正流量和负流量控制的区别复习进程

合集下载

告诉你负载敏感、负流量、正流量三种系统真正的区别

告诉你负载敏感、负流量、正流量三种系统真正的区别

告诉你负载敏感、负流量、正流量三种系统真正的区别1. 节能旁通流量控制系统节能性较好。

在主控阀全部中位时,旁通溢流阀开启,存在空流压力损失约3.5MPa,此时有最大的旁通流量损失。

操作手柄扳倒一半行程时,主泵流量仍有一部分通过六通滑阀的中立回路流回油箱。

先导传感控制系统节能性好。

由于主控阀为六通滑阀,仍然存在中位回油流量损失,但其比旁通流量控制系统小。

在主控阀中位时,回油背压小,仅0.5MPa左右。

当操作手柄行程加大,主泵流量和执行元件进油量随先导控制压力增加而增加。

在流量控制压力从最小到最大的调速范围内,主泵流量和执行元件进油量近似为等距曲线,流量损失变化不大。

负荷传感系统的节能性较好。

主控阀无串联的中立油路回油箱,因此没有主控阀的中位空流损失。

当操作手柄中位时,因为主泵没有备用流量,主泵的空载流量损失在理论上为零。

但是,在负荷传感主控阀的节流口存在固定的压力损失ΔP(2~2.9MPa),约为系统最高压力的6~8.5%。

当作业中流量增大时,功率损失(执行元件所需流量与压差ΔP的乘积)也不小。

复合作业各执行元件负荷压力相差很大时,由于泵流量只受最高负荷压力控制,主泵供油流量会多于执行元件需求流量之和,也会造成功率损失。

不同流量控制系统的扭矩特性比较如图1所示。

负荷传感控制系统中,主泵吸收的扭矩是变动的。

在额定功率点上,主泵按负荷压力的变化实时调整泵的排量(参看图1-a),因此主泵能够完全吸收发动机输出的扭矩。

旁通流量控制和先导传感控制则因负荷压力变化时,主泵流量调整有一个滞后过程,主泵吸收的扭矩不变,而且为防止发动机超负荷失速,主泵在匹配工作点吸收的扭矩,设计时低于发动机额定转速下输出的扭矩,将损失大约5~8%的功率。

(a)负荷传感系统 (b)其他流量控制系统图1 发动机与主泵的功率匹配需要说明的是,上述有关节能性的对比分析,仅针对流量控制而言。

某一机型是否节能,还要考虑是否采用混合动力技术、发动机本身的燃油消耗特性、发动机的调速特性及其动力适应控制(发动机-主泵功率的动态匹配)、液压主泵的负载适应控制、以及主控阀的负载适应控制等。

液压基础-常见液压回路介绍

液压基础-常见液压回路介绍

常见液压回路介绍液压只有形成回路,才能发挥作用: 常见的液压回油有 1. 差动回路 2. 节流回路 3. 闭式容积回路 4. 多泵回路 5. 多缸回路 6. 闭式控制回路1, 差动回路:功能:在必要的时候提高有油缸伸出速度,使设备动作速度加快一般回路 差动回路 一般回路:u= q /A A 即速度(dm/min)=流量(L/min)/活塞截面积 (dm²) 1L=1dm ³p A = F /A A 即压力pA (N/㎡)=负载力(N )/活塞截面积(m²) 1Pa=1N/㎡ 差动回路:两腔都有压力,实际作业面积只是活塞杆截面积 u= q /A C 流量不变、,速度加快p A = F /A C 负载力不变,负载压力提高2、节流回路功能:通过控制流量来控制油缸速度进口节流出口节流旁路节流2.1 进口节流通过调节进口节流口面积,控制进入油缸的流量,最终控制油缸速度;2-1-1 进口节流 2-1-2 能量消耗 2-1-3 进口节流(恒压)能量消耗:液压功率=压力×流量(压强每升高5Mpa,液压温度上升约3°)图2-1-2图2-1-3,进入油缸流量qA与压差开方成正比,为保持恒定压力,增加溢流阀,成本最低,但会产生新的能耗,多余流量从溢流阀流出qY=qP-qA 溢流阀作为恒压阀2-1-4 能量消耗图2-1-5 采用恒压泵 图2-1-6 采用流量调节阀为减少能量损耗,用恒压泵实时调节泵输出流量,使输出流量几乎全部进入油缸,如超出油缸所需,减小泵排量。

图2-1-5采用流量调节阀,通过调节节流孔大小,实时控制压差,控制进入油缸流量 2.2 出口节流通过调节出口节流面积,限制油液流出,有杆腔有压力,油缸速度降低;图2-2-1 图2-2-2油缸速度与有杆腔流量qB 成正比,qB 由PB 和A 就决定,所以调节节流孔大小可以调节速度。

图2-2-3 图2-2-4 图2-2-5 以上原理同进口节流相似使用单向节流阀的进口节流回路:由于两腔面积不同,同样的速度时,进出流量不同,所以不同程度的节流。

[总线,流量,技术]浅谈基于CAN总线技术上的正流量控制

[总线,流量,技术]浅谈基于CAN总线技术上的正流量控制

浅谈基于CAN 总线技术上的正流量控制随着国内排放法规的日益严格和汽车电子技术的迅速发展,在重型车辆上使用的电控柴油发动机开始在工程机械中批量应用。

在整机配套过程中,以发动机为驱动动力的行走类工程机械的经济性、作业性能和作业效率依然是其制造者和使用者所追求的指标。

以CAN总线技术为代表的汽车电子技术应用于工程机械的动力控制管理和系统功能控制已成为不可或缺的配套组成,其应用技术的延伸构成了当前的基于CAN总线技术的正流量控制系统。

1 从小马拉大车说起所谓小马拉大车是指工程机械中的动力发动机的额定功率小于驱动执行机构的液压系统中液压泵的理论最大功率的现象,这是工程机械动力系统配套很经典的配套现象,如挖掘机、履带式起重机、大吨位的汽车起重机等等。

常见的方法是在液压系统中引入了恒功率变量泵系统,其工作公式为:P=pQ式中P变量泵恒功率设定值;p负载工作压差;Q泵输出流量。

轻载时液压泵大流量输出,执行机构可以高速作业满足速度要求;重载时液压泵小流量输出,执行机构可以低速作业即满足作业性能基本要求又能满足安全性要求,从而限制液压泵的驱动功率又不至过大。

2 发动机转速功率特性无论使用何种燃料的内燃发动机,对于活塞发动机的功率特性均符合基本公式:P=kMn式中P发动机有效输出功率;k比例系数;M负载扭矩;n发动机转速。

发动机的输出扭矩和作为负载决定转速。

当负载扭矩达到平衡时转速就达到稳定状态。

发动机的输出功率是变化的,是与转速有关的,在相同燃料供给情况下,负载扭矩的变化会导致发动机的转速和输出功率的变化。

3 正流量控制正流量控制是基于负流量控制概念上的一个延伸。

正流量控制,确切地讲是液压变量泵的输出流量的正控制,就是变量泵的输出流量与控制信号是正的对应关系;与之相反的就是负流量控制。

正流量控制基本目的是为了节能。

正流量控制就是以多路换向阀的先导控制负载压力为控制信号,在控制换向阀换向工作的同时控制变量泵输出流量;当空载运行时,即没有先导控制信号输出时,变量泵输出趋于零流量,从而达到节能的目的。

液压挖掘机的三种流量控制方式

液压挖掘机的三种流量控制方式

液压挖掘机的三种流量控制方式摘要:在液压挖掘机的负载适应控制策略中,负流量(Negative Flow Control)、正流量控制(Positive Flow Control)及负荷传感器控制(Load Sensing Control)三种流量控制方式的流行称谓,是按其泵控特性来分类的。

本文通过对多种厂牌型号挖掘机的比较分析,提出了旁通流量控制(By-pass Flow Control)、先导传感控制(Pilot Sensing Control)及负荷传感控制的分类。

这一分类方法,对于设计时比较不同控制系统的性能和维修时理解不同控制系统结构和功能的特点,都有所裨益。

1.流量控制在挖掘机的液压系统内,流量Q、压力P及能耗(流量损失ΔQ、压力损失ΔP)等参数的变化,反映了液压传动过程的控制特性。

液压系统工作时,压力P不是系统的固有参数,而是由外负荷决定的。

因此,当发动机转速n e一定时,要对液压系统的功率进行调节,其实是对液压缸、液压马达等执行元件的进油量Q a进行调节(参看图1)。

图1.流量调节如图2所示,有两种方法调节系统流量。

第一种方法是泵控方式,通过改变主泵的每转排量q来调节主泵的输出流量Q p,称为容积调速。

常见的容积调速方式包括:①利用主泵出口压力P P与主泵排量q的乘积保持不变的恒扭矩控制;②利用发动机转速传感(ESS)使主泵吸收的扭矩p P q与主泵转速n的乘积保持不变的恒功率控制;③在临近系统溢流压力时,减小主泵排量的压力切断控制;④配用破碎头等作业附件时,由外部指令限定主泵最大排量的最大流量二段控制;⑤双泵系统中,利用两泵出口压力的平均值与主泵流量乘积保持不变的交叉功率控制(相加控制或总功率控制);⑥多泵系统中,因主泵组的液压总功率大于发动机的输出功率,为防止发动机出现失速,采用了极限负荷控制。

除了容积调速,还有一种泵控方式是通过动力模式下的变功率控制,利用外部指令设定不同工况下不同的发动机输出功率来改变主泵转速n e,从而调节主泵输出流量Q=nq。

三一正流量挖掘机液压系技术讲解训

三一正流量挖掘机液压系技术讲解训

B220402000045
Hale Waihona Puke 阀块 4XWKEC08-SB010.32
B220401000598
阀组 BKWE5G-30/G24WR-829
A810201055612
C5型 EC-7控制器 SY200C5.5.1
B249900001207
控制器 KC-MB-10-EV1
28
正流量挖掘机使用的配件
正流量主阀上安装 的9个压力传感器, 用于检测先导压力
4、该屏与控制器的通讯为 CAN 通讯 5、采用远程控制方式进行定位与防盗 的操作
21
正流量挖掘机的电控系统
1、模式按钮
2、转速调节旋钮 3、AI转速确认键
4、 L转速确认键 5、S转速确认键 6、H转速确认键
在更换控制器或油门马达之后,需进行转速 标定
22
正流量挖掘机的电控系统
•1、将 模式开关1搬到上方,将 转速调节旋钮 2左旋到底,上电; •2、调节转速到需要转速; •3、按下 5、 6、 7、 8模式键中任 意一键,当前数值被作为此模式 下最高转速; •4、转速在中间LED显示框中; •5、关电; •6、将 模式开关1搬到下放,上 电; •7、标定完成。
B229900000511
B229900003374
B220401000160
B220401000663
B220401000161
手动先导阀(R)TH40K1298
B220401000664
手阀 PV48K1282
B220401000570
脚踏伺服阀RCVD8C4142
B220401000662
脚阀 RCVD8CC4126
29
正流量挖掘机使用的配件

控制阀的正作用与反作用

控制阀的正作用与反作用

控制阀的正作用与反作用一、正作用和反作用简介调节器有正作用和反作用调节器两种。

调节器正反作用的选择同被控过程的特性及调节阀的气开、气关形式有关。

被控过程也分正反两种。

当被控过程的输入量(通过调节阀的物料或能量)增加(或减小)时,其输出(被控参数)亦增加(或减小),此时称其被控过程为正作用;反之,当被控过程的输入量增加时,其输出却减小,称其过程为反作用。

一个控制系统能够正常工作,则其组成的各个环节的极性(可用其静态放大系数表示)相乘必须为正。

由于变送器的静态放大系数Km通常为正极性,故只需调节器静态放大系数Kc,调节阀静态放大系数Kv和过程的静态放大系数Ko极性相乘必须为正即可。

对于控制系统各环节的极性是这样规定的:正作用调节器,即当系统的测量值增加时,调节器的输出亦增加,其Kc 取负;反作用调节器,即当系统的测量值增加时,调节器的输出减小,其Kc取正。

气开阀Kv取正,气闭阀Kv取负。

正作用被控过程,其Ko取正,反作用被控过程,其Ko取负。

确定调节器的正反作用次序为:首先根据工艺安全等原则确定调节阀的气开、气闭形式,然后根据被控过程特性,确定其正反作用;最后根据上述组成该系统的各环节的静态放大系数极性相乘必须为正的原则来确定调节器的正反作用形式。

一般来说:正向作用设定值高于一个值,平常输出是0,也就是阀门通常是关闭(或开启)的,而反向作用跟正向作用相反。

关闭(后开启)的是阀门的常态。

对调节器来说输入增加,输出也增加为正作用。

输入增加输出减少为反作用。

对调节阀来说气源从膜头上面进的称正作用调节阀,气源从膜头下面进的称反作用调节阀。

气源增加阀门打开称气开阀,气源增加阀门关闭称气闭阀。

如果调节器为正做用,那么输入信号增加,输出信号也增加。

至于阀门是开还是关,要根据工艺情况对末端原件来说考虑设备的安全有AIR TO OPEN与AIR TO CLOSE两种型式一般使用多使用AIR TO OPEN较多AIR TO OPEN 4mA close20mA openAIR TO CLOSE4mA open 20mA close在控制器而言有正向动作与反向动作比如温度的控制在过热器与减压器就不同,过热器温度上升控制器输出增加控制阀开大喷水量增加使温度下降,减压器压力上升控制器输出减少控制阀关小使压力下降。

正负流量

正负流量

近年来有部分的公司推出正流量控制,并且如此这般地说正流量有诸多好处,而我们日常生活中的常见的是负流量控制的,正负流量到底有什么差别呢?我们一起分析一下吧。

正流量控制系统:????? ?优点:主泵和先导操作手柄输出的压力成正比例关系(依据这些判断对主泵的液压油排量加以控制,因此得名正流量)主控制器根据先导压力信号及其变化趋势判断出流量需求及这种需求的变化趋势。

实现了对变量泵的实时控制,做到按需求供油。

相对于负流量控制系统,正流量”响应时间更短,流量动摇更小,可操作性更好,可提高工作效率约9%节油12%左右,系统的可靠性也更高。

????? ?缺点:技术含量高,只有少数几个企业掌握了这项技术。

负流量控制系统:?? 优点:能够充分利用发动机功率,根据负荷的大小自动调节泵流量,自动适应外载变化。

?? 缺点:使用过程中流量波动大、响应时间长、支配性能差。

????????从上面的分析可以看出,与“负流量”相比,正流量”除了技术难度高以外,其它性能方面都超过了负流量”随着“正流量”普及,采用“负流量”技术的厂家会感到越来越大的市场压力。

液压挖掘机作为一类快速、高效的旌工机械愈来愈被人们所认识。

它是一种大功率设备,其节能性的好坏直接影响了设备使用的经济性和可靠性。

挖掘机回转液压系统是液压挖掘机的重要组成部分,对其整机性能有着巨大的影响,本文通过研究挖掘机的节能,分析对比了传统挖掘机回转液压系统与负载敏感回转液压系统的效率1.1课题研究的背景和意义挖掘机是重要的建筑机械装备,应用于港口建设、房屋建筑、水利建设、国防工程、农田开发、道路工程等土石方施工和矿山的采掘,其对减轻人类的体力劳动,保证工程质量,加速建设速度,提高生产率发挥着巨大作用。

随着国民经济的快速发展,挖掘机在工程建设领域,特别是基础设施建设中的作用越来越明显,作为一类快速、高效的施工机械愈来愈被人们所认识。

据统计,2003年我国挖掘机总销售量突破6万台,其中国内液压挖掘机销量总和达到3.48万台,成为世界第一大挖掘机市场。

工程机械液压传动系统形式—变量泵的控制方式

工程机械液压传动系统形式—变量泵的控制方式




线
P有一个最大值,为溢流阀预设
定的压力值
Q有一个最大值,为液压泵最大
流量值
任一点的功率(N=PQ)始终不
变(恒功率)
2. 液压泵功率控制曲线




总功率等于分泵功率之和
分泵可以单独控制,也可以互控
有总功率变量和分功率变量两种形式
3. 总功率控制
3.1 总功率控制目的
• 负荷传感压力Pls为系统的最高
负荷,由梭阀链选取
2. 负荷传感(LS)控制工作原理
• 主控阀为中位常闭









Q=KA√∆ ,∆=Pp-Pls
LS阀阀芯受力情况
液压泵输出压力Pp
负荷传感压力Pls
弹簧力Pk
Pk=ΔP=Pp-Pls
调节弹簧预压力Pk,可调整ΔP
一般取ΔP=2.2MPa左右
压力增大而增大,呈正比关

• 先导控制压力P↑,则输出流
量↑
第36页
2. 正流量控制信号采样点
• 先导控制压力Pi采用操纵阀
的先导控制阀油压
• 先导泵输出液压油经先导阀
输出后,一部分去控制主阀,
另一部分用来控制液压泵变
量机构
• 先导控制压力Pi为各先导油
中的最高压力
第37页
3. 正流量控制工作原理
Pk=ΔP=Pp-Pls
②主控阀动作
如果主控阀开度变大
动态∆P减小
LS阀阀芯左移活塞右移
排量增大
2. 负荷传感(LS)控制工作原理



正流量和负流量控制的区别

正流量和负流量控制的区别

正流量控制和负流量控制的区别在我们常见的挖掘机中,除了小松使用LS控制外,大部分都使用负流量控制。

近年来有部分的公司推出正流量控制,并且如此这般地说正流量有诸多好处,那么正流量真的有那么神吗?挖掘机上为了更有效地利用发动机的功率通常都采用恒功率变量泵,所谓的恒功率变量泵通俗一点说就是泵的压力与泵的流量的乘积是一个常数,如果这个数值大于发动机的功率时就会出现我们常说的憋车。

所以每个设计者就其设计思想来说,都必须是使整个液压系统的功率无限接近发动机的功率而又绝对不能大于发动机的功率。

挖掘机的恒功率控制在挖掘机的恒功率控制上分为两个部分:一是泵内部的功率控制:他是根据本泵的输出压力和他泵(另一个泵)的输出压力对泵的排量进行的控制,当压力升高时,泵的排量随之减小;当压力降低时,泵的排量随之增大;如果系统的压力低于先导压力时则引入先导压力对其排量进行控制.无论是对于正流量还是负流量,就此一部分而言,不管是从理论上还是从结构上都没有什么不同,也就是说在此部分没有什么正流量和负流量之分.这是液压泵恒功率控制的主体,在此不作讨论.二是外部信号对泵的功率的控制:这里说的外部信号是指先导操作系统,主压力系统,发动机系统等等等等一切与泵的功率控制有关的信息的综合.在负流量中是负压信号和其它信号的综合,在正流量中是正压信号和其它信号的综合.这两个其它信号也没有什么不同,关键就在于负压信号和正压信号的区别.我们知道,在挖掘机上,各执行元件的速度会随操作手柄的行程的变化而变化,液压系统会根据这种变化对其排量进行控制,负流量和正流量的区别就在于这种变化的信号采集位置的不同.什么是负流量控制系统?手柄行程越大,对应的二次先导压力也会越大,由二次先导压力控制的主阀芯的开启度也会越大, 与之对应, 主阀芯的开启度越大,主油路分向执行元件的油越多,执行元件的速度就会越快,通过中位流经负压信号发生装置的油越少,负压信号的压力值就会越小;反之如果手柄行程越小,对应的二次先导压力也会越小,由二次先导压力控制的主阀芯的开启度也会越小, 与之对应, 主阀芯的开启度越小,主油路分向执行元件的油越少,执行元件的速度就会越慢, 通过中位流经负压信号发生装置的油就越多,负压信号的压力值就会越大.液压泵根据负压信号的压力值的大小来对其排量进行控制.这就是负流量控制.他的信号采集点是主油路中主控制阀的出口处什么是正流量控制系统?正流量控制系统,是力士乐上世纪80年代的技术,主要特点是:操纵手柄的先导压力不仅控制换向阀,还用来调节油泵的排量。

正负流量控制

正负流量控制

所谓正负流量控制,说的是泵的控制方式。

负流量控制是通过负载返作用于泵,控制泵的排量,从而实现有动作时流量大,无动作时流量小。

正流量控制是人为控制泵的排量,需要大流量时就控制着输出一个大流量,需要小流量就控制着输出一个小流量。

液压系统中所有的控制都是由阀执行的。

简单的来说正负流量控制是指变量泵通过压力控制得到所需流量,负流量控制就是随着液控压力提高,泵摆向较小的排量。

正流量控制就是随着液控压力提高,泵摆向较大的排量。

挖掘机上为了更有效地利用发动机的功率通常都采用恒功率变量泵,所谓的恒功率变量泵通俗一点说就是泵的压力与泵的流量的乘积是一个常数,如果这个数值大于发动机的功率时就会出现我们常说的憋车。

所以每个设计者就其设计思想来说,都必须是使整个液压系统的功率无限接近发动机的功率而又绝对不能大于发动机的功率。

挖掘机的恒功率控制在挖掘机的恒功率控制上分为两个部分:一是泵内部的功率控制:他是根据本泵的输出压力和他泵(另一个泵)的输出压力对泵的排量进行的控制,当压力升高时,泵的排量随之减小;当压力降低时,泵的排量随之增大;如果系统的压力低于先导压力时则引入先导压力对其排量进行控制.无论是对于正流量还是负流量, 就此一部分而言,不管是从理论上还是从结构上都没有什么不同,也就是说在此部分没有什么正流量和负流量之分.这是液压泵恒功率控制的主体,在此不作讨论. 二是外部信号对泵的功率的控制:这里说的外部信号是指先导操作系统,主压力系统,发动机系统等等等等一切与泵的功率控制有关的信息的综合.在负流量中是负压信号和其它信号的综合,在正流量中是正压信号和其它信号的综合.这两个其它信号也没有什么不同,关键就在于负压信号和正压信号的区别.我们知道,在挖掘机上,各执行元件的速度会随操作手柄的行程的变化而变化,液压系统会根据这种变化对其排量进行控制,负流量和正流量的区别就在于这种变化的信号采集位置的不同.什么是负流量控制系统?手柄行程越大,对应的二次先导压力也会越大,由二次先导压力控制的主阀芯的开启度也会越大, 与之对应, 主阀芯的开启度越大,主油路分向执行元件的油越多,执行元件的速度就会越快,通过中位流经负压信号发生装置的油越少,负压信号的压力值就会越小;反之如果手柄行程越小,对应的二次先导压力也会越小,由二次先导压力控制的主阀芯的开启度也会越小, 与之对应, 主阀芯的开启度越小,主油路分向执行元件的油越少,执行元件的速度就会越慢, 通过中位流经负压信号发生装置的油就越多,负压信号的压力值就会越大.液压泵根据负压信号的压力值的大小来对其排量进行控制.这就是负流量控制.他的信号采集点是主油路中主控制阀的出口处什么是正流量控制系统?正流量控制系统,是力士乐上世纪80年代的技术,主要特点是:操纵手柄的先导压力不仅控制换向阀,还用来调节油泵的排量。

正流量与负流量

正流量与负流量

在我们常见的挖掘机中,长沙挖掘机培训除了小松使用LS控制外,大部分都使用负流量控制。

近年来有部分的公司推出正流量控制,并且如此这般地说正流量有诸多好处,那么正流量真的有那么神吗?让我们在下边以川崎K3V系列为例来分析一下挖掘机上液压泵地控制原理:挖掘机上为了更有效地利用发动机的功率通常都采用恒功率变量泵,所谓的恒功率变量泵通俗一点说就是泵的压力与泵的流量的乘积是一个常数,如果这个数值大于发动机的功率时就会出现我们常说的憋车。

所以每个设计者就其设计思想来说,都必须是使整个液压系统的功率无限接近发动机的功率而又绝对不能大于发动机的功率。

挖掘机的恒功率控制在挖掘机的恒功率控制上分为两个部分:一是泵内部的功率控制:他是根据本泵的输出压力和他泵(另一个泵)的输出压力长沙挖掘机培训对泵的排量进行的控制,当压力升高时,泵的排量随之减小;当压力降低时,泵的排量随之增大;如果系统的压力低于先导压力时则引入先导压力对其排量进行控制.无论是对于正流量还是负流量,就此一部分而言,不管是从理论上还是从结构上都没有什么不同,也就是说在此部分没有什么正流量和负流量之分.这是液压泵恒功率控制的主体,在此不作讨论.二是外部信号对泵的功率的控制:这里说的外部信号是指先导操作系统,主压力系统,发动机系统等等等等一切与泵长沙挖掘机培训的功率控制有关的信息的综合.在负流量中是负压信号和其它信号的综合,在正流量中是正压信号和其它信号的综合.这两个其它信号也没有什么不同,关键就在于负压信号和正压信号的区别.负流量:手柄行程越大,对应的二次先导压力也会越大,由二次先导压力控制的主阀芯的开启度也会越大, 与之对应, 湖南挖掘机培训主阀芯的开启度越大,主油路分向执行元件的油越多,执行元件的速度就会越快,通过中位流经负压信号发生装置的油越少,负压信号的压力值就会越小;反之如果手柄行程越小,对应的二次先导压力也会越小,由二次先导压力控制的主阀芯的开启度也会越小, 与之对应, 主阀芯的开启度越小,主油路分向执行元件的油越少,执行元件的速度就会越慢, 通过中位流经负压信号发生装置的油就越多,负压信号的压力值就会越大.液压泵根据负压信号的压力值的大小来对其排量进行控制.这就是负流量控制.他的信号采集点是主油路中主控制阀的出口处.正流量:在正流量的主控制阀上没有负压信号发生装置,他的信号采集于二次先导.其它部分与负流量没有什么区别.与负流量相比正流量为什么操作敏感性好:由于负压控制的信号采集点在主挖掘阀的出口处,只有主控制阀有动作时此负压信号才会发生变化,从而使泵的排量发生变化,这就使得液压泵的控制永远滞后于主控制阀的控制.而在正流量中,由于泵的控制信号采集于二次先导压力,此压力信号同时发送液压泵和主控制阀,这就是使的两者的动作可以同步进行.这就是湖南挖掘机培训“与负流量相比正流量操作敏感性好”的主要原因.与负流量相比正流量为什么节油:在负流量控制的液压系统中,负压信号的压力大约是5MPa到6MPa,此压力只用于产生负压信号;而正流量控制的液压系统中,由于没有此装置,他的回油压力仅仅是背压(一般在0.5MPa左右),这就减少湖南挖掘机培训了一个不必要的功率损失,从而使的正流量的挖掘机在完成同样工作量的情况下一定比负流量控制的挖掘机省油.。

正负流量控制定义

正负流量控制定义

1.正负流量控制定义:所谓正负流量控制,说的是泵的控制方式,变量泵有一个控制口,如果这个控制口的控制压力越高,泵的排量越大,就是正流量控制,反之就是负流量控制.正负流量控制是指变量泵通过压力控制得到所需流量:负流量控制就是随着液控压力提高;泵摆向较小的排量。

正流量控制就是随着液控压力提高;泵摆向较大的排量。

现在一般的控制都是负流量控制!最典型的就是工程液压上面的多路阀用的就是负流量控制!(通过多路阀出口的液阻,液阻前后的压差值来控制的泵的流量,要是压差大就促使泵的流量变小,最后在小流量上维持一个平衡。

就是负流量控制)不最近听三一的朋友说!三一现在出了台正流量的挖掘机!从控制的技术水平来将还是在前沿的!主要就是节能。

采用负流量控制的原因是原动机的功率是一个定值,在不超过原动机的能力(功率)的情况下,使输出流量最大(即使工作机械得到最大的速度)。

负流量控制用得很多,基本上是配恒功率泵。

齿轮泵属于定量泵,对于定量泵是没有什么正负控制的。

而所谓的正负控制只是针对变量泵而言的。

泵的排量要有控制信号,在泵没有输出信号时,泵初如排量应为多少呢?很显然,要不就是近零左右的排量,要不就是接近100%左右的排量。

这样大家所谓的正流量与负流量了吧!其就是泵排量与控制信号相对应关系的两种叫法!信号增加排量从零增加叫正排量控制(排量不就是流量吗?)反之就是负流量控制!这种叫法对开式泵和比式泵都是一样的!记住,只是泵的排量与信号的关系,别被挖机的以泵正流量负流量搞得乱晕晕的!你们要知道作为开式系统(阀控系统)最为典型和复杂的应用,在系统中泵只是一个流量源罢了!最重要还是阀的问题。

负流量控制是通过负载返作用于泵,控制泵的排量,从而实现有动作时流量大,无动作时流量小。

正流量控制是人为控制泵的排量,需要大流量时就控制着输出一个大流量,需要小流量就控制着输出一个小流量。

液压系统中所有的控制都是由阀执行的。

负流量一般小日本用得多,负载敏感欧美用得多。

挖掘机正流量液压系统中电比例泵浅析

挖掘机正流量液压系统中电比例泵浅析

[ 6 ] 王立环. 电牵引采 煤机调 高系统 常见故 障的分析 与处理
[ J ] . 煤矿机 械 , 2 0 0 8 , 2 9 ( 8 ) : 2 0 1 — 2 0 3 .
[ 3 ] S U X i u — p i n g , L I We i , Z H A N G L i ・ l i , e t 1 a .A p p l i c a t i o n o f
压系 统正 向着 柔性 化 、 智能 化方 向发 展 。
液压 系统 的流量实 时 匹配方 式 是液压 挖 掘机 的核 心技 术 之一 。 目前 , 国 内 主流 挖 掘 机 普 遍 采用 负流 量 液压 系统 。负 流量 系统 能够 实现 液压 系统 流量 的动态 匹配 , 但 同时存 在 响应 时 间长 、 流量 波 动 大 、 可 操 作 性 差等 缺点 。公 司 经过 技 术 攻 关 , 在 国 内率 先研 制 成 功 液压 挖 掘机正 流量 控制 系 统 。 目前 , 经过 搭机 测试 , 该
图 1 负 流 量 控 制 系统 原 理 示 意
正流量 控 制 模 式 是 指 主 泵 排 量 与 控 制 压 力 成 正 比。控制 压力 取 自换 向 阀两 边 先 导 压力 差 , 控 制 手 柄 在 中位时 , 执行元件不工作 , 控制压力 为零 , 主泵 的斜 盘角 度最小 , 排 量最低 , 其 原理 示意 如 图 2所示 。
S y s t e m o f Ex c a v a t o r s
L I H e - y o n g . H U A N Q i n g - x i a n g
( 山东中川液压有限公司 研 发部 , 山东 青 岛 2 6 6 5 1 0 )

常规控制正反作用判断总结

常规控制正反作用判断总结

常规控制正反作用判断总结一:单回路正反作用判断调节器正反作用的概念,通常应用于仪表控制行业。

由于控制理论中定义的偏差(SP-PV)与仪表行业定义的偏差正好相反(PV-SP),仍然采用偏差来描述正反作用与控制器输出的关系会存在混淆。

因此,用测量值与控制器输出的关系来定义控制器的正反作用,具体定义为:若测量信号增加(假设设定值不变),控制器比例作用的输出也增加的称正作用,否则为反作用。

控制器正反作用的选取原则,是要使控制回路构成负反馈系统,根据控制理论中关于稳定性判据的论证,这种情况下系统能够使偏差逐渐减小,并最终趋于稳定。

单回路控制正反作用的判断相对容易些,是指一个单回路控制系统中,只要调节器的放大系数Kc、调节阀的放大系数Kv、被控对象的放大系数Ko的乘积为正,就能实现负反馈控制,这时传递函数特征根都位于复数域的负半平面,而这恰是系统稳定的充分必要条件。

其中调节器、调节阀和对象放大系数正负号规定如下:1. 调节器放大系数的正负号对于调节器来说,测量值增加,输出增加,称为正作用,调节器放大系数Kc为负。

Kc取负,是因为比较环节的测量通道占了一个“-”号,即表达式为:(PV-SP)= - (SP-PV)。

而(SP-PV)是PID控制器的偏差输入。

反之,测量值增加,控制器输出减小,Kc为正,称为反作用。

2. 调节阀放大系数的正负号调节阀的放大系数Kv定义为气开阀(FC)Kv为正,气关阀(FO)Kv为负。

3.对象放大系数的正负号对象的放大系数Ko定义为:如操作变量增加,被控变量也增加,Ko为正;操作变量增加,被控变量减少,Ko为负。

例如,在炉膛负压控制中,操作变量为空气流量,被控变量为炉膛压力,当引风机转速增加(出口阀门开度恒定),空气流量增大,炉膛压力就会降低,这时Ko即为负。

由此可知,单回路控制系统调节器正反作用的确定方法如下:首先确定调节阀Kv是气开阀还是气关阀,接着确定对象放大系数Ko的正负号,根据(Kv * Ko * Kc) >0 的原则,可得Kc的正负号,从而确定调节器的作用方式。

积算仪模拟量的正负

积算仪模拟量的正负

积算仪是一种用于测量和记录流体(如气体或液体)流量的设备。

在积算仪中,模拟量通常用于表示测量的物理量,如流量、温度、压力等。

在模拟量中,正负通常用来表示物理量的方向或极性。

在积算仪中,正负通常与物理量的流向相关。

以下是一些常见的情况:
1. 正流向和负流向:在流量测量中,正流向通常表示流体从一个位置或装置流向另一个位置或装置,而负流向则表示反向流动。

例如,正流向的流量可能表示物质的进入,而负流向可能表示物质的排出。

2. 正压力和负压力:在压力测量中,正压力通常表示高于大气压的压力,而负压力表示低于大气压的压力。

正压力可能表示压缩或增压状态,而负压力可能表示真空状态。

3. 正温度和负温度:在温度测量中,正温度表示高于某个参考点的温度,而负温度表示低于参考点的温度。

需要注意的是,具体情况可能会因设备、测量方法和使用环境的不同而有所不同。

在使用积算仪时,要根据设备的说明书和标识来理解模拟量的正负含义,确保正确地解释和使用测量数据。

挖掘机控制系统讲解

挖掘机控制系统讲解

挖掘机控制系统讲解1.中心开式负荷传感系统原理图1表明中心开式负荷传感液压系统(OLSS)的原理。

图2是主泵工作的特性曲线,泵在一定转速下,工作点无论在哪条曲线上,它的纵、横坐标分别是压力和流量,两者的乘积就是功率。

图1中所表示的操纵阀是大为简化了的多路阀示意图,它由先导或机械手柄、踏板控制其开度。

阀芯在中位时,其中心油路是开放的,主泵回油从此通过,故称之为“中心开式”。

手柄、踏板开度增大时,阀芯A口、B口开度也按比例增大,工作油量增多,使阀中心开度减小、回油量减小;反之,回油量则增大。

射流传感器(以下称射流阀)装于多路阀回油路的末端,主阀开度越小,则回油量越大,射流阀的进、出油压差就越大,其输出压差(Pd-Pb)也越大;反之,此压差就越小。

在主泵上还装有负流量控制阀(NC阀),当Pd-Pb压差增大时,它的开度就减小,使控制泵油压Pi减小、主泵输出功率减小;反之,输出功率增大。

该系统在发动机带动主泵空运转时,全部液压油通过主阀中心及射流阀回油箱,此时射流阀进、出油压差最大,输出压差Pd-Pb也最大,NC阀开度最小,控制泵的油压受到最强的节流,输出油压Pi最小,主泵伺服缸驱使主泵输出最小流量。

当人为操作控制手柄、踏板满负荷工作时,情况与以上相反,主阀回油量最小,主泵输出最大功率(见图2)。

当中度负荷工作时,控制主阀开度不大,主泵输出功率介于上述两种情况之间,按与其开度相适应的特性曲线工作(主阀开度大小决定工作的那条曲线),以节省能量。

图3中的(a)、(b)、(c)分别是在空负荷、轻负荷和强阻力作业时该系统的节能效果图。

传统的恒功率控制只在最外特性曲线上工作,所消耗的功率由0abc四边形面积决定;中心开式负荷传感系统也可在最外特性曲线上工作,但当在空负荷、轻负荷和强阻力作业时,消耗功率由0123四边形面积决定,两者的面积差(图中影线部分)就是后者较前者所节省的能量。

2.负流量控制系统原理图4表示负流量控制系统原理。

挖掘机正流量、负流量和负载敏感系统的比较

挖掘机正流量、负流量和负载敏感系统的比较

挖掘机三种液压系统,一个就在国内比较多见的负流量,还有一种就是被炒得很火的正流量,另外一种就是欧州最为常用的负荷传感。

正流量与负流量同是开中心,负荷传感为闭中心。

开中心典型为负流量,其价格相对底兼,至于正流量价格一定不低,其成功批量应用可以说是等于零!呵呵!开中心的代表为川崎,闭中心的代表为德国林德LSC(1978年就已经在Altas上应用,如果了解小松,你们就知道其Class的由来,这里不多做介绍),我要更正一点就是rexroth在中挖并没有历史,各位力士迷们希望别以为力士乐都行!哈哈!都知道螺纹插装阀不如SUN吧!径向柱塞不如合格龙吧!应用上有地区因素:因欧州人生活水平较高,他们对可操作要求高,所以具动作可预知性且与负载无关的LSC在欧州最为流行,但其价格比负流量高点!在亚洲地区劳动力便宜且劳动力充足,这就决定在中国的老板更偏向于采用需要比较丰富经验才能开好的动作与负载压力有关的负流量系统。

在能耗上看:负流量在阀中位时都有30L/min左右的流量进入油箱。

我这里只举一种功况:负载轻载移动时,进入油箱的流量为减少很少,但当负载增加到很大,这时进入油箱的流量会增大,然后泵排量减小,当进入油箱流量到达近30L后,负载可以说动作降到非常慢,这样系统压力应该在30MPa,大家算一下这会产生多少节流损失?在挖机这种工况时时发生!应该是一种典型工况!负流量也在一种跟正流量一样的情况,就是当手柄最大,泵近最大排量,可这里是一个很大负载,系统压力高,可是执行机构只需要一点流量,可是近全排量的泵注入!这样大部分油液将经过开中心阀溢流进入油箱!这样将是巨大的能量浪费!别以为正流量是需要多少供多少!在来谈谈林德LSC,哈哈!大家一定说LSC是什么东西了吧!有兴趣去找找Altas 和volvor的负载敏感系统轮挖,也许能给点印像给你!LSC的多路阀就是大家了解的阀后补尝阀,当Rexroth开发1.5回路时,人家已经是双回路了(这可不是定量系统的双回路)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正流量和负流量控制
的区别
正流量控制和负流量控制的区别
在我们常见的挖掘机中,除了小松使用LS控制外,大部分都使用负流量控制。

近年来有部分的公司推出正流量控制,并且如此这般地说正流量有诸多好处,那么正流量真的有那么神吗?
挖掘机上为了更有效地利用发动机的功率通常都采用恒功率变量泵,所谓的恒功率变量泵通俗一点说就是泵的压力与泵的流量的乘积是一个常数,如果这个数值大于发动机的功率时就会出现我们常说的憋车。

所以每个设计者就其设计思想来说,都必须是使整个液压系统的功率无限接近发动机的功率而又绝对不能大于发动机的功率。

挖掘机的恒功率控制
在挖掘机的恒功率控制上分为两个部分:一是泵内部的功率控制:他是根据本泵的输出压力和他泵(另一个泵)的输出压力对泵的排量进行的控制,当压力升高时,泵的排量随之减小;当压力降低时,泵的排量随之增大;如果系统的压力低于先导压力时则引入先导压力对其排量进行控制.无论是对于正流量还是负流量,就此一部分而言,不管是从理论上还是从结构上都没有什么不同,也就是说在此部分没有什么正流量和负流量之分.这是液压泵恒功率控制的主体,在此不作讨论.二是外部信号对泵的功率的控制:这里说的外部信号是指先导操作系统,主压力系统,发动机系统等等等等一切与泵的功率控制有关的信息的综合.在负流量中是负压信号和其它信号的综合,在正流量中是正压信号和其它信号的综合.这两个其它信号也没有什么不同,关键就在于负压信号和正压信号的区别.
我们知道,在挖掘机上,各执行元件的速度会随操作手柄的行程的变化而变化,液压系统会根据这种变化对其排量进行控制,负流量和正流量的区别就在于这种变化的信号采集位置的不同.
什么是负流量控制系统?
手柄行程越大,对应的二次先导压力也会越大,由二次先导压力控制的主阀芯的开启度也会越大, 与之对应, 主阀芯的开启度越大,主油路分向执行元件的油越多,执行元件的速度就会越快,通过中位流经负压信号发生装置的油越少,负压信号的压力值就会越小;反之如果手柄行程越小,对应的二次先导压力也会越小,由二次先导压力控制的主阀芯的开启度也会越小, 与之对应, 主阀芯的开启度越小,主油路分向执行元件的油越少,执行元件的速度就会越慢, 通过中位流经负压信号发生装置的油就越多,负压信号的压力值就会越大.液压泵根据负压信号的压力值的大小来对其排量进行控制.这就是负流量控制.他的信号采集点是主油路中主控制阀的出口处
什么是正流量控制系统?
正流量控制系统,是力士乐上世纪80年代的技术,主要特点是:操纵手柄的先导压力不仅控制换向阀,还用来调节油泵的排量。

执行元件不工作的时候,油泵上没有先导压力,斜盘摆角最小,油泵只输出少量的备用流量。

操纵先导手柄,则液压先导回路中建立起与手柄偏转量成比例的压力来控制换向阀阀芯的位移和泵的排量。

油泵的流量和由此产生的执行元件的工作速度与先导压力-控
制压力成正比例。

在正流量的主控制阀上没有负压信号发生装置,他的信号采集于二次先导.其它部分与负流量没有什么区别.
与负流量相比正流量为什么操作敏感性好?
由于负压控制的信号采集点在主挖掘阀的出口处,只有主控制阀有动作时此负压信号才会发生变化,从而使泵的排量发生变化,这就使得液压泵的控制永远滞后于主控制阀的控制.
而在正流量中,由于泵的控制信号采集于二次先导压力,此压力信号同时发送液压泵和主控制阀,这就是使的两者的动作可以同步进行.这就是“与负流量相比正流量操作敏感性好”的主要原因.
与负流量相比正流量为什么节油?
在负流量控制的液压系统中,负压信号的压力大约是5MPa,此压力只用于产生负压信号;而正流量控制的液压系统中,由于没有此装置,他的回油压力仅仅是背压(一般在0.5MPa左右),这就减少了一个不必要的功率损失,从而使的正流量的挖掘机在完成同样工作量的情况下一定比负流量控制的挖掘机省油.
简单的来说
正负流量控制是指变量泵通过压力控制得到所需流量,
负流量控制就是随着液控压力提高,泵摆向较小的排量。

正流量控制就是随着液控压力提高,泵摆向较大的排量。

相关文档
最新文档