SAT数学难题 hard math problem
sat最难数学题
sat最难数学题(实用版)目录1.SAT 简介2.SAT 数学考试的难度和范围3.SAT 最难数学题的特点4.如何准备和应对 SAT 最难数学题5.结论正文1.SAT 简介SAT(Scholastic Assessment Test)是美国大学入学考试委员会(College Board)主办的一项全球性的大学入学考试,也被称为“美国高考”。
这项考试旨在评估学生在阅读、写作和数学方面的能力,以帮助大学招生官判断学生的学术潜力。
2.SAT 数学考试的难度和范围SAT 数学考试主要包括两个部分:数学(Math)和数学 2(Math 2)。
数学部分主要考察学生的基本数学知识,如代数、几何、统计和数据分析等。
数学 2 部分则更侧重于考察学生的高等数学知识,如微积分、三角函数和复数等。
SAT 数学考试的难度相对较高,尤其是对于非英语国家的学生来说,因为考试语言是英语。
不过,通过系统的学习和练习,大多数学生都可以逐步提高自己的数学水平。
3.SAT 最难数学题的特点SAT 最难数学题通常具有以下特点:- 题目复杂:最难的数学题往往需要学生运用多个数学知识点,进行繁琐的计算和推理。
- 考查能力:这类题目旨在考查学生的逻辑思维能力、分析问题和解决问题的能力,而不仅仅是计算能力。
- 时间紧张:由于题目难度高,学生在解答这类题目时往往需要花费较长时间,而考试时间有限,这使得最难数学题更加具有挑战性。
4.如何准备和应对 SAT 最难数学题要想成功应对 SAT 最难数学题,学生需要:- 扎实掌握数学知识点:学生需要系统地学习 SAT 数学考试所涵盖的知识点,确保自己在面对各种题目时都有足够的知识储备。
- 提高解题技巧:学生需要通过大量的练习,熟悉各类题型的解题方法,提高自己的解题速度和准确率。
- 增强心理素质:面对难度较大的数学题,学生需要保持冷静,避免因为紧张而影响自己的发挥。
- 合理分配时间:在考试中,学生需要合理分配时间,尽量确保有足够的时间解答最难的数学题。
sat数学难题应如何应对
sat数学难题应如何应对sat数学虽然被历年的考生视为最简单的科目,但是也并不是说就没有难题存在的,只能说大部分的考点来源于初中和高中,以我们中国考生的智商来说对于数学考点是攻无不克的,但是还是有一些难题需要大家来花点心思的,下面我们就来看下sat数学难题如何应对。
一、应对sat数学难题的方法首先,摆正心态认真读题。
很多考生对sat数学考试都有一种轻敌的心态,以至于在读题的过程中就会时常不认真,以自己的思考方式来解读题干的含义,这样非常有可能落入题干的圈套,做出错误的回答。
所以建议考生,从战术上重视sat数学考试的答题方法,认真读题,真正了解题干的含义和所求的是什么,这样才会有切入口。
其次,找到最快捷的答题方法。
sat数学考试的内容都是大家学习过的,但是数学考试的思考方式却不是,所以由于不知道思考的方式而浪费时间就是大家最需要改进的。
所以大家在解答sat数学题的时候,一定在题目中找到解答问题所需要的全部信息,思考解题的最佳方法。
诚然,每一道数学题都可能有一种乃至多种解题方法,但考生还是要尽量寻找最为便捷的途径,节省考场上宝贵的时间。
最后,按照最快的sat数学答题步骤来进行。
尽管sat 数学题中的绝大多数对中国考生难以形成真正的威胁,但很多考生经常由于某一术语的生疏或心情紧张等因素而在一道数学题上"卡壳"。
而在一些貌似简单的数学题目中,考生也往往会遭遇到各种各样的陷阱。
sat 数学考试的题目安排顺序是从易到难,题目的分值相同,所以考生在做某一个sat 数学选择题题目时,应该先跳过那些一时难以解决的题目。
切记不要把大量时间浪费在某一道题目上。
二、整理sat数学难题集考生在备考中避免不了要整理sat数学难题集,因为我们做过了一遍题目之后如果不加以总结是很难避免再次犯错的,所以这里要建议大家在备考中要整理错误本,这是非常重要的一步。
例如下面这道题目:16. A sphere of radius r fits exactly into a right circular cylinder. If the height of the cylinder is equal to the diameter of the sphere, then the volume of the sphere is what fraction of the volume of the cylinder? (The volume of a sphere with radius r is 4/3*πr3.)解析:2/3,已知球的半径是r,求整好可以放入圆柱形中,圆柱的高是是球的直径,那么球的体积是圆柱的体积的比是多少?球的体积公式已给出4/3*πr3,还必须知道圆柱的体积公式是=πr2*h,圆柱的高是直径的长度2r.所以两个体积的比就是2/3其实想要解答这道题目按照上面总结的方法我们首先要读懂题目,不要错过关键词,完全理解之后找出做题的方向,必须要知道圆柱的体积公式,这道题的难点可能就是对于题目中词汇的理解,以及球和圆柱的体积公式了,所以大家在整理错题的时候就要记录下来,强化记忆,下次才会避免出错。
SAT数学之四大问题
SAT数学之四大问题SAT数学是SAT考试的一部分,虽然简单,但想拿高分也是很不容易的,一些问题也是需要同学们去注意的。
下面三立小编为你带来SAT数学之四大问题,希望对你有所帮助,更多资讯请访问三立在线教育,专业老师为你在线解答相关疑问。
一:读题问题很多同学在面对SAT数学题时都发过这种牢骚:如果把SAT的数学题全部翻译成中文,就能拿到满分。
这反映出了很多同学的心声。
实际上,也的确有很多同学都在不同程度上存在读不懂,读得慢,回读,反复读的现象,这样不仅大大浪费了宝贵的做题时间,更严重阻碍了解题思路的构建,最终导致正确率下降。
简单来说,在读题过程中困扰我们的因素有两个,一个是词汇问题,另一个是速度问题。
而这两个,都属于读题的问题范畴。
二:思维问题除了读题问题,SAT数学摆在我们面前的下一个就是思维问题了。
对于大部分考生来讲,思维问题主要集中在两个方面,一个是想太多,容易把题目想复杂;另一个是想太少,容易漏读题目的条件。
SAT数学题的题目中存在大量思维陷阱,很容易误导考生,特别是对于一些接触SAT数学时间尚短的考生来说,常会出现明明觉得看懂了题目最后却没有作对的情况,其实就是各种思维陷阱造成的。
三:细节问题与国内数学考试大多侧重于知识点的难度不同,所有的美国数学考试都有一个共同的侧重点—细节。
关于这个问题曾经有数学家探讨过,发现相比于国内,美国的数学考试更需要严格遵循考试大纲的要求,不会出现超出考试大纲或者超出难度要求的题目,所以无法在知识层面上做文章。
而且美国数学更注重实效性,不在意精彩的解题方法或深厚的知识层面,只要能够正确快速解题即可。
由于细节在很大程度上决定了解题的正确与否,所以SAT数学考试中含有大量对细节的考察,其中最常见的就是单位转换。
而不重视细节,就会导致各种丢分情况的发生。
四:速度问题每次考完SAT考试,很多人都会抱怨数学时间太紧,根本没有做完,而在实际的观察过程中也发现了这样的问题,很少有同学能够在读完一遍后就开始答题,而是要读两遍,三遍,甚至更多遍才能进行答题,这大大的降低了答题的速度。
sat最难数学题
sat最难数学题
摘要:
1.SAT 数学考试简介
2.SAT 数学中最难的题目类型
3.如何准备和应对这些难题
4.结论
正文:
1.SAT 数学考试简介
SAT(Scholastic Assessment Test)是美国大学入学考试的一种,其数学部分对于许多学生来说是一项挑战。
SAT 数学考试分为两部分,分别是数学(Math)和数学2(Math 2),总共有58 道题目,考试时间为80 分钟。
题目涵盖了代数、几何、统计学和数据分析等数学领域。
2.SAT 数学中最难的题目类型
在SAT 数学考试中,最难的题目通常涉及复杂的代数问题、需要高级几何知识的题目以及需要深入理解概率和统计学的题目。
这些题目的难点在于需要学生运用所学的知识解决实际问题,同时需要具备良好的逻辑思维和分析能力。
3.如何准备和应对这些难题
要应对SAT 数学中最难的题目,学生需要做好充分的准备。
首先,要熟练掌握代数、几何、统计学和数据分析等数学领域的基本概念和公式。
其次,要通过大量练习提高解题速度和准确率,特别是对于难题,要能够快速找到解题思路。
此外,还要学会利用排除法、代入法等解题技巧,以提高解题效率。
在考试中,对于遇到的难题,学生可以先跳过,等其他题目完成后再回来解决。
这样可以避免在难题上花费过多时间,导致其他较容易的题目没有时间完成。
同时,学生要保持冷静,不要因为遇到难题而影响自己的情绪。
4.结论
虽然SAT 数学考试中最难的题目可能让学生感到压力,但只要做好充分的准备,掌握解题技巧,就能应对这些挑战。
SAT考试2024数学历年真题全视角
SAT考试2024数学历年真题全视角SAT考试是全球范围内备受关注的一项重要考试,对于申请美国高校的学生来说具有重要的意义。
而数学部分一直是考生们普遍关注的焦点。
本文将全面深入地探讨SAT考试2024年数学部分的历年真题,带您以全视角认识这一难点。
通过对历年真题的分析,希望能够为考生们提供一些有益的建议和解题思路,提高大家的数学水平。
1. Algebra(代数)代数部分是SAT数学部分的重头戏之一,其中包含了一系列高中数学的基本知识和概念。
历年真题中常涉及到的内容包括方程、不等式、函数以及图形等。
这些题目往往要求考生熟练掌握求解方程、图像分析和函数变化等技巧。
例题:给定一个二次方程 y = ax^2 + bx + c,已知该二次方程的图像经过点 P(1, 4) 和 Q(3, 16),求 a、b 和 c 的值。
解析:根据已知条件,我们可以列出两个方程:4 = a + b + c (代入点P的坐标)16 = 9a + 3b + c (代入点Q的坐标)通过联立这两个方程进行求解,我们可以得到 a、b 和 c 的值。
这类题目常涉及二次方程的性质和应用,需要考生熟练掌握解二次方程、理解二次函数图像等知识点。
2. Geometry(几何)几何部分是SAT数学部分的另一个重要内容,主要考察学生对几何概念、图形性质和几何推理的理解。
历年真题中的几何题目大多数是多步解题,需要考生利用几何知识进行推理和分析。
例题:在一个平面直角坐标系中,点 A(-3, 2) 和点 B(4, -1) 分别为线段 AB 的两个端点。
如果点 C(-1, -5) 在线段 AB 上,求点 C 的坐标。
解析:通过计算 AB 的斜率和 AC 的斜率可以判断点 C 是否在线段AB 上。
然后可以通过线段的中点公式来计算点 C 的坐标。
此类题目要求考生掌握直线和线段的性质、坐标点的计算等知识,能够熟练运用它们来解答几何问题。
3. Data Analysis(数据分析)数据分析部分是近年来SAT数学部分中新增的一部分内容,主要考察考生对数据收集、理解和分析的能力。
SAT考试数学题型与难度解析
SAT考试数学题型与难度解析SAT 的数学部分在不考虑加试的情况下共有三个部分,总分800。
其中两个部分是选择题,每题5 个选项,只有1 个是正确答案;另一个部分由选择题与自答题共同组成。
整个数学部分共有44 道选择题和10 道自答题,总答题时间为70 分钟。
我们沿用《SA T 官方指南》上的题型分类进行解析,即数字运算,几何测量和数据分析等三大类别。
很多时候还会出现以上三种类别的混合题型,如有些题目会将函数图像与平面几何结合进行考察。
除此之外,近几年还流行一种叫逻辑推理的题型,但考察力度不大,平均每套试卷会出现一至两道。
对于以上各种题型的难度,我们在此为大家做出一些简单的介绍:1、数字运算题是SAT 数学部分出现频率最高、也是最经常出难题的类型。
这部分主要考察学生的计算准确度:涉及到小学难度的移项、通分、约分;初中难度的消元、换元、数列、解二次方程;高中难度的排列组合、二次函数、幂指数运算等。
如果排除粗心的因素,学生普遍更容易在高中难度的题型上犯错误,所以建议考生在考前一定把相关的概念和公式记清楚,并且多练习这类题目。
2、几何测量题虽说也涉及到从小学到高中的知识点,但实际比国内初、高中考察的几何题简单很多。
它通常考核的是学生对一些图形特征的理解,如三角形三边之间的关系、多边形的内角和、勾股定理、圆的周长和面积等基本概念。
即便是难度稍大一些的立体几何题,也只考察到勾股定理的各种应用,所以这一部分很少出现知识点上的缺漏和不足,建议考生一定要把这一题型的分数全部拿到。
3、数据分析题重点考察的是中位数、众数和算术平均数这三个概念。
在很多题目中会将这三个概念混合出题,考察难度系数为 4 或5(难度系数5 为最难),所以一定要牢牢掌握它们的定义和特征。
至于少量与概率相关的题型属于简单题型的范畴,平时多留心即可。
4、逻辑推理题通常难度适中,主要考察一个命题及其逆命题、否命题、逆否命题在真假性方面的问题。
实际上,SAT 数学部分在考察难度上波动并不明显,还是保持了一个非常标准化的出题节奏。
SAT Math word Problem
P208
Questionsof Fractions, ratios, and proportions:1-5
1. At College X, the faculty-to-student ratio is 1:9. If two-third of the studentsarefemale and one-quarter of the faculty is female, what fraction of the combined students and faculty are female?
Diagram:suppose the length of the string is 12 in. mark every¼of the string, each length will be 3in.Cutevery 1/3 of the string, each length will be 4in. between¼and 1/3 will be 1in. and 2 in.
Math word Problem:Here is the general approach to any word problem:
1.Read through the whole question. Do this to get a sense of what’s going on. You want to know the basic situation described, the type of information you’ve been given, and—most important of all—what exactly you are being asking.
小站教育SAT数学难题汇总及答案
SAT数学难题汇总及答案x^2 表示x 的平方,=!表示不等于。
pi 表示圆周率类型1:20. The least integer of a set of consecutive integers is -25. If the sum of these integers is 26, how many integers are in this set(A) 25(B) 26(C) 50(D) 51(E) 5214. Exactly 4 actors try out for the 4 parts in a play. If each actor can perform any one part and no one will perform more than one part, how many different assignments of actors are possible16. Set X has x members and set Y has y members. Set Z consists of all members that are in either set X or set Y with the exception of the k common members (k > 0). Which of the following represents the number of members in set Z(A) x + y + k (B)x + y - k (C) x +y + 2k (D) x + y- 2k(E) 2x + 2y - 2k20. There are 75 more women than men enrolled in Linden College. If there are n men enrolled, then, in terms of n, what percent of those enrolled are men17. A merchant sells three types of clocks that chime as indicated by the check marks in the table above. What is the total number of chimes of the inventory of clocks in the 90-minute period from 7:15 to 8:4518. If the 5 cards shown above are placed in a row so is never at eithe end, how many different arrangements are possible20. When 15 is divided by the positive integer k, the remainder is 3. For how many different values of k is this true(A) One (B)Two (C)Three (D)Four (E)Five17. On the number line above, there are 9 equal intervals between 0 and 1. What is the value of x19. If a, b. c, and f are four nonzero numbers, then all of the following proportions are equivalent EXCEPT (A)a/f=b/c(B)f/c=b/a (C)c/a=f/b(D)a/c=b/f(E)af/bc=1/18. If a and b are positive integers and what is the value of ab(A) 6 (B)12 (C)18 (D)24 (E)3616. After the first term, each term in a sequence is3 greater than 1/3 of the preceding term. If t is the first term of the sequence and t=!0. what is the ratio of the second term to the first term15. The Acme Plumbing Company will send a team of 3 plumbers to work on a certain job. The company has 4 experienced plumbers and 4 trainees. If a team consists of 1 experienced plumber and 2 trainees, how many different such teams are possiblep. r. and s are three different prime numbers greater than 2, and n = p * r * s, how many positive factors, including 1 and n. does n have18. If the sum of the consecutive integers from -22 to x, inclusive, is 72, what is the value of x(A) 23(B) 25(C) 50(D) 75(E) 9417. For all positive integers j and k. let j \R\ k be defined as the whole number remainder when j is divided by k. If 13 \R\k = 2, what is the value of k19, In a set of eleven different numbers, which of the following CANNOT affect the value of the median(A) Doubling each number(B) Increasing each number by 10(C) Increasing the smallest number only(D) Decreasing the largest number only(E) Increasing the largest number only15. A store charges $28 for a certain type of sweater. This price is 40 percent more than the amount it costs the store to buy one of these sweaters. At an end-of-season sale, store employees canpurchase any remaining sweaters at 30 percent off the store's cost How much would it cost an employee topurchase a sweater of this type at this sale(A) $(B)$ (C)$ (D)$ (E) $and Corinne stand back-to-back. They each take 10 steps in opposite directions away from each other and stop. Alice then turns around, walks toward Corinne. and reaches her in 17 steps. The length of one of Alice's steps is how many times the length of one of Corinne's steps (All of Alice's steps are the same length and all of Corinne's steps are the same length.)14. If n and p are integers greater than 1 and if p is a factor of both n +3 and n + 10. what is the value of p(A) 3 (B)7 (C)10(D) 13(E) 3016. In a mixture of peanuts and cashews, the ratio by weight of peanuts to cashews is 5 to 2. How many pounds of cashews will there be in 4 pounds of this mixture14. How many integers greater than 20 and less than 30 are each the product of exactly two different numbers, both of which are prime(A) Zero (B)One (C)Two (D)Three (E)Four20. If k is a positive integer, which of the following must represent an even integer that is twice the value of an odd integer(A) 2k(B) 2k + 3(C) 2k+ 4(D) 4k+1 (E)4k+ 2类型2:18. The shaded region in the figure above is bounded by the x‐axis, the line x = 4, and the graph of y = f(x).If the point (a, b) lies in the shaded region, which of the following must be trueI. a < 4 II. b < a III. b < f(a)(A) I only(B) III only(C) I and II only (D)I and III only (E)I. II, and III19. At a bottling company, machine A fills, a bottle with spring water and machine B accepts the bottleonly if the number of fluid ounces is between 1178and1218If machine B accepts abottlecontaining n fluid ounces, which of the following describes all possible values of n7. Dwayne has a newspaper route for which he collects k dollars each day. From this amount he pays out k/3 dollars per day for the cost of the papers, and he saves the rest of the money. In terms of k, how many days will it take Dwayne to save $1,00017. In the xy-coordinate plane, the graph of x = y*y -4 intersects line l at (0, p) and (5, t). What is the greatest possible value of the slope of l18. Esther drove to work in the morning at an average speed of 45 miles per hour. She returned home in the evening along the same route and averaged 30 miles per hour. If Esther spent a total of one hour commuting to and from work, how many miles did Esther drive to work in the morning14. If (a + b)^ = (a - b) ^, which of the following must be true (A) b = 0(B) a + b = 1(C) a - b = 1(D) a^2 + b^2 = 1(E) a^2 - b^2 = 115. The figure above shows the graphs of y = x*x and y = a - x*x for some constant a. If the length ofPQ is equal to 6, what is the value of a(A) 6(B) 9 (C)12 (D)1518. During a sale, a customer can buy one shirt for x dollars. Each additional shirt the customer buys costs z dollars less than the first shirt. For example, the cost of the second shirt is x - z dollars. Which of the following represents the customer's cost, in dollars, for n shirts bought during this sale16. Let the function h be defined by h(x) = 14 + x^2/4. If h(2m) = 9m, what is one possible value of m16. If x is an integer greater than 1 and if y = x + 1/x, which of the following must be true I.y =! x II. y is an integer. III. xy > x^2(A) I only(B) III only(C) I and II only (D)I and III only (E) I,II, and III6. If m and k are positive and 10(m^2)*k^-1= 100m, what is m^-1! in terms of k(A) k/10(B) k/90(C) k^10 (D)1/10k(E) 1/90k8. The figure above shows the graph of a quadratic function f that has a minimum at the point (1,1). If f(b) = f(3), which of the following could be the value of b(A) -3(B) -2(C) -1(D) 1(E) 516. If a + 2b is equal to 125 percent of 4b, what is the value of a/b's biology experiment involved timing 12 hamsters in a maze. Each hamster received at least one practice before being timed. The scatter plot above shows the time each hamster took to complete the maze and the corresponding number of practices that each hamster received. Based on the data, which of the following functions best models the relationship between t, the number of seconds to complete the maze, and p, the number of practices(A) t(p) = 44 (B)t(p) = p (C) t(p)= 44p(D) t(p) = p/44(E) t(p)= p+ 4420. For all numbers .t and v. let the operation □be defined by x □v = xy - y If a and b re positive integers, which of the following can be equal to zeroI. a □bII. (a + b) □bIIl. a □(a + b)(A) I only(B) II only (C)IIl only (D) Iand ll (E) Iand IIl18. In the figure above, ABCD is a rectangle. Points A and C lie on the graph of y = p*x^3, where p is a constant. If the area of ABCD is 4, what is the value of p19. If k, n, x, and y are positive numbers satisfying x ^(-4/3)= k^-2 and y^(4/3) = n^2, what is (xy)^(-2/3 in terms of n and k(A) 1 (B)1/2 (C)3/2(D) 6/5(E) 38. The price of ground coffee beans is d dollars for 8 ounces and each ounce makes c cups of brewed coffee. In terms of c and d. what is the dollar cost of the ground coffee beans required to make 1 cup of brewed coffee15. Ifx^2-y^2 = 10 and x +y = 5. what is the value of x - y18. The average (arithmetic mean) of the test scores of a class of p students is 70. and the average of the test scores of a class of n students is 92. When the scores of both classes are combined, the average score is 86.What is the value of p/n14. Which of the following is equivalent to h(m + 1)(A) g(m)(B) g(m) + l(C) g(m)-1 (D)h(m)+1 (E)h(m)-1has containers of two different sizes. The total capacity of 16 containers of-one size is x gallons, and the total capacity of 8 containers of the other size is also x gallons, and x > 0. In terms of x, what is the capacity, in gallons, of each of the larger containers(A) 4x(B) 2x(C)x/2(D)x/8(E)x/1618. Let the function f be defined by f(x) = x^2+ 18. If m is a positive number such that f(2m) = 2f(m), what is the value of m19. The cost of maintenance on an automobile increases each year by 10 percent, and Andrew paid S300 this year for maintenance on his automobile. If the cost c for maintenance on Andrew's automobile n years from now is given by the function c(n) = 300x^n, what is the value of x(A) (B)(C) (D)(E) 30xy = 7 and x- y = 5. then x^2*y-xy^2= (A) 2(B) 12(C) 24(D) 35(E) 7017. Line m (not shown) passes through O and intersects AB between A and B. What is one possible value of the slope of line m17. If k and h are constants and x^2+kx+7is equivalent to(x + 1)(x + h). what is the value of k(A) 0(B) 1(C) 7(D) 8(E) It cannot be determined from the information given.(A) 1 (B)5 (C)24 (D)25 (E)2616. To celebrate a colleague's graduation, the m coworkers in an office agreed to contribute equally toa catered lunch that costs a total of y dollars. If p of the coworkers fail to contribute, which of the following represents the additional amount, in dollars, that each of the remaining coworkers must contribute to pay for the lunch类型318. In the xy-coordinate plane, the distance between point B(10, 18) and point A(x, 3) is 17. What is one possible value of x16. The pattern shown above is composed of rectangles. This pattern is used repeatedly to completely cover a rectangular region 12L units long and 10L units wide. How many rectangles of dimension L by W are needed(A) 30 (B)36 (C)100 (D)150 (E)18018. In the figure above, AB = BC and DE = EF = DF If the measure of /.ABC is 30° and the measure of /.BDE is 50°, what is the measure of /DFA(A) 30°(B) 35°(C) 40°(D) 45°(E) 50°17. The three-dimensional figure above has two parallel bases and 18 edges. Line segments are to be drawn connecting vertex V with each of the other 11 vertices in the figure. How many of these segments will not lie on an edge of the figure15. In the figure above, what is the sum. in terms of n, of the degree measures of the four angles marked with arrows(A) n(B) 2n(O 180 - n (D)360 - n (E)360 - 2n16. The figure above consists of two circles that have the same center. If the shaded area is 64pi square inches and the smaller circle has a radius of 6 inches, what is the radius, in inches, of the larger circle20. The figures above show the graphs of the functions f and g. The function f is defined by f(x) = x^3 - 4x. The function g is defined by g(x) = f(x + h) + k, where h and k it are constants. What is the value of hk(A) -6(B) -3(C) -2(D) 3(E) 615. The cube shown above has edges of length 2, and A and 8 are midpoints of two of the edges. What is the length of AB (not shown)the figure above, arc SBT is one quarter of a circle with center R and radius 6. If the length plus the width of rectangle ABCR is 8. then the perimeter of the shaded region is(A) 8 - 3pi(B) 10+3pi(C) 14+3pi(D) 1 + 6pi(E) 12+6pi16. In rectangle ABCD, point E is the midpoint of BC. If the area of quadrilateral ABED is 2/3, what is the area of rectangle ABCD(A)1/2(B) 3/4(C) 8/9(D) 1(E)8/3ABCD lies in the xy -coordinate plane so that its sides are not parallel to the axes. What is the product of the slopes of all four sides of rectangle ABCD(A) -2(B) -1(C)0 (D)1 (E) 216. In the figure above, y+z=(A)180(B)195(C)215(D)230(E)24518. The figure above shows part of a circle whose circumference is 45. If arcs of length 2 and length b continue to alternate around the ensure circle so that there are 18 arcs of each length, what is the degree measure of each of the arcs of length b(A) 4° (B)6°(C)10°(D)16°(E)20°20. If the five line segments in the figure above are all congruent, what is the ratio of the length of AC (not shown) to the length of BD(A) 2^ to 1 (B)3^ to 1 (C) 2^to 2 (D) 3^ to2(E)3^ to 2^0..515. In the figure above, EBCD is a square and AE =8 What is the area of EBCD18. In the figure above, if the legs of triangle ABC are parallel to the axes, which of the following could be the lengths of the sides of triangle ABC(A) 2. 29^ (B) 2.5, and 7(C) 3,3,and3*2^(D) 3, 4, and 5(E) 4, 5, and 41^类型4:18. If the average (arithmetic mean) of x and y is k, which of the following is the average of x, y, and z(A)(2k+z)/3 (B)(2k+z)/2(C) (k+z)/3(D)(k+z)/2(E) 2(k+z)/3Number of Siblings Numberof Students03 16 22 31table above shows how many students in a class of 12 preschoolers had 0,1, 2, or 3 siblings. Later, a new student joined the class, and the average (arithmetic mean) number of siblings per student became equal to the median number of siblings per student. How many siblings did thenew student have(A)(B)1(C)2(D)3(E)418. The table above shows student enrollment at Weston High School from 1992 through 1996. If the median enrollment for the five years was 1351, and no two years had the same enrollment what is the greatest possible value for x【答案】类型1题号答案类型2题号答案类型3题号答案类型4题号答案20E18A20E18A 14246D18B8A。
一道80%中国考生都做错了的SAT数学题
一道80%中国考生都做错了的SAT数学题往往在SAT考试中,数学部分对于中国学生来说可谓是信心十足的强项部分,然而,这道数学题2005年10月SAT考试第五个section 里面的第20题,正确率竟然不到18%!大家来回顾下往年的考题吧!原题如下:If j, k, and n areconsecutive integers such that 0 < j < k < n and the units(ones) digit of the product jn is 9,what is the units digit ofk? (RT0510_S05_Q20-M)(A) 0(B) 1(C) 2(D) 3(E) 4针对此题,SAT考试专家郑峻华给予了详细讲解:我想有相当多的学生可能首先是没有读懂这道题,units digit指的是我们说的“位”,ones的意思是“个位”。
这道题还原成中文意思是:如果j,k和n是三个连续整数且满足0 < j < k < n这一条件,同时j与n相乘所得的积个位数是9,请问k这个数字的个位数是多少?答案是从0-4这五个连续数字中进行选择。
译成中文后,我们会发现这是一个需要灵活思维的题目。
两个正整数相乘所得的积个位数是9,那么这两个数字(j和n)的个位数只有可能两种组合可能,分别是3和3,1和9。
由于j,k,n,三个数字是连续整数,j和n当中有一个k,那么只有可能k是以0为个位数的数字。
比如j=9,k=10,n=11,就满足了题目中所提到的条件。
显然答案是A。
专家说,在SAT考试中对于美国学生比较难的数学问题对于中国学生来说是通常是比较容易的,毫无疑问是中国学生的优势所在。
但在日常教学中发现中国学生在SAT数学题上通常遇到两大障碍。
障碍一:由于对英语数学词汇和表达不熟悉,造成题目理解的困难或错误。
比如2013年一套SAT数学部分题目,不少同学感到有些困惑。
美国“高考”SAT考试的数学题
美国“高考”SAT考试的数学题数学第一部分时间(25分钟)16个问题说明:这部分包含有两种类型的问题。
你将有25分钟时间来完成他们.对于1-8,在所给选项中选出一个最佳答案,然后再答题卡上填上相应的圆圈,你可以使用任何可用的草稿纸空间。
注释:1、可以使用计算器。
2、所有使用的数字均为实数。
3、在测试中,问题中所提供的数字或图表都包含一定的信息,这对于解题很有帮助。
所有图表都是比较准确的,除非在某些具体问题中,图表没有按比例绘制。
所有数字都呈现于平面上,除非另有说明。
4、除非另有规定,对于任何函数f 的值域都是所有实数x 的集合,并使得f(x) 是实数。
可能用到的公式:1、If 4(t+u)+ 3 =19,then t+u=如果4(t+u)+ 3 =19, 那么t+u=A 3B 4C 5D 6E 72、如图,三条直线相交于一点。
如果f=85,e=25,那么a 的值是多少?A 60B 65C 70D 75E 853、如果玛丽开车行驶n 英里用了t 小时,那么下列哪个可以表示她行驶的平均速度,英里/小时?A n/tB t/nC 1/ntD ntE n²t4、如果a 是一个奇数,b 是一个偶数,那么选项中哪一个是奇数?A 3bB a+3C 2(a+b)D a+2bE 2a+b5、在平面坐标内,F(—2,1),G(1,4),H(4,1)在以P为圆心的圆上,那么点P的坐标是什么?A(0,0)B(1,1)C(1,2)D(1,—2)E(2.5,2.5)6、如图,如果-3≤x≤6,那么x 有几个值,使得f(x)=2?A 零B 一个C 两个D 三个E 三个以上7、如果t 和t+2 的算术平均值是x, t 和t-2的算术平均值是y,那么x 和y 的算术平均值是多少?A 1B 1/2C tD t+1/2E 2t8、对于任何数x 和y,假设x△y=x²+xy+y²,那么(3△1)△1等于多少?A 5B 13C 27D 170E 1839、摩根的植物在一年之内从42厘米长到57厘米。
sat数学难题有多难
SAT数学难题有多难SAT数学重点考察的能力是数学思维和具体的解决问题的能力,题目的考察形式是44个选择题和10个grid-in questions。
后者的答案不是以选项的形式出现的,而是要求在答题卡上写出来,那么在70分钟内完成54道题目还是有一定难度的,题量大,时间也短,为什么数学还被列为简单科目呢,SAT数学难题有多难呢,下面我们来看下。
一.SAT数学难题下面是中国考生错误率最高的一道题目,这道数学题是2005年10月SAT考试第五个section里面的第20题,正确率竟然不到18%。
也就是说因为这道题目有82%的考生不能够与数学满分交手了,我们来看下SAT数学难题有多难。
If j, k, and n are consecutive integers such that 0 < j < k < n and the units (ones)digit of the product jn is 9, what is the units digit of k?(A) 0(B) 1(C) 2(D) 3(E) 4针对此题,专家们分析了出错的原因,大部分的学生首先是没有读懂这道题,units digit指的是我们说的“位”,ones的意思是“个位”。
所以我们先要把题目的意思搞清楚:如果j,k和n是三个连续整数且满足0 < j < k < n这一条件,同时j与n相乘所得的积个位数是9,请问k这个数字的个位数是多少?答案是从0~4这五个连续数字中进行选择。
一.如果大家了解了题目意思之后,就可以进行发散思维了,两个正整数相乘所得的积个位数是9,那么这两个数字(j和n)的个位数只有两种组合可能,分别是3和3,1和9。
由于j,k,n,三个数字是连续整数,j和n当中有一个k,那么只有可能k是以0为个位数的数字。
比如j=9,k=10,n=11,就满足了题目中所提到的条件。
显然答案是A。
sat最难的数学题
在回答SAT 数学题时,需要注意解题的方法和步骤。
虽然一些题目可能会被认为是难一些,但这通常是因为它们比较新颖或者涉及到了某些特定的概念或技巧。
首先,需要明确的是,SAT数学考试的目的是为了测试学生的数学知识和技能,而不是为了为难他们。
因此,即使某些题目看起来很难,只要学生掌握了必要的数学知识,并能够灵活运用,就一定能够解决它们。
接下来,让我们来看一个具体的例子。
假设有一道SAT数学题是这样的:题目:一个圆和一个球共有多少个表面?这道题目可能会让一些学生感到困惑,因为他们可能不知道如何计算一个球的表面面积。
但是,如果我们知道球和圆的性质,这个问题就会变得很简单。
首先,我们需要知道球和圆都是三维形状,而圆是二维的。
这意味着球有一个三维的表面,而圆只有一个二维的表面。
因此,要回答这个问题,我们只需要将球的表面面积除以2即可。
接下来,我们需要计算球的表面面积。
球是由一个半径为r的球体构成的,因此球的表面积公式为:4πr2。
如果我们知道球的半径r,就可以很容易地计算出球的表面面积。
现在,我们可以回到题目中来回答它。
这个圆和一个球共享一个表面,因此它们的表面之和就是球表面积的两倍。
我们可以通过将球表面积乘以2来得到答案。
那么这个答案是多少呢?通过上面的推理,我们可以得到这个问题的答案为:4πr2*2=8πr2。
这意味着圆和球的表面共有8πr2个表面。
最后,我们来总结一下这个题目的关键点和方法。
首先,我们了解球和圆的性质以及它们的表面积公式。
然后,我们利用这些知识来解决问题并得出答案。
这个方法的关键是灵活运用数学知识并理解题目中的信息。
当然,SAT数学考试中可能还会出现其他类型的难题,例如涉及复杂概念或技巧的问题。
但是只要学生掌握了必要的数学知识并能够灵活运用,就一定能够解决这些问题。
在解决SAT数学难题时,学生还需要注意一些其他事项。
首先,他们需要仔细阅读题目并理解其中的信息。
其次,他们需要使用正确的数学术语来描述问题并得出答案。
sat最难数学题
sat最难数学题
对于不同的人来说,SAT数学题的难易程度可能会有所不同,这取决于个人的数学基础、解题技巧和经验等因素。
然而,一般来说,SAT数学题目的难度主要集中在以下几个方面:
1. 复杂计算:在SAT数学考试中,有时会涉及到较为复杂的计算,例如多
步骤问题、大量数字的计算等。
这些题目可能对那些不熟悉数学计算技巧的学生来说比较困难。
2. 抽象数学概念:SAT数学考试中有时会涉及到一些比较抽象的数学概念,例如代数、几何、概率等。
这些题目可能对那些对这些概念理解不够深入的学生来说比较困难。
3. 图表和数据解读:SAT数学考试中有时会涉及到图表和数据的解读,例如柱状图、折线图、饼图等。
这些题目可能对那些不熟悉图表和数据解读技巧的学生来说比较困难。
总的来说,要应对SAT数学考试的难度,学生需要具备扎实的数学基础、
广泛的数学知识、熟练的解题技巧和经验,并且需要进行充分的准备和练习。
同时,学生还需要注意解题的速度和准确性,以及在考试中保持冷静和自信。
SAT数学考试最易出错的三个问题
狄邦培训官网:SAT数学考试最易出错的三个问题对很多考生来讲SAT数学考试的备考相对是比较容易的,但备考中也会遇到各种各样的问题,如果能有效克服SAT数学考试备考常见的问题,那考试中失掉的冤枉分就少多了!1)单词不熟:有一些重要单词可能搞错,比如circumference表示圆周长,而不是面积。
因为选项中有,容易混淆,如2008年10月S8第7题。
再比如最基本的odd/even,factor/multiple,parallel/perpendicular等一定要弄清。
另外情景题中,比如Kate买唱片Jim排水管之类,一些无关紧要的单词不认识完全不影响解题,千万不要因此干扰做题状态。
2)表达歧义:简言之,就是没看懂题目。
比如a more than b的表达式是a+b,而a less than b的表达式是b-a,很多中国考生在这里出错。
再比如在decimal representation里,tenths digit既能表示十位数,也能表示小数点后第一位,即十分位,如09年1月S8第15题。
还有同学提出least possible value是“最小值”还是“最不可能的值”,从求解的角度自然是前者。
数学题的表达从来都很直接,习惯这些表达即可。
3)抓点失误:明明已经看懂,却没看清问题是什么就匆匆选出答案,是最不值的错误。
注意题目中问的是difference of a and b还是sum of a and b,最后求的是radius还是diameter,area还是perimeter,正确答案往往只有一步之遥。
一般题目里的下划线的单词,都是重要的强调。
其实对中国考生的SAT考试而言,SAT数学考试的知识点并不多而且也不难,只要把握好容易失分的点,获得高分就容易多了。
美国数学考试难了?北美与亚太5月SAT数学考试内容
5月6日(星期六)亚太SAT考试结束后,有同学反映这次数学部分有点难,难道说数学终于难了一次?下面我们看一下北美与亚太的SAT数学部分的考试内容,看看难在哪里。
北美SAT数学部分本次数学考试的考点相比于以往的北美卷没有太大变化,依旧是以常规考点为主的常规问题。
比如Section 3的前5题都是在探讨解一元一次方程,二元一次方程和一元二次方程,只需要计算或者带入x的值即可解出。
三角函数依旧是考察定义,如section3 第9题就是给出边长求正弦值。
列方程的的题目如section3的第6题和11题考察了买卖货物的数量和价格模型。
这一模型在OG中也频繁使用了,考生只要看清题目中要求的即可顺利列出方程。
多项式的化简着重考察了指数函数和多元函数,如section3 14题和section 4 12题,熟背公式就能解决。
几何类题目依旧考察了圆,如section3 的38题将圆和三角形结合起来,需要注意半径的位置。
section 4的8题,11题考了圆的方程式。
同时相似三角形如section 3 的15题考的是直角三角形的相似,比较容易直观看出。
值得注意的是section 4 14和25题考了很少见的实验结论类题目,纯文字题且篇幅较长,比较考验学生的阅读能力和辨析数据的能力,需要仔细阅读题干和选项。
单位换算是以长度单位为主,结合了比例考点,如section 4 16题。
本次考试表格类题目比较少,函数图像出现的比较多,如section 4 21,23,28,36,37题,都列出了一次函数或者二次函数的图像,需要学生掌握基本的斜率,交点,截距,顶点等知识,辨别出函数图像的特点。
总结:大部分题目的模型都是大家了解的,买卖东西,算长度/面积,路程问题+油耗问题等,学生在熟练OG和真题的题目之后解决此类问题都不会太难。
亚太SAT数学部分本次SAT考试数学部分难度略高, 尤其是section 4,整体难度上超过了目前大部分真题。
【小站教育】SAT数学难题汇总及答案
【小站教育】SAT数学难题汇总及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(【小站教育】SAT数学难题汇总及答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为【小站教育】SAT数学难题汇总及答案的全部内容。
SAT数学难题汇总及答案x^2 表示x 的平方,=!表示不等于.pi 表示圆周率类型 1:20. The least integer of a set of consecutive integers is —25. If the sum of these integers is 26, how many integers are in this set?(A) 25 (B) 26(C)50 (D) 51(E) 5214. Exactly 4 actors try out for the 4 parts in a play. If each actor can perform any one part and no one will perform more than one part, how many different assignments of actors are possible?16. Set X has x members and set Y has y members. Set Z consists of all members that are in either set X or set Y with the exception of the k common members (k > 0)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. The graphs of two linear functions, f and g, are perpendicular. If f (2) = 4 and f (−4) = 1, which of the following could define g?
I. ab · a−1
11. For all x and y, let the operation x y be equal to the 2x
whole number remainder obtained when finding . y
If s is an even integer and the value of 7 s = 2,
B
4. If (x − h)(x + k) = x2 − 16, what is the value of h + k?
(A) −8 (B) −4 (C) 0 (D) 4 (E) 8
A (–1,0)
C (3,0)
2. For all n, let n∗ be defined as n∗ = n2 − n − 2. If a and b are positive integers and a b, which of the following could be true?
B xº
(A) −5 (B) −4 (C) −3 (D) 1 (E) 3
Stop
22. A small circle, A, is rolled around the circumference of a larger circle, B, as shown in the figure above. Circle A starts at the position indicated “Start” and makes two complete rotations, coming to rest at the position marked “Stop”. If the ratio of the areas of A to B is 1 to 25, what is the value of x?
14. A student is weighing large and small marbles. While weighing one large marble with 8 small marbles, the student discovers that the large marble’s weight is 5 times the average (arithmetic mean) of the weight of the small marbles. The large marble’s weight is what fraction of the total weight of the 9 marbles?
(B) 6 √√
(C) 6 3 − 3 2 √
(D) 6 3 √
(E) 6 3 + 6
3
17. The function f is defined as f (x) = (x − n)(x + m) for all values of x. If the function g is defined as g(x) = f (x) + 3, what is the y-intercept of the graph of g in terms of n and m?
what is a possible value of s?
II. 0
III. 1
2
O 30º
P
S
A
B
E
R
Q
12. In the figure above, OPQR is a square, and PS is the arc of a circle with center O. If the length of arc PS is π, the area of the shaded sector is what fraction of the area of OPQR?
(A) g(x) = − 1 x + 4 2
(B) g(x) = −x + 1 (C) g(x) = −2x + 4 (D) g(x) = 2x − 3 (E) g(x) = x + 5
7 6 5 4 3 2 1
-3 -2 -1 -1 -2
1234567
5. A portion of the graph of the function h is shown in the xy-plane above. If h(4) − h(s) = 4, which of the following could be the value of s?
1. In the figure below, the graph of y = kx2 intersects triangle ABC at B. If AB = BC and the area of triangle ABC is 6, what is the value of k?
y = kx2
(A) 3n + 3m (B) 3n − 3m (C) 3nm (D) 3 − nm
nm (E)
3
(A) −10 (B) −8 (C) −6 (D) 0 (E) 5
a, b, b − a, −a, . . .
18. In the sequence above, each term after the first two is obtained by finding the difference between the two previous terms. If a = 3 and b = 4, what is the sum of the first 200 terms of this sequence?
Q
beginning of the week?
O
P
6. In the figure above, three identical circles of radius 8 with centers O, P and Q are tangent to each other. What is the area of the shaded region bound by the circles?
21. An antique coin collector has a number of coins and several display cases. If he puts one coin in each case, there are four coins left out of the cases. If instead he puts three coins in each case, all coins are placed, and there are six empty cases left over. How many coins does the collector have?
g(x) = x2 + c h(x) = g(x − 5) + 3
A Start
19. The equations of two functions, g and h, are shown above, where c is a constant integer. If the graph of h has two solutions, what is the maximum possible value of c?
what
is
the
value
of
h ?
k
8. For integers a and b where a > 0 and b ≥ 0, let the
operation
பைடு நூலகம்be defined as a
b
=
ab .
Which
of
the
a
following could be the value of a b?
B 105º
C
D
A
150º
F
E
Note: Figure not drawn to scale.
16. In the figure above, triangle ABC and parallelogram CDEF are constructed with B, C, and F along the same lin√e. If the ratio of CF : BC = 1 : 2 and DE = 2 3, what is the area of triangle ABC? √ (A) 3 2
-3 -2 -1 -1
-2
1234567
10. The figure above shows the graphs of the functions f
and g. If g is defined in terms of a transformation of
f
such
that
g(x)
=
f (x+h)+k,
(–1,0) D
C
15. In the figure above, rectangle ABCD lies on the coordinate plane with point D located at the origin. If AB = AE = ED, what is the area of quadrilateral BC DE ?
π (A)