度有关。

当偶极性的1,3-二羰基化合物用非极性溶剂稀释,溶剂与羰基作用弱,两羰基偶极斥力大,不稳定;烯醇与溶剂分子间氢键弱,分子内氢键强,烯醇含量增高。

溶剂效应原理

溶剂效应原理

溶剂效应原理引言:溶剂效应是化学反应中溶剂对反应速率和平衡常数的影响。

溶剂作为反应体系中的重要组成部分,可以通过溶解物质、溶解度、溶解热等方面影响反应的进行。

本文将从溶剂效应的定义、分类、影响因素以及实际应用等方面进行探讨。

一、溶剂效应的定义溶剂效应是指在溶液中,溶剂对溶质的物理性质和化学性质产生的影响。

溶剂效应可以通过改变反应物质的活性、稳定性以及反应速率来影响化学反应的进行。

二、溶剂效应的分类1. 极性溶剂效应:极性溶剂对溶质的溶解度和反应速率有较大影响。

极性溶剂中的极性分子与溶质分子之间可以形成氢键、离子-极性分子相互作用等,从而影响反应的进行。

2. 极性溶剂中的离子溶剂效应:溶剂中存在离子时,离子溶剂效应会对溶质的溶解度和反应速率产生显著影响。

离子溶剂效应主要是由于离子与溶质之间的静电相互作用引起的。

3. 极性溶剂中的非离子溶剂效应:非离子溶剂效应是指溶剂中没有离子存在时,溶剂对溶质的溶解度和反应速率的影响。

非离子溶剂效应主要是由于溶剂分子与溶质分子之间的分子间相互作用引起的。

三、溶剂效应的影响因素1. 溶剂极性:溶剂的极性越大,溶剂效应越显著。

极性溶剂中的极性分子与溶质分子之间的相互作用力较强,从而影响反应的进行。

2. 溶剂酸碱性:溶剂的酸碱性也会对溶剂效应产生影响。

酸性溶剂或碱性溶剂中的离子浓度较高,会引起离子溶剂效应的显著变化。

3. 溶剂的极化能力:溶剂的极化能力越强,溶剂效应越显著。

极化能力强的溶剂可以更好地与溶质分子相互作用,从而影响反应的进行。

四、溶剂效应的实际应用1. 催化剂选择:在有机合成中,选择合适的溶剂可以改变反应的速率和产物选择性,从而提高反应的效率。

2. 药物研发:溶剂效应对药物的溶解度和稳定性有重要影响。

通过选择合适的溶剂,可以提高药物的溶解度和生物利用度。

3. 电化学反应:溶剂效应对电化学反应的速率和电极反应的选择性有显著影响。

通过选择合适的溶剂,可以调控电化学反应的进行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

溶剂概述和溶剂效应摘要:对化学反应中溶剂的种类和作用做概述,以及溶剂效应在紫外,荧光,红外,核磁波谱和液相色谱中的作用。

关键词:溶剂溶剂效应吸收光谱液相色谱1,溶剂1.1溶剂的定义溶剂是一种可以溶化固体,液体或气体溶质的液体,继而成为溶液,最常用的溶剂是水。

1.2溶剂的分类溶剂按化学组成分为有机溶剂和无机溶剂有机溶剂是一大类在生活和生产中广泛应用的有机化合物,分子量不大,常温下呈液态。

有机溶剂包括多类物质,如链烷烃、烯烃、醇、醛、胺、酯、醚、酮、芳香烃、氢化烃、萜烯烃、卤代烃、杂环化物、含氮化合物及含硫化合物等等,多数对人体有一定毒性。

(本文主要概述有机溶剂在化学反应以及波谱中的应用)2,溶剂效应2.1溶剂效应的定义溶剂效应是指溶剂对于反应速率,平衡甚至反应机理的影响。

溶剂对化学反应速率常数的影响依赖于溶剂化反应分子和相应溶剂化过渡态的相对稳定性。

2.2溶剂效应在紫外,荧光,红外,核磁中的应用2.2.1溶剂效应在紫外吸收光谱中的应用[5]有机化合物紫外吸收光谱的吸收带波长和吸收强度,与所采用的溶剂有密切关系。

通常,溶剂的极性可以引起谱带形状的变化。

一般在气态或者非极性溶剂(如正己烷)中,尚能观察到振动跃迁的精细结构。

但是改为极性溶剂后,由于溶剂与溶质分子的相互作用增强,使谱带的精细结构变得模糊,以至完全消失成为平滑的吸收谱带。

这一现象称为溶剂效应。

例如,苯酚在正庚烷溶液中显示振动跃迁的精细结构,而在乙醇溶液中,苯酚的吸收带几乎变得平滑的曲线,如图所示2.2.1.1溶剂极性对n→π*跃迁谱带的影响[2]n→π*跃迁的吸收谱带随溶剂的极性的增大而向蓝移。

一般来说,从以环己烷为溶剂改为以乙醇为溶剂,会使该谱带蓝移7nm:如改为以极性更大的水为溶剂,则将蓝移8nm。

增大溶剂的极性会使n→π*跃迁吸收谱带蓝移的原因如下:会发生n→π*跃迁的分子,都含有非键电子。

例如C=O在基态时碳氧键极化成Cδ+=Oδ-,当n电子跃迁到π*分子轨道时,氧的电子转移到碳上,使得羰基的激发态的极性减小,即Cδ+=Oδ-(基态)→C=O(激发态)。

所以,与极性溶剂的偶极偶极相互作用强度基态大于激发态。

被极性溶剂稳定而下降的能量也是基态大于激发态。

跃迁能量增加而发生吸收峰蓝移,如图2所示;溶剂对n→π*跃迁的另一个影响是形成氢键,例如羰基与极性溶剂发生氢键缔合的作用程度,极性强的基态大于极性弱的激发态,致使基态的能级的能量下降较大,而激发态能级的能量下降较小,使吸收峰蓝移。

2.2.1.2溶剂极性对π→π*跃迁谱带的影响[2]π→π*跃迁的吸收谱带随溶剂极性的增大而向红移。

一般来说,从以环烷烃为溶剂改为以乙醇为溶剂,会使该谱带红移10 20nm.增大溶剂的极性引起π→π*跃迁的吸收谱带红移的原因如下。

大多数会发生π→π*跃迁的分子,其激发态的极性总是比基态的极性大,因而激发态与极性溶剂之间发生相互作用从而降低其能量的强度,要比极性小的基态与极性溶剂发生作用降低的能量大。

也就是说,在极性溶剂的作用下,基态与激发态之间的能量差别变小了,因而要实现这一跃迁所需要的能量相应地小了,故引起吸收峰红移,2图可以加以说明。

综上所述,溶剂的极性增大,π→π*跃迁的吸收谱带红移,n→π*跃迁的吸收谱带蓝移。

这两种不同方向的影响可以清楚地从表1中异亚丙基丙酮的紫外吸收在不同的溶剂中的值看出来。

正是可以利用溶剂效应来区别这两种跃迁引起的吸收谱带。

又由于同一种物质在不同的溶剂中吸收谱带的位置不相同,因而要将一种未知物质的吸收谱带与已知物质的吸收谱带进行比较时,必须采用相同的溶剂,在引用文献数据时也应注明所用溶剂。

2.2.2溶剂在分子荧光光谱中的影响[1,6]溶剂的影响可以分为一般溶剂效应和特殊溶剂效应,前者指的是溶剂的折射率和介电常数的影响:后者指的是荧光体和溶剂分子间的特殊化学作用,如氢键的生成和化学作用。

一般溶剂效应是普遍的,而特殊溶剂效应则决定于溶剂和荧光体的化学结构,溶剂和荧光体的相互作用对荧光体激发态和基态能量差产生影响。

影响程度可用Lippert方程描述:特殊溶剂效应所引起的荧光光谱的移动值,往往大于一般溶剂效应所引起的影响。

由于溶质分子与溶剂分子的作用,使同一种荧光物质在不同的溶剂中的荧光光谱可能有显著的不同。

一般溶剂极性越大,荧光体与溶剂的静电作用越显著,从而稳定了激发态,荧光波长红移。

与紫外吸收光谱的情况类似,溶剂的极性增大,发射波长红移,说明是π,π*单线态发光;若溶剂极性增大使发射波长蓝移,则是n,π*单线态发光所致。

如果溶剂和荧光物质形成了化合物,或溶剂使荧光物质的电离状态改变,则荧光峰位和强度都会发生较大的变化。

2.2.3 溶剂效应在红外光谱图的影响[2,5]当溶剂和溶质缔合时,可改变溶质分子吸收带的位置和强度。

由于溶剂的种类不同,同一物质与溶剂间的相互作用也就不同,所测得的吸收光谱固然也不同。

一般来说,极性基团(如—NH2,—OH等)的伸缩振动频率随溶剂的极性增大而向低波数位移,强度也增大。

例如不同的溶剂中的羧酸的波数为:由此可以看出,同一种化合物在不同的溶剂中,因为溶剂的各种影响会使化合物的特征频率发生变化。

因此,在红外光谱的测量中应尽量采用非极性溶剂。

常用的溶剂油CCl4,CS2等。

配制的溶液要使其透过率在20%—60%之间。

2.2.4溶剂效应在核磁共振波谱中的影响[2]同一种样品,使用不同的溶剂,化学位移值可能不同,这种因溶剂不同而引起化学位移值改变的效应称为溶剂效应。

对于—OH,—SH和—NH等活泼氢而言,溶剂效应非常强烈。

实践证明,CCl4和CDCl3等溶剂对化合物的值基本上没有影响。

例如,与碳相连的质子用60MHz 的仪器测定,在CCl4中仅差+6Hz,但若选用芳香性试剂,如苯,吡啶,则能引起值30Hz 的变化。

这是由于具有高度的礠各向异性效应的芳香溶剂分子与样品分子的碰撞会产生瞬间的络合物,这样就把一个各向异性的芳香环引入分子,这时样品分子中,某些质子位于芳香环的去屏蔽区,某些质子位于屏蔽区,从而使质子的值发生变化。

例如,N,N-二甲基甲酰胺由于氮原子上的孤对电子对和羰基共轭,使得C-N键具有部分双键的性质:致使C-N键不能自由旋转,两个甲基在空间的相对位置也就被固定了,所以他们的质子的化学位移不同。

苯的存在可使和的值发生变化。

当苯溶剂加入氯仿中时苯就和N,N-二甲基甲酰胺形成瞬间络合物。

苯环尽量靠近N,N-二甲基甲酰胺的正电一端,远离负电一端。

如图所示,由于苯是磁向个异性的,使得处于屏蔽区,处于去屏蔽区,故质子在苯中的值大于质子的值。

由于质子的化学位移范围比较少,做核磁时又必须配成溶液,所以溶剂效应是一个不可忽略的因素,在报道核磁共振的数据或谱图,一定要注明是什么溶剂,溶剂效应并不是坏事,在利用核磁做结构测定时,有时溶剂的改变可以帮我们阐明结构。

2.2.5溶剂效应在液相色谱中的影响样品溶液的溶剂强度强于流动相溶剂强度时可能会造成的峰展宽、峰分叉现象。

现象;色谱图上较早洗脱的峰扭曲变形或者开叉,与此同时较晚洗脱的峰则较为尖锐与对称,这些现象显示一个比较特殊的起因――样品溶液的溶剂很可能强于流动相。

例如样品溶液的溶剂是100%乙腈(100%的强溶剂),而流动相的组成则较弱,18%的乙腈与72%的水。

第一个峰是开叉的,并且与第二个峰相比,明显地变宽了。

当样品溶液的溶剂变成流动相时,所有的峰形都改善了,且变得尖锐。

解释当样品进样时,有可能出现峰展宽,最佳的样品溶液组成和体积将会保持在10%甚至更低,在这个例子里,当样品溶剂与流动相溶剂强度不同时,换句话来说,也就是样品未用流动相溶解,因此,有些样品分子溶解在强溶剂(100%ACE),并随强溶剂流过柱子,而有些则溶解在流动相中,从而导致峰分叉。

当样品与流动相强度相差较小,进样影响也会小,第一个峰可能会宽于第二个峰,而当这种展宽导致必要的分离度降低时,这样情况应引起注意,例如使用一根短柱,和5UL进样,这与最佳进样体积4UL相近,用了极性更强的溶剂导致分离度明显的降低。

避免的方法尽量用流动相来溶解样品,对于梯度洗脱,采用初始的流动相比例。

对于在流动相中溶解度小,必须用强溶剂的时候,减少进样体积以消除溶剂效应的影响。

3结语对于等级性过滤态和自由基过滤态反应,溶剂效应较小;对于偶极过渡态反应,溶剂效应较大,例如非质子偶极溶剂的特点是正端藏于分子内部,负端露于分子外部,负端可以与正离子起作用,而正端却不能与负离子起作用,因此,在非质子溶剂中,用负离子作为试剂时,由于它不被溶剂分子包围,可以很容易地进行反应,成为加快反应速度的重要手段。

由于溶剂效应的存在,在波谱和液相色谱中应当选择好溶剂。

参考文献(1)刘密新罗国安张新荣童爱军。

仪器分析。

北京。

清华大学出版社。

2002.(2)朱淮武。

有机分子结构波谱解析。

北京。

化学工业出版社。

2005.(3)姚新生。

有机化合物波谱解析。

北京。

中国医药科技出版社。

1996.(4)刑其毅裴伟伟徐瑞秋裴坚。

基础有机化学。

北京。

高等教育出版社。

2005.(5)薛松。

有机结构分析。

合肥。

中国科学技术大学出版社。

2005.(6)北京大学化学系仪器分析教学组。

仪器分析教程。

北京。

北京大学出版社。

1997。

相关文档
最新文档