运筹学第三次上机作业之资源利用问题

合集下载

《运筹学教程》第三章习题答案

《运筹学教程》第三章习题答案

《运筹学教程》第三章习题答案1.影子价格是根据资源在生产中作出的贡献而做的估价。

它是一种边际价格,其值相当于在资源得到最有效利用的生产条件下,资源每变化一个单位时目标函数的增量变化。

又称效率价格。

影子价格是指社会处于某种最优状态下,能够反映社会劳动消耗、资源稀缺程度和最终产品需求状况的价格,是社会对货物真实价值的度量。

只有在完善的市场条件下才会出现,然而这种完善的市场条件是不存在的,因此现成的影子价格也是不存在的。

市场价格是物品和服务在市场上销售的实际价格,是由供求关系决定的。

2.证明:当原问题约束条件右端变为b i′时,原问题变为: maxz=∑C i X js.t. ∑a ij X i≤b i′(i=1,2,3,……,m)X j≥0 (j=1,2,3,……,n)对偶问题为: minp=∑b i′y is.t. ∑a ij y i≥C iy i≥0(i=1,2,3,……,m) (j=1,2,3,……,n) 设,当b i变为b i′原问题有最优解(X1′X2′X3′……X n-1′X n′)时,对偶问题的最优解为(y1′y2′y3′……y n-1′y n′),则有:又因为当原问题有最优解时,对偶问题也有最优解,且相等,则有:所以3(1).minp=6y1 + 2y2s.t. -y1+2y2≥-33y1+3y2≥4y1,y2≥0(2)解:令X2=X2′-X2〞,X4= X4′-X4〞,X2′,X2〞,X4′,X4〞≥0 ,原式化为:maxz=2X1 +2X2′-2X2〞-5X3 +2X4′-2X4〞s.t. 2X1 -X2′+X2〞+3X3 +3X4′-3X4〞≤-5-2X1 +X2′-X2〞-3X3 -3X4′+3X4〞≤5-6X1 -5X2′+5X2〞+X3 -5X4′+5X4〞≤-610X1 -9X2′+9X2〞+6X3 +4X4′-4X4〞≤12X1, X2′,X2〞,X3, X4′,X4〞≥0则对偶规划为:.minp= -5y1′+ 5y1〞-6y2 + 12y3s.t. 2y1′-2y1〞-6y2 + 10y3≥2-y1′+y1〞-5y2 -9y3≥2y1′-y1〞+5y2 + 9y3≥-23y1′-3y1〞+y2 + 6y3≥-53y1′-3y1〞-5y2 + 4y3≥2-3y1′+3y1〞+5y2 -4y3≥-2即:minp= -5y1′+ 5y1〞-6y2 + 12y3s.t. 2y1′-2y1〞-6y2 + 10y3≥2-y1′+y1〞-5y2 -9y3=23y1′-3y1〞+y2 + 6y3≥-53y1′-3y1〞+5y2 + 4y3=2令 y1〞- y1′= y1,得:minp= 5y1 -6y2 + 12y3s.t. -2y1-6y2 + 10y3≥2y1-5y2 -9y3=2-3y1+y2 + 6y3≥-5-3y1-5y2 + 4y3=24、试用对偶理论讨论下列原问题与他们的对偶问题是否有最优解。

运筹学上机作业答案

运筹学上机作业答案

人力资源分配问题第一题(1)安排如下:x1=8,x2=0,x3=1,x4=1,x5=0,x6=4,x7=0,x8=6,x9=0x10=0,x11=0。

(2)总额为320,一共需安排20个班次;因为在13:00—14:00,14:00—15:00,16:00—17:00,分别存在2,9,5个工时的剩余,(例如11:00—12:00)安排了8个员工而在14:00-15:00剩余了九个所以可以安排一些临时工工作3个小时的班次,使得总成本更小。

(3)在18:00—19:00安排6个人工作4小时;在11:00—12:00安排8个人,13:00—14:00安排1个人,15:00—16:00安排1个人,17:00—18:00安排4个人工作3小时。

总成本最低为264元。

生产计划优化问题第二题产品1在A1生产数量为1200单位,在A2上生产数量为230单位,在B1上不生产,B2上生产数量为858单位,B3上生产数量为571单位;产品2在A1上不生产,在A2上生产数量为500单位,在B1上生产数量为500单位;产品3在A2上生产数量为324单位,在B2上生产数量为324单位。

最大利润为2293.29元。

第三题设Xi为产品i最佳生产量。

(1)最优生产方案唯一,为X1=1000、X2=1000、X3=1000、X4=1000、X5=1000、X6=55625、X7=1000. (2)如上图所示,产品5的单价价格为0-30时,现行生产方案保持最优。

(3)由于环织机工的影子价格为300,且剩余变量值为零,而其他几种资源的影子价格为0,剩余变量均大于0,所以应优先增加环织工时这种资源的限额,能增加3.33工时,单位费用应低于其影子价格300才是合算的。

(4)因为产品2对偶价格= -3.2<0 ,950>933.33,3.2*(1000-950)=160;所以当产品2的最低销量从1000减少到950时,总利润增加160元。

运筹学第三版课后习题答案 (2)

运筹学第三版课后习题答案 (2)

运筹学第三版课后习题答案第一章:引论1.1 课后习题习题1a)运筹学是一门应用数学的学科,旨在解决实际问题中的决策和优化问题。

它包括数学模型的建立、问题求解方法的设计等方面。

b)运筹学可以应用于各个领域,如物流管理、生产计划、流程优化等。

它可以帮助组织提高效率、降低成本、优化资源分配等。

c)运筹学主要包括线性规划、整数规划、指派问题等方法。

习题2运筹学的应用可以帮助组织提高效率、降低成本、优化资源分配等。

它可以帮助制定最佳的生产计划,优化供应链管理,提高运输效率等。

运筹学方法的应用还可以帮助解决紧急情况下的应急调度问题,优化医疗资源分配等。

1.2 课后习题习题1运筹学方法可以应用于各个领域,如物流管理、生产计划、供应链管理、流程优化等。

在物流管理中,可以使用运筹学方法优化仓储和运输的布局,提高货物的运输效率。

在生产计划中,可以使用运筹学方法优化产品的生产数量和生产周期,降低生产成本。

在供应链管理中,可以使用运筹学方法优化订单配送和库存管理,提高供应链的效率。

在流程优化中,可以使用运筹学方法优化业务流程,提高整体效率。

习题2在物流管理中,可以使用运筹学方法优化车辆的调度和路线规划,以提高运输效率和降低成本。

在生产计划中,可以使用运筹学方法优化生产线的安排和产品的生产量,以降低生产成本和提高产能利用率。

在供应链管理中,可以使用运筹学方法优化供应链各个环节的协调和调度,以提高整体效率和减少库存成本。

在流程优化中,可以使用运筹学方法优化业务流程的排布和资源的分配,以提高流程效率和客户满意度。

第二章:线性规划基础2.1 课后习题习题1线性规划是一种数学优化方法,用于解决包含线性约束和线性目标函数的优化问题。

其一般形式为:max c^T*xs.t. Ax <= bx >= 0其中,c是目标函数的系数向量,x是决策变量向量,A是约束矩阵,b是约束向量。

习题2使用线性规划方法可以解决许多实际问题,如生产计划、供应链管理、资源分配等。

运筹学第3版熊伟编著习题答案

运筹学第3版熊伟编著习题答案

运筹学(第3版)习题答案第1章线性规划 P36第2章线性规划的对偶理论 P74 第3章整数规划 P88 第4章目标规划 P105第5章运输与指派问题P142 第6章网络模型 P173 第7章网络计划 P195 第8章动态规划 P218 第9章排队论 P248 第10章存储论P277 第11章决策论P304第12章 多属性决策品P343 第13章博弈论P371 全书420页第1章 线性规划1.1工厂每月生产A 、B 、C 三种产品 ,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-23所示.表1-23产品 资源 A B C 资源限量 材料(kg) 1.5 1.2 4 2500 设备(台时) 3 1.6 1.2 1400 利润(元/件)101412根据市场需求,预测三种产品最低月需求量分别是150、260和120,最高月需求是250、310和130.试建立该问题的数学模型,使每月利润最大.【解】设x 1、x 2、x 3分别为产品A 、B 、C 的产量,则数学模型为123123123123123max 1014121.5 1.2425003 1.6 1.21400150250260310120130,,0Z x x x x x x x x x x x x x x x =++++≤⎧⎪++≤⎪⎪≤≤⎪⎨≤≤⎪⎪≤≤⎪≥⎪⎩ 1.2建筑公司需要用5m 长的塑钢材料制作A 、B 两种型号的窗架.两种窗架所需材料规格及数量如表1-24所示:表1-24 窗架所需材料规格及数量型号A 型号B 每套窗架需要材料长度(m ) 数量(根)长度(m) 数量(根)A 1:2 2B 1:2.5 2 A 2:1.53 B 2:23需要量(套)300400问怎样下料使得(1)用料最少;(2)余料最少. 【解】 第一步:求下料方案,见下表。

方案 一 二 三 四 五 六 七 八 九 十 需要量 B1 2.5 2 1 1 1 0 0 0 0 0 0 800 B2 2 0 1 0 0 2 1 1 0 0 0 1200 A1 2 0 0 1 0 0 1 0 2 1 0 600 A21.5120 2 3 900 余料(m) 0 0.5 0.5 1 1 1 010.5第二步:建立线性规划数学模型设x j (j =1,2,…,10)为第j 种方案使用原材料的根数,则 (1)用料最少数学模型为10112342567368947910min 28002120026002239000,1,2,,10jj j Z x x x x x x x x x x x x x x x x x x j ==⎧+++≥⎪+++≥⎪⎪+++≥⎨⎪+++≥⎪⎪≥=⎩∑ (2)余料最少数学模型为2345681012342567368947910min 0.50.50.52800212002*********0,1,2,,10j Z x x x x x x x x x x x x x x x x x x x x x x x x j =++++++⎧+++≥⎪+++≥⎪⎪+++≥⎨⎪+++≥⎪⎪≥=⎩1.3某企业需要制定1~6月份产品A 的生产与销售计划。

运筹学上机实验指导书

运筹学上机实验指导书

运筹学上机实验指导书重庆交通大学管理学院目录绪论运筹学上机实验软件简介第一章运筹学上机实验指导§1.1 中小型线性规划模型的计算机求解§1.2 大型线性规划模型的编程计算机求解§1.3线性规划的灵敏度分析§1.4运输问题数学模型的计算机求解§1.5目标规划数学模型的计算机求解§1.6整数规划数学模型的计算机求解§1.7 指派问题的计算机求解§1.8最短路问题的计算机求解§1.9最大流问题的计算机求解第二章LINGO软件基础及应用§2.1 原始集(primitive set)和派生集(derived set)与集的定义§2.2 LINGO中的函数与目标函数和约束条件的表示§2.3 LINGO中的数据§2.4 LINDO简介第三章运筹学上机实验及要求实验一.中小型线性规划模型的求解与Lingo软件的初步使用实验二.中小型运输问题数学模型的Lingo软件求解。

实验三.大型线性规划模型的编程求解。

实验四.运输问题数学模型的Lingo编程求解。

实验五.分支定界法上机实验实验六.整数规划、0-1规划和指派问题的计算机求解实验七:最短路问题的计算机求解实验八:最大流问题的计算机求解实验九:运筹学综合实验绪论运筹学是研究资源最优规划和使用的数量化的管理科学,它是广泛利用现有的科学技术和计算机技术,特别是应用数学方法和数学模型,研究和解决生产、经营和经济管理活动中的各种优化决策问题。

运筹学通常是从实际问题出发,根据决策问题的特征,建立适当的数学模型,研究和分析模型的性质和特点,设计解决模型的方法或算法来解决实际问题,是一门应用性很强的科学技术。

运筹学的思想、内容和研究方法广泛应用于工程管理、工商企业管理、物流和供应链管理、交通运输规划与管理等各行各业,也是现代管理科学和经济学等许多学科研究的重要基础。

运筹学课程教学大纲

运筹学课程教学大纲

教学基本文件模板课程教学大纲:《运筹学》课程教学大纲课程编号:课程名称:运筹学/Operational Research课程总学时/学分:72/4 (其中理论60学时,实验12学时)适用专业:适用本科四年制信息管理与信息系统专业一、课程简介本课程的授课对象是信息管理与信息系统专业本科生,属管理类专业专业基础必修课。

《运筹学》是以定量分析为主来研究经济管理问题,将工程思想和管理思想相结合,应用系统的、科学的、数学分析的方法,通过建模、检验和求解数学模型获得最优决策方案。

本课程的主要内容包括线性规划、运输问题、整数规划、目标规划、动态规划、网络分析等与经济、管理和工程领域密切相关的运筹学分支的基本模型、方法和应用。

运用科学的模型化方法来描述、求解和分析问题,从而支持决策。

二、教学目的和任务本课程旨在使同学们正确、全面地掌握各级管理工作中已被广泛应用、发展比较成熟的最优化理论与方法,并能运用所学理论和方法解决管理工作中出现的各种优化问题,为后续课程奠定定量分析基础。

在已学过高等数学、微积分、线性代数等课程基础上学习本课程,通过教授、自学、复习、作业练习、辅导、上机等教学环节达到上述目的。

学习中要注意到学科系统性,数学概念和逻辑的严密性、准确性和完整性,但不偏重纯数学方法论证。

注重基本概念、基本思路、基本方法、算法步骤的掌握,了解各种方法特点和实用价值,提高建立模型、分析求解能力和技巧。

应注重实际应用中建立模型,选择可行求解的理论方法,运用计算机工具求解这三方面训练的有机结合。

三、教学基本要求信息管理与信息系统专业的学生应系统地学习《运筹学》的全部内容。

系统掌握线性规划、运输问题、目标规划、整数规划、动态规划、图与网络分析的理论和方法;能借助Excel、Lingo等电子计算手段,运用所学理论和方法解决实际问题。

通过该课程的学习,进一步培养学生的分析问题和解决问题的能力。

四、教学内容与学时分配绪论(2学时)第一节运筹学的定义与发展简史1、运筹学名称的来历;2、运筹学的发展简史。

运筹学上机实践报告

运筹学上机实践报告

运筹学实验报告姓名:学号:班级:采矿1103 教师:(一)实验目的(1)学会安装并使用Lingo软件(2)利用Lingo求解一般线性,运输,一般整数和分派问题(二)实验设备(1)计算机(2)Lingo软件(三)实验步骤(1)打开已经安装Lingo软件的计算机,进入Lingo(2)建立数学模型和Lingo语言(3)输入完Lingo语言后运行得出求解结果LINGO是用来求解线性和非线性规化问题的简易工具。

LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果。

当在windows 下开始运行LINGO系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。

在主窗口内的标题为LINGO Model–LINGO1的窗口是LINGO的默认模型窗口,建立的模型都都要在该窗口内编码实现。

下面是以一般线性,运输,一般整数和分派问题为例进行实验的具体操作步骤:A:一般线性规划问题数学模型(课本31页例11)求解线性规划:Minz=-3x1+x2+x3x1 - 2x2 + x3<=11-4x1 + x2 + 2x3>=3-2x1 + x3=1x1,x2,x3>=0打开lingo输入min=-3*x1+x2+x3;x1-2*x2+x3<=11;-4*x1+x2+2*x3>=3;-2*x1+x3=1;End如图所示:然后按工具条的按钮运行出现如下的界面,也即是运行的结果和所求的解:然后按工具条的按钮运行出现如下的界面,也即是运行的结果和所求的解:结果:由longo运行的结果界面可以得到该运输问题的最优运输方案为运6吨至B3;运2吨至B4,由A2运4吨至B1,运1吨至B4,由A3运吨7至B2,运4吨至B4,此时对应的的目标函数值为Z=6X4+2X11+4X2+1X9+7X5+4X6+122(元)到此lingo软件已经解决了运输问题。

运筹学应用范例与解法

运筹学应用范例与解法

运筹学应用范例与解法以运筹学应用范例与解法为题,我们将探讨一些实际问题,并介绍如何运用运筹学的方法来解决这些问题。

一、生产调度问题假设某工厂有多条生产线,每条生产线可以生产不同种类的产品。

每个产品的生产时间、成本和销售价格都不同。

我们需要确定每条生产线的生产计划,以最大化总利润。

解决方案:可以使用线性规划模型来解决这个问题。

首先,我们需要列出每条生产线的生产时间、成本和销售价格表。

然后,我们将每条生产线的生产计划表示为决策变量,并设置约束条件,如生产时间不能超过工作时间,每个产品的生产数量不能为负数等。

最后,我们通过求解线性规划模型,得到最佳的生产计划。

二、配送路线问题假设某物流公司需要将货物从若干个仓库送往多个客户,每个仓库和客户之间的距离和货物数量都不同。

我们需要确定最佳的配送路线,以最小化总运输成本。

解决方案:可以使用旅行商问题(TSP)模型来解决这个问题。

首先,我们需要计算每个仓库和客户之间的距离,并列出距离矩阵。

然后,我们将每个客户的配送路线表示为决策变量,并设置约束条件,如每个客户只能被访问一次,每个仓库的货物数量不能超过容量等。

最后,我们通过求解TSP模型,得到最佳的配送路线。

三、项目调度问题假设某公司有多个项目需要进行调度,每个项目都有不同的工期、资源需求和利润。

我们需要确定最佳的项目调度方案,以最大化总利润。

解决方案:可以使用动态规划模型来解决这个问题。

首先,我们需要列出每个项目的工期、资源需求和利润表。

然后,我们将每个项目的调度方案表示为决策变量,并设置约束条件,如资源不能超过容量,每个项目的工期不能延迟等。

最后,我们通过求解动态规划模型,得到最佳的项目调度方案。

四、库存管理问题假设某零售商需要决定每个产品的订货量,以满足客户需求并最小化库存成本。

每个产品的需求量、订货时间和库存成本都不同。

解决方案:可以使用库存模型来解决这个问题。

首先,我们需要列出每个产品的需求量、订货时间和库存成本表。

运筹学上机作业

运筹学上机作业

《运筹学》上机实验报告学院机电工程学院专业工业工程指导教师吴小东班级工业18- 班学生姓名学生学号实验时间 2019-2020学年第二学期实验一 使用LINGO 求解线性规划问题班级:工业18- 1班 姓名: 学号: 评阅成绩:已知如下线性规划模型:123max 303540z x x x =++1231231231233251823412229,,0x x x x x x x x x x x x ++≤⎧⎪++≤⎪⎨++≤⎪⎪≥⎩ 一、利用集的方法编写上述线性规划模型的LINGO 程序。

图1-1 LINGO 模型窗口截图图1-2 LINGO 运行状态窗口截图图1-3 LINGO结果报告窗口截图(一)图1-4 LINGO结果报告窗口截图(二)二、根据编写的程序,回答以下问题:1、哪些是原始集?原始集有var(j), const(i)2、哪个是派生集?该派生集是稠密集还是稀疏集?该派生集有多少个成员?派生集是A(i,j),是稠密集,有9个成员3、属性值“5”是属于成员(b1,x3)还是(b3,x1)的属性值?是属于(b1,x3)三、根据程序的运行结果,回答以下问题:1、全局最优值是否已经找到?该值是多少?找到,为1652、该模型求解一共迭代了多少次?迭代了两次3、在求解结果的界面中,Variable、Value、Reduced Cost、Row、Slack or Surplus 和Dual Price分别表示什么?“Variables”:变量数量“Value”:给出最优解中各变量的值“Reduced Cost”:列出最优单纯形表中判别数所对应变量的系数,表示当变量有微小变动时, 目标函数的变化率。

其中基变量的reduced cost值应为0,对于非基变量X j, 相应的reduced cost值表示当某个变量X j 增加一个单位时目标函数减少的量( max型问题)Row:表示行数“Slack or Surplus”:给出松驰变量或剩余变量的值“DUAL PRICE”:(对偶价格)表示当对应约束有微小变动时, 目标函数的变化率。

《运筹学教学资料》运筹学第3章第2节[]-精选文档57页

《运筹学教学资料》运筹学第3章第2节[]-精选文档57页

运筹学
表上作业法
第1步 求初始方案
运输问题是一种特殊的线性规划问题(大型稀疏矩阵的处 理),它的初始基的确定具有一定的难度。
运输问题的初始方案的确定主要有三种方法:
1.西北角法 2.最小元素法 3.伏格尔法
-4-
China University of Mining and Technology
运筹学
产地A3的产量3全供给销地B2,所以x34=0,将x32=3 填到调运方案表中第3行第2列上。
画去运输数据表中第3行,B2的销量剩余为8-3= 5。
得到新的产销平衡运输表。
-16-
China University of Mining and Technology
运筹学



A1

A2


A3

运筹学
3.2 表上作业法
-1-
China University of Mining and Technology
运筹学
表上作业法
表上作业法是一种求解运输问题的特殊方法,其 实质是单形法。
步骤
描述
第一步 求初始基行可行解(初始调运方案)
第二步 第三步
求检验数并判断是否得到最优解当非基变 量的检验数σij全都非负时得到最优解,若 存在检验数σij <0,说明还没有达到最优, 转第三步。
B1
B2
B3
B4 产量
A1
2
9
10
7
9
A2
1
3
4
2
5
A3
8
4
2
5
7
销量 3
8
4
6

运筹学第三版课后习题答案第7章网络计划——第十三章博弈论

运筹学第三版课后习题答案第7章网络计划——第十三章博弈论

第7章网络计划7.1(1)分别用节点法和箭线法绘制表7-16的项目网络图,并填写表中的紧前工序。

(2) 用箭线法绘制表7-17的项目网络图,并填写表中的紧后工序表7-16工序 A B C D E F G紧前工序--- A A、C -B、D、E、F紧后工序D,E G E G G G -表7-17工序 A B C D E F G H I J K L M 紧前工序- - - B B A,B B D,G C,E,F,H D,G C,E I J,K,L 紧后工序F E,D,F,G I,K H,J I,K I H,J I L M M M-【解】(1)节点图:箭线图:(2)节点图:箭线图:7.2根据项目工序明细表7-18:(1)画出网络图。

(2)计算工序的最早开始、最迟开始时间和总时差。

(3)找出关键路线和关键工序。

表7-18工序 A B C D E F G 紧前工序- A A B,C C D,E D,E 工序时间(周)9 6 12 19 6 7 8【解】(1)网络图(2)网络参数工序 A B C D E F G最早开始0 9 9 21 21 40 40最迟开始0 15 9 21 34 41 40总时差0 6 0 0 13 1 0(3)关键路线:①→②→③→④→⑤→⑥→⑦;关键工序:A、C、D、G;完工期:48周。

7.3表7-19给出了项目的工序明细表。

表7-19工序 A B C D E F G H I J K L M N 紧前工序- - - A,B B B,C E D,G E E H F,J I,K,L F,J,L 工序时间(天) 8 5 7 12 8 17 16 8 14 5 10 23 15 12 (1)绘制项目网络图。

(2)在网络图上求工序的最早开始、最迟开始时间。

(3)用表格表示工序的最早最迟开始和完成时间、总时差和自由时差。

(4)找出所有关键路线及对应的关键工序。

(5)求项目的完工期。

【解】(1)网络图(2)工序最早开始、最迟开始时间(3)用表格表示工序的最早最迟开始和完成时间、总时差和自由时差 工序 tT EST EFT LST LF 总时差S 自由时差F A 8 0 8 9 17 9 0 B 5 0 5 0 5 00 C 7 0 7 7 7 0 0 D 12 8 20 17 29 9 9 E 8 5 13 5 13 0 0 F 17 7 24 7 24 0 0 G 16 13 29 13 29 0 0 H 8 29 37 29 37 0 0 I 14 13 27 33 47 20 20 J 5 13 18 19 24 6 6 K 10 37 47 37 47 0 0 L 23 24 47 24 47 0 0 M154762 47 62 0 0 N 12 47 59506233(4)关键路线及对应的关键工序关键路线有两条,第一条:①→②→⑤→⑥→⑦→○11→○12;关键工序:B,E,G ,H,K,M 第二条:①→④→⑧→⑨→○11→○12;关键工序:C,F,L,M (5)项目的完工期为62天。

资源分配问题运筹学实验报告课案

资源分配问题运筹学实验报告课案

实验报告实验课程名称:资源分配问题实验地点:2016 年 5 月至 2016 年 6 月专业班级学生姓名学号指导老师实验报告实验项目:B15201301实验学时:4学时实验日期:2015年5月到6月实验要求:梳理资源分配问题的产生时间、背景,清楚资源分配问题的原理及方法,运用这个方法解决一个实际问题。

实验内容:资源分配问题1资源分配问题的产生1.1资源分配问题的产生时间由于资源分配问题的复杂性和明显的递阶结构特征,资源分配问题需要用两层模型来描述。

Cassidy等人首次建立了一类两层次多部门资源分配问题的两层规划模型。

该模人在型是按照正向主从策略、并假定下级各部门之间是相互独立的、平等的。

仲伟俊等[1]此基础上研究了下级之间具有合作关系的资源分配问题。

杜纲等人[1](1997)建立了资源分配问题的层次激励模型,张晋东等人[2](2002)基于主从结构的分析框架建立了资源分配问题的变权激励模型,提出了与之相应的变权激励策略。

这些模型反映了资源分配本身决策变量的层次性和相互之间的联系。

但对于本文所提到的系统复杂性的定量描述还需要进行进一步的研究,两层决策理论及有关算法就是描述这类问题重要而基本的工具。

基于以上背景,本文选择了资源分配问题的两层决策模型进行研究,以期使资源分配问题的研究更符合现实,具有一般性。

1.2资源分配问题的产生背景资源作为工程实施和生产活动等企业管理的基本要素,是企业所能控制的并能用以制定和实施战略或方案、以提高效率和效果的因素,资源获得数量的多少和资源的利用情况直接影响着企业的经济目标,因此,每一个生产企业或工程实体都希望能够获得更多的资源,以实现他们的目标。

然而,在实际工程建设和生产中,在一定的时间内,由于各方面的原因,所得到的资源总是有一定限度的,若不加考虑地使用资源,直接的后果是造成生产成本增加、工程费用提高等,在资源极其短缺的情况下,还会造成工程各部门或生产各单位忙乱争夺资源的现象,从而导致无法取得最佳经济目标,造成资源的浪费。

电力出版社运筹学答案 第六章

电力出版社运筹学答案 第六章
16.某商店在未来的4个月里,准备利用商店里一个仓库来专门经销某种商品,该仓库最多能装这种商品1000单位。假定商店每月只能卖出仓库现有的存货。当商店决定在某个月购货时,只有在该月的下个月初才能得到该货。据估计未来4个月这种商品买卖价格如右表所示。假定商店在1月开始经销时,仓库存储商品有500单位。试问:如何制订这4个月的订购与销售计划,使获得利润最大?(不考虑仓库的存储费用)
14.有三个最优方案:(3,2,2) 或(2,3,2)或(2,4,1)总收益是17千万元。
15.某公司在今后三年的每一年的年初将资金投入 和 两项工程,年末的回收及其概率如右表所示。每年至多做一项投资,每次只能投入1000万元。求三年后所拥有的期望金额最大的投资方案。
15.最优方案是每年均投资于 ,三年后的最大利润为440万元。
15.最优方案为(A,B2,C1,D1,E)或(A,B3,C1,D1,E)或(A,B3,C2,D2,E);总费用是11。
16.最短路线问题:从起点A到终点G分六个阶段,每个阶段各有若干条可选择的道路,每条道路的长度如图所示。试确定从A点到G点的最短路线。
16.A-B1-C2-D1-E2-F2-G总长度为18。
1个销售点,在第三个地区设置1个销售点。每月可获总利润为47。
12.某工厂购进100台机器,准备生产 两种产品。若生产产品 ,每台机器每年可收入45万元,损坏率为65%;若生产产品 ,每台机器每年收入为35万元,但损坏率只有35%;估计三年后将有新的机器出现,旧的机器将全部淘汰。试问每年应如何安排生产使在三年内收入最多?
8.计算如右图所示的从 到 的最短路线及其长度。
(1)用逆推解法;
(2)用标号法。
8.最短路线
,其路长为8。
9.某人在每年年底要决策明年的投资与积累的资金分配。设开始时,他可利用的资金数为 ,年利率为 ,在 年里若投资 所得到的效益用 来表示。试用逆推解法和顺推解法来建立该问题在 年里获得的最大效益的动态规划模型。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题目一:永久机械厂生产Ⅰ、Ⅱ、Ⅲ三种产品,均要经过A 、B 两道工序加工。

设有两种规格的设备A1、A2能完成 A 工序;有三种规格的设备B1、B2、B3能完成 B 工序。

Ⅰ可在A 、B 的任何规格的设备上加工;Ⅱ 可在任意规格的A 设备上加工,但对B 工序,只能在B1设备上加工;Ⅲ只能在A2与B2设备上加工。

数据如表。

问:为使该厂获得最大利润,应如何制定产品加工方案?
解:设设备A 1生产I 产品1x 件,产品II 生产2x 件,设备A 2生产产品I,3x 件,产品IIx 4件,
产品IIIx 5件,设备B 1生产Ix 6件,IIx 7件,设备B 2生产Ix 8件,IIIx 9件,设备B 3生产Ix 10件。

由题意可得:
Max Z=0.751x +1.152x +0.77533x +1.3611 x 4
+1.9148 x 5-0.375 x 6-0.5 x
7
-0.447429
x 8-1.230429 x 9-0.35 x 10
ST.⎪⎪

⎪⎪



⎪⎪⎪⎨⎧
9574210863110987654320040007700011440008610000
12976000105x x x x x x x x x x x x x x x x x x x x ==-+=---+≤≤+≤+≤++≤+
经运算可得:
**********************最优解如下*************************
目标函数最优值为: 1146.41367867589
变量最优解
------- --------
x1 1200
x2 0
x3 230
x4 500
x5 324
x6 0
x7 500
x8 859
x9 324
x10 571
约束松弛/剩余
------- ---------
1 0
2 2
3 0
4 0
5 3
6 0
7 0
8 0
故设备A
1生产I产品1200件,产品II生产零件;设备A
2
生产产品I,230件,产品II500件,
产品III324件;设备B
1生产I零件,II500件;设备B
2
生产I859件,III324件;设备B
3

产I571件时,厂商可以获得最大利润1147元。

相关文档
最新文档