《平面向量》说课稿 篇6

合集下载

平面向量基本定理说课稿

平面向量基本定理说课稿

平面向量基本定理说课稿一、说教材分析1、教材的地位和作用本节课是北师大版高中数学教科书必修4第二章第三小节的内容。

本节课是在学习了向量的加法,减法以及共线向量基本定理的前提下,进一步研究平面内任一个向量的表示,为今后平面向量的坐标运算打下坚实的基础。

所以,本节在本章中起到承上启下的作用。

平面向量基本定理不仅揭示了平面向量之间的基本关系,也使得向量用坐标来表示成为可能,从而架起了向量的几何运算与代数运算之间的桥梁。

2、说教学目标知识与技能: 理解平面向量基本定理,学会利用平面向量基本定理解决问题,掌握基向量表示平面上的任一向量.过程与方法:通过学习平面向量基本定理,让学生体验数学的转化思想,培养学生发现问题的能力.情感态度与价值观:通过学习平面向量基本定理,培养学生敢于实践的创新精神,在解决问题中培养学生的应用意识。

3、重点、难点教学重点:1、对平面向量基本定理的探究;2、利用平面向量基本定理进行向量的分解。

教学难点:平面向量基本定理的理解.二、说教法1、教学方法以“复习回顾---问题情境—合作探究—解释、应用”的模式,展开所要学习的数学主题,突出探索式学习方式。

2、教学手段利用多媒体等手段,通过观察、建模、合作与交流等数学活动,进行探究性学习。

三、说学法1、学情分析前几节课已经学习了向量的基本概念和基本运算,学生对向量的物理背景有了初步的了解,都为学习这节课作了充分准备。

2、学法指导在教学过程中,教师平等的参与学生的自主探究活动,通过启发、引导、激励来体现教师的主导作用,积极引导学生全员、全过程参与,保证学生的认知水平和情感体验分层次向前推进。

四、说教学过程五、说反思本节教学设计在“学本课堂”的教学模式下,采用“问题导学—讨论探究—展示演练”的教学方法,引导学生自主学习,发现问题,小组讨论,合作探究,解决问题。

在教学过程中,学生处于主体地位,教师充分发挥学生的积极性,力求打造高效课堂。

以平面向量基本定理为主题,从预习知识到探究定理,学生始终参与学习,参与探究,主观性与积极性得到了充分发挥,学习与探求知识的能力得到了极大的提升;应用定理解决问题,培养了学生的应用意识;通过学习定理,让学生体会了转化思想,提高了学习的综合能力。

平面向量基本定理教案(精选10篇)

平面向量基本定理教案(精选10篇)

平面向量基本定理教案(精选10篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作文档、教学教案、企业文案、求职面试、实习范文、法律文书、演讲发言、范文模板、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as work summaries, work plans, experiences, job reports, work reports, resignation reports, contract templates, speeches, lesson plans, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!平面向量基本定理教案(精选10篇)平面向量基本定理教案(精选10篇)作为一名为他人授业解惑的教育工作者,时常需要编写教案,教案是教学活动的依据,有着重要的地位。

平面向量 说课稿

平面向量 说课稿

平面向量的数量积的坐标表示一、教学内容分析平面向量的数量积是两向量之间的一种运算,而平面向量的坐标表示是把向量之间的运算转化为数之间的运算。

本节内容是在平面向量的坐标表示以及平面向量的数量积及其运算律的基础上,介绍了平面向量数量积的坐标表示,平面两点间的距离公式,和向量垂直的坐标表示的充要条件。

向量的数量积体现了向量的长度和三角函数之间的一种关系,为解决直线垂直问题,三角形边角的有关问题提供了很好的办法。

二、学生情况分析:本节课是在学生充分理解向量的概念,掌握向量的坐标表示的基础上学习的,对知识的接受并不困难,但学生对知识运用的得心应手,数学思想方法的体会还有待于提高。

三、教学目标分析:1、知识与技能:掌握平面向量数量积的坐标表示,学会用平面向量数量积处理有关长度。

角度和垂直的问题。

2、过程与方法:通过学习,培养学生感知应用数学解决实际问题的方法,理解数形结合的数学思想和逻辑推理能力。

3、情感态度与价值观:通过平面向量数量积的坐标表示,体现了代数与几何的完美结合,说明事物间的相互联系和相互转化,培养学生善于探索的思维品质。

四、教学重难点分析:重点:掌握平面向量数量积的坐标表示,将向量的数量积运算转化为数间的运算难点:用坐标形式处理有关长度、角度和垂直的问题五、教学方法分析:基于本节课的特点,我着重采用讲授法、启发法的教学方法六、教学过程设计1.新课导入本环节主要是由教师提问,学生回答,复习旧知识。

回忆一下,如何用向量的长度、夹角反映数量积?又如何用数量积、长度反映夹角?向量的运算律有哪些?2.探索新知 提出问题:已知两个非零向量 ),2y ,2x (),1y ,1x (==怎样用a 与b 的坐标表示∙呢?引导学生将所学的向量的坐标表示知识运用到向量的数量积问题上,完成推导,培养学生思考问题,解决问题的能力。

设x 轴上的单位向量是, y 轴上的单位向量是 ,则 0011=∙=∙=∙=∙j j i ij y i x y x b jy i x y x a 22221111)()(+==+==212122121212212211)()(y y x x y y x y y x x x y x y x +=+∙+∙+=+∙+=∙ 归纳得:两个向量的数量积等于它们对应坐标的乘积的和。

《平面向量》说课稿(附教学设计)

《平面向量》说课稿(附教学设计)

《平面向量》说课稿一、教材内容分析向量是近代数学最重要和最基本的数学概念之一,它是沟通代数、几何与三角函数的桥梁,对更新和完善中学数学知识结构起着重要的作用。

向量集数与形于一身,有着极其丰富的实际背景,在现实生活中随处可见的位移、速度、力等既有大小又有方向的量是它的物理背景,有向线段是它的几何背景。

向量就是从这些实际对象中抽象概括出来的数学概念,经过研究,建立起完整的知识体系之后,向量又作为数学模型,广泛地应用于解决数学、物理学科及实际生活中的问题,因此它在整个高中数学的地位是不言而喻的。

本课是“平面向量”的起始课,具有“统领全局”的作用。

本节内容,重要的不是向量的形式化定义及几个相关概念,而是能让学生去体会认识与研究数学新对象的方法和基本思路,进而提高提出问题,解决问题的能力。

二、教学目标分析根据以上的分析,本节课的教学目标定位:1)、知识目标⑴通过对位移、速度、力等实例的分析,形成平面向量的概念;⑵学会平面向量的表示方法,理解向量集形与数于一身的基本特征;⑶理解零向量、单位向量、相等向量、平行向量的含义。

2)、能力目标⑴培养用联系的观点,类比的方法研究向量;⑵获得研究数学新问题的基本思路,学会概念思维;3)、情感目标⑴运用实例,激发爱国热情;⑵使学生自然的、水到渠成的实现“概念的形成”;⑶让学生积极参与到概念本质特征的概括活动中,享受寓教于乐。

重难点:重点:向量概念、向量的几何表示、以及相等向量概念;难点:让学生感受向量、平行或共线向量等概念形成过程;三、教学分析本节是平面向量的第一堂课,属于“概念课”,概念的理解无疑是重点,也是难点。

为了帮助学生建立向量的概念,与数、形的相关概念类比与联系是值得重视的。

在学生的已有经验中,与本课内容相关的有:数的抽象过程、实数的绝对值(线段的长度)、数的相等、单位长度、0和1的特殊性、线段的平行与共线等。

具体教学中,要设计一个能让学生开展概括活动的过程,引导他们经历从具体事例中领悟向量概念的本质特征,类比数的概念获得向量概念的定义及表示,类比数的集合认识向量的集合,类比直线的基本关系认识向量的基本关系。

平面向量说课稿.

平面向量说课稿.

平面向量说课稿我说课的内容是《平面向量的实际背景及基本概念》的教学,所用的教材是人民教育出版社出版的普通高中课程标准实验教科书数学必修四,教学内容为第74页至76页.下面我从教材分析,重点难点突破,教学方法和教学过程设计四个方面来说明我对这节课的教学设想.一教材分析1地位和作用向量是近代数学中重要和基本的概念之一,有着深刻的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以转化为向量的加(减)法,数乘向量,数量积运算(运算率),从而把图形的基本性质转化为向量的运算体系.向量是沟通代数,几何与三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学科中具有广泛的应用.平面向量的基本概念是在学生了解了物理学中的有关力,位移等矢量的概念的基础上进一步对向量的深入学习.为学习向量的知识体系奠定了知识和方法基础.2教学结构课本在这一部分内容的教学为一课时,首先从实际例子出发,抽象出向量的概念,并重点说明了向量与数量的区别.然后介绍了向量的几何表示,向量的长度,零向量,单位向量,平行向量,共线向量,相等向量等基本概念. 为使学生更好地掌握这些基本概念,同时深化其认知过程和探究过程.在教学中我将这样安排教学:将本节教学中认知过程的教学内容适当集中,以突出这节课的主题;例题,习题部分主要由学生依照概念自行分析,独立完成.3教学目标根据本课教材的特点,新大纲对本节课的教学要求,学生身心发展的合理需要,我从三个方面确定了以下教学目标:(1)基础知识目标:理解向量,零向量,单位向量,共线向量,平行向量,相等向量的概念,会用字母表示向量,能读写已知图中的向量.会根据图形判定向量是否平行,共线,相等.(2) 能力训练目标:培养学生观察、归纳、类比、联想等发现规律的一般方法,培养学生观察问题,分析问题,解决问题的能力。

(3) 情感目标:让学生在民主、和谐的共同活动中感受学习的乐趣。

高中高一数学说课稿:《平面向量》

高中高一数学说课稿:《平面向量》

高中高一数学说课稿:《平面向量》尊敬的各位领导、同事们:大家好!我是高中高一的数学教师,今天我要向大家分享我对《平面向量》这一章节的教学设计和教学过程。

平面向量是高中数学的重要内容,也是高中数学与中学数学的重要区别之一。

本课主要围绕平面向量的定义、性质、运算以及应用展开。

通过本课的学习,学生能够加深对平面向量的理解,掌握平面向量的基本操作技能,并且在解决实际问题时能够运用平面向量的知识进行分析和综合。

首先,我将以一个真实的例子开始本节课的引入。

通过给出一个应用实例,如一辆汽车从A点出发,以固定速度运动,通过向量运算,学生需要判断汽车是否能够到达目标B点。

通过这个引入,可以激发学生对平面向量的兴趣和好奇心,增强学习的主动性和积极性。

接下来,我将引入平面向量的定义和性质。

通过文字解释和图形演示,我将向学生解释向量的定义、平面向量的加法和减法运算规则。

同时,我还将重点讲解向量的数量表示和坐标表示,并通过具体的例子来加深学生对这些概念的理解。

然后,我将进行平面向量的运算。

我将以向量的数量乘法、向量的数量积和向量的叉乘为重点进行讲解。

在讲解过程中,我将充分运用图形演示、问题引导等教学方法,帮助学生理解和掌握向量的运算技巧。

最后,我将使用一些具体的实际问题来进行应用展示。

通过这些实际问题,我将能让学生将平面向量与实际问题进行联系,运用平面向量的知识和技能进行问题解决。

这样不仅能够提高学生的兴趣和动力,还能够培养学生的思维能力和创新意识。

除了以上的教学环节,我还将适时地组织学生进行小组讨论和合作学习。

通过小组活动,学生可以相互学习、交流彼此的思路和方法,提高解题的准确性和速度。

同时,我还将通过板书、多媒体、教学工具等多种手段来辅助教学,增加学生的学习兴趣和记忆效果。

最后,在课堂结束的时候,我将给学生留出一定时间进行巩固练习和自主学习。

通过让学生通过课后作业巩固所学知识,增强学生的自主学习和问题解决能力。

以上就是我的一篇《平面向量》的说课稿,谢谢大家的聆听!非常期待大家的宝贵意见和建议。

平面向量的基本定理(精品说课稿)

平面向量的基本定理(精品说课稿)

尊敬的各位评委各位老师:大家好,我是高中数学组号考生,今天我说课的题目是《平面向量的基本定理》。

下面我将从说教材、说学情、说教学目标、说教学过程等几个方面来展开我的说课。

首先来说说教材。

本课是北师大版高中数学必修四第二章第6节课内容,向量是沟通代数和几何的桥梁,为研究几何问题提供了新的工具和方法,同时对更新和完善中学数学知识结构起着重要作用。

向量集数、形于一身,有着极其丰富的实际背景。

平面向量基本定理是共线向量基本定理的一个推广,平面向量基本定理揭示了平面向量的基本关系和基本结构,是进一步研究向量问题的基础;是进行向量运算的基本工具,是解决向量或利用向量解决问题的基本手段。

分析完了教材,再来说说学情。

高二年级的学生,在此之前学生已学习了向量的概念、向量的加减法、数乘向量,都为此节课做了充分的准备,由于我们的学生认识问题还不够深入,其思维能力和判断分析能力尚在培养形成之中。

鉴于此种情况,教师要充分利用他们的兴趣引导学生进入特定的教学意境,如何理解平面向量的基本定理,使之应用更方便,就是摆在学生面前的一个亟待解决的问题。

因此,本节内容的学习是学生认知发展和知识构建的一个生长点。

基于以上教材地位、学情特点以及新课标的要求,我确定了以下三维教学目标:1、了解平面向量基本定理的条件和结论,会用它来表示平面上的任一向量,为向量坐标化打下基础,这是本课教学的重点。

2、通过对平面向量基本定理的学习过程,体验数学定理的产生、形成过程,体验定理所蕴涵的数学思想方法,使学生的思维能力得到训练,而对向量基本定理的理解也是本课教学的难点。

3、通过对平面向量基本定理的运用,增强学生向量的应用意识,进一步体会向量是处理几何问题强有力的工具之一。

培养学生认识客观事物的数学本质的能力,意识到数学源于生活。

数学课程标准倡导“合作、自主、探究”的学习方法,教学过程应重视学生的实践活动,引导学生主动地获取知识,全面提高学生的数学素养。

高中高一数学说课稿:《平面向量》

高中高一数学说课稿:《平面向量》

高中高一数学说课稿:《平面向量》一、前言本文是一份高中高一数学的说课稿,主题为《平面向量》。

本文旨在提供给初入教师行业或者即将上课的老师一些关于本课程的教学建议和资料,帮助老师更好的教学。

本文将从以下几个方面进行介绍:教学目的、教学重点、教学难点、教学方法与课时安排。

二、教学目的本节课程旨在让同学们能够掌握平面向量的概念和基本运算法则,能够用向量解决几何问题,以及了解一些相关的重要定理。

同时培养同学们应用向量思维解决实际问题的能力,提高同学们的数学素养和综合能力。

三、教学重点及难点1. 教学重点:(1)向量的概念和基本性质。

(2)向量的基本运算法则:加减乘除。

(3)向量与几何问题的联系及应用。

(4)重要的向量定理:平行四边形定理、三角形面积公式等。

2. 教学难点:(1)向量概念的形象化理解;(2)向量的基本运算法则;(3)如何用向量解决几何问题;(4)重要的向量定理的证明。

四、教学方法1. 模块式教学法针对每个教学重点和难点,采用模块式教学法进行讲解,让同学们逐步理解,避免一次讲解过多内容导致同学们无法消化。

2. 课堂互动式教学法在教学中,采用课堂互动式教学法,让同学们在课堂上积极配合,通过问题解答、小组讨论、游戏竞赛等方式,激发同学们的兴趣,帮助同学们更好的理解课程。

3. 具体化教学法在讲解向量基本运算时,可以采用具体的实例进行讲解,如力的合成、速度的合成等,让同学们能够更好的理解与运用。

五、课时安排本节课程为一节45分钟的数学课程,课时安排如下:时间内容0-5分钟课前小游戏,调动同学兴趣5-15分钟介绍向量应用领域及概念,引导同学理解15-25分钟讲解向量基本运算法则,如加减乘除25-35分钟讲解向量和几何问题的联系及应用35-45分钟讲解重要的向量定理,如平行四边形定理、三角形面积公式等,以及课后作业布置六、结束语通过本次课程,相信同学们已经初步掌握了平面向量的概念与基本运算法则,以及能够运用向量解决一些几何问题。

平面向量应用举例的说课稿

平面向量应用举例的说课稿

平面向量应用举例的说课稿平面向量应用举例的说课稿一、教学目标1.知识与技能:运用向量的有关知识(向量加减法与向量数量积的运算法则等)解决平面几何和解析几何中直线或线段的平行、垂直、相等、夹角和距离等问题2.过程与方法:通过应用举例,让学生会用平面向量知识解决几何问题的两种方法-----向量法和坐标法3.情感、态度与价值观:通过本节的学习,让学生体验向量在解决几何问题中的工具作用,增强学生的积极主动的探究意识,培养创新精神。

二、教学重点难点重点:理解并能灵活运用向量加减法与向量数量积的法则解决几何问题.难点:选择适当的方法,将几何问题转化为向量问题加以解决.三、教学方法1.例题教学,要让学生体会思路的形成过程,体会数学思想方法的应用。

2.学案导学:见后面的学案3.新授课教学基本环节:预习检查、总结疑惑_rarr;情境导入、展示目标_rarr;合作探究、精讲点拨_rarr;反思总结、当堂检测_rarr;发导学案、布置预习六、课前准备1.学生的学习准备:预习本节课本上的基本内容,初步理解向量在平面几何和物理中的应用2.教师的教学准备:课前预习学案,课内探究学案,课后延伸拓展学案。

七、课时安排:1课时八、教学过程(一)预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。

(二)情景导入、展示目标教师首先提问:(1)若O为重心,则++=(2)水渠横断面是四边形,=,且|=|,则这个四边形为等腰梯形.类比几何元素之间的关系,你会想到向量运算之间都有什么关系?(3) 两个人提一个旅行包,夹角越大越费力.为什么?教师:本节主要研究了用向量知识解决平面几何和物理问题;掌握向量法和坐标法,以及用向量解决平面几何和物理问题的步骤,已经布置学生们课前预习了这部分,检查学生预习情况并让学生把预习过程中的疑惑说出来。

(设计意图:步步导入,吸引学生的注意力,明确学习目标。

)(三)合作探究、精讲点拨。

平面向量的概念说课稿

平面向量的概念说课稿

平面向量的概念说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是“平面向量的概念”。

下面我将从教材分析、学情分析、教学目标、教学重难点、教学方法、教学过程以及教学反思这几个方面来展开我的说课。

一、教材分析“平面向量”这一章节是高中数学必修 4 的重要内容。

向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景。

而“平面向量的概念”作为这一章节的起始课,为后续学习向量的运算、向量的坐标表示等内容奠定了基础。

本节课主要介绍了向量的定义、向量的表示方法、向量的模、零向量、单位向量、平行向量、相等向量等基本概念。

通过这些概念的学习,让学生初步认识向量的本质特征,感受向量的应用价值。

二、学情分析学生在之前的学习中已经掌握了数量的概念和运算,具备了一定的数学抽象和逻辑推理能力。

但向量对于学生来说是一个全新的概念,它的抽象性和双重性(既有大小又有方向)可能会给学生的理解带来一定的困难。

不过,高中生的思维已经逐渐从形象思维向抽象思维过渡,他们具备了一定的自主探究和合作学习的能力,只要引导得当,学生能够通过观察、思考、讨论等活动,逐步理解和掌握平面向量的概念。

三、教学目标1、知识与技能目标(1)理解向量的概念,掌握向量的表示方法。

(2)理解向量的模、零向量、单位向量、平行向量、相等向量的概念。

(3)能正确区分向量与数量,能根据所给条件判断向量之间的关系。

2、过程与方法目标(1)通过对实际问题的分析,经历向量概念的形成过程,培养学生的抽象概括能力和数学建模能力。

(2)通过对向量概念的辨析,培养学生的逻辑推理能力和批判性思维能力。

3、情感态度与价值观目标(1)让学生感受数学与实际生活的紧密联系,激发学生学习数学的兴趣。

(2)通过合作学习,培养学生的团队合作精神和创新意识。

四、教学重难点1、教学重点(1)向量的概念和表示方法。

(2)零向量、单位向量、平行向量、相等向量的概念。

高中数学平面向量教案(精选6篇)

高中数学平面向量教案(精选6篇)

高中数学平面向量教案(精选6篇)为大家收集的高中数学平面向量教案,欢迎阅读,希望大家能够喜欢。

高中数学平面向量教案精选篇1教学目标1、了解基底的含义,理解并掌握平面向量基本定理。

会用基底表示平面内任一向量。

2、掌握向量夹角的定义以及两向量垂直的定义。

学情分析前几节课已经学习了向量的基本概念和基本运算,如共线向量、向量的加法、减法和数乘运算及向量共线的充要条件等;另外学生对向量的物理背景有了初步的了解。

如:力的合成与分解、位移、速度的合成与分解等,都为学习这节课作了充分准备重点难点重点:对平面向量基本定理的探究难点:对平面向量基本定理的理解及其应用教学过程4.1第一学时教学活动活动1【导入】情景设置火箭在升空的某一时刻,速度可以分解成竖直向上和水平向前的两个分速度v=vx+vy=6i+4j。

活动2【活动】探究已知平面中两个不共线向量e1,e2,c是平面内任意向量,求向量c=___e1+___e2(课堂上准备好几张带格子的纸张,上面有三个向量,e1,e2,c)做法:作OA=e1,OB=e2,OC=c,过点C作平行于OB的直线,交直线OA于M;过点C作平行于OA的直线,交OB于N,则有且只有一对实数l1,l2,使得OM=l1e1,ON=l2e2。

因为OC=OM+ON,所以c=6 e1+6e2。

向量c=__6__e1+___6__e2活动3【练习】动手做一做请同学们自己作出一向量a,并把向量a表示成:a=31;31;31;31;____e1+_____(做完后,思考一下,这样的一组实数是否是唯一的呢?)(是唯一的)由刚才的几个实例,可以得出结论:如果给定向量e1,e2,平面内的任一向量a,都可以表示成a=入1e1+入2e2。

活动4【活动】思考问题2:如果e1,e2是平面内任意两向量,那么平面内的任一向量a还可以表示成a=入1e1+入2e2的形式吗?生:不行,e1,e2必须是平面内两不共线向量活动5【讲授】平面向量基本定理平面向量基本定理:如果e1,e2是平面内两个不共线的向量,那么对于这一平面内的任一向量a,有且只有一对实数l1,l2,使a=l1e1+l2e2。

“平面向量基本定理”的说课稿(精选.)

“平面向量基本定理”的说课稿(精选.)

“平面向量基本定理”的说课稿江苏省常州市第五中学 张志勇一、教材内容分析1、教材地位向量具有数形二重性,是数学中解决几何问题的工具,可以使复杂问题简单化、直观化,使代数问题几何化、几何问题代数化。

而平面向量基本定理是把几何问题向量化的理论基础,它说明了同一平面内任一向量都可表示为两个不共线向量的线性组合,它在本章中的理论意义主要是引出向量的坐标表示,在今后学习空间向量时还要推广为空间向量基本定理,是引出空间向量用三维坐标表示的基础。

因此该定理应是本章中的核心内容,它的理论意义远远大于它在解题中的作用。

值得注意的是,向量中有三个重要定理,教学中要注意它们的比较联系及相应的层次性一维空间:向量共线定理二维空间:平面向量基本定理三维空间:空间向量基本定理其中向量共线定理与平面向量基本定理是特殊与一般的关系,但课本中对这两个定理的表述方式有所不同,在教学中如果进行适当的补充和深化(如下表所示),可以使这两个定理的意义和层次性更加清晰。

与非零向量a 共线的充要条且只有一个实数不共线,则向量p 与向量要条件是存在实数对。

(深化后的形式,选自选修)2、教学目标(1)、知识与技能:了解平面向量的基本定理,会把任一向量表示为一组基底的线性组合,初步利用定理解决问题(如相交线交成线段比的问题等)。

(2)、过程与方法:在操作实践中归纳猜想得出定理,在与共线定理的比较中加强纵向联系。

(3)、情感、态度与价值观:培养学生主动探求知识、合作交流的意识,感受数学思维的全过程,改善数学学习信念。

3 重点、难点本课的重点是平面向量基本定理,这也是本节课的难点。

解决这一难点的关键是在充分理解向量加法的平行四边形法则和向量共线的充要条件的基础上,分层次设计探究问题,让学生在操作实践中加深对该定理的理解;同时以例题的形式拓展学生的思路。

二、教法分析对“定理”的理解:(1)、实数对()12,k k 的存在性和惟一性:平面内任一向量a 均可用给定的一组基底,a b 线性表示成1122a k e k e =+,且这种表示是惟一的,其几何意义是任一向量都可沿两个不平行的方向分解为两个向量的和,且分解是惟一的。

平面向量基本定理说课稿

平面向量基本定理说课稿

平面向量基本定理说课稿平面向量基本定理是高中数学中的重要定理之一,它是向量运算的基础,也是解决平面向量相关问题的关键。

在这篇说课稿中,我将介绍平面向量基本定理的定义、性质以及应用,并进行相关的拓展。

一、平面向量基本定理的定义平面向量基本定理是指:如果两个非零向量的和为零向量,那么这两个向量互为相反向量。

换句话说,如果向量a+b=0,则向量a和向量b互为相反向量。

二、平面向量基本定理的性质1. 相反向量的性质:如果向量a和向量b互为相反向量,那么它们的模长相等,方向相反。

2. 零向量的性质:零向量是唯一的,任何向量与零向量的和仍为该向量本身。

3. 反向的性质:如果向量a和向量b互为相反向量,那么向量a的反向与向量b相等。

三、平面向量基本定理的应用1. 向量的加法和减法:根据平面向量基本定理,我们可以利用向量的减法将向量的加法转化为向量的减法,从而简化运算。

2. 向量的平分线问题:利用平面向量基本定理,我们可以很容易地证明平面上一条向量的平分线可以由两个相等模长但方向相反的向量所表示。

3. 向量共线问题:如果两个向量共线,那么它们可以表示为一个非零向量与一个常数的乘积关系。

利用平面向量基本定理,我们可以很容易地判断两个向量是否共线。

四、拓展在平面向量基本定理的基础上,我们可以进一步讨论以下拓展问题:1. 平面向量的线性运算:利用平面向量基本定理,我们可以定义向量的数乘和向量的数量积的概念,进一步推广和拓展平面向量的运算。

2. 平面向量的坐标表示:通过引入坐标系,我们可以将平面上的点与向量建立起一一对应的关系,从而将平面向量表示为坐标的形式,进一步推广和拓展平面向量的研究。

3. 平面向量的应用:平面向量在几何、力学、物理等领域有广泛的应用。

通过学习平面向量基本定理,我们可以应用向量的加法、减法、数量积等运算解决实际问题。

总结:平面向量基本定理是数学中的基本定理之一,它为我们解决平面向量相关问题提供了重要的基础。

2023年《平面向量》说课稿范文(精选6篇)

2023年《平面向量》说课稿范文(精选6篇)

2023年《平面向量》说课稿范文(精选6篇)《平面向量》说课稿1各位专家:你们好!今天我说课的课题是《平面向量的概念》,这是江苏省职业学校文化课教材《基础模块·下册》第七章平面向量中的第一节的内容,我将尝试运用新课改的理念、中职学生的认知特点指导本节课的教学,新课标指出,学生是教学的主体,教师的教要本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。

下面我将以此为基础从教材分析、学情分析、教法学法、教学过程、教学评价等五个环节,向各位专家谈谈我对本节课教材的理解和教学设计。

一、教材分析:1、教材的地位和作用向量是高中阶段学习的一个新的矢量,向量概念是《平面向量》的最基本内容,它的学习直接影响到我们对向量的进一步研究和学习,如向量间关系、向量的加法、减法以及数乘等运算,还有向量的坐标运算等,因此为后面的学习奠定了基础。

结合本节课的特点及学生的实际情况我制定了如下的教学目标及教学重难点:2、教学目标(1)知识与技能目标1)识记平面向量的定义,会用有向线段和字母表示向量,能辨别数量与向量;2)识记向量模的定义,会用字母和线段表示向量的模。

3)知道零向量、单位向量的概念。

(2)过程与方法目标学生通过对向量的学习,能体会出向量来自于客观现实,提高观察、分析、抽象和概括等方面的能力,感悟数形结合的思想。

(3)情感态度与价值观目标通过构建和谐的课堂教学氛围,激发学生的学习兴趣,使学生勇于提出问题,同时培养学生团队合作的精神及积极向上的学习态度。

3、教学重难点教学重点:向量的定义,向量的几何表示和符号表示,以及零向量和单位向量教学难点:向量的几何表示的理解,对零向量和单位向量的理解二、学情分析(1)能力分析:对于我校的学生,基础知识较薄弱,虽然他们的智力发展已到了形成运演阶段,但并不具备较强的抽象思维能力、概括能力及数形结合的思想。

(2)认知分析:之前,学生有了物理中的矢量概念,这为学习向量作了最好的铺垫。

《平面向量》说课稿9篇平面向量的说课

《平面向量》说课稿9篇平面向量的说课

《平面向量》说课稿9篇平面向量的说课下面是我收集的《平面向量》说课稿9篇平面向量的说课,供大家参阅。

《平面向量》说课稿1说课内容:普通高中课程标准实验教科书(人教A版)《数学必修4》第二章第四节“平面向量的数量积”的第一课时---平面向量数量积的物理背景及其含义。

下面,我从背景分析、教学目标设计、课堂结构设计、教学过程设计、教学媒体设计及教学评价设计六个方面对本节课的思考进行说明。

一、背景分析1、学习任务分析平面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,在数学、物理等学科中应用十分广泛。

本节内容教材共安排两课时,其中第一课时主要研究数量积的概念,第二课时主要研究数量积的坐标运算,本节课是第一课时。

本节课的主要学习任务是通过物理中“功”的事例抽象出平面向量数量积的概念,在此基础上探究数量积的性质与运算律,使学生体会类比的思想方法,进一步培养学生的抽象概括和推理论证的能力。

其中数量积的概念既是对物理背景的抽象,又是研究性质和运算律的基础。

同时也因为在这个概念中,既有长度又有角度,既有形又有数,是代数、几何与三角的最佳结合点,不仅应用广泛,而且很好的体现了数形结合的数学思想,使得数量积的概念成为本节课的核心概念,自然也是本节课教学的重点。

2、学生情况分析学生在学习本节内容之前,已熟知了实数的运算体系,掌握了向量的概念及其线性运算,具备了功等物理知识,并且初步体会了研究向量运算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再从概念出发,在与实数运算类比的基础上研究性质和运算律。

这为学生学习数量积做了很好的铺垫,使学生倍感亲切。

但也正是这些干扰了学生对数量积概念的理解,一方面,相对于线性运算而言,数量积的结果发生了本质的变化,两个有形有数的向量经过数量积运算后,形却消失了,学生对这一点是很难接受的;另一方面,由于受实数乘法运算的影响,也会造成学生对数量积理解上的偏差,特别是对性质和运算律的理解。

人教版高中数学必修4平面向量说课稿

人教版高中数学必修4平面向量说课稿

平面向量说课稿各位评委,老师们:大家好!很高兴参加这次说课活动。

这对我来说也是一次难得的学习和锻炼的机会,感谢各位老师来此予以指导。

希望各位评委和老师们对我的说课内容提出宝贵意见。

我说课的内容是<平面向量>的教学,所用的教材是人民教育出版社出版的普通高中课程标准实验教科书<数学>必修4,第二章,第一节。

针对我校学生基础相对较好。

我在进行教学设计时,也充分考虑到了这一点。

下面我从教材分析,教学目标的确定,教学方法的选择和教学过程的设计四个方面来汇报我对这节课的教学设想。

一教材分析(1)地位和作用向量是近代数学中重要和基本的概念之一,有着深刻的几何背景,是解决几何问题的有力工具。

向量概念引入后,全等和平行、相似、垂直、勾股定理等就可以转化为向量的加(减)法、数乘向量、数量积运算,从而把图形的基本性质转化为向量的运算体系。

向量是沟通代数,几何与三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学科中具有广泛的应用。

平面向量的基本概念是在学生了解了物理学中的有关力,位移等矢量的概念的基础上进一步对向量的深入学习。

为学习向量的知识体系奠定了知识和方法基础。

(2)教学结构的调整教材在这一部分内容的教学为一课时,首先从重力、浮力、弹力这些既有大小,又有方向的量出发,抽象出向量的概念,并说明了向量与数量的区别。

然后介绍了向量的几何表示、向量的长度、零向量、单位向量、平行向量、共线向量、相等向量等基本概念。

为使学生更好地掌握这些基本概念,同时深化其认知过程和探究过程。

在教学中我将教学的顺序做如下的调整:将本节教学中认知过程的教学内容适当集中,以突出这节课的主题;例题、习题部分主要由学生依照概念自行分析,独立完成。

(3)重点,难点,关键由于本节课是本章内容的第一节课,是学生学习本章的基础。

为了本章后面知识的学习,首先必须掌握向量的概念,要抓住向量的本质:大小与方向。

所以向量,相等向量的概念,向量的几何表示是这节课的重点。

高中数学《向量》说课稿范文(6)

高中数学《向量》说课稿范文(6)

高中数学《向量》说课稿范文(6)高中数学《向量》说课稿范文(6)关于说课的基本步骤有很多种,这里编辑为大家提供这篇高中数学《向量》说课稿范文6.66KB具有一定的典型示范作用。

眼过千遍不如手写一遍,xx为了帮助在校高中生,特别整理了高三数学说课稿:向量一文,详情如下:高三数学说课稿:向量一、教材结构与内容简析1本节内容在全书及章节的地位:《向量》出现在高中数学第一册(下)第五章第1节。

本节内容是传统意义上《平面解析几何》的基础部分,因此,在《数学》这门学科中,占据极其重要的地位。

2数学思想方法分析:(1)从向量可以用有向线段来表示所反映出的数与形之间的转化,就可以看到《数学》本身的量化与物化。

(2)从建构手段角度分析,在教材所提供的材料中,可以看到数形结合思想。

二、教学目标根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:1基础知识目标:掌握向量的概念及其表示方法,能利用它们解决相关的问题。

2能力训练目标:逐步培养学生观察、分析、综合和类比能力,会准确地阐述自己的思路和观点,着重培养学生的认知和元认知能力。

3创新素质目标:引导学生从日常生活中挖掘数学内容,培养学生的发现意识和整合能力;《向量》的教学旨在培养学生的知识重组意识和数形结合能力。

4个性品质目标:培养学生勇于探索,善于发现,独立意识以及不断超越自我的创新品质。

三、教学重点、难点、关键重点:向量概念的引入。

难点:数与形完美结合。

关键:本节课通过数形结合,着重培养和发展学生的认知和变通能力。

四、教材处理建构主义学习理论认为,建构就是认知结构的组建,其过程一般是先把知识点按照逻辑线索和内在联系,串成知识线,再由若干条知识线形成知识面,最后由知识面按照其内容、性质、作用、因果等关系组成综合的知识体。

本课时为何提出数形结合呢,应该说,这一处理方法正是基于此理论的体现。

其次,本节课处理过程力求达到解决如下问题:知识是如何产生的?如何发展?又如何从实际问题抽象成为数学问题,并赋予抽象的数学符号和表达式,如何反映生活中客观事物之间简单的和谐关系。

《平面向量》说课稿

《平面向量》说课稿

《平面向量》说课稿《平面向量》说课稿(精选5篇)《平面向量》说课稿1一:说教材平面向量的数量积是两向量之间的乘法,而平面向量的坐标表示把向量之间的运算转化为数之间的运算。

本节内容是在平面向量的坐标表示以及平面向量的数量积及其运算律的基础上,介绍了平面向量数量积的坐标表示,平面两点间的距离公式,和向量垂直的坐标表示的充要条件。

为解决直线垂直问题,三角形边角的有关问题提供了很好的办法。

本节内容也是全章重要内容之一。

二:说学习目标和要求通过本节的学习,要让学生掌握(1):平面向量数量积的坐标表示。

(2):平面两点间的距离公式。

(3):向量垂直的坐标表示的充要条件。

以及它们的一些简单应用,以上三点也是本节课的重点,本节课的难点是向量垂直的坐标表示的充要条件以及它的灵活应用。

三:说教法在教学过程中,我主要采用了以下几种教学方法:(1)启发式教学法因为本节课重点的坐标表示公式的推导相对比较容易,所以这节课我准备让学生自行推导出两个向量数量积的坐标表示公式,然后引导学生发现几个重要的结论:如模的计算公式,平面两点间的距离公式,向量垂直的坐标表示的充要条件。

(2)讲解式教学法主要是讲清概念,解除学生在概念理解上的疑惑感;例题讲解时,演示解题过程!主要辅助教学的手段(powerpoint)(3)讨论式教学法主要是通过学生之间的相互交流来加深对较难问题的理解,提高学生的自学能力和发现、分析、解决问题以及创新能力。

四:说学法学生是课堂的主体,一切教学活动都要围绕学生展开,借以诱发学生的学习兴趣,增强课堂上和学生的交流,从而达到及时发现问题,解决问题的目的。

通过精讲多练,充分调动学生自主学习的积极性。

如让学生自己动手推导两个向量数量积的坐标公式,引导学生推导4个重要的结论!并在具体的问题中,让学生建立方程的思想,更好的解决问题!五:说教学过程这节课我准备这样进行:首先提出问题:要算出两个非零向量的数量积,我们需要知道哪些量?继续提出问题:假如知道两个非零向量的坐标,是不是可以用这两个向量的坐标来表示这两个向量的数量积呢?引导学生自己推导平面向量数量积的坐标表示公式,在此公式基础上还可以引导学生得到以下几个重要结论:(1)模的计算公式(2)平面两点间的距离公式。

平面向量说课稿

平面向量说课稿

平面向量说课稿我说课的内容是《平面向量的实际背景及基本概念》的教学,所用的教材是人民教育出版社出版的普通高中课程标准实验教科书数学必修四,教学内容为第74页至76页.下面我从教材分析,重点难点突破,教学方法和教学过程设计四个方面来说明我对这节课的教学设想.一、教材分析1.教材的地位和作用向量是近代数学中重要和基本的概念之一,有着深刻的几何背景,是解决几何问题的有力工具。

向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以转化为向量的加(减)法,数乘向量,数量积运算(运算率),从而把图形的基本性质转化为向量的运算体系.向量是沟通代数,几何与三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学科中具有广泛的应用.平面向量的基本概念是在学生了解了物理学中的有关力,位移等矢量的概念的基础上进一步对向量的深入学习。

为学习向量的知识体系奠定了知识和方法基础.2.教学目标(1)知识与技能:了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并能弄清平行向量、相等向量、共线向量的关系通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别。

(2)过程与方法:引导发现法与讨论相结合。

这是向量的第一节课,概念与知识点较多,在对学生进行适当的引导之后,应让学生清清楚楚得明白其概念,这是学生进一步获取向量知识的前提;通过学生主动地参与到课堂教学中,提高学生学习的积极性。

体现了在老师的引导下,学生的的主体地位和作用.(3)情感目标与价值观:通过对向量与数量的比较,培养学生认识客观事物的数学本质的能力,并且意识到数学与现实生活是密不可分的,是源于生活,用于生活的。

3.教学重点及难点(1)教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.(2)教学难点:平行向量、相等向量和共线向量的区别和联系。

二、教学方法本节课我采用了“问题探究式"和“启发式引导”的教学方法,根据本课教材的特点和学生的实际情况在教学中突出以下两点:(1)由教材的特点确立类比思维为教学的主线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《平面向量》说课稿篇6 各位评委,老师们:大家好!
很高兴参加这次说课活动。

这对我来说也是一次难得的学习和锻炼的机会,感谢各位老师在百忙之中来此予以指导。

希望各位评委和老师们对我的说课内容提出宝贵意见。

我说课的内容是平面向量的教学,所用的教材是人民教育出版社出版的全日制普通高级中学教科书(试验修订本-必修)数学第一册下,教学内容为第96页至98页第五章第一节。

本校是浙江省一级重点中学,学生基础相对较好。

我在进行教学设计时,也充分考虑到了这一点。

下面我从教材分析,教学目标的确定,教学方法的选择和教学过程的设计四个方面来汇报我对这节课的教学设想。

一教材分析
(1)地位和作用
向量是近代数学中重要和基本的概念之一,有着深刻的几何背景,是解决几何问题的有力工具。

向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以转化为向量的加(减)法,数乘向量,数量积运算(运算率),从而把图形的基本性质转化为向量的运算体系。

向量是沟通代数,几何与三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学科中具有广泛的应用。

平面向量的基本概念是在学生了解了物理学中的有关力,位移等矢量的概念的基础上进一步对向量的深入学习。

为学习向量的知识体系奠定了知识和方法基础。

(2)教学结构的调整
课本在这一部分内容的教学为一课时,首先从小船航行的距离和方向两个要素出发,抽象出向量的概念,并重点说明了向量与数量的区别。

然后介绍了向量的几何表示,向量的长度,零向量,单位向量,平行向量,共线向量,相等向量等基本概念。

为使学生更好地掌握这些基本概念,同时深化其认知过程和探究过程。

在教学中我将教学的顺序做如下的调整:将本节教学中认知过程的教学内容适当集中,以突出这节课的主题;例题,习题部分主要由学生依照概念自行分析,独立完成。

(3)重点,难点,关键
由于本节课是本章内容的第一节课,是学生学习本章的基础。

为了本章后面知识的学习,首先必须掌握向量的概念,要抓住向量的本质:大小与方向。

所以向量,相等向量的概念,向量的几何表示是这节课的重点。

本节课是为高一后半学期学生设计的,尽管此时的学生已经有了一定的学习方法和习惯,但根据以往的教学经验,多数学生
对向量的认识还比较单一,仅仅考虑其大小,忽略其方向,这对学生的理解能力要求比较高,所以我认为向量概念也是这节课的难点。

而解决这一难点的关键是多用复杂的几何图形中相等的有向线段让学生进行辨认,加深对向量的理解。

二教学目标的确定
根据本课教材的特点,新大纲对本节课的教学要求,学生身心发展的合理需要,我从三个方面确定了以下教学目标:
(1)基础知识目标:理解向量,零向量,单位向量,共线向量,平行向量,相等向量的概念,会用字母表示向量,能读写已知图中的向量。

会根据图形判定向量是否平行,共线,相等。

(2)能力训练目标:培养学生观察、归纳、类比、联想等发现规律的一般方法,培养学生观察问题,分析问题,解决问题的能力。

(3)情感目标:让学生在民主、和谐的共同活动中感受学习的乐趣。

三教学方法的选择
Ⅰ教学方法
本节课我采用了”启发探究式的教学方法,根据本课教材的特点和学生的实际情况在教学中突出以下两点:
(1)由教材的特点确立类比思维为教学的主线。

从教材内容看平面向量无论从形式还是内容都与物理学中的有向线段,矢量的概念类似。

因此在教学中运用类比作为思维的主线进行教学。

让学生充分体会数学知识与其他学科之间的联系以及发生与发展的过程。

(2)由学生的特点确立自主探索式的学习方法
通常学生对于概念课学起来很枯燥,不感兴趣,因此要考虑学生的情感需要,找一些学生感兴趣的题材来激发学生的学习兴趣,另外,学生都有表现自己的欲望,希望得到老师和其他同学的认可,要多表扬,多肯定来激励他们的学习热情。

考虑到我校学生的基础较好,思维较为活跃,对自主探索式的学习方法也有一定的认识,所以在教学中我通过创设问题情境,启发引导学生运用科学的思维方法进行自主探究。

将学生的独立思考,自主探究,交流讨论等探索活动贯穿于课堂教学的全过程,突出学生的主体作用。

Ⅱ教学手段
本节课中,除使用常规的教学手段外,我还使用了多媒体投影仪和计算机来辅助教学。

多媒体投影为师生的交流和讨论提供了平台;计算机演示的作图过程则有助于渗透数形结合思想,更易于对概念的理解和难点的突破。

四教学过程的设计
Ⅰ知识引入阶段---提出学习课题,明确学习目标
(1)创设情境——引入概念
数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。

由生活中具体的向量的实例引入:大海中船只的航线,中国象棋中”马”,”象”的走法等。

这些符合高中学生思维活跃,想象力丰富的特点,有利于激发学生的学习兴趣。

(2)观察归纳——形成概念
由实例得出有向线段的概念,有向线段的三个要素:起点,方向,长度。

明确知道了有向线段的起点,方向和长度,它的终点就唯一确定。

再有目的的进行设计,引导学生概括总结出本课新的知识点:向量的概念及其几何表示。

(3)讨论研究——深化概念
在得到概念后进行归纳,深化,之后向学生提出以下三个问题:
①向量的要素是什么?
②向量之间能否比较大小?
③向量与数量的区别是什么?
同时指出这就是本节课我们要研究和学习的主题。

Ⅱ知识探索阶段---探索平面向量的平行向量。

相等向量等概念
(1)总结反思——提高认识
方向相同或相反的非零向量叫平行向量,也即共线向量,并且规定0与任一向量平行.长度相等且方向相同的向量叫相等向量,规定零向量与零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要条件。

(2)即时训练—巩固新知
为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。

[练习1]判断下列命题是否正确,若不正确,请简述理由.。

相关文档
最新文档