中考数学专题-辅助线的添加
2024辽宁中考数学二轮专题复习 微专题 遇到角平分线如何添加辅助线(课件)
2. 如图,AB∥CD,∠ABC的平分线与∠BCD的平分线相交于点E, AD过点E,且与AB互相垂直,点P为线段BC上一动点,连接PE.若 AD=8,则PE的最小值为___4___.
第2题图
3. 如图,∠MON=30°,OP平分∠MON,过点P作PQ∥OM交ON于 点Q.若OQ=4,则点P到OM的距离为___2__.
微专题 遇到角平分线如何添加辅助线
方法一 过角平分线上一点向角两边作垂线
方法解读 如图,已知∠MON,点P是∠MON平分线上一点.
过角平分线上的点向角两边作垂线. 已知PA⊥OM, 添加辅助线,作PB⊥ON于点B.
结论:PA=PB,OA=OB,∠APO=∠BPO等.
1. 如图,在Rt△ABC中,∠C=90°4 ,AD平分∠BAC交BC于点D,若 AC=4,BC=3,则CD的长为____3____.
第7题图
方法四 作角平分线的垂线,构造等腰三角形
方法解读 过角平分线上的点作角平分线的垂线,三线合一试试看. 已知AP⊥OP,延长AP交ON于点B.
结论:__R_t_△__A_O__P_≌__R_t_△__B_O__P_,__O_A__=__O_B_,__A__P_=__B_P__. __
8. 如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD. 若BD=1,BC=3,则AC的长为__5___.
结论:____△__A__O_P_≌__△__B__O_P_,__A__P_=__B_P______
6. 如图,在△ABC中,∠A=2∠B,CD是∠ACB的平分线,若AC= 16,AD=8,则线段BC的长为__2_4___.
第6题图
7. 如图,四边形ABCD中,AC平分∠BAD,∠B+∠ADC=180°, 若BC=2,则DC的长为__2___.
中考数学几何辅助线:倍长中线法
中考数学几何添加辅助线:倍长中线中线或中点是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线。
所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法。
此法常用于构造全等三角形,利用中线的性质、辅助线、对顶角进而用“SAS”证明对应边之间的关系。
常规的倍长中线可以出全等,但需要证明“三点共线”,遇到“中点+平行”,我们“延长出全等”,而非“倍长出全等”. 用“倍长中线法”作辅助线解几何题,是一种重要的技巧套路。
它可以有效地生发出全等、平行等基本条件,关联好多基本图形,帮助解题,大家务必好好掌握。
也给我们解题的启示:抓住核心,找到关键,才能快速解题。
逢中点,便倍长,全等观,平行现.倍长中线法:是指加倍延长中线,使所延长部分与中线相等,然后连接相应的顶点,构造“8字形”的全等三角形。
在与中点有关的线段尤其是涉及线段的等量关系时,倍长中线应用较常见,常见添加如图(AD是底边中线)典例1.已知:AD是ΔABC的中线,AE=EF.求证:AC=BF.名师指点:延长AD到M,使AD=DM,连接BM,根据SAS证△ADC≌△MDB,推出BM=AC,∠CAD=∠M,根据AE=EF,推出∠CAD=∠AFE=∠BFD,求出∠BFD=∠M,再根据等腰三角形的性质证明即可.满分解答:证明:延长AD 到M ,使AD =DM ,连接BM ,∵AD 是△ABC 中线,∴CD =BD ,∵在△ADC 和△MDB 中,{CD =BD∠ADC =∠MDB AD =DM,∴△ADC ≌△MDB (SAS ),∴BM =AC ,∠CAD =∠M ,∵AE =EF ,∴∠CAD =∠AFE ,∵∠AFE =∠BFD ,∴∠BFD =∠CAD =∠M ,∴BF =BM =AC ,即AC =BF .名师点评:倍长中线是常见的辅助线、全等中相关的角、线段的代换是解决问题的关键. 1.如图,在平行四边形ABCD 中,28CD AD ==,E 为AD 上一点,F 为DC 的中点,则下列结论中正确的是( )A .4BF =B .2ABC ABF ∠>∠。
几何辅助线添法种种--------中考数学专题研究
几何辅助线添法种种--------中考数学专题研究一,补全图形1.如图2,在△ABC 中,AC =BC ,∠ACB =900,D 是AC 上一点,AE ⊥BD 的延长线于E ,又AE =21BD ,求证:BD 是∠ABC 的角平分线。
分析:∠ABC 的角平分线与AE 边上的高重合,故可作辅助线补全图形,构造出全等三角形(证明略)。
2(2012.深圳)如图6,Rt△ABC 中,C= 90o,以斜边AB 为边向外作正方形ABDE ,且正方形对角线交于点D ,连接OC ,已知AC=5,OC=62,则另一直角边BC 的长为 .3. 如图1,已知AB ⊥BC ,DC ⊥BC ,E 在BC 上,AE =AD ,AB =BC 。
求证:CE =CD 。
分析:作AF ⊥CD 的延长线(证明略)4.如图,在四边形ABCD 中,∠A =600,∠B =∠D =900,BC =2,CD =3,则AB =?分析:通过作辅助线,将四边形问题转化为三角形问题来解决,其关键是对内分割还是向外补形。
答案:338 例1图32ED CBA5、如图,四边形ABCD 中,AB =6,BC =35-,CD =6,且∠ABC =1350,∠BCD =1200,你知道AD 的长吗?分析:这个四边形是一个不规则四边形,应将它补割为规则四边形才便于求解。
略解:作AE ⊥CB 的延长线于E ,DF ⊥BC 的延长线于F ,再作AG ⊥DF 于G ∵∠ABC =1350,∴∠ABE =450∴△ABE 是等腰直角三角形又∵AB =6,∴AE =BE =3 ∵∠BCD =1200,∴∠FCD =600 ∴△DCF 是含300的直角三角形 ∵CD =6,CF =3,DF =33 ∴EF =3)35(3+-+=8 由作图知四边形AGFE 是矩形 ∴AG =EF =8,FG =AE =3 从而DG =DF -FG =32 在△ADG 中,∠AGD =900例2图F EDCBA例1图F E DCB A 问题一图GD∴AD =22DG AG +=1264+=76=1926. 如图,在四边形ABCD 中,∠B =135°,∠C =120°,AB =,BC =,CD =,则AD 边的长为( ). (A ) (B )(C )(D )解:D如图,过点A ,D 分别作AE ,DF 垂直于直线BC ,垂足分别为E ,F .由已知可得BE =AE =,CF =,DF =2,于是 EF =4+.过点A 作AG ⊥DF ,垂足为G .在Rt △ADG 中,根据勾股定理得AD=.勾股定理、涉及双重二次根式的化简,补全图形法二、截长补短法1. 如图2,已知在△ABC 中,∠C =2∠B ,∠1=∠2,求证:AB =AC +CD 。
中考数学如何巧妙的添加辅助线
中考数学如何巧妙的添加辅助线在中考中,数学考试中的添加辅助线问题是一个非常常见的考点。
合理添加辅助线可以帮助我们更好地理解题目,简化问题,而不妨碍最终的解题思路和结果。
下面将介绍一些巧妙的添加辅助线的方法。
一、三角形问题:1.中点辅助线法:当我们面对一个三角形问题时,如果涉及到三角形的边的中点或高度等,可以尝试添加中点辅助线。
这样可以将原有的三角形拆分为更简单的几何图形,从而更好地解题。
例如:已知一个平行四边形,且四个交角都是90°,两边分别是5cm和4cm,求平行四边形的周长。
解题思路:我们可以先绘制平行四边形,然后添加一个对角线,将平行四边形划分为两个等腰三角形。
然后可以通过计算三角形的周长,再将结果相加,得到最后的答案。
2.相似三角形法:当我们面对一个问题涉及到相似三角形的情况时,可以通过添加相似三角形的辅助线来简化问题。
例如:已知一个直角三角形ABC,AB=9cm,AC=12cm,通过辅助线BD和BC=C切割出两个小直角三角形。
求BD的长度。
解题思路:我们可以通过已知条件绘制直角三角形ABC,然后添加一条辅助线BD,连接B和C。
由于BC=AB,所以三角形BCA和BAC是相似的。
因此,我们可以利用相似三角形之间的比例关系,设BD=x,则有x/9=12/9,解得x=16,所以BD的长度为16cm。
二、平行四边形问题:1.中心对角线辅助线法:当我们面对一个平行四边形问题时,可以通过添加中心对角线辅助线来简化问题。
例如:已知平行四边形ABCD的对角线AC与边AD垂直相交,且AC=4cm,AD=3cm,求平行四边形的面积。
解题思路:我们可以先绘制平行四边形ABCD,然后通过已知条件绘制对角线AC,并与边AD垂直相交,连接交点E。
由于AC与AD垂直相交,所以AE是AD的中线。
我们可以利用平行四边形的性质,使AE和AC之间的线段通过重合,就可以拆分出一个矩形和两个直角三角形。
然后可以通过计算矩形和直角三角形的面积,再将结果相加,得到最后的答案。
初中数学辅助线添加技巧:轴对称
初中数学辅助线添加技巧:轴对称方法总结1.图形的折叠是指某个图形或其部分沿某直线翻折,这条直线为对称轴.在近年来全国各地的中考题中,图形折叠问题渐渐成了考查的热点模型.思路:图形的折叠问题分为两类题型:一是考察图形折叠的不变性:只需抓住不变量,即对应边相等,对应角相等;二是考察图形折叠的折痕:只需抓住折痕垂直平分对应点所连的线段且平分对应边所成的夹角.2.轴对称变换是作点、线、图形关于某一直线的对称图形,从而使图形中隐藏条件凸显出来或将分散条件集中起来,从而达到解题目的.那么,我们在什么情况下应该想到用或作轴对称呢?以下给出几种常见考虑要用或作轴对称的基本图形.(1)线段或角度存在2倍关系时,可考虑对称;(2)有互余、互补关系的图形,可考虑对称;(3)角度和或差存在特殊角度的,可考虑对称;(4)路径最短问题,基本上运用轴对称,将分散的线段集中到两点之间,从而运用两点之间线段最短,来实现最短路径的求解.所以最短路径问题,需要考虑轴对称.几何最值问题的几种中考题型及解题作图方法如下所示.3.轴对称的基本模型(1)(2)(3)(4)典例精析例1.如图,在△ABC中,∠B=22.5°,边AB的垂直平分线交BC于点D,DF⊥AC于点F,交BC边上的高AE于点G,求证:EG=EC.GFED CBA证明:连接AD.21GFEDCBA∵点D 为AB 垂直平分线上一点, ∴DA DB =,∴22.5BAD B ∠=∠=︒, 又AE BC ⊥,∴45DAE ADE ∠=∠=︒, ∴DE AE =, ∵DF AC ⊥ ∴290C ∠+∠=︒, 又∵190C ∠+∠=︒, ∴12∠=∠, ∴AEC DEG △≌△, ∴EG GC =.点拨:本题用到了基本模型(4),线段的垂直平分线“模型”是典型的轴对称基本模型. 例2.(1)如图1,把矩形ABCD 沿EF 折叠,使点B 落在边AD 上的点B'处,点A 落在点A'处.若AE =a ,AB =b ,BF =c ,请写出a ,b ,c 之间的一个等量关系 .(2)如图2,Rt △ABC 中,∠ACB =90°,∠A =50°,,将其折叠,使点A 落在边CB 上A'处,折痕为CD ,则∠A'DB =( )A .40°B .30°C .20°D .10°(3)如图3,等边△ABC 的边长为1cm ,D 、E 分别是AB 、AC 边上的点,将△ADE 沿直线DE 折叠,点A 落在A'处,且点A'在△ABC 外部,则阴影部分图形的周长为 cm .(4)如图,正方形纸片ABCD 的边长为1,M 、N 分别是AD 、BC 边上的点,将纸片的一角沿过点B 的直线折叠,使A 落在MN 上,落点记为A ′,折痕交AD 于点E ,若M 、N 分别是AD 、BC 边的中点,则A ′N = ; 若M 、N 分别是AD 、BC 边的上距DC 最近的n 等分点(2n ≥,且n 为整数),则A ′N = (用含有n 的式子表示)图4图3图2图1N MABCDE ABCDEF ABCDA解(1)222c a b =+(提示B'E =BF =FB =c ) (2)D ;(3)3;(4(n ≥2,且n 为整数). 点拨:本例中几个题都是折叠问题,折叠与轴对称是密不可分的,对于折叠问题,我们的思路通常是确定对应边、对应角及折痕,折叠前后的图形全等,且折痕是对应点连线的垂直平分线,求线段长通常确定一个直角三角形或两个相似三角形,利用勾股定理和相似三角形的性质求解.例3.如图,将边长为8cm 的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,求折痕MN 的长度.NM A BCDEF解:方法一:过点M 作MHAD 交CD 于点H ,连接DE .H NM A BCD EF∵正方形ABCD ,MN 是折痕,∴,MN DE MH AD ⊥=, ∵E 是BC 中点, ∴4BE CE ==, 易证MHN DCE △≌△, ∴MN DE =,在Rt DCE △中,CD =8,EC =4,∴DE ==,∴MN =.方法二:延长NE 交AB 的延长线于点H ,由题意可知EN =DN ,CE =4.K HN M A B CDEF在Rt NEC △中,设DN =x , ∵222EN EC CN =+, ∴()22248x x =+- ∴5x =,∴5,3DN CN ==.易证,5,10NEC HEB HE NE HN ===△≌△, ∵ABCD ,∴DNM HMN ∠=∠. ∵DNM HNM ∠=∠, ∴HMN HNM ∠=∠. ∴10MH NH ==. 作NK AB ⊥于K ,∴3KB NC BH ===. ∴4MK =. ∵8KN =,∴MN ==点拨:本例是一道典型的考查折痕的问题,方法一应用了折痕垂直平分对应点所连线段,再用正方形中一个经典模型:并将MN 转化;方法运用了折痕平分对应边所成的夹角,和平行线一起构成等腰三角形.例4.在四边形ABCD 中,AB =30,AD =48,BC =14,CD =40,90ABD BDC ∠+∠=︒,求四边形ABCD 的面积.40144830A B CD解:作BD 的垂直平分线l ,以l 为对称轴,作ABD △关于l 的轴对称图形A'DB △.l A'40144830A B CD∴,30,48,ABD A'DB S S A'D AB A'B AD A'DB ABD =====∠=∠△△. ∴90A'DC A'DB BDC ABD BDC ∠=∠+∠=∠+∠=︒. ∴A'DC △是直角三角形.∴50A'C ,在A'BC △中,50,48,14A'C A'B AD BC ====. 而22222214481962304250050BC A'B A'C +=+=+===, ∴由勾股定理逆定理可知90A'BC =∠︒. ∴A'BC A'DC ABCD A'BCD S S S S ==+△△四边形四边形 1111481430403366009362222A'B BC A'D CD =+=⨯⨯+⨯⨯=+=. 点拨:题目给出两角互余,考虑直接将两角挪在一起,构成直角,进而得到特殊三角形,特殊图形具有特殊性质,便于我们做题.而此题我们利用轴对称达到这一目的.应用了基本模型(1),因此说互余、互补关系的图形与轴对称有着很奇妙的关系,也是轴对称的应用.例5.在四边形ABCD 中,连接AC ,BC =CD ,60BAC ACD ∠-∠=︒,求证:AD CD AB +≥.ABCD证明:以AC 所在直线为对称轴将ADC △翻折到AD'C △的位置,连接BD'.D'ABCD则,CD'CD BC ACD ACD'==∠=∠.∵60BCD'BAC ACD'BAC ACD ∠=∠-∠=∠-∠=︒, ∴D'BC △为等边三角形.∴AD CD AD'D'B AB +=+≥,等号成立时AC 平分BAD ∠.点拨:本题中出现角度差为特殊角60°,提示我们可以进行对称变换“构造”出60°角.例6.问题:已知△ABC 中,∠BAC =2∠ACB ,点D 是△ABC 内一点,且AD =CD ,BD =BA .探究∠DBC 与∠ABC 度数的比值.请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明. (1)当∠BAC =90°时,依问题中的条件补全右图. 观察图形,AB 与AC 的数量关系为________________;当推出∠DAC =15°时,可进一步推出∠DBC 的度数为_________; 可得到∠DBC 与∠ABC 度数的比值为_______________.(2)当∠BAC ≠90°时,请你画出图形,研究∠DBC 与∠ABC 度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明.ABC解:(1)图形补全如下图所示,ABCD①当∠BAC =90°时, ∵∠BAC =2∠ACB , ∴∠ACB =45°,在△ABC 中,∠ABC =180°-∠ACB -∠BAC =45°, ∴∠ACB =∠ABC , ∴AB =AC (等角对等边); ②当∠DAC =15°时, ∠DAB =90°-15°=75°,∵BD =BA ,∴∠BAD =∠BDA =75°, ∴∠DBA =180°-75°-75°=30°,∴∠DBC =45°-30°=15°,即∠DBC =15°, ∴∠DBC 的度数为15°; ③∵∠DBC =15°,∠ABC =45°, ∴∠DBC =15°:∠ABC =45°=1:3, ∴∠DBC 与∠ABC 度数的比值为1:3.(2)猜想:∠DBC 与∠ABC 度数的比值与(1)中结论相同.证明:如图,作∠KCA =∠BAC ,过B 点作BK ∥AC 交CK 于点K ,连接DK .654321l K ABCD E∴四边形ABKC 是等腰梯形, ∴CK =AB , ∵DC =DA , ∴∠DCA =∠DAC , ∵∠KCA =∠BAC , ∴∠KCD =∠3, ∴△KCD ≌△BAD , ∴∠2=∠4,KD =BD , ∴KD =BD =BA =KC . ∵BK ∥AC , ∴∠ACB =∠6,∵∠BAC =2∠ACB ,且∠KCA =∠BAC , ∴∠KCA =2∠ACB , ∴∠5=∠ACB ,∴∠5=∠6, ∴KC =KB , ∴KD =BD =KB , ∴∠KBD =60°,∵∠ACB =∠6=60°-∠1, ∴∠BAC =2∠ACB =120°-2∠1,∵∠1+(60°-∠1)+(120°-2∠1)+∠2=180°, ∴∠2=2∠1,∴∠DBC 与∠ABC 度数的比值为1:3.点拨:本题出现倍角关系,又有轴对称的基本模型(2)、(3),所以很容易想到用对称解决问题.本题的难点在于轴对称的选择.例7.(1)在正方形ABCD 中,M 是BC 的中点,2CM =,点P 是BD 上一动点,则PM PC +的最小值是 .(2)若将(1)中的正方形换成菱形且60ABC ∠=︒,其它条件不变,则PM PC +的最小值是 .(2)(1)M CDPAB PABCDM解:(1)2)点拨:求线段和最小时,可以利用对称性求解. 例8.阅读下列材料:问题:如图1,在四边形ABCD 中,M 是BC 边的中点,且90AMD ∠=︒,试判断AB +CD 与AD 之间的大小关系。
初中数学中考几何如何巧妙做辅助线大全
人教版北师大初中数学中考几何如何巧妙做辅助线大全人们从来就就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这就是解决问题常用的策略。
一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往就是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线就是个基本图形:当几何中出现平行线时添辅助线的关键就是添与二条平行线都相交的等第三条直线(2)等腰三角形就是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段就是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段就是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点就是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
万唯中考数学几何辅助线方法
万唯中考数学几何辅助线方法
万唯中考数学几何辅助线方法主要涉及以下几种:
1. 构造法:通过添加一些辅助线,将复杂的几何图形转化为简单的图形,便于分析和求解。
例如,在三角形中添加高线、中线、角平分线等。
2. 反证法:通过假设某个命题不成立,然后利用已知条件进行推理,得出矛盾的结论,从而证明原命题的正确性。
这种方法常用于证明一些难以直接证明的命题。
3. 代数法:通过将几何问题转化为代数问题,利用代数方法求解。
这种方法需要一定的代数基础,例如,利用方程组、不等式等求解。
4. 坐标法:通过建立坐标系,将几何问题转化为代数问题,利用代数方法求解。
这种方法需要一定的代数和解析几何基础,例如,利用函数、方程、向量等求解。
5. 面积法:通过利用面积关系证明或求解几何问题。
这种方法需要掌握一些基本的面积公式和性质,例如,三角形面积公式、平行四边形面积公式等。
以上是万唯中考数学几何辅助线方法的一些主要方法,具体应用要根据实际情况而定。
北京数学中考添加辅助线题型解题方法
北京数学中考添加辅助线题型解题方法
北京数学中考中,添加辅助线是一种常见的解题方法。
通过添加辅助线,可以将复杂的几何图形转化为更简单的图形,从而更容易找到解题思路。
以下是一些常见的添加辅助线的解题方法:
1. 连接两点:如果两个点与另一个点或线段有关联,可以考虑连接这两点,从而将问题转化为三角形或平行四边形的问题。
2. 作平行线:如果需要证明两条直线平行,可以考虑作一条与这两条直线都平行的线段,从而利用平行线的性质来证明。
3. 作垂线:如果需要证明一条直线与另一条直线垂直,可以考虑作一条与这两条直线都垂直的线段,从而利用垂直线的性质来证明。
4. 延长线段:如果需要证明一条线段的长度等于另一条线段的长度,可以考虑延长这条线段,从而利用全等三角形的性质来证明。
5. 构造中点:如果需要证明一条线段是另一条线段的一半,可以考虑构造一个中点,从而利用中点的性质来证明。
在添加辅助线时,需要注意以下几点:
1. 辅助线不是任意画的,需要符合题目的条件和要求。
2. 辅助线的作用是帮助解题,而不是增加难度。
因此,在添加辅助线时要考虑其作用和目的。
3. 在添加辅助线时,需要考虑其与已知条件和要求的关系,从而找到正确的解题思路。
总之,添加辅助线是解决几何问题的一种有效方法。
通过掌握常见的添加辅助线的解题方法,可以更好地解决几何问题。
中考数学添加辅助线讲解
中考数学添加辅助线讲解大家知道中考数学添加辅助线吗?下面我们就给大家详细介绍一下吧!我们积累了一些经验,在此拿出来与大家分享下,请大家互相指正。
一、添辅助线有二种情况:1. 按定义添辅助线:如证明二直线垂直可延长使它们相交后证交角为90 °;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2. 按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。
中考专题之与三角形有关的辅助线
第一节等腰三角形常用的辅助线例1、文文和彬彬在证明“有两个角相等的三角形是等腰三角形”这一命题时,画出图形,写出“已知”“求证”如图,她们对各自所作的辅助线描述如下:文文:“过点A作BC的中垂线AD,垂足为D”;彬彬:“作△ABC的角平分线AD”;数学老师看了两位同学的辅助线作法后,说:“彬彬的做法是正确的,而文文的做法需要订正;”1请你简要说明文文的辅助线作法错在哪里;2根据彬彬的辅助线作法,完成证明过程;例2、如图,已知AD∥BC,AB=AD+BC,E为DC的中点;求证:∠ABE=∠CBE;例3、已知:如图,在正方形ABCD中,E为AB的中点,在CD延长线上取一点F,使FE=FC,EF交AD于P;求证:AE=2DF;连接CE,取CE中点HFHE全等于FHC,FH垂直于CE角BEC=角ECFCE/EB=CF/CH=根号5CF=根号5CH=根号5CE/2=根号5根号5BE/2=BE5/2=AB5/4DF=CF-CD=AB/4=AB/21/2=AE1/2例4、已知:如图,在△ABC中,AB=AC,D点在AB上,E在AC延长线上,且BD=CE,连结DE交BC于点F;求证:DF=EF;DF=EF证明如下:过点D作平行于BC的直线交AC于点G因为AB=AC;DG//BC所以BD=CG又BD=CE,故CG=CE又因为CF//DG所以CF是三角形DEG的中位线所以F是DE的中点所以DF=EF综合演练:1、如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD、CD上的两个动点,且满足AE+CF=2;1求证:△BDE≌△BCF;2判断△BEF的形状,并说明理由;3设△BEF的面积为S,求S的取值范围;1AE+CF=2=CD=DF+CF∴AE=DFAB=BD∠A=∠BDF=60°∴△BDE全等于△BCF2由1得BE=BF且∠EBF=∠EBD+∠DBF=∠EBD+∠ABE=∠ABD=60°∴△BEF是等边三角形33√3/4<=S<=√3第二节直角三角形常用的辅助线例1、如图,在△ABC中,∠ACB=90°,AC=BC,AD是∠BAC的平分线,求证:AC+CD=AB;综合演练:Rt 斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处;则∠A等于1、如图,CD是ABCA、25°B、30°C、45°D、60°2、如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP;1在图1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;2将△EFP沿直线l向左平移到图2所示的位置时,EP交AC于点Q,连结AP、BQ;猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;3将△EFP沿直线l向左平移到图3所示的位置时,EP的延长线交AC的延长线于点Q,连结AP、BQ;你认为图2中所猜想的BQ与AP的数量关系和位置关系还成立吗若成立,给出证明;若不成立,请说明理由;3、如图,在锐角△ABC中,BE、CF是高,在BE、CF或其延长线上分别截取CP=AB,BQ=AC,分别过P、Q作PM第三节全等三角形的辅助线例1、已知:如图,在△ABC中,AD为BC边上的中线,E为AC边上一点,BE与AD交于F,若AE=EF;求证:AC=BF;例2、1已知:如图1在四边形ABCD中,BC>AB,AD=CD,BD平分∠ABC;求证:∠BAD+∠C=180°;2已知:如图2在△ABC中,BE是∠ABC的平分线,AD⊥BE,垂足为D;求证:∠BAD=∠DAC+∠C;例3、已知:如图,在△ABC中,AB=AC,∠BAC=80°,P为△ABC内一点,若∠PBC=10°,∠PCB=30°,求∠PAB 的度数;例4、已知:如图,BD是四边形ABCD的∠ABC的平分线,∠A+∠BCD=180°;求证:AD=DC;例5、已知:如图,在△ABC中,DE∥GF∥BC,且AD=GB;求证:AE=CF;例6、已知:如图,P为∠AOB平分线OP上一点,PC⊥OA于C,∠OAP+∠OBP=180°;求证:AO+BO=2OC; 例7、如图,在△ABC中,∠B=60°,AD、CE是△ABC的角平分线,且交于点O;求证:AC=AE+CD;综合演练:1、操作:如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°的角,角的两边分别交AB、AC边于M、N两点,连结MN;探究:线段BM、MN、NC之间的关系,并加以证明;说明:1如果你经历反复探究,没有找到解决问题上的方法,请你把探究过程中的某种思路写出来要求至少写3步;2在你经历说明1的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明;①AN=NC如图②;②DM∥AC如图③;附加题:若点M、N分别是射线AB、AC上的点,其他条件不变,再探索线段BM、MN、NC之间的关系,在图④中画出图形,丙说明理由;① ② ③ ④2、如图,两个全等的含30°,60°的三角形ADE 和ABC,E 、A 、C 在一条直线上,连结BD,取BD 的中点M,连结ME 、MC,试判断△EMC 的形状,并说明理由;3、如图①,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片如图②,量得他们的斜边长为10cm ,较小锐角为30°,再将这两张三角形纸片摆成如图③所示的形状,但点B 、C 、F 、D 在同一直线上,且点C 与点F 重合;在图③至图⑥中统一用F 表示;小明在对这两张三角形纸进行如下操作时遇到了三个问题,请你帮助解决;1将图③中的△ABF 沿BD 向右平移到图④的位置,使点B 与点F 重合,请你求出平移的距离;2将图③中的△ABF 绕点F 顺时针方向旋转30°到图⑤的位置,F A 1交DE 于点G,请你求出线段FG 的长度; 3将图③中的△ABF 沿直线AF 翻折到图⑥的位置,AB 交DE 于点H,请证明:AH=DH;① ② ③ ④ ⑤ ⑥4、已知:点O 到△ABC 的两边AB 、AC 所在直线的距离相等,且OB=OC;1如图1,若点O 在边BC 上,求证:AB=AC ;2如图2,若点O 在△ABC 的内部,求证:AB=AC ;3若点O 在△ABC 的外部,AB=AC 成立吗 请画图表示;1 25、请阅读下列材料:问题:如图1,在菱形ABCD 和菱形BEFG 中,点A,B,E 在同一条直线上,P 是线段DF 的中点,连结PG ,PC;若∠ABC=∠BEF=60°,探究PG 与PC 的位置关系及PC PG 的值; 小聪同学的思路是:延长GP 交DC 于点H,构造全等三角形,经过推理使问题得到解决;请你参考小聪同学的思路,探究并解决下列问题:1写出上面问题中线段PG 与PC 的位置关系及PCPG 的值; 2将图1中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,原问题中的其他条件不变如图2;你在1中得到的两个结论是否发生变化 写出你的猜想并加以证明;3若图1中∠ABC=∠BEF=)900(2 <<αα,将菱形BEFG 绕点B 顺时针旋转任意角度,原问题的其他条件不变,请你直接写出PCPG 的值;用含α的式子表示1 2第四节相似三角形中常用的辅助线例1、如图,△ABC中,点D、E在BC上,且BD=DE=EC,又AB上的中线CF分别交AD、AE于G、H, 求FG:GH:HC;例2、如图,□ABCD中,点E在AB上,AE=2BE;点F是BC的中点,连结EF交对角线BD于点G;求:BG:BD的值;例3、已知:如图,过△ABC的顶点C任作一条直线,与边AB及中线AD分别交于点F和E;求证:AE:ED=2AF:FB;例4、如图,△ABC中,AB=8,AC=6,点D在AB上,且AD=2;试在边AC上找一点E,使△ADE与原三角形△ABC 相似,求AE的长;例5、如图,△ABC 中,∠C=90°,AB=5,AC=4,点D 在AB 的延长线上,且BD=AB,动点P 在线段BC 上移动,作直线DP 交AC 于点E;设BP=x ,AE=y ;1求y 关于x 的函数解析式及定义域;2当PB 为何值时,直线DP 恰将△ABC 的面积平分例6、如图,在△ABC 中,AB=AC=5,BC=6,矩形DEFG 的顶点D 在AB 上,E 、F 在BC 上,G 在AC 上;1设BE=x ,y S DEFG 四边形,求y 与x 之间的函数关系式和自变量x 的取值范围;2连结EG,当x 取何值时,EG ∥AB 求此时矩形DEFG 的面积;例7、如图,在直角梯形ABCD 中,AD ∥BC,∠A=90°,BC=8,AB=12,AD=a ;试问:能否在边AB 上找到点P,使得△ADP 与△BCP 相似 并说明a 的取值对点P 的个数是否有影响,请加以说明;例8、如图,在△ABC 内有一点O,连结AO 、BO 、CO 并分别延长后与BC 、CA 、AB 相交于点D 、E 、F;求证:1=++CFOF BE OE AD OD ;综合演练:1、已知:如图,在△ABC 中,D 为AB 边上一点,∠A=36°,AC=BC,AD AB AC ⋅=2;1试说明:△ADC 和△BDC 都是等腰三角形;2若AB=1,求AC 的值;3试构造一个等腰梯形,该梯形连同它的两条对角线,得到了8个三角形,要求构造出的图形中有尽可能多的等腰三角形;标明各角的度数2、如图所示,一段街道的两边缘所在的直线分别为AB 、PQ,并且AB ∥PQ;建筑物的一端DE 所在的直线MN ⊥AB 于点M,交PQ 于点N;小亮从胜利街的A 处,沿着AB 方向前进,小明一直站在点P 的位置等候小亮; 1请你在图纸中画出小亮恰好看见小明时的视线,以及此时小亮所在位置用点C 标出2已知MN=20m ,MD=8m ,PN=24m ,求1中的点C 到胜利街口的距离CM;3、已知:如图1,在ABC Rt ∆中,∠C=90°,AC=4cm ,BC=3cm ,点P 由B 出发沿BA 向点A 匀速运动,速度为1cm ∕s ;点Q 由A 出发沿CA 方向向点C 匀速运动,速度为2cm ∕s ;连结PQ;若设运动的时间为)20)((<<t s t ,解答下列问题:1当t 为何值时,PQ ∥BC2说明理由;4如图2,连结PC,并把△PQC 沿QC 翻折,得到四边形C PQP ',那么是否存在某一时刻t ,使四边形C PQP '为菱形 若存在,求出此时菱形的边长;若不存在,说明理由;1 24、如图,四边形ABCD 为一梯形纸片,AB ∥CD,AD=BC,翻折纸片ABCD,使点A 与点C 重合,折痕为EF,已知CE ⊥AB;1求证:EF ∥BD;2若AB=7,CD=3;求线段EF 的长;5、如图,在ABC Rt 中,∠A=90°,AB=6,AC=8,D 、E 分别是边AB 、AC 的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ ⊥BC 于Q,过点Q 作QR ∥BA 交AC 于R,当点Q 与点C 重合时,点P 停止运动;设BQ=x ,QR=y ; 1求点D 到BC 的距离DH 的长;2求y 关于x 的函数关系式不要求写出自变量的取值范围;3是否存在点P,使△PQR 为等腰三角形 若存在,请求出所有满足要求的x 的值;若不存在,请说明理由;。
中考数学-全等三角形问题中常见的8种辅助线的作法
全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变D C BAED F CB A换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
初中数学辅助线添加技巧:旋转
初中数学辅助线添加技巧:旋转方法总结1.旋转是中考压轴题中常见题型,在解这类题目时,什么时候需要构造旋转,怎么构造旋转.下面,就不同类型的旋转问题,给出构造旋转图形的解题方法:遇中点,旋转180°,构造中心对称; 遇90°,旋90°,造垂直; 遇60°,旋60°,造等边; 遇等腰,旋等腰.综上四点得到旋转的本质特征:等线段,共顶点,就可以有旋转.2.图形旋转后我们需要证明旋转全等,而旋转全等中的难点实际上是倒角.下面给出旋转常用倒角,只要是旋转,必然存在这两个倒角之一.如图1,若AOB COD ∠=∠,必有AOC BOD ∠=∠,反之亦然. 如图2,若A D ∠=∠,必有B C ∠=∠.图2图1OABCDDCB AO倒角是在初中数学学习中常用的名词,其意思是通过角之间的等量关系,得到我们所需要的角度的关系的过程.典例精析例1.(1)如图1,边长为1的正方形ABCD ,绕点A 逆时针旋转30°到正方形AB'C'D',图中我们阴影部分的面积是( )A.1-BC.1 D .12(2)正方形ABCD 在坐标系中的位置如图2所示,将正方形ABCD 绕点D 顺时针旋转90°后,B 点的坐标为 .图2图1D'C'BA解:(1)A ;(2)(4,0).点拨:本例第2小问是在平面直角坐标系中考查旋转变换的作图,是数形结合的完美体现.首先要确定旋转中心是点D 而不是坐标原点O ,此处易出现错误,然后利用平面直角坐标系的特征确定正方形ABCD 绕点D 旋转90°后B'的位置,这类题型常见于正方形网格中的旋转作图.例2.如图,E 、F 分别是正方形ABCD 的边BC 、DC 上的点,且∠EAF =45°,求证:EF =BE +DF .FED CBA证明:延长CB 到点G ,使得BG =DF ,连接AG .GF ED CBA∵四边形ABCD 是正方形, ∴90,D ABG AB AD ∠=∠=︒=. ∴ADF ABG △≌△. ∴,AF AG DAF BAG =∠=∠. ∵45EAF ∠=︒, ∴45DAF BAE ∠+∠=︒.∴45DAG BAE ∠+∠=︒,即45EAG ∠=︒. ∵AE AE =, ∴AFE AGE △≌△.∴EF EG EB BG BE DF ==+=+.点拨:旋转图形可将分散的条件集中到一个图形中,从而可充分利用已知条件,找到有效的解题方法.这种方法在正方形、正三角形以及其它正多边形中都有着广泛的应用.本题是旋转一个经典模型(半角模型),其中结论较多.例3.如图,以ABC △的边AC 、AB 为一边,分别向三角形的外侧作正方形ACFG 和正方形ABDE ,连接EC 交AB 于点H ,连接BG 交CE 于点M ,求证:BG ⊥CE .MH GFEDCBA证明:∵四边ABDE 、ACFG 是正方形, ∴,,90AE AB AC AG EAB GAC ==∠=∠=︒. ∴EAB BAC GAC BAC ∠+∠=∠+∠. ∴EAC GAB ∠=∠. ∴EAC GAB =△△. ∴AEC ABG ∠=∠.∵90,AEC AHE AHE BHM ∠+∠=︒∠=∠, ∴90ABG BHM ∠+∠=︒. ∴90EMB ∠=︒. ∴BG CE ⊥.点拨:本题旋转的基本模型,充分体现了利用旋转全等解题,本题是以ABC △为基本,以其两边分别向外构造正方形,构成旋转全等(其中用到了8字倒角),和其类似的还可以构造正三角形以及正五边形.例4.如图,在等腰ABC △中,,AB AC ABC α=∠=,在四边形BDEC 中,DB =DE ,2BDE α∠=,M 为CE 的中点,连接AM 、DM .M EDCB A(1)在图中画出DEM △关于点M 成中心对称的图形; (2)求证:AM DM ⊥;(3)当α= 时,AM DM =. 解:(1)M FEDCB A(2)在(1)中连接AD 、AF .M FEDCB A由(1)中的中心对称可知,DEM FCM △≌△, ∴,,DE FC BD DM FM DEM FCM ===∠=∠, ∵2BDE α∠=,∴ABD ABC CBD ∠=∠+∠360BDE DEM BCE α=+︒-∠-∠-∠360DEM BCE α=︒--∠-∠.∵360360ACF ACE FCM BCE FCM α∠=︒-∠-∠=︒--∠-∠, ∴ABD ACF ∠=∠. ∵AB AC =, ∴ABD ACF =△△. ∴AD AF =. ∵DM FM =, ∴AM DM ⊥. (3)45α=︒.∵,,AB AC AD AF BAC DAF ==∠=∠, ∴ADF ABC α∠=∠=.若AM DM =,则ADM △为等腰直角三角形,即45ADM ∠=︒, ∴45α=︒点拨:本题中第(1)问已经作出了中心对称图形,所以利用中心对称证全等的思路很清晰.本题的难点是利用周角和四边形的内角和为的有关知识倒角.初中几何常用的倒角是平行线的三线八角、对顶角、等边对等角等.例5.已知:在△ABC 中,BC =a ,AC =b ,以AB 为边作等边三角形ABD . 探究下列问题: (1)如图1,当点D 与点C 位于直线AB 的两侧时,a =b =3,且∠ACB =60°,则CD = ;(2)如图2,当点D 与点C 位于直线AB 的同侧时,a =b =6,且∠ACB =90°,则CD = ;(3)如图3,当∠ACB 变化,且点D 与点C 位于直线AB 的两侧时,求 CD 的最大值及相应的∠ACB 的度数.D CBAA B CDABCD图1 图2 图3(1)(2)(3)以点D为中心,将△DBC逆时针旋转60°,则点B落在点A,点C落在点E.联结AE,CE,∴CD=ED,∠CDE=60°,AE=CB=a,∴△CDE为等边三角形,∴CE=CD.当点E、A、C不在一条直线上时,有CD=CE<AE+AC=a+b;当点E、A、C在一条直线上时,CD有最大值,CD=CE=a+b;此时∠CED=∠BCD=∠ECD=60°,∴∠ACB=120°,因此当∠ACB=120°时,CD有最大值是a+b.例6.已知∠MAN,AC平分∠MAN.(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)在图3中:①∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD= AC;②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD= AC(用含α的三角函数表示),并给出证明.ABCDMN AB CD M NN M 图3图2图1D CBA解:(1)=证明:∵AC 平分∠MAN ,∠MAN =120°, ∴∠CAB =∠CAD =60°, ∵∠ABC =∠ADC =90°, ∴∠ACB =∠ACD =30°, ∴12AB AD AC ==, ∴AB +AD =A C . (2)成立.证法一:如图,过点C 分别作AM ,AN 的垂线,垂足分别为E ,F ,ABCD M N F E∵AC 平分∠MAN , ∴CE =CF ,∵∠ABC +∠ADC =180°,∠ADC +∠CDE =180°, ∴∠CDE =∠ABC , ∵∠CED =∠CFB =90°, ∴△CED ≌△CFB , ∴ED =FB ,∴AB +AD =AF +BF +AE -ED =AF +AE ,由(1)知AF +AE =AC , ∴AB +AD =AC ,证法二:如图,在AN 上截取AG =AC ,连接CG ,AB CD M NG∵∠CAB =60°,AG =AC ,∴∠AGC =60°,CG =AC =AG , ∵∠ABC +∠ADC =180°,∠ABC +∠CBG =180°, ∴∠CBG =∠ADC , ∴△CBG ≌△CDA , ∴BG =AD ,∴AB +AD =AB +BG =AG =AC ;(3)①证明:由(2)知,ED =BF ,AE =AF ,ABC D M N FE在Rt △AFC 中,cos AFCAF AC∠=, 即cos2AFACα=, ∴cos2AF AC α=,∴AB +AD =AF +BF +AE -ED =AF +AE =2AF 2cos 2AC α=.把α=60°,代入得AB AD +=. ②2cos2α点拨:在第(2)小题中,由题意可知,60BCD ∠=︒,有60°角就可把有关图形旋转60°,所以我们作,CE AM CF AN ⊥⊥的实质,就是将CBF △以顶点C 为旋转中心顺时针旋转了60°,从而构造了全等三角形,使此题有了解题思路.例7.如图1,O 为正方形ABCD 的中心,分别延长OA 、OD 到点F 、E ,使OF =2OA ,OE =2OD ,连接EF .将△EOF 绕点O 逆时针旋转α角得到△E 1OF 1(如图2).(1)探究AE 1与BF 1的数量关系,并给予证明; (2)当α=30°时,求证:△AOE 1为直角三角形.AB CDE 1F 1O FE 图2图1O DC BA解:(1)AE 1=BF 1.证明:∵O 为正方形ABCD 的中心, ∴OA =OD ,∵OF =2OA ,OE =2OD , ∴OE =OF ,∵将△EOF 绕点O 逆时针旋转α角得到△E 1OF 1 ∴OE 1=OF 1,∵∠F 1OB =∠E 1OA ,OA =OB , ∴△E 1AO ≌△F 1BO , ∴AE 1=BF 1;(2)证明:取OE 1中点G ,连接AG ,ABCDE 1F 1O G∵∠AOD =90°,α=30°, ∴∠E 1OA =90°-α=60°, ∵OE 1=2OA , ∴OA =OG ,∴∠E 1OA =∠AGO =∠OAG =60°,∴AG =GE 1,∴∠GAE 1=∠GE 1A =30°, ∴∠E 1AO =90°,∴△AOE 1为直角三角形.例8.如图,等腰梯形ABCD 中,AD ∥BC ,AD =AB =CD =2,∠C =60°,M 是BC 的中点.D'C'MFE DCBA(1)求证:△MDC 是等边三角形;(2)将△MDC 绕点M 旋转,当MD (即MD')与AB 交于一点E ,MC 即MC')同时与AD 交于一点F 时,点E ,F 和点A 构成△AEF .试探究△AEF 的周长是否存在最小值.如果不存在,请说明理由;如果存在,请计算出△AEF 周长的最小值.解:(1)证明:过点D 作DP ⊥BC ,于点P ,过点A 作AQ ⊥BC 于点Q ,PQ D'C'M FE DCBA∵∠C =∠B =60°∴12CP BQ AB ==,CP +BQ =AB 又∵ADPQ 是矩形,AD =PQ ,故BC =2AD , 由已知,点M 是BC 的中点, BM =CM =AD =AB =CD ,即△MDC 中,CM =CD ,∠C =60°,故△MDC 是等边三角形. (2)解:△AEF 的周长存在最小值,理由如下:连接AM ,由(1)平行四边形ABMD 是菱形,△MAB ,△MAD 和△MC'D'是等边三角形,∠BMA =∠BME +∠AME =60°,∠EMF =∠AMF +∠AME =60°, ∴∠BME =∠AMF ).在△BME 与△AMF 中,BM =AM , ∠EBM =∠FAM =60°, ∴△BME ≌△AMF (ASA ).∴BE =AF , ME =MF ,AE +AF =AE +BE =AB ,∵∠EMF =∠DMC =60°,故△EMF 是等边三角形,EF =MF . ∵MF 的最小值为点M 到ADEFAEF 的周长=AE +AF +EF =AB +EF , △AEF的周长的最小值为2. 跟踪训练1.如图,在△ABC 中,AB =AC ,90BAC ∠=︒,点D 是BC 上的任意一点,探究:22BD CD +与2AD 的关系,并证明你的结论.CBA2.如图,P 是等边△ABC 内一点,若AP =3,PB =4,PC =5,求APB ∠的度数.PCBA3.如图1,在ABCD □中,AE BC ⊥于点E ,E 恰为BC 的中点,tan 2B =.(1)求证:AD AE =;(2)如图2,点P 在线段BE 上,作EF DP ⊥于点F ,连结AF .求证:DF EF -=;(3)请你在图3中画图探究:当P 为线段EC 上任意一点(P 不与点E 重合)时,作EF 垂直直线DP ,垂足为点F ,连结AF .线段DF 、EF 与AF 之间有怎样的数量关系?直接写出你的结论.图1EDCBA图2PF ABCDE图3ABCDE4.请阅读下列材料:已知:如图(1)在Rt △ABC 中,∠BAC =90°,AB =AC ,点D 、E 分别为线段BC 上两动点,若∠DAE =45°.探究线段BD 、DE 、EC 三条线段之间的数量关系.小明的思路是:把△AEC 绕点A 顺时针旋转90°,得到△ABE ′,连接E ′D ,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD 、DE 、EC 三条线段之间存在的数量关系式,直接写出你的猜想; (2)当动点E 在线段BC 上,动点D 运动在线段CB 延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC 中,点D 、E 在边AB 上,且∠DCE =30°,请你找出一个条件,使线段DE 、AD 、EB 能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.图3图2图1CE ADBCE AD BEDCBA5.请阅读下列材料:问题:如图1,在菱形ABCD 和菱形BEFG 中,点A B E ,,在同一条直线上,P 是线段DF 的中点,连结PG PC ,.若60ABC BEF ∠=∠=,探究PG 与PC 的位置关系及PGPC的值. 小聪同学的思路是:延长GP 交DC 于点H ,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题: (1)写出上面问题中线段PG 与PC 的位置关系及PGPC的值; (2)将图1中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.(3)若图1中2(090)ABC BEF αα∠=∠=<<,将菱形BEFG 绕点B 顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出PGPC的值(用含α的式子表示).6.在Rt △ABC 中,AB =BC ,在Rt △ADE 中,AD =DE ,连接EC ,取EC 的中点M ,连接DM 和BM .(1)若点D 在边AC 上,点E 在边AB 上且与点B 不重合,如图1,探索BM 、DM 的关系并给予证明;(2)如果将图1中的△ADE 绕点A 逆时针旋转小于45°的角,如图2,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.DCG PAB EF图2DAB EF CPG图1图2图1AEBMD CMEDB CA7.已知正方形ABCD 和等腰Rt △BEF ,EF =BE ,∠BEF =90°,按图1旋转,使点F 在BC 上,取DF 中点G ,连接EG 、CG .(1)探索EG 、CG 的关系,并说明理由;(2)将图1中△BEF 绕点B 顺时针旋转45°得图2,连接DF ,取DF 的中点G .问(1)中的结论是否成立?并说明理由.(3)将图1中△BEF 绕点B 转动任意度数(旋转角在0到90°之间)得图3,连接DF ,取DF 的中点G ,问(1)中的结论是否成立,请说明理由.图3BF DC GEABFDCGE AG F图2图1E DBCA中考前瞻将正方形ABCD 绕中心O 顺时针旋转角α得到正方形1111A B C D ,如图1所示. (1)当45α=︒时,如图2,若线段OA 与边11A D 的交点为E ,线段1OA 与AB 的交点为F ,可得下列结论成立①EOP FOP △≌△,②1PA PA =,试选择一个证明;(2)当090α︒<<︒时,第(1)小题的结论1PA PA =还成立吗?如果成立,请证明;如果不成立,请说明理由.(3)在旋转过程,记正方形1111A B C D 与AB 边交于P 、Q 两点,探究POQ ∠的度数是否发生变化?如果变化,请描述它与α之间的关系;如果不变,请直接写出POQ 的度数.PQ PD 1AA 1BB 1CC 1DD 1C 1B 1A 1F E F图2图1EDBCA。
中考数学常用辅助线添加方法
早在一千三百多年前,我国著名的数学家赵爽巧妙的借助面积,证明了勾股定 理,下图(左)就是赵爽证题时用到的图形,史称“弦图”;此图不仅构造巧妙美观, 而且还蕴含着不少“玄机”.
A FD
G
E
B HC
A
FD
OPGERQ
B HC
因为△AEF、△RFE、△DFG、△OGF、△BHE、△QEH、△PHG、△CGH都全等, 弦图
设计问题很多,包括计算,几何变换,拼图等.
典型例题
例1.(1)你能将长为5,宽为1的长方形纸片剪几刀,拼出一个正方形么?
(2)现有10个边长为1的正方形,排列形式如图,请把他们分割后拼接成一 个新的正方形.
(3)你能将一张长为6.5,宽为2的纸片分割成6块,再合并成一个正方形么?
你能用两个边长分别为a、b(ab)的正方形,分割后拼出一个面积最大的正方形么?请画出你的拼法.
△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋 转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q;
(1)如图①,当点Q在线段AC上,且APAQ时,求证:△BPE≌△CQE;
(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BPa,CQ9a,P、Q两点之间的距离(用含a的代数式表示).
③连接DE分别与边AB、AC交于点G、H(如图2).当x为何值时,BAD15?
此时,以DG、GH、HE这三条线段为边构成的三角形是什么特殊三角形,请 说明理由.
例2.如图,在△ABC中,已知ABAC5,BC6,且△ABC≌△DEF,将△DEF
与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿
或其延长线于E、F两点,如图①和图②是旋转三角板所得图形的两种情况.
2024海南中考数学二轮复习 微专题 遇到中点如何添加辅助线(课件)
7.如图,平行四边形 ABCD 的对角线交于点 O,且 AD>CD,过点 O 作 OM⊥AC,交 AD 于点 M.如果△CDM 的周长为 8,那么平行四边形 ABCD 的周长是 16 .
第 7 题图
8.如图,在 Rt△ABC 中,∠ACB=90°,∠BAC=30°,AD 平分∠BAC, E 为 AD 中点,EF⊥AD 交 AB 于点 F.若 CD=3,则 AF 的长为 6 .
4.如图,在△ABC 和△ACD 中,∠ABC=∠ADC=90°,M、N 分别是
边 AC、BD 的中点,若 AC=10,BD=8,则 MN 的长是( A )
A.3
B.4 5
C.2 5
D.2 7
第 AC=5,BC=6,点 M 为 BC 中点,MN⊥AC 12
【结论】AE=CE,DE=12 BC,△ADE∽△ABC.
1.如图,在 Rt△ABC 中,∠ABC=90°,BF 是 AC 边上的中线,DE
是△ABC 的中位线,若 DE=6,则 BF 的长为( A )
A.6
B.4
C.3
D.5
第 1 题图
2.如图,在 Rt△ABC 中,∠A=90°,AC=6,D 是 BC 边的中点,E 在 AB 边上,若∠DEB=30°,则 DE 长为 6 .
第 11 题图
于点 N,则 MN 的长是 5 .
第 5 题图
6.如图,△ABF 的面积是 2,D 是 AB 边上任意一点,E 是 CD 中点,F 是 BE 中点,则△ABC 的面积是 8 .
第 6 题图
方法三 构造垂直平分线 遇过中点的垂线,考虑用垂直平分线的性质 如图,在△ABC 中,点 D 是 BC 的中点,DE⊥BC 交 AC 于点 E.
中考数学几何添加辅助线法:找斜边上的中线(详解答案)
斜边上的中线一、斜边上中线解题思路定理:直角三角形斜边上的中线等于斜边的一半。
90°+中点需要想到斜边中线,以构造辅助线,尤其是当遇到两直角三角形共斜边时,那么这两个直角三角形的斜边中线必然是相等的。
二、典例精讲典例.如图所示,CDE ∆中,135CDE ∠=︒,CB DE ⊥于V ,EA CD ⊥于A ,求证:CE =.名师点拨:取CE 的中点F ,连接AF 、BF ,根据直角三角形斜边上的中线等于斜边的一半可得AF =EF =BF =CF ,根据三角形的内角和等于180°求出∠ACE +∠BEC =45°,然后求出∠AEC +∠BCE =135°,再根据等腰三角形两底角相等求出∠BFC +∠AFE =90°,然后求出∠AFB =90°,从而判断出△ABF 是等腰直角三角形,然后根据等腰直角三角形的直角边等于斜边的2可得AF =2AB ,然后证明即可. 满分解答:证明:如图,取CE 的中点F ,连接AF 、BF ,∵CB ⊥DE ,EA ⊥CD ,∴AF =EF =BF =CF =12CE , 在△CDE 中,∵∠CDE =135°,∴∠ACE +∠BEC =180°-135°=45°,∴∠AEC +∠BCE =(90°-∠ACE )+(90°-∠BEC )=180°-45°=135°,∴∠BFC +∠AFE =(180°-2∠BCE )+(180°-2∠AEC )=360°-2(∠AEC +∠BCE )=360°-2×135°=90°,∴∠AFB =180°-(∠BCF +∠AFE )=180°-90°=90°,∴△ABF 是等腰直角三角形,∴AF =2AB ,∴CE =2AF AB ,即CE . 名师点评: 本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形两底角相等的性质,三角形的内角和定理,等腰直角三角形的判定与性质,熟记各性质是解题的关键,作出图形更形象直观.变式题.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F . (1)若AB =2,AD =3,求EF 的长;(2)若G 是EF 的中点,连接BG 和DG ,求证:DG =BG .三、中考押题1.如图所示,在ABC ∆中,BD AC ⊥于D ,CE AB ⊥于E ,点M ,N 分别是BC ,DE 的中点,求证:MN DE ⊥.2.如图所示,ABC ∆中,90BAC ∠=︒,延长BA 到D ,使12AD AB =,点E 是AC 的中点,求证:2BC DE .。
中考数学复习之辅助线添加技巧举例
中考数学复习之辅助线添加技巧举例三角形中作辅助线的常用方法举例一、在利用三角形三边关系证明线段不等关系时,若直接证不出来,可连接两点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如:例1:已知如图1-1:D、E为△ABC内两点,求证:AB+AC>BD+DE+CE.证明:(法一)将DE两边延长分别交AB、AC 于M、N,在△AMN中,AM+AN > MD+DE+NE;(1)在△BDM中,MB+MD>BD;(2)在△CEN中,CN+NE>CE;(3)由(1)+(2)+(3)得:AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE∴AB+AC>BD+DE+EC(法二:)如图1-2,延长BD交 AC于F,延长CE交BF于G,在△ABF和△GFC和△GDE中有:AB+AF> BD+DG+GF?(三角形两边之和大于第三边)(1)GF +FC >GE +CE (同上)………………………………(2) DG +GE >DE (同上)……………………………………(3) 由(1)+(2)+(3)得:AB +AF +GF +FC +DG +GE >BD +DG +GF +GE +CE +DE∴AB +AC >BD +DE +EC 。
二、在利用三角形的外角大于任何和它不相邻的内角时如直接证不出来时,可连接两点或延长某边,构造三角形,使求证的大角在某个三角形的外角的位置上,小角处于这个三角形的内角位置上,再利用外角定理:例如:如图2-1:已知D 为△ABC 内的任一点,求证:∠BDC >∠BAC 。
分析:因为∠BDC 与∠BAC 不在同一个三角形中,没有直接的联系,可适当添加辅助线构造新的三角形,使∠BDC 处于在外角的位置,∠BAC 处于在内角的位置;证法一:延长BD 交AC 于点E ,这时∠BDC 是△EDC 的外角,∴∠BDC >∠DEC ,同理∠DEC >∠BAC ,∴∠BDC >∠BAC 证法二:连接AD ,并延长交BC 于F∵∠BDF 是△ABD 的外角∴∠BDF >∠BAD ,同理,∠CDF >∠CADABCD E F G12 图∴∠BDF +∠CDF >∠BAD +∠CAD 即:∠BDC >∠BAC 。
2023年九年级数学中考压轴复习专题几何综合——添加辅助线
1
(2)若弦MN垂直于AB,垂足为G, = ,MN= 3,求⊙O的半径;
4
(3)在(2)的条件下,当∠BAC=36°时,求线段CE的长
【详解】
(3) 作∠ABC的平分线BF交AC于F,连接AD
∵∠BNC=36°,AB=AC
∴∠ABC=∠ACB=72°
∵BF平分∠ABC
∴∠ABF=∠CBP=36°
∴∠BFC=72°即∠BAF=∠ABF、
∠BFC=∠ACB
∴BC=BF=AF
∵∠CBF=∠BAC,∠C=∠C
∴△CBF∽△CAB
∴BC²=CF·AC
设BC=x则AF=x
∴CF=2-x
∴x²=2(2-x)解得:x=± 5 − 1
∴BC= 5 − 1
∴AB是⊙O的直径
∴∠ADB=90°
∵AB=AC
1
∴CD=BD= BC
【分析】①由旋转性质证明△ABD∽△ACE即可判断;
②由①的结论可得,∠ABD=∠ACE,进而得到∠BOC=∠CAB=45°,即可判断∠COD;
③证明△ABD为等腰三角形即可判断;
④由题意直线BD、CE相交于点O,当AD⊥AC时,△AOC的面积最大,通过勾股定理计
算求出最大值,进而进行判断
试炼场:
从而得出∠ODE=90°,即可得证DE是CO的切线;
3
1
(2)连接OM,先求出MG= ,得出OG= OM,最后用勾股定理求解,即可得
2
2
出结论;
(3)作∠ABC的平分线交AC于F,判断出△BCF∽△ACB,得出比例式求成
BC= 5 − 1,连接AD,再求出CD=
例式求解,即可得出结论
5−1
,再判断出△DEC∽△ADC,得出比
12年中考数学复习(七):辅助线的添加 2
辅助线的添加【知识要点】平面几何是中学数学的一个重要组成部分,证明是平面几何的重要内容。
许多初中生对几何证明题感到困难,尤其是对需要添加辅助线的证明题,往往束手无策。
在这里我们介绍"添加辅助线"在平面几何中的运用。
一、三角形中常见辅助线的添加1. 与角平分线有关的ⅰ可向两边作垂线。
ⅱ可作平行线,构造等腰三角形。
ⅲ在角的两边截取相等的线段,构造全等三角形2. 与线段长度相关的ⅰ截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可ⅱ补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可ⅲ倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。
ⅳ遇到中点,考虑中位线或等腰等边中的三线合一。
3. 与等腰等边三角形相关的60ⅰ考虑三线合一。
ⅱ旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转二、四边形特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和四边形有关的问题时往往需要添加辅助线.下面介绍一些辅助线的添加方法.1、和平行四边形有关的辅助线作法平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形.ⅰ.利用一组对边平行且相等构造平行四边形。
ⅱ.利用两组对边平行构造平行四边形。
ⅲ.利用对角线互相平分构造平行四边形2、和菱形有关的辅助线的作法和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题.ⅰ. 作菱形的高;ⅱ.连结菱形的对角线.3、与矩形有辅助线作法和矩形有关的题型一般有两种:ⅰ. 计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题;ⅱ.证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少.4、与正方形有关辅助线的作法正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多.解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线.5、与梯形有关的辅助线的作法和梯形有关的辅助线的作法是较多的.主要涉及以下几种类型:(1)作一腰的平行线构造平行四边形和特殊三角形;(2)作梯形的高,构造矩形和直角三角形;(3)作一对角线的平行线,构造直角三角形和平行四边形;(4)延长两腰构成三角形;(5)作两腰的平行线等.初中几何常见辅助线口诀人说几何很困难,难点就在辅助线。
2024年中考数学总复习考点培优训练第四章专项2遇到角平分线如何添加辅助线
∴PH=PK.在△PHD和△PKE中,PHPHDPKPKE ,
DPH EPK
∴△PHD≌△PKE(ASA),∴PD=PE;
第4题解图①
专项2 遇到角平分线如何添加辅助线
(3)如图③,在(2)的基础上,若角尺旋转后恰好使得DP∥OB,
请判断线段OD与OE的数量关系,并说明理由.
(3)解:OE=2OD.
第4题图②
专项2 遇到角平分线如何添加辅助线
(2)解:小新的观点正确.
理由:如解图①,过点P作PH⊥OA于点H,PK⊥OB于点K.
∵∠PHO=∠PKO=90°,∠AOB=60°,∴∠HPK=120°,
∵∠DPE=∠HPK=120°,∴∠DPH=∠EPK.
∵OP平分∠AOB,PH⊥OA,PK⊥OB,
第4题解图②
∵∠AOB=60°,∠DPE=120°,
∴∠ODP=120°,∠PEO=60°,∴∠OTP=∠ODP=120°,
∴∠PTE=60°,∴∠TPE=∠PET=60°,∴TP=TE.
∵∠PTE=∠TOP+∠TPO,∠POT=30°,
∴∠TOP=∠TPO=30°,
∴OT=TP,∴OT=TE.
∵OT=OD,∴OE=2OD.
第1题图
第2题图
第3题图
专项2 遇到角平分线如何添加辅助线
4. 已知:∠AOB=60°.小新在学习了角平分线的知识后,做了一 个夹角为120°(即∠DPE=120°)的角尺来作∠AOB的平分线. (1)如图①,他先在边OA和OB上分别取OD=OE,再移动角尺使 PD=PE,然后他就说射线OP是∠AOB的平分线.试根据小新的 做法证明射线OP是∠AOB的平分线;
理由:如解图②,在OB上取一点T,使得OT=OD,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
个性化教案(内部资料,存档保存,不得外泄)
海豚教育个性化教案编号:教案正文:
辅助线的添加
【知识要点】
平面几何是中学数学的一个重要组成部分,证明是平面几何的重要内容。
许多初中生对几何证明题感到困难,尤其是对需要添加辅助线的证明题,往往束手无策。
在这里我们介绍"添加辅助线"在平面几何中的运用。
一、三角形中常见辅助线的添加
1. 与角平分线有关的
ⅰ可向两边作垂线。
ⅱ可作平行线,构造等腰三角形
ⅲ在角的两边截取相等的线段,构造全等三角形
2. 与线段长度相关的
ⅰ截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可
ⅱ补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可
ⅲ倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。
ⅳ遇到中点,考虑中位线或等腰等边中的三线合一。
3. 与等腰等边三角形相关的
ⅰ考虑三线合一
60
ⅱ旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转
二、四边形
特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和四边形有关的问题时往往需要添加辅助线.下面介绍一些辅助线的添加方法.
1、和平行四边形有关的辅助线作法
平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形.
ⅰ.利用一组对边平行且相等构造平行四边形
ⅱ.利用两组对边平行构造平行四边形
ⅲ.利用对角线互相平分构造平行四边形
2、和菱形有关的辅助线的作法
和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题. ⅰ. 作菱形的高;
ⅱ.连结菱形的对角线.
3、与矩形有辅助线作法
和矩形有关的题型一般有两种:
例2 如图,AB>AC, ∠1=∠2,求证:AB -AC>BD -CD 。
例3 如图9—5,设O 是正三角形ABC 内一点,已知∠AOB=115°,∠BOC=125°。
求以线段OA ,OB ,OC 为边构成的三角形的各角。
【举一反三】
1、如图,AB=6,AC=8,D 为BC 的中点,求AD 的取值范围。
2、如图,BC>BA ,BD 平分∠ABC ,且AD=CD ,求证:∠A+∠C=180。
考点2. 四边形:
例5 如图1,已知点O 是平行四边形ABCD 的对角线AC 的中点,四边形OCDE 是平行四边形. 求证:OE 与AD 互相平分.
例6 如图3,已知AD 是△ABC 的中线,BE 交AC 于E ,交AD 于F ,且AE=EF.求证BF=AC.
1 2
A C
D B 图9—5
B A
C
O B
D
C
A
A B
C
D
6 8
例7如图7,已知矩形ABCD内一点,PA=3,PB=4,PC=5.求 PD的长.
【举一反三】
1. 如图2,在△ABC中,E、F为AB上两点,AE=BF,ED//AC,FG//AC交BC分别为D,G.求证:ED+FG=AC.
2. 如图6,四边形ABCD是菱形,E为边AB上一个定点,F是AC上一个动点,求证EF+BF的最小值等于DE 长.
考点3. 圆:
cm cm,则试求例10 (2010江苏泰州,18,3分)如图⊙O的半径为1cm,弦AB、CD的长度分别为2,1弦AC、BD所夹的锐角 .
例11(2010年安徽芜湖市)如图所示,在圆⊙O内有折线OABC,其中OA=8,AB=12,
∠A =∠B =60°,试求BC 的长为.
例12.(2010山东临沂)如图,AB 是半圆的直径,O 为圆心,AD 、BD 是半圆的弦,且PDA PBD ∠=∠.
(1)判断直线PD 是否为O e 的切线,并说明理由;
(2)如果60BDE ∠=o
,3PD =,求PA 的长。
【举一反三】
1.已知:如图12,在Rt ABC △中,90C ∠=o
,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AC AB ,分别交于点D E ,,且CBD A ∠=∠.
(1)判断直线BD 与⊙O 的位置关系,并证明你的结论; (2)若2AD BD ==,求⊙O 的面积.
2.(天河一模)如图,在Rt △ABC 中,∠ACB =90°,AC =5,CB =12,AD 是△ABC 的角平分线,过A 、C 、D 三点的圆与斜边AB 交于点E ,连接DE 。
(1)求证:AC =AE ; (2)求△ACD 外接圆的半径。
综合
O E D C
B A 图12
A C
B D E
1.(2010年宁德市)(本题满分13分)如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不
含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM. ⑴ 求证:△AMB ≌△ENB ;
⑵ ①当M 点在何处时,AM +CM 的值最小;
②当M 点在何处时,AM +BM +CM 的值最小,并说明理由; ⑶ 当AM +BM +CM 的最小值为13 时,求正方形的边长.
2.(广雅一模)平面直角坐标系中有一张矩形纸片OABC ,O 为坐标原点,A 点坐标为(10,0),C 点坐标为(0,6),D 是BC 边上的动点(与点B 、C 不重合).如图②,将△COD 沿OD 翻折,得到△FOD ;再在AB 边上选取适当的点E ,将△BDE 沿DE 翻折,得到△GDE ,并使直线DG ,DF 重合.
(1)图①中,若△COD 翻折后点F 落在OA 边上,写出 D 、E 点坐标,并且 求出直线DE 的解析式.
(2)设(1)中所求直线DE 与x 轴交于点M ,请你猜想过点M 、C 且关于y 轴对称的抛物线与直线DE 的公共点的个数,在图①的图形中,通过计算验证你的猜想. (3)图②中,设E (10,b ),求b 的最小值.
E
A D
B C
N
M
图① 图②。