6高等数学-第六章 定积分及其应用

合集下载

高等数学(同济大学第五版)第六章 定积分的应用

高等数学(同济大学第五版)第六章 定积分的应用

习题6−21. 求图6−21 中各画斜线部分的面积:(1)解 画斜线部分在x 轴上的投影区间为[0, 1]. 所求的面积为61]12[)(12231=−=−=x x dx x x A . 2300∫ 解法一x 轴上的投影区间为[0, 1]. 所求的面积为0 画斜线部分在y 轴上的区间为[1, e ]. 所求的面积为(2)画斜线部分在 1|)()(11=−=−=∫x x e ex dx e e A ,0 解法二投影 1)1(|ln ln =−−=−==∫∫e e dy y y ydy A e e e . 111(3)解 画斜线部分在x 轴上的投影区间为[−3, 1]. 所求的面积为332]2)3[(132=−−=∫−dx x x A . (4)解 [−1, 3]. 所求的面积为画斜线部分在x 轴上的投影区间为 332|)313()32(3132312=−+=−+=−−∫x x x dx x x A . 2. 求由下列各曲线所围成的图形的面积:(1) 221x y =与x 2+y 2=8(两部分都要计算); 解:388282)21222228(2020020221−−=−−=−−=∫∫∫∫dx x dx x dx x dx x x A 323cos 16402+=−=∫πtdt . 48π346)212−=−ππS . 2(2=A (2)xy =1与直线y =x 及x =2; 解:所求的面积为∫=A −=−202ln 23)1(dx x x . e x , y =e −x 与直线x =1;解:所求的 (3) y =面积为∫−+=−=−1021)(e e dx e e A x x . (4)y =ln x , y 轴与直线y =ln a , y =ln b (b >a >0).解所求的面积为a b e dy e A ba yb a y −===∫ln ln ln ln3. 求抛物线y =−x 2+4x −3及其在点(0, −3)和(3, 0)处的切线所围成的图形的面积. 解: 过点(0, −3)处的切线的斜率为4, 切线方程为y =4(x −3)., 切线方程为y =−2x +6.y ′=−2 x +4.过点(3, 0)处的切线的斜率为−2两切线的交点为)3 ,23(, 所求的面积为 49]34(62[)]34(34[2302332=−+−−+−+−+−−−=∫∫dx x x x x x x A . 4. 求抛物线y 2=2px 及其在点),2(p p 处的法线所围成的图形的面积. 解2y ⋅y ′=2p .在点处, 1),2(==′p p y p y ,),2(p p 法线的斜率k =−1, 法线的方程为)2(p x p y −−=−, 即y p x −=23.),2(p p 求得法线与抛物线的两个交点为和)3,29(p p −. 法线与抛物线所围成的图形的面积为233232316)612123()223(p y p y y p dy p y y p A p p pp =−−=−−=−−∫. 5. 求由下列各曲线 所围成的图形的面积;(1)ρ=2a cos θ ;解:所求的面积为∫∫==2221πθθ −202cos 4)cos 2(2ππθθd a d a A =πa 2. a cos 3t , y =a sin 3t ;解2(2)x =所求的面积为∫∫∫===204220330sin cos 34)cos ()sin (44ππtdt t a t a d t a ydx A a 2206204283]sin sin [12a tdt tdt a πππ=−=∫∫.(3)ρ=2 解所求的面积为a (2+cos θ ) 2202220218)cos cos 44(2)]cos 2(221a d a d a A πθθθθθππ=++=+=∫∫. 6. 求由摆线x =a (t −sin t ), y =a (1−cos t )的一拱(0≤t ≤2π)与横轴 所围成的图形的面积. 解:所求的面积为∫∫∫−=−−==a a a dt t a dt t a t a ydx A 20222020)cos 1()cos 1()cos 1(ππ22023)2cos 1cos 21(a dt t t a a =++−=∫. 7. 求对数螺线ρ=ae θ(−π≤θ≤π)及射线θ=π所围成的图形面积.解所求的面积为)(42)(2ππ−−∫∫e d e a d ae 11222222πππθπθθθ−−===e a . 8. 求下列各曲线所围成图形的公共部分的面积.(1)ρ=3cos θ 及ρ=1+cos θ解曲线ρ=3cos θ 与ρ=1+cos θ 交点的极坐标为A)3,23(πA , )3,23(π−B . 由对称性, 所求的面积为 πθθθθπππ45])cos 3(21)cos 1(21[2232302=++=∫∫d d A . (2)θρsin 2=及解θρ2cos 2=.6,22(π.曲线θρsin 2=与θρ2cos 2=的交点M 的极坐标为M 所求的面积为 2316]2cos 21)sin 2(21[24602−+=+=∫∫πθθθθπππd d A .于曲线e x 下方, 9. 求位y =该曲线过原点的切线的左方以及x 轴上方之间的图形的面积. 解 设直线y =kx 与曲线y =e x 相切于A (x 0, y 0)点, 则有x y e y kx y x x 00)(0000, , y 0=e , k =e .所求面 ⎪⎩⎪⎨⎧==′==ke 求得x 0=1积为21ln 21)ln 1(00020e dy y y y y y e dy y y e e e e e=⋅+−=−∫∫. 10. 求由抛物线y 2=4ax 与过焦点的弦所围成的图形的面积的最小值. 解 设弦的倾角为α. 由图可以看出, 抛物线与过焦点的弦所围成的图形的面积为10A A A +=. 显然当2πα=时1=0; 当, A 2πα1因此, 抛物线与过焦点的弦所围成的图形的面积的最小值为 <时, A >0. 20300383822a x a dx ax A a a ===∫. 1. 把抛物线y 2=4ax 及直线x =x 0(x 0>0)所围成的图形绕x 轴旋转, 计算得旋转体的体积.1所 解 所得旋转体的体积为20022224000x a axdx dx y V xx x πππ====∫ 00x a π∫. 12. 由y =x 3, x =2, y =0所围成的图形, 分别绕x 轴及y 轴旋转, 计算所得转所得旋转体的体积为两个旋转体的体积.解 绕x 轴旋πππ712871207206202====∫∫x dx x dx y V x . 绕y 轴旋转所得旋转体的体积为∫∫−=−⋅⋅=803280223282dy y dy x V y ππππ ππ56453328035=−=y . 所围成的图形, 绕x 轴旋, 计算所得旋转体的体积. 解 由对称性, 所求旋转体的体积为13. 把星形线转3/23/23/2a y x =+ dx x a dx y V a a ∫=2222π∫−=0333)(2π 0 3024224210532)33(2a dx x x a x a a a π=−+−=∫.14. 用积分方法证明图中球缺的体积为)(2H R H V −=π.3证明 ∫∫−−−==R H R RH R dy y R dy y x V )()(222ππ)3()1(32y y R R H R =−=−ππ 32H R H −.15. 求下列已知曲线所围成的图形, 按指定的轴旋转所产生的体积:(1的旋转体)2x y =,2y x =, 绕y 轴; πππ)(22=−=∫∫dy y ydy V 解 103)5121(10521010=−y y . (2)ax a y ch =, x =0, x =a , y =0, 绕x 轴; 解 ∫∫∫===102ch udu 302202 ch )(a x dx a x a dx x y V a aπππ令 au1022)()2(u u u du e e −=++=∫2231032122144u e u e a a −−+ππ )2sh 2(43+a π= . (3)216)5(2=−y , 绕x 轴.解 +x ∫∫−−−−−−+=44224422)165()165(dx x dx x Vππ 24021601640π∫=−=dx x .x =(t −sin t ),=a (1−cos t )的一拱, y =0, 绕直线y =2a . 解 a dy y a dx a V02202)2()2( 23237)8πππa t a a =+−=. 16. 求圆盘 (4)摆线a y a 2∫∫−−=ππππ∫−+−=πππ202223)sin (])cos 1([8t t da t a a 0sin cos 1(tdt a ∫232222a y x ≤+绕x =−b (b >a >0)旋转所成旋转体 解 的体积.∫∫−−−−−−+=a a a a dy y a b dy y a b V222222)()(ππ 2202228ππb a dy y a b a=−=∫.17. 设有一截锥体, 其高为h , 上、下底均为椭圆, 椭圆的轴2a 、2b 和2A 、求这截锥体的体积.解 建立坐标系如图. 过y 轴上y 点作垂直于y 轴的平面, 则 易得其长分别为2B , 平面与截锥体的截面为椭圆,长短半轴分别为y h a A A −−, y hb B B −−. 积为π)()(y 截面的面h h B B y a A A −⋅b −−−.于是截锥体的体积为])(2[61)()(b V h=∫0AB a h dy y h b B B y h a A A +++=−−⋅−−π.计算底面是半径为R 的圆, 而垂直于底面上一条固定直径的所有截面都是等边三角.x 且垂直于x () 件知, 它是边长为bA aB 18. 形的立体体积 解 设过点轴的截面面积为A x ,由已知条xR −2的等边三角形的面积, 其值为)(3)(22x R x A −=, 322334)(3R dx x R VR=−=∫R所以 − a.如图, 在x 处取一宽为dx 的边梯形, 小曲边梯形绕y 积近似为2πx ⋅f (x )dx , 这就是体积元素, 即 dV =2πx ⋅f (x )dx ,y 轴旋转所成的旋转体的体积为==bab dx x xf dx x xf V)(2)(2ππ.用题19和结论, 计算曲线y =sin x (0≤x ≤π)和x 轴所围成的图形绕y 轴旋转所得旋转体的体积. 解.19. 证明 由平面图形0≤a ≤x ≤b , 0≤y ≤f (x )绕y 轴旋转所成的旋转体的体积为=bdx x xf V )(2π∫ 证明 小曲轴旋转所得的旋转体的体于是平面图形绕 ∫a∫ 20. 利2002)sin cos (2cos 2sin 2πππππππ=+−=−==∫∫x x x x xd xdx x V .y =ln x 上相应于83≤≤ 21. 计算曲线x 的一段弧的长度.解 ∫∫∫+=+=′+=82838x32321)1(1)(1dx x x dx dx x y s ,t 12−=t x ,x +21=, 即 则令23ln 211111113223232222322+=−+=t s −=−⋅−=∫∫∫∫dt t dt d t t dt t tt t .)3(x − 22. 计算曲线3弧的长度. x y =上相应于1≤x ≤3的一段 解x x x y 3−=, 1x y 2−=′,x 121x x y 4112+−=′, 214)(12x y +=′+,121x为所求弧长3432)232(21)1(213131−=+=+=∫x x x dx xx s .23. 计算半立方抛物线被抛物线32x y =32)1(32−=x y 截得的一段弧的长度.解 由⎪⎩⎪⎨⎧=−=3)1( 32232x y x y 得两曲线的交点的坐标为36 ,2(, )36 ,2(−. 所求弧长为∫′+=21212dx y s .因为2y x y 2)1(−=′,)1(23)1()134−=−2)1(2−=′y y x ,32()1(242−−==′y x y 所以 x x x . ]1)25[(98)1)1−x 3(13232(231232121−=−=−+=∫∫d x dx x s . 抛物线y 2=2px 从顶点到这曲线上的一点M (x , y )的弧长.24. 计算∫∫∫+=+=′+=y yydy sy p p dy p y dy y x 02202021)(1)(1 解y y p y p p 2222])2[+++=y p y 02ln(21+p 2y p y py p py 2222ln2++++=.25. 计算星形线t a x 3cos =, 的全长.解 用参数方程的弧长公式.t a y 3sin = dt t y t x s =∫′+′2022)()(4π∫⋅+−⋅=202222]cos sin 3[)]sin (cos 3[4πdt t t a t t aa tdt t 6cos sin 1220==∫π.26. 将绕在圆(半径为a )上的细线放开拉直, 使细线与圆周始终相切, 细线端点画出的轨迹叫做圆的渐伸线, 它的方程为 )sin (cos t t t a x +=, )cos (sin t t t a y −=.计算这曲线上相应于t 从0变到π的一段弧的长度. 解 由参数方程弧长公式∫∫+=′+′=ππ022022)sin ()cos ()]([)]([dtt at t at dt t y t x s 0∫22ππa tdt a ==.cos t )上求分摆线第一拱成1: 3 解 设t 从0变化到t 0时摆线第一拱上对应的弧长为s (t 0), 则 27. 在摆线x =a (t −sin t ), y =a (1−的点的坐标.∫∫+−=′+′=0220220]sin [)]cos 1([)]t ([)]([)(t t dt t a t a dt y t x t s)2cos 1(42sin 2000ta dt t a t −==∫.当t 0=2π时, 得第一拱弧长s (2π)=8a . 为求分摆线第一拱为1: 3的点为A (x , y ), 令a ta 22cos 1(40=−,32解得0π=t , 因而分点的坐标为:a a x )32()2sin 2(−=−=πππ, 横坐标23 纵坐标33a a y 23)32cos1(=−=π,故所求分点的坐标为)23 ,)2332((a a −π. ρθa e =相应于自θ=0到的一段弧长 28. 求对数螺线θ=ϕ. 解 用极坐标的弧长公式. θθθρθρϕθθϕd ae e d a a ∫∫+=′+=22022)()()()(s )1−θ(11202+=+=∫ϕθθa a e aa d e a .29线1相应于自 . 求曲ρθ=43=θ至34=θ.的一段弧长 极坐标公式可得所求的弧长 解 按∫∫−+=′+=344322234322)1()1()()(θθθθθρθρd d s23ln 1251134322+=+=∫θθθd .30. 求心形线ρ=a (1+cos θ )的全长. 解 用极坐标的弧长公式. θθθθθρθρππd a a d s ==2 ∫∫−++′+0222022)sin ()cos 1()()(2a d a 82∫cos 4==πθθ.习题6−31. 由实验知道, 弹簧在拉伸过程中, 需要的力F (单位: N )与伸长量s (单位: cm)成正比, 即F =ks (k 为比例常数). 如果把弹簧由原长拉伸6cm , 计算所作的功.解 将弹簧一端固定于A , 另一端在自由长度时的点O 为坐标原点, 建立坐标系. 功元素为dW =ksds , 所求功为18216260===∫s k ksds W k(牛⋅厘米).2. 直径为20cm 、高80cm 的圆柱体内充满压强为10N/cm 2的蒸汽. 设温度保持不变, 要使蒸汽体积缩小一半, 问需要作多少功? 解 由玻−马定律知:ππ80000)8010(102=⋅⋅==k PV .设蒸气在圆柱体内变化时底面积不变, 高度减小x 厘米时压强 为P (x )牛/厘米2, 则ππ80000)]80)(10[()(2=−⋅x x P , π−=80800)(x P .功元素为dx x P dW )()10(2⋅=π,所求功为 2ln 8008018000080800)10(400402πππππ=−=−⋅⋅=∫∫dx dx W(J).3. (1)证明: 把质量为m 的物体从地球表面升高到h 处所作的功是 hR mgRhW +=,其中g 是地面上的重力加速度, R 是地球的半径;(2)一颗人造地球卫星的质量为173kg , 在高于地面630km 处进入轨道. 问把这颗卫星从地面送到630的高空处, 克服地球引力要作多少功?已知g =9.8m/s 2, 地球半径R =6370km .证明 (1)取地球中心为坐标原点, 把质量为m 的物体升高的功元素为dy ykMm dW 2=, 所求的功为 )(2h R R mMh k dy y kMm W hR R+⋅==∫+.(2)533324111075.910)6306370(106370106301098.51731067.6×=×+×××××⋅×=−W (kJ).4. 一物体按规律3ct x =作直线运动, 媒质的阻力与速度的平方成正比. 计算物体由x =0移至x =a 时, 克服媒质阻力所作的功. 解 因为3ct x =, 所以23)(cxt x v =′=, 阻力4229t kc kv f −=−=. 而32)(cx t =, 所以34323429)(9)(x kc cx kc x f −=−=. 功元素dW =−f (x )dx , 所求之功为 37320343203432072799)]([a kc dx x kcdx x kc dx x f Wa aa ===−=∫∫∫. 5. 用铁锤将一铁钉击入木板, 设木板对铁钉的阻力与铁钉击入木板的深度成正比, 在击第一次时, 将铁钉击入木板1cm . 如果铁锤每次打击铁钉所做的功相等, 问锤击第二次时, 铁钉又击入多少?解 设锤击第二次时铁钉又击入h cm , 因木板对铁钉的阻力f 与铁钉击入木板的深度x (cm)成正比, 即f =kx , 功元素dW =f dx =kxdx , 击第一次作功为 k kxdx W 21101==∫,击第二次作功为 )2(212112h h k kxdx W h+==∫+.因为, 所以有 21W W =)2(21212h h k k +=, 解得12−=h (cm).6. 设一锥形贮水池, 深15m , 口径20m , 盛满水, 今以唧筒将水吸尽, 问要作多少功?解 在水深x 处, 水平截面半径为x r 3210−=, 功元素为dx x x dx r x dW 22)3210(−=⋅=ππ,所求功为 ∫−=1502)3210(dx x x Wπ∫+−=15032)9440100(dx x x x π =1875(吨米)=57785.7(kJ).7. 有一闸门, 它的形状和尺寸如图, 水面超过门顶2m . 求闸门上所受的水压力. 解 建立x 轴, 方向向下, 原点在水面. 水压力元素为xdx dx x dP 221=⋅⋅=, 闸门上所受的水压力为21252252===∫x xdx P (吨)=205. 8(kN).8. 洒水车上的水箱是一个横放的椭圆柱体, 尺寸如图所示. 当水箱装满水时, 计算水箱的一个端面所受的压力.解 建立坐标系如图, 则椭圆的方程为11)43()43(2222=+−y x .压力元素为dx x x dx x y x dP 22)43()43(38)(21−−⋅=⋅⋅=,所求压力为∫∫−⋅⋅+=−−⋅=222322cos 43cos 43)sin 1(4338)43()43(38ππtdx t t dx x x Pππ169cos 49202==∫tdx (吨)=17.3(kN). (提示: 积分中所作的变换为t x sin 4343=−)9. 有一等腰梯形闸门, 它的两条底边各长10m 和6m , 高为20m . 较长的底边与水面相齐. 计算闸门的一侧所受的水压力.解 建立坐标系如图. 直线AB 的方程为x y 1015−=,压力元素为dx x x dx x y x dP )5110()(21−⋅=⋅⋅=,所求压力为1467)5110(200=−⋅=∫dx x x P (吨)=14388(千牛).10. 一底为8cm 、高为6cm 的等腰三角形片, 铅直地沉没在水中, 顶在上, 底在下且与水面平行, 而顶离水面3cm , 试求它每面所受的压力. 解 建立坐标系如图.腰AC 的方程为x y 32=, 压力元素为dx x x dx x x dP )3(34322)3(+=⋅⋅⋅+=,所求压力为168)2331(34)3(34602360=+=+=∫x x dx x x P (克)=1.65(牛).11. 设有一长度为l 、线密度为μ的均匀细直棒, 在与棒的一端垂直距离为a 单位处有一质量为m 的质点M , 试求这细棒对质点M 的引力.解 建立坐标系如图. 在细直棒上取一小段dy , 引力元素为dy ya Gm y a dy m G dF 2222+=+⋅=μμ, dF 在x 轴方向和y 轴方向上的分力分别为dF r a dF x −=, dF rydF y =.2202222022)(1)(l a a l Gm dy y a y a aGm dy y a Gm r a F l lx +−=++−=+⋅−=∫∫μμμ,)11()(12202222022l a a Gm dy y a y a Gm dy y a Gm r y F l ly +−=++=+⋅=∫∫μμμ. 12. 设有一半径为R 、中心角为 ϕ 的圆弧形细棒, 其线密度为常数 μ . 在圆心处有一质量为m 的质点F . 试求这细棒对质点M 的引力. 解 根据对称性, F y =0.θμcos 2⋅⋅⋅=Rdsm G dF xθθμθθμd R Gm R Rd Gm cos cos )(2=⋅=,θθμϕϕd R Gm F x ∫−=2cos2sin 2cos 220ϕμθθμϕR Gm d R Gm ==∫. 引力的大小为2sin 2ϕμR Gm , 方向自M 点起指向圆弧中点.总 习 题 六1. 一金属棒长3m , 离棒左端xm 处的线密度为11)(+=x x ρ (kg/m ). 问x 为何值时, [0, x ]一段的质量为全棒质量的一半? 解 x 应满足∫∫+=+300112111dt t dt t x.因为212]12[110−+=+=+∫x t dt t x x, 112[2111213030=+=+∫t dt t ,所以1212=−+x ,45=x (m).2. 求由曲线ρ=a sin θ, ρ=a (cos θ+sin θ)(a >0)所围图形公共部分的面积. 解∫++⋅=43222)sin (cos 21)2(21ππθθθπd a a S24322241)2sin 1(28a d a a −=++=∫πθθπππ.3. 设抛物线c bx ax y ++=2通过点(0, 0), 且当x ∈[0, 1]时, y ≥0. 试确定a 、b 、c 的值, 使得抛物线与直线x =1, y =0所围图形的面积为c bx ax y ++=294,且使该图形绕x 轴旋转而成的旋转体的体积最小.y c bx ax +=+ 解 因为抛物线2y 通过点(0, 0), 所以c =0, 从而 bx ax +=2.bx ax y +=2与直线x =1, y =0所围图形的面积为抛物线23)(102b a dx bx ax S +=+=∫. 令9423=+b a , 得968a b −=. 该图形绕x 轴旋转而成的旋转体的体积为 )235()(221022ab b a dx bx ax V ++=+=∫ππ)]968(2)968(315[22a a a a −+−+=π. 令0)]128(181********[=−+−⋅+2=a a a ddV π, 得35−=a , 于是b =2. 4. 求由曲线23x y =与直线x =4, x 轴所围图形绕y 轴旋转而成的旋转体的体积.解 所求旋转体的体积为πππ751272224027403=⋅=⋅=∫x dx x x V . 5. 求圆盘1)2(22≤+−y x 绕y 轴旋转而成的旋转体的体积.解 )2(122312∫−−⋅⋅=dx x x Vπ 2224cos )sin 2(4 sin 2ππππ=+=−∫−tdt t t x 令.6. 抛物线221x y =被圆322=+y x 所需截下的有限部分的弧长. 解 由⎪⎩⎪⎨⎧==+222213x y y x 解得抛物线与圆的两个交点为)1 ,2(−, )1 ,2(, 于是所求的弧长为2022202])1ln(2112[212x x x x dx x s ++++=+=∫ )32ln(6++=.,解 建立坐标系如图. 将球从水中取出时, 球的各点上升的高度均为2r . 在x 处取一厚度为dx 的薄片, 在将球从水中取出的过程中, 薄片在水下上升的高度为r +x ,在水上上升的高度为r −x . 在水下对薄片所做的功为零,在水上对薄片所做的功为dx x r x r g dW ))((22−−=π,对球所做的功为g r x d x r x r g W rr 22234))((ππ=−−=∫−. 8. 边长为a 和b 的矩形薄板, 与液面成α 角斜沉于液体内,长边平行于液面而位于深h 处, 设a >b , 液体的比重为ρ, 试求薄板每面所受的压力.解 在水面上建立x 轴, 使长边与x 轴在同一垂面上, 长边的在x 轴上的投影区间为[0, b cos α], 在x 处x 轴到薄板的距离为h +x tan α. 压力元素为 上端点与原点对应. 长边dx x h ga dx a x h g dP )tan (cos cos )tan (ααρααρ+=⋅⋅+⋅=, 薄板各面所受到的压力为)sin 2(21)tan (cos cos 0αρααραb h gab dx x h ga P b +=+=∫. 9. 设星形线t a x 3cos =,t a y 3sin =上每一点处的线密度的大小等于该点到原点距离的立方, 在原点O 处有一单位质点, 求星形线在第一象限的弧段对这质点的引力. 解 取弧微分ds 为质点, 则其质量为ds y x ds y x 322322)()(+=+, 其中tdt t a dt t a t a ds cos sin 3])sin [(])cos [(2323=′+′=.设所求的引力在x 轴、y 轴上的投影分别为F x 、F y , 则有∫+⋅++⋅⋅=202222322)()(1πds y x x y x y x G F x 2204253sin cos 3Ga tdt t Ga ==∫π, ∫+⋅++⋅⋅=22222322)()(1πds y x y y x y x G F x 2204253sin cos 3Ga tdt t Ga ==∫π, 所以)53 ,53(22Ga Ga =F .。

高等数学(同济第六版)课件 第六章 6.3定积分物理应用

高等数学(同济第六版)课件  第六章 6.3定积分物理应用
第三节 定积分在物理学上的应用
一、变力沿直线所作的功
F a x
F
x+dx b
常力 F 沿直线对物体所作的功为:W=F · S 若力是变力: F F ( x )
dW F ( x )dx
W F ( x )dx
a
b
例1 一个带 +q 电量的点电荷放在 r 轴上坐标原点处, 产生一个电场. 若将一个单位正电荷从r 轴上r = a 处 沿 r 轴移动到 r = b处,求场力 F 所作的功. 解 取r为积分变量,
20 x 20 x dW2 (10 0.05)dx (10 )dx 4 80
x
功元素
1 20 x dW [ x (10 )]dx 10 80
20

W
0
1 20 x [ x (10 )]dx 10 80
=217.5(千克米) =2131.5(焦耳)
l l 解 取y为积分变量 y [ , ], 2 2 取任一小区间[ y , y+dy ] 小段的质量为 dy ,
小段与质点的距离为 r a y ,
2 2
m dx 引力 dF k 2 , 2 a y amdy dFx k 2 , 2 (a y )
3 2
l y 2 y dy
解 建立坐标系如图
面积元素 2(a x )dx ,
dP ( x 2a ) 2(a x )dx
2a
o
a
2a
7 3 P 2( x 2a )(a x )dx a . 0 3
a
x
三、 引力
质量分别为m1, m2相距为 r 的两个质点间的引力 大小:F k m1m2 , 其中k为引力系数, r2 引力的方向沿着两质点的连线方向. 例6 有一长度为l、线密度为 的均匀细棒, 在其中垂线上距棒 a 单位处有一质量为 m 的 质点M, 计算该棒对质点 M 的引力.

高等数学第六章《定积分的应用》

高等数学第六章《定积分的应用》

第六章 定积分的应用一、内容提要(一)主要定义【定义】 定积分的元素法 如果(1)所求量U 是与一个变量x 的变化区间[]b a ,有关的一个整体量; (2)U 对区间[]b a ,具有可加性; (3)部分量i U ∆可表示为()i i i U f x ξ∆≈∆.则可按以下步骤计算定积分(1)选取一个变量x 或y ,并确定它的变化区间[]b a ,;(2)把区间[]b a ,分成n 个小区间, 求任一小区间[],x x dx +的部分量U ∆的近似dU .()U dU f x dx ∆≈=; (3)计算()U=baf x dx ⎰.(二)主要定理与公式根据定积分的元素法可建立一些几何和物理方面的定积分表达式. 1.平面图形面积 (1)直角坐标情形①由()(),(0),,y f x f x x a x b =≥==所围图形的面积()bas f x dx =⎰.②由()()12,,,y f x y f x x a x b ====所围图形的面积()()12 bas f x f x dx =-⎰.③由()()12,,,x y x y y c y d ϕϕ====所围图形的面积()()12dcs y y dy ϕϕ=-⎰(2)参数方程情形 由曲线l :()()x t y t ϕψ=⎧⎪⎨=⎪⎩,12t t t ≤≤,x 轴及,x a x b ==所围图形的面积 ()()21t t s t t dt ψϕ'=⎰(3)极坐标情形① 由(),,ρϕθθαθβ===所围图形的面积()212s d βαϕθθ=⎰ ② 由()()12,,,ρϕθρϕθθαθβ====所围图形的面积()()222112s d βαϕθϕθθ⎡⎤=-⎣⎦⎰ 2.体积(1)旋转体的体积① 由()0,,,y y f x x a x b ====所围图形绕x 轴旋转所得旋转体体积:()2b a V f x dx π=⎡⎤⎣⎦⎰. 当0a b ≤<时,上述曲边梯形绕y 轴旋转所得旋转体的体积: ()22bbaaV x y dx x f x dx ππ==⎰⎰.② 由(),0,,x y x y c y d ϕ====所围图形绕y 轴旋转一周形成的立体体积:()2d c V y dy πϕ=⎡⎤⎣⎦⎰ (2)平行截面面积为已知的立体的体积设以()[],A x C a b ∈表示立体Ω的过点x 且垂直于x 轴的截面面积,且立体Ω夹在平面x a x b ==与之间,则立体Ω的体积:()baV A x dx =⎰.3.平面曲线的弧长(1)光滑曲线():,l y f x a x b =≤≤的弧长为as =⎰.(2)光滑曲线()(),: ,x x t l t y y t αβ=⎧⎪≤≤⎨=⎪⎩的弧长为s βα=⎰.(3)光滑曲线():, l ρϕθαθβ=≤≤的弧长为s βαθ=⎰4.变力沿直线做功、水压力 (1)变力沿直线做功设物体在变力()F x 的作用下,沿变力的方向由x a =移到x b =,在物体的位移区间[],a b 内任一子区间[],x x dx +上功的元素为 ()dW F x dx =,全部功()baW F x dx =⎰.(2)水压力设平板铅直地放入液体中,液体的密度为ρ,平板位于液面下的深度在区间[]0,b 内任一子区间[],x x dx +上,液体深x 处的压强为p gx ρ=,压力元素()dp gx f x dx ρ=⋅. 全部压力为 ()0bp gx f x dx ρ=⋅⎰.二、典型题解析(一)填空题【例6.1】 由曲线,xxy e y e -==及直线1x =所围成图形的面积是 . 解 所求面积 ()()1112xx x x S ee dx e e e e ---=-=+=+-⎰.故应填12e e -+-. 【例6.2】 由222,82x y x y =+=所围成图形(见图6.1)面积A (上半平面部分),则A = .解 两曲线22228x y x y ⎧=⎪⎨⎪+=⎩的交点为()()2,2,2,2-.所求的面积为222)2x A dx -=⎰328226x ⎫=-⎪⎭423π=+. 故应填423π+. 【例6.3】 曲线sin 02y x x π⎛⎫=≤≤⎪⎝⎭与直线,02x y π==围成一个平面图形,此平面图形绕x 轴旋转产生的旋转体的体积 .解 2220s i n 4V x d x πππ==⎰. 故应填24π.【例6.4】 阿基米德螺线()0aeλθρλ=>从0θ=到θα=一段弧长s = .解 0s αθ=⎰ ()01eλαθλ==-⎰.)1eλα-.【例6.5】 曲线322y x x x =-++与x 轴所围成的图形的面积A = . 解 函数322(2)(1)y x x x x x x =-++=--+与x 轴的交点为()()()1,0,0,02,0-.()()023232122A x x x dx x x x dx -=--+++-++⎰⎰3712=. (二)选择题图6.122x y =228x y +=【例6.6】 曲线x y e =与其过原点的切线及y 轴所围成的图形(见图6.2)面积为[ ](A ) ()1x e ex dx -⎰; (B )()1ln ln ey y y dy -⎰;(C )()1e x x e xe dx -⎰; (D )()1ln ln y y y dy -⎰.解 曲线x y e =在任意点(),x y 的切线方程为()x x Y e e X x -=-,由于切线过原点,可以求出1x =,于是过原点的切线方程为Y eX =.所求平面图形的面积等于()1xeex dx -⎰. 故选择A.【例6.7】 由曲线()()12y x x x =--与x 轴围成的平面图形的面积为 [ ]. (A )()()()()12011212x x x dx x x x dx -----⎰⎰;(B )()()212x x x dx ---⎰;(C )()()()()12011212x x x dx x x x dx ---+--⎰⎰;(D )()()212x x x dx --⎰.解 在区间[]0,1,0y <,在区间[]1,2,0y >, 所以 ()()112S x x x dx =---⎰()()2112x x x dx +--⎰.故选择C.【例 6.8】 曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭与x 轴围成的平面图形绕x 轴旋转一周而成的旋转体体积为 [ ](A )2π (B )π (C )212π (D )2π. 解 2222cos2V xdx ππππ-==⎰.故选择C.图6.2【例6.9】 双纽线()22222x yx y +=-围成的平面图形的面积为 [ ](A )402cos 2d πθθ⎰; (B )404cos 2d πθθ⎰;(C)2θ; (D )()2401cos 22d πθθ⎰.解 双纽线的极坐标方程为2cos 2 r θ=,(,44ππθ-≤≤35)44ππθ≤≤由对称性 2244001422S r d r d ππθθ=⨯=⎰⎰402cos 2d πθθ=⎰. 故选择A.【例6.10】 曲线()2ln 1y x =-上102x ≤≤的一段弧长l = [ ].(A); (B )1222011x dx x +-⎰; (C); (D ). 解 曲线是直角坐标表示的曲线,采用公式al =⎰.由曲线方程()2ln 1y x =-可得210x ->,221x y x -'=-,则1222011x l dx x +==-⎰. 故选择B .(三)非客观题 1. 平面图形的面积解题方法 (1)先画出草图;(2)求出交点;(3)选取积分变量、区间,找出面积元素,然后积分. (1)直角坐标情形【例6.11】求曲线22,ax y ay x ==所围(见图6.3)的面积. 解 如图所示,交点为()(),00,0A a O 及.图6.32ax y =2y ax =所围的面积()23232002)333aax x aS dx ax a aa ⎡⎤==-=⎢⎥⎣⎦⎰. 【例6.12】 求介于由曲线2121,2+==x y x y 和x 轴围成的平面图形(见图6.4)的面积.解 (法一)设此面积为S ,有12101111()d ()d 2222S x x x x x -=+++-⎰⎰0122310()()42423x x x x x -=+++-23=(法二)13122002(21)]d ()3S y y y y y =-=-+⎰23=.【例6.12】 求0,2x x π==之间由曲线sin y x =和cos y x =所围成的图形(见图6.5)的面积. 解 20sin cos A x x dx π=-⎰()40cos sin x x dx π=-⎰()544sin cos x x dx ππ+-⎰()254cos sin x x dx ππ+-⎰=【例6.13】 求抛物线243y x x =-+-及其在点()0,3-和()3,0处的切线所围成的图形(见图6.6)的面积.解 由24y x '=-+得过点()0,3-和()3,0的切线方程为1:43l y x =-和2:26l y x =-+,图 6.4图 6.24π54π2π图 6.5图 6.6且可得12,l l 交点坐标为3,32⎛⎫⎪⎝⎭,则所围图形的面积为()32204343A x x x dx ⎡⎤=---+-⎣⎦⎰()32322643x x x dx ⎡⎤+-+--+-⎣⎦⎰94=. 【例6.14】求由曲线322,0a y y a x==+所围的面积. 解 所求面积为33222202lim b b a dx S dx a dx a x a x+∞-∞→+∞==++⎰⎰ 3212limarctan b a b a aπ→+∞==. 【例6.15】确定常数k ,使曲线2y x =与直线,2,0x k x k y ==+=所围成图形的面积最小. 解 选x 为积分变量,变化区间为[],2k k +,面积元素2dA x dx =,所求面积为()()22 k kA k x dx k +=-∞<<+∞⎰,要求k 使()A k 取最小值,()A k 是积分上(下)限函数,故()()22241dA k k k dk=+-=+, 令0dA dk =,解得驻点1k =-,因为2240d Adk=>,则1k =-为()A k 在(),-∞+∞内唯一极小值点,即当1k =-时,所围成图形的面积最小. (2)参数方程情形【例6.16】求摆线()()sin ,1cos x a t t y a t =-=-()020t y π≤≤=及所围的面积. 解 所求面积为20(1cos )(1cos )S a t a t dt π=-⋅-⎰图 6.72220(12cos cos )a t t dt π=-+⎰221cos 2(12cos )2tat dt π+=-+⎰20312sin sin 224t t t π⎡⎤=-+⎢⎥⎣⎦23a π=【例6.17】求椭圆渐趋线()2233222cos ,sin c c x t y t c a b a b===-所围面积. 解 所求面积为223324sin cos c c S t t dt b a π'⎛⎫= ⎪⎝⎭⎰22322034sin cos sin c c t t tdt b aπ=⎰4422012sin (1sin )c t t dt abπ=--⎰438c abπ=.(3)极坐标情形【例6.18】求曲线2(2cos )r a θ=+所围成图形(见图6.7)的面积. 解 所求面积为()201222cos 2S a d πθθ=⋅+⎡⎤⎣⎦⎰ ()220444cos cos a d πθθθ=++⎰201cos 2444cos 2a d πθθθ+⎛⎫=++ ⎪⎝⎭⎰209sin 244sin 24a πθθθ⎡⎤=++⎢⎥⎣⎦ 218a π=【例6.19】 求心脏线1cos r θ=+与圆3cos r θ=公共部分(见图6.8)的面积. 解 由3cos 1cos θθ=+得交点坐标为3,23π⎛⎫± ⎪⎝⎭,()2232031121cos (3cos )22S d d πππθθθθ⎡⎤=++⎢⎥⎣⎦⎰⎰54π=. 【例6.20】 求由双纽线()()222222x ya x y +=-所围成且在圆周22212x y a +=内部的图形(见图6.9)的面积.解将r =代入方程22cos2r a θ=中得6πθ=.令0r =代入22cos 2r a θ=中得4πθ=,故 226410611cos 222A d a d πππθθθ=+⎰⎰ 224611sin 22264a a πππθ=⋅⋅+2(633)24a π=+-, 214(66a A A π∴==+-.【例6.21】求由曲线2cos2r r θθ==及所围成的图形的公共部分(见图6.10)的面积.解 解方程组2cos 2r r θθ⎧=⎪⎨=⎪⎩,得两曲线的交点坐标为26π⎛⎫ ⎪ ⎪⎝⎭. 所求的面积为1r =+图 6.9)2646112cos222S d dπππθθθθ=+⎰⎰[]64061112sin2sin2242πππθθθ⎡⎤=-+⎢⎥⎣⎦1626ππ=+=.2.体积的计算(1)旋转体的体积【例6.22】将抛物线24y ax=及直线x x=()x>所围成的图形绕x轴旋转,计算所得的旋转抛物体的体积.解()2,dV f x dxπ=其中()f x=所求体积()00222002x xV f x dx dx axπππ===⎰⎰.【例6.23】求曲线22,0y x x y=-=所围图形分别绕ox轴,oy轴旋转所成旋转体的体积.解所求体积为()22216215xV x x dxππ=-=⎰;()228223yV x x x dxππ=-=⎰。

高等数学 第六章定积分

高等数学 第六章定积分

把区间[a,b] 分成 n个 y 小区间[ xi1, xi ],长度为
y f (x)
xi xi xi1;
(2) 取近似
Ai
在每个小区间[ xi1, xi ] O a x1 xi1i xi xnb1 x
上任取一点i,以 [ xi1, xi ]为底,f (i )为高的小矩形,
面积近似代替 Ai , 有Ai f (i )xi , i 1, 2,L n
极限I, 称这个极限I为函数f(x)在区间[a,b]上的
定积分.记为
积分上限
积分和
b
n
a
f ( x)dx
I
lim
0
i 1
f (i )xi
积分下限 被 积 被
[a,b]积分区间
积 函
分积 变表
数 量达


n
(1) S f (i )xi是与[a, b]的分法及在[ xi1 , xi ]
i 1
一点 i (i xi ), 作乘积 f (i )xi (i 1,2, , n)
(3)
n
并作和 S f (i )xi
(4)
i 1
记 max{ x1, x2 , , xn },如果不论对 [a,b]
怎样的分法,也不论在小区间[ xi1 , xi ]上点 i
怎样的取法,只要当 0时,和S总趋于确定的
lim na sin xdx lim sinn a 0
n n
x
n n
证明 求证 lim 4 sin nx sinn x dx 0 n 0

当x
0,
4
时,
|
s in nx
sinn
x
|
sin

高等数学 第六章 第7节 定积分的几何应用(中央财经大学)

高等数学 第六章 第7节 定积分的几何应用(中央财经大学)

一、微分元素法)( 或称为积分元素法法数学建模中的微分元素 ,当把非均匀变化的问题实际中在物理、几何以及工程 , ,则通积达形式能表示为某两个量的乘看作是均匀变化时. 分问题来处理常可将问题归结为定积 . 具有对区间的可加性要求量运用定积分处理问题时A取极限”—求和—近似“分划—,局利用整体上变化的量在局部问题的步骤将整体问题化成 , ,替“变”在局部上以“不变”代关系部上近似于不变的辩证,采用按照定积分的概念]. ,[ )( 111i i i ni i i ni i x x x f A A −==∈∆≈∆=∑∑ξξ便有关系式, ,个将具有代表性的第略去下标为简便和醒目起见i i, , ]d ,[ ] ,[ 1且取称之为典型小区间表示为小区间x x x x x i i +−, 则有为区间的左端点x i ξ. d )(x x f A ≈∆, )( d )( 记为或积分元素的微分元素为量通常称A x x f. d )(d x x f A =( 0d , 相当于取极限过程对区间的可加性由量→x A ] ,[ d , 0)||||上“无限累加”起来在区间将微分元素b a A x →∆] ,[ )(上的值:在区间就得到量即作定积分b a A. d )(d ∫∫==babax x f A A. ,加解为微分元素的无限累我们在这里将定积分理简言之一、平面图形的面积1解解解解y2解3解二、旋转体的体积一轴旋转一周所生成的将平面图形绕平面上某 . ,该轴称为旋转轴几何体称为旋转体 . , 间的可加性旋转体的体积具有对区上在区间I:旋转体的特点 ,截旋转体所得的的平面任何一个垂直于旋转轴. 图形均为圆截口1 y1 y2解Oaa b解解2πy三、平行截面面积为已知的几何体的体积解解。

高等数学第六章第二节定积分在几何学上的应用课件.ppt

高等数学第六章第二节定积分在几何学上的应用课件.ppt

解:
cos x 0,
2
x
2
s
2
2
2 2 0
1 y2 dx 1 ( cos x)2 dx
2 2
2 cos x dx
0
2
2
2
2
sin
x 2
2
0
4
的弧长.
例11. 计算摆线
一拱
的弧长 .
y
解: ds
(dd
x t
)2
(
d d
y t
)
2
d
t
o
a2 (1 cos t)2 a2 sin2 t d t
1 y2 dx
因此所求弧长
s b 1 y2 dx a
b
a
1 f 2(x) dx
y
y f (x)
ds
o a xxdxb x
(2) 曲线弧由参数方程给出:
弧长元素(弧微分) :
ds (dx)2 (dy)2
2 (t) 2 (t) dt
因此所求弧长
s
2 (t) 2 (t) d t
(3) 曲线弧由极坐标方程给出:
y b
o x ax
则 V 2 a y2 dx 0
(利用对称性)
2
b2 a2
a
(a
2
x2
)
dx
0
2
b2 a2
a2 x
1 3
x3
a 0
4 ab2
3
方法2 利用椭圆参数方程
则 V 20a y2 dx 2 ab2 sin3t d t
2 ab2 2 1
3
4 ab2
3
特别当b
=
a

高等数学第6章

高等数学第6章

• 另外,如果这个极限存在,也称广义积分 • 收敛,否则称广义积分
发散。
• 同样可定义广义积分 及其收敛
• 和发散。对广义积分 •

存在的充分必要条件是对任意 实数a,两个广义积分 和
都收敛。
• 6.5.2 无界函数的定积分
• 定义6.5.2 设函数 f (x)在[a,b)有定义,且当 x→b-时,f (x)→∞,设δ>0,积分
• 如果极限
• 存在,这个极限就称为无界函数 f (x)在[a,b] 上的广义积分,记为
• 也称广义积分
极限 •
收敛。否则,如果
不存在,就称广义积分
是发散的。
• 类似地,如果当x→a+时,f(x)→∞,可以类
似地定义广义积分 为:
• 而对当a<c<b,当x→c时,f(x)→∞,规定广
义积分 • 和 存在当且仅当广义积分 都存在,且
• 6.3 微积分学基本定理 • 6.3.1 变限定积分 • 定理6.3.1 如果函数f (x)是区间[a,b]上的一个
连续函数,那么当a≤x≤b时,变上限积分
• 是一个可导函数,且
• 定理6.3.2 在区间[a,b]上连续的函数 f (x)的
• 原函数一定存在,且变上限积分
• 就是它的一个原函数。 • 例6.3.4 设 f (x),g(x)和h(x)都是连续函数,
• 令各小区间的最大长度

• 如果不论小区间怎样划分,也不论在小区
间[xk-1,xk]上如何取ξk,当λ→0时,极限

• 为
总是存在,则这一极限就称
为函数 f (x)在区间[a,b]上的定积分。记 ,即:
• 关于定积分的定义,我们做如下说明:

高等数学第六章定积分的应用

高等数学第六章定积分的应用

3)以所求量U 的元素 f ( x)dx 为被积表达式,在
区间[a, b]上作定积分,得U
b
a
f
( x)dx

即为所求量U 的积分表达式.
这个方法通常叫做元素法.
应用方向:
平面图形的面积;体积;平面曲线的弧长; 功;水压力;引力和平均值等.
第二节 平面图形的面积
一、直角坐标系情形
y y f (x)
弧长元素 ds 1 y2dx 弧长 s b 1 y2dx. a
例1
计算曲线 y
2
x
3 2
上相应于
x
从a
到b
的一段
3
弧的长度.

y
1
x2,
ds
1
(
x
1 2
)2
dx
1 xdx,
所求弧长为
a
b
s
b
2
3
3
1 xdx [(1 b)2 (1 a)2 ].
a
3
x
例 2 计算曲线 y n n sin d 的弧长(0 x n) . 0
a
提示 若用A 表示任一小区间 [ x, x x]上的窄曲边梯形的面积,y
则 A A,并取A f ( x)dx ,
面 积 元 素
dA
y f (x)
于是A f ( x)dx
b
o a x x dxb x
A lim f ( x)dx a f ( x)dx.
当所求量U 符合下列条件:
(1)U 是与一个变量x 的变化区间a,b 有关
x y2 y x2
面积元素 dA ( x x2 )dx
A
1
0
(

高等数学教案ch6定积分的应用(2021年整理)

高等数学教案ch6定积分的应用(2021年整理)

高等数学教案ch6定积分的应用(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高等数学教案ch6定积分的应用(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高等数学教案ch6定积分的应用(word版可编辑修改)的全部内容。

第六章定积分的应用教学目的1、理解元素法的基本思想;2、掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积)。

3、掌握用定积分表达和计算一些物理量(变力做功、引力、压力和函数的平均值等)。

教学重点:1、计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积.2、计算变力所做的功、引力、压力和函数的平均值等.教学难点:1、截面面积为已知的立体体积。

2、引力。

§6 1 定积分的元素法回忆曲边梯形的面积设y f (x)0 (x[a b])如果说积分⎰=b adx xfA)(是以[a b]为底的曲边梯形的面积则积分上限函数⎰=x adt tfxA)()(就是以[a x]为底的曲边梯形的面积而微分dA(x)f(x)dx表示点x处以dx为宽的小曲边梯形面积的近似值A f(x)dx f (x)dx称为曲边梯形的面积元素以[a b ]为底的曲边梯形的面积A 就是以面积元素f (x )dx 为被积表达式 以[ab ]为积分区间的定积分⎰=ba dx x f A )(一般情况下 为求某一量U 先将此量分布在某一区间[ab ]上分布在[ax ]上的量用函数U (x )表示再求这一量的元素dU (x ) 设dU (x )u (x )dx 然后以u (x )dx 为被积表达式 以[a b ]为积分区间求定积分即得⎰=ba dxx f U )(用这一方法求一量的值的方法称为微元法(或元素法)§6 2 定积分在几何上的应用一、平面图形的面积 1.直角坐标情形设平面图形由上下两条曲线y f 上(x )与y f 下(x )及左右两条直线x a 与x b 所围成则面积元素为[f 上(x ) f 下(x )]dx 于是平面图形的面积为dx x f x f S ba ⎰-=)]()([下上类似地由左右两条曲线x 左(y )与x右(y )及上下两条直线y d 与y c 所围成设平面图形的面积为 ⎰-=dc dy y y S )]()([左右ϕϕ例1 计算抛物线y 2x 、y x 2所围成的图形的面积解 (1)画图(2)确定在x 轴上的投影区间: [0 1](3)确定上下曲线2)( ,)(x x f x x f ==下上(4)计算积分31]3132[)(10323102=-=-=⎰x x dx x x S例2 计算抛物线y 22x 与直线y x 4所围成的图形的面积解 (1)画图(2)确定在y 轴上的投影区间: [24](3)确定左右曲线4)( ,21)(2+==y y y y 右左ϕϕ(4)计算积分⎰--+=422)214(dy y y S 18]61421[4232=-+=-y y y例3 求椭圆12222=+by a x 所围成的图形的面积解 设整个椭圆的面积是椭圆在第一象限部分的四倍 椭圆在第一象限部分在x 轴上的投影区间为[0a ] 因为面积元素为ydx 所以⎰=aydxS 04椭圆的参数方程为:x a cos t y b sin t于是 ⎰=a ydx S 04⎰=02)cos (sin 4πt a td b⎰-=022sin 4πtdt ab ⎰-=20)2cos 1(2πdt t ab ππab ab =⋅=222.极坐标情形曲边扇形及曲边扇形的面积元素由曲线()及射线围成的图形称为曲边扇形曲边扇形的面积元素为θθϕd dS 2)]([21=曲边扇形的面积为⎰=βαθθϕd S 2)]([21例4. 计算阿基米德螺线a (a 〉0)上相应于从0变到2 的一段弧与极轴所围成的图形的面积解: ⎰=πθθ202)(21d a S 32203234]31[21πθπa a ==例5. 计算心形线a (1cos ) (a >0) 所围成的图形的面积解: ⎰+=πθθ02]cos 1([212d a S ⎰++=πθθθ02)2cos 21cos 221(d aπθθθπ20223]2sin 41sin 223[a a =++=二、体 积 1.旋转体的体积旋转体就是由一个平面图形绕这平面内一条直线旋转一周而成的立体 这直线叫做旋转轴常见的旋转体圆柱、圆锥、圆台、球体旋转体都可以看作是由连续曲线y f (x )、直线x a 、a b 及x 轴所围成的曲边梯形绕x 轴旋转一周而成的立体设过区间[ab ]内点x 且垂直于x 轴的平面左侧的旋转体的体积为V (x ) 当平面左右平移dx 后 体积的增量近似为V [f (x )]2dx于是体积元素为dV [f (x )]2dx旋转体的体积为 dxx f V ba 2)]([π⎰=例1 连接坐标原点O 及点P (hr )的直线、直线x h 及x 轴围成一个直角三角形将它绕x 轴旋转构成一个底半径为r 、高为h 的圆锥体 计算这圆锥体的体积解: 直角三角形斜边的直线方程为xhr y =所求圆锥体的体积为dx x hr V h 20)(π⎰=hx hr 0322]31[π=231hr π=例2计算由椭圆12222=+by a x 所成的图形绕x 轴旋转而成的旋转体(旋转椭球体)的体积解: 这个旋转椭球体也可以看作是由半个椭圆 22x a ab y -=及x 轴围成的图形绕x 轴旋转而成的立体 体积元素为dV y 2dx于是所求旋转椭球体的体积为⎰--=a a dx x a a b V )(2222πa a x x a ab --=]31[3222π234abπ=例3 计算由摆线x a (t sin t ) y a (1cos t )的一拱 直线y 0所围成的图形分别绕x 轴、y 轴旋转而成的旋转体的体积解 所给图形绕x 轴旋转而成的旋转体的体积为 ⎰=a x dx y V ππ202⎰-⋅-=ππ2022)cos 1()cos 1(dt t a t a ⎰-+-=ππ20323)cos cos 3cos 31(dt t t t a52a 3所给图形绕y 轴旋转而成的旋转体的体积是两个旋转体体积的差 设曲线左半边为x =x 1(y )、右半边为x =x 2(y )则⎰⎰-=aay dy y x dy y x V 20212022)()(ππ ⎰⎰⋅--⋅-=πππππ022222sin )sin (sin )sin (tdt a t t a tdt a t t a ⎰--=ππ2023sin )sin (tdtt t a 63a 32.平行截面面积为已知的立体的体积 设立体在x 轴的投影区间为[a b ] 过点x 且垂直于x 轴的平面与立体相截 截面面积为A (x ) 则体积元素为A (x )dx立体的体积为dxx A V ba )(⎰=例4 一平面经过半径为R 的圆柱体的底圆中心 并与底面交成角计算这平面截圆柱所得立体的体积解取这平面与圆柱体的底面的交线为x 轴 底面上过圆中心、且垂直于x 轴的直线为y 轴 那么底圆的方程为x 2 y 2R 2 立体中过点x 且垂直于x 轴的截面是一个直角三角形两个直角边分别为22x R -及αtan 22x R - 因而截面积为αtan )(21)(22x R x A -= 于是所求的立体体积为dx x R V RR αtan )(2122-=⎰-ααtan 32]31[tan 21332R x x R RR=-=-例5 求以半径为R 的圆为底、平行且等于底圆直径的线段为顶、高为h 的正劈锥体的体积解: 取底圆所在的平面为x O y 平面 圆心为原点并使x 轴与正劈锥的顶平行底圆的方程为x 2y 2R 2 过x 轴上的点x (R <x 〈R )作垂直于x 轴的平面 截正劈锥体得等腰三角形这截面的面积为22)(x R h y h x A -=⋅=于是所求正劈锥体的体积为⎰--=RR dx x R hV 22hR d h R 2202221cos 2πθθπ==⎰三、平面曲线的弧长设A B 是曲线弧上的两个端点在弧AB 上任取分点A M 0M 1M 2M i1M i M n1M n B 并依次连接相邻的分点得一内接折线 当分点的数目无限增加且每个小段M i 1M i 都缩向一点时 如果此折线的长∑=-ni i i M M 11||的极限存在则称此极限为曲线弧AB 的弧长并称此曲线弧AB 是可求长的定理 光滑曲线弧是可求长的1.直角坐标情形设曲线弧由直角坐标方程y f (x ) (a x b )给出其中f (x )在区间[a b ]上具有一阶连续导数现在来计算这曲线弧的长度取横坐标x 为积分变量 它的变化区间为[ab ]曲线yf (x )上相应于[a b ]上任一小区间[x xdx ]的一段弧的长度 可以用该曲线在点(x f (x ))处的切线上相应的一小段的长度来近似代替而切线上这相应的小段的长度为dxy dy dx 2221)()('+=+从而得弧长元素(即弧微分)dxy ds 21'+=以dx y 21'+为被积表达式 在闭区间[a b ]上作定积分便得所求的弧长为⎰'+=ba dxy s 21在曲率一节中我们已经知道弧微分的表达式为dxy ds 21'+=这也就是弧长元素因此 例1 计算曲线2332x y =上相应于x 从a 到b 的一段弧的长度解21x y =' 从而弧长元素dxx dx y ds +='+=112因此 所求弧长为b a bax dx x s ])1(32[123+=+=⎰])1()1[(322323a b +-+=例2 计算悬链线cx c y ch =上介于xb 与x b 之间一段弧的长度解cxy sh =' 从而弧长元素为dx cx dx c x ds ch sh 12=+=因此 所求弧长为⎰⎰==-b b b dx cx dx c x s 0ch 2ch c b c dx c x c b sh 2]sh [20==2.参数方程情形 设曲线弧由参数方程x (t )、y (t ) (t )给出 其中(t )、(t )在[]上具有连续导数因为)()(t t dx dy ϕψ''=dx(t )d t所以弧长元素为dtt t dt t t t ds )()()()()(12222ψϕϕϕψ'+'='''+=所求弧长为⎰'+'=βαψϕdtt t s )()(22例3 计算摆线xa (sin ) y a (1cos )的一拱(02)的长度解 弧长元素为θθθd a a ds 2222sin )cos 1(+-=θθd a )cos 1(2-=θθd a 2sin 2=所求弧长为⎰=πθθ202sin 2d a s πθ20]2cos 2[2-=a 8a3.极坐标情形设曲线弧由极坐标方程() ()给出其中r ()在[]上具有连续导数 由直角坐标与极坐标的关系可得 x()cosy()sin()于是得弧长元素为θθθd y x ds )()(22'+'=θθρθρd )()(22'+=从而所求弧长为⎰'+=βαθθρθρd s )()(22例14 求阿基米德螺线a (a >0)相应于 从0到2 一段的弧长解弧长元素为θθθθd a d a a ds 22221+=+=于是所求弧长为⎰+=πθθ2021d a s )]412ln(412[222ππππ++++=a§63 功 水压力和引力一、变力沿直线所作的功 例1 把一个带q 电量的点电荷放在r 轴上坐标原点O 处 它产生一个电场 这个电场对周围的电荷有作用力由物理学知道如果有一个单位正电荷放在这个电场中距离原点O 为r 的地方 那么电场对它的作用力的大小为2r qkF = (k 是常数)当这个单位正电荷在电场中从r a 处沿r 轴移动到r b (a <b )处时计算电场力F 对它所作的功例1¢ 电量为+q 的点电荷位于r 轴的坐标原点O 处它所产生的电场力使r 轴上的一个单位正电荷从r =a 处移动到r =b (a <b )处求电场力对单位正电荷所作的功提示: 由物理学知道在电量为+q 的点电荷所产生的电场中距离点电荷r 处的单位正电荷所受到的电场力的大小为2rq k F = (k 是常数) 解: 在r 轴上当单位正电荷从r 移动到r +dr 时电场力对它所作的功近似为dr rq k 2即功元素为drrq k dW 2=于是所求的功为dr rkq W b a2⎰=b a r kq ]1[-=)11(b a kq -=例2 在底面积为S 的圆柱形容器中盛有一定量的气体 在等温条件下由于气体的膨胀把容器中的一个活塞(面积为S )从点a 处推移到点b 处计算在移动过程中气体压力所作的功解取坐标系如图 活塞的位置可以用坐标x 来表示 由物理学知道一定量的气体在等温条件下 压强p 与体积V 的乘积是常数k即pV k 或Vkp =解: 在点x 处因为V xS所以作在活塞上的力为xkS xS k S p F =⋅=⋅=当活塞从x 移动到x dx 时 变力所作的功近似为dxxk即功元素为dxxk dW =于是所求的功为dx x k W b a ⎰=b a x k ][ln =ab k ln =例3 一圆柱形的贮水桶高为5m 底圆半径为3m 桶内盛满了水试问要把桶内的水全部吸出需作多少功? 解作x 轴如图取深度x 为积分变量它的变化区间为[0 5]相应于[05]上任小区间[x x dx ]的一薄层水的高度为dx 水的比重为98kN/m 3 因此如x 的单位为m这薄层水的重力为98×32dx这薄层水吸出桶外需作的功近似地为dW 882×x ×dx此即功元素于是所求的功为⎰=502.88xdx W π502]2[2.88x π=2252.88⋅=π(kj )二、水压力 从物理学知道在水深为h 处的压强为ph 这里 是水的比重 如果有一面积为A 的平板水平地放置在水深为h 处 那么 平板一侧所受的水压力为P p ×A如果这个平板铅直放置在水中 那么 由于水深不同的点处压强p 不相等 所以平板所受水的压力就不能用上述方法计算例4 一个横放着的圆柱形水桶 桶内盛有半桶水设桶的底半径为R 水的比重为计算桶的一个端面上所受的压力解桶的一个端面是圆片与水接触的是下半圆取坐标系如图在水深x 处于圆片上取一窄条 其宽为dx得压力元素为dxx R x dP 222-=γ所求压力为⎰-=Rdx x R x P 022 2γ)()(2221220x R d x R R---=⎰γ R x R 02322])(32[--=γ332R r =三、引力 从物理学知道质量分别为m 1、m 2 相距为r 的两质点间的引力的大小为221r m m GF =其中G 为引力系数 引力的方向沿着两质点连线方向如果要计算一根细棒对一个质点的引力 那么由于细棒上各点与该质点的距离是变化的且各点对该质点的引力的方向也是变化的 就不能用上述公式来计算例5 设有一长度为l 、线密度为的均匀细直棒在其中垂线上距棒a 单位处有一质量为m 的质点M 试计算该棒对质点M 的引力例5求长度为l 、线密度为的均匀细直棒对其中垂线上距棒a 单位处质量为m 的质点M 的引力 解 取坐标系如图使棒位于y 轴上质点M 位于x 轴上 棒的中点为原点O由对称性知 引力在垂直方向上的分量为零 所以只需求引力在水平方向的分量 取y 为积分变量它的变化区间为]2,2[l l - 在]2,2[l l -上y 点取长为dy 的一小段其质量为dy与M 相距22y a r += 于是在水平方向上引力元素为2222y a a y a dy m GdF x +-⋅+=ρ2/322)(y a dy am G +-=ρ引力在水平方向的分量为⎰-+-=222/322)(ll x y a dy am GF ρ22412l a a l Gm +⋅-=ρ。

高等数学-定积分及其应用ppt课件.ppt

高等数学-定积分及其应用ppt课件.ppt
一、引例
在变速直线运动中, 已知位置函数
与速度函数
之间有关系:
物体在时间间隔
内经过的路程为
这种积分与原函数的关系在一定条件下具有普遍性 .
5.3 定积分的计算
则积分上限函数
证:
则有
定理1. 若
5.3.1 牛顿 – 莱布尼兹公式
说明:
1) 定理 1 证明了连续函数的原函数是存在的.
2) 变限积分求导:
5.6.1 广义积分
引例. 曲线
和直线
及 x 轴所围成的开口曲
边梯形的面积
可记作
其含义可理解为
1 连续函数在无限区间上的积分
定义1. 设

存在 ,
则称此极限为 f (x) 在区间 的广义积分,
记作
这时称广义积分
收敛 ;
如果上述极限不存在,
就称广义积分
发散 .
类似地 , 若
公式, 复化求积公式等,
并有现成的数学软件可供调用.
性质1 常数因子可提到积分号外 性质2 函数代数和的积分等于它们积分的代数和。
5.2 定积分的简单性质
性质3 若在区间 [ a , b ]上 f (x)≡K,则 性质4 定积分的区间可加性 若 c 是 [ a , b ] 内的任一点,则
的面积 .
解:
例3. 汽车以每小时 36 km 的速度行驶 ,
速停车,
解: 设开始刹车时刻为
则此时刻汽车速度
刹车后汽车减速行驶 , 其速度为
当汽车停住时,


故在这段时间内汽车所走的距离为
刹车,
问从开始刹
到某处需要减
设汽车以等加速度
车到停车走了多少距离?

高等数学习题详解-第6章定积分

高等数学习题详解-第6章定积分

习题6-11. 利用定积分的几何意义求定积分:利用定积分的几何意义求定积分:(1) 12xdx ò; (2) 220aa x dx -ò(0)a >.解 (1) 根据定然积分的几何意义知, 102xdx ò表示由直线2,1y x x ==及x 轴所围的三角形的面积,而此三角形面积为1,所以1021xdx =ò.(2) 根据定积分的几何意义知,22aa x dx -ò表示由曲线22,0,y a x x x a =-==及x 轴所围成的14圆的面积,而此14圆面积为214πa ,所以222014aa x dx a -=òπ. 2. 根据定积分的性质,比较积分值的大小:根据定积分的性质,比较积分值的大小:(1) 12x dx ò与13x dx ò; (2) 10xe dx ò与1(1)x dx +ò.解 (1) ∵当[0,1]x Î时,232(1)0x x x x -=-³,即23x x ³, 又2x3x ,所以11230x dx x dx >òò.(2) 令()1,()1x xf x e x f x e ¢=--=-,因01x ££,所以()0f x ¢>, 从而()(0)0f x f ³=,说明1xe x ³+,所以11(1)xe dx x dx >+òò.3. 估计下列各积分值的范围:估计下列各积分值的范围:(1) 421(1)x dx +ò; (2) 313arctan x xdx ò;(3) 2axae dx --ò(0a >); (4) 22xxedx -ò.解 (1) 在区间[]1,4上,函数2()1f x x =+是增函数,故在[1,4]上的最大值(4)17M f ==,最小值(1)2m f ==,所以4212(41)(1)17(41)d x x -£+£-ò, 即 4216(1)51x dx £+£ò.(2) 令()arctan f x x x =,则2()arctan 1x f x x x ¢=++,当1[,3]3x Î时,()0f x ¢>,从而()f x 在1[,3]3上是增函数,从而f (x )在1[,3]3上的最大值(3)3πM f ==,最小值1()363πm f ==,所以所以 313112(3)arctan (3)9363333x xdx =-££-=òππππ即3132arctan 93x xdx ££òππ. (3) 令2()x f x e-=,则2()2xf x xe -¢=-,令()0f x ¢=得驻点0x =,又(0)1f =, 2()()a f a f a e-=-=,a >0时, 21ae -<,故()f x 在[],a a -上的最大值1M =,最小值,最小值2ea m -=,所以所以2222aa x aa dx a---££òee . (4) 令2()x x f x e -=,则2()(21)x xf x x e -¢=-,令()0f x ¢=得驻点12x =,又(0)1,f = 1241(),(2)2f e f e -==,从而()f x 在[]0,2上的最大值2M e =,最小值14m e -=,所以所以 2122402x xeedx e --££ò.习题6-21. 求下列导数:求下列导数:(1) 201x d t dt dx +ò; (2) 5ln 2x td te dt dx -ò; (3) cos 20cos()xd t dt dx p ò; (4) sin x d t dt dx tp ò (0x >). 解 (1) 22011xd t dt x dx +=+ò. (2)55ln 2x tx d t e dt x e dx --=ò. (3) cos 2220cos()cos(cos )(cos )sin cos(cos )x d t dt x x x x dxp p p ¢=×=-ò(4)sin sin sin x xdt d t x dt dt dx t dx t xp p =-=-òò. 2. 求下列极限:求下列极限:(1) 02arctan limxx tdt x ®ò; (2) ()2220020e lime x t xx t dt t dt®òò.解 (1) ()0022000021arctan arctan arctan 11(1)lim lim lim lim 222x x x x x x tdt tdt x x x x x ®®®®¢éù--ëû+====-¢òò.(2) ()()22222222222000020000220022lim lim lim lim x x x x t t t x t x x x x x x x t x t e dt e dt e dt e dt xe xe te dt te dt ®®®®¢éù×êúëû===¢éùëûòòòòòòe []2222202000222lim lim lim 2122x t x x x x x x x e dt e x e xe xxe ®®®¢éùëû====+¢+×ò. 3. 求由方程e cos 0yx tdt tdt +=òò所确定的隐函数()y y x =的导数.的导数.解 方程两边对x 求导数得: cos 0e yy x ¢×+=, cosey x y ¢\=-,又由已知方程有000sin e yxtt +=,即1sin sin 00e yx -+-=, 即1sin e yx =-,于是有cos cos sin 1eyxx y x ¢=-=-.4. 计算下列定积分:计算下列定积分: (1) 41xdx ò; (2) 221d x x x --ò;(3) 设,0,2()sin ,2x x f x x x p p p 죣ïï=í;ïî,求0()f x dx p ò (4)320(2)x dx -ò.解 (1)44321121433xdx x ==ò.(2)2122222111()()()dx x x dx x x dx x x dx x x --=-+-+--òòòò012322332101111111116322332x x x x x x -æöæöæö=++=---ç÷ç÷ç÷èøèøèø.(3) ()22220022()sin 1cos 82x f x dx xdx xdxx p pp pp ppp =+=+=+-òòò(4) 33232002(2)2(2)(2)x dx xdx x dx x dx -=-=-+-òòòò232202115(2)(2)222x x x x =-+-=.5.设函数()f x 在区间[],a b 上连续上连续,,在(),a b 内可导内可导,,()0f x ¢£,1()()xaF x f t dt x a =-ò;证明:在(),a b 内有()0F x ¢£.证明证明 22111()()()()()()()()xx aa F x f t dt f x x a f x f t dt x a x a x a éù¢=-+=--êúëû---òò[][][]21()()()(),(,,)()x a f x x a f a x a b x a x x =---ÎÎ-(),((,)(,))x f x a b x ax h h x -¢=ÎÎ-. 由已知条件可知结论成立.由已知条件可知结论成立.习题习题 6-3 6-31. 计算下列积分:计算下列积分: (1) 3sin()x dx pp p +3ò; (2) 32(115)dx x 1-+ò; (3) 11154dx x--ò; (4) 320sin cos d j j j pò;(5) 22cos udu p p 6ò; (6) 2e 11ln dx x x+ò;(7) 32211dx xx +ò; (8) 2202x dx -ò; (9) ln 3ln 2e e x x dx--ò; (10)3222dxx x +-ò.解 (1) 333sin()sin()()[cos()]x dx x d x x pp p pp p p p p p +=++=-+3333òò42cos cos 033p p =-+=.(2) 123322211(511)151(511)(115)5(511)10512dxd x x x x 11---+==-=+++òò(3)1111111111(54)154425454dx d x x x x---=--=-=---òò.(4)233422011sin cos cos cos cos 44d d p ppj j j j j j=-==-òò.(5)222221cos 211cos cos 2(2)224u udu du du ud u pp p p ppp p 6666+==+òòòò26131sin 2268264up p p p p æö=+=--ç÷èø. (6) 222111(ln 1)22(31)1ln 1ln 1ln e e e dx d x x x x x+===-+++òò. (7) 令tan x t =,则2sec dx tdt =,当1x =时,4t p =;当3x =时,3t p =;于是于是 333222144cos 2123sin 3sin 1dx t dt t t x x p p p p==-=-+òò. (8) 令2sin x t =,则2cos dx tdt =,当0x =时,0t =;当2x =时,2t p=;于是2222220122cos (1cos 2)(sin 2)22x dx tdt t dt tt pppp-==+==+òòò.(9) 令xe t =,则1ln ,d x t x dt t ==,当ln 2x =时,2t =;;当ln 3x =时,3t =;于是于是3ln3332ln 22221113111(ln ln)12222111x xdxdt t dt e e t t t t --æö====-ç÷---++èøòòò.(10)333222211111()ln 231232dx x dx x x x x x -=-=+--++òò 1211(ln ln )ln 2ln 53543=-=- 2. 计算下列定积分:计算下列定积分: (1) 10e x x dx -ò; (2)e1ln x xdx ò;(3) 41ln x dx x ò; (4) 324sin xdx xpp ò; (5) 220e cos x xdx p ò; (6) 221log x xdx ò;(7)π20(sin )x x dx ò; (8) e1sin(ln )x dx ò.解 (1) (1)111100xxxxxedx xdexee dx ----=-=-+òòò1110121x e ee e e e----=--=--+=-.(2) 2222211111111111ln ln ln (1)222244e e e ee x xdx xdx x x xdx e x e ==-=-=+òòò. (3) 4444411111ln 12ln 2ln 28ln 24x dx xd x x x x dx x x x ==-×=-òòò 8ln 24=-.(4) 333324444cot cot cot sin x dx xd x x x xdx x p p p pp p p p =-=-+òòò34π131ln ln sin 492249x ppp p 3æö3=-+=+-ç÷èø. (5) 222222220cos sin sin 2sin xx x x exdx e d x e x e xdx p p p p ==-òòò222222002cos 2cos 4cos xxxe e d x e e xe xdx pp ppp=+=+-òò220e 24cos x e xdx pp =--ò于是于是221cos (2)5x e xdx e pp =-ò. (6) ()2222222111122221111log ln ln 2ln 22ln 211ln 2ln 22x xdx xdx x x xdx x x x ==-æö=-ç÷ç÷èøòòò 133(4ln 2)22ln 224ln 2=-=-. (7) 223200001111(sin )(1cos 2)(sin2)2232x x dx x x dx x x d x pp p p =-=-òòò 33200011(sin 22sin2)cos26464x x x xdx xd x p p p p p =--=-òò 3001(cos 2cos2)64x x xdx p p p =--ò 3301sin 264864x p p p p p=-+=-.(8)111sin(ln )sin(ln )cos(ln )eee x dx x x x dx =-òò11sin1cos(ln )sin(ln )ee e x x x dx =--ò1sin1cos11sin(ln )e e e x dx =-+-ò所以所以11sin(ln )(sin1cos11)2ex dx e e =-+ò.3. 利用被积函数的奇偶性计算下列积分:利用被积函数的奇偶性计算下列积分:(1) 121ln(1)x x dx -++ò ; (2)1212sin 1xdx x -++ò (3) 2222(4)x x dx -+-ò; (4) 4224cos d q q pp -ò.解 (1) 2ln(1)x x ++ 是奇函数,是奇函数, 121ln(1)0x x dx -\++=ò.(2) 2sin 1x x+ 是奇函数,121sin 01x dx x -\=+ò, 因此因此 111221112sin 22arctan 11x dx dx x x x p ---+===++òò. (3) 222222222(4)(424)416x x dx x x dx dx ---+-=+-==òòò. (4) ()244222022201cos 24cos 8cos 82212cos 2cos231384222d d d d q q q q q qq q qp p pp p p -p+æö==ç÷èø=++=×××=òòòò.4. 证明下列等式:证明下列等式:(1) 证明:1100(1)(1)mnn m x x dx x x dx -=-òò;(2) 证明:1122111xx dx dx x x=++òò (0x >); (3) 设()f x 是定义在区间(,)-¥+¥上的周期为T 的连续函数,则对任意(,)a Î-¥+¥,有()()a TTaf x dx f x dx +=òò.证 (1)令1x t -=,则dx dt =-,当0x =时,1t =;当1x =时,0t =;于是于是1111(1)(1)()(1)(1)m n m n n m n mx x dx t t dt t t dt x x dx -=--=-=-òòòò,即11(1)(1)m n n m x x dx x x dx -=-òò.(2) 令1x t =则21dx dt t-=, 于是11111112222211211111111111t x x t tdx dt t dt dx x t t x t tæö=×=-×==-ç÷++++èø+òòòòòd ,即1122111xxdxdxx x =++òò.(3) 因为因为()()()a TT a Taa f x dx f x dx f x dx ++=+òòò,而,而()()()a Taaaf x dx x t Tf t T dt f t dt +=++=òòò令 0()()()aTTaf x dx f x dx f x dx ==-òòò故()()a TTaf x dx f x dx +=òò.4. 若()f t 是连续函数且为奇函数,是连续函数且为奇函数,证明证明0()xf t dt ò是偶函数;若()f t 是连续函数且为偶函数,证明()xf t dt ò是奇函数.是奇函数.证 令0()()xF x f t dt =ò.若()f t 为奇函数,则()()f t f t -=-,令t u =-,可得,可得()()()()()xxxF x f t dt f u du f u du F x --==--==òòò, 所以0()()xF x f t dt =ò是偶函数.是偶函数.若()f t 为偶函数,则()()f t f t -=,令t u =-,可得,可得()()()()()xxxF x f t dt f u du f u du F x --==--=-=-òòò, 所以0()()xF x f t dt =ò是奇函数.是奇函数.5. 利用分部积分公式证明:利用分部积分公式证明:()()()()d xxu f u x u du f x x du -=òòò.证 令0()()uF u f x dx =ò则()()F u f u ¢=, 则(())()()()xu xxxf x dx du F u du uF u uF u du ¢==-òòòò()()()()xxxxF x uf u du xf x dx uf u du =-=-òòò()()()()xxxxx f u du uf u du xf u du uf u du =-=-òòòò()()xx u f u du =-ò. 习题6-41. 求由下列曲线所围成的平面图形的面积:求由下列曲线所围成的平面图形的面积:(1) 2y x =与22y x =-; (2) x y e =与0x =及y e =; (3) 24y x =-与0y =; (4) 2y x =与y x =及2y x =;(5) 1y x =与y x =及2x =; (6) 2y x =与2y x =-; (7) ,xx y e y e -==与1x =;(8) sin (0)2y x x p =££与0,1x y ==.解 (1)两曲线的交点为(1,1),(1,1)-,取x 为积分变量,[]1,1x Î-,面积元素22(2)dA x x dx =--,于是所求的面积为,于是所求的面积为112311182(1)2()33A x dx x x --=-=-=ò.(2) 曲线x y e =与y e =的交点坐标(1,)e , x y e =与0x =的交点为(0,1),取y 为积分变量,[]1,y e Î,面积元素ln dA ydy =;于是所求面积为;于是所求面积为111ln (ln )1eeeA ydy ydy y y y ===-=òò. (3)曲线24y x =-与0y =的交点为(2,0),(2,0)-,取x 为积分变量,[]2,2x Î-,面积元素2(4)dA x dx =-,于是所求的面积为,于是所求的面积为222322132(4)(4)33A x dx x x --=-=-=ò. (4) 曲线2y x =与y x =的交点为(0,0),(1,1);2y x =与2y x =的交点为(0,0),(2,4); 它们所围图形面积为:它们所围图形面积为:1212220101(2)(2)(2)A x x dx x x dx xdx x x dx =-+-=+-òòòò2231201117()236x x x =+-=.(5) 曲线1y x =与y x =的交点为(1,1),1y x=与2x =的交点为1(2,)2;取x 积分变量,[]1,2x Î,面积元素1()dA x dx x =-,于是所求的面积为,于是所求的面积为22211113()(ln )ln 222A x dx x x x =-=-=-ò.(6) 曲线2y x =与2y x =-的交点为()()114,2-,和,取y 作积分变量,[]1,2y Î-,面积元素2(2)dA y y dy =+-,于是所求的面积为,于是所求的面积为2222311117(2)(2)232A y y dy y y y --=+-=+-=ò.(7) 曲线x y e =与xy e -=的交点(0,1),取x 作积分变量,[]0,1x Î,面积元素()xxdA e e dx -=-,于是所求图形的面积为,于是所求图形的面积为10)()2xxxxA e e dx e e e e--=-=+=+-ò11(.(8)取x 作积分变量,0,2x p éùÎêúëû,面积元素(1sin )dA x dx =-,于是所求的面积为,于是所求的面积为220(1sin )(cos )12A x dx x x ppp =-=+=-ò.2. 求由下列曲线围成的平面图形绕指定坐标轴旋转而成的旋转体的体积:求由下列曲线围成的平面图形绕指定坐标轴旋转而成的旋转体的体积:(1) ,1,4,0y x x x y ====,绕x 轴;轴; (2) 3,2,y x x x ==轴,分别绕x 轴与y 轴;轴;(3) 22,y x x y ==,绕y 轴;轴;(4) 22(5)1x y -+=,绕y 轴.轴. 解 (1)取x 作积分变量,[]1,4x Î,体积元素2()dV x dx xdx p p ==,于是所求旋转体的体积为的体积为442111522V xdx x p p p ===ò.(2)绕x 轴旋转时,取x 作积分变量,[]0,2x Î,体积元素32()x dV x dx p =,于是,于是22267012877x V x dx xp p p ===ò; 同理可求平面图形绕y 旋转所成的旋转体的体积旋转所成的旋转体的体积8582233003642()(4)55yV y dy y y pp péù=-=-=ëûò. (3)曲线2y x =与2x y =的交点为(0,0),(1,1),取y 作积分变量[]0,1y Î,体积元素222()()dV y y dyp éù=-ëû,于是所求的旋转体的体积为,于是所求的旋转体的体积为114250113()()2510V y y dx y y p p p =-=-=ò. (4) 取y 作积分变量[]1,1y Î-,体积元素22222(51)(51)201dV y y dy y dy p p éù=+----=-ëû,于是所求的旋转体的体积为于是所求的旋转体的体积为 122120120102V y dy ppp p -=-=×=ò.3.设某企业边际成本是产量Q (单位)的函数0.2()2QC Q e ¢=(万元/单位),其固定成本为090C =(万元),求总成本函数.,求总成本函数. 解 总成本函数为总成本函数为0.200()()290QQQ C Q C Q dQ C e dQ ¢=+=+òò0.20.2010901080Q QQ e e =+=+.4.设某产品的边际收益是产量Q (单位)的函数()152R Q Q ¢=-(元/单位),试求总收益函数与需求函数.益函数与需求函数. 解 总收益函数为总收益函数为20()(152)15QR Q Q dQ Q Q =-=-ò需求函数为需求函数为()15R Q P Q Q==-.5.已知某产品产量的变化率是时间t (单位:单位:月月)的函数()25,0f t t t =+³,问:问:第一个第一个5月和第二个5月的总产量各是多少? 解 设产品总产量为()Q t ,则()()Q t f t ¢=,第一个5月的总产量月的总产量5525100()(25)(5)50Q f t dt t dt t t ==+=+=òò. 第二个5月的总产量为月的总产量为10102102555()(25)(5)100Q f t dt t dt t t ==+=+=òò.6.某厂生产某产品Q (百台)的总成本()C Q (万元)的变化率为()2C Q ¢=(设固定成本为零),总收益()R Q (万元)的变化率为产量Q (百台)的函数()72R Q Q ¢=-.问:.问: (1) 生产量为多少时,总利润最大?最大利润为多少? (2) 在利润最大的基础上又多生产了50台,总利润减少了多少? 解 (1)总利润()()()L Q R Q C Q =-当()0L Q ¢=即()()0R Q C Q ¢¢-=即7220Q --=, 2.5Q =(百台)时,总利润最大,此时的总成本和总收益分别为总利润最大,此时的总成本和总收益分别为2.52.52.5()225C C Q dQ dQ Q¢====òò2.52.52.520()(72)(7)11.25R R Q dQ Q dQ Q Q ¢==-=-=òò总利润11.255 6.25L R C =-=-=(万元). 即当产量为2.5(百台)时,总利润最大,最大利润是6.25万元.万元.(2)在利润最大的基础上又生产了50台,此时产量为3百台, 总成本3300()26C C Q dQ dQ ¢===òò,总收入3323000()(72)(7)12R R Q dQ Q dQ Q Q ¢==-=-=òò, 总利润为1266L R C =-=-=(万元).减少了6.2560.25-=万元.万元.即在利润最大的基础上又生产了50台时,总利润减少了0.25万元.万元.习题习题 6-51. 判断下列反常积分的敛散性,若收敛,则求其值:判断下列反常积分的敛散性,若收敛,则求其值:(1) 41dxx+¥ò; (2)1dx x+¥ò;(3) 0xe dx +¥-ò (a >0); (4) 0sin xdx +¥ò; (5)1211dxx--ò; (6) 222dxx x +¥-¥++ò; (7) 211xdx x -ò; (8)10ln x xdx ò; (9) e211ln dxx x-ò; (10)23(1)dxx -ò.解 (1) 14311133dx x x +¥+¥=-=ò.此反常积分收敛..此反常积分收敛. (2) 112dx x x+¥+¥==+¥ò.此反常积分发散..此反常积分发散.(3) 101x xe dx e +¥--+¥=-=ò.此反常积分收敛..此反常积分收敛.(4) 00sin cos lim cos 1x xdx x x +¥+¥®+¥=-=-+ò不存在,此反常积分发散.不存在,此反常积分发散.(5) 11121arcsin 1dx x x p --==-ò.此反常积分收敛..此反常积分收敛.(6)22(1)arctan(1)22(1)1dx d x x x x x p +¥+¥+¥-¥-¥-¥+==+=++++òò.此反常积分收敛..此反常积分收敛.(7)2322211001112lim lim (1)21113xdx x dx x x x x e e e e +++®®+-+éù==-+-êú--ëûòò320222lim 222333e e e +®æö==--ç÷èø.此反常积分收敛..此反常积分收敛. (8)1112222100111111ln limln limln limln 222424x xdxxdxx xxdx eee e e e ee e ®®®æöæö==-=--ç÷ç÷èøèøòòò, 所以11220001111ln lim ln lim (ln )4244x xdx x xdx e e e e e e ++®®==--=-òò.此反常积分收敛..此反常积分收敛. (9) 12211ln πarcsin(ln )21(ln )1(ln )e e e dx d x x x x x ===--òò.此反常积分收敛..此反常积分收敛. (10) 212333001(1)(1)(1)dx dx dxx x x =+---òòò,因为反常积分1132001(1)(1)dx x x ==¥--ò发散,所以反常积分230(1)dxx -ò发散.发散. 2. 当k 为何值时,反常积分+2(ln )kdxx x ¥ò收敛?当k 为何值时,这反常积分发散? 解 当1k =时,时,++222ln ln(ln )ln ln dxd x x x x x¥¥+¥===+¥òò,发散发散.. 当1k ¹时,1++122211(ln )(1)(ln 2)(ln )ln (ln )11kk k k k dx x k x d xx x kk -¥¥--+¥ì>ï-===í-ï+¥<îòò所以,当1k >时,此广义积分收敛;当1k £时,此广义积分发散.时,此广义积分发散. 3. 利用递推公式计算反常积分+0e n xn I x dx ¥-=ò. 解 ++1100n x n xn xn n I x de x e n x e dx nI ¥¥----+¥-=-=-+=òò, 因为因为 +101xx xI xde xe e ¥---+¥+¥=-=--=ò,所以所以 121(1)(1)2!n n n I nI n n I n n I n --==-=-= .复习题6(A )1、 求下列积分:求下列积分:(1)121tan sin 1xdx x -+ò; (2)1202x x dx -ò;(3)22204x x dx -ò; (4)ln 21x e dx -ò;(5)21220(1)x dx x +ò; (6)2211x dx x -ò;(7)120xx e dx -ò; (8) 21(ln )ex dx ò;(9) 401cos 2x dx xp+ò; (10) 20cos xe xdx p -ò; (11) 20sin 1cos x x dx x p++ò; (12) 40ln(1tan )x dx p+ò.解 (1) 因为被积函数2tan sin 1x x +是奇函数是奇函数,,所以121tan 0sin 1xdx x -=+ò. (2) 1122021(1)x x dx x dx -=--òò,令1sin x t -=,则cos dx tdt =;当0x =时,2t p=-;当1x =时,0t =;所以;所以010*******1cos 2sin 22cos 2244t t t x x dx tdt dt p p p p ---+éù-===+=êúëûòòò. (3) 令2sin x t =,则2cos dx tdt =,当0x =时,0t =;当2x =时,2t p =;所以222222222044sin 4cos 4sin 22(1cos 4)xx dx t tdt tdt t dt p pp-=×==-òòòò2012(sin 4)4t t pp =-=.(4) 令1x e t -=,则221t dx dt t =+,当0x =时,0t =;当ln 2x =时,1t =;所以2ln 2112000212(arctan )2(1)14x t e dx dt t t t p -==-=-+òò. (5) 令tan x t =,则2sec dx tdt =,当0x =时,0t =;当1x =时,4t p=;所以22412442240000tan 1cos 2sin 21sec ()(1)sec 22484x t t t t dx tdt dt x t pp pp -===-=-+òòò.(6) 令sec x t =,则sec tan dx t tdt =,当1x =时,0t =;当2x =时,3t p=;所以22233301001tan sec tan tan (tan )3sec 3x t dx t tdt tdt t t x t p p pp -===-=-òòò. (7) 111112221000022xxxxx x e dx x dex exe dx e xde ------=-=-+=--òòòò111111000223225xxxe xee dx e e e ------=--+=--=-ò. (8) 22111111(ln )ln 2ln 2ln 22e e e e e x dx x x x x dx e x x dx e x=-×=-+=-òòò.(9) 444400tan tan tan 1cos 2x dx xd x x x xdx xpppp==-+òòò401ln cos ln 2442x pp p =+=-.(10) 2222000cos cos cos sin xxxxe xdx xdee x e xdx pppp----=-=--òòò22201sin 1sin cos xxxxdee x e xdx ppp ---=+=+-òò2201cos x ee xdx pp--=+-ò, 所以所以 2201cos (1)2x e xdx e p p--=+ò.(11) 22222000002sin sin cos tan 1cos 1cos 21cos 2cos2x x x x x d x dx dx dx xd x x x x p p p p p +=+=-+++òòòòò2222200tantan ln(1cos )222ln cos ln(1cos )22x x x dx x x x p pp ppp=--+=--+ò20ln 22ln cos 222xp pp=++=. (12) 44440cos sin ln(1tan )lnln(cos sin )ln cos cos x x x dx dx x x dx xdx xpppp++==+-òòòò令4x u p-=,可得044041ln(cos sin )ln 2cos()(ln 2ln cos )42x x dx x dx u du p p p p éù+=-=-+êúëûòòò40ln 2ln cos 8xdx p p =+ò所以所以4ln 2ln(1tan )8x dx pp +=ò.2、设()f x 在[],a b 上连续,且()1b af x dx =ò,求()b af a b x dx +-ò.解令a b x t +-=,则dx dt =-,当x a =时,t b =;当x b =时,t a =;所以;所以 ()()()1b ababaf a b x dx f t dt f t dt +-=-==òòò.3、设()f x 为连续函数,试证明:()()(())xxtf t x t dt f u du dt -=òòò.证 用分部积分法,000(())()(())xx t tx tf u du dt tf u du td f u du =-òòòòò()()()()x x x x x f u du tf t dt xf t dt tf t dt =-=-òòòò()()xf t x t dx =-ò.4、设()u j 为连续函数,试证明:22()2()aaa x dx x dx j j -=òò.证2220()()()aa aaa x dx x dx x dx j j j --=+òòò,令x t =-,则00222200()(())()()aaa a x dx t dt t dt x dx j j j j -=--==òòòò 所以22220()()()2()aa aaaaa x dxx dx x dx x dx j j j j --=+=òòòò. 5、计算下列反常积分:、计算下列反常积分:(1)2048dx x x +¥++ò; (2)21arctan x dx x+¥ò; (3)101(1)dx x x -ò; (4)1ln e dx x x ò. 解 (1) 222000(2)12arctan 48(2)2228dx d x x x x x p +¥+¥+¥++===++++òò. (2) 221111arctan 1arctan 1arctan (1)x x dx xddx x xxx x +¥+¥+¥+¥=-=-++òòò22111ln ln 242142xx p p +¥=+=++. (3) 1110001122arcsin (1)1dx d x x x x x p éù===ëû--òò.(4) 111ln 2ln 2ln ln e eedxd xx x x x ===òò.6、求抛物线22y px =及其在点(,)2p p 处的法线所围成的平面图形的面积.处的法线所围成的平面图形的面积.解 抛物线22y px =在点(,)2p p 处的法线方程为32x y p +=,两曲线的交点为9(,3),(,)22p p p p -;取y 作积分变量3p y p -££,所求的平面图形面积为,所求的平面图形面积为 2232333131116()()222263p pp pA p y y dy py y y p p p --=--=--=ò. 7、求由曲线32y x =与直线4,x x =轴所围图形绕y 轴旋转而成的旋转体的体积.轴旋转而成的旋转体的体积.解 曲线32y x =与直线4x =的交点为(4,8),取y 作积分变量,08y ££,体积元素2232434()(16)dy y dy y dy p p éù=-=-ëû于是,所求的旋转体的体积为于是,所求的旋转体的体积为88437303512(16)(16)77V y dy y y p p p =-=-=ò. 8、设某产品的边际成本为()2C Q Q ¢=-(万元/台),其中Q 代表产量,固定成本022C ==(万元),边际收益()204R Q Q ¢=-(万元/台).试求:.试求: (1) 总成本函数和总收益函数;总成本函数和总收益函数; (2) 获得最大利润时的产量;获得最大利润时的产量;(3) 从最大利润时的产量又生产了4台,总利润的变化.台,总利润的变化. 解 (1)总成本函数201()(2)2222QC Q Q dQ C Q Q =-+=-+ò,总收益函数20()(204)202QR Q Q dQ Q Q =-=-ò. (2)利润函数23()()()18222L Q R Q C Q Q Q =-=--,令()0L Q ¢=,得6Q =(台),而(6)30L ¢¢=-<,所以当产量6Q =(台)时,利润最大.时,利润最大.(3)(10)(6)83224L L -=-=-,所以从最大利润时的产量又生产了4台,总利润减少了24(万元).(B)1、填空题:填空题:(1) 22cos xd x t dt dx =ò . (2) (2) 设设()f x 连续,220()()x F x xf t dt =ò,则()F x ¢= .(3)2sin()xd x t dt dx-=ò.(4) (4) 设设()f x 连续,则220()xd tf x t dt dx -=ò . (5) (5) 设设20cos ()1sin x t f x dt t =+ò,则220()1()f x dx f x p¢=+ò . (6) (6) 设设()f x 连续,且10()2()f x x f x dx =+ò,,则()f x = .(7) (7) 设设()f x 连续,且()1cos xtf x t dtx -=-ò,则20()f x dx p=ò .(8)2ln e dxx x +¥=ò .解 (1) 2220002224cos (cos )cos (cos )2x xx d dx t dt x t dt t dt x x x dx dx ==+-×òòò2224cos 2cos x t dt x x =-ò.(2) 2222200()(())()()2xx d F x xf t dt f t dt x f x x dx ¢==+××òò 22220()2()x f t dt x f x =+ò.(3) (3) 令令x t u -=,则22200sin()sin ()sin xxx x t dt u du u du -=-=òòò 所以所以22200sin()sin sin xxddx t dt u du x dx dx -==òò.(4) (4)令令22x t u -= 则222222001()()()2x x tf x t dt f x t d x t -=---òò220011()()22x x f u du f u du =-=òò.所以.所以 2222001()()()2xx d d tf x t dt f u du xf x dx dx -=×=òò.(5)22200()arctan ()arctan ()arctan (0)1()2f x dx f x f f f x ppp ¢==-+ò, 而02222000cos cos (0)0,()arctan(sin )1sin 21sin 4t t f dt f dt t t t pp p p =====++òò,所以220()arctan 1()4f x dx f x pp ¢=+ò (6) (6) 等式等式1()2()f x x f x dx =+ò两边在区间[]0,1积分得积分得111101()2()2()2f x dx xdx f x dx f x dx =+=+òòòò11()2f x dx =-ò, 所以所以()1f x x =-.(7) (7)令令x t u -=,则du dt =-,于是,于是00()()()xxtf x t dt x u f u du -=-òò原等式化为原等式化为()()1cos xxxf u du uf u du x -=-òò两边对x 求导求导()sin xf u du x =ò在上式中,令2x p=,得,得()1xf x dx =ò.。

高等数学练习题解析 第6章 定积分及其应用

高等数学练习题解析 第6章 定积分及其应用

第6章 定积分及其应用§6—1,2,3 定积分的概念、可积条件及定积分的性质A 类1.用被积函数f(x)=x 在[a,b]上连续,为便于计算,不妨把[a,b]分成n 等份,分点为,1,,2,1),(-=-+=n i a b n i a x i 每个区间长度为,,i i i x n ab x =-=∆ξ取1,2,,i n =,有和式 11()[()]nn i i i i b a if x a b a n n ξ==-∆=+-∑∑ )2)1((+-+-=n n n a b na n a b =)12)((nn a b a a b +-+- 当n 趋于无穷时,则上面和式极限为)(21)2)((22a b a b a a b -=-+-∑⎰=∞→-=∆=∴n i i i n b a a b x f xdx 122)(21)(lim ξ 2.利用定积分的几何意义,说明下列等式: a)⎰12xdx 表示直线y=2x 与x=1及x 轴所围面积,由三角形面积易知.1212121=⋅⋅=⎰xdx b)⎰-22cos ππxdx 表曲线y=cosx 从22ππ到-与x 轴所围面积,从图形知所围部分均在x 轴上半部分,且由对称性知它是从20π到所围面积的两倍,即⎰⎰=-222cos 2cos πππxdx xdx3.证明:∑⎰=→∆⋅=ni i i bax kf dx x kf 1)(lim )(ξλ⎰∑=∆==→b ani i i dx x kf x kf k )()(lim 1ξλ4.不妨设[,],()(),[,]\{}()()x a b f x g x x a b x f x g x ''''∈≠∈=且当时,则对任意分割.110b x x x x a n n =<<<<=- 总存在小区间不妨设为i i i i n n n n x x x ∆∈∆∆-'],[1使得对该分割有∑∑∑∑====∆+∆-∆=∆nk k k n k k k n k k k NK k kx x x x 1111''ωωωω(这里设)]),([inf )]([sup ')],([inf )]([sup ],[],[],[],[1111x f x f x g x g k k k k k k k k x x x x x x k x x x x x x k ----∈∈∈∈-=-=ωω∑∑≠=∆+∆-+∆-=ii i i n k nk k k n n n k k kx x x 1')'()'(ωωωωω∑=∆+∆-=nk k k n n n x x i i i 1')'(ωωω (1)时,当分割不妨设上可积,所以在δλεδδε<<∃>∀∴)()(,,0],[)(T b a x f 有εω<∆∑=nk k kx 1'(2)(')(')i i i i i i n n n n n n x x ωωωω-∆≤+∆[,][,][,][,](sup ()inf ()sup ()inf ())().x a b x a b x a b x a b f x g x f x f x T M λε∈∈∈∈≤-+-⋅< (3)其中[,][,][,][,]sup ()inf ()sup ()inf ()x a b x a b x a b x a b M g x g x f x f x ∈∈∈∈∆-+-由(1)(2)(3)得:∑∑==+=+<∆+∆-≤∆nk k k n n n nk k kM M x x x i i i 11)1(''εεεωωωω所以g(x)在[a,b]上可积,而()01()lim()nbkk zT k g x dx g x λξ→==∆∑⎰()0111lim [()()()]n nnk k k k k k T k k k g x f x f x λξξξ→====∆-∆+∆∑∑∑])()()([lim 1)(∑=→∆+∆-∆=nk k k n n n n T x f x f x g i i i i ξξξλ=⎰∑=∆=→bank k kT dx x f x f )()(lim1)(ξλ5.试将下列极限用定积分表示:(1)⎰∑===∞→1011lim xdx nin n i n 原式(2)∑⎰=∞→+=+=ni n dx x nin 1102211)(111lim 原式(3)⎰∑∑====∞→-∞→10111)cos(cos 1lim cos 1lim dx x n in n i n n i n n i n πππ原式6.根据定积分的性质,说明下列定积分哪一个的值较大:32)[12]a x x ≥在,上,且3222》,有222311x dx x dx <⎰⎰。

高等数学第六版(同济版)第六章复习资料

高等数学第六版(同济版)第六章复习资料

第六章定积分的应用引入:前面学习了定积分的理论,这一章要应用这些理论来分析和解决一些实际问题中出现的量.用定积分计算这些量,必须把它们表示成定积分,先介绍将所求量表示成定积分的方法——元素法第一节定积分的元素法我们先用定积分的引例——曲边梯形的面积,引出元素以及元素法的概念:一、元素及元素法 1.元素:由连续曲线与直线以及轴所围成的曲边梯形的面积为:.(由微分知识得) 为面积元素或面积微元,记为 2.元素法:用元素法将所求量表示成定积分的方法,称为元素法. 由此可知,曲边梯形的面积是将面积微元累加得到的下面我们通过曲边梯形的面积来总结出实际问题中所求的量能用定积分表示的条件:二、用元素法将所求量能表示成定积分的条件:(设所求量为) 1.量与变量的所在区间有关; 2.量对于区间具有可加性;3.量的部分量有近似值,即. 三、用元素法将所求量能表示成定积分的步骤: 1.由实际情况选一变量如为积分变量,确定该其变化区间.2.分为个小区间,取其中一个小区间,计算其上的部分量,的所求量的一个元素 3.以为被积表达式,在注:元素的几何形状常取为:条,带,段,环,扇,片,壳等内容小结:本节介绍了元素法以及用元素法将所求量表示成定积分的方法与步骤第二节定积分在几何上的应用一、平面图形的面积 1.直角坐标情形:曲线与直线及轴所围成的曲边梯形面积为,因为面积元素为 2.参数方程情形:若曲线的参数方程为,且满足 (1). , (2). 在或上具有连续导数,且连续,则由曲线所围成的曲边图形的面积为:3.极坐标情形:设曲线的极坐标方程为,且在上连续,则由曲线与射线以及所围成图形的面积为 . 由于当在上变动时,极径来计算. 推导:①.取极角为积分变量,②.在上任取一小区间,其上的曲边扇形面积的近似值:③. . 为被积表达式,在上作定积分,得曲边扇形的面积公式:例1. 计算两条抛物线在第一象限所围所围图形的面积 2y解:首先确定图形的范围,由得交点、,y取为积分变量,由于面积元素,所以所求面积为 . 注: . 例2. 计算抛物线与直线所围图形的面积解:由得交点、,若取为积分变量,则有 . 若取为积分变量,则有 . 例3. 求椭圆所围图形的面积解:由于椭圆关于两个坐标轴对称,设椭圆在第一象限所围成的面积为,则所求面积为设,当时,,当时,,且,于是 . 例4.计算阿基米德螺线对应从变到所围图形面积. 解:由题可知,积分变量,于是所求面积为例5.计算心形线所围图形的面积解:心形线所围成的图形关于极轴对称,设极轴上半部分图形的面积为,则心形线所围成的图形面积为.取极角为积分变量,,于是 . 二、体积 1.旋转体的体积: (1).旋转体:由一个平面图形绕这平面内一条直线旋转一周而成的立体称为旋转体,该直线称为旋转轴注:圆柱体、圆台、球体等都是旋转体,它们都可以看做是由连续曲线与直线以及轴围成的曲边梯形绕轴旋转一周所围成的立体 (2).旋转体的体积:①.由曲线与直线、以及轴所围成的曲边梯形绕轴旋转而成的旋转体的体积:推导:取为积分变量,,在上任取一小区间轴旋转而成的薄层的体积近似等于以为底面半径、以为高的扁圆柱体的体积,即体积元素为,以为被积表达式,在上作定积分即得所求旋转体的体积:②.由曲线与直线、以及轴所围成的曲边梯形绕轴旋转而成的旋转体的体积:例6.连接坐标原点及点的直线、直线及轴围成一个直角三角形,将它绕轴旋转构成一个底半径为、高为的圆锥体,求其体积解:过及的直线方程为: . 取为积分变量,,则所求旋转体的体积为例7.计算由椭圆所围成的图形绕轴旋转而成的旋转体的体积解:该旋转椭球体可看做是由半椭圆与轴所围成的绕轴旋转而成的立体,半椭圆方程为: . 取为积分变量,,则所求立体体积为例8.计算由摆线,相应于的一拱,直线所围成的图形分别绕轴、轴旋转而成的旋转体的体积解:记摆线绕轴旋转而成的旋转体的体积为,取为积分变量,,则记摆线绕轴旋转而成的旋转体的体积为,取为积分变量,,则. 2.平行截面面积为已知的立体的体积:设一非旋转体的立体介于过点、且垂直于轴的两个平面之间,该立体过轴上的点且垂直于轴的截面面积为,则该立体的体积为:推导:若为连续函数且已知,取为积分变量,,在,其上的薄层的体积近似等于底面积为、高为的扁圆柱体的体积,积元素:,以为被积表达式,在上作定积分,得所求立体的体积公式:例9.一平面经过半径为的圆柱体的底圆的中心,并与底面交成角,计算着平面截圆柱体所得立体的体积解:取该平面与圆柱体的底面的交线为轴,底面上过圆中心且垂直于轴的直线为轴,则底面圆方程为:,该立体中过轴上的点且垂直于轴的截面是一个直角三角形,两直角边分别为和即和,从而截面面积为,于是所求体积为例4.求以半径为的圆为底、以平行且等于底圆直径的线段为顶、高为的正劈锥体的体积解:取底面圆所在的平面为平面,圆心为原点,并使轴与正劈锥体的顶平行,底面圆方程为:,过轴上的点作垂直于轴的平面截正劈锥体得等腰三角形,截面面积为,于是,所求正劈锥体的体积为三、平面曲线的弧长引入:我们知道,用刘徽的割圆术可以定义圆的周长,即利用圆的内接正多边形的周长当边数无限增加时的极限来确定,现在将刘徽的割圆术加以推广,来定义平面曲线的弧长,从而应用定积分来计算平面曲线的弧长. 1.平面曲线弧长的相关概念 (1).平面曲线弧长:若在曲线弧上任取分点,,依次连接相邻分点得到该曲线弧的一内接折线,记限增加且每一个小弧段都缩向一点,即时,折线的长的极限存在,则称此极限值为曲线弧的弧长,并称该曲线弧是可求长的,记作 (2).光滑曲线:若曲线上每一点处都存在切线,且切线随切点的移动而连续转动,则称该曲线为光滑曲线 (3).定理:光滑曲线可求长. 2.光滑曲线弧长的计算 (1).直角坐标情形:设曲线弧的直角坐标方程为,,若在上具有一阶连续函数,则曲线弧长为推导:取为积分变量,曲线上的相应于上任意小区间上的一段弧的长度近似等于曲线在点处切线上相应的一段的长度,又切线上相应小段的长度为,从而有弧长元素,以为被积表达式,在上作定积分,得弧长公式:(2).参数方程情形:设曲线弧的参数方程为,,若及在具有连续导数,则曲线弧长为推导:取参数为积分变量,曲线上相应于上任意小区间上的一段弧的长度的近似值即为弧长元素,以为被积表达式,在上作定积分,得弧长公式: (3).参数方程情形:设曲线弧的极坐标方程为,,若在上具有连续导数,则曲线弧长为:推导:由直角坐标与极坐标的关系得:,,即为曲线的以极角。

高等数学 第六章 第1、2节 定积分的概念(中央财经大学)

高等数学 第六章 第1、2节 定积分的概念(中央财经大学)

,杂平面图形面积的方法该过程告诉了我们求复. 形面积的定义同时,也告知了平面图想方法是:解决曲边梯形面积的思. 取极限—求和—代替—分划 处理的问题的结果,即通常人们把这类方法所. ],[ )( 上的定积分在区间这种极限值,称为函数b a x f定积分符号:. )(lim d )(10∑∫=→∆=n i i i b a x f x x f ξλ 定积分号;—∫b a 积分下限;—a积分上限;—b d )(被积表达式;—x x f )(被积函数;—x f d 积分变量;—中的x x. ],[积分区间—b a ) ( 积分变量的取值范围关于定积分定义的几点说明. ] ,[ )( , T ),( d )( )1(有关区间及只与的选择无关及点它与分法具体的数是一个极限值定积分b a x f x x f i ba ξ∫ . d )(d )(d )()2(⋯===∫∫∫ba b a b a t t f y y f x x f 号无关:定积分与积分变量的记喂!下面是几个关于函数可积性的定理.运用定积分的概念及定积分的几何意义, 由函数的极限运算性质容易证明它们, 所以我们在这里不进行证明.定理 1. ]),([)( ]),,([)( b a R x f b a C x f ∈∈则若, ],[ )( 上单调、有界在若b a x f. ]),([)( b a R x f ∈则)( , ],[ )(第一类且仅有有限个上有界在b a x f. ]),([)( ,b a R x f ∈则间断点定理 2O xya b c �. ]),([|)(| ]),,([)( b a R x f b a R x f ∈∈则若. 3 的逆不真定理⎩⎨⎧−= . 1, , 1 )( ,为无理数,为有理数例如x x x f 定理 3, ],[ ],[ ]),,([)( b a d c b a R x f ⊂∀∈则若. ]),([)(d c R x f ∈O xya b c d 定理 4]),,([)(),( 则若b a R x g x f ∈ . ]),([)()( ),()( ),(b a R x g x f x g x f x kf ∈⋅±定理 5为常数)k (三. 定积分的性质由于定积分是一种和式的极限, 所以极限的某些性质在定积分中将有所反映.在以下的叙述中, 假设所出现的函数均可积, 所出现的定积分均存在.: ,定积分反号交换积分上、下限. d )(d )(∫∫−=abbax x f x x f 1 性质)( 2 线性性质性质, d )(d )(d )]()([∫∫∫±=±ba b a b a x x g x x f x x g x f βαβα. ,为常数、式中βα)( 3 保号性性质. 0d )( ],,[ ,0)( ≥∈≥∫ba x x fb a x x f 则若(小于零的情形类似. )1 3 的推论性质. d )(d )( ,],[ )()( ∫∫≥∈≥babax x g x x f b a x x g x f 则若2 3 的推论性质∫∫≤babaxx f x x f d |)(| |d )(|证(f)( 4 对区间的可加性性质∫∫∫+=bcc abaxx f x x f x x f d )(d )(d )(. ,b c a <<其中注意:不论a, b, c 大小关系如何,上式仍然成立!)( 5 估值定理性质,, ],[ )( , 则最小值上的最大在分别为设b a x f m M. )(d )()(a b M x x f a b m ba −≤≤−∫. 0d )(=∫bax x f 时当补充规定:b a =证)( 6 积分中值定理性质使得则上保持符号不变在 , ],[ , ],[ b a b a ∈∃ξ. d )()(d )()(∫∫=babax x g f x x g x f ξ )( ]),,([)( ]),,([)( x g b a R x g b a C x f 且若∈∈解f t3。

定积分的求解方法及其应用

定积分的求解方法及其应用

定积分的求解方法及其应用摘要:在数学分析这门课程里,定积分是最普遍而又重要的内容之一,同时也是数学研究中的重要工具,随着数学在生活中的广泛应用,定积分的相关解法和应用所蕴藏的巨大潜力越来越引起人们的关注.本论文从定积分的基本理论出发,系统阐述了牛顿莱布尼茨公式、换元法、分部积分法、凑微分法等几种常见的求解方法,并列举了相关的例子,更直观的了解求解定积分的方法的精髓.另外本文又介绍了定积分在数学、物理学和经济学当中的应用,实现了定积分在实际生活中的应用.通过这一系列的总结,可以进一步提升对定积分的认识,为以后的学习奠定了基础.关键词:定积分;求解方法;应用一、定积分的求解方法1.1 定积分概念定义1 不妨设在闭区间[m ,n ]中,不包含两个端点,共有1-k 个点,按照大小分别为m =0x <1x <2x <…<1-k x <k x =n ,这些点将闭区间[m ,n ]分割为大小不一的子区间,共有k 个,用i ∆表示这些子区间,即i ∆=[1-i x ,i x ],i =1,2, …,k 。

可以将k x x x ......,10点或[]n i xi x i i ......12,,1==∆-子区间视为分割了闭区间[m ,n ],令集合=A {0x ,1x ,…,k x }或{1∆,2∆,…,k ∆}.定义2 假设函数g 的定义域为 [m ,n ]。

将区间[m ,n ]分割为k 个,得分割区间的集合=A {1∆,2∆,…,k ∆},在区间i ∆上随意取点i ψ,即i ψ∈i ∆,i =1,2, …,k ,将该点函数值与自变量之差做乘积,累次相加得()iki ix g ∆∑=1ψ,该式是函数g 在定义域[m ,n ]上的积分和.定义3 假设函数g 的定义域为 [m ,n ],S 是给定的实数。

假如总能找到某个的正数θ,以及任何正数σ,在定义域 [m ,n ]进行任意大小的分割A ,并且在分割出来的区间中随意选择一个点组成集合{i φ},当A <θ时,存在σφ<-∆∑=S xg ni ii1)(,则函数g在定义域[m ,n ]上可积,即⎰=nmdx x g S )(。

《高等数学》(同济六版)教学课件★第6章.定积分的应用

《高等数学》(同济六版)教学课件★第6章.定积分的应用
2) U 对区间 [a , b] 具有可加性 , 即可通过 “大化小, 常代变, 近似和, 取极限”
表示为
定积分定义
目录 上页 下页 返回 结束
二 、如何应用定积分解决问题 ?
第一步 利用“化整为零 , 以常代变” 求出局部量
近的似值
微分表达式
dU f (x) dx
第二步 利用“ 积零为整 , 无限累加 ” 求出整体量的
精确值
积分表达式
b
U a f (x) dx
这种分析方法称为元素法 (或微元分析法 )
元素的几何形状常取为: 条, 带, 段, 环, 扇, 片, 壳 等
第二节 目录 上页 下页 返回 结束
第二节
第六章
定积分在几何学上的应用
一、 平面图形的面积
二、 平面曲线的弧长 三、已知平行截面面积函数的
立体体积
目录 上页 下页 返回 结束
例8. 求双纽线
所围图形面积 .
解: 利用对称性 , 则所求面积为
y
1 a2 cos2 d
2
π 4
π
a2 4 cos 2 d (2 ) 0
O
ax
a2sin 2 a2
π 4
思考: 用定积分表示该双纽线与圆 r a 2 sin
所围公共部分的面积 .
答案:
π
A 2 6 a2 sin2 d 0
y Mi1
A M0 O
定理: 任意光滑曲线弧都是可求长的.
(证明略)
Mi
B Mn x
目录 上页 下页 返回 结束
(1) 曲线弧由直角坐标方程给出:
弧长元素(弧微分) :
ds (dx)2 (dy)2
1 y2 dx
因此所求弧长

高等数学 第六章定积分的应用习题课

高等数学 第六章定积分的应用习题课

A1
1 2d
02
2a2(2 cos )2d
0
a2 (4 4cos cos2 )d 9 a2 0
则所求的几何面积为 A 2 A1 18 a2
【例5】设由曲线
y

sin x (0
x

),y
2
1
及x

0围成
平面图形A绕x 轴,y 轴旋转而成的旋转体的体积。
则绕直线 y


1 2
旋转而成
的旋转体的体积微元dV
就是矩形S1
分别绕直线 y


1 2
旋转而成的旋转体的体积。
解: (1) 确定积分变量和积分区间:
绕直线 y 1 旋转如图 ,
y
2
1
取 x为积分变量,则 x [0, ].
2
(2) 求微元:对 x [0, ],
2
[x, x dx] [0, ],
0
1 dy]
1 y2
[(arcsin1)2 2
1
(arcsin y)d(
1 y2 )]
0
3 [2
4
1 y2 arcsin y 2 y]10
3 2
4
通过例5,同样可求出绕平行于x 轴和平行于 y 轴的直线
旋转而成的旋转体的体积,见例6。
【例6】设由曲线 y sin x (0 x ), x 及 y 0围成
(2)求微元:因为过点 x 的截面为等边三角形(如图),
其边长为 2 4 x2 ,高为 2 4 x2 3 .
2
所以截面积为
A( x) 1 2 4 x2 2 4 x2 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)定义中要求积分限 a < b ,我们补充如下规定:
当 a = b b时f,(x)dx 0 a
b f;(x当)dxa > b
a
f (x)dx
a
b
时, (3)定积分的存在性(两个充分条件) 。
定理 设 f (x) 在区间 [a, b] 上连续,则 f (x) 在 [a, b] 上
可积。 定义 设 f (x) 在区间 [a, b] 上有界且只有有限个间断点,
积 分 号
积 分 下 限


被 积
积 表
分 变
积 分
( 黎



和曼


式和 )
11
第一节 定积分的概念及性质 定积分定义的说明:
二、定积分的定义
(1)定积分表示一个数,它只与被积函数及积分区间 [a, b] 有关,
而与积分变量采用什么字母无关,即
b
b
b
a f (x)dx a f (t)dt a f (u)du
第一节 定积分的概念及性质
第一节 定积分的概念及性质 曲边梯形的面积:
一、定积分问题举例
设函数 y = f (x) 在区间 [a, b] 上连续,且 f (x) ≥ 0,则称由直
线 x = a, x = b, y = 0 及曲线 y = f (x) 所围成的平面图形为曲边梯
形。 其中曲线弧称为曲边,x 轴上对应区间[a, y b] 的线段称为底边。
则 f (x) 在 [a, b] 上可积。
12
第一节 定积分的概念及性质
三、定积分的几何意义
由定积分的定义可以知道,图
y
中曲边梯形的面积为:
y = f (x)
b
A a f ( x)dx

b
a f ( x)dx A
Oa
b
可见,当 f (x) ≥ 0 时,由曲线 y = f (x) ,直线 x = a,xx = b
为 面积,
Si
。设 S 为曲边梯形的
为第
S
i
个S小1 曲 边S梯2形的面积,S则n
n
Si
i 1
6
第一节 定积分的概念及性质
一、定积分问题举例
(2)取近似
在每个小区[x间i1, xi ](i 1, 2, , n)
i xi
点 ,以
为底,f (i )xi 为高作矩形,其面积为 Si
则得小曲边梯形的面积
当所有的小矩形宽度趋于零时,这个阶梯
y=f
形面积的极限就成为曲边梯形面积的精确值了。
(x)
确定曲边梯形面积的具体步骤如下:
(1)分割
用分a点 x0 x1 x2
xn1 xn b
Oa bx
把区间[xi[1a, x,i ]b] 任意分成 n 个小区间 xi xi xi1(,i 每1个, 2小, 区, 间n)的长度记
i 1
f (i )xi
其中 f (x) 称为被积函数,f (x)dx 称为被积表达式,x 称为积分变量,[a, b] 称为积分区间,a 称为积分下限,b 称为积分上限。
10
第一节 定积分的概念及性质 定积分的定义:
二、定积分的定义 积分上限
b
n
a
f ( x) d x lim 0 i1
f (i )xi
定积分的概念来源于实际,自然科 学与生产实践中的许多问题,诸如平面图形 的面积、旋转体的体积、变力所做的功等都 可以归结为定积分问题。我们给出定积分的 定义,讨论它的性质、计算方法,以及广义 积分和定积分的应用。
1 定积分的概念及性质 2 微积分基本公式 3 定积分的计算 4 广义积分 5 定积分的应用
方法可以把曲边梯形的面积转化为和式的极限。这就是定积分概念的实际背景,
单从数学结构上来考虑问题,就可以抽象出定积分的定义。
定义 设函数 f (x) 在区间[a, b] 上有定义,在区间[a, b] 上任
意插入 an– 1x1个分x2 x3 xn1 xn b

[x0 , x1], [x1, x2 ]
一、定积分问题举例
所以可把该曲边梯形沿着轴方向切割成许多窄窄的长条(小曲边梯
形)。 y
y = f (x)
O
a
b
x
把每个小曲边梯形近似看作一个小矩形,用小矩形面积作为小曲边梯 形面积的近似值,所有小矩形面积之和就是曲边梯形面积的近似值。
5
第一节 定积分的概念及性质
一、定积分问题举例
分割越细,误差越小。 y
,…[x…n1,, xn ]
区间[a, b] 分成 n 个小区间
记每个小区间的长度为 xi xi xi1 i 1, 2, ,(n
在每个小区间i
的和式:
xi1 i 上xi任取一点 (f (i )xi
n
S f (i )xi i 1
,将
[xi)1, x。i ]
),作乘积
9
第一节 定积分的概念及性质
在矩形的面积公式,矩形的高是不变的,
y=f (x)
而曲边梯形在底边上各点处的高 f (x) 在区间 [a,
b] 上是变动的,因此它的面积不能直接计算。
Oa
b x
但是,由于曲边梯形的高 f (x) 在区间 [a, b] 上是连续变化的,所
以在一个很小的区间上它的变化很小,近似于不变。
4
第一节 定积分的概念及性质
(4)取极限
取小区间长度的最大值
max
1in
xi
无限增大,即
n
趋于零时,近似的误差趋向于f零(,i )则和xi式 i 1
的极限就是曲边梯形面积 S 的精确值,即
,当分点数 n
n
S
lim 0 i1
f (i )xi
8
第一节 定积分的概念及性质
二、定积分的定义
从上述具体问题可以看出,通过“分割、取近似、求和、取极限”的
的近似值为
Si f (i )xi (i 1, 2, , n)
(3)求和
上任f取(一i )

把 n 个小矩形面积相加(即阶梯形面积)就得到曲边梯形面积 S 的 近似值
n
S f (1 )x1 f (2 )x2 f (n )xn f (i )xi i 1
7
第一节 定积分的概念及性质一、定积分问题举例二、定积分的定义记
max
1in
xi
,如0 果
的极限,且这个极限值与 [a,i b] 的分割及点
时,和 S 总是趋向于确定 的取法均无关,则称函数 f
(x) 在区间[a, b] 上可积,此极限值称为函数 f (x) 在区间[a, bbf](上x)的dx定积 a
分,记作
,即
b
n
a
f (x)dx lim 0
及 x 轴所围成的曲边梯形的面积 A 等于函数 f (x) 在区间 [a , b] 上的定
积分 。
13
第一节 定积分的概念及性质
三、定积分的几何意义
如果 f (x) < 0 ,则由曲线 y = f (x) ,直线 x = a,x = b 及 x
相关文档
最新文档