钢结构原理格构式轴心压杆
钢结构设计原理考试复习题及答案

1. 钢结构计算的两种极限状态是承载能力极限状态和正常使用极限状态。
2. 钢结构具有轻质高强、材质均匀,韧性和塑性良好、装配程度高,施工周期短、密闭性好、耐热不耐火、易锈蚀。
等特点。
3. 钢材的破坏形式有塑性破坏和脆性破坏。
4. 影响钢材性能的主要因素有化学成分、钢材缺陷、冶炼,浇注,轧制、钢材硬化、温度、应力集中、残余应力、重复荷载作用5. 影响钢材疲劳的主要因素有应力集中、应力幅(对焊接结构)或应力比(对非焊接结构)、应力循环次数6. 建筑钢材的主要机械性能指标是屈服点、抗拉强度、伸长率、冲击韧性、冷弯性能。
7. 钢结构的连接方法有焊接连接、铆钉连接、螺栓连接。
8. 角焊缝的计算长度不得小于8,也不得小于40。
侧面角焊缝承受静载时,其计算长度不宜大于60 。
9.普通螺栓抗剪连接中,其破坏有五种可能的形式,即螺栓剪坏、孔壁挤压坏、构件被拉断、端部钢板被剪坏、螺栓弯曲破坏。
10. 高强度螺栓预拉力设计值与螺栓材质和螺栓有效面积有关。
11. 轴心压杆可能的屈曲形式有弯曲屈曲、扭转屈曲、弯扭屈曲12. 轴心受压构件的稳定系数 与残余应力、初弯曲和初偏心和长细比有关。
13. 提高钢梁整体稳定性的有效途径是加强受压翼缘、和增加侧向支承点。
14. 影响钢梁整体稳定的主要因素有荷载类型、荷载作用点位置、梁的截面形式、侧向支承点的位置和距离、梁端支承条件。
15.焊接组合工字梁,翼缘的局部稳定常采用限制宽厚比、的方法来保证,而腹板的局部稳定则常采用设置加劲肋的方法来解决。
一、问答题1钢结构具有哪些特点?1.钢结构具有的特点:钢材强度高,结构重量轻钢材内部组织比较均匀,有良好的塑性和韧性钢结构装配化程度高,施工周期短钢材能制造密闭性要求较高的结构钢结构耐热,但不耐火钢结构易锈蚀,维护费用大。
2钢结构的合理应用范围是什么?重型厂房结构大跨度房屋的屋盖结构高层及多层建筑轻型钢结构塔桅结构板壳结构桥梁结构移动式结构3钢结构对材料性能有哪些要求?钢结构对材料性能的要求:较高的抗拉强度和屈服点较好的塑性、韧性及耐疲劳性能良好的加工性能4钢材的主要机械性能指标是什么?各由什么试验得到?是屈服点、抗拉强度、伸长率、冲击韧性、冷弯性能。
钢结构基本原理作业解答

《钢结构基本原理》作业判断题2、钢结构在扎制时使金属晶粒变细,也能使气泡、裂纹压合。
薄板辊扎次数多,其性能优于厚板。
正确错误答案:正确1、目前钢结构设计所采用的设计方法,只考虑结构的一个部件,一个截面或者一个局部区域的可靠度,还没有考虑整个结构体系的可靠度.答案:正确20、柱脚锚栓不宜用以承受柱脚底部的水平反力,此水平反力应由底板与砼基础间的摩擦力或设置抗剪键承受。
答案:正确19、计算格构式压弯构件的缀件时,应取构件的剪力和按式计算的剪力两者中的较大值进行计算。
答案:正确18、加大梁受压翼缘宽度,且减少侧向计算长度,不能有效的增加梁的整体稳定性。
答案:错误17、当梁上翼缘受有沿腹板平面作用的集中荷载,且该处又未设置支承加劲肋时,则应验算腹板计算高度上边缘的局部承压强度。
答案:正确16、在格构式柱中,缀条可能受拉,也可能受压,所以缀条应按拉杆来进行设计。
答案:错误15、在焊接连接中,角焊缝的焊脚尺寸愈大,连接的承载力就愈高.答案:错误14、具有中等和较大侧向无支承长度的钢结构组合梁,截面选用是由抗弯强度控制设计,而不是整体稳定控制设计。
答案:错误13、在主平面内受弯的实腹构件,其抗弯强度计算是以截面弹性核心几乎完全消失,出现塑性铰时来建立的计算公式。
答案:错误12、格构式轴心受压构件绕虚轴稳定临界力比长细比相同的实腹式轴心受压构件低。
原因是剪切变形大,剪力造成的附加绕曲影响不能忽略。
答案:正确11、轴心受力构件的柱子曲线是指轴心受压杆失稳时的临界应力与压杆长细比之间的关系曲线。
答案:正确10、由于稳定问题是构件整体的问题,截面局部削弱对它的影响较小,所以稳定计算中均采用净截面几何特征。
答案:错误9、无对称轴截面的轴心受压构件,失稳形式是弯扭失稳。
答案:正确8、高强度螺栓在潮湿或淋雨状态下进行拼装,不会影响连接的承载力,故不必采取防潮和避雨措施。
答案:错误7、在焊接结构中,对焊缝质量等级为3级、2级焊缝必须在结构设计图纸上注明,1级可以不在结构设计图纸中注明。
钢结构设计原理 第四章-轴心受力构件

因此,失稳时杆件的整个截面都处于加载的过 程中,应力-应变关系假定遵循同一个切线模量 Et,此时轴心受压杆件的屈曲临界力为:
N cr ,t
2 Et I
2 二、实际的轴心受压构件的受力性能
在钢结构中,实际的轴压杆与理想的直杆受力性能之间差别很大,实 际上,轴心受压杆的屈曲性能受许多因素影响,主要的影响因素有:
一、理想轴压构件的受力性能 理想轴压构件是指满足下列4个条件: o杆件本身绝对直杆; o材料均质且各向同性; o无荷载偏心且在荷载作用之前无初始应力; o杆端为两端铰接。 在轴心压力作用下,理想的压杆可能发生三种形式的屈曲: 弯曲屈曲、扭转屈曲、弯扭屈曲——见教科书P97图4–6 轴心受压构件具体以何种形式失稳,主要取决于截面的形式 和尺寸、杆的长度以及杆端的支撑条件。
l N 2 EI 对一无残余应力仅存在初弯曲的轴压杆,杆件中点截面边缘开始 式中 N l2 NE 屈服的条件为:
0
1
经过简化为:
N N vm v0 v0 fy v m v0 v 1 1 N NE A W N N v0 N E fy A W NE N
An—构件的净截面面积_
N fy r f R An
P94式4-2
(1)当轴力构件采用普通螺栓连接时 螺栓为并列布置:
n1 n2 n3
按最危险的截面Ⅰ-Ⅰ 计算,3个截面净截面面积 相同,但 Ⅰ-Ⅰ截面受力最大。
N n
Ⅰ-Ⅰ:N Ⅱ-Ⅱ:N-Nn1/n Ⅲ-Ⅲ:N-N(n1+n2)/n
Ⅰ Ⅱ Ⅲ
2 2
从上面两式我们可以看出,绕不同轴屈曲时,不仅临界力不同,且残余 应力对临界应力的影响程度也不同。因为k1,所以残余应力对弱轴的 影响比对强轴的影响严重的多。
钢结构设计原理轴心受力构件试卷(练习题库)(2023版)

钢结构设计原理轴心受力构件试卷(练习题库)1、对于焊接组合工字形截面轴心受压杆,其腹板局部稳定的高厚比限制条件是根据边界条件为的矩形板单向均匀受2、轴心受压格构式构件在验算其绕虚轴的整体稳定时采用换算长细比,是因为()。
3、当缀条采用单角钢时,按轴心压杆验算其承载能力,但必须将钢压杆,()对弹性屈曲承载力的影响不大。
17、单轴对称轴心受压柱,不可能发生()。
18、理想弹性轴心受压构件的临界力与截面惯性矩I和计算长度l0的关系为()。
19、理想轴心压轩的临界应力σcr>fp(比例极限)时,因(),应采用切线模量理论。
20、按照规范,主要受压构件的容许长细比为()。
21、实腹式轴心受压构件应进行()计算。
22、轴心受压构件的整体稳定系数ϕ与构件()等因素有关。
23、计算轴心受压构件整体稳定性的公式N/(ϕA)≤f的物理意义是()。
24、组合工字形截面轴心柱,翼缘的局部稳定宽厚比限值条件是根据()确定的。
25、轴心压杆的截面分为a、b、c、d类,其中()截面的稳定系数最低。
26、轴心压杆的截面分为a、b、c、d类,其中()截面的稳定系数最高。
27、 a类截面的轴心压杆稳稳定系数ϕ值最高,主要是由于()。
28、轴心压杆整体稳定计算时,在下列截面中属a类截面的是()。
29、在进行格构式轴心受压构件的整体稳定计算时,由于(),因此以换算长细比λ0x代替λx。
30、对格构式轴压杆绕虚轴的整体稳定进行计算时,用换算长细比λox代替λ,这是考虑()。
31、确定双肢格构式柱的二肢间距是根据()。
32、缀条式轴压柱的斜缀条可按轴心压杆设计,但钢材的强度要乘以折减系数以考虑()的影响。
33、保证焊接组合工字形截面轴心受压杆翼缘板局部稳定的宽厚比限制条件,是根据矩形板单向均匀受压确定的,其边34、在计算工字形截面两端铰支轴心受压构件腹板的临界应力时,其支承条件为()。
35、工字形或箱形截面柱的截面局部稳定是通过()来保证的。
钢结构设计原理2

则力矩平衡方程为:
M P y EI EI y Py 0 EI y
为二阶齐次常微分方程
k y 0 y
2
P k EI
2
该微分方程的通解为:
y A sin kx B cos kx
A,B为待定系数,由边界条件确定
y x 0 0 y x l 0
对于施加预拉力的拉杆,其容许长细比可放宽到1000。
受拉构件的容许长细比
项次 1 2 3 构件名称
表 4-1
直接承受动力 荷载的结构 250 —— ——
承受静力荷载或间接承受动力荷载的结构
有重级工作制吊车的厂房 桁架的杆件 吊车梁或吊车桁架 以下的柱间支撑 其它拉杆、支撑、系杆等 (张紧的圆钢除外)
近的相邻位置也是平衡的,则所探讨的平衡位置是随遇的;
在此平衡位置建立平衡方程,求得临界荷载; 找到所有临界状态,其临界荷载最低的状态为真正的失稳状
态;
这种方法只能得到临界荷载,不能判别稳定性类别。
结构或构件失稳实际上为从稳定平衡状态经过临 界平衡状态,进入不稳定状态,临界状态的荷载即为 结构或构件的稳定极限荷载,构件必须工作在临界荷 载之前。
1990年2月,辽宁省某重型机械厂新增一会议室。
破坏原因:只有14.4m跨的轻钢梭形屋架腹杆平面外出 现半波屈曲,致使屋盖迅速塌落。误用重型屋盖结构。 且错用了计算长度系数,λy>300。 事故后果:305人开会期间倒塌,造成42人死亡、179人 受伤。
美国一体育馆网架,1978年1月大雨雪后倒塌。
冷弯薄壁型钢截面
实腹式组合截面 (整体连通的截面)
格构式组合截面
截面选型的要求是: (1)用料经济,形状简单,便于制作 (2)便于与其他构件连接; (3) 面积保证:A,An; (4)刚度足够:宽大且薄,I 大。 3、设计要求 轴心受力构件应满足承载能力与正常使用两种极限状态的要求。 正常使用极限状态的要求用构件的长细比来保证构件的刚度; 承载能力极限状态包括强度、整体稳定、局部稳定三方面的要求。 轴心受拉构件:强度和刚度验算; 轴心受压构件:强度、稳定和刚度验算。 稳定问题是钢构件的重点问题,所有钢构件都涉及到稳定问题, 是钢构件设计的重点与难点。
钢结构设计原理——轴心受力构件

截面设计算例
ix
l0 x
1200 8c m 150
iy
l0 y
400 2.67 c m 150
(3)确定工字钢型号 初选I20a,且b/h=100/200=0.5<0.8,截面类别:对x轴为a类; 对y轴为b类。查表得A=35.5cm2,ix=8.15cm,iy=2.12cm。 (4)验算支柱的整体稳定性和刚度
截面型式
型钢和钢板连接而成实腹式组合截面
格构式组合截面
4.1.2 轴心受拉构件的强度计算和刚度验算
强度计算
N f An
式中,N—轴拉力设计值(基本组合值) An—截面的净面积
(4-1)
f—抗拉强度设计值,p336,附录一,对圆钢需乘以
折减系数0.95。
算例
验算图所示双角钢截面的轴心拉杆强度。轴心拉力设计值N=650kN。钢材为 Q235钢,角钢截面为L100×100mm,角钢两肢上各有一排交错排列的螺栓孔, 孔径d=21.5mm。 40 40 60 40 60+50=110 40 60 解:先将其中的一个角 钢截面展开,并比较截 面Ⅰ-Ⅰ和Ⅱ-Ⅱ哪个危 险截面,两截面厚度均 为10mm。 Ⅰ-Ⅰ 净截面宽度
强度计算
N f An
式中,N—轴压力设计值
An—截面的静面积
(4-3)
f —抗压强度设计值,p336,附录一
4.1.3 轴心受压构件强度、稳定计算和刚度验算
整体稳定性
N f A
(4-6)
式中 A---截面的毛面积 ---稳定系数,与(λ,截面分类,钢材屈服强度)有关, 按附录三取用。
钢结构设计原理-第六章

第六章 轴心受力构件
轴心受压构件的三种整体失稳状态
无缺陷的轴心受压构件(双轴对称的工型截面)通常发生弯曲失稳, 构件的变形发生了性质上的变化,即构件由直线形式改变为弯曲形式 且这种变化带有突然性。
实腹式构件和格构式构件 实腹式构件具有整体连通的截面。 格构式构件一般由两个或多个分肢 用缀件联系组成。采用较多的是两 分肢格构式构件。
钢结构设计原理
图6.1.2 柱的形式
Design P r i n c i p l e s of Steel Structure
第六章 轴心受力构件
格构式构件 实轴和虚轴
钢结构设计原理 Design P r i n c i p l e s of Steel Structure
第六章 轴心受力构件
§ 6 . 2 轴心受力构件的强度和刚度
6.2.1 轴心受力构件的强度计算
轴心受力构件以截面上的平均应力达到钢材的屈服强度作为强 度计算准则。 1. 截面无削弱
构件以全截面平均应力达到屈服强度为强度极限状态。 设计时,作用在轴心受力构件中的外力N应满足:
钢结构设计原理 Design P r i n c i p l e s of Steel Structure
第六章 轴心受力构件
6.3.2 无缺陷轴心受压构件的屈曲
理想轴心受压构件 1 杆件为等截面理想直杆; 2 压力作用线与杆件形心轴重合; 3 材料为匀质,各项同性且无限弹性,符合虎克定律; 4 构件无初应力,节点铰支。
1、弹性弯曲屈曲
欧拉(Euler)早在1744年通过对理想轴心压杆的整体稳定问题进 行的研究,当轴心力达到临界值时,压杆处于屈曲的微弯状态。 在弹性微弯状态下,根据外力矩平衡条件,可建立平衡微分方程, 求解后得到了著名的欧拉临界力和欧拉临界应力。
钢结构设计原理习题及参考答案

钢构造设计原理习题及参考答案1单项选择题1.焊接组合梁截面高度h是根据多方面因素确定的,下面哪一项不属于主要影响因素?〔〕A、最大高度B、最小高度C、等强高度D、经济高度答案:C2.焊接的优点不包括〔〕。
A、直接连接方便简单B、节省材料C、构造刚度大,提高焊接质量D、最大化表达钢材料性能答案:D3.轴心压杆计算时满足〔〕的要求。
A、强度,刚度B、强度,刚度,整体稳定C、强度,整体稳定,局部稳定D、强度,整体稳定,局部稳定,刚度答案:D4.对关于钢构造的特点表达错误的选项是〔〕。
A、建筑钢材的塑形和韧性好B、钢材的耐腐蚀性很差C、钢材具有良好的耐热性和防火性D、钢构造更适合于高层建筑和大跨构造答案:C5.轴心受压构件整体稳定的计算公式的物理意义是〔〕。
A、截面平均应力不超过钢材强度设计值B、截面最大应力不超过钢材强度设计值C、截面平均应力不超过构件欧拉临界应力设计值D、构件轴力设计值不超过构件稳定极限承载力设计值答案:D6.对有孔眼等削弱的轴心拉杆承载力,"钢构造设计标准"采用的准则为净截面〔〕。
A、最大应力到达钢材屈服点B、平均应力到达钢材屈服点C、最大应力到达钢材抗拉强度D、平均应力到达钢材抗拉强度答案:B7.下面哪一项不属于钢材的机械性能指标?〔〕A、屈服点B、抗拉强度C、伸长率D、线胀系数答案:D8.Q235与Q345两种不同强度的钢材进展手工焊接时,焊条应采用〔〕。
A.E55型B.E50型C.E43型D.E60型答案:C9.梁受固定集中荷载作用,当局部承压强度不能满足要求时,采用〔〕是比拟合理的措施。
A、加厚翼缘B、在集中荷载作用处设置支承加劲肋C、增加横向加劲肋的数量D、加厚腹板答案:B10.最大弯矩和其他条件均一样的简支梁,当〔〕时整体稳定最差。
A、均匀弯矩作用B、满跨均布荷载作用C、跨中集中荷载作用D、满跨均布荷载与跨中集中荷载共同作用答案:A11.不考虑腹板屈曲后强度,为保证主梁腹板的局部稳定,〔〕。
11钢结构基本原理(3-构件强度09)

轴心受拉构件强度计算公式 N f An
An 构件净截面面积 f 抗拉强度设计值
轴心受压构件的强度计算---与受拉构件强度计算完全相同, 仍采用以上公式
注意:轴心受压构件的破坏形式有强度破坏、整体失稳破坏和 局部失稳破坏(设计方法后述)。
——强度计算往往不是起控制作用?
轴心压杆(柱)的设计和计算内容—概述 1. 截面选择
最优截面改变处是离支座1/6跨度处。
b'
≤1:4
M' M1
b
M' M
M
a=l/6 l
1
按强度条件选择梁截面
h
a=l/6
多层翼缘板的梁,可用切断外层板的方法来改变梁的截面。
双层翼缘焊接梁
梁截面一般只改变一次,对于跨度较小的组合梁,不宜改变截面。
四、拉弯、压弯构件的应用和强度计算
压弯(拉弯)构件——同时承受轴向力和弯矩的构件 弯矩的产生
塑性阶 段
弯曲正应力的特点是什么?
受弯构件(梁)的强度
1、正应力—抗弯强度
三种强度准则: 1)按边缘屈服准则
(对需计算疲劳的)
Mx f Wnx
2)按全截面塑性准则
Mx f W pnx
3)按有限塑性准则(规范用公式)
(对一般受弯构件)
Mx f xWnx
梁的抗弯强度计算公式---应用和注意
h he
梁的建筑高度要求决定了梁的最大高度hmax ; 梁的刚度要求决定了最小高度: hmin f l = ; l 1.34 10 6 vT
1
梁的经济条件决定了梁的经济高度:he 7Wx 3 30(cm)
b. 腹板厚度
抗剪要求
中南大学《钢结构原理》课件第五章 轴心受力构件

y (x ) 5.07b / t
☆长细较大时,弯曲失稳起控制作用,作弯曲失稳验算。
中南大学桥梁工程系
第五章 轴心受力构件
5.5 轴心受压构件局部稳定性
1、局部稳定的概念
轴心受压柱局部屈曲变形
轴心受压构件翼缘的凸曲现象
中南大学桥梁工程系
第五章 轴心受力构件
1916年因施工问题又发生一次倒塌事故。
前苏联在1951~1977年间共发生59起重大钢结构事故,有17起 属稳定问题。
(设计、制作、安装或使用不当都可能引发稳定事故)
例如:
1957年前苏联古比雪夫列宁冶金厂锻压车间,7榀1200m2屋盖塌落。 起因是一对尺寸相同的拉压杆装配颠倒。 1974年,苏联一个俱乐部观众厅24×39m钢屋盖倒塌。起因是受力 较大的钢屋架端斜杆失稳。
中南大学桥梁工程系
第五章 轴心受力构件
•荷载初始偏心降低稳定承载力
vm e0 (sec
2
N 1) NE
中南大学桥梁工程系
第五章 轴心受力构件
•残余应力降低稳定承载力
中南大学桥梁工程系
第五章 轴心受力构件
(1)使部分截面提前进入塑性状态,截面的弹性区域减少, 干扰后只有弹性区产生抗力增量,故降低了稳定承载力。
N 1 fy A Ry
N 1 fu An Ru
偏安全简化处理
N 1 fy f An Ry
中南大学桥梁工程系
第五章 轴心受力构件
2、刚度计算
•刚度计算的目的:保证在安装、使用过程中正常使用要求
•实例1:九江桥主拱吊杆涡振现象
中南大学桥梁工程系
第五章 轴心受力构件
钢结构原理格构式轴心压杆

解答:
方案3:四肢缀板式格构柱
取单肢长细比Ż1=40
整体稳定验算
Ix=Iy=36729cm4 ix=31.16cm 换算长细比=sqrt[(4400/31.16) 2+Ż12]=146.8 <150, ok
解答:
2、按照刚度要求确定稳定系数 吊臂允许最大长细比=150 按照b类截面查表得ø=0.308 3、所需截面面积: A=170500/0.308/215=2576mm2 4、所需截面回转半径 i=l0/150=2×22000/150=293mm 过大,只能采用格构柱。
解答:
方案一:双肢格构 查附录5第1行第3列得:h>=293/0.38=771mm b>=293/0.44=666mm,截面过大方案1淘汰。 方案二:四肢缀条式格构: b= h>=293/0.43=680mm 单个角钢面积A1=A/4=644mm2 选L70×5(A1=688),b=h=660mm
V1 Nt = n cos α
N t = V1
缀条稳定验算
φ2 min A2
Nt ≤ γ0 f
γ 0 偏心折减系数~0.6。
Nt ≤ 0. 8 f 缀条强度: A2 n
缀板验算
缀板按照受弯构件计算,进行强度验算。 缀板弯矩: V1 ⋅ a
M= 2
缀板剪力:
V1 ⋅ a T= c
实例分析1:桁架压杆分析
受压弦杆分析
提示:受压弦杆在桁架作用平面内与腹 杆在节点相连,在桁架作用平面外与上 弦支撑相连。是否考虑上弦支撑的约束 作用视上弦支撑的刚度定,通常工程中 偏安全不考虑。
钢结构基本原理第五章轴心受力构件

y
缀板柱
x
y (实轴)
l01 =l1
柱肢
l0 l 1
格构式柱
缀条柱
实腹式截面
格构式截面
5.1.4 轴心受力构件的计算内容 轴 心 受 力 构 件 强度 (承载能力极限状态) 轴心受拉构件 刚度 (正常使用极限状态) 强度 (承载能力极限状态) 轴心受压构件 稳定 刚度 (正常使用极限状态)
第5.2节 轴心受力构件的设计 本节目录
I
并列布置
II I N
An
II I
错列布置
例: 一块—400×20的钢板用两块拼接板—400×12进 行拼接.螺栓孔径为22mm,排列如图所示钢板轴心受拉, N=1350 kN(设计值)。钢材为Q235钢,解答下列问题: (1)钢板1—1截面的强度够否? (2)假定N力在13个螺栓中平均分配,2—2截面应如何验算? (3)拼接板的强度是否足够?
I N
I
截面无削弱
N —轴心力设计值; A—构件的毛截面面积; f —钢材抗拉或抗压强度设计值。
截面有削弱
计算准则:轴心受力构件以截面上的平均应
力达到钢材的屈服强度。
N
s0
sm = s0
ax
N
N
N
I N
3
fy
(a)弹性状态应力
有孔洞拉杆的截面应力分布
(b)极限状态应力
I
截面有削弱
计算准则:轴心受力构件以截面上的平均应
第5.1节
5.1.1 轴心受力构件类型
概述
概念 轴心受力构件是指承受通过截面形心轴线的轴向力作 用的构件。 轴心受力构件包括: 轴心受拉构件和轴心受压构件
轴心受拉 :桁架、拉杆、网架、塔架(二力杆)
《钢结构设计原理》苏州科技学院教材配套第5章轴心受力构件

Suzhou University of Science & Technology
y
x
x
绕对称轴y轴: 一般为弯扭屈曲,其临界力低
y
于弯曲屈曲,以换算长细比λyz代替λy
1
yz
1 2
2y
2z
2y 2z 2 4 1 e02
i02
2y 2z
2
2021/8/30
19
第5章 轴心受力构件
3. 初偏心的影响
Suzhou University of Science & Technology
由于构造、杆件截面尺寸、加工、安装等原因,作用于杆端的 轴心压力实际上不可避免的会偏离截面的形心而造成初偏心。
2021/8/30
20
第5章 轴心受力构件
4. 杆端约束的影响
Suzhou University of Science & Technology
四边简支板单向均匀受压时的临界力为:
σ cr
χkπ 2 12(1
E υ2
)(
t b
)2
四边简支单向均匀受压薄板的屈曲
式中:k 屈曲系数,k mb
a
2
a mb
v 0.3 —材料的泊松比
χ — 嵌固系数或弹性约束系数,大于1.0
2021/8/30
31
第5章 轴心受力构件
箱形截面:
h0
tw
Suzhou University of Science & Technology
(c)
tw
b0 tw
(d)
D
tt
b0 /t或h0 /tw 40 235 /f y
《钢结构原理》第4章轴心受力构件

2tb3
3 12 12
2E k3 y2
crx
2E Iex x2 Ix
2E 2t kb h2
x2
2tbh2 4
4
2E
k
x2
2021/8/30
26
《钢结构原理》 第4章 轴心受力构件
4.4.4.2 初弯曲的影响
假设构件变形 为正弦曲线:
y0
v0
sin
x
l
v0为初始挠度
2021/8/30
x
l0x ix
,
y
l0 y iy
l0x,l0y —— 构件的计算长度; ix,iy —— 截面回转半径; [] —— 容许长细比。
2021/8/30
9
《钢结构原理》 第4章 轴心受力构件
2021/8/30
10
《钢结构原理》 第4章 轴心受力构件
【例题】 某钢屋架下弦采用L125×12双角钢做成,钢材为 Q235,截面无削弱,计算长度为12.2m,承受静力荷载设计值 为900kN,要求验算此拉杆的强度和刚度。
后存在加压和减压区)
2021/8/30
21
《钢结构原理》 第4章 轴心受力构件
4.4.4 影响轴心受压构件整体稳定承载力的因素
理想等直杆是不存在的,实际工程中的轴心受压 构件有很多几何缺陷和力学缺陷,其中影响稳定承载 力的主要因素有:
截面的纵向残余应力 构件的初始弯曲 荷载作用点的初偏心 构件端部的约束条件
N A
Nv0
W 1 N
NE
fy
假设 v0= l / 1000,则上式整理可得:
N A
1
1000
i
1
1 N
N
第5章 钢结构设计原理-轴心受压构件

三式相互联系,失稳时呈弯扭变形状态——弯扭失稳。
21/85
5.3.4 弯曲失稳的极限承载力
1. 弯曲失稳极限承载力的准则
① 边缘纤维屈服准则——截面边缘纤维最大应力达到屈服点fy。 ② 稳定极限承载力理论——压力达到极限型失稳的顶点。
2. 临界应力σcr按边缘屈服准则的计算方法
2. 单轴对称截面的弯曲失稳和弯扭失稳 剪力中心在对称轴(如x轴)上,y0=0,由式(5-8)有:
P29
(5-27a、c) 相互联立,弯曲变形ν和扭转变形θ同时产生 ——弯扭失稳。
(5-27b) 独立,对称平面内的失稳——弯曲失稳。
20/85
5.3.3 轴心压杆的弯曲失稳、扭转失稳和弯扭失稳
初选截面形式 计算λx ,λy 按附表4-3~4-6确定φx 、φy
按表5-4确定a、b、c、d类
Nx =φxAf、 Ny=φyAf
Nx =min(NX,NY)
31/85
52.【背景资料】(25分) 两端铰接轴心受压钢柱,高10m,钢材为Q235,强度设计值ƒ=215 N/mm2,采
用图示截面,焊接工字型截面,翼缘为焰切边,尺寸单位mm。 1、计算构件截面积(2分)
初始缺陷包括: 初弯曲、初扭曲、初偏心、残余应力及材质的不均匀性
实际杆件的稳定承载力不再是长细比的唯一函数。 初始缺陷导致试验结果形成一个很宽的分布带。
15/85
5.3.3 轴心压杆的弯曲失稳、扭转失稳和弯扭失稳
钢结构压杆一般都是开口薄壁杆件。
根据开口薄壁杆件理论,具有初始缺陷的轴压杆的弹性微分 方程为(x0、y0为剪力中心坐标;u0、v0、θ0为初始缺陷引起的位移):
(5-35a) (5-35b)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解答:
缀条面积按照单肢的2/3取,约420mm2.取 L45×5(A2=429mm2) 整体稳定验算
Ix=Iy=4(Ix1+A1· 31.092)=36729cm4 ix=31.16cm 换算长细比=sqrt[(4400/31.16) 2+40*4A /2A ]=141.6<150,ok 1 2
解答:
单肢节间长度设计
单肢稳定性要求高于整体稳定性,取ƛ1= 0.7ƛ=99,l01=99/1.393=71cm c类截面ø1=0.467>ø,安全
单肢稳定验算
解答:
ห้องสมุดไป่ตู้
缀条验算
缀条长度: l02=sqrt[(l01/2) 2+b2]=75cm ƛ2=75/0.881=85 c类截面ø2=0.547
整体稳定验算
解答:
单肢节间长度
l01=ƛ/1.393=28.7cm,取28cm
缀板设计
确定Mb,Vb Vb=V1· l01/c=(V/2) · (28)/(b-2· 1.91)=1567N Mb=V1· l01/2=487.2N· M
缀板尺寸: hb=2c/3=42cm,tb=max{6mm,c/40}=16mm
解答:
缀板强度验算
Mb/(hb2· tb/6) <f Vb/(3hb· tb/2) <fv Ok
方案3中缀板宽度远大于单肢节间长度, 生产加工不合理,淘汰。
作业4:
下面为对同一个轴心受力构件所作的四 个设计方案,哪个方案稳定性好?哪个 稳定性差。(4分)
Ix=2Iy 时,下图中 哪个方案稳定性好?哪 个稳定性差? 2Ix=Iy时,又如何?
缀条轴力N2:
柱名义剪力:V=A· f/85=688*4*215/85=6960N 斜缀条内力 : N2=V/2/(cosą)= V/2/(b/l02)=3954N N2/ ø2/A2=16.8MPa<f,ok.
解答:
方案3:四肢缀板式格构柱
取单肢长细比ƛ1=40 Ix=Iy=36729cm4 ix=31.16cm 换算长细比=sqrt[(4400/31.16) 2+ƛ12]=146.8 <150, ok
格构式轴心压杆
缀条式
缀板式
格构式轴心压杆计算内容
整体稳定验算(重点:换算长细比) 单肢稳定验算(重点:单肢计算长度) 缀条稳定验算(重点:缀条轴压力) 缀板强度验算(重点:缀板弯矩、剪力)
缀条柱:换算长细比
双肢: 三肢:
2
A 0 y y 27 A1 y
2
A 0 x x 42 A1 cos2
220
一起重机的吊臂长22m,立 柱23.71m,最大起重量 设计值18.75吨。采用 Q235钢,吊臂和立柱得 允许最大长细比为150。 设计吊臂截面? (作业:设计立柱截面)
解答:
1、确定吊臂受到的压力。 水平方向力平衡:Nh+Th=0, 竖直向力平衡:Nv+Tv=P=18.75吨 Nh=N· cos700 , Nv= N· sin700 Th=-T· cos220 , Tv= T· sin220 得N=0.9277P=170.5kN
提示:受压弦杆在桁架作用平面内与腹 杆在节点相连,在桁架作用平面外与上 弦支撑相连。是否考虑上弦支撑的约束 作用视上弦支撑的刚度定,通常工程中 偏安全不考虑。
受压腹杆分析
计算假定:
假定上弦杆不对腹杆提供约束。因为上弦受 压其本身会发生失稳。 在腹杆稳定验算时假定下弦杆与腹杆固接。
实例分析2:格构式压杆分析
Nt V1
缀条稳定验算
2min A2
Nt 0 f
0 偏心折减系数~0.6。
Nt 0.8 f 缀条强度: A2 n
缀板验算
缀板按照受弯构件计算,进行强度验算。 缀板弯矩: V1 a
M 2
缀板剪力:
V1 a T c
实例分析1:桁架压杆分析
受压弦杆分析
0 y
,
A y 42 A1 (1.5 cos2 )
2
四肢(斜杆式): 2 40 A 0x x
A 0 y y 40 A1 y
2
A1x
四肢(三角式):同双肢缀条的计算公式。
缀板柱:换算长细比
双肢: 四肢:
0 y y
2
2 1
0 x x
解答:
2、按照刚度要求确定稳定系数 吊臂允许最大长细比=150 按照b类截面查表得ø=0.308 3、所需截面面积: A=170500/0.308/215=2576mm2 4、所需截面回转半径 i=l0/150=2×22000/150=293mm 过大,只能采用格构柱。
解答:
方案一:双肢格构 查附录5第1行第3列得:h>=293/0.38=771mm b>=293/0.44=666mm,截面过大方案1淘汰。 方案二:四肢缀条式格构: b= h>=293/0.43=680mm 单个角钢面积A1=A/4=644mm2 选L70×5(A1=688),b=h=660mm
2
2 1
0 y y
2
2 1
单肢计算长度
绕强轴单肢计算长度=整柱绕实轴的计 算长度 绕弱轴单肢计算长度=缀条为支点的节 间距离 绕弱轴单肢计算长度=上下缀板的净间 距
缀条验算
Af 格构柱名义剪力: V 85
斜缀条轴心压力:N t 横缀条轴心压力:
fy 235
V1 n cos