高中文科数学立体几何知识点(大题)

合集下载

高中立体几何知识点及经典题型

高中立体几何知识点及经典题型

高中立体几何知识点及经典题型立体几何是高中数学中的重要部分,它研究了在三维空间内的几何形体。

本文将介绍高中立体几何的主要知识点和经典题型。

知识点以下是高中立体几何的主要知识点:1. 空间几何基础:点、线、面的概念及性质。

2. 参数方程和一般式方程:用参数或方程表示几何体的方法。

3. 立体图形的投影:点、直线、平面在投影中的表现形式。

4. 空间几何中的平行与垂直:直线、平面之间的平行关系及垂直关系。

5. 直线与面的位置关系:直线与平面之间的交点、垂线、倾斜角等概念。

6. 空间角的性质:二面角、棱锥、棱台等形体的角度关系。

7. 空间几何中的直线及曲线:空间中直线与曲线的方程及性质。

8. 空间立体角:球、球台、球扇等形体的角度关系。

9. 空间的切线:曲线在空间中的切线方程及其性质。

10. 空间的幂:圆、球及其他形体的幂的概念和性质。

经典题型以下是高中立体几何的经典题型:1. 求直线与平面的位置关系问题:例如,给定一直线和一个平面,求它们之间的交点、垂直线、倾斜角等。

2. 求空间角的问题:例如,给定两个平面的交线,求二面角的度数。

3. 求直线与曲线的位置关系问题:例如,给定一条直线和一个曲面,求它们之间的位置关系。

4. 求切线和法平面的问题:例如,给定一个曲线和一个点,求曲线在该点处的切线方程及法平面方程。

5. 求空间形体的幂问题:例如,给定一个球和一个平面,求平面关于球的幂及其性质。

以上只是一些经典的立体几何题型,通过解答这些题目,可以加深对立体几何知识的理解和运用。

希望本文对高中立体几何知识点和题型的介绍能够帮助到你。

祝你在学习立体几何时取得好成绩!。

高中数学立体几何重要知识点(经典)

高中数学立体几何重要知识点(经典)

高中数学立体几何重要知识点(经典)立体几何知识点1、柱、锥、台、球的结构特征1)棱柱:有两个对应边平行的全等多边形作为底面,侧面和对角面都是平行四边形,侧棱平行且相等,平行于底面的截面是与底面全等的多边形。

2)棱锥:侧面和对角面都是三角形,平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

3)棱台:上下底面是相似的平行多边形,侧面是梯形,侧棱交于原棱锥的顶点。

4)圆柱:以矩形的一边所在的直线为轴旋转,其余三边旋转所成,底面是全等的圆,母线与轴平行,轴与底面圆的半径垂直,侧面展开图是一个矩形。

5)圆锥:以直角三角形的一条直角边为旋转轴,旋转一周所成,底面是一个圆,母线交于圆锥的顶点,侧面展开图是一个扇形。

6)圆台:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成,上下底面是两个圆,侧面母线交于原圆锥的顶点,侧面展开图是一个弓形。

7)球体:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体,球的截面是圆,球面上任意一点到球心的距离等于半径。

2、柱体、锥体、台体的表面积与体积1)几何体的表面积为几何体各个面的面积的和。

2)特殊几何体表面积公式(c为底面周长,h为高,h为斜高,l为母线):直棱柱侧面积=chS,圆柱侧面积=2πrhS,正棱锥侧面积=1/2ch'S,圆锥侧面积=πrl2,正棱台侧面积=1/2(c1+c2)h'S,圆台侧面积=(r+R)πl,圆锥表面积=πr(r+l)S,圆台表面积=πr2+rl+Rl+R2S,圆柱表面积=2πr(r+l)。

3)柱体、锥体、台体的体积公式:直棱柱体积=ShV,圆柱体积=Sh=πr2hV,直棱锥体积=1/3ShV,圆锥体积=1/3πr2h,直棱台体积=(S+SS+S)h=π(r2+rR+R2)hV,圆台体积=1/3S(R2+rR+r2)hV。

4)球体的表面积和体积公式:球体体积=4/3πR3,球面积=4πR2.3、平面及基本性质公理1:如果点A在直线l上,点B也在直线l上,点A 在平面α上,点B也在平面α上,则直线l在平面α上。

高考数学立体几何专项知识点精选全文完整版

高考数学立体几何专项知识点精选全文完整版

可编辑修改精选全文完整版高考数学立体几何专项知识点高中数学平面几何不时是数学的一大难点,下面是小编整理的数学平面几何专项知识点,对提高数学效果会有很大的协助。

(1)空间几何体① 看法柱、锥、台、球及其复杂组合体的结构特征.② 能画出复杂空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的平面模型,会用斜二侧法画出它们的直观图.③ 了解球、棱柱、棱锥、台的外表积和体积的计算公式(不要求记忆公式).(2)点、直线、平面之间的位置关系① 了解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.◆公理1:假设一条直线上的两点在一个平面内,那么这条直线上一切的点在此平面内.◆公理2:过不在同一条直线上的三点,有且只要一个平面.◆公理3:假设两个不重合的平面有一个公共点,那么它们有且只要一条过该点的公共直线.◆公理4:平行于同一条直线的两条直线相互平行◆定理:空间中假设一个角的两边与另一个角的两边区分平行,那么这两个角相等或互补.② 以平面几何的上述定义、公理和定理为动身点,看法和了解空间中线面平行、垂直的有关性质与判定.了解以下判定定理:◆假设平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.◆假设一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.◆假设一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.◆假设一个平面经过另一个平面的垂线,那么这两个平面相互垂直.了解以下性质定理,并可以证明:◆假设一条直线与一个平面平行,经过该直线的任一个平面与此平面相交,那么这条直线就和交线平行.◆假设两个平行平面同时和第三个平面相交,那么它们的交线相互平行◆垂直于同一个平面的两条直线平行◆假设两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.③ 能运用公理、定理和已取得的结论证明一些空间位置关系的复杂命题.温习关注:平面几何试题着重考察空间点、线、面的位置关系的判别及几何体的外表积与体积的计算,关注画图、识图、用图的才干,关注对平行、垂直的探求,关注对条件或结论不完备情形下的开放性效果的探求小编为大家提供的2021-2021高考数学平面几何专项知识点大家细心阅读了吗?最后祝考生们学习提高。

高中文科立体几何基础知识点

高中文科立体几何基础知识点

高中《立体几何》(文科数学知识要点)一.直线和平面的三种位置关系:1. 线面平行l符号表示:2. 线面相交符号表示:3. 线在面内符号表示:二.平行关系:1.线线平行:方法一:用线面平行实现。

mlmll////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα方法二:用面面平行实现。

mlml////⇒⎪⎭⎪⎬⎫=⋂=⋂βγαγβα方法三:用线面垂直实现。

若αα⊥⊥ml,,则ml//。

方法四:用向量方法:若向量和向量共线且l、m不重合,则ml//。

2.线面平行:方法一:用线线平行实现。

ααα////llmml⇒⎪⎭⎪⎬⎫⊄⊂方法二:用面面平行实现。

αββα////ll⇒⎭⎬⎫⊂方法三:用平面法向量实现。

若n为平面α的一个法向量,ln⊥且α⊄l,则α//l。

3.面面平行:方法一:用线线平行实现。

βααβ//',','//'//⇒⎪⎪⎭⎪⎪⎬⎫⊂⊂且相交且相交mlmlmmll方法二:用线面平行实现。

βαβαα//,////⇒⎪⎭⎪⎬⎫⊂且相交mlml三.垂直关系:1. 线面垂直:方法一:用线线垂直实现。

αα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂=⋂⊥⊥lABACAABACABlACl,mlα方法二:用面面垂直实现。

αββαβα⊥⇒⎪⎭⎪⎬⎫⊂⊥=⋂⊥l l m l m ,2. 面面垂直:方法一:用线面垂直实现。

βαβα⊥⇒⎭⎬⎫⊂⊥l l方法二:计算所成二面角为直角。

3. 线线垂直:方法一:用线面垂直实现。

m l m l ⊥⇒⎭⎬⎫⊂⊥αα方法二:三垂线定理及其逆定理。

PO l OA l PA l αα⊥⎫⎪⊥⇒⊥⎬⎪⊂⎭三.夹角问题。

(一) 异面直线所成的角: (1) 范围:]90,0(︒︒ (2)求法:定义法。

步骤1:平移,使它们相交,找到夹角。

步骤2:解三角形求出角。

(常用到余弦定理) 余弦定理:abcb a 2cos 222-+=θ(计算结果可能是其补角) (二) 线面角(1)定义:直线l 上任取一点P (交点除外),作PO ⊥α于O,连结AO ,则AO 为斜线PA 在面α内的射影,PAO ∠(图中θ)为直线l 与面α所成的角。

专题12:文科立体几何高考真题大题(全国卷)赏析(解析版)

专题12:文科立体几何高考真题大题(全国卷)赏析(解析版)

专题12:文科立体几何高考真题大题(全国卷)赏析(解析版) 题型一:求体积1,2018年全国卷Ⅲ文数高考试题如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.【答案】(1)证明见解析 (2)存在,理由见解析 【详解】分析:(1)先证AD CM ⊥,再证CM MD ⊥,进而完成证明. (2)判断出P 为AM 中点,,证明MC ∥OP ,然后进行证明即可. 详解:(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM . 因为M 为CD 上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连结AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点. 连结OP ,因为P 为AM 中点,所以MC ∥OP .MC ⊄平面PBD ,OP ⊂平面PBD ,所以MC ∥平面PBD .点睛:本题主要考查面面垂直的证明,利用线线垂直得到线面垂直,再得到面面垂直,第二问先断出P 为AM 中点,然后作辅助线,由线线平行得到线面平行,考查学生空间想象能力,属于中档题.2,2018年全国普通高等学校招生统一考试文科数学(新课标I 卷)如图,在平行四边形ABCM 中,3AB AC ==,90ACM ∠=︒,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.【答案】(1)见解析. (2)1. 【解析】分析:(1)首先根据题的条件,可以得到BAC ∠=90,即BA AC ⊥,再结合已知条件BA ⊥AD ,利用线面垂直的判定定理证得AB ⊥平面ACD ,又因为AB ⊂平面ABC ,根据面面垂直的判定定理,证得平面ACD ⊥平面ABC ;(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积. 详解:(1)由已知可得,BAC ∠=90°,BA AC ⊥.又BA ⊥AD ,且AC AD A =,所以AB ⊥平面ACD .又AB ⊂平面ABC ,所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =32.又23BP DQ DA ==,所以22BP =. 作QE ⊥AC ,垂足为E ,则QE = 13DC .由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q ABP -的体积为1111322sin451332Q ABP ABPV QE S-=⨯⨯=⨯⨯⨯⨯︒=. 点睛:该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的判定以及三棱锥的体积的求解,在解题的过程中,需要清楚题中的有关垂直的直线的位置,结合线面垂直的判定定理证得线面垂直,之后应用面面垂直的判定定理证得面面垂直,需要明确线线垂直、线面垂直和面面垂直的关系,在求三棱锥的体积的时候,注意应用体积公式求解即可. 3.2019年全国统一高考数学试卷(文科)(新课标Ⅱ)如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积. 【答案】(1)见详解;(2)18 【分析】(1)先由长方体得,11B C ⊥平面11AA B B ,得到11B C BE ⊥,再由1BE EC ⊥,根据线面垂直的判定定理,即可证明结论成立;(2)先设长方体侧棱长为2a ,根据题中条件求出3a =;再取1BB 中点F ,连结EF ,证明EF ⊥平面11BB C C ,根据四棱锥的体积公式,即可求出结果. 【详解】(1)因为在长方体1111ABCD A B C D -中,11B C ⊥平面11AA B B ;BE ⊂平面11AA B B ,所以11B C BE ⊥,又1BE EC ⊥,1111B C EC C ⋂=,且1EC ⊂平面11EB C ,11B C ⊂平面11EB C ,所以BE ⊥平面11EB C ;(2)设长方体侧棱长为2a ,则1AE A E a ==,由(1)可得1EB BE ⊥;所以22211EB BE BB +=,即2212BE BB =, 又3AB =,所以222122AE AB BB +=,即222184a a +=,解得3a =;取1BB 中点F ,连结EF ,因为1AE A E =,则EF AB ∥; 所以EF ⊥平面11BB C C , 所以四棱锥11E BB C C -的体积为1111111136318333E BB C C BB C C V S EF BC BB EF -=⋅=⋅⋅⋅=⨯⨯⨯=矩形.【点睛】本题主要考查线面垂直的判定,依据四棱锥的体积,熟记线面垂直的判定定理,以及四棱锥的体积公式即可,属于基础题型.4.2017年全国普通高等学校招生统一考试文科数学(新课标2卷) 四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,01,90.2AB BC AD BAD ABC ==∠=∠= (1)证明:直线//BC 平面PAD ;(2)若△PCD 面积为27,求四棱锥P ABCD -的体积.【答案】(Ⅰ)见解析(Ⅱ)43【分析】试题分析:证明线面平有两种思路,一是寻求线线平行,二是寻求面面平行;取AD 中点M ,由于平面PAD 为等边三角形,则PM AD ⊥,利用面面垂直的性质定理可推出PM ⊥底面ABCD ,设BC x =,表示相关的长度,利用PCD ∆的面积为27.试题解析:(1)在平面内,因为,所以又平面平面故平面(2)取的中点,连接由及得四边形为正方形,则.因为侧面为等边三角形且垂直于底面,平面平面,所以底面因为底面,所以,设,则,取的中点,连接,则,所以,因为的面积为,所以,解得(舍去),于是所以四棱锥的体积【详解】题型二:求距离5.2018年全国普通高等学校招生统一考试文数(全国卷II )如图,在三棱锥P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.【答案】(1)详见解析(245【解析】分析:(1)连接OB ,欲证PO ⊥平面ABC ,只需证明,PO AC PO OB ⊥⊥即可;(2)过点C 作CH OM ⊥,垂足为M ,只需论证CH 的长即为所求,再利用平面几何知识求解即可.详解:(1)因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =3 连结OB .因为AB =BC 2AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由222OP OB PB +=知,OP ⊥OB . 由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC=12AC=2,CM=23BC=423,∠ACB=45°.所以OM=25,CH=sinOC MC ACBOM⋅⋅∠=45.所以点C到平面POM的距离为45.点睛:立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明;本题第二问可以通过作出点到平面的距离线段求解,也可利用等体积法解决.6.2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)如图,三棱柱中,侧面为菱形,的中点为,且平面.(1)证明:(2)若,求三棱柱的高.【答案】(1)详见解析;(2)三棱柱111ABC A B C -的高为21. 【解析】试题分析:(1)根据题意欲证明线线垂直通常可转化为证明线面垂直,又由题中四边形是菱形,故可想到连结1BC ,则O 为1B C 与1BC 的交点,又因为侧面11BB C C 为菱形,对角线相互垂直11B C BC ⊥;又AO ⊥平面11BB C C ,所以1B C AO ⊥,根据线面垂直的判定定理可得:1B C ⊥平面ABO ,结合线面垂直的性质:由于AB ⊂平面ABO ,故1B C AB ⊥;(2)要求三菱柱的高,根据题中已知条件可转化为先求点O 到平面ABC 的距离,即:作OD BC ⊥,垂足为D ,连结AD ,作OH AD ⊥,垂足为H ,则由线面垂直的判定定理可得OH ⊥平面ABC ,再根据三角形面积相等:OH AD OD OA ⋅=⋅,可求出OH 的长度,最后由三棱柱111ABC A B C -的高为此距离的两倍即可确定出高. 试题解析:(1)连结1BC ,则O 为1B C 与1BC 的交点. 因为侧面11BB C C 为菱形,所以11B C BC ⊥. 又AO ⊥平面11BB C C ,所以1B C AO ⊥, 故1B C ⊥平面ABO.由于AB ⊂平面ABO ,故1B C AB ⊥.(2)作OD BC ⊥,垂足为D ,连结AD ,作OH AD ⊥,垂足为H. 由于,BC OD ⊥,故BC ⊥平面AOD ,所以OH BC ⊥, 又OH AD ⊥,所以OH ⊥平面ABC.因为0160CBB ∠=,所以1CBB ∆为等边三角形,又1BC =,可得3OD. 由于1AC AB ⊥,所以11122OA B C ==,由OH AD OD OA ⋅=⋅,且2274AD OD OA =+=,得2114OH , 又O 为1B C 的中点,所以点1B 到平面ABC 的距离为217. 故三棱柱111ABC A B C -的高为217. 考点:1.线线,线面垂直的转化;2.点到面的距离;3.等面积法的应用 7.2014年全国普通高等学校招生统一考试文科数学(全国Ⅱ卷)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥面ABCD ,E 为PD 的中点. (1)证明://PB 平面AEC ; (2)设1AP =,3AD =,三棱锥P ABD -的体积 34V =,求A 到平面PBC 的距离.【答案】(1)证明见解析 (2) A 到平面PBC 的距离为31313【详解】试题分析:(1)连结BD 、AC 相交于O ,连结OE ,则PB ∥OE ,由此能证明PB ∥平面ACE .(2)以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系,利用向量法能求出A 到平面PBD 的距离试题解析:(1)设BD 交AC 于点O ,连结EO . 因为ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB 又EO平面AEC ,PB平面AEC所以PB ∥平面AEC . (2)136V PA AB AD AB =⋅⋅=由,可得. 作交于. 由题设易知,所以故, 又31313PA AB AH PB ⋅==所以到平面的距离为法2:等体积法136V PA AB AD AB =⋅⋅= 由,可得.由题设易知,得BC假设到平面的距离为d ,又因为PB=所以又因为(或),,所以考点 :线面平行的判定及点到面的距离8.2019年全国统一高考数学试卷(文科)(新课标Ⅰ)如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求点C 到平面C 1DE 的距离.【答案】(1)见解析;(2)41717. 【分析】(1)利用三角形中位线和11//A D B C 可证得//ME ND ,证得四边形MNDE 为平行四边形,进而证得//MN DE ,根据线面平行判定定理可证得结论;(2)根据题意求得三棱锥1C CDE -的体积,再求出1C DE ∆的面积,利用11C CDE C C DE V V --=求得点C 到平面1C DE 的距离,得到结果.【详解】(1)连接ME ,1B CM ,E 分别为1BB ,BC 中点 ME ∴为1B BC ∆的中位线1//ME B C ∴且112ME B C = 又N 为1A D 中点,且11//A D B C 1//ND B C ∴且112ND B C = //ME ND ∴ ∴四边形MNDE 为平行四边形//MN DE ∴,又MN ⊄平面1C DE ,DE ⊂平面1C DE//MN ∴平面1C DE(2)在菱形ABCD 中,E 为BC 中点,所以DE BC ⊥, 根据题意有3DE =,117C E =,因为棱柱为直棱柱,所以有DE ⊥平面11BCC B ,所以1DE EC ⊥,所以113172DEC S ∆=⨯⨯, 设点C 到平面1C DE 的距离为d ,根据题意有11C CDE C C DE V V --=,则有11113171343232d ⨯⨯⨯⨯=⨯⨯⨯⨯, 解得41717d ==, 所以点C 到平面1C DE 的距离为417. 【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用等积法求点到平面的距离是文科生常考的内容.题型三:求面积9.2017年全国普通高等学校招生统一考试文科数学(新课标1卷)如图,在四棱锥P ABCD -中,AB CD ∥,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.【答案】(1)证明见解析;(2)623+.【详解】 试题分析:(1)由90BAP CDP ∠=∠=︒,得AB AP ⊥,CD PD ⊥.从而得AB PD ⊥,进而而AB ⊥平面PAD ,由面面垂直的判定定理可得平面PAB ⊥平面PAD ;(2)设PA PD AB DC a ====,取AD 中点O ,连结PO ,则PO ⊥底面ABCD ,且22,AD a PO a ==,由四棱锥P ABCD -的体积为83,求出2a =,由此能求出该四棱锥的侧面积.试题解析:(1)由已知90BAP CDP ∠=∠=︒,得AB AP ⊥,CD PD ⊥.由于AB CD ∥,故AB PD ⊥,从而AB ⊥平面PAD .又AB 平面PAB ,所以平面PAB ⊥平面PAD .(2)在平面PAD 内作PE AD ⊥,垂足为E .由(1)知,AB ⊥面PAD ,故AB PE ⊥,可得PE ⊥平面ABCD .设AB x =,则由已知可得2AD x =,22PE x =. 故四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=. 由题设得31833x =,故2x =. 从而2PA PD ==,22AD BC ==22PB PC ==.可得四棱锥P ABCD -的侧面积为111222PA PD PA AB PD DC ⋅+⋅+⋅ 21sin606232BC +︒=+10.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠=,,AE EC ⊥ 三棱锥E ACD -的体积为6,求该三棱锥的侧面积.【答案】(1)见解析(2)5【分析】(1)由四边形ABCD 为菱形知AC ⊥BD ,由BE ⊥平面ABCD 知AC ⊥BE ,由线面垂直判定定理知AC ⊥平面BED ,由面面垂直的判定定理知平面AEC ⊥平面BED ;(2)设AB =x ,通过解直角三角形将AG 、GC 、GB 、GD 用x 表示出来,在Rt ∆AEC 中,用x 表示EG ,在Rt ∆EBG 中,用x 表示EB ,根据条件三棱锥E ACD -6求出x ,即可求出三棱锥E ACD -的侧面积.【详解】(1)因为四边形ABCD 为菱形,所以AC ⊥BD ,因为BE ⊥平面ABCD ,所以AC ⊥BE ,故AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED(2)设AB =x ,在菱形ABCD 中,由 ∠ABC =120°,可得AG =GC =32x ,GB =GD =2x .因为AE ⊥EC ,所以在 Rt ∆AEC 中,可得EG =3x . 连接EG ,由BE ⊥平面ABCD ,知 ∆EBG 为直角三角形,可得BE =22x .由已知得,三棱锥E -ACD 的体积3116632243E ACD V AC GD BE x -=⨯⋅⋅==.故 x =2 从而可得AE =EC =ED 6.所以∆EAC 的面积为3, ∆EAD 的面积与∆ECD 的面积均为 5故三棱锥E -ACD 的侧面积为3+25【点睛】本题考查线面垂直的判定与性质;面面垂直的判定;三棱锥的体积与表面积的计算;逻辑推理能力;运算求解能力.11.2019年全国统一高考数学试卷(文科)(新课标Ⅲ)图1是由矩形,ADEB Rt ABC ∆和菱形BFGC 组成的一个平面图形,其中1,2AB BE BF ===, 60FBC ∠=,将其沿,AB BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明图2中的,,,A C G D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的四边形ACGD 的面积.【答案】(1)见详解;(2)4.【分析】(1)因为折纸和粘合不改变矩形ABED ,Rt ABC 和菱形BFGC 内部的夹角,所以//AD BE ,//BF CG 依然成立,又因E 和F 粘在一起,所以得证.因为AB 是平面BCGE 垂线,所以易证.(2) 欲求四边形ACGD 的面积,需求出CG 所对应的高,然后乘以CG 即可.【详解】(1)证://AD BE ,//BF CG ,又因为E 和F 粘在一起.∴//AD CG ,A ,C ,G ,D 四点共面.又,AB BE AB BC ⊥⊥.AB ∴⊥平面BCGE ,AB ⊂平面ABC ,∴平面ABC ⊥平面BCGE ,得证.(2)取CG 的中点M ,连结,EM DM .因为//AB DE ,AB ⊥平面BCGE ,所以DE ⊥平面BCGE ,故DE CG ⊥,由已知,四边形BCGE 是菱形,且60EBC ∠=得EM CG ⊥,故CG ⊥平面DEM . 因此DM CG ⊥.在Rt DEM △中,DE=1,3EM =,故2DM =.所以四边形ACGD 的面积为4.【点睛】很新颖的立体几何考题.首先是多面体粘合问题,考查考生在粘合过程中哪些量是不变的.再者粘合后的多面体不是直棱柱,最后将求四边形ACGD的面积考查考生的空间想象能力.。

文科高考数学立体几何大题求各类体积方法

文科高考数学立体几何大题求各类体积方法

A BCD PA B CDP文科高考数学立体几何大题求各类体积方法【三年真题重温】1.【2011⋅新课标全国理,18】如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,∠DAB =60,2AB AD =,PD ⊥底面ABCD . (Ⅰ) 证明:PA ⊥BD ;(Ⅱ) 若PD AD =,求二面角A PB C --的余弦值. 2.【2011 新课标全国文,18】如图,四棱锥P ABCD -中,底面ABCD 为平行四边形.60,2,DAB AB AD PD ∠==⊥底面ABCD .(Ⅰ) 证明:PA BD ⊥;(Ⅱ) 设1PD AD ==,求棱锥D PBC -的高.根据DE PB PD BD ⋅=⋅,得32DE =.即棱锥D PBC -的高为32.3.【2010 新课标全国理,18】如图,已知四棱锥P-ABCD 的底面为等腰梯形,AB CD,AC ⊥BD ,垂足为H ,PH 是四棱锥的高 ,E 为AD 中点.(1) 证明:PE ⊥BC(2) 若∠APB=∠ADB=60°,求直线PA 与平面PEH 所成角的正弦值【解析】命题意图:本题主要考查空间几何体中的位置关系、线面所成的角等知识,考查空间想象能力以及利用向量法研究空间的位置关系以及线面角问题的能力.4.【2010 新课标全国文,18】如图,已知四棱锥P ABCD -的底面为等腰梯形,AB ∥CD ,AC BD ⊥,垂足为H ,PH 是四棱锥的高。

(Ⅰ)证明:平面PAC ⊥ 平面PBD ; (Ⅱ)若6AB =,APB ADB ∠=∠=60°,求四棱锥P ABCD -的体积。

5.【2012 新课标全国理】(本小题满分12分)如图,直三棱柱111ABC A B C -中,112AC BC AA ==, D 是棱1AA 的中点,BD DC ⊥1(1)证明:BC DC ⊥1(2)求二面角11C BD A --的大小。

6.【2012 新课标全国文】(本小题满分12分)如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA 1,D 是棱AA 1的中点(I)证明:平面BDC 1⊥平面BDC(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比。

高中数学立体几何大题练习(文科)

高中数学立体几何大题练习(文科)

立体几何大题练习(文科):1.如图,在四棱锥S﹣ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=,侧面SAD⊥底面ABCD.(1)求证:平面SBD⊥平面SAD;(2)若∠SDA=120°,且三棱锥S﹣BCD的体积为,求侧面△SAB的面积.【分析】(1)由梯形ABCD,设BC=a,则CD=a,AB=2a,运用勾股定理和余弦定理,可得AD,由线面垂直的判定定理可得BD⊥平面SAD,运用面面垂直的判定定理即可得证;(2)运用面面垂直的性质定理,以及三棱锥的体积公式,求得BC=1,运用勾股定理和余弦定理,可得SA,SB,运用三角形的面积公式,即可得到所求值.【解答】(1)证明:在梯形ABCD中,AB∥DC,∠ABC=90°,BC=CD=,设BC=a,则CD=a,AB=2a,在直角三角形BCD中,∠BCD=90°,可得BD=a,∠CBD=45°,∠ABD=45°,由余弦定理可得AD==a,则BD⊥AD,由面SAD⊥底面ABCD.可得BD⊥平面SAD,又BD⊂平面SBD,可得平面SBD⊥平面SAD;(2)解:∠SDA=120°,且三棱锥S﹣BCD的体积为,由AD=SD=a,在△SAD中,可得SA=2SDsin60°=a,△SAD的边AD上的高SH=SDsin60°=a,由SH⊥平面BCD,可得×a××a2=,解得a=1,由BD⊥平面SAD,可得BD⊥SD,SB===2a,又AB=2a,在等腰三角形SBA中,边SA上的高为=a,则△SAB的面积为×SA×a=a=.【点评】本题考查面面垂直的判定定理的运用,注意运用转化思想,考查三棱锥的体积公式的运用,以及推理能力和空间想象能力,属于中档题.2.如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【分析】(1)利用AB∥EF及线面平行判定定理可得结论;(2)通过取线段CD上点G,连结FG、EG使得FG∥BC,则EG∥AC,利用线面垂直的性质定理可知FG⊥AD,结合线面垂直的判定定理可知AD⊥平面EFG,从而可得结论.【解答】证明:(1)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,所以AB∥EF,又因为EF⊂平面ABC,AB⊂平面ABC,所以由线面平行判定定理可知:EF∥平面ABC;(2)在线段CD上取点G,连结FG、EG使得FG∥BC,则EG∥AC,因为BC⊥BD,FG∥BC,所以FG⊥BD,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD,所以FG⊥AD,又因为AD⊥EF,且EF∩FG=F,所以AD⊥平面EFG,所以AD⊥EG,故AD⊥AC.【点评】本题考查线面平行及线线垂直的判定,考查空间想象能力,考查转化思想,涉及线面平行判定定理,线面垂直的性质及判定定理,注意解题方法的积累,属于中档题.3.如图,在三棱柱ABC﹣A1B1C1中,CC1⊥底面ABC,AC⊥CB,点M和N分别是B1C1和BC的中点.(1)求证:MB∥平面AC1N;(2)求证:AC⊥MB.【分析】(1)证明MC1NB为平行四边形,所以C1N∥MB,即可证明MB∥平面AC1N;(2)证明AC⊥平面BCC1B1,即可证明AC⊥MB.【解答】证明:(1)证明:在三棱柱ABC﹣A1B1C1中,因为点M,N分别是B1C1,BC的中点,所以C1M∥BN,C1M=BN.所以MC1NB为平行四边形.所以C1N∥MB.因为C1N⊂平面AC1N,MB⊄平面AC1N,所以MB∥平面AC1N;(2)因为CC1⊥底面ABC,所以AC⊥CC1.因为AC⊥BC,BC∩CC1=C,所以AC⊥平面BCC1B1.因为MB⊂平面BCC1B1,所以AC⊥MB.【点评】本题考查线面平行的判定,考查线面垂直的判定与性质,考查学生分析解决问题的能力,属于中档题.4.如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD||BC,PD⊥底面ABCD,∠ADC=90°,AD=2BC,Q为AD的中点,M为棱PC的中点.(Ⅰ)证明:PA∥平面BMQ;(Ⅰ)已知PD=DC=AD=2,求点P到平面BMQ的距离.【分析】(1)连结AC交BQ于N,连结MN,只要证明MN∥PA,利用线面平行的判定定理可证;(2)由(1)可知,PA∥平面BMQ,所以点P到平面BMQ的距离等于点A到平面BMQ的距离.【解答】解:(1)连结AC交BQ于N,连结MN,因为∠ADC=90°,Q为AD的中点,所以N为AC的中点.…(2分)当M为PC的中点,即PM=MC时,MN为△PAC的中位线,故MN∥PA,又MN⊂平面BMQ,所以PA∥平面BMQ.…(5分)(2)由(1)可知,PA∥平面BMQ,所以点P到平面BMQ的距离等于点A到平面BMQ的距离,所以V P=V A﹣BMQ=V M﹣ABQ,﹣BMQ取CD的中点K,连结MK,所以MK∥PD,,…(7分)又PD⊥底面ABCD,所以MK⊥底面ABCD.又,PD=CD=2,所以AQ=1,BQ=2,,…(10分)=V A﹣BMQ=V M﹣ABQ=.,…(11分)所以V P﹣BMQ则点P到平面BMQ的距离d=…(12分)【点评】本题考查了线面平行的判定定理的运用以及利用三棱锥的体积求点到直线的距离.5.如图,在直三棱柱ABC﹣A1B1C1中,BC⊥AC,D,E分别是AB,AC的中点.(1)求证:B1C1∥平面A1DE;(2)求证:平面A1DE⊥平面ACC1A1.【分析】(1)证明B1C1∥DE,即可证明B1C1∥平面A1DE;(2)证明DE⊥平面ACC1A1,即可证明平面A1DE⊥平面ACC1A1.【解答】证明:(1)因为D,E分别是AB,AC的中点,所以DE∥BC,…(2分)又因为在三棱柱ABC﹣A1B1C1中,B1C1∥BC,所以B1C1∥DE…(4分)又B1C1⊄平面A1DE,DE⊂平面A1DE,所以B1C1∥平面A1DE…(6分)(2)在直三棱柱ABC﹣A1B1C1中,CC1⊥底面ABC,又DE⊂底面ABC,所以CC1⊥DE…(8分)又BC⊥AC,DE∥BC,所以DE⊥AC,…(10分)又CC1,AC⊂平面ACC1A1,且CC1∩AC=C,所以DE⊥平面ACC1A1…(12分)又DE⊂平面A1DE,所以平面A1DE⊥平面ACC1A1…(14分)【点评】本题考查线面平行、线面垂直、面面垂直的判定,考查学生分析解决问题的能力,属于中档题.6.在四棱锥P﹣ABCD中,PC⊥底面ABCD,M,N分别是PD,PA的中点,AC⊥AD,∠ACD=∠ACB=60°,PC=AC.(1)求证:PA⊥平面CMN;(2)求证:AM∥平面PBC.【分析】(1)推导出MN∥AD,PC⊥AD,AD⊥AC,从而AD⊥平面PAC,进而AD ⊥PA,MN⊥PA,再由CN⊥PA,能证明PA⊥平面CMN.(2)取CD的中点为Q,连结MQ、AQ,推导出MQ∥PC,从而MQ∥平面PBC,再求出AQ∥平面,从而平面AMQ∥平面PCB,由此能证明AM∥平面PBC.【解答】证明:(1)∵M,N分别为PD、PA的中点,∴MN为△PAD的中位线,∴MN∥AD,∵PC⊥底面ABCD,AD⊂平面ABCD,∴PC⊥AD,又∵AD⊥AC,PC∩AC=C,∴AD⊥平面PAC,∴AD⊥PA,∴MN⊥PA,又∵PC=AC,N为PA的中点,∴CN⊥PA,∵MN∩CN=N,MN⊂平面CMN,CM⊂平面CMN,∴PA⊥平面CMN.解(2)取CD的中点为Q,连结MQ、AQ,∵MQ是△PCD的中位线,∴MQ∥PC,又∵PC⊂平面PBC,MQ⊄平面PBC,∴MQ∥平面PBC,∵AD⊥AC,∠ACD=60°,∴∠ADC=30°.∴∠DAQ=∠ADC=30°,∴∠QAC=∠ACQ=60°,∴∠ACB=60°,∴AQ∥BC,∵AQ⊄平面PBC,BC⊂平面PBC,∴AQ∥平面PBC,∵MQ∩AQ=Q,∴平面AMQ∥平面PCB,∵AM⊂平面AMQ,∴AM∥平面PBC.【点评】本题考查线面垂直、线面平行的证明,考查空间中线线、线面、面面间的位置关系,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想、函数与方程思想,是中档题.7.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的正方形,侧面PAD⊥底面ABCD,且PA=PD=AD,E、F分别为PC、BD的中点.(1)求证:EF∥平面PAD;(2)求证:面PAB⊥平面PDC.【分析】(1)连接AC,则F是AC的中点,E为PC 的中点,证明EF∥PA,利用直线与平面平行的判定定理证明EF∥平面PAD;(2)先证明CD⊥PA,然后证明PA⊥PD.利用直线与平面垂直的判定定理证明PA⊥平面PCD,最后根据面面垂直的判定定理即可得到面PAB⊥面PDC.【解答】证明:(1)连接AC,由正方形性质可知,AC与BD相交于BD的中点F,F也为AC中点,E为PC中点.所以在△CPA中,EF∥PA,又PA⊂平面PAD,EF⊄平面PAD,所以EF∥平面PAD;(2)平面PAD⊥平面ABCD平面PAD∩面ABCD=AD⇒CD⊥平面PAD⇒CD⊥PA正方形ABCD中CD⊥ADPA⊂平面PADCD⊂平面ABCD又,所以PA2+PD2=AD2所以△PAD是等腰直角三角形,且,即PA⊥PD.因为CD∩PD=D,且CD、PD⊂面PDC所以PA⊥面PDC又PA⊂面PAB,所以面PAB⊥面PDC.【点评】本题考查直线与平面垂直的判定,直线与平面平行的判定的应用,考查逻辑推理能力.8.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,且PA=AD=2,BD=2,E、F分别为AD、PC中点.(1)求点F到平面PAB的距离;(2)求证:平面PCE⊥平面PBC.【分析】(1)取PB的中点G,连接FG、AG,证得底面ABCD为正方形.再由中位线定理可得FG∥AE且FG=AE,四边形AEFG是平行四边形,则AG∥FE,运用线面平行的判定定理可得EF∥平面PAB,点F与点E到平面PAB的距离相等,运用线面垂直的判定和性质,证得AD⊥平面PAB,即可得到所求距离;(2)运用线面垂直的判定和性质,证得BC⊥平面PAB,EF⊥平面PBC,再由面面垂直的判定定理,即可得证.【解答】(1)解:如图,取PB的中点G,连接FG、AG,因为底面ABCD为菱形,且PA=AD=2,,所以底面ABCD为正方形.∵E、F分别为AD、PC中点,∴FG∥BC,AE∥BC,,,∴FG∥AE且FG=AE,∴四边形AEFG是平行四边形,∴AG∥FE,∵AG⊂平面PAB,EF⊄平面PAB,∴EF∥平面PAB,∴点F与点E到平面PAB的距离相等,由PA⊥平面ABCD,可得PA⊥AD,又AD⊥AB,PA∩AB=A,AD⊥平面PAB,则点F到平面PAB的距离为EA=1.(2)证明:由(1)知AG⊥PB,AG∥EF,∵PA⊥平面ABCD,∴BC⊥PA,∵BC⊥AB,AB∩BC=B,∴BC⊥平面PAB,由AG⊂平面PAB,∴BC⊥AG,又∵PB∩BC=B,∴AG⊥平面PBC,∴EF⊥平面PBC,∵EF⊂平面PCE,∴平面PCE⊥平面PBC.【点评】本题考查空间点到平面的距离,注意运用转化思想,考查线面平行和垂直的判定和性质,以及面面垂直的判定,熟练掌握定理的条件和结论是解题的关键,属于中档题.9.在四棱锥P﹣ABCD中,底面ABCD为直角梯形,∠BAD=∠ADC=90°,DC=2AB=2AD,BC⊥PD,E,F分别是PB,BC的中点.求证:(1)PC∥平面DEF;(2)平面PBC⊥平面PBD.【分析】(1)由中位线定理可得PC∥EF,故而PC∥平面DEF;(2)由直角梯形可得BC⊥BD,结合BC⊥PD得出BC⊥平面PBD,于是平面PBC ⊥平面PBD.【解答】证明:(1)∵E,F分别是PB,BC的中点,∴PC∥EF,又PC⊄平面DEF,EF⊂平面DEF,∴PC∥平面DEF.(2)取CD的中点M,连结BM,则AB DM,又AD⊥AB,AB=AD,∴四边形ABMD是正方形,∴BM⊥CD,BM=CM=DM=1,BD=,∴BC=,∴BD2+BC2=CD2,∴BC⊥BD,又BC⊥PD,BD∩PD=D,∴BC⊥平面PBD,又BC⊂平面PBC,∴平面PBC⊥平面PBD.【点评】本题考查了线面平行,面面垂直的判定,属于中档题.10.如图,在三棱锥A﹣BCD中,E,F分别为BC,CD上的点,且BD∥平面AEF.(1)求证:EF∥平ABD面;(2)若AE⊥平面BCD,BD⊥CD,求证:平面AEF⊥平面ACD.【分析】(1)利用线面平行的性质可得BD∥EF,从而得出EF∥平面ABD;(2)由AE⊥平面BCD可得AE⊥CD,由BD⊥CD,BD∥EF可得EF⊥CD,从而有CD⊥平面AEF,故而平面AEF⊥平面ACD.【解答】证明:(1)∵BD∥平面AEF,BD⊂平面BCD,平面BCD∩平面AEF=EF,∴BD∥EF,又BD⊂平面ABD,EF⊄平面ABD,∴EF∥平ABD面.(2)∵AE⊥平面BCD,CD⊂平面BCD,∴AE⊥CD,由(1)可知BD∥EF,又BD⊥CD,∴EF⊥CD,又AE∩EF=E,AE⊂平面AEF,EF⊂平面AEF,∴CD⊥平面AEF,又CD⊂平面ACD,∴平面AEF⊥平面ACD.【点评】本题考查了线面平行、线面垂直的性质,面面垂直的判定,属于中档题.。

高中文科数学立体几何知识点(大题)

高中文科数学立体几何知识点(大题)

高考立体几何中直线、平面之间的位置关系知识点总结(文科)一.平行问题 (一) 线线平行:方法一:常用初中方法(1中位线定理;2平行四边形定理;3三角形中对应边成比例;4同位角、内错角、同旁内角) 方法二:1线面平行⇒线线平行m l m l l ////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα方法三:2面面平行⇒线线平行m l m l ////⇒⎪⎭⎪⎬⎫=⋂=⋂βγαγβα方法四:3线面垂直 ⇒线线平行若αα⊥⊥m l ,,则m l //。

(二) 线面平行:方法一:4线线平行⇒线面平行ααα////l l m m l ⇒⎪⎭⎪⎬⎫⊄⊂方法二:5面面平行⇒线面平行 αββα////l l ⇒⎭⎬⎫⊂ (三) 面面平行:6方法一:线线平行⇒面面平行βααβ//',','//'//⇒⎪⎪⎭⎪⎪⎬⎫⊂⊂且相交且相交m l m l m m l l 方法二:7线面平行⇒面面平行βαβαα//,////⇒⎪⎭⎪⎬⎫=⊂A m l m l m l ,方法三:8线面垂直⇒面面平行 βαβα面面面面//⇒⎭⎬⎫⊥⊥l ll二.垂直问题:(一)线线垂直方法一:常用初中的方法(1勾股定理的逆定理;2三线合一 ;3直径所对的圆周角为直角;4菱形的对角线互相垂直。

) 方法二:9线面垂直⇒线线垂直 m l m l ⊥⇒⎭⎬⎫⊂⊥αα (二)线面垂直:10方法一:线线垂直⇒线面垂直αα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂=⋂⊥⊥l AB AC A AB AC AB l AC l , 方法二:11面面垂直⇒线面垂直αββαβα⊥⇒⎪⎭⎪⎬⎫⊂⊥=⋂⊥l l m l m ,(面) 面面垂直:方法一:12线面垂直⇒面面垂直 βαβα⊥⇒⎭⎬⎫⊂⊥l l 三、夹角问题:异面直线所成的角:(一) 范围:]90,0(︒︒(二)求法:方法一:定义法。

步骤1:平移,使它们相交,找到夹角。

步骤2:解三角形求出角。

(计算结果可能是其补角)线面角:直线PA 与平面α所成角为θ,如下图求法:就是放到三角形中解三角形四、距离问题:点到面的距离求法1、直接求,2、等体积法(换顶点)1、一个几何体的三视图如图所示,则这个几何体的体积为( )A .B .C .D .2、设 a b ,是两条不同的直线, αβ,是两个不同的平面,则( ) A .若a α∥,b α∥,则a b ∥ B .若a α∥,αβ∥,则αβ∥C.若a b ∥,a α⊥,则b α⊥ D .若a α∥,αβ⊥,则a β⊥3、如图是一个正方体被切掉部分后所得几何体的三视图,则该几何体的体积为 .4、某几何体的三视图如图所示,则该几何体的体积为( )A .5B .163C .7D .1735、某空间几何体的三视图如图所示,则该几何体的体积为A .73B .83π-C .83D .73π- 6、一个几何体的三视图如图所示,则这个几何体的直观图是7、某四棱锥的三视图如图所示,其俯视图为等腰直角三角形,则该四棱锥的体积为A.223B.43C.2D.48、某三棱锥的三视图如图所示,则该三棱锥的体积为(A)23(B)43(C)2(D)831、(2017新课标Ⅰ文数)(12分)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,且四棱锥P-ABCD 的体积为83,求该四棱锥的侧面积.2、(2017新课标Ⅱ文)(12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,1,90.2AB BC AD BAD ABC ==∠=∠=︒(1)证明:直线BC ∥平面PAD ;(2)若△PCD 的面积为27,求四棱锥P ABCD -的体积.3、(2017新课标Ⅲ文数)(12分)如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.4、(2017北京文)(本小题14分)如图,在三棱锥P–ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(Ⅰ)求证:PA⊥BD;(Ⅱ)求证:平面BDE⊥平面PAC;(Ⅲ)当PA∥平面BD E时,求三棱锥E–BCD的体积.5、(2017山东文)(本小题满分12分)由四棱柱ABCD-A1B1C1D1截去三棱锥C1- B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E 平面ABCD.A O∥平面B1CD1;(Ⅰ)证明:1(Ⅱ)设M是OD的中点,证明:平面A1EM 平面B1CD1.6、(2017江苏)(本小题满分14分)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD 上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.。

立体几何(7大题型)(解析版)2024年高考数学立体几何大题突破

立体几何(7大题型)(解析版)2024年高考数学立体几何大题突破

立体几何立体几何是高考数学的必考内容,在大题中一般分两问,第一问考查空间直线与平面的位置关系证明;第二问考查空间角、空间距离等的求解。

考题难度中等,常结合空间向量知识进行考查。

2024年高考有很大可能延续往年的出题方式。

题型一:空间异面直线夹角的求解1(2023·上海长宁·统考一模)如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点.(1)求证:AO⊥CD;(2)若BD⊥DC,BD=DC,AO=BO,求异面直线BC与AD所成的角的大小.【思路分析】(1)利用面面垂直的性质、线面垂直的性质推理即得.(2)分别取AB,AC的中点M,N,利用几何法求出异面直线BC与AD所成的角.【规范解答】(1)在三棱锥A-BCD中,由AB=AD,O为BD的中点,得AO⊥BD,而平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊂平面ABD,因此AO⊥平面BCD,又CD⊂平面BCD,所以AO⊥CD.(2)分别取AB,AC的中点M,N,连接OM,ON,MN,于是MN⎳BC,OM⎳AD,则∠OMN是异面直线BC与AD所成的角或其补角,由(1)知,AO ⊥BD ,又AO =BO ,AB =AD ,则∠ADB =∠ABD =π4,于是∠BAD =π2,令AB =AD =2,则DC =BD =22,又BD ⊥DC ,则有BC =BD 2+DC 2=4,OC =DC 2+OD 2=10,又AO ⊥平面BCD ,OC ⊂平面BCD ,则AO ⊥OC ,AO =2,AC =AO 2+OC 2=23,由M ,N 分别为AB ,AC 的中点,得MN =12BC =2,OM =12AD =1,ON =12AC =3,显然MN 2=4=OM 2+ON 2,即有∠MON =π2,cos ∠OMN =OM MN =12,则∠OMN =π3,所以异面直线BC 与AD 所成的角的大小π3.1、求异面直线所成角一般步骤:(1)平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.(4)取舍:因为异面直线所成角θ的取值范围是0,π2,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2、可通过多种方法平移产生,主要有三种方法:(1)直接平移法(可利用图中已有的平行线);(2)中位线平移法;(3)补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).3、异面直线所成角:若n 1 ,n 2分别为直线l 1,l 2的方向向量,θ为直线l 1,l 2的夹角,则cos θ=cos <n 1 ,n 2 > =n 1 ⋅n 2n 1 n 2.1(2023·江西萍乡·高三统考期中)如图,在正四棱台ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点.(1)证明:EF ⎳平面AB1C 1D ;(2)若AB =2A 1B 1,且正四棱台的侧面积为9,其内切球半径为22,O 为ABCD 的中心,求异面直线OB 1与CC 1所成角的余弦值.【答案】(1)证明见解析;(2)45【分析】(1)根据中位线定理,结合线面平行判定定理以及面面平行判定定理,利用面面平行的性质,可得答案;(2)根据题意,结合正四棱台的几何性质,求得各棱长,利用线线角的定义,可得答案.【解析】(1)取CC 1中点G ,连接GE ,GF ,如下图:在梯形BB 1C 1C 中,E ,G 分别为BB 1,CC 1的中点,则EG ⎳B 1C 1,同理可得FG ⎳C 1D ,因为EG ⊄平面AB 1C 1D ,B 1C 1⊂平面AB 1C 1D ,所以EG ⎳平面AB 1C 1D ,同理可得GF ⎳平面AB 1C 1D ,因为EG ∩FG =G ,EG ,FG ⊆平面EFG ,所以平面EFG ⎳平面AB 1C 1D ,又因为EF ⊆平面EFG ,所以EF ⎳平面AB 1C 1D ;(2)连接AC ,BD ,则AC ∩BD =O ,连接A 1O ,A 1C 1,B 1O ,在平面BB 1C 1C 中,作B 1N ⊥BC 交BC 于N ,在平面BB 1D 1D 中,作B 1M ⊥BD 交BD 于M ,连接MN ,如下图:因为AB =2A 1B 1,则OC =A 1C 1,且OC ⎳A 1C 1,所以A 1C 1CO 为平行四边形,则A 1O ⎳CC 1,且A 1O =CC 1,所以∠A 1OB 1为异面直线OB 1与CC 1所成角或其补角,同理可得:B 1D 1DO 为平行四边形,则B 1O =D 1D ,在正四棱台ABCD -A 1B 1C 1D 1中,易知对角面BB 1D 1D ⊥底面ABCD ,因为平面ABCD ∩平面BB 1D 1D =BD ,且B 1M ⊥BD ,B 1M ⊂平面BB 1D 1D ,所以B 1M ⊥平面ABCD ,由内切球的半径为22,则B 1M =2,在等腰梯形BB 1C 1C 中,BC =2B 1C 1且B 1N ⊥BC ,易知BN =14BC ,同理可得BM =14BD ,在△BCD 中,BN BC=BM BD =14,则MN =14CD ,设正方形ABCD 的边长为4x x >0 ,则正方形A 1B 1C 1D 1的边长为2x ,MN =x ,由正四棱台的侧面积为9,则等腰梯形BB 1C 1C 的面积S =94,因为B 1M ⊥平面ABCD ,MN ⊂平面ABCD ,所以B 1M ⊥MN ,在Rt △B 1MN ,B 1N =B 1M 2+MN 2=2+x 2,可得S =12⋅B 1N ⋅B 1C 1+BC ,则94=12×2+x 2×4x +2x ,解得x =12,所以BC =2,B 1C 1=1,BN =14BC =12,B 1N =32,则A 1B 1=1,在Rt △BB 1N 中,BB 1=B 1N 2+BN 2=102,则CC 1=DD 1=102,所以在△A 1OB 1中,则cos ∠A 1OB 1=A 1O 2+B 1O 2-A 1B 212⋅A 1O ⋅B 1O=1022+102 2-12×102×102=45,所以异面直线OB 1与CC 1所成角的余弦值为45.2(2023·辽宁丹东·统考二模)如图,平行六面体ABCD -A 1B 1C 1D 1的所有棱长都相等,平面CDD 1C 1⊥平面ABCD ,AD ⊥DC ,二面角D 1-AD -C 的大小为120°,E 为棱C 1D 1的中点.(1)证明:CD ⊥AE ;(2)点F 在棱CC 1上,AE ⎳平面BDF ,求直线AE 与DF 所成角的余弦值.【答案】(1)证明见解析;(2)37【分析】(1)根据面面垂直可得线面垂直进而得线线垂直,由二面角定义可得∠D 1DC =120°,进而根据中点得线线垂直即可求;(2)由线面平行的性质可得线线平行,由线线角的几何法可利用三角形的边角关系求解,或者建立空间直角坐标系,利用向量的夹角即可求解.【解析】(1)因为平面CDD 1C 1⊥平面ABCD ,且两平面交线为DC ,AD ⊥DC ,AD ⊂平面ABCD , 所以AD ⊥平面CDD 1C 1,所以AD ⊥D 1D ,AD ⊥DC ,∠D 1DC 是二面角D 1-AD -C 的平面角,故∠D 1DC =120°.连接DE ,E 为棱C 1D 1的中点,则DE ⊥C 1D 1,C 1D 1⎳CD ,从而DE ⊥CD .又AD ⊥CD ,DE ∩AD =D ,DE ,AD ⊂平面AED ,所以CD ⊥平面AED ,ED ⊂平面AED ,因此CD ⊥AE .(2)解法1:设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.连AC 交BD 于点O ,连接CE 交DF 于点G ,连OG .因为AE ⎳平面BDF ,AE ⊂平面AEC ,平面AEC ∩平面BDF =OG ,所以AE ∥OG ,因为O 为AC 中点,所以G 为CE 中点,故OG =12AE =72.且直线OG 与DF 所成角等于直线AE 与DF 所成角.在Rt △EDC 中,DG =12CE =72,因为OD =2,所以cos ∠OGD =722+72 2-(2)22×72×72=37.因此直线AE 与DF 所成角的余弦值为37.解法2;设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.取DC 中点为G ,连接EG 交DF 于点H ,则EG =DD 1=2.连接AG 交BD 于点I ,连HI ,因为AE ⎳平面BDF ,AE ⊂平面AGE ,平面AGE ∩平面BDF =IH ,所以AE ∥IH .HI 与DH 所成角等于直线AE 与DF 所成角.正方形ABCD 中,GI =13AG ,DI =13DB =223,所以GH =13EG ,故HI =13AE =73.在△DHG 中,GH =13EG =23,GD =1,∠EGD =60°,由余弦定理DH =1+49-1×23=73.在△DHI 中,cos ∠DHI =732+73 2-223 22×73×73=37.因此直线AE 与DF 所成角的余弦值为37.解法3:由(1)知DE ⊥平面ABCD ,以D 为坐标原点,DA为x 轴正方向,DA为2个单位长,建立如图所示的空间直角坐标系D -xyz .由(1)知DE =3,得A 2,0,0 ,B 2,2,0 ,C 0,2,0 ,E (0,0,3),C 1(0,1,3).则CC 1=(0,-1,3),DC =(0,2,0),AE =(-2,0,3),DB =(2,2,0).由CF =tCC 1 0≤t ≤1 ,得DF =DC +CF =(0,2-t ,3t ).因为AE ⎳平面BDF ,所以存在唯一的λ,μ∈R ,使得AE =λDB +μDF=λ2,2,0 +μ(0,2-t ,3t )=2λ,2λ+2μ-tμ,3μt ,故2λ=-2,2λ+2μ-tμ=0,3μt =3,解得t =23,从而DF =0,43,233 .所以直线AE 与DF 所成角的余弦值为cos AE ,DF =AE ⋅DF|AE ||DF |=37.题型二:空间直线与平面夹角的求解2(2024·安徽合肥·统考一模)如图,三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1,BCC 1B 1均为正方形,D ,E 分别是棱AB ,A 1B 1的中点,N 为C 1E 上一点.(1)证明:BN ⎳平面A 1DC ;(2)若AB =AC ,C 1E =3C 1N,求直线DN 与平面A 1DC 所成角的正弦值.【思路分析】(1)连接BE ,BC 1,DE ,则有平面BEC 1⎳平面A 1DC ,可得BN ⎳平面A 1DC ;(2)建立空间直角坐标系,利用空间向量进行计算即可.【规范解答】(1)连接BE ,BC 1,DE .因为AB ⎳A 1B 1,且AB =A 1B 1,又D ,E 分别是棱AB ,A 1B 1的中点,所以BD ⎳A 1E ,且BD =A 1E ,所以四边形BDA 1E 为平行四边形,所以A 1D ⎳EB ,又A 1D ⊂平面A 1DC ,EB ⊄平面A 1DC ,所以EB ⎳平面A 1DC ,因为DE ⎳BB 1⎳CC 1,且DE =BB 1=CC 1,所以四边形DCC 1E 为平行四边形,所以C 1E ⎳CD ,又CD ⊂平面A 1DC ,C 1E ⊄平面A 1DC ,所以C 1E ⎳平面A 1DC ,因为C 1E ∩EB =E ,C 1E ,EB ⊂平面BEC 1,所以平面BEC 1⎳平面A 1DC ,因为BN ⊂平面BEC 1,所以BN ⎳平面A 1DC .(2)四边形ACC 1A 1,BCC 1B 1均为正方形,所以CC 1⊥AC ,CC 1⊥BC ,所以CC 1⊥平面ABC .因为DE ⎳CC 1,所以DE ⊥平面ABC ,从而DE ⊥DB ,DE ⊥DC .又AB =AC ,所以△ABC 为等边三角形.因为D 是棱AB 的中点,所以CD ⊥DB ,即DB ,DC ,DE 两两垂直.以D 为原点,DB ,DC ,DE 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz .设AB =23,则D 0,0,0 ,E 0,0,23 ,C 0,3,0 ,C 10,3,23 ,A 1-3,0,23 ,所以DC =0,3,0 ,DA 1=-3,0,23 .设n=x ,y ,z 为平面A 1DC 的法向量,则n ⋅DC=0n ⋅DA 1 =0,即3y =0-3x +23z =0 ,可取n=2,0,1 .因为C 1E =3C 1N ,所以N 0,2,23 ,DN =0,2,23 .设直线DN 与平面A 1DC 所成角为θ,则sin θ=|cos ‹n ,DN ›|=|n ⋅DN ||n |⋅|DN |=235×4=1510,即直线DN 与平面A 1DC 所成角正弦值为1510.1、垂线法求线面角(也称直接法):(1)先确定斜线与平面,找到线面的交点B 为斜足;找线在面外的一点A ,过点A 向平面α做垂线,确定垂足O ;(2)连结斜足与垂足为斜线AB 在面α上的投影;投影BO 与斜线AB 之间的夹角为线面角;(3)把投影BO 与斜线AB 归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。

高考文科数学立体几何复习知识点

高考文科数学立体几何复习知识点

高考文科数学立体几何复习知识点高考文科数学立体几何复习知识点在我们的学习时代,相信大家一定都接触过知识点吧!知识点就是一些常考的内容,或者考试经常出题的地方。

哪些知识点能够真正帮助到我们呢?以下是小编为大家收集的高考文科数学立体几何复习知识点,仅供参考,欢迎大家阅读。

高考文科数学立体几何复习知识点1:棱柱定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

高考文科数学立体几何复习知识点2:棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

高考文科数学立体几何复习知识点3:棱台定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点高考文科数学立体几何复习知识点4:圆柱定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

高考文科数学立体几何复习知识点5:圆锥定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

高二年级文科立体几何知识点

高二年级文科立体几何知识点

立体几何知识点第一章 空间几何体1、空间几何体的结构:空间几何体分为多面体、旋转体、简单组合体⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。

简单组合体的构成形式:①由简单几何体拼接而成;②由简单几何体截去或挖去一部分而成⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台2、空间几何体的三视图(1)定义:正视图:光线从几何体的前面向后面正投影得到的投影图;侧视图:光线从几何体的左面向右面正投影得到的投影图; 俯视图:光线从几何体的上面向下面正投影得到的投影图。

(2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等” 3、空间几何体的直观图:斜二测画法的基本步骤:必修216P 4、空间几何体的表面积与体积 ⑴圆柱侧面积;l r S ⋅⋅=π2侧面⑵圆锥侧面积:l r S ⋅⋅=π侧面⑶圆台侧面积:l r S +⋅⋅=π侧面⑷体积公式:h S V ⋅=柱体 h S V ⋅=31锥体 ()13V h S S =+下台体上⑸球的表面积和体积:23443S R V R ππ==球球第二章 点、直线、平面之间的位置关系 一、几个公理:1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内,,A l B ll A B ααα∈∈⎧⇒⊂⎨∈∈⎩公理1的作用:判断直线是否在平面内2、公理2:过不在一条直线上的三点,有且只有一个平面若A ,B ,C 不共线,则A ,B ,C 确定平面α 推论1:过直线和直线外一点有且只有一个平面推论2:过两条相交直线有且只有一个平面推论3:过两条平行直线有且只有一个平面L θ∙l (注:扇形的弧长等于圆心角乘以半径.提醒圆心角为弧度角,例如60° π3弧度,45° π4弧度,90° π2弧度等等)1的长图中:扇形的半径长为l ,圆心角为θ,弧ABm公理2及其推论的作用:确定平面、判定多边形是否为平面图形的依据3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线,P P l P l αβαβ∈∈⇒=∈ 且公理3作用:(1)判定两个平面是否相交的依据 (2)证明点共线、线共点等 4、公理4:也叫平行公理,平行于同一条直线的两条直线平行. 符号表示:,a b c b a c ⇒ 公理4作用:证明两直线平行5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补,1212a a b b ''∠∠⇒∠∠ 且与方向相同=,1212180a a b b ''∠∠⇒∠+∠︒ 且与方向相反=作用:该定理也叫等角定理,可以用来证明空间中的两个角相等 二、空间两条直线的位置关系:相交直线:同一平面内,有且只有一个公共点 平行直线:同一平面内,没有公共点 异面直线: 不同在任何一个平面内,没有公共点 三、直线和平面的三种位置关系: 1.直线和平面平行符号表示: l2. 直线和平面相交符号表示:3. 直线在平面内符号表示:四、平面与平面的位置关系:1、平行:没有公共点 2、相交:有一条公共直线 五、平行关系: 1. 线线平行:证明两直线平行的常用方法:①三角形中位线定理:三角形中位线平行并等于底边的一半; ②平行四边形的性质:平行四边形两组对边分别平行;③线面平行的性质:如果一条直线平行于一个平面,经过这条直线的平面与这个平面相交,那么这条直线和它们的交线平行;a a ab b αβαβ⊂⇒=⎫⎪⎬⎪⎭④平行线的传递性:,a b c b a c ⇒⑤面面平行的性质:如果一个平面与两个平行平面相交,那么它们的交线平行;a ab b αβαγβγ=⇒=⎫⎪⎬⎪⎭⑥垂直于同一平面的两直线平行; a a b b αα⊥⎫⇒⎬⊥⎭2. 线面平行:方法一:判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

高中数学立体几何知识点总结(超详细)

高中数学立体几何知识点总结(超详细)

立体几何知识梳理一 、空间几何体 (一) 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体.其中,这条直线称为旋转体的轴.(二) 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱. 1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体 性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;1.3 棱柱的面积和体积公式ch S 直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征2.1 棱锥的定义(1) 棱锥:当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥.(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥.棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形;Ⅲ、两个特征三角形:(1)POH ∆(包含棱锥的高、斜高和底面内切圆半径);(2)POB ∆(包含棱锥的高、侧棱和底面外接圆半径) 正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高)正四面体:各条棱长都相等的三棱锥叫正四面体对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题. 对棱间的距离为a 2(正方体的边长) 正四面体的高a 6(正方体体对角线l 32=) 正四面体的体积为32a (正方体小三棱锥正方体V V V 314=-) 正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:l l 2161=) 3 、棱台的结构特征3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台. 3.2 正棱台的结构特征(1)各侧棱相等,各侧面都是全等的等腰梯形;(2)正棱台的两个底面和平行于底面的截面都是正多边形; (3)正棱台的对角面也是等腰梯形; (4)各侧棱的延长线交于一点. 4 、圆柱的结构特征4.1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲ABC D POH面所围成的几何体叫圆柱.4.2 圆柱的性质(1)上、下底及平行于底面的截面都是等圆;(2)过轴的截面(轴截面)是全等的矩形.4.3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形.4.4 圆柱的面积和体积公式S圆柱侧面= 2π·r·h (r为底面半径,h为圆柱的高)V圆柱= S底h = πr2h5、圆锥的结构特征5.1 圆锥的定义:以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆锥.5.2 圆锥的结构特征(1)平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比;(2)轴截面是等腰三角形;图1-5 圆锥(3)母线的平方等于底面半径与高的平方和:l2 = r2 + h25.3 圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形.6、圆台的结构特征6.1 圆台的定义:用一个平行于底面的平面去截圆锥,我们把截面和底面之间的部分称为圆台.6.2 圆台的结构特征⑴圆台的上下底面和平行于底面的截面都是圆;⑵圆台的截面是等腰梯形;⑶圆台经常补成圆锥,然后利用相似三角形进行研究.6.3 圆台的面积和体积公式S圆台侧= π·(R + r)·l (r、R为上下底面半径)V圆台= 1/3 (π r2+ π R2+ π r R) h (h为圆台的高)7 球的结构特征7.1 球的定义:以半圆的直径所在的直线为旋转轴,半圆旋转一周形成的旋转体叫做球体.空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体称为球体.7-2 球的结构特征⑴ 球心与截面圆心的连线垂直于截面;⑵ 截面半径等于球半径与截面和球心的距离的平方差:r 2 = R 2 – d 2 ⑶注意圆与正方体的两个关系:球内接正方体,球直径等于正方体对角线; 球外切正方体,球直径等于正方体的边长. 7-3 球的面积和体积公式S 球面 = 4 π R 2 (R 为球半径); V 球 = 4/3 π R 3 (三)空间几何体的表面积与体积 空间几何体的表面积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+圆锥的表面积:2S rl r ππ=+圆台的表面积:22S rl r Rl R ππππ=+++球的表面积:24S R π= 空间几何体的体积柱体的体积 :V S h =⨯底;锥体的体积 :13V S h =⨯底台体的体积:1)3V S S h =++⨯下上(;球体的体积:343V R π=斜二测画法:(1)平行于坐标轴的线依然平行于坐标轴;(2)平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变;二 、点、直线、平面之间的关系(一)、立体几何网络图:1、线线平行的判断:(1)平行于同一直线的两直线平行.(3)如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(6)如果两个平行平面同时和第三个平面相交,那么它们的交线平行.(12)垂直于同一平面的两直线平行.2、线线垂直的判断:(7)三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.(8)三垂线逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直.如图,已知PO⊥α,斜线PA在平面α内的射影为OA,a是平面α内一条直线.①三垂线定理:若a⊥OA,则a⊥PA.即垂直射影则垂直斜线.②三垂线定理逆定理:若a⊥PA,则a⊥OA.即垂直斜线则垂直射影.(10)若一直线垂直于一个平面,则这条直线垂直于平面内所有直线.补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条.3、线面平行的判断:(2)如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.(5)两个平面平行,其中一个平面内的直线必平行于另一个平面.判定定理:性质定理:★判断或证明线面平行的方法⑴利用定义(反证法):lα=∅,则l∥α (用于判断);⑵利用判定定理:线线平行线面平行(用于证明);⑶利用平面的平行:面面平行线面平行(用于证明);⑷利用垂直于同一条直线的直线和平面平行(用于判断).2线面斜交和线面角:l∩α = A2.1 直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角θ.2.2 线面角的范围:θ∈[0°,90°]注意:当直线在平面内或者直线平行于平面时,θ=0°;当直线垂直于平面时,θ=90°4、线面垂直的判断:(9)如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面.(11)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面.(14)一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.(16)如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面.判定定理:性质定理:(1)若直线垂直于平面,则它垂直于平面内任意一条直线.即:(2)垂直于同一平面的两直线平行.即:★判断或证明线面垂直的方法⑴利用定义,用反证法证明.⑵利用判定定理证明.⑶一条直线垂直于平面而平行于另一条直线,则另一条直线也垂直与平面.⑷一条直线垂直于两平行平面中的一个,则也垂直于另一个.⑸如果两平面垂直,在一平面内有一直线垂直于两平面交线,则该直线垂直于另一平面.5、面面平行的判断:(4)一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行.(13)垂直于同一条直线的两个平面平行.6、面面垂直的判断:(15)一个平面经过另一个平面的垂线,这两个平面互相垂直.判定定理:性质定理:(1)若两面垂直,则这两个平面的二面角的平面角为90°;(2)(二)、其他定理结论:(1)确定平面的条件:①不共线的三点;②直线和直线外一点;③两条相交直线;④两条平行直线;(2)直线与直线的位置关系:相交;平行;异面;直线与平面的位置关系:在平面内;平行;相交(垂直是它的特殊情况);平面与平面的位置关系:相交;;平行;(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短.(5)最小角定理:斜线与平面内所有直线所成的角中最小的是与它在平面内射影所成的角.(6)异面直线的判定:①反证法;②过平面外一点与平面内一点的直线,和平面内不过该点的直线是异面直线.(7)过已知点与一条直线垂直的直线都在过这点与这条直线垂直平面内.(8)如果—直线平行于两个相交平面,那么这条直线平行于两个平面的交线.(三)、唯一性定理结论:(1)过已知点,有且只能作一直线和已知平面垂直.(2)过已知平面外一点,有且只能作一平面和已知平面平行.(3)过两条异面直线中的一条能且只能作一平面与另一条平行.四、空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形)(1)异面直线所成的角:平移转化,把异面直线所成的角转化为平面内相交直线o o(2)线面所成的角:①线面平行或直线在平面内:线面所成的角为o 0; ②线面垂直:线面所成的角为o 90;③斜线与平面所成的角:射影转化,即转化为斜线与它在平面内的射影所成的角.o o 线面所成的角范围090o o α≤≤ (3)二面角:关键是找出二面角的平面角,o o α≤<; 五、距离的求法:(1)点点、点线、点面距离:点与点之间的距离就是两点之间线段的长、点与线、面间的距离是点到线、面垂足间线段的长.求它们首先要找到表示距离的线段,然后再计算.注意:求点到面的距离的方法:①直接法:直接确定点到平面的垂线段长(垂线段一般在二面角所在的平面上); ②转移法:转化为另一点到该平面的距离(利用线面平行的性质); ③体积法:利用三棱锥体积公式.。

高中数学——立体几何全知识点与结论梳理

高中数学——立体几何全知识点与结论梳理

向量差
a-b=(a1-b1,a2-b2,a3-b3)
数量积
a·b=a1b1+a2b2+a3b3
共线 a∥b⇒a1=λb1,a2=λb2,a3=λb3(λ∈R,b≠0)
垂直 夹角公

a⊥b⇔a1b1+a2b2+a3b3=0 cos〈a,b〉= a1b1+a2b2+a3b3
a21+a22+a23 b21+b22+b23
2.空间几何体的表面积与体积公式
名称 几何体
表面积
柱体(棱柱和 S 表面积=S 侧+2S
圆柱)

锥体(棱锥和 S 表面积=S 侧+S 底
圆锥)
体积 V=Sh V=31Sh
关 注 高 中 数 学 ( gaozhong shu-xue ) 即 可 免 费 获 取 : 知识点精讲、解题技巧分享,大小考真题押题详解以 及 小 数 老 师 贴 心 答 疑 解 惑 。
立体几何全知识点与结论梳理
第一节 空间几何体的结构特征、三视图和直观图
[基础知识]
1.简单几何体 1多面体的结构特征
名称
棱柱
棱锥
棱台
图形
底面 侧棱 侧面形状
互相平行且相等
多边形
互相平行且相似
相交于一点,但不
互相平行且相等
延长线交于一点
一定相等
平行四边形
三角形
梯形
①特殊的四棱柱
底面为 平行 侧棱垂直 直平行 底面为 四棱柱 平―行―四――边→形 六面体 ―于―底――面→ 六面体 ―矩―形→
圆锥
侧面展开

侧面积公 式
S 圆柱侧=2πrl
S 圆锥侧=πrl
圆台 S 圆台侧=π(r+r′)l
①几何体的侧面积是指(各个)侧面面积之和,而表面积是侧面积与所有底面面积之和. ②圆台、圆柱、圆锥的转化 当圆台的上底面半径与下底面半径相等时,得到圆柱;当圆台的上底面半径为零时,得到圆锥, 由此可得:

高中数学立体几何知识点

高中数学立体几何知识点

高中数学立体几何知识点(大全)一、【空间几何体结构】1.空间结合体:如果我们只考虑物体占用空间部分的形状和大小,而不考虑其它因素,那么由这些物体抽象出来的空间图形,就叫做空间几何体。

2.棱柱的结构特征:有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边互相平行,由这些面围成的图形叫做棱柱。

棱柱(1):棱柱中,两个相互平行的面,叫做棱柱的底面,简称底。

底面是几边形就叫做几棱柱。

(2):棱柱中除底面的各个面。

(3):相邻侧面的公共边叫做棱柱的侧棱。

(4):侧面与底面的公共顶点叫做棱柱的顶点棱柱的表示:用表示底面的各顶点的字母表示。

如:六棱柱表示为ABCDEF-A’B’C’D’E’F’3.棱锥的结构特征:有一个面是多边形,其余各面都是三角形,并且这些三角形有一个公共定点,由这些面所围成的多面体叫做棱锥。

棱锥4.圆柱的结构特征:以矩形的一边所在直线为旋转轴,其余边旋转形成的面所围成的旋转体叫做圆柱。

圆柱(1):旋转轴叫做圆柱的轴。

(2):垂直于轴的边旋转而成的圆面叫做圆柱的底面。

(3):平行于轴的边旋转而成的曲面叫做圆柱的侧面。

(4):无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。

圆柱用表示它的轴的字母表示,如:圆柱O’O(注:棱柱与圆柱统称为柱体)5.圆锥的结构特征:以直角三角形的一条直角边所在直线为旋转轴, 两余边旋转形成的面所围成的旋转体叫做圆锥。

圆锥(1):作为旋转轴的直角边叫做圆锥的轴。

(2):另外一条直角边旋转形成的圆面叫做圆锥的底面。

(3):直角三角形斜边旋转形成的曲面叫做圆锥的侧面。

(4):作为旋转轴的直角边与斜边的交点。

(5):无论旋转到什么位置,直角三角形的斜边叫做圆锥的母线。

圆锥可以用它的轴来表示。

如:圆锥SO(注:棱锥与圆锥统称为锥体)二、【棱台和圆台的结构特征】1.棱台的结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台。

棱台(1):原棱锥的底面和截面分别叫做棱台的下底面和上底面。

(完整)高中文科数学立体几何部分整理.doc

(完整)高中文科数学立体几何部分整理.doc

(完整)高中文科数学立体几何部分整理.doc立体几何高中文科数学立体几何部分整理第一章空间几何体(一)空间几何体的三视图与直观图1.投影:区分中心投影与平行投影。

平行投影分为正投影和斜投影。

2.三视图——是观察者从三个不同位置观察同一个空间几何体而画出的图形;正视图——光线从几何体的前面向后面正投影,得到的投影图;侧视图——光线从几何体的左面向右面正投影,得到的投影图;正视图——光线从几何体的上面向下面正投影,得到的投影图;注:(1)俯视图画在正视图的下方,“长度”与正视图相等;侧视图画在正视图的右边,“高度”与正视图相等,“宽度”与俯视图。

(简记为“正、侧一样高,正、俯一样长,俯、侧一样宽” .( 2)正视图,侧视图,俯视图都是平面图形,而不是直观图。

3.直观图:3.1 直观图——是观察着站在某一点观察一个空间几何体而画出的图形。

直观图通常是在平行投影下画出的空间图形。

3.2 斜二测法:step1:在已知图形中取互相垂直的轴 Ox 、 Oy ,(即取 xoy 90 );step2:画直观图时,把它画成对应的轴 o ' x ',o ' y' ,取 x ' o ' y' 45 (or 135 ) ,它们确定的平面表示水平平面;step3:在坐标系 x ' o ' y ' 中画直观图时,已知图形中平行于数轴的线段保持平行性不变,平行于 x 轴(或在 x 轴上)的线段保持长度不变,平行于y 轴(或在 y 轴上)的线段长度减半。

结论:一般地,采用斜二测法作出的直观图面积是原平面图形面积的2倍 .4解决两种常见的题型时应注意:(1)由几何体的三视图画直观图时,一般先考虑“俯视图”.(2)由几何体的直观图画三视图时,能看见的轮廓线和棱画成实线,不能看见的轮廓线和棱画成虚线。

【例题点击】将正三棱柱截去三个角(如图1 所示 A ,B , C 分别是△GHI 三边的中点)得到几何体如图2,则该几何体按图2 所示方向的侧视图(或称左视图)为()HA G ABBB侧视BBBCCIEDEDEEEEA .B .C .D .立体几何解:在图 2 的右边放扇墙 (心中有墙 ), 可得答案 A(二)立体几何1.棱柱1.1 棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

高中数学 立体几何专题复习

高中数学  立体几何专题复习

图2侧视图俯视图正视图4x33x4DCBA侧视图正视图立体几何专题(一)一、三视图考点透视:①能想象空间几何体的三视图,并判断(选择题) ②通过三视图计算空间几何体的体积或表面积③解答题中也可能以三视图为载体考查证明题和计算题④旋转体(圆柱、圆锥、圆台或其组合体)的三视图有两个视图一样。

⑤基本几何体的画法,如:三棱柱(侧视图)、挡住的注意画虚线。

1. 一空间几何体的三视图如图2所示, 该几何体的 体积为85123π+,则正视图中x 的值为 A. 5 B . 4 C. 3 D . 22. 一个正方体截去两个角后所得几何体的正视图(又称主视图)、 侧视图(又称左视图)如右图所示,则其俯视图为c3.如图4,已知一个锥体的正视图(也称主视图),左视图(也称侧视图)和俯视图均为直角三角形, 且面积分别为3,4,6,则该锥体的体积是 4 .4. 如图1-3,某几何体的正视图(主视图)是平行四边形, 侧视图(左视图)和俯视图都是矩形,则该几何体的体积 为A .63B .93C .123D .1835、已知某几何体的直观图(图1)与它的三视图(图2), 其中俯视图为正三角形,其它两个视图是矩形.已知D 是正视图 左视图俯视图图4_3 _3 这个几何体的棱11C A 上的中点。

(Ⅰ)求出该几何体的体积;(Ⅱ)求证:直线11//BC AB D 平面; (Ⅲ)求证:直线11B D AA D ⊥平面.二、直观图掌握直观图的斜二测画法:①平行于两坐标轴的平行关系保持不变;②平行于y 轴的长度为原来的一半,x 轴不变;③新坐标轴夹角为45°。

6、如图,梯形A 1B 1C 1D 1是一平面图形ABCD 的直观图(斜二测),若A 1D 1∥O 1y 1,A 1B 1∥C 1D 1,A 1B 1=2,C 1D 1=3,A 1D 1=1,则梯形ABCD 的面积是( ) A .10 B .5 C .5 2D .102三、表面积和体积不要求记忆,但要会使用公式。

文科立体几何高三知识点

文科立体几何高三知识点

文科立体几何高三知识点高三文科立体几何知识点立体几何是数学中的一个分支,它研究的对象是三维空间中的各种几何体及其性质。

在高中文科数学教学中,立体几何也是一个重要的知识点。

本文将详细介绍高三文科立体几何的相关知识点,包括体积、表面积、平行截面等内容。

一、体积体积是一个几何体所占据的三维空间的大小。

常见的几何体包括长方体、正方体、圆柱体、圆锥体和球体等。

这些几何体的体积计算公式如下:1. 长方体的体积计算公式为:V = lwh,其中l代表长度,w代表宽度,h代表高度。

2. 正方体的体积计算公式为:V = a^3,其中a代表边长。

3. 圆柱体的体积计算公式为:V = πr^2h,其中r代表底面半径,h代表高度。

4. 圆锥体的体积计算公式为:V = (1/3)πr^2h,其中r代表底面半径,h代表高度。

5. 球体的体积计算公式为:V = (4/3)πr^3,其中r代表半径。

二、表面积表面积是一个几何体外部面积的总和。

与体积类似,不同几何体的表面积计算公式也存在差异。

常见几何体的表面积计算公式如下:1. 长方体的表面积计算公式为:S = 2lw + 2lh + 2wh。

2. 正方体的表面积计算公式为:S = 6a^2,其中a代表边长。

3. 圆柱体的表面积计算公式为:S = 2πrh + 2πr^2,其中r代表底面半径,h代表高度。

4. 圆锥体的表面积计算公式为:S = πrl + πr^2,其中r代表底面半径,l代表斜高。

5. 球体的表面积计算公式为:S = 4πr^2,其中r代表半径。

三、平行截面平行截面是指一切平行于同一平面的柱体截面都相似。

根据平行截面的性质,我们可以得出以下结论:1. 柱体两个平行截面的面积比等于对应高度的比值的平方。

2. 柱体两个平行截面的体积比等于对应高度的比值的平方。

3. 柱体两个平行截面的表面积比等于对应高度的比值。

通过利用平行截面的性质,我们可以简化立体几何问题的计算。

结语:高三文科立体几何是数学学科中的一个重要部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考立体几何中直线、平面之间的位置关系知识点总结(文科)
一.平行问题 (一) 线线平行:
方法一:常用初中方法(1中位线定理;2平行四边形定理;3三角形中对应边成比例;4同位角、内错角、同旁内角) 方法二:1线面平行⇒线线平行
m l m l l ////⇒⎪⎭
⎪⎬⎫=⋂⊂βαβα
方法三:2面面平行⇒线线平行
m l m l ////⇒⎪⎭⎪⎬⎫=⋂=⋂βγαγβα
方法四:3线面垂直 ⇒线线平行
若αα⊥⊥m l ,,则m l //。

(二) 线面平行:
方法一:4线线平行⇒线面平行
ααα////l l m m l ⇒⎪⎭
⎪⎬⎫⊄⊂
方法二:5面面平行⇒线面平行 αββα////l l ⇒⎭⎬⎫⊂ (三) 面面平行:6方法一:线线平
行⇒面面平行 βααβ//',','//'
//⇒⎪⎪
⎭⎪⎪⎬⎫⊂⊂且相交且相交m l m l m m l l 方法二:7线面平行⇒面面平行
βαβαα//,////⇒⎪⎭
⎪⎬⎫=⊂A m l m l m l ,
方法三:8线面垂直⇒面面平行 βαβα面面面面//⇒⎭
⎬⎫⊥⊥l l
l
二.垂直问题:(一)线线垂直
方法一:常用初中的方法(1勾股定理的逆定理;2三线合一 ;3直径所对的圆周角为直角;4菱形的对角线互相垂直。

) 方法二:9线面垂直⇒线线垂直 m l m l ⊥⇒⎭⎬⎫⊂⊥αα (二)线面垂直:10方法一:线线垂直⇒线面垂直
α
α⊥⇒⎪⎪

⎪⎪⎬⎫
⊂=⋂⊥⊥l AB AC A AB AC AB l AC l ,
方法二:11面面垂直⇒线面垂直
αββαβα⊥⇒⎪⎭⎪⎬⎫⊂⊥=⋂⊥l l m l m ,
(面) 面面垂直:
方法一:12线面垂直⇒面面垂直 βαβα⊥⇒⎭⎬⎫
⊂⊥l l 三、夹角问题:异面直线所成的角:
(一) 范围:]90,0(︒︒
(二)求法:方法一:定义法。

步骤1:平移,使它们相交,找到夹角。

步骤2:解三角形求出角。

(计算结果可能是其补角)
线面角:直线PA 与平面α所成角为θ,如下图
求法:就是放到三角形中解三角形
四、距离问题:点到面的距离求法
1、直接求,
2、等体积法(换顶点)
1、一个几何体的三视图如图所示,则这个几何体的体积为( )
A .
B .
C .
D .
2、设 a b ,是两条不同的直线, αβ,
是两个不同的平面,则( ) A .若a α∥,b α∥,则a b ∥ B .若a α∥,αβ∥,则αβ∥
C.若a b ∥,a α⊥,则b α⊥ D .若a α∥,αβ⊥,则a β⊥
3、如图是一个正方体被切掉部分后所得几何体的三视图,则该几何体的体积为 .
4、某几何体的三视图如图所示,则该几何体的体积为( )
A .5
B .163
C .7
D .173
5、某空间几何体的三视图如图所示,则该几何体的体积为
A .73
B .83π-
C .83
D .73
π- 6、一个几何体的三视图如图所示,则这个几何体的直观图是
7、某四棱锥的三视图如图所示,其俯视图为等腰直角三角形,则该四棱锥的体积为
A.22
3
B.
4
3
C.2D.4
8、某三棱锥的三视图如图所示,则该三棱锥的体积为
(A)2
3
(B)
4
3
(C)2(D)
8
3
1、(2017新课标Ⅰ文数)(12分)
如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=
(1)证明:平面PAB ⊥平面PAD ;
(2)若PA =PD =AB =DC ,90APD ∠=,且四棱锥P-ABCD 的体积为8
3,求该四棱锥的侧面积.
2、(2017新课标Ⅱ文)(12分)
如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂
直于底面
ABCD ,1
,90.2AB BC AD BAD ABC ==∠=∠=︒
(1)证明:直线BC ∥平面PAD ;
(2)若△PCD 的面积为27,求四棱锥P ABCD -的体积.
3、(2017新课标Ⅲ文数)(12分)
如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .
(1)证明:AC⊥BD;
(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.
4、(2017北京文)(本小题14分)
如图,在三棱锥P–ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.
(Ⅰ)求证:PA⊥BD;
(Ⅱ)求证:平面BDE⊥平面PAC;
(Ⅲ)当PA∥平面BD E时,求三棱锥E–BCD的体积.
5、(2017山东文)(本小题满分12分)
由四棱柱ABCD-A1B1C1D1截去三棱锥C1- B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E 平面ABCD.
A O∥平面B1CD1;
(Ⅰ)证明:
1
(Ⅱ)设M是OD的中点,证明:平面A1EM 平面B1CD1.
6、(2017江苏)(本小题满分14分)
如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD 上,且EF⊥AD.
求证:(1)EF∥平面ABC;
(2)AD⊥AC.。

相关文档
最新文档